
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780136905691
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780136905691
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780136905691

Programmers
for

Learning C++20
(and other Popular Programming Languages)

 with Deitel on O’Reilly Online Learning

O’Reilly Online Learning
• This subscription service is popular with

millions of developers worldwide.
• Many organizations purchase subscriptions

for unlimited employee access.
• The site contains 46,000+ e-books and

5,800+ video products.
• If your organization has a subscription, you

can access all this content at no charge.
• Subscribers here get early access to new

Deitel e-book “Rough Cuts” and
LiveLessons video “Sneak Peeks.”

All Deitel C++20 publications on
O'Reilly Online Learning Are
Based on Their Print Book
C++20 for Programmers
• Approximately 1,000 pages.
• 200+ complete, working programs, each

followed by live execution outputs.
• Approximately 15,000 lines of code.
• Line-by-line code walkthroughs.
• Emphasis on Modern C++ idiom, software

engineering, performance and security.
• Real-world applications.
• Interact with the authors at

deitel@deitel.com.

C++20 LiveLessons Fundamentals
Video Product
• 50+ hours of video with Paul Deitel teaching

the content of C++20 for Programmers.
• Access asynchronously on O’Reilly Online

Learning at your convenience.
• Learn at your own pace.
• Interact with the authors at

deitel@deitel.com.

E-Books
• Same content as C++20 for Programmers

print book.
• Text searchable.
• Available from popular e-book providers,

including O’Reilly, Amazon, Informit,
VitalSource, Redshelf and more.

• Interact with the authors at
deitel@deitel.com.

Full-Throttle Live Training Courses
• Paul Deitel teaches fast-paced, full-day,

presentation-only courses.
• Ideal for busy developers and programming

managers.
• Ask Paul questions during the course and get

answers in real time.
• Still have questions? Email Paul after the

course at deitel@deitel.com.
• Courses offered monthly or bimonthly.
• C++20 Core Language Full Throttle.
• C++20 Standard Libraries Full Throttle.
• Python Full Throttle.
• Python Data Science Full Throttle.
• Java Full Throttle.

College Textbook Versions of C++20
for Programmers
• Available as Pearson interactive eTexts and

Revels.
• Both formats offer searchable text, video,

Checkpoint self-review questions with
answers, flashcards and other student
learning aids.

• In addition, Revel offers gradable,
interactive, programming and non-
programming assessment questions.

Deitel & Associates, Inc. also independently offers customized one- to five-day live courses deliv-
ered virtually over the Internet. Contact deitel@deitel.com for details.

mailto:deitel@deitel.com
mailto:deitel@deitel.com
mailto:deitel@deitel.com
mailto:deitel@deitel.com
mailto:deitel@deitel.com

D E I T E L® D E V E L O P E R S E R I E S

Paul Deitel • Harvey Deitel

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Programmers
for

An Objects-Natural Approach

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the pub-
lisher was aware of a trademark claim, the designations have been printed with initial cap-
ital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: https://informit.com

Library of Congress Control Number: 2021943762

Copyright © 2022 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photo-
copying, recording, or likewise. For information regarding permissions, request forms,
and the appropriate contacts within the Pearson Education Global Rights & Permissions
Department, please visit https://www.pearson.com/permissions/.

Deitel and the double-thumbs-up bug are registered trademarks of Deitel & Associates, Inc.

Cover design by Paul Deitel, Harvey Deitel, and Chuti Prasertsith

ISBN-13: 978-0-13-690569-1
ISBN-10: 0-13-690569-2

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
https://informit.com
https://www.pearson.com/permissions/

Pearson’s Commitment to Diversity, Equity, and Inclusion
Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. We
embrace the many dimensions of diversity, including but not limited to race, ethnicity, gen-
der, socioeconomic status, ability, age, sexual orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential
to deliver opportunities that improve lives and enable economic mobility. As we work with
authors to create content for every product and service, we acknowledge our responsibility
to demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve
their potential through learning. As the world’s leading learning company, we have a duty
to help drive change and live up to our purpose to help more people create a better life for
themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

• Everyone has an equitable and lifelong opportunity to succeed through learning.

• Our educational products and services are inclusive and represent the rich diver-
sity of learners.

• Our educational content accurately reflects the histories and experiences of the
learners we serve.

• Our educational content prompts deeper discussions with learners and motivates
them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any
concerns or needs with this Pearson product so that we can investigate and address them.
Please contact us with concerns about any potential bias at
 https://www.pearson.com/report-bias.html

https://www.pearson.com/report-bias.html

To the Members of the ISO C++ Standards Committee:
For your efforts in evolving the world’s
preeminent language for programming
high-performance, mission-critical and
business-critical applications.

Paul Deitel
Harvey Deitel

Preface xxi

Before You Begin xliii

1 Intro and Test-Driving Popular, Free
C++ Compilers 1

1.1 Introduction 2
1.2 Test-Driving a C++20 Application 4

1.2.1 Compiling and Running a C++20 Application with
Visual Studio 2022 Community Edition on Windows 4

1.2.2 Compiling and Running a C++20 Application with
Xcode on macOS 8

1.2.3 Compiling and Running a C++20 Application with
GNU C++ on Linux 11

1.2.4 Compiling and Running a C++20 Application with
g++ in the GCC Docker Container 13

1.2.5 Compiling and Running a C++20 Application with
clang++ in a Docker Container 14

1.3 Moore’s Law, Multi-Core Processors and Concurrent Programming 16
1.4 A Brief Refresher on Object Orientation 17
1.5 Wrap-Up 20

2 Intro to C++20 Programming 21
2.1 Introduction 22
2.2 First Program in C++: Displaying a Line of Text 22
2.3 Modifying Our First C++ Program 25
2.4 Another C++ Program: Adding Integers 26
2.5 Arithmetic 30
2.6 Decision Making: Equality and Relational Operators 31
2.7 Objects Natural: Creating and Using Objects of Standard-Library

Class string 35
2.8 Wrap-Up 38

Contents

viii Contents

3 Control Statements: Part 1 39
3.1 Introduction 40
3.2 Control Structures 40

3.2.1 Sequence Structure 41
3.2.2 Selection Statements 42
3.2.3 Iteration Statements 42
3.2.4 Summary of Control Statements 43

3.3 if Single-Selection Statement 43
3.4 if…else Double-Selection Statement 44

3.4.1 Nested if…else Statements 45
3.4.2 Blocks 46
3.4.3 Conditional Operator (?:) 47

3.5 while Iteration Statement 47
3.6 Counter-Controlled Iteration 48

3.6.1 Implementing Counter-Controlled Iteration 48
3.6.2 Integer Division and Truncation 50

3.7 Sentinel-Controlled Iteration 50
3.7.1 Implementing Sentinel-Controlled Iteration 50
3.7.2 Converting Between Fundamental Types Explicitly and Implicitly 52
3.7.3 Formatting Floating-Point Numbers 53

3.8 Nested Control Statements 54
3.8.1 Problem Statement 54
3.8.2 Implementing the Program 54
3.8.3 Preventing Narrowing Conversions with Braced Initialization 56

3.9 Compound Assignment Operators 57
3.10 Increment and Decrement Operators 58
3.11 Fundamental Types Are Not Portable 60
3.12 Objects-Natural Case Study: Arbitrary-Sized Integers 61
3.13 C++20: Text Formatting with Function format 65
3.14 Wrap-Up 67

4 Control Statements: Part 2 69
4.1 Introduction 70
4.2 Essentials of Counter-Controlled Iteration 70
4.3 for Iteration Statement 71
4.4 Examples Using the for Statement 74
4.5 Application: Summing Even Integers 74
4.6 Application: Compound-Interest Calculations 75
4.7 do…while Iteration Statement 78
4.8 switch Multiple-Selection Statement 80
4.9 C++17 Selection Statements with Initializers 85
4.10 break and continue Statements 86
4.11 Logical Operators 88

4.11.1 Logical AND (&&) Operator 88

Contents ix

4.11.2 Logical OR (||) Operator 89
4.11.3 Short-Circuit Evaluation 89
4.11.4 Logical Negation (!) Operator 90
4.11.5 Example: Producing Logical-Operator Truth Tables 90

4.12 Confusing the Equality (==) and Assignment (=) Operators 92
4.13 Objects-Natural Case Study: Using the miniz-cpp Library to Write

and Read ZIP files 94
4.14 C++20 Text Formatting with Field Widths and Precisions 98
4.15 Wrap-Up 100

5 Functions and an Intro to Function Templates 101
5.1 Introduction 102
5.2 C++ Program Components 103
5.3 Math Library Functions 103
5.4 Function Definitions and Function Prototypes 105
5.5 Order of Evaluation of a Function’s Arguments 108
5.6 Function-Prototype and Argument-Coercion Notes 108

5.6.1 Function Signatures and Function Prototypes 108
5.6.2 Argument Coercion 109
5.6.3 Argument-Promotion Rules and Implicit Conversions 109

5.7 C++ Standard Library Headers 111
5.8 Case Study: Random-Number Generation 113

5.8.1 Rolling a Six-Sided Die 114
5.8.2 Rolling a Six-Sided Die 60,000,000 Times 115
5.8.3 Seeding the Random-Number Generator 117
5.8.4 Seeding the Random-Number Generator with random_device 118

5.9 Case Study: Game of Chance; Introducing Scoped enums 119
5.10 Scope Rules 124
5.11 Inline Functions 128
5.12 References and Reference Parameters 129
5.13 Default Arguments 132
5.14 Unary Scope Resolution Operator 133
5.15 Function Overloading 134
5.16 Function Templates 137
5.17 Recursion 139
5.18 Example Using Recursion: Fibonacci Series 142
5.19 Recursion vs. Iteration 145
5.20 Lnfylun Lhqtomh Wjtz Qarcv: Qjwazkrplm xzz Xndmwwqhlz 147
5.21 Wrap-Up 150

6 arrays, vectors, Ranges and
Functional-Style Programming 153

6.1 Introduction 154
6.2 arrays 155
6.3 Declaring arrays 155

x Contents

6.4 Initializing array Elements in a Loop 155
6.5 Initializing an array with an Initializer List 158
6.6 C++11 Range-Based for and C++20 Range-Based for with Initializer 159
6.7 Calculating array Element Values and an Intro to constexpr 161
6.8 Totaling array Elements 163
6.9 Using a Primitive Bar Chart to Display array Data Graphically 164
6.10 Using array Elements as Counters 165
6.11 Using arrays to Summarize Survey Results 166
6.12 Sorting and Searching arrays 168
6.13 Multidimensional arrays 170
6.14 Intro to Functional-Style Programming 174

6.14.1 What vs. How 174
6.14.2 Passing Functions as Arguments to Other Functions: Introducing

Lambda Expressions 175
6.14.3 Filter, Map and Reduce: Intro to C++20’s Ranges Library 177

6.15 Objects-Natural Case Study: C++ Standard Library Class Template vector 180
6.16 Wrap-Up 187

7 (Downplaying) Pointers in Modern C++ 189
7.1 Introduction 190
7.2 Pointer Variable Declarations and Initialization 192

7.2.1 Declaring Pointers 192
7.2.2 Initializing Pointers 192
7.2.3 Null Pointers Before C++11 192

7.3 Pointer Operators 192
7.3.1 Address (&) Operator 193
7.3.2 Indirection (*) Operator 193
7.3.3 Using the Address (&) and Indirection (*) Operators 194

7.4 Pass-by-Reference with Pointers 195
7.5 Built-In Arrays 199

7.5.1 Declaring and Accessing a Built-In Array 199
7.5.2 Initializing Built-In Arrays 199
7.5.3 Passing Built-In Arrays to Functions 199
7.5.4 Declaring Built-In Array Parameters 200
7.5.5 C++11 Standard Library Functions begin and end 200
7.5.6 Built-In Array Limitations 200

7.6 Using C++20 to_array to Convert a Built-In Array to a std::array 201
7.7 Using const with Pointers and the Data Pointed To 202

7.7.1 Using a Nonconstant Pointer to Nonconstant Data 203
7.7.2 Using a Nonconstant Pointer to Constant Data 203
7.7.3 Using a Constant Pointer to Nonconstant Data 204
7.7.4 Using a Constant Pointer to Constant Data 204

7.8 sizeof Operator 205
7.9 Pointer Expressions and Pointer Arithmetic 208

7.9.1 Adding Integers to and Subtracting Integers from Pointers 209
7.9.2 Subtracting One Pointer from Another 209

Contents xi

7.9.3 Pointer Assignment 210
7.9.4 Cannot Dereference a void* 210
7.9.5 Comparing Pointers 210

7.10 Objects-Natural Case Study: C++20 spans—Views of Contiguous
Container Elements 210

7.11 A Brief Intro to Pointer-Based Strings 216
7.11.1 Command-Line Arguments 217
7.11.2 Revisiting C++20’s to_array Function 218

7.12 Looking Ahead to Other Pointer Topics 220
7.13 Wrap-Up 220

8 strings, string_views, Text Files,
CSV Files and Regex 221

8.1 Introduction 222
8.2 string Assignment and Concatenation 223
8.3 Comparing strings 225
8.4 Substrings 226
8.5 Swapping strings 227
8.6 string Characteristics 227
8.7 Finding Substrings and Characters in a string 230
8.8 Replacing and Erasing Characters in a string 232
8.9 Inserting Characters into a string 234
8.10 C++11 Numeric Conversions 235
8.11 C++17 string_view 236
8.12 Files and Streams 239
8.13 Creating a Sequential File 240
8.14 Reading Data from a Sequential File 243
8.15 C++14 Reading and Writing Quoted Text 245
8.16 Updating Sequential Files 246
8.17 String Stream Processing 247
8.18 Raw String Literals 249
8.19 Objects-Natural Case Study: Reading and Analyzing a CSV File

Containing Titanic Disaster Data 250
8.19.1 Using rapidcsv to Read the Contents of a CSV File 251
8.19.2 Reading and Analyzing the Titanic Disaster Dataset 253

8.20 Objects-Natural Case Study: Intro to Regular Expressions 259
8.20.1 Matching Complete Strings to Patterns 261
8.20.2 Replacing Substrings 265
8.20.3 Searching for Matches 265

8.21 Wrap-Up 267

9 Custom Classes 269
9.1 Introduction 270
9.2 Test-Driving an Account Object 271

xii Contents

9.3 Account Class with a Data Member and Set and Get Member Functions 272
9.3.1 Class Definition 272
9.3.2 Access Specifiers private and public 274

9.4 Account Class: Custom Constructors 275
9.5 Software Engineering with Set and Get Member Functions 279
9.6 Account Class with a Balance 280
9.7 Time Class Case Study: Separating Interface from Implementation 283

9.7.1 Interface of a Class 284
9.7.2 Separating the Interface from the Implementation 284
9.7.3 Class Definition 285
9.7.4 Member Functions 286
9.7.5 Including the Class Header in the Source-Code File 287
9.7.6 Scope Resolution Operator (::) 287
9.7.7 Member Function setTime and Throwing Exceptions 287
9.7.8 Member Functions to24HourString and to12HourString 288
9.7.9 Implicitly Inlining Member Functions 288
9.7.10 Member Functions vs. Global Functions 288
9.7.11 Using Class Time 288
9.7.12 Object Size 290

9.8 Compilation and Linking Process 290
9.9 Class Scope and Accessing Class Members 291
9.10 Access Functions and Utility Functions 292
9.11 Time Class Case Study: Constructors with Default Arguments 292

9.11.1 Class Time 292
9.11.2 Overloaded Constructors and C++11 Delegating Constructors 297

9.12 Destructors 298
9.13 When Constructors and Destructors Are Called 298
9.14 Time Class Case Study: A Subtle Trap —Returning a Reference or a

Pointer to a private Data Member 302
9.15 Default Assignment Operator 304
9.16 const Objects and const Member Functions 306
9.17 Composition: Objects as Members of Classes 308
9.18 friend Functions and friend Classes 313
9.19 The this Pointer 314

9.19.1 Implicitly and Explicitly Using the this Pointer to Access an
Object’s Data Members 315

9.19.2 Using the this Pointer to Enable Cascaded Function Calls 316
9.20 static Class Members: Classwide Data and Member Functions 320
9.21 Aggregates in C++20 324

9.21.1 Initializing an Aggregate 325
9.21.2 C++20: Designated Initializers 325

9.22 Objects-Natural Case Study: Serialization with JSON 326
9.22.1 Serializing a vector of Objects Containing public Data 327
9.22.2 Serializing a vector of Objects Containing private Data 331

9.23 Wrap-Up 333

Contents xiii

10 OOP: Inheritance and Runtime Polymorphism 335
10.1 Introduction 336
10.2 Base Classes and Derived Classes 339

10.2.1 CommunityMember Class Hierarchy 339
10.2.2 Shape Class Hierarchy and public Inheritance 340

10.3 Relationship Between Base and Derived Classes 341
10.3.1 Creating and Using a SalariedEmployee Class 341
10.3.2 Creating a SalariedEmployee–SalariedCommissionEmployee

Inheritance Hierarchy 344
10.4 Constructors and Destructors in Derived Classes 349
10.5 Intro to Runtime Polymorphism: Polymorphic Video Game 350
10.6 Relationships Among Objects in an Inheritance Hierarchy 351

10.6.1 Invoking Base-Class Functions from Derived-Class Objects 352
10.6.2 Aiming Derived-Class Pointers at Base-Class Objects 354
10.6.3 Derived-Class Member-Function Calls via Base-Class Pointers 355

10.7 Virtual Functions and Virtual Destructors 357
10.7.1 Why virtual Functions Are Useful 357
10.7.2 Declaring virtual Functions 357
10.7.3 Invoking a virtual Function 357
10.7.4 virtual Functions in the SalariedEmployee Hierarchy 358
10.7.5 virtual Destructors 361
10.7.6 final Member Functions and Classes 361

10.8 Abstract Classes and Pure virtual Functions 362
10.8.1 Pure virtual Functions 363
10.8.2 Device Drivers: Polymorphism in Operating Systems 363

10.9 Case Study: Payroll System Using Runtime Polymorphism 363
10.9.1 Creating Abstract Base Class Employee 364
10.9.2 Creating Concrete Derived Class SalariedEmployee 367
10.9.3 Creating Concrete Derived Class CommissionEmployee 368
10.9.4 Demonstrating Runtime Polymorphic Processing 370

10.10 Runtime Polymorphism, Virtual Functions and Dynamic Binding
“Under the Hood” 373

10.11 Non-Virtual Interface (NVI) Idiom 376
10.12 Program to an Interface, Not an Implementation 383

10.12.1 Rethinking the Employee Hierarchy—
CompensationModel Interface 385

10.12.2 Class Employee 385
10.12.3 CompensationModel Implementations 387
10.12.4 Testing the New Hierarchy 389
10.12.5 Dependency Injection Design Benefits 390

10.13 Runtime Polymorphism with std::variant and std::visit 391
10.14 Multiple Inheritance 397

10.14.1 Diamond Inheritance 401
10.14.2 Eliminating Duplicate Subobjects with virtual

Base-Class Inheritance 403
10.15 protected Class Members: A Deeper Look 405

xiv Contents

10.16 public, protected and private Inheritance 406
10.17 More Runtime Polymorphism Techniques; Compile-Time Polymorphism 408

10.17.1 Other Runtime Polymorphism Techniques 408
10.17.2 Compile-Time (Static) Polymorphism Techniques 410
10.17.3 Other Polymorphism Concepts 411

10.18 Wrap-Up 412

11 Operator Overloading, Copy/Move Semantics
and Smart Pointers 415

11.1 Introduction 416
11.2 Using the Overloaded Operators of Standard Library Class string 418
11.3 Operator Overloading Fundamentals 423

11.3.1 Operator Overloading Is Not Automatic 423
11.3.2 Operators That Cannot Be Overloaded 423
11.3.3 Operators That You Do Not Have to Overload 424
11.3.4 Rules and Restrictions on Operator Overloading 424

11.4 (Downplaying) Dynamic Memory Management with new and delete 425
11.5 Modern C++ Dynamic Memory Management: RAII and Smart Pointers 427

11.5.1 Smart Pointers 427
11.5.2 Demonstrating unique_ptr 428
11.5.3 unique_ptr Ownership 429
11.5.4 unique_ptr to a Built-In Array 430

11.6 MyArray Case Study: Crafting a Valuable Class with Operator Overloading 430
11.6.1 Special Member Functions 431
11.6.2 Using Class MyArray 432
11.6.3 MyArray Class Definition 441
11.6.4 Constructor That Specifies a MyArray’s Size 442
11.6.5 C++11 Passing a Braced Initializer to a Constructor 443
11.6.6 Copy Constructor and Copy Assignment Operator 444
11.6.7 Move Constructor and Move Assignment Operator 447
11.6.8 Destructor 450
11.6.9 toString and size Functions 451
11.6.10 Overloading the Equality (==) and Inequality (!=) Operators 451
11.6.11 Overloading the Subscript ([]) Operator 453
11.6.12 Overloading the Unary bool Conversion Operator 454
11.6.13 Overloading the Preincrement Operator 454
11.6.14 Overloading the Postincrement Operator 455
11.6.15 Overloading the Addition Assignment Operator (+=) 456
11.6.16 Overloading the Binary Stream Extraction (>>) and

Stream Insertion (<<) Operators 456
11.6.17 friend Function swap 459

11.7 C++20 Three-Way Comparison Operator (<=>) 459
11.8 Converting Between Types 462
11.9 explicit Constructors and Conversion Operators 463
11.10 Overloading the Function Call Operator () 466
11.11 Wrap-Up 466

Contents xv

12 Exceptions and a Look Forward to Contracts 467
12.1 Introduction 468
12.2 Exception-Handling Flow of Control 471

12.2.1 Defining an Exception Class to Represent the Type of Problem
That Might Occur 472

12.2.2 Demonstrating Exception Handling 472
12.2.3 Enclosing Code in a try Block 474
12.2.4 Defining a catch Handler for DivideByZeroExceptions 474
12.2.5 Termination Model of Exception Handling 475
12.2.6 Flow of Control When the User Enters a Nonzero Denominator 476
12.2.7 Flow of Control When the User Enters a Zero Denominator 476

12.3 Exception Safety Guarantees and noexcept 476
12.4 Rethrowing an Exception 477
12.5 Stack Unwinding and Uncaught Exceptions 479
12.6 When to Use Exception Handling 481

12.6.1 assert Macro 483
12.6.2 Failing Fast 483

12.7 Constructors, Destructors and Exception Handling 483
12.7.1 Throwing Exceptions from Constructors 484
12.7.2 Catching Exceptions in Constructors via Function try Blocks 484
12.7.3 Exceptions and Destructors: Revisiting noexcept(false) 486

12.8 Processing new Failures 487
12.8.1 new Throwing bad_alloc on Failure 488
12.8.2 new Returning nullptr on Failure 489
12.8.3 Handling new Failures Using Function set_new_handler 489

12.9 Standard Library Exception Hierarchy 490
12.10 C++’s Alternative to the finally Block: Resource Acquisition Is

Initialization (RAII) 493
12.11 Some Libraries Support Both Exceptions and Error Codes 493
12.12 Logging 494
12.13 Looking Ahead to Contracts 495
12.14 Wrap-Up 503

13 Standard Library Containers and Iterators 505
13.1 Introduction 506
13.2 Introduction to Containers 508

13.2.1 Common Nested Types in Sequence and Associative Containers 510
13.2.2 Common Container Member and Non-Member Functions 510
13.2.3 Requirements for Container Elements 513

13.3 Working with Iterators 513
13.3.1 Using istream_iterator for Input and ostream_iterator

for Output 514
13.3.2 Iterator Categories 515
13.3.3 Container Support for Iterators 516

xvi Contents

13.3.4 Predefined Iterator Type Names 516
13.3.5 Iterator Operators 516

13.4 A Brief Introduction to Algorithms 518
13.5 Sequence Containers 518
13.6 vector Sequence Container 519

13.6.1 Using vectors and Iterators 519
13.6.2 vector Element-Manipulation Functions 522

13.7 list Sequence Container 526
13.8 deque Sequence Container 531
13.9 Associative Containers 533

13.9.1 multiset Associative Container 533
13.9.2 set Associative Container 537
13.9.3 multimap Associative Container 539
13.9.4 map Associative Container 541

13.10 Container Adaptors 543
13.10.1 stack Adaptor 543
13.10.2 queue Adaptor 545
13.10.3 priority_queue Adaptor 546

13.11 bitset Near Container 547
13.12 Optional: A Brief Intro to Big O 549
13.13 Optional: A Brief Intro to Hash Tables 552
13.14 Wrap-Up 553

14 Standard Library Algorithms and
C++20 Ranges & Views 555

14.1 Introduction 556
14.2 Algorithm Requirements: C++20 Concepts 558
14.3 Lambdas and Algorithms 560
14.4 Algorithms 563

14.4.1 fill, fill_n, generate and generate_n 563
14.4.2 equal, mismatch and lexicographical_compare 566
14.4.3 remove, remove_if, remove_copy and remove_copy_if 568
14.4.4 replace, replace_if, replace_copy and replace_copy_if 572
14.4.5 Shuffling, Counting, and Minimum and Maximum

Element Algorithms 574
14.4.6 Searching and Sorting Algorithms 578
14.4.7 swap, iter_swap and swap_ranges 582
14.4.8 copy_backward, merge, unique, reverse, copy_if and copy_n 584
14.4.9 inplace_merge, unique_copy and reverse_copy 588
14.4.10 Set Operations 589
14.4.11 lower_bound, upper_bound and equal_range 592
14.4.12 min, max and minmax 594
14.4.13 Algorithms gcd, lcm, iota, reduce and partial_sum from

Header <numeric> 596
14.4.14 Heapsort and Priority Queues 599

Contents xvii

14.5 Function Objects (Functors) 603
14.6 Projections 608
14.7 C++20 Views and Functional-Style Programming 611

14.7.1 Range Adaptors 611
14.7.2 Working with Range Adaptors and Views 612

14.8 Intro to Parallel Algorithms 617
14.9 Standard Library Algorithm Summary 619
14.10 A Look Ahead to C++23 Ranges 622
14.11 Wrap-Up 623

15 Templates, C++20 Concepts and
Metaprogramming 625

15.1 Introduction 626
15.2 Custom Class Templates and Compile-Time Polymorphism 629
15.3 C++20 Function Template Enhancements 634

15.3.1 C++20 Abbreviated Function Templates 634
15.3.2 C++20 Templated Lambdas 636

15.4 C++20 Concepts: A First Look 636
15.4.1 Unconstrained Function Template multiply 637
15.4.2 Constrained Function Template with a C++20 Concepts

requires Clause 640
15.4.3 C++20 Predefined Concepts 642

15.5 Type Traits 644
15.6 C++20 Concepts: A Deeper Look 648

15.6.1 Creating a Custom Concept 648
15.6.2 Using a Concept 649
15.6.3 Using Concepts in Abbreviated Function Templates 650
15.6.4 Concept-Based Overloading 651
15.6.5 requires Expressions 654
15.6.6 C++20 Exposition-Only Concepts 657
15.6.7 Techniques Before C++20 Concepts: SFINAE and Tag Dispatch 658

15.7 Testing C++20 Concepts with static_assert 659
15.8 Creating a Custom Algorithm 661
15.9 Creating a Custom Container and Iterators 663

15.9.1 Class Template ConstIterator 665
15.9.2 Class Template Iterator 668
15.9.3 Class Template MyArray 670
15.9.4 MyArray Deduction Guide for Braced Initialization 673
15.9.5 Using MyArray and Its Custom Iterators with

std::ranges Algorithms 674
15.10 Default Arguments for Template Type Parameters 678
15.11 Variable Templates 678
15.12 Variadic Templates and Fold Expressions 679

15.12.1 tuple Variadic Class Template 679

xviii Contents

15.12.2 Variadic Function Templates and an Intro to
C++17 Fold Expressions 682

15.12.3 Types of Fold Expressions 686
15.12.4 How Unary-Fold Expressions Apply Their Operators 686
15.12.5 How Binary-Fold Expressions Apply Their Operators 689
15.12.6 Using the Comma Operator to Repeatedly Perform an Operation 690
15.12.7 Constraining Parameter Pack Elements to the Same Type 691

15.13 Template Metaprogramming 693
15.13.1 C++ Templates Are Turing Complete 694
15.13.2 Computing Values at Compile-Time 694
15.13.3 Conditional Compilation with Template Metaprogramming

and constexpr if 699
15.13.4 Type Metafunctions 701

15.14 Wrap-Up 705

16 C++20 Modules: Large-Scale Development 707
16.1 Introduction 708
16.2 Compilation and Linking Before C++20 710
16.3 Advantages and Goals of Modules 711
16.4 Example: Transitioning to Modules—Header Units 712
16.5 Modules Can Reduce Translation Unit Sizes and Compilation Times 715
16.6 Example: Creating and Using a Module 716

16.6.1 module Declaration for a Module Interface Unit 717
16.6.2 Exporting a Declaration 719
16.6.3 Exporting a Group of Declarations 719
16.6.4 Exporting a namespace 719
16.6.5 Exporting a namespace Member 720
16.6.6 Importing a Module to Use Its Exported Declarations 720
16.6.7 Example: Attempting to Access Non-Exported Module Contents 722

16.7 Global Module Fragment 724
16.8 Separating Interface from Implementation 725

16.8.1 Example: Module Implementation Units 725
16.8.2 Example: Modularizing a Class 728
16.8.3 :private Module Fragment 731

16.9 Partitions 732
16.9.1 Example: Module Interface Partition Units 732
16.9.2 Module Implementation Partition Units 735
16.9.3 Example: “Submodules” vs. Partitions 736

16.10 Additional Modules Examples 740
16.10.1 Example: Importing the C++ Standard Library as Modules 740
16.10.2 Example: Cyclic Dependencies Are Not Allowed 742
16.10.3 Example: imports Are Not Transitive 743
16.10.4 Example: Visibility vs. Reachability 744

16.11 Migrating Code to Modules 746

Contents xix

16.12 Future of Modules and Modules Tooling 746
16.13 Wrap-Up 748

17 Parallel Algorithms and Concurrency:
A High-Level View 755

17.1 Introduction 756
17.2 Standard Library Parallel Algorithms (C++17) 759

17.2.1 Example: Profiling Sequential and Parallel Sorting Algorithms 759
17.2.2 When to Use Parallel Algorithms 762
17.2.3 Execution Policies 763
17.2.4 Example: Profiling Parallel and Vectorized Operations 764
17.2.5 Additional Parallel Algorithm Notes 766

17.3 Multithreaded Programming 767
17.3.1 Thread States and the Thread Life Cycle 767
17.3.2 Deadlock and Indefinite Postponement 769

17.4 Launching Tasks with std::jthread 771
17.4.1 Defining a Task to Perform in a Thread 772
17.4.2 Executing a Task in a jthread 773
17.4.3 How jthread Fixes thread 775

17.5 Producer–Consumer Relationship: A First Attempt 776
17.6 Producer–Consumer: Synchronizing Access to Shared Mutable Data 783

17.6.1 Class SynchronizedBuffer: Mutexes, Locks and
Condition Variables 785

17.6.2 Testing SynchronizedBuffer 791
17.7 Producer–Consumer: Minimizing Waits with a Circular Buffer 795
17.8 Readers and Writers 804
17.9 Cooperatively Canceling jthreads 805
17.10 Launching Tasks with std::async 808
17.11 Thread-Safe, One-Time Initialization 815
17.12 A Brief Introduction to Atomics 816
17.13 Coordinating Threads with C++20 Latches and Barriers 820

17.13.1 C++20 std::latch 820
17.13.2 C++20 std::barrier 823

17.14 C++20 Semaphores 826
17.15 C++23: A Look to the Future of C++ Concurrency 830

17.15.1 Parallel Ranges Algorithms 830
17.15.2 Concurrent Containers 830
17.15.3 Other Concurrency-Related Proposals 831

17.16 Wrap-Up 831

18 C++20 Coroutines 833
18.1 Introduction 834
18.2 Coroutine Support Libraries 835
18.3 Installing the concurrencpp and generator Libraries 837

xx Contents

18.4 Creating a Generator Coroutine with co_yield and the generator Library 837
18.5 Launching Tasks with concurrencpp 841
18.6 Creating a Coroutine with co_await and co_return 845
18.7 Low-Level Coroutines Concepts 853
18.8 C++23 Coroutines Enhancements 855
18.9 Wrap-Up 856

A Operator Precedence and Grouping 857

B Character Set 859

Index 861

Online Chapters and Appendices
19 Stream I/O and C++20 Text Formatting
20 Other Topics and a Look Toward C++23
C Number Systems
D Preprocessor
E Bit Manipulation

Welcome to C++20 for Programmers: An Objects-Natural Approach. This book presents
leading-edge computing technologies for software developers. It conforms to the C++20
standard (1,834 pages), which the ISO C++ Standards Committee approved in September
2020.1,2

The C++ programming language is popular for building high-performance business-
critical and mission-critical computing systems—operating systems, real-time systems,
embedded systems, game systems, banking systems, air-traffic-control systems, communi-
cations systems and more. This book is an introductory- through intermediate-level tuto-
rial presentation of the C++20 version of C++, which is among the world’s most popular
programming languages,3 and its associated standard libraries. We present a friendly, con-
temporary, code-intensive, case-study-oriented introduction to C++20. In this Preface, we
explore the “soul of the book.”

P.1 Modern C++
We focus on Modern C++, which includes the four most recent C++ standards—C++20,
C++17, C++14 and C++11, with a look toward key features anticipated for C++23 and
later. A common theme of this book is to focus on the new and improved ways to code in
C++. We employ best practices, emphasizing current professional software-development
Modern C++ idioms, and we focus on performance, security and software engineering
issues.

Keep It Topical
“Who dares to teach must never cease to learn.”4 (J. C. Dana)

To “take the pulse” of Modern C++, which changes the way developers write C++ pro-
grams, we read, browsed or watched approximately 6,000 current articles, research papers,
white papers, documentation pieces, blog posts, forum posts and videos.

1. The final draft C++ standard is located at: https://timsong-cpp.github.io/cppwp/n4861/. This
version is free. The published final version (ISO/IEC 14882:2020) may be purchased at https://
www.iso.org/standard/79358.html.

2. Herb Sutter, “C++20 Approved, C++23 Meetings and Schedule Update,” September 6, 2020. Ac-
cessed January 11, 2022. https://herbsutter.com/2020/09/06/c20-approved-c23-meetings-
and-schedule-update/.

3. Tiobe Index for January 2022. Accessed January 7, 2022. http://www.tiobe.com/tiobe-index.
4. John Cotton Dana. From https://www.bartleby.com/73/1799.html: “In 1912 Dana, a Newark,

New Jersey, librarian, was asked to supply a Latin quotation suitable for inscription on a new building
at Newark State College (now Kean University), Union, New Jersey. Unable to find an appropriate
quotation, Dana composed what became the college motto.”—The New York Times Book Review,
March 5, 1967, p. 55.”

Preface

https://timsong-cpp.github.io/cppwp/n4861/
https://www.iso.org/standard/79358.html
https://www.iso.org/standard/79358.html
https://herbsutter.com/2020/09/06/c20-approved-c23-meetings-and-schedule-update/
https://herbsutter.com/2020/09/06/c20-approved-c23-meetings-and-schedule-update/
http://www.tiobe.com/tiobe-index
https://www.bartleby.com/73/1799.html

xxii Preface

C++ Versions
As a developer, you might work on C++ legacy code or projects requiring specific C++ ver-
sions. So, we use margin icons like the “20” icon shown here to mark each mention of a
Modern C++ language feature with the C++ version in which it first appeared. The icons
help you see C++ evolving, often from programming with low-level details to easier-to-use,
higher-level forms of expression. These trends help reduce development times, and
enhance performance, security and system maintainability.

P.2 Target Audiences
C++20 for Programmers: An Objects-Natural Approach has several target audiences:

• C++ software developers who want to learn the latest C++20 features in the con-
text of a full-language, professional-style tutorial,

• non-C++ software developers who are preparing to do a C++ project and want to
learn the latest version of C++,

• software developers who learned C++ in college or used it professionally some
time ago and want to refresh their C++ knowledge in the context of C++20, and

• professional C++ trainers developing C++20 courses.

P.3 Live-Code Approach and Getting the Code
At the heart of the book is the Deitel signature live-code approach. Rather than code snip-
pets, we show C++ as it’s intended to be used in the context of hundreds of complete,
working, real-world C++ programs with live outputs.

Read the Before You Begin section that follows this Preface to learn how to set up
your Windows, macOS or Linux computer to run the 200+ code examples consisting of
approximately 15,000 lines of code. All the source code is available free for download at

• https://github.com/pdeitel/CPlusPlus20ForProgrammers

• https://www.deitel.com/books/c-plus-plus-20-for-programmers

• https://informit.com/title/9780136905691 (see Section P.8)

For your convenience, we provide the book’s examples in C++ source-code (.cpp and .h)
files for use with integrated development environments and command-line compilers. See
Chapter 1’s Test-Drives (Section 1.2) for information on compiling and running the
code examples with our three preferred compilers. Execute each program in parallel with
reading the text to make your learning experience “come alive.” If you encounter a prob-
lem, you can reach us at

deitel@deitel.com

P.4 Three Industrial-Strength Compilers
We tested the code examples on the latest versions of

• Visual C++® in Microsoft® Visual Studio® Community edition on Windows®,

20

https://github.com/pdeitel/CPlusPlus20ForProgrammers
https://www.deitel.com/books/c-plus-plus-20-for-programmers
https://informit.com/title/9780136905691
mailto:deitel@deitel.com

P.5 Programming Wisdom and Key C++20 Features xxiii

• Clang C++ (clang++) in Apple® Xcode® on macOS®, and in a Docker® con-
tainer, and

• GNU® C++ (g++) on Linux® and in the GNU Compiler Collection (GCC)
Docker® container.

At the time of this writing, most C++20 features are fully implemented by all three
compilers, some are implemented by a subset of the three and some are not yet imple-
mented by any. We point out these differences as appropriate and will update our digital
content as the compiler vendors implement the remaining C++20 features. We’ll also post
code updates to the book’s GitHub repository:

https://github.com/pdeitel/CPlusPlus20ForProgrammers

and both code and text updates on the book’s websites:

https://www.deitel.com/books/c-plus-plus-20-for-programmers

https://informit.com/title/9780136905691

P.5 Programming Wisdom and Key C++20 Features
Throughout the book, we use margin icons to call your attention to software-develop-
ment wisdom and C++20 modules and concepts features:

• Software engineering observations highlight architectural and design issues for
proper software construction, especially for larger systems.

• Security best practices help you strengthen your programs against attacks.

• Performance tips highlight opportunities to make your programs run faster or
minimize the amount of memory they occupy.

• Common programming errors help reduce the likelihood that you’ll make the
same mistakes.

• C++ Core Guidelines recommendations (introduced in Section P.9).

• C++20’s new modules features.

• C++20’s new concepts features.

P.6 “Objects-Natural” Learning Approach
In Chapter 9, we’ll cover how to develop custom C++20 classes, then continue our treat-
ment of object-oriented programming throughout the rest of the book.

What Is Objects Natural?
In the early chapters, you’ll work with preexisting classes that do significant things. You’ll
quickly create objects of those classes and get them to “strut their stuff” with a minimal
number of simple C++ statements. We call this the “Objects-Natural Approach.”

Given the massive numbers of free, open-source class libraries created by the C++
community, you’ll be able to perform powerful tasks long before you study how to create
your own custom C++ classes in Chapter 9. This is one of the most compelling aspects
of working with object-oriented languages, in general, and with a mature object-oriented
language like C++, in particular.

20

SE

Sec

Perf

Err

CG

Mod

C Concepts

https://github.com/pdeitel/CPlusPlus20ForProgrammers
https://www.deitel.com/books/c-plus-plus-20-for-programmers
https://informit.com/title/9780136905691

xxiv Preface

Free Classes
We emphasize using the huge number of valuable free classes available in the C++ ecosys-
tem. These typically come from:

• the C++ Standard Library,

• platform-specific libraries, such as those provided with Microsoft Windows,
Apple macOS or various Linux versions,

• free third-party C++ libraries, often created by the open-source community, and

• fellow developers, such as those in your organization.

We encourage you to view lots of free, open-source C++ code examples (available on sites
such as GitHub) for inspiration.

The Boost Project
Boost provides 168 open-source C++ libraries.5 It also serves as a “breeding ground” for
new capabilities that are eventually incorporated into the C++ standard libraries. Some
that have been added to Modern C++ include multithreading, random-number genera-
tion, smart pointers, tuples, regular expressions, file systems and string_views.6 The fol-
lowing StackOverflow answer lists Modern C++ libraries and language features that
evolved from the Boost libraries:7

https://stackoverflow.com/a/8852421

Objects-Natural Case Studies
Chapter 1 reviews the basic concepts and terminology of object technology. In the early
chapters, you’ll then create and use objects of preexisting classes long before creating your
own custom classes in Chapter 9 and in the remainder of the book. Our objects-natural
case studies include:

• Section 2.7—Creating and Using Objects of Standard-Library Class string

• Section 3.12—Arbitrary-Sized Integers

• Section 4.13—Using the miniz-cpp Library to Write and Read ZIP files

• Section 5.20—Lnfylun Lhqtomh Wjtz Qarcv: Qjwazkrplm xzz Xndmwwqhlz
(this is the encrypted title of our private-key encryption case study)

• Section 6.15—C++ Standard Library Class Template vector

• Section 7.10—C++20 spans: Views of Contiguous Container Elements

• Section 8.19—Reading/Analyzing a CSV File Containing Titanic Disaster Data

• Section 8.20—Intro to Regular Expressions

• Section 9.22—Serializing Objects with JSON (JavaScript Object Notation)

5. “Boost 1.78.0 Library Documentation.” Accessed January 9, 2022. https://www.boost.org/doc/
libs/1_78_0/.

6. “Boost C++ Libraries.” Wikipedia. Wikimedia Foundation. Accessed January 9, 2022. https://
en.wikipedia.org/wiki/Boost_(C%2B%2B_libraries).

7. Kennytm, Answer to “Which Boost Features Overlap with C++11?” Accessed January 9, 2022.
https://stackoverflow.com/a/8852421.

https://stackoverflow.com/a/8852421
https://www.boost.org/doc/libs/1_78_0/
https://www.boost.org/doc/libs/1_78_0/
https://en.wikipedia.org/wiki/Boost_(C%2B%2B_libraries)
https://en.wikipedia.org/wiki/Boost_(C%2B%2B_libraries)
https://stackoverflow.com/a/8852421

P.7 A Tour of the Book xxv

A perfect example of the objects-natural approach is using objects of existing classes, like
array and vector (Chapter 6), without knowing how to write custom classes in general
or how those classes are written in particular. Throughout the rest of the book, we use
existing C++ standard library capabilities extensively.

P.7 A Tour of the Book
The full-color table of contents graphic inside the front cover shows the book’s modular
architecture. As you read this Tour of the Book, also refer to that graphic. Together, the
graphic and this section will help you quickly “scope out” the book’s coverage.

This Tour of the Book points out many of the book’s key features. The early chapters
establish a solid foundation in C++20 fundamentals. The mid-range to high-end chapters
and the case studies ease you into Modern C++20-based software development. Through-
out the book, we discuss C++20’s programming models:

• procedural programming,

• functional-style programming,

• object-oriented programming,

• generic programming and

• template metaprogramming.

Part 1: Programming Fundamentals Quickstart

Chapter 1, Intro and Test-Driving Popular, Free C++ Compilers: This book is for pro-
fessional software developers, so Chapter 1

• presents a brief introduction,

• discusses Moore’s law, multi-core processors and why standardized concurrent
programming is important in Modern C++, and

• provides a brief refresher on object orientation, introducing terminology used
throughout the book.

Then we jump right in with test-drives demonstrating how to compile and execute C++
code with our three preferred free compilers:

• Microsoft’s Visual C++ in Visual Studio on Windows,

• Apple’s Xcode on macOS and

• GNU’s g++ on Linux.

We tested the book’s code examples using each, pointing out the few cases in which a com-
piler does not support a particular feature. Choose whichever program-development envi-
ronment(s) you prefer. The book also will work well with other C++20 compilers.

We also demonstrate GNU g++ in the GNU Compiler Collection Docker container
and Clang C++ in a Docker container. This enables you to run the latest GNU g++ and
clang++ command-line compilers on Windows, macOS or Linux. See Section P.13,
Docker, for more information on this important developer tool. See the Before You Begin
section for installation instructions.

xxvi Preface

For Windows users, we point to Microsoft’s step-by-step instructions that allow you
to install Linux in Windows via the Windows Subsystem for Linux (WSL). This is another
way to use the g++ and clang++ compilers on Windows.

Chapter 2, Intro to C++ Programming, presents C++ fundamentals and illustrates key
language features, including input, output, fundamental data types, arithmetic operators
and their precedence, and decision making. Section 2.7’s objects-natural case study
demonstrates creating and using objects of standard-library class string—without you
having to know how to develop custom classes in general or how that large complex class
is implemented in particular).

Chapter 3, Control Statements: Part 1, focuses on control statements. You’ll use the if
and if…else selection statements, the while iteration statement for counter-controlled
and sentinel-controlled iteration, and the increment, decrement and assignment opera-
tors. Section 3.12’s objects-natural case study demonstrates using a third-party library to
create arbitrary-sized integers.

Chapter 4, Control Statements: Part 2, presents C++’s other control statements—for,
do…while, switch, break and continue—and the logical operators. Section 4.13’s
objects-natural case study demonstrates using the miniz-cpp library to write and read
ZIP files programmatically.

Chapter 5, Functions and an Intro to Function Templates, introduces custom functions.
We demonstrate simulation techniques with random-number generation. The random-
number generation function rand that C++ inherited from C does not have good statistical
properties and can be predictable.8 This makes programs using rand less secure. We include
a treatment of C++11’s more secure library of random-number capabilities that can pro-
duce nondeterministic random numbers—a set of random numbers that can’t be predicted.
Such random-number generators are used in simulations and security scenarios where pre-
dictability is undesirable. We also discuss passing information between functions, and recur-
sion. Section 5.20’s objects-natural case study demonstrates private-key encryption.

Part 2: Arrays, Pointers and Strings

Chapter 6, arrays, vectors, Ranges and Functional-Style Programming, begins our
early coverage of the C++ standard library’s containers, iterators and algorithms. We pres-
ent the C++ standard library’s array container for representing lists and tables of values.
You’ll define and initialize arrays, and access their elements. We discuss passing arrays
to functions, sorting and searching arrays and manipulating multidimensional arrays.
We begin our introduction to functional-style programming with lambda expressions
(anonymous functions) and C++20’s Ranges—one of C++20’s “big four” features.
Section 6.15’s objects-natural case study demonstrates the C++ standard library class
template vector. This entire chapter is essentially a large objects-natural case study of
both arrays and vectors. The code in this chapter is a good example of Modern C++ cod-
ing idioms.

8. Fred Long, “Do Not Use the rand() Function for Generating Pseudorandom Numbers.” Last modified
by Jill Britton on November 20, 2021. Accessed December 27, 2021. https://wiki.sei.cmu.edu/
confluence/display/c/MSC30-C.+Do+not+use+the+rand%28%29+function+for+generating+

pseudorandom+numbers.

Sec
11

20

https://wiki.sei.cmu.edu/confluence/display/c/MSC30-C.+Do+not+use+the+rand%28%29+function+for+generating+pseudorandom+numbers
https://wiki.sei.cmu.edu/confluence/display/c/MSC30-C.+Do+not+use+the+rand%28%29+function+for+generating+pseudorandom+numbers
https://wiki.sei.cmu.edu/confluence/display/c/MSC30-C.+Do+not+use+the+rand%28%29+function+for+generating+pseudorandom+numbers

P.7 A Tour of the Book xxvii

Chapter 7, (Downplaying) Pointers in Modern C++, provides thorough coverage of
pointers and the intimate relationship among built-in pointers, pointer-based arrays and
pointer-based strings (also called C-strings), each of which C++ inherited from the C pro-
gramming language. Pointers are powerful but challenging to work with and are error-
prone. So, we point out Modern C++ features that eliminate the need for most pointers
and make your code more robust and secure, including arrays and vectors, C++20 spans
and C++17 string_views. We still cover built-in arrays because they remain useful in C++
and so you’ll be able to read legacy code. In new development, you should favor Modern
C++ capabilities. Section 7.10’s objects-natural case study demonstrates one such capa-
bility—C++20 spans. These enable you to view and manipulate elements of contiguous
containers, such as pointer-based arrays and standard library arrays and vectors, without
using pointers directly. This chapter again emphasizes Modern C++ coding idioms.

Chapter 8, strings, string_views, Text Files, CSV Files and Regex, presents many of
the standard library string class’s features; shows how to write text to, and read text from,
both plain text files and comma-separated values (CSV) files (popular for representing
datasets); and introduces string pattern matching with the standard library’s regular-
expression (regex) capabilities. C++ offers two types of strings—string objects and C-style
pointer-based strings. We use string class objects to make programs more robust and
eliminate many of the security problems of C strings. In new development, you should
favor string objects. We also present C++17’s string_views—a lightweight, flexible
mechanism for passing any type of string to a function. This chapter presents two objects-
natural case studies:

• Section 8.19 introduces data analysis by reading and analyzing a CSV file con-
taining the Titanic Disaster dataset—a popular dataset for introducing data ana-
lytics to beginners.

• Section 8.20 introduces regular-expression pattern matching and text replace-
ment.

Part 3: Object-Oriented Programming

Chapter 9, Custom Classes, begins our treatment of object-oriented programming as we
craft valuable custom classes. C++ is extensible—each class you create becomes a new type
you can use to create objects. Section 9.22’s objects-natural case study uses the third-
party library cereal to convert objects into JavaScript Object Notation (JSON) format—
a process known as serialization—and to recreate those objects from their JSON repre-
sentation—known as deserialization.

Chapter 10, OOP: Inheritance and Runtime Polymorphism, focuses on the relationships
among classes in an inheritance hierarchy and the powerful runtime polymorphic processing
capabilities that these relationships enable. An important aspect of this chapter is under-
standing how polymorphism works. A key feature of this chapter is its detailed diagram and
explanation of how C++ typically implements polymorphism, virtual functions and
dynamic binding “under the hood.” You’ll see that it uses an elegant pointer-based data
structure. We present other mechanisms to achieve runtime polymorphism, including the
non-virtual interface idiom (NVI) and std::variant/std::visit. We also discuss pro-
gramming to an interface, not an implementation.

Sec
20
17

20

Sec

17

xxviii Preface

Chapter 11, Operator Overloading, Copy/Move Semantics and Smart Pointers, shows
how to enable C++’s existing operators to work with custom class objects, and introduces
smart pointers and dynamic memory management. Smart pointers help you avoid
dynamic memory management errors by providing additional functionality beyond that
of built-in pointers. We discuss unique_ptr in this chapter and shared_ptr and weak_ptr
in online Chapter 20. A key aspect of this chapter is crafting valuable classes. We begin
with a string class test-drive, presenting an elegant use of operator overloading before
you implement your own customized class with overloaded operators. Then, in one of the
book’s most important case studies, you’ll build your own custom MyArray class using
overloaded operators and other capabilities to solve various problems with C++’s native
pointer-based arrays.9 We introduce and implement the five special member functions
you can define in each class—the copy constructor, copy assignment operator, move con-
structor, move assignment operator and destructor. We discuss copy semantics and
move semantics, which enable a compiler to move resources from one object to another
to avoid costly unnecessary copies. We introduce C++20’s three-way comparison opera-
tor (<=>; also called the “spaceship operator”) and show how to implement custom con-
version operators. In Chapter 15, you’ll convert MyArray to a class template that can store
elements of a specified type. You will have truly crafted valuable classes.

Chapter 12, Exceptions and a Look Forward to Contracts, continues our exception-
handling discussion that began in Chapter 6. We discuss when to use exceptions, excep-
tion safety guarantees, exceptions in the context of constructors and destructors, handling
dynamic memory allocation failures and why some projects do not use exception han-
dling. The chapter concludes with an introduction to contracts—a potential future C++
feature that we demonstrate via an experimental contracts implementation available on
godbolt.org. A goal of contracts is to make most functions noexcept—meaning they
do not throw exceptions—which might enable the compiler to perform additional opti-
mizations and eliminate the overhead and complexity of exception handling.

Part 4: Standard Library Containers, Iterators and Algorithms

Chapter 13, Standard Library Containers and Iterators, begins our broader and deeper
treatment of three key C++ standard library components:

• containers (templatized data structures),

• iterators (for accessing container elements) and

• algorithms (which use iterators to manipulate containers).

We’ll discuss containers, container adaptors and near containers. You’ll see that the C++
standard library provides commonly used data structures, so you do not need to create
your own—the vast majority of your data structures needs can be fulfilled by reusing these
standard library capabilities. We demonstrate most standard library containers and intro-
duce how iterators enable algorithms to be applied to various container types. You’ll see
that different containers support different kinds of iterators. We continue showing how
C++20 Ranges can simplify your code.

9. In industrial-strength systems, you’ll use standard library classes for this, but this example enables us
to demonstrate many key Modern C++ concepts.

Err

Perf
20

Err

Perf

20

http://godbolt.org

P.7 A Tour of the Book xxix

Chapter 14, Standard Library Algorithms and C++20 Ranges & Views, presents many of
the standard library’s 115 algorithms, focusing on common container manipulations,
including filling containers with values, generating values, comparing elements or entire con-
tainers, removing elements, replacing elements, mathematical operations, searching, sorting,
swapping, copying, merging, set operations, determining boundaries, and calculating mini-
mums and maximums. We discuss minimum iterator requirements so you can determine
which containers can be used with each algorithm. We begin discussing C++20 Concepts—
another of C++20’s “big four” features. The algorithms in C++20’s std::ranges namespace
use C++20 Concepts to specify their requirements. We continue our discussion of C++’s
functional-style programming features with C++20 Ranges and Views.

Part 5: Advanced Topics

Chapter 15, Templates, C++20 Concepts and Metaprogramming, discusses generic pro-
gramming with templates, which have been in C++ since the 1998 C++ standard was
released. The importance of Templates has increased with each new C++ release. A major
Modern C++ theme is to do more at compile-time for better type checking and better run-
time performance—anything resolved at compile-time avoids runtime overhead and makes
systems faster. As you’ll see, templates and especially template metaprogramming are the
keys to powerful compile-time operations. In this chapter, we’ll take a deeper look at tem-
plates, showing how to develop custom class templates and exploring C++20 concepts.
You’ll create your own concepts, convert Chapter 11’s MyArray case study to a class template
with its own iterators, and work with variadic templates that can receive any number of tem-
plate arguments. We’ll introduce how to work with C++ metaprogramming.

Chapter 16, C++20 Modules, presents another of C++20’s “big four” features. Modules are
a new way to organize your code, precisely control which declarations you expose to client
code and encapsulate implementation details. Modules help developers be more productive,
especially as they build, maintain and evolve large software systems. Modules help such sys-
tems build faster and make them more scalable. C++ creator Bjarne Stroustrup says, “Mod-
ules offer a historic opportunity to improve code hygiene and compile times for C++ (bringing C++
into the 21st century).”10 You’ll see that even in small systems, modules offer immediate ben-
efits in every program by eliminating the need for the C++ preprocessor. We would have
liked to integrate modules in our programs but, at the time of this writing, our key compilers
are still missing various modules capabilities.

Chapter 17, Parallel Algorithms and Concurrency: A High-Level View, is one of the
most important chapters in the book, presenting C++’s features for building applications
that create and manage multiple tasks. This can significantly improve program perfor-
mance and responsiveness. We show how to use C++17’s prepackaged parallel algorithms
to create multithreaded programs that will run faster (often much faster) on today’s
multi-core computer architectures. For example, we sort 100 million values using a
sequential sort, then a parallel sort. We use C++’s <chrono> library features to profile the
performance improvement we get on today’s popular multi-core systems, as we employ an
increasing number of cores. You’ll see that the parallel sort runs 6.76 times faster than the

10. Bjarne Stroustrup, “Modules and Macros.” February 11, 2018. Accessed January 9, 2022. http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0955r0.pdf.

20

20
20

Perf

20

Mod

Perf

SE

Perf
17

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0955r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0955r0.pdf

xxx Preface

sequential sort on our Windows 10 64-bit computer using an 8-core Intel processor. We
discuss the producer–consumer relationship and demonstrate various ways to implement
it using low-level and high-level C++ concurrency primitives, including C++20’s new
latch, barrier and semaphore capabilities. We emphasize that concurrent programming is
difficult to get right and that you should aim to use the higher-level concurrency features
whenever possible. Lower-level features like semaphores and atomics can be used to
implement higher-level features like latches.

Chapter 18, C++20 Coroutines, presents coroutines—the last of C++20’s “big four” fea-
tures. A coroutine is a function that can suspend its execution and be resumed later by
another part of the program. The mechanisms supporting this are handled entirely by
code that’s written for you by the compiler. You’ll see that a function containing any of
the keywords co_await, co_yield or co_return is a coroutine and that coroutines enable
you to do concurrent programming with a simple sequential-like coding style. Corou-
tines require sophisticated infrastructure, which you can write yourself, but doing so is
complex, tedious and error-prone. Instead, most experts agree that you should use high-
level coroutine support libraries, which is the approach we demonstrate. The open-source
community has created several experimental libraries for developing coroutines quickly
and conveniently—we use two in our presentation. C++23 is expected to have standard
library support for coroutines.

Appendices
Appendix A, Operator Precedence Chart, lists C++’s operators in highest-to-lowest pre-
cedence order.

Appendix B, Character Set, shows characters and their corresponding numeric codes.

P.8 How to Get the Online Chapters and Appendices
We provide several online chapters and appendices on informit.com. Perform the fol-
lowing steps to register your copy of C++20 for Programmers: An Objects-Natural
Approach on informit.com and access this online content:

1. Go to https://informit.com/register and sign in with an existing account or
create a new one.

2. Under Register a Product, enter the ISBN 9780136905691, then click Submit.

3. In your account page’s My Registered Products section, click the Access Bonus
Content link under C++20 for Programmers: An Objects-Natural Approach.

This will take you to the book’s online content page.

Online Chapters
Chapter 19, Stream I/O; C++20 Text Formatting: A Deeper Look, discusses standard
C++ input/output capabilities and legacy formatting features of the <iomanip> library. We
include these formatting features primarily for programmers who might encounter them in
legacy C++ code. We also present C++20’s new text-formatting features in more depth.

Chapter 20, Other Topics, presents miscellaneous C++ topics and looks forward to new
features expected in C++23 and beyond.

20

20

SE

23

2020

23

http://informit.com
http://informit.com
https://informit.com/register

P.9 C++ Core Guidelines xxxi

Online Appendices
Appendix C, Number Systems, overviews the binary, octal, decimal and hexadecimal
number systems.

Appendix D, Preprocessor, discusses additional features of the C++ preprocessor. Tem-
plate metaprogramming (Chapter 15) and C++20 Modules (Chapter 16) obviate many of
this appendix’s features.

Appendix E, Bit Manipulation, discusses bitwise operators for manipulating the individ-
ual bits of integral operands and bit fields for compactly representing integer data.

Web-Based Materials on deitel.com
Our deitel.com web page for the book

https://deitel.com/c-plus-plus-20-for-programmers

contains the following additional resources:

• Links to our GitHub repository containing the book’s downloadable C++ source
code

• Blog posts—https://deitel.com/blog

• Book updates

For more information about downloading the examples and setting up your C++ develop-
ment environment, see the Before You Begin section.

P.9 C++ Core Guidelines
The C++ Core Guidelines (approximately 500 printed pages)

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines

are recommendations “to help people use modern C++ effectively.”11 They’re edited by
Bjarne Stroustrup (C++’s creator) and Herb Sutter (Convener of the ISO C++ Standards
Committee). According to the overview:

“The guidelines are focused on relatively high-level issues, such as interfaces,
resource management, memory management, and concurrency. Such rules affect
application architecture and library design. Following the rules will lead to code
that is statically type safe, has no resource leaks, and catches many more program-
ming logic errors than is common in code today. And it will run fast—you can
afford to do things right.”12

Throughout this book, we adhere to these guidelines as appropriate. You’ll want to pay
close attention to their wisdom. We point out many C++ Core Guidelines recommenda-
tions with a CG icon. There are hundreds of core guidelines divided into scores of catego-
ries and subcategories. Though this might seem overwhelming, static code analysis tools
(Section P.10) can check your code against the guidelines.

20

CG

11. C++ Core Guidelines, “Abstract.” Accessed January 9, 2020. https://isocpp.github.io/CppCo-
reGuidelines/CppCoreGuidelines#S-abstract.

12. C++ Core Guidelines, “Abstract.”

Err

SE

Perf

CG

http://deitel.com
http://deitel.com
https://deitel.com/c-plus-plus-20-for-programmers
https://deitel.com/blog
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://isocpp.github.io/CppCo-reGuidelines/CppCoreGuidelines#S-abstract
https://isocpp.github.io/CppCo-reGuidelines/CppCoreGuidelines#S-abstract

xxxii Preface

Guidelines Support Library
The C++ Core Guidelines often refer to capabilities of the Guidelines Support Library
(GSL), which implements helper classes and functions to support various recommenda-
tions.13 Microsoft provides an open-source GSL implementation on GitHub at

https://github.com/Microsoft/GSL

We use GSL features in a few examples in the early chapters. Some GSL features have since
been incorporated into the C++ standard library.

P.10 Industrial-Strength Static Code Analysis Tools
Static code analysis tools let you quickly check your code for common errors and security
problems and provide insights for code improvement. Using these tools is like having
world-class experts checking your code. To help us adhere to the C++ Core Guidelines and
improve our code in general, we used the following static-code analyzers:

• clang-tidy—https://clang.llvm.org/extra/clang-tidy/

• cppcheck—https://cppcheck.sourceforge.io/

• Microsoft’s C++ Core Guidelines static code analysis tools, which are built into
Visual Studio’s static code analyzer

We used these three tools on the book’s code examples to check for

• adherence to the C++ Core Guidelines,

• adherence to coding standards,

• adherence to modern C++ idioms,

• possible security problems,

• common bugs,

• possible performance issues,

• code readability

• and more.

We also used the compiler flag -Wall in the GNU g++ and Clang C++ compilers to enable
all compiler warnings. With a few exceptions for warnings beyond this book’s scope, we
ensure that our programs compile without warning messages. See the Before You Begin
section for static analysis tool configuration information.

P.11 Teaching Approach
C++20 for Programmers: An Objects-Natural Approach contains a rich collection of live-
code examples. We stress program clarity and concentrate on building well-engineered
software.

13. C++ Core Guidelines, “GSL: Guidelines Support Library.” Accessed January 9, 2022. https://iso-
cpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-gsl.

Err

Sec

Err

Sec

https://github.com/Microsoft/GSL
https://clang.llvm.org/extra/clang-tidy/
https://cppcheck.sourceforge.io/
https://iso-cpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-gsl
https://iso-cpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-gsl

P.12 Developer Resources xxxiii

Using Fonts for Emphasis
We place the key terms and the index’s page reference for each defining occurrence in bold
text for easier reference. C++ code uses a fixed-width font (e.g., x = 5). We place on-
screen components in the bold Helvetica font (e.g., the File menu).

Syntax Coloring
For readability, we syntax color all the code. In our e-books, our syntax-coloring conven-
tions are as follows:

comments appear in green
keywords appear in dark blue
constants and literal values appear in light blue
errors appear in red
all other code appears in black

Objectives and Outline
Each chapter begins with objectives that tell you what to expect.

Tables and Illustrations
Abundant tables and line drawings are included.

Programming Tips and Key Features
We call out programming tips and key features with icons in margins (see Section P.5).

Index
For convenient reference, we’ve included an extensive index, with defining occurrences of
key terms highlighted with a bold page number.

P.12 Developer Resources
StackOverflow
StackOverflow is one of the most popular developer-oriented, question-and-answer sites.
Many problems programmers encounter have already been discussed here, so it’s a great
place to find solutions to those problems and post questions about new ones. Many of our
Google searches for various, often complex, issues throughout our writing effort returned
StackOverflow answers as their first results.

GitHub
“The best way to prepare [to be a programmer] is to write programs, and to study
great programs that other people have written. In my case, I went to the garbage
cans at the Computer Science Center and fished out listings of their operating sys-
tems.”14—William Gates

GitHub is an excellent venue for finding free, open-source code to incorporate into your
projects—and for you to contribute your code to the open-source community if you like.
Fifty million developers use GitHub.15 The site hosts over 200 million repositories for

14. William Gates, quoted in Programmers at Work: Interviews with 19 Programmers Who Shaped the
Computer Industry by Susan Lammers. Microsoft Press, 1986, p. 83.

15. “GitHub.” Accessed January 7, 2022. https://github.com/.

https://github.com/

xxxiv Preface

code written in an enormous number of programming languages16—developers contrib-
uted to 61+ million repositories in the last year.17 GitHub is a crucial element of the pro-
fessional software developer’s arsenal with version-control tools that help developer teams
manage public open-source projects and private projects.

There is a massive C++ open-source community. On GitHub, there are over 41,00018

C++ code repositories. You can check out other people’s C++ code on GitHub and even
build upon it if you like. This is a great way to learn and is a natural extension of our live-
code teaching approach.19

In 2018, Microsoft purchased GitHub for $7.5 billion. As a software developer,
you’re almost certainly using GitHub regularly. According to Microsoft’s CEO, Satya
Nadella, the company bought GitHub to “empower every developer to build, innovate and
solve the world’s most pressing challenges.”20

We encourage you to study and execute lots of developers’ open-source C++ code on
GitHub and to contribute your own.

P.13 Docker
We use Docker—a tool for packaging software into containers that bundle everything
required to execute that software conveniently and portably across platforms. Some software
packages require complicated setup and configuration. For many of these, you can download
free preexisting Docker containers, avoiding complex installation issues. You can simply exe-
cute software locally on your desktop or notebook computers, making Docker a great way
to help you get started with new technologies quickly, conveniently and economically.

We show how to install and execute Docker containers preconfigured with

• the GNU Compiler Collection (GCC), which includes the g++ compiler, and

• the latest version of Clang’s clang++ compiler.

Each can run in Docker on Windows, macOS and Linux.
Docker also helps with reproducibility. Custom Docker containers can be configured

with the software and libraries you use. This would enable others to recreate the environ-
ment you used, then reproduce your work, and will help you reproduce your own results.
Reproducibility is especially important in the sciences and medicine—for example, when
researchers want to prove and extend the work in published articles.

P.14 Some Key C++ Documentation and Resources
The book includes over 900 citations to videos, blog posts, articles and online documen-
tation we studied while writing the manuscript. You may want to access some of these
resources to investigate more advanced features and idioms. The website cpprefer-
ence.com has become the defacto C++ documentation site. We reference it frequently so

16. “Where the World Builds Software.” Accessed January 7, 2022. https://github.com/about.
17. “The 2021 State of the Octoverse.” Accessed January 7, 2022. https://octoverse.github.com.
18. “C++.” Accessed January 7, 2022. https://github.com/topics/cpp.
19. Students will need to become familiar with the variety of open-source licenses for software on

GitHub.
20. “Microsoft to Acquire GitHub for $7.5 Billion.” Accessed January 7, 2022. https://news.micro-

soft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-billion/.

Sec

Sec

Sec

http://cpprefer-ence.com
http://cpprefer-ence.com
https://github.com/about
https://octoverse.github.com
https://github.com/topics/cpp
https://news.micro-soft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-billion/
https://news.micro-soft.com/2018/06/04/microsoft-to-acquire-github-for-7-5-billion/

P.14 Some Key C++ Documentation and Resources xxxv

you can get more details about the standard C++ classes and functions we use throughout
the book. We also frequently reference the final draft of the C++20 standard document,
which is available for free on GitHub at

https://timsong-cpp.github.io/cppwp/n4861/

You may also find the following C++ resources helpful as you work through the book.

Documentation
• C++20 standard document final draft adopted by the C++ Standard Committee:

 https://timsong-cpp.github.io/cppwp/n4861/

• C++ Reference at cppreference.com:

 https://cppreference.com/

• Microsoft’s C++ language documentation:

 https://docs.microsoft.com/en-us/cpp/cpp/

• The GNU C++ Standard Library Reference Manual:

 https://gcc.gnu.org/onlinedocs/libstdc++/manual/index.html

Blogs
• Sutter’s Mill Blog—Herb Sutter on software development:

 https://herbsutter.com/

• Microsoft’s C++ Team Blog:

 https://devblogs.microsoft.com/cppblog

• Marius Bancila’s Blog:

 https://mariusbancila.ro/blog/

• Jonathan Boccara’s Blog:

 https://www.fluentcpp.com/

• Bartlomiej Filipek’s Blog:

 https://www.cppstories.com/

• Rainer Grimm’s Blog:

 http://modernescpp.com/

• Arthur O’Dwyer’s Blog:

 https://quuxplusone.github.io/blog/

Additional Resources
• Bjarne Stroustrup’s website:

 https://stroustrup.com/

• Standard C++ Foundation website:

 https://isocpp.org/

• C++ Standard Committee website:

 http://www.open-std.org/jtc1/sc22/wg21/

20

https://timsong-cpp.github.io/cppwp/n4861/
https://timsong-cpp.github.io/cppwp/n4861/
http://cppreference.com
https://cppreference.com/
https://docs.microsoft.com/en-us/cpp/cpp/
https://gcc.gnu.org/onlinedocs/libstdc++/manual/index.html
https://herbsutter.com/
https://devblogs.microsoft.com/cppblog
https://mariusbancila.ro/blog/
https://www.fluentcpp.com/
https://www.cppstories.com/
http://modernescpp.com/
https://quuxplusone.github.io/blog/
https://stroustrup.com/
https://isocpp.org/
http://www.open-std.org/jtc1/sc22/wg21/

xxxvi Preface

P.15 Getting Your Questions Answered
Popular C++ and general programming online forums include

• https://stackoverflow.com

• https://www.reddit.com/r/cpp/

• https://groups.google.com/g/comp.lang.c++

• https://www.dreamincode.net/forums/forum/15-c-and-c/

For a list of other valuable sites, see

https://www.geeksforgeeks.org/stuck-in-programming-get-the-solution-
from-these-10-best-websites/

Also, vendors often provide forums for their tools and libraries. Many libraries are man-
aged and maintained at github.com. Some library maintainers provide support through
the Issues tab on a given library’s GitHub page.

Communicating with the Authors
As you read the book, if you have questions, we’re easy to reach at

deitel@deitel.com

We’ll respond promptly.

P.16 Join the Deitel & Associates, Inc. Social Media
Communities
Join the Deitel social media communities on

• LinkedIn®—https://bit.ly/DeitelLinkedIn

• YouTube®—https://youtube.com/DeitelTV

• Twitter®—https://twitter.com/deitel

• Facebook®—https://facebook.com/DeitelFan

P.17 Deitel Pearson Products on O’Reilly Online
Learning
If you’re at a company or college, your organization might have an O’Reilly Online Learn-
ing subscription, giving you free access to all of Deitel’s Pearson e-books and LiveLessons
videos hosted on the site, as well as Paul Deitel’s live, one-day Full Throttle training
courses, offered on a continuing basis. Individuals may sign up for a 10-day free trial at

https://learning.oreilly.com/register/

For a list of all our current products and courses on O’Reilly Online Learning, visit

https://deitel.com/LearnWithDeitel

Textbooks and Professional Books
Each Deitel e-book on O’Reilly Online Learning is presented in full color, extensively
indexed and text searchable. As we write our professional books, they’re posted on

Sec

https://stackoverflow.com
https://www.reddit.com/r/cpp/
https://groups.google.com/g/comp.lang.c++
https://www.dreamincode.net/forums/forum/15-c-and-c/
https://www.geeksforgeeks.org/stuck-in-programming-get-the-solution-from-these-10-best-websites/
https://www.geeksforgeeks.org/stuck-in-programming-get-the-solution-from-these-10-best-websites/
http://github.com
mailto:deitel@deitel.com
https://bit.ly/DeitelLinkedIn
https://youtube.com/DeitelTV
https://twitter.com/deitel
https://facebook.com/DeitelFan
https://learning.oreilly.com/register/
https://deitel.com/LearnWithDeitel

P.18 Live Instructor-Led Training with Paul Deitel xxxvii

O’Reilly Online Learning for early “rough cut” access, then replaced with the book’s final
content once published. The final e-book for C++20 for Programmers: An Objects-Natu-
ral Approach is available to O’Reilly subscribers at

https://learning.oreilly.com/library/view/c-20-for-programmers/
9780136905776

Asynchronous LiveLessons Video Products
Learn hands-on with Paul Deitel as he presents compelling, leading-edge computing tech-
nologies in C++, Java, Python and Python Data Science/AI (and more coming). Access to
our C++20 Fundamentals LiveLessons videos is available to O’Reilly subscribers at

https://learning.oreilly.com/videos/c-20-fundamentals-parts/
9780136875185

These videos are ideal for self-paced learning. At the time of this writing, we’re still record-
ing this product. Additional videos will be posted as they become available during Q1 and
Q2 of 2022. The final video product will contain 50–60 hours of video—approximately
the equivalent of two college semester courses.

Live Full-Throttle Training Courses
Paul Deitel’s live Full-Throttle training courses at O’Reilly Online Learning

https://deitel.com/LearnWithDeitel

are one-full-day, presentation-only, fast-paced, code-intensive introductions to Python,
Python Data Science/AI, Java, C++20 Fundamentals and the C++20 Standard Library.
These courses are for experienced developers and software project managers preparing for
projects using other languages. After taking a Full-Throttle course, participants often
watch the corresponding LiveLessons video course, which has many more hours of class-
room-paced learning.

P.18 Live Instructor-Led Training with Paul Deitel
Paul Deitel has been teaching programming languages to developer audiences for three
decades. He presents a variety of one- to five-day C++, Python and Java corporate training
courses, and teaches Python with an Introduction to Data Science for the UCLA Anderson
School of Management’s Master of Science in Business Analytics (MSBA) program. His
courses can be delivered worldwide on-site or virtually. Please contact deitel@deitel.com
for a proposal customized to meet your company’s or academic program’s needs.

P.19 College Textbook Version of C++20 for Programmers
Our college textbook, C++ How to Program, Eleventh Edition, will be available in three
digital formats:

• Online e-book offered through popular e-book providers.

• Interactive Pearson eText (see below).

• Interactive Pearson Revel with assessment (see below).

All of these textbook versions include standard “How to Program” features such as:

• A chapter introducing hardware, software and Internet concepts.

20

20

https://learning.oreilly.com/library/view/c-20-for-programmers/9780136905776
https://learning.oreilly.com/library/view/c-20-for-programmers/9780136905776
https://learning.oreilly.com/videos/c-20-fundamentals-parts/9780136875185
https://learning.oreilly.com/videos/c-20-fundamentals-parts/9780136875185
https://deitel.com/LearnWithDeitel
mailto:deitel@deitel.com

xxxviii Preface

• An introduction to programming for novices.

• End-of-section programming and non-programming Checkpoint self-review
exercises with answers.

• End-of-chapter exercises.

Deitel Pearson eTexts and Revels include:

• Videos in which Paul Deitel discusses the material in the book’s core chapters.

• Interactive programming and non-programming Checkpoint self-review exer-
cises with answers.

• Flashcards and other learning tools.

In addition, Pearson Revels include interactive programming and non-programming
automatically graded exercises, as well as instructor course-management tools, such as a
grade book.

Supplements available to qualified college instructors teaching from the textbook
include:

• Instructor solutions manual with solutions to most of the end-of-chapter exer-
cises.

• Test-item file with four-part, code-based and non-code-based multiple-choice
questions with answers.

• Customizable PowerPoint lecture slides.

Please write to deitel@deitel.com for more information.

P.20 Acknowledgments
We’d like to thank Barbara Deitel for long hours devoted to Internet research on this proj-
ect. We’re fortunate to have worked with the dedicated team of publishing professionals
at Pearson. We appreciate the efforts and 27-year mentorship of our friend and colleague
Mark L. Taub, Vice President of the Pearson IT Professional Group. Mark and his team
publish our professional books and LiveLessons video products, and sponsor our live online
training seminars, offered through the O’Reilly Online Learning service:

https://learning.oreilly.com/

Charvi Arora recruited the book’s reviewers and managed the review process. Julie Nahil
managed the book’s production. Chuti Prasertsith designed the cover.

Reviewers
We were fortunate on this project to have 10 distinguished professionals review the manu-
script. Most of the reviewers are either on the ISO C++ Standards Committee, have served
on it or have a working relationship with it. Many have contributed features to the language.
They helped us make a better book—any remaining flaws are our own.

• Andreas Fertig, Independent C++ Trainer and Consultant, Creator of cppin-
sights.io, Author of Programming with C++20

• Marc Gregoire, Software Architect, Nikon Metrology, Microsoft Visual C++
MVP and author of Professional C++, 5/e (which is up-to-date with C++20)

20

20

mailto:deitel@deitel.com
https://learning.oreilly.com/
http://cppin-sights.io
http://cppin-sights.io

P.20 Acknowledgments xxxix

• Dr. Daisy Hollman, ISO C++ Standards Committee Member

• Danny Kalev, Ph.D. and Certified System Analyst and Software Engineer, For-
mer ISO C++ Standards Committee Member

• Dietmar Kühl, Senior Software Developer, Bloomberg L.P., ISO C++ Standard
Committee Member

• Inbal Levi, SolarEdge Technologies, ISO C++ Foundation director, ISO C++
SG9 (Ranges) chair, ISO C++ Standards Committee member

• Arthur O’Dwyer, C++ trainer, Chair of CppCon’s Back to Basics track, author of
several accepted C++17/20/23 proposals and the book Mastering the C++17 STL

• Saar Raz, Senior Software Engineer, Swimm.io and Implementor of C++20 Con-
cepts in Clang

• José Antonio González Seco, Parliament of Andalusia

• Anthony Williams, Member of the British Standards Institution C++ Standards
Panel, Director of Just Software Solutions Ltd., Author of C++ Concurrency in
Action, 2/e (Anthony is the author or co-author of many C++ Standard Commit-
tee papers that led to C++’s standardized concurrency features)

Arthur O’Dwyer
We’d like to call out the extraordinary efforts Arthur O’Dwyer put into reviewing our
manuscript. While working through his comments, we learned a great deal about C++’s
subtleties and especially Modern C++ coding idioms. In addition to carefully marking
each chapter PDF we sent him, Arthur provided a separate comprehensive document
explaining his comments in detail, often rewriting code and providing external resources
that offered additional insights. As we applied all the reviewers’ comments, we always
looked forward to what Arthur had to say, especially regarding the more challenging issues.
He’s a busy professional, yet he was generous with his time and always constructive. He
insisted that we “get it right” and worked hard to help us do that. Arthur teaches C++ to
professionals. He taught us a much about how to do C++ right.

GitHub
Thanks to GitHub for making it easy for us to share our code and keep it up-to-date, and
for providing the tools that enable 73+ million developers to contribute to 200 million+
code repositories.21 These tools support the massive open-source communities that pro-
vide libraries for today’s popular programming languages, making it easier for developers
to create powerful applications and avoid “reinventing the wheel.”

Matt Godbolt and Compiler Explorer
Thanks to Matt Godbolt, creator of Compiler Explorer at https://godbolt.org, which
enables you to compile and run programs in many programming languages. Through this
site, you can test your code

• on most popular C++ compilers—including our three preferred compilers—and

• across many released, developmental and experimental compiler versions.

21. “Where the World Builds Software.” Accessed January 7, 2022. https://github.com/about.

17
20
23
20

https://godbolt.org
https://github.com/about

xl Preface

For example, we used an experimental g++ compiler version to demonstrate contracts
(Chapter 12, Exceptions and a Look Forward to Contracts), which we hope to see stan-
dardized in a future C++ language version. Several of our reviewers used godbolt.org to
demonstrate suggested changes to us, helping us improve the book.

Dietmar Kühl
We would like to thank Dietmar Kühl, Senior Software Developer at Bloomberg L.P. and
an ISO C++ Committee member, for sharing with us his views on inheritance and static
and dynamic polymorphism. His insights helped us shape our presentations of these topics
in Chapters 10 and 15.

Rainer Grimm
Our thanks to Rainer Grimm (http://modernescpp.com/), among the Modern C++ com-
munity’s most prolific bloggers. As we got deeper into C++20, our Google searches fre-
quently pointed us to his writings. Rainer Grimm is a professional C++ trainer who offers
courses in German and English. He is the author of several C++ books, including C++20:
Get the Details, Concurrency with Modern C++, The C++ Standard Library, 3/e and C++ Core
Guidelines Explained. He is already blogging about features likely to appear in C++23.

Brian Goetz
We were privileged to have as a reviewer on one of our other books—Java How to Program,
10/e—Brian Goetz, Oracle Java Language Architect and co-author of Java Concurrency in
Practice. He provided us with many insights and constructive comments, especially on

• inheritance hierarchy design, which influenced our design decisions for several
examples in Chapter 10, OOP: Inheritance and Runtime Polymorphism, and

• Java concurrency, which influenced our approach to C++20 concurrency in
Chapter 17, Parallel Algorithms and Concurrency: A High-Level View.

Open-Source Contributors and Bloggers
A special note of thanks to the technically oriented people worldwide who contribute to the
open-source movement and blog about their work online, and to their organizations that
encourage the proliferation of such open software and information.

Google Search
Thanks to Google, whose search engine answers our constant stream of queries, each in a
fraction of a second, at any time day or night—and at no charge. It’s the single best pro-
ductivity enhancement tool we’ve added to our research process in the last 20 years.

Grammarly
We now use the paid version of Grammarly on all our manuscripts. They describe their
tools as helping you “compose bold, clear, mistake-free writing” with their “AI-powered
writing assistant.”22 They also say, “Using a variety of innovative approaches—including
advanced machine learning and deep learning—we consistently break new ground in nat-

22. “Grammarly.” Accessed January 15, 2022. https://www.grammarly.com.

http://godbolt.org
http://modernescpp.com/
https://www.grammarly.com

 About the Authors xli

ural language processing (NLP) research to deliver unrivaled assistance.”23 Grammarly
provides free tools that you can integrate into several popular web browsers, Microsoft®

Office 365™ and Google Docs™. They also offer more powerful premium and business
tools. You can view their free and paid plans at

https://www.grammarly.com/plans

As you read the book and work through the code examples, we’d appreciate your com-
ments, criticisms, corrections and suggestions for improvement. Please send all correspon-
dence, including questions, to

deitel@deitel.com

We’ll respond promptly.
Welcome to the exciting world of C++20 programming. We’ve enjoyed writing 11

editions of our academic and professional C++ content over the last 30 years. We hope you
have an informative, challenging and entertaining learning experience with C++20 for
Programmers: An Objects-Natural Approach and enjoy this look at leading-edge, Modern
C++ software development.

Paul Deitel
Harvey Deitel

About the Authors
Paul J. Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is an MIT
graduate with 42 years in computing. Paul is one of the world’s most experienced
programming-languages trainers, having taught professional courses to software develop-
ers since 1992. He has delivered hundreds of programming courses to academic, industry,
government and military clients of Deitel & Associates, Inc. internationally, including
UCLA, Cisco, IBM, Siemens, Sun Microsystems (now Oracle), Dell, Fidelity, NASA at
the Kennedy Space Center, the National Severe Storm Laboratory, White Sands Missile
Range, Rogue Wave Software, Boeing, Puma, iRobot and many more. He and his co-
author, Dr. Harvey M. Deitel, are among the world’s best-selling programming-language
textbook, professional book, video and interactive multimedia e-learning authors, and vir-
tual- and live-training presenters.

Dr. Harvey M. Deitel, Chairman and Chief Strategy Officer of Deitel & Associates,
Inc., has 61 years of experience in computing. Dr. Deitel earned B.S. and M.S. degrees in
Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston University—
he studied computing in each of these programs before they spun off Computer Science
departments. He has extensive industry and college teaching experience, including earning
tenure and serving as the Chairman of the Computer Science Department at Boston Col-
lege before founding Deitel & Associates in 1991 with his son, Paul. The Deitels’ publica-
tions have earned international recognition, with more than 100 translations published in
Japanese, German, Russian, Spanish, French, Polish, Italian, Simplified Chinese, Tradi-
tional Chinese, Korean, Portuguese, Greek, Urdu and Turkish. Dr. Deitel has delivered
hundreds of programming courses to academic, corporate, government and military clients.

23. “Our Mission.” Accessed January 15, 2022. https://www.grammarly.com/about.

20

https://www.grammarly.com/plans
mailto:deitel@deitel.com
https://www.grammarly.com/about

About Deitel® & Associates, Inc.
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate-training organization, specializing in computer pro-
gramming languages, object technology, mobile app development and Internet and web
software technology. The company’s training clients include some of the world’s largest
companies, government agencies, branches of the military, and academic institutions. The
company offers instructor-led training courses delivered virtually and live at client sites
worldwide, and virtually for Pearson Education on O’Reilly Online Learning (https://
learning.oreilly.com), formerly called Safari Books Online.

Through its 47-year publishing partnership with Pearson, Deitel & Associates, Inc.,
publishes leading-edge programming professional books and college textbooks in print
and e-book formats, LiveLessons video courses, O’Reilly Online Learning live training
courses and Revel™ interactive multimedia college courses.

To contact Deitel & Associates, Inc. and the authors, or to request a proposal for vir-
tual or on-site, instructor-led training worldwide, write to

deitel@deitel.com

To learn more about Deitel virtual and on-site corporate training, visit

https://deitel.com/training

Individuals wishing to purchase Deitel books can do so at

https://amazon.com
https://www.barnesandnoble.com/

Bulk orders by corporations, the government, the military and academic institutions should
be placed directly with Pearson. For corporate and government sales, send an email to

corpsales@pearsoned.com

Deitel e-books are available in various formats from

https://www.amazon.com/ https://www.vitalsource.com/

https://www.barnesandnoble.com/ https://www.redshelf.com/

https://www.informit.com/ https://www.chegg.com/

To register for a free 10-day trial to O’Reilly Online Learning, visit

https://learning.oreilly.com/register/

https://learning.oreilly.com
https://learning.oreilly.com
mailto:deitel@deitel.com
https://deitel.com/training
https://amazon.com
https://www.barnesandnoble.com/
mailto:corpsales@pearsoned.com
https://www.amazon.com/
https://www.vitalsource.com/
http://https://www.barnesandnoble.com/
https://www.redshelf.com/
http://https://www.informit.com/
https://www.chegg.com/
https://learning.oreilly.com/register/

Before using this book, please read this section to understand our conventions and set up
your computer to compile and run our example programs.

Font and Naming Conventions
We use fonts to distinguish application elements and C++ code elements from regular text:

• We use a sans-serif bold font for on-screen application elements, as in “the File
menu.”

• We use a sans-serif font for C++ code elements, as in sqrt(9).

Obtaining the Code Examples
We maintain the code examples for C++20 for Programmers in a GitHub repository. The
Source Code section of the book’s webpage at

 https://deitel.com/cpp20fp

includes a link to the GitHub repository and a link to a ZIP file containing the code. If
you’re familiar with Git and GitHub, clone the repository to your system. If you download
the ZIP file, be sure to extract its contents. In our instructions, we assume the examples
reside in your user account’s Documents folder in a subfolder named examples.

If you’re not familiar with Git and GitHub but are interested in learning about these
essential developer tools, check out their guides at

 https://guides.github.com/activities/hello-world/

Compilers We Use in C++20 for Programmers
Before reading this book, ensure that you have a recent C++ compiler installed. We tested
the code examples in C++20 for Programmers using the following free compilers:

• For Microsoft Windows, we used Microsoft Visual Studio Community edition,
which includes the Visual C++ compiler and other Microsoft development tools.1

• For macOS, we used the Apple Xcode2 C++ compiler, which uses a version of the
Clang C++ compiler.

• For Linux, we used the GNU C++ compiler3—part of the GNU Compiler Col-
lection (GCC). GNU C++ is already installed on most Linux systems (though

1. Visual Studio 2022 Community at the time of this writing.
2. Xcode 13.2.1 at the time of this writing.
3. GNU g++ 11.2 at the time of this writing.

Before
You Begin

https://deitel.com/cpp20fp
https://guides.github.com/activities/hello-world/

xliv Before You Begin

you might need to update the compiler to a more recent version) and can be
installed on macOS and Windows systems.

• You also can run the latest versions of GNU C++ and Clang C++ conveniently on
Windows, macOS and Linux via Docker containers. See the “Docker and Docker
Containers” section later in this Before You Begin section.

This Before You Begin describes installing the compilers and Docker. Section 1.2’s test-
drives demonstrate how to compile and run C++ programs using these compilers.

Some Examples Do Not Compile and Run on All Three Compilers
At the time of this writing (February 2022), the compiler vendors had not yet fully imple-
mented some of C++20’s new features. As those features become available, we’ll retest the
code, update our digital products and post updates for our print products at

https://deitel.com/cpp20fp

Installing Visual Studio Community Edition on Windows
If you are a Windows user, first ensure that your system meets the requirements for Mic-
rosoft Visual Studio Community edition at

https://docs.microsoft.com/en-us/visualstudio/releases/2022/system-
requirements

Next, go to

https://visualstudio.microsoft.com/downloads/

Then perform the following installation steps:

1. Click Free Download under Community.

2. Depending on your web browser, you may see a pop-up at the bottom of your
screen in which you can click Run to start the installation process. If not, double-
click the installer file in your Downloads folder.

3. In the User Account Control dialog, click Yes to allow the installer to make chang-
es to your system.

4. In the Visual Studio Installer dialog, click Continue to allow the installer to down-
load the components it needs for you to configure your installation.

5. For this book’s examples, select the option Desktop Development with C++, which
includes the Visual C++ compiler and the C++ standard libraries.

6. Click Install. Depending on your Internet connection speed, the installation pro-
cess can take a significant amount of time.

Installing Xcode on macOS
On macOS, perform the following steps to install Xcode:

1. Click the Apple menu and select App Store…, or click the App Store icon in the
dock at the bottom of your Mac screen.

2. In the App Store’s Search field, type Xcode.

3. Click the Get button to install Xcode.

https://deitel.com/cpp20fp
https://docs.microsoft.com/en-us/visualstudio/releases/2022/system-requirements
https://docs.microsoft.com/en-us/visualstudio/releases/2022/system-requirements
https://visualstudio.microsoft.com/downloads/

 Installing the Most Recent GNU C++ Version xlv

Installing the Most Recent GNU C++ Version
There are many Linux distributions, and they often use different software upgrade tech-
niques. Check your distribution’s online documentation for the proper way to upgrade
GNU C++ to the latest version. You also can download GNU C++ for various platforms at

https://gcc.gnu.org/install/binaries.html

Installing the GNU Compiler Collection in Ubuntu Linux Running
on the Windows Subsystem for Linux
You can install the GNU Compiler Collection on Windows via the Windows Subsystem
for Linux (WSL), which enables you to run Linux in Windows. Ubuntu Linux provides
an easy-to-use installer in the Windows Store, but first you must install WSL:

1. In the search box on your taskbar, type “Turn Windows features on or off,” then
click Open in the search results.

2. In the Windows Features dialog, locate Windows Subsystem for Linux and ensure
that it is checked. If it is, WSL is already installed. Otherwise, check it and click
OK. Windows will install WSL and ask you to reboot your system.

3. Once the system reboots and you log in, open the Microsoft Store app and search
for Ubuntu, select the app named Ubuntu and click Install. This installs the latest
version of Ubuntu Linux.

4. Once installed, click the Launch button to display the Ubuntu Linux command-
line window, which will continue the installation process. You’ll be asked to cre-
ate a username and password for your Ubuntu installation—these do not need to
match your Windows username and password.

5. When the Ubuntu installation completes, execute the following two commands
to install the GCC and the GNU debugger—you may be asked enter your pass-
word for the account you created in Step 4:

 sudo apt-get update
 sudo apt-get install build-essential gdb

6. Confirm that g++ is installed by executing the following command:

 g++ --version

To access our code files, use the cd command change the folder within Ubuntu to:

cd /mnt/c/Users/YourUserName/Documents/examples

Use your own username and update the path to where you placed our examples on your
system.

Docker and Docker Containers
Docker is a tool for packaging software into containers (also called images) that bundle
everything required to execute that software across platforms, which is particularly useful
for software packages with complicated setups and configurations. For many such pack-
ages, there are free preexisting Docker containers (often at https://hub.docker.com) that
you can download and execute locally on your system. Docker is a great way to get started

https://gcc.gnu.org/install/binaries.html
https://hub.docker.com

xlvi Before You Begin

with new technologies quickly and conveniently. It is also a great way to experiment with
new compiler versions.

Installing Docker
To use a Docker container, you must first install Docker. Windows and macOS users
should download and run the Docker Desktop installer from

https://www.docker.com/get-started

Then follow the on-screen instructions. Also, sign up for a Docker Hub account on this
webpage so you can take advantage of containers from https://hub.docker.com. Linux
users should install Docker Engine from

https://docs.docker.com/engine/install/

Downloading the GNU Compiler Collection Docker Container
The GNU team maintains official Docker containers at

https://hub.docker.com/_/gcc

Once Docker is installed and running, open a Command Prompt4 (Windows), Terminal
(macOS/Linux) or shell (Linux), then execute the command

docker pull gcc:latest

Docker downloads the GNU Compiler Collection (GCC) container’s most current ver-
sion (at the time of this writing, version 11.2). In one of Section 1.2’s test-drives, we’ll
demonstrate how to execute the container and use it to compile and run C++ programs.

Downloading the GNU Compiler Collection Docker Container
Currently, the Clang team does not provide an official Docker container, but many work-
ing containers are available on https://hub.docker.com. For this book we used a popular
one from

https://hub.docker.com/r/teeks99/clang-ubuntu

Open a Command Prompt (Windows), Terminal (macOS/Linux) or shell (Linux), then
execute the command

docker pull teeks99/clang-ubuntu:latest

Docker downloads the Clang container’s most current version (at the time of this writing,
version 13). In one of Section 1.2’s test-drives, we’ll demonstrate how to execute the con-
tainer and use it to compile and run C++ programs.

Getting Your C++ Questions Answered
As you read the book, if you have questions, we’re easy to reach at

deitel@deitel.com

and
https://deitel.com/contact-us

We’ll respond promptly.

4. Windows users should choose Run as administrator when opening the Command Prompt.

https://www.docker.com/get-started
https://hub.docker.com
https://docs.docker.com/engine/install/
https://hub.docker.com/_/gcc
https://hub.docker.com
https://hub.docker.com/r/teeks99/clang-ubuntu
mailto:deitel@deitel.com
https://deitel.com/contact-us

 Online C++ Documentation xlvii

The web is loaded with programming information. An invaluable resource for nonpro-
grammers and programmers alike is the website

https://stackoverflow.com

on which you can

• search for answers to most common programming questions,

• search for error messages to see what causes them,

• ask programming questions to get answers from programmers worldwide and

• gain valuable insights about programming in general.

For live C++ discussions, check out the Slack channel cpplang:

https://cpplang-inviter.cppalliance.org

and the Discord server #include<C++>:

https://www.includecpp.org/discord/

Online C++ Documentation
For documentation on the C++ standard library, visit

https://cppreference.com

Also, be sure to check out the C++ FAQ at

https://isocpp.org/faq

A Note Regarding the {fmt} Text-Formatting Library
Throughout the book many programs include the following line of code:

#include <fmt/format.h>

which enables our programs to use the open-source {fmt} library’s text-formatting fea-
tures.5 Those programs include calls to the function fmt::format.

C++20’s new text-formatting capabilities are a subset of the {fmt} library’s features.
In C++20, the preceding line of code should be

#include <format>

and the corresponding function calls should use the std::format function.
At the time of this writing, only Microsoft Visual C++ supported C++20’s new text-

formatting capabilities. For this reason, our examples use the open-source {fmt} library to
ensure most of the examples will execute on all of our preferred compilers.

Static Code Analysis Tools
We used the following static code analyzers to check our code examples for adherence to
the C++ Core Guidelines, adherence to coding standards, adherence to Modern C++ idi-
oms, possible security problems, common bugs, possible performance issues, code read-
ability and more:

5. “{fmt}.” Accessed February 15, 2022. https://github.com/fmtlib/fmt.

https://stackoverflow.com
https://cpplang-inviter.cppalliance.org
https://www.includecpp.org/discord/
https://cppreference.com
https://isocpp.org/faq
https://github.com/fmtlib/fmt

xlviii Before You Begin

• clang-tidy—https://clang.llvm.org/extra/clang-tidy/

• cppcheck—https://cppcheck.sourceforge.io/

• Microsoft’s C++ Core Guidelines static code analysis tools, which are built into
Visual Studio’s static code analyzer

You can install clang-tidy on Linux with the following commands:

sudo apt-get update -y
sudo apt-get install -y clang-tidy

You can install cppcheck for various operating-system platforms by following the instruc-
tions at https://cppcheck.sourceforge.io/. For Visual C++, once you learn how to
create a project in Section 1.2’s test-drives, you can configure Microsoft’s C++ Core
Guidelines static code analysis tools as follows:

1. Right-click your project name in the Solution Explorer and select Properties.

2. In the dialog that appears, select Code Analysis > General in the left column, then
set Enable Code Analysis on Build to Yes in the right column.

3. Next, select Code Analysis > Microsoft in the left column. Then, in the right col-
umn you can select a specific subset of the analysis rules in the drop-down list.
We used the option <Choose multiple rule sets…> to select all the rule sets that
begin with C++ Core Check. Click Save As…, give your custom rule set a name,
click Save, then click Apply. (Note that this will produce large numbers of warn-
ings for the {fmt} text-formatting library that we use in the book’s examples.)

https://clang.llvm.org/extra/clang-tidy/
https://cppcheck.sourceforge.io/
https://cppcheck.sourceforge.io/

4
Control Statements, Part 2

O b j e c t i v e s
In this chapter, you’ll:
■ Use the for and do…while iteration statements.
■ Perform multiple selection using the switch selection

statement.
■ Use C++17’s [[fallthrough]] attribute in switch

statements.
■ Use C++17’s selection statements with initializers.
■ Use the break and continue statements to alter the

flow of control.
■ Use the logical operators to form compound conditions

in control statements.
■ Understand the representational errors associated with using

floating-point data to hold monetary values.
■ Continue our Objects-Natural approach with a case study that

uses an open-source ZIP compression/decompression library
to create and read ZIP files.

■ Use more C++20 text-formatting capabilities.

70 Chapter 4 Control Statements, Part 2

O
ut

lin
e

4.1 Introduction
This chapter introduces the for, do…while, switch, break and continue control state-
ments. We explore the essentials of counter-controlled iteration. We use compound-inter-
est calculations to begin investigating the issues of processing monetary amounts. First, we
discuss the representational errors associated with floating-point types. We use a switch
statement to count the number of A, B, C, D and F grade equivalents in a set of numeric
grades. We show C++17’s enhancements that allow you to initialize one or more variables
of the same type in the headers of if and switch statements. We discuss the logical oper-
ators, which enable you to combine simple conditions to form compound conditions. In
our Objects-Natural case study, we continue using objects of preexisting classes with the
miniz-cpp open-source library for creating and reading compressed ZIP archive files.
Finally, we introduce more of C++20’s powerful and expressive text-formatting features.

4.2 Essentials of Counter-Controlled Iteration
This section uses the while iteration statement introduced in Chapter 3 to formalize the
elements of counter-controlled iteration:

1. a control variable (or loop counter)

2. the control variable’s initial value

3. the control variable’s increment that’s applied during each iteration of the loop

4. the loop-continuation condition that determines if looping should continue.

Consider Fig. 4.1, which uses a loop to display the numbers from 1 through 10.

4.1 Introduction
4.2 Essentials of Counter-Controlled

Iteration
4.3 for Iteration Statement
4.4 Examples Using the for Statement
4.5 Application: Summing Even Integers
4.6 Application: Compound-Interest

Calculations
4.7 do…while Iteration Statement
4.8 switch Multiple-Selection Statement
4.9 C++17 Selection Statements with

Initializers
4.10 break and continue Statements

4.11 Logical Operators
4.11.1 Logical AND (&&) Operator
4.11.2 Logical OR (||) Operator
4.11.3 Short-Circuit Evaluation
4.11.4 Logical Negation (!) Operator
4.11.5 Example: Producing Logical-Operator

Truth Tables
4.12 Confusing the Equality (==) and

Assignment (=) Operators
4.13 Objects-Natural Case Study: Using

the miniz-cpp Library to Write and
Read ZIP files

4.14 C++20 Text Formatting with Field
Widths and Precisions

4.15 Wrap-Up

1 // fig04_01.cpp
2 // Counter-controlled iteration with the while iteration statement.
3 #include <iostream>
4 using namespace std;

Fig. 4.1 | Counter-controlled iteration with the while iteration statement. (Part 1 of 2.)

17

20

4.3 for Iteration Statement 71

In Fig. 4.1, lines 7, 9 and 11 define the elements of counter-controlled iteration. Line
7 declares the control variable (counter) as an int, reserves space for it in memory and sets
its initial value to 1. Declarations that require initialization are executable statements.
Variable declarations that also reserve memory are definitions. We’ll generally use the
term “declaration,” except when the distinction is important.

Line 10 displays counter’s value once per iteration of the loop. Line 11 increments
the control variable by 1 for each iteration of the loop. The while’s loop-continuation
condition (line 9) tests whether the value of the control variable is less than or equal to 10
(the final value for which the condition is true). The loop terminates when the control
variable exceeds 10.

Floating-point values are approximate, so controlling counting loops with floating-
point variables can result in imprecise counter values and inaccurate termination tests,
which can prevent a loop from terminating. For that reason, always control counting loops
with integer variables.

4.3 for Iteration Statement
The for iteration statement specifies the counter-controlled-iteration details in a single
line of code. Figure 4.2 reimplements the application of Fig. 4.1 using a for statement.

5
6 int main() {
7 int counter{1}; // declare and initialize control variable
8
9 while (counter <= 10) { // loop-continuation condition

10 cout << counter << " ";
11 ++counter; // increment control variable
12 }
13
14 cout << "\n";
15 }

1 2 3 4 5 6 7 8 9 10

1 // fig04_02.cpp
2 // Counter-controlled iteration with the for iteration statement.
3 #include <iostream>
4 using namespace std;
5
6 int main() {
7 // for statement header includes initialization,
8 // loop-continuation condition and increment
9 for (int counter{1}; counter <= 10; ++counter) {

10 cout << counter << " ";
11 }
12

Fig. 4.2 | Counter-controlled iteration with the for iteration statement. (Part 1 of 2.)

Fig. 4.1 | Counter-controlled iteration with the while iteration statement. (Part 2 of 2.)

72 Chapter 4 Control Statements, Part 2

When the for statement (lines 9–11) begins executing, the control variable counter is
declared and initialized to 1. Next, the program tests the loop-continuation condition
between the two required semicolons (counter <= 10). Because counter’s initial value is 1,
the condition is true. So, line 10 displays counter’s value (1). After executing line 10,
++counter to the right of the second semicolon increments counter. Then the program per-
forms the loop-continuation test again to determine whether to proceed with the loop’s next
iteration. At this point, counter’s value is 2 and the condition is still true, so the program
executes line 10 again. This process continues until the loop has displayed the numbers 1–
10 and counter’s value becomes 11. At this point, the loop-continuation test fails, iteration
terminates and the program continues with the first statement after the loop (line 13).

A Closer Look at the for Statement’s Header
The following diagram takes a closer look at the for statement in Fig. 4.2:

The first line—including the keyword for and everything in the parentheses after for (line
9 in Fig. 4.2)—is sometimes called the for statement header. The for header “does it
all”—it specifies each item needed for counter-controlled iteration with a control variable.

General Format of a for Statement
The general format of the for statement is

for (initialization; loopContinuationCondition; increment) {
 statement
}

where

• initialization names the loop’s control variable and provides its initial value,

• loopContinuationCondition—between the two required semicolons—determines
whether the loop should continue executing, and

• increment modifies the control variable’s value so that the loop-continuation con-
dition eventually becomes false.

If the loop-continuation condition is initially false, the program does not execute the for
statement’s body. Instead, execution proceeds with the statement following the for.

13 cout << "\n";
14 }

1 2 3 4 5 6 7 8 9 10

o

Fig. 4.2 | Counter-controlled iteration with the for iteration statement. (Part 2 of 2.)

Initial value of
control variable

Loop-continuation
condition

Increment of
control variable

for
keyword

Name of
control variable

Required
semicolon

Required
semicolon

Final value for which
condition is true

for (int counter{1}; counter <= 10; ++counter)

4.3 for Iteration Statement 73

Scope of a for Statement’s Control Variable
If the initialization expression declares the control variable, it can be used only in that for
statement—not beyond it. This restricted use is known as the variable’s scope, which
defines its lifetime and where it can be used in a program. For example, a variable’s scope
is from its declaration point to the right brace that closes the block. As you’ll see in
Chapter 5, it’s good practice to define each variable in the smallest scope needed.

Expressions in a for Statement’s Header Are Optional
All three expressions in a for header are optional. If you omit the loopContinuationCondi-
tion, the condition is always true, creating an infinite loop. You might omit the initializa-
tion expression if the program initializes the control variable before the loop. You might
omit the increment expression if the program calculates the increment in the loop’s body
or if no increment is needed.

The increment expression in a for acts like a stand-alone statement at the end of the
for’s body. Therefore, the increment expressions

counter = counter + 1
counter += 1
++counter
counter++

are equivalent in a for statement. In this case, the increment expression does not appear
in a larger expression, so preincrementing and postincrementing have the same effect. We
prefer preincrement. In Chapter 11’s operator-overloading discussion, you’ll see that pre-
increment can have a performance advantage.

Using a for Statement’s Control Variable in the Statement’s Body
Programs frequently display the control-variable value or use it in calculations in the loop
body, but this use is not required. The value of the control variable can be changed in a
for loop’s body, but doing so can lead to subtle errors. If a program must modify the con-
trol variable’s value in the loop’s body, prefer while to for.

UML Activity Diagram of the for Statement
Below is the UML activity diagram of the for statement in Fig. 4.2—it makes it clear that
initialization occurs once, before the condition is tested the first time. Incrementing occurs
after the body statement executes:

Err

[counter > 10]

[counter <= 10]

int counter{1}

++counter

Display the
counter value

Initialize
control variable

Increment the
control variable

cout << counter << " ";cout << counter << " ";Determine whether
looping should
continue

74 Chapter 4 Control Statements, Part 2

4.4 Examples Using the for Statement
The following examples show techniques for varying the control variable in a for state-
ment. In each case, we write only the appropriate for header. Note the change in the rela-
tional operator for the loops that decrement the control variable.

a) Vary the control variable from 1 to 100 in increments of 1.

for (int i{1}; i <= 100; ++i)

b) Vary the control variable from 100 down to 1 in decrements of 1.

for (int i{100}; i >= 1; --i)

c) Vary the control variable from 7 to 77 in increments of 7.

for (int i{7}; i <= 77; i += 7)

d) Vary the control variable from 20 down to 2 in decrements of 2.

for (int i{20}; i >= 2; i -= 2)

e) Vary the control variable over the values 2, 5, 8, 11, 14, 17, 20.

for (int i{2}; i <= 20; i += 3)

f) Vary the control variable over the values 99, 88, 77, 66, 55, 44, 33, 22, 11, 0.

for (int i{99}; i >= 0; i -= 11)

Do not use equality operators (!= or ==) in a loop-continuation condition if the loop’s
control variable increments or decrements by more than 1. For example, in the for state-
ment header

for (int counter{1}; counter != 10; counter += 2)

counter != 10 never becomes false (resulting in an infinite loop) because counter incre-
ments by 2 after each iteration, producing only the odd values (3, 5, 7, 9, 11, …).

4.5 Application: Summing Even Integers
The application in Fig. 4.3 uses a for statement to sum the even integers from 2 to 20 and
store the result in int variable total. Each iteration of the loop (lines 10–12) adds control
variable number’s value to variable total.

1 // fig04_03.cpp
2 // Summing integers with the for statement.
3 #include <iostream>
4 using namespace std;
5
6 int main() {
7 int total{0};
8
9 // total even integers from 2 through 20

10 for (int number{2}; number <= 20; number += 2) {
11 total += number;
12 }

Fig. 4.3 | Summing integers with the for statement. (Part 1 of 2.)

4.6 Application: Compound-Interest Calculations 75

A for statement’s initialization and increment expressions can be comma-separated
lists containing multiple initialization expressions or multiple increment expressions.
Although this is discouraged, you could merge the for statement’s body (line 11) into the
increment portion of the for header by using a comma operator as in

for (int number{2}; number <= 20; total += number, number += 2) { }

The comma between the expressions total += number and number += 2 is the comma oper-
ator, which guarantees that a list of expressions evaluates from left to right. The comma
operator has the lowest precedence of all C++ operators. The value and type of a comma-
separated list of expressions is the value and type of the rightmost expression, respectively.
The comma operator is often used in for statements that require multiple initialization
expressions or multiple increment expressions.

4.6 Application: Compound-Interest Calculations
Let’s compute compound interest with a for statement. Consider the following problem:

A person invests $1,000 in a savings account yielding 5% interest. Assuming all
interest is left on deposit, calculate and print the amount of money in the account
at the end of each year for 10 years. Use the following formula to determine the
amounts:

a = p (1 + r)n

where

p is the original amount invested (i.e., the principal),
r is the annual interest rate (e.g., use 0.05 for 5%),
n is the number of years, and
a is the amount on deposit at the end of the nth year.

The solution (Fig. 4.4) uses a loop to perform the calculation for each of the 10 years
the money remains on deposit. We use double values here for the monetary calculations.
Then we discuss the problems with using floating-point types to represent monetary
amounts. For financial applications that require precise monetary calculations and round-
ing control, consider using an open-source library such as Boost.Multiprecision.1

Lines 12–13 initialize double variable principal to 1000.00 and double variable
rate to 0.05. C++ treats floating-point literals like 1000.00 and 0.05 as type double. Sim-

13
14 cout << "Sum is " << total << "\n";
15 }

Sum is 110

Fig. 4.3 | Summing integers with the for statement. (Part 2 of 2.)

1. John Maddock and Christopher Kormanyos, “Chapter 1. Boost.Multiprecision.” Accessed November 19,
2021. https://www.boost.org/doc/libs/master/libs/multiprecision/doc/html/index.html.

https://www.boost.org/doc/libs/master/libs/multiprecision/doc/html/index.html

76 Chapter 4 Control Statements, Part 2

ilarly, C++ treats whole numbers like 7 and -22 as type int.2 Lines 15–16 display the ini-
tial principal and the interest rate.

2. Section 3.12 showed that C++’s integer types cannot represent all integer values. Choose the correct
type for the range of values you need to represent. You may designate that an integer literal has type
long or long long by appending L or LL, respectively, to the literal value.

1 // fig04_04.cpp
2 // Compound-interest calculations with for.
3 #include <iostream>
4 #include <iomanip>
5 #include <cmath> // for pow function
6 using namespace std;
7
8 int main() {
9 // set floating-point number format

10 cout << fixed << setprecision(2);
11
12 double principal{1000.00}; // initial amount before interest
13 double rate{0.05}; // interest rate
14
15 cout << "Initial principal: " << principal << "\n";
16 cout << " Interest rate: " << rate << "\n";
17
18 // display headers
19 cout << "\nYear" << setw(20) << "Amount on deposit" << "\n";
20
21 // calculate amount on deposit for each of ten years
22 for (int year{1}; year <= 10; ++year) {
23 // calculate amount on deposit at the end of the specified year
24 double amount{principal * pow(1.0 + rate, year)} ;
25
26 // display the year and the amount
27 cout << setw(4) << year << setw(20) << amount << "\n";
28 }
29 }

Initial principal: 1000.00
 Interest rate: 0.05

Year Amount on deposit
 1 1050.00
 2 1102.50
 3 1157.63
 4 1215.51
 5 1276.28
 6 1340.10
 7 1407.10
 8 1477.46
 9 1551.33
 10 1628.89

Fig. 4.4 | Compound-interest calculations with for.

4.6 Application: Compound-Interest Calculations 77

Formatting with Field Widths and Justification
Line 10 before the loop and line 27 in the loop combine to print the year and amount
values. We specify the formatting with the parameterized stream manipulators setpreci-
sion and setw and the nonparameterized stream manipulator fixed. The stream manip-
ulator setw(4) specifies that the next value output should appear in a field width of 4—
i.e., cout << prints the value with at least four character positions. If the value to be output
requires fewer than four character positions, the value is right-aligned in the field by
default. If the value to be output has more than four character positions, C++ extends the
field width to the right to accommodate the entire value. To left-align values, output non-
parameterized stream manipulator left (found in header <iostream>). You can restore
right-alignment by outputting nonparameterized stream manipulator right.

The other formatting in the output statements displays variable amount as a fixed-
point value with a decimal point (fixed in line 10) right-aligned in a field of 20 character
positions (setw(20) in line 27) and two digits of precision to the right of the decimal point
(setprecision(2) in line 10). We applied the sticky stream manipulators fixed and set-
precision to the output stream cout before the for loop because these format settings
remain in effect until they’re changed, and they do not need to be applied during each iter-
ation of the loop. However, the field width specified with setw applies only to the next
value output. Chapter 19 discusses cin’s and cout’s formatting capabilities in detail. We
continue discussing C++20’s powerful new text-formatting capabilities in Section 4.14.

Performing the Interest Calculations with Standard Library Function pow
The for statement (lines 22–28) iterates 10 times, varying the int control variable year
from 1 to 10 in increments of 1. Variable year represents n in the problem statement.

C++ does not include an exponentiation operator, so we use the standard library
function pow (line 24) from the header <cmath> (line 5). The call pow(x, y) calculates the
value of x raised to the yth power. The function receives two double arguments and returns
a double value. Line 24 performs the calculation a = p(1 + r)n, where a is amount, p is
principal, r is rate and n is year.

Function pow’s first argument—the calculation 1.0 + rate—produces the same result
each time through the loop, so repeating it in every iteration of the loop is wasteful. To
improve program performance, many of today’s optimizing compilers place such calcula-
tions before loops in the compiled code.

Floating-Point Number Precision and Memory Requirements
A float represents a single-precision floating-point number. Most of today’s systems
store these in four bytes of memory with approximately seven significant digits. A double
represents a double-precision floating-point number. Most of today’s systems store these
in eight bytes of memory with approximately 15 significant digits—approximately double
the precision of floats. Most programmers use type double. C++ treats floating-point
numbers such as 3.14159 in a program’s source code as double values by default. Such
values in the source code are known as floating-point literals.

The C++ standard requires only that type double provide at least as much precision as
float. There is also type long double, which provides at least as much precision as double.
For a complete list of C++ fundamental types and their typical ranges, see

https://en.cppreference.com/w/cpp/language/types

Perf

https://en.cppreference.com/w/cpp/language/types

78 Chapter 4 Control Statements, Part 2

Floating-Point Numbers Are Approximations
In conventional arithmetic, floating-point numbers often arise as a result of division.
Dividing 10 by 3, the result is 3.3333333…, with the sequence of 3s repeating infinitely.
The computer allocates a fixed amount of space to hold such a value, so the stored value
can be only an approximation. Floating-point types such as double suffer from what is
referred to as representational error. Assuming that floating-point numbers are repre-
sented exactly (e.g., using them in comparisons for equality) can lead to incorrect results.

Floating-point numbers have numerous applications, especially for measured values.
For example, when we speak of a “normal” body temperature of 98.6 degrees Fahrenheit,
we do not need to be precise to a large number of digits. When we read the temperature
on a thermometer as 98.6, it actually might be 98.594732103. Calling this number 98.6
is fine for most body temperature calculations. Generally, double is preferred over float,
because doubles represent floating-point numbers more precisely.3

A Warning about Displaying Rounded Values
This example declared double variables amount, principal and rate to be of type double.
Unfortunately, floating-point numbers can cause trouble with fractional dollar amounts.
Here’s a simple explanation of what can go wrong when floating-point numbers are used
to represent dollar amounts that are displayed with two digits to the right of the decimal
point. Two calculated dollar amounts stored in the machine could be 14.234 (rounded to
14.23 for display purposes) and 18.673 (rounded to 18.67 for display purposes). When
these amounts are added, they produce the internal sum 32.907, which would typically be
rounded to 32.91 for display purposes. Thus, your output could appear as

 14.23
+ 18.67
 32.91

but a person adding the individual numbers as displayed would expect the sum to be
32.90. You’ve been warned!

Even Common Dollar Amounts Can Have Floating-Point Representational Errors
Even simple dollar amounts can have representational errors when they’re stored as dou-
bles. To see this, we created a simple program that defined the variable d as follows:

double d{123.02};

We displayed d’s value with 20 digits of precision to the right of the decimal point. The
resulting output showed 123.02 as 123.0199999…, which is another example of a repre-
sentational error. Though some dollar amounts can be represented precisely as doubles,
many cannot. This is a common problem in many programming languages. Later in the
book, we create and use classes that handle monetary amounts precisely.

4.7 do…while Iteration Statement
In a while statement, the program tests the loop-continuation condition before executing
the loop’s body. If it’s false, the body never executes. The do…while iteration statement

3. Nowadays, the standard floating-point representation is IEEE 754 (https://en.wikipedia.org/
wiki/IEEE_754).

Err

https://en.wikipedia.org/wiki/IEEE_754
https://en.wikipedia.org/wiki/IEEE_754

4.7 do…while Iteration Statement 79

tests the loop-continuation condition after executing the loop’s body; so, the body always
executes at least once. Figure 4.5 uses a do…while to output the numbers 1–10. Line 7
declares and initializes control variable counter. Upon entering the do…while statement,
line 10 outputs counter’s value and line 11 increments counter. Then the program eval-
uates the loop-continuation test at the bottom of the loop (line 12). If the condition is
true, the loop continues at the first body statement (line 10). If the condition is false, the
loop terminates, and the program continues at the next statement after the loop.

UML Activity Diagram for the do…while Iteration Statement
The do…while’s UML activity diagram makes it clear that the loop-continuation condi-
tion is not evaluated until after the loop performs the action state at least once:

1 // fig04_05.cpp
2 // do...while iteration statement.
3 #include <iostream>
4 using namespace std;
5
6 int main() {
7 int counter{1};
8
9 do {

10 cout << counter << " ";
11 ++counter;
12 } while (counter <= 10); // end do...while
13
14 cout << "\n";
15 }

1 2 3 4 5 6 7 8 9 10

Fig. 4.5 | do…while iteration statement.

Determine whether
looping should
continue [counter > 10]

[counter <= 10]

++counter

Display the
counter value

Increment the
control variable

cout << counter << " ";

80 Chapter 4 Control Statements, Part 2

4.8 switch Multiple-Selection Statement
C++ provides the switch multiple-selection statement to choose among many different
actions based on the possible values of a variable or expression. Each action is associated
with the value of an integral constant expression—any combination of character and inte-
ger constants that evaluates to a constant integer value.

Using a switch Statement to Count A, B, C, D and F Grades
Figure 4.6 calculates the class average of a set of numeric grades entered by the user. The
switch statement determines each grade’s letter equivalent (A, B, C, D or F) and incre-
ments the appropriate grade counter. The program also displays a summary of the number
of students who received each grade.

1 // fig04_06.cpp
2 // Using a switch statement to count letter grades.
3 #include <iostream>
4 #include <iomanip>
5 using namespace std;
6
7 int main() {
8 int total{0}; // sum of grades
9 int gradeCounter{0}; // number of grades entered

10 int aCount{0}; // count of A grades
11 int bCount{0}; // count of B grades
12 int cCount{0}; // count of C grades
13 int dCount{0}; // count of D grades
14 int fCount{0}; // count of F grades
15
16 cout << "Enter the integer grades in the range 0-100.\n"
17 << "Type the end-of-file indicator to terminate input:\n"
18 << " On UNIX/Linux/macOS type <Ctrl> d then press Enter\n"
19 << " On Windows type <Ctrl> z then press Enter\n";
20
21 int grade;
22
23 // loop until user enters the end-of-file indicator
24 while (cin >> grade) {
25 total += grade; // add grade to total
26 ++gradeCounter; // increment number of grades
27
28 // increment appropriate letter-grade counter
29 switch (grade / 10) {
30 case 9: // grade was between 90
31 case 10: // and 100, inclusive
32 ++aCount;
33 break; // exits switch
34
35 case 8: // grade was between 80 and 89
36 ++bCount;
37 break; // exits switch
38

Fig. 4.6 | Using a switch statement to count letter grades. (Part 1 of 3.)

4.8 switch Multiple-Selection Statement 81

39 case 7: // grade was between 70 and 79
40 ++cCount;
41 break; // exits switch
42
43 case 6: // grade was between 60 and 69
44 ++dCount;
45 break; // exits switch
46
47 default: // grade was less than 60
48 ++fCount;
49 break; // optional; exits switch anyway
50 } // end switch
51 } // end while
52
53 // set floating-point number format
54 cout << fixed << setprecision(2);
55
56 // display grade report
57 cout << "\nGrade Report:\n";
58
59 // if user entered at least one grade...
60 if (gradeCounter != 0) {
61 // calculate average of all grades entered
62 double average{static_cast<double>(total) / gradeCounter};
63
64 // output summary of results
65 cout << "Total of the " << gradeCounter << " grades entered is "
66 << total << "\nClass average is " << average
67 << "\nNumber of students who received each grade:"
68 << "\nA: " << aCount << "\nB: " << bCount << "\nC: " << cCount
69 << "\nD: " << dCount << "\nF: " << fCount << "\n";
70 }
71 else { // no grades were entered, so output appropriate message
72 cout << "No grades were entered" << "\n";
73 }
74 }

Enter the integer grades in the range 0-100.
Type the end-of-file indicator to terminate input:
 On UNIX/Linux/macOS type <Ctrl> d then press Enter
 On Windows type <Ctrl> z then press Enter
99
92
45
57
63
71
76
85
90
100
^Z

Fig. 4.6 | Using a switch statement to count letter grades. (Part 2 of 3.)

82 Chapter 4 Control Statements, Part 2

Figure 4.6 declares local variables total (line 8) and gradeCounter (line 9) to keep
track of the sum of the grades entered by the user and the number of grades entered. Lines
10–14 declare and initialize to 0 counter variables for each grade category. Lines 24–51
input an arbitrary number of integer grades using sentinel-controlled iteration, update
variables total and gradeCounter, and increment an appropriate letter-grade counter for
each grade entered. Lines 54–73 output a report containing the total of all grades entered,
the average grade and the number of students who received each letter grade.

Reading Grades from the User
Lines 16–19 prompt the user to enter integer grades or type the end-of-file indicator to
terminate the input. The end-of-file indicator is a system-dependent keystroke combina-
tion used to indicate that there’s no more data to input. In Chapter 8, you’ll see how the
end-of-file indicator is used when a program reads its input from a file.

The keystroke combinations for entering end-of-file are system dependent. On
UNIX/Linux/macOS systems, type the sequence

<Ctrl> d

on a line by itself. This notation means to press both the Ctrl key and the d key simulta-
neously. On Windows systems, type

<Ctrl> z

On some systems, you must also press Enter. Also, Windows typically displays ^Z on the
screen when you type the end-of-file indicator, as shown in the output of Fig. 4.6.

The while statement (lines 24–51) obtains the user input. Line 24

while (cin >> grade) {

performs the input in the while statement’s condition. In this case, the loop-continuation
condition evaluates to true if cin successfully reads an int value. If the user enters the
end-of-file indicator, the condition evaluates to false.

If the condition is true, line 25 adds grade to total, and line 26 increments grade-
Counter. These are used to compute the average. Next, lines 29–50 use a switch statement
to increment the appropriate letter-grade counter based on the numeric grade entered.

Processing the Grades
The switch statement (lines 29–50) determines which counter to increment. We assume
that the user enters a valid grade in the range 0–100. A grade in the range 90–100 rep-

Grade Report:
Total of the 10 grades entered is 778
Class average is 77.80

Number of students who received each grade:
A: 4
B: 1
C: 2
D: 1
F: 2

Fig. 4.6 | Using a switch statement to count letter grades. (Part 3 of 3.)

4.8 switch Multiple-Selection Statement 83

resents A, 80–89 represents B, 70–79 represents C, 60–69 represents D and 0–59 rep-
resents F. The switch statement’s block contains a sequence of case labels and an optional
default case, which can appear anywhere in the switch, but normally appears last. These
are used in this example to determine which counter to increment based on the grade.

When the flow of control reaches the switch, the program evaluates the controlling
expression in the parentheses (grade / 10) following keyword switch. The program com-
pares this expression’s value with each case label. The expression must have a signed or
unsigned integral type—bool, char, char8_t, char16_t, char32_t, wchar_t, int, long or
long long.

The controlling expression in line 29 performs integer division, which truncates the
fractional part of the result. When we divide a value from 0 to 100 by 10, the result is
always a value from 0 to 10. We use several of these values in our case labels. If the user
enters the integer 85, the controlling expression evaluates to 8. The switch compares 8
with each case label. If a match occurs (case 8: at line 35), that case’s statements execute.
For 8, line 36 increments bCount, because a grade in the 80s is a B. The break statement
(line 37) exits the switch. In this program, we reach the end of the while loop, so control
returns to the loop-continuation condition in line 24 to determine whether the loop
should continue executing.

The cases in our switch explicitly test for the values 10, 9, 8, 7 and 6. Note the cases
at lines 30–31 that test for the values 9 and 10 (both of which represent the grade A). List-
ing cases consecutively in this manner with no statements between them enables the cases
to perform the same set of statements—when the controlling expression evaluates to 9 or
10, the statements in lines 32–33 execute. The switch statement does not provide a mech-
anism for testing ranges of values, so every value you need to test must be listed in a sepa-
rate case label. Each case can have multiple statements. The switch statement differs
from other control statements in that it does not require braces around multiple state-
ments in a case, unless you need to declare a variable in a case.

case without a break Statement—C++17 [[fallthrough]] Attribute
Without break statements, each time a match occurs in the switch, the statements for that
case and subsequent cases execute until a break statement or the end of the switch is
reached. This is referred to as “falling through” to the statements in subsequent cases.4

Forgetting a break statement when one is needed is a logic error. To call your atten-
tion to this possible problem, many compilers issue a warning when a case label is fol-
lowed by one or more statements and does not contain a break statement. For such
instances in which “falling through” is the desired behavior, C++17 introduced the
[[fallthrough]] attribute. You can tell the compiler that “falling through” to the next
case is the correct behavior by placing the statement

[[fallthrough]];

where the break statement would normally appear.

4. This feature is perfect for writing a concise program that displays the iterative song “The Twelve Days
of Christmas.” As an exercise, you might write the program, then use one of the many free, open-
source text-to-speech programs to speak the song. You might also tie your program to a free, open-
source MIDI (“Musical Instrument Digital Interface”) program to create a singing version of your
program accompanied by music.

Err

17

84 Chapter 4 Control Statements, Part 2

The default Case
If no match occurs between the controlling expression’s value and any of the case labels,
the default case (lines 47–49) executes. We use the default case in this example to pro-
cess all controlling-expression values that are less than 6—that is, all failing grades. If no
match occurs and the switch does not contain a default case, program control simply
continues with the first statement after the switch. In a switch, it’s good practice to test
for all possible values of the controlling expression.

Displaying the Grade Report
Lines 54–73 output a report based on the grades entered. Line 60 determines whether the
user entered at least one grade—this helps us avoid dividing by zero, which for integer divi-
sion causes the program to fail and for floating-point division produces the value nan—for
“not a number.” If so, line 62 calculates the average of the grades. Lines 65–69 then output
the total of all the grades, the class average and the number of students who received each
letter grade. If no grades were entered, line 72 outputs an appropriate message. The output
in Fig. 4.6 shows a sample grade report based on 10 grades.

switch Statement UML Activity Diagram
The following is the UML activity diagram for the general switch statement:

Most switch statements use a break in each case to terminate the switch after the case
is processed. The diagram emphasizes this by including break statements and showing
that the break at the end of a case causes control to exit the switch statement immedi-
ately.

The break statement is not required for the switch’s last case (or the optional
default case, when it appears last), because execution continues with the next statement
after the switch. Provide a default case in every switch statement to focus you on pro-
cessing exceptional conditions.

.
.
.

default actions(s)

case a actions(s)

case b actions(s)

case z actions(s) break

break

break

[false]

[true]

[true]

[true]

[false]

[false]

case b

case z

case a

4.9 C++17 Selection Statements with Initializers 85

Notes on cases
Each case in a switch statement must contain a constant integral expression—that is, any
expression that evaluates to a constant integer value. You also can use enum constants
(introduced in Section 5.9) and character literals—specific characters in single quotes,
such as 'A', '7' or '$', which represent the integer values of characters. (Appendix B
shows the integer values of the characters in the ASCII character set, which is a subset of
the Unicode character set.)

In Chapter 10, OOP: Inheritance and Runtime Polymorphism, we present a more
elegant way to implement switch logic. We use a technique called polymorphism to create
programs that are often clearer, easier to maintain and easier to extend than programs
using switch logic.

4.9 C++17 Selection Statements with Initializers
Earlier, we introduced the for iteration statement. In the for header’s initialization sec-
tion, we declared and initialized a control variable, which limited that variable’s scope to
the for statement. C++17’s selection statements with initializers enable you to include
variable initializers before the condition in an if or if…else statement and before the
controlling expression of a switch statement. As with the for statement, these variables
are known only in the statements where they’re declared. Figure 4.7 shows if…else

statements with initializers. We’ll use both if…else and switch statements with initial-
izers in Fig. 5.5, which implements a popular casino dice game.

1 // fig04_07.cpp
2 // C++17 if statements with initializers.
3 #include <iostream>
4 using namespace std;
5
6 int main() {
7 if (int value{7}; value == 7) {
8 cout << "value is " << value << "\n";
9 }

10 else {
11 cout << "value is not 7; it is " << value << "\n";
12 }
13
14 if (int value{13}; value == 9) {
15 cout << "value is " << value << "\n";
16 }
17 else {
18 cout << "value is not 9; it is " << value << "\n";
19 }
20 }

value is 7
value is not 9; it is 13

Fig. 4.7 | C++17 if statements with initializers.

17

17

86 Chapter 4 Control Statements, Part 2

Syntax of Selection Statements with Initializers
For an if or if…else statement, you place the initializer first in the condition’s paren-
theses. For a switch statement, you place the initializer first in the controlling expression’s
parentheses. The initializer must end with a semicolon (;), as in lines 7 and 14. The ini-
tializer can declare multiple variables of the same type in a comma-separated list.

Scope of Variables Declared in the Initializer
Any variable declared in the initializer of an if, if…else or switch statement may be
used throughout the remainder of the statement. In lines 7–12, we use the variable value
to determine which branch of the if…else statement to execute, then use value in the
output statements of both branches. When the if…else statement terminates, value no
longer exists, so we can use that identifier again in the second if…else statement to
declare a new variable known only in that statement.

To prove that value is not accessible outside the if…else statements, we provided a
second version of this program (fig04_07_with_error.cpp) that attempts to access vari-
able value after (and thus outside the scope of) the second if…else statement. This pro-
duces the following compilation errors in our three compilers:

• Visual Studio: 'value': undeclared identifier

• Xcode: error: use of undeclared identifier 'value'

• GNU g++: error: 'value' was not declared in this scope

4.10 break and continue Statements
In addition to selection and iteration statements, C++ provides break and continue state-
ments to alter the flow of control. The preceding section showed how break could be used
to terminate a switch statement’s execution. This section discusses how to use break in
iteration statements.

break Statement
Executing a break statement in a while, for, do…while or switch causes immediate exit
from that statement—execution continues with the first statement after the control state-
ment. Common uses of break include escaping early from a loop or exiting a switch (as
in Fig. 4.6). Figure 4.8 demonstrates a break statement exiting early from a for statement.

1 // fig04_08.cpp
2 // break statement exiting a for statement.
3 #include <iostream>
4 using namespace std;
5
6 int main() {
7 int count; // control variable also used after loop
8
9 for (count = 1; count <= 10; ++count) { // loop 10 times

10 if (count == 5) {
11 break; // terminates for loop if count is 5
12 }

Fig. 4.8 | break statement exiting a for statement. (Part 1 of 2.)

4.10 break and continue Statements 87

When the if statement nested at lines 10–12 in the for statement (lines 9–15) detects
that count is 5, the break statement at line 11 executes. This terminates the for statement,
and the program proceeds to line 17 (immediately after the for statement), which displays
a message indicating the value of the control variable when the loop terminated. The loop
fully executes its body only four times instead of 10. Note that we could have initialized
count in line 7 and left the for header’s initialization section empty, as in:

for (; count <= 10; ++count) { // loop 10 times

continue Statement
Executing the continue statement in a while, for or do…while skips the remaining state-
ments in the loop body and proceeds with the next iteration of the loop. In while and
do…while statements, the program evaluates the loop-continuation test immediately after
the continue statement executes. In a for statement, the increment expression executes,
then the program evaluates the loop-continuation test.

13
14 cout << count << " ";
15 }
16
17 cout << "\nBroke out of loop at count = " << count << "\n";
18 }

1 2 3 4
Broke out of loop at count = 5

Fig. 4.8 | break statement exiting a for statement. (Part 2 of 2.)

1 // fig04_09.cpp
2 // continue statement terminating an iteration of a for statement.
3 #include <iostream>
4 using namespace std;
5
6 int main() {
7 for (int count{1}; count <= 10; ++count) { // loop 10 times
8 if (count == 5) {
9 continue; // skip remaining code in loop body if count is 5

10 }
11
12 cout << count << " ";
13 }
14
15 cout << "\nUsed continue to skip printing 5" << "\n";
16 }

1 2 3 4 6 7 8 9 10
Used continue to skip printing 5

Fig. 4.9 | continue statement terminating an iteration of a for statement.

88 Chapter 4 Control Statements, Part 2

Figure 4.9 uses continue (line 9) to skip the statement at line 12 when the nested if
determines that count’s value is 5. When the continue statement executes, program con-
trol continues with the increment of the control variable in the for statement (line 7).

Some programmers feel that break and continue violate structured programming.
Since the same effects are achievable with structured-programming techniques, these pro-
grammers prefer to avoid break or continue.

There’s a tension between achieving quality software engineering and achieving the
best-performing software. Sometimes one of these goals is achieved at the expense of the
other. For all but the most performance-intensive situations, you should first make your
code simple and correct, then make it fast and small—but only if necessary.

4.11 Logical Operators
The conditions in if, if…else, while, do…while and for statements determine how to
continue a program’s flow of control. So far, we’ve studied only simple conditions, such
as count <= 10, number != sentinelValue and total > 1000. Simple conditions are
expressed with the relational operators >, <, >= and <= and the equality operators == and
!=. Each tests one condition. Sometimes control statements require more complex condi-
tions to determine a program’s flow of control. C++’s logical operators enable you to com-
bine simple conditions. The logical operators are && (logical AND), || (logical OR) and
! (logical negation).

4.11.1 Logical AND (&&) Operator
Suppose we wish to ensure at some point in a program that two conditions are both true
before we choose a certain path of execution. In this case, we can use the && (logical AND)
operator, as follows:

if (gender == FEMALE && age >= 65) {
 ++seniorFemales;
}

Assume FEMALE is a constant variable. This if statement contains two simple conditions.
The condition gender == FEMALE determines whether a person is female. The condition
age >= 65 might be evaluated to determine whether a person is a senior citizen. The if
statement considers the combined condition

gender == FEMALE && age >= 65

which is true if and only if both simple conditions are true. In this case, the if statement’s
body increments seniorFemales by 1. If either or both of the simple conditions are false,
the program skips the increment. Some programmers find that the preceding combined
condition is more readable when redundant parentheses are added, as in

(gender == FEMALE) && (age >= 65)

The following truth table summarizes the && operator, showing all four possible com-
binations of the bool values false and true for expression1 and expression2. C++ evaluates
to zero (false) or nonzero (true) all expressions that include relational operators, equality
operators or logical operators:

Perf

4.11 Logical Operators 89

4.11.2 Logical OR (||) Operator
Now suppose we wish to ensure that either or both of two conditions are true before we
choose a certain path of execution. In this case, we use the || (logical OR) operator, as in
the following program segment:

if ((semesterAverage >= 90) || (finalExam >= 90)) {
 cout << "Student grade is A\n";
}

This statement also contains two simple conditions. The condition semesterAverage >=
90 determines whether the student deserves an A in the course for a solid performance
throughout the semester. The condition finalExam >= 90 determines whether the student
deserves an A in the course for an outstanding performance on the final exam. The if
statement then considers the combined condition

(semesterAverage >= 90) || (finalExam >= 90)

and awards the student an A if either or both of the simple conditions are true. The only
time the message "Student grade is A" is not printed is when both of the simple condi-
tions are false. The following is the truth table for the operator logical OR (||):

Operator && has higher precedence than operator ||.5 Both operators group left-to-right.

4.11.3 Short-Circuit Evaluation
The parts of an expression containing && or || operators are evaluated only until it’s
known whether the condition is true or false. Thus, evaluation of the expression

(gender == FEMALE) && (age >= 65)

stops immediately if gender is not equal to FEMALE (i.e., the entire expression is false) and
continues if gender is equal to FEMALE (i.e., the entire expression could still be true if the

expression1 expression2 expression1 && expression2

false false false

false true false

true false false

true true true

expression1 expression2 expression1 || expression2

false false false

false true true

true false true

true true true

5. In general, use parentheses if there is ambiguity about evaluation order.

90 Chapter 4 Control Statements, Part 2

condition age >= 65 is true). This feature of logical AND and logical OR expressions is
called short-circuit evaluation.

In expressions using operator &&, a condition—we’ll call this the dependent condi-
tion—may require another condition to be true for the evaluation of the dependent con-
dition to be meaningful. In this case, the dependent condition should be placed after the
&& operator to prevent errors. Consider the expression (i != 0) && (10 / i == 2). The
dependent condition (10 / i == 2) must appear after the && operator to prevent the pos-
sibility of division by zero.

4.11.4 Logical Negation (!) Operator
The ! (logical negation, also called logical NOT or logical complement) operator
“reverses” the meaning of a condition. Unlike the logical operators && and ||, which are
binary operators that combine two conditions, the logical negation operator is a unary
operator that has only one condition as an operand. To execute code only when a condi-
tion is false, place the logical negation operator before the original condition, as in the pro-
gram segment

if (!(grade == sentinelValue)) {
 cout << "The next grade is " << grade << "\n";
}

which executes the body statement only if grade is not equal to sentinelValue. The
parentheses around the condition grade == sentinelValue are needed because the logical
negation operator has higher precedence than the equality operator.

In most cases, you can avoid using logical negation by expressing the condition dif-
ferently with an appropriate relational or equality operator. For example, the previous
statement may also be written in a more readable manner as

if (grade != sentinelValue) {
 cout << "The next grade is " << grade << "\n";
}

This flexibility can help you express a condition more conveniently. The following is the
truth table for the logical negation operator:

4.11.5 Example: Producing Logical-Operator Truth Tables
Figure 4.10 uses logical operators to produce the truth tables discussed in this section. The
output shows each expression that’s evaluated and its bool result. By default, bool values
true and false are displayed by cout and the stream-insertion operator as 1 and 0, respec-
tively, but the format function displays the word “true” or the word “false.” Lines 10–14,
17–21 and 24–26 produce the truth tables for &&, || and !, respectively.

expression !expression

false true

true false

4.11 Logical Operators 91

Precedence and Grouping of the Operators Presented So Far
The following table shows the precedence and grouping of the C++ operators introduced
so far—from top to bottom in decreasing order of precedence:

1 // fig04_10.cpp
2 // Logical operators.
3 #include <iostream>
4 #include <fmt/format.h> // in C++20, this will be #include <format>
5 using namespace std;
6 using namespace fmt; // not needed in C++20
7
8 int main() {
9 // create truth table for && (logical AND) operator

10 cout << "Logical AND (&&)\n"
11 << format("false && false: {}\n", false && false)
12 << format("false && true: {}\n", false && true)
13 << format("true && false: {}\n", true && false)
14 << format("true && true: {}\n\n", true && true);
15
16 // create truth table for || (logical OR) operator
17 cout << "Logical OR (||)\n"
18 << format("false || false: {}\n", false || false)
19 << format("false || true: {}\n", false || true)
20 << format("true || false: {}\n", true || false)
21 << format("true || true: {}\n\n", true || true);
22
23 // create truth table for ! (logical negation) operator
24 cout << "Logical negation (!)\n"
25 << format("!false: {}\n", !false)
26 << format("!true: {}\n", !true);
27 }

Logical AND (&&)
false && false: false
false && true: false
true && false: false
true && true: true

Logical OR (||)
false || false: false
false || true: true
true || false: true
true || true: true

Logical negation (!)
!false: true
!true: false

Fig. 4.10 | Logical operators.

92 Chapter 4 Control Statements, Part 2

4.12 Confusing the Equality (==) and Assignment (=)
Operators
There’s one logic error that C++ programmers, no matter how experienced, tend to make
so frequently that we feel it requires a separate section. That error is accidentally swapping
the operators == (equality) and = (assignment). What makes this so damaging is that it
ordinarily does not cause compilation errors. Statements with these errors tend to compile
correctly and run to completion, often generating incorrect results through runtime logic
errors. Today’s compilers generally can issue warnings when = is used in contexts where ==
is expected (see the end of this section for details on enabling this).

Two aspects of C++ contribute to these problems. One is that any expression that pro-
duces a value can be used in the decision portion of any control statement. If the expres-
sion’s value is zero, it’s treated as false. If the value is nonzero, it’s treated as true. The
second is that assignments produce a value—namely, the value of the variable on the
assignment operator’s left side. For example, suppose we intend to write

if (payCode == 4) { // good
 cout << "You get a bonus!" << "\n";
}

but we accidentally write

if (payCode = 4) { // bad
 cout << "You get a bonus!" << "\n";
}

The first if statement properly awards a bonus to the person whose payCode is equal to 4.
The second one—which contains the error—evaluates the assignment expression in the if
condition to the constant 4. Any nonzero value is true, so this condition always evaluates
as true and the person always receives a bonus regardless of the pay code! Even worse, the
pay code has been modified when it was only supposed to be examined!

Operators Grouping

++ -- static_cast<type>() left to right
++ -- + - ! right to left
* / % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== != left to right
&& left to right
|| left to right
?: right to left
= += -= *= /= %= right to left
, left to right

Err

4.12 Confusing the Equality (==) and Assignment (=) Operators 93

lvalues and rvalues
You can prevent this problem with a simple trick. First, it’s helpful to know what’s allowed
to the left of an assignment operator. Variable names are said to be lvalues (for “left val-
ues”) because they can be used on an assignment operator’s left side. Literals are said to be
rvalues (for “right values”)—they can be used on only an assignment operator’s right side.
You also can use lvalues as rvalues on an assignment’s right side, but not vice versa.

Programmers normally write conditions such as x == 7 with the variable name (an
lvalue) on the left and the literal (an rvalue) on the right. Placing the literal on the left, as
in 7 == x (which is syntactically correct and is sometimes called a “Yoda condition”6),
enables the compiler to issue an error if you accidentally replace the == operator with =.
The compiler treats this as a compilation error because you can’t change a literal’s value.

Using == in Place of =
There’s another equally unpleasant situation. Suppose you want to assign a value to a vari-
able with a simple statement like

x = 1;

but instead write

x == 1;

Here, too, this is not a syntax error. Rather, the compiler simply evaluates the expression.
If x is equal to 1, the condition is true, and the expression evaluates to a nonzero (true)
value. If x is not equal to 1, the condition is false and the expression evaluates to 0. Regard-
less of the expression’s value, there’s no assignment operator, so the value is lost. The value
of x remains unaltered, probably causing an execution-time logic error. Using operator ==
for assignment and using operator = for equality are logic errors. Use your text editor to
search for all occurrences of = in your program and check that you have the correct assign-
ment, relational or equality operator in each place.

Enabling Warnings
Xcode automatically issues a warning when you use = where == is expected. Some compil-
ers require you to enable warnings before they’ll issue warning messages. For GNU g++,
add the -Wall (enable all warnings) flag to your compilation command—see the g++ doc-
umentation for details on enabling subsets of the potential warnings. For Visual C++:

1. In your solution, right-click the project’s name and select Properties.

2. Expand Code Analysis and select General.

3. For Enable Code Analysis on Build, select Yes, then click OK.

6. “Yoda conditions.” Accessed November 19, 2021. https://en.wikipedia.org/wiki/Yoda_con-
ditions.

https://en.wikipedia.org/wiki/Yoda_con-ditions
https://en.wikipedia.org/wiki/Yoda_con-ditions

94 Chapter 4 Control Statements, Part 2

4.13 Objects-Natural Case Study: Using the miniz-cpp
Library to Write and Read ZIP files7
Data compression reduces the size of data—typically to save memory, to save secondary
storage space or to transmit data over the Internet faster by reducing the number of bytes.
Lossless data-compression algorithms compress data in a manner that does not lose infor-
mation—the data can be uncompressed and restored to its original form. Lossy data-com-
pression algorithms permanently discard information. Such algorithms are often used to
compress images, audio and video. For example, when you watch streaming video online,
the video is often compressed ahead of time using a lossy algorithm to minimize the total
bytes transferred over the Internet. Though some of the video data is discarded, a lossy
algorithm compresses the data in a manner such that most people do not notice the
removed information as they watch the video. The video quality is still “pretty good.”

ZIP Files
You’ve probably used ZIP files—if not, you almost certainly will. The ZIP file format8 is
a lossless compression9 format that has been in use for over 30 years. Lossless compression
algorithms use various techniques for compressing data—such as

• replacing duplicate patterns, such as text strings in a document or pixels in an
image, with references to a single copy, and

• replacing a group of image pixels that have the same color with one pixel of that
color and a count (known as “run-length encoding”).

ZIP is used to compress files and directories into a single file, known as an archive file. ZIP
files are often used to distribute software faster over the Internet. Today’s operating sys-
tems typically have built-in support for creating ZIP files and extracting their contents.

Open-Source miniz-cpp Library
Many open-source libraries support programmatic manipulation of ZIP archive files and
other popular archive-file formats, such as TAR, RAR and 7-Zip.10 Figure 4.11 continues
our Objects-Natural presentation by using objects of the open-source miniz-cpp11,12

library’s class zip_file to create and read ZIP files. The miniz-cpp library is a “header-
only library”—it’s defined in header file zip_file.hpp, which you can simply place in the
same folder as this example and include the header in your program (line 5). We provide
the library in the examples folder’s libraries/miniz-cpp subfolder. Header files are dis-
cussed in depth in Chapter 9.

7. This example does not compile in GNU C++.
8. “Zip (file format).” Accessed November 19, 2021. https://en.wikipedia.org/wiki/

Zip_(file_format).
9. “Data compression.” Accessed November 19, 2021. https://en.wikipedia.org/wiki/Data_com-

pression#Lossless.
10. “List of archive formats.” Wikipedia. Wikimedia Foundation, March 19, 2020. https://en.wiki-

pedia.org/wiki/List_of_archive_formats.
11. https://github.com/tfussell/miniz-cpp.
12. The miniz-cpp library provides capabilities nearly identical to the Python standard library’s zipfile

module (https://docs.python.org/3/library/zipfile.html), so the miniz-cpp GitHub repos-
itory refers you to that documentation page for the list of features.

Perf

https://en.wikipedia.org/wiki/Zip_(file_format)
https://en.wikipedia.org/wiki/Zip_(file_format)
https://en.wikipedia.org/wiki/Data_com-pression#Lossless
https://en.wikipedia.org/wiki/Data_com-pression#Lossless
https://en.wiki-pedia.org/wiki/List_of_archive_formats
https://en.wiki-pedia.org/wiki/List_of_archive_formats
https://github.com/tfussell/miniz-cpp
https://docs.python.org/3/library/zipfile.html

4.13 Using the miniz-cpp Library to Write and Read ZIP files 95

Inputting a Line of Text from the User with getline
The getline function call reads all the characters you type until you press Enter:

Here we use getline to read from the user the location and name of a file, and store it in
the string variable zipFileName. Like class string, getline requires the <string>
header and belongs to namespace std.

Creating Sample Content to Write an Individual File in the ZIP File
The following statement creates a lengthy string named content consisting of sentences
from this chapter’s introduction:

We’ll use the miniz-cpp library to write this string as a text file that will be compressed
into a ZIP file. Each string literal in the preceding statement is separated from the next
only by whitespace. The C++ compiler automatically assembles such string literals into a
single string literal, which we use to initialize the string variable content. The following
statement outputs the length of content (632 bytes).

1 // fig04_11.cpp
2 // Using the miniz-cpp header-only library to write and read a ZIP file.
3 #include <iostream>
4 #include <string>
5 #include "zip_file.hpp"
6 using namespace std;
7

Fig. 4.11 | Using the miniz-cpp header-only library to write and read a ZIP file.

8 int main() {
9 cout << "Enter a ZIP file name: ";

10 string zipFileName;
11 getline(cin, zipFileName); // inputs a line of text
12

Enter a ZIP file name: c:\users\useraccount\Documents\test.zip

13 // string literals separated only by whitespace are combined
14 // into a single string by the compiler
15 string content{
16 "This chapter introduces all but one of the remaining control "
17 "statements--the for, do...while, switch, break and continue "
18 "statements. We explore the essentials of counter-controlled "
19 "iteration. We use compound-interest calculations to begin "
20 "investigating the issues of processing monetary amounts. First, "
21 "we discuss the representational errors associated with "
22 "floating-point types. We use a switch statement to count the "
23 "number of A, B, C, D and F grade equivalents in a set of "
24 "numeric grades. We show C++17's enhancements that allow you to "
25 "initialize one or more variables of the same type in the "
26 "headers of if and switch statements."};
27

96 Chapter 4 Control Statements, Part 2

Creating a zip_file Object
The miniz-cpp library’s zip_file class—located in the library’s miniz_cpp namespace—
is used to create a ZIP file. The statement

creates the zip_file object output, which will perform the ZIP operations to create the
archive file.

Creating a File in the zip_file Object and Saving That Object to Disk
Line 33 calls output’s writestr member function, which creates one file ("intro.txt")
in the ZIP archive containing the text in content. Line 34 calls output’s save member
function to store the output object’s contents in the file specified by zipFileName:

ZIP Files Appear to Contain Random Symbols
ZIP is a binary format, so if you open the compressed file in a text editor, you’ll see mostly
gibberish. Below is what the file looks like in the Windows Notepad text editor:

Reading the Contents of the ZIP File
You can locate the ZIP file on your system and extract (decompress) its contents to con-
firm that the ZIP file was written correctly. The miniz-cpp library also supports reading
and processing a ZIP file’s contents programmatically. The following statement creates a
zip_file object named input and initializes it with the name of a ZIP file:

This reads the corresponding ZIP archive’s contents. We can then use the zip_file
object’s member functions to interact with the archived files.

28 cout << "\ncontent.length(): " << content.length();
29

content.length(): 632

30 miniz_cpp::zip_file output; // create zip_file object
31

32 // write content into a text file in output
33 output.writestr("intro.txt", content); // create file in ZIP
34 output.save(zipFileName); // save output to zipFileName
35

36 miniz_cpp::zip_file input{zipFileName}; // load zipFileName
37

4.13 Using the miniz-cpp Library to Write and Read ZIP files 97

Displaying the Name and Contents of the ZIP File
The following statements call input’s get_filename and printdir member functions to
display the ZIP’s file name and a directory listing of the ZIP file’s contents, respectively.

The output shows that the ZIP archive contains the file intro.txt and that the file’s
length is 632, which matches that of the string content we wrote to the file earlier.

Getting and Displaying Information About a Specific File in the ZIP Archive
Line 44 declares and initializes the zip_info object info:

Calling input’s getinfo member function returns a zip_info object (from namespace
miniz_cpp) for the specified file in the archive. Sometimes objects expose data so that you
can access it directly using the object’s name and a dot (.) operator. For example, the
object info contains information about the archive’s intro.txt file, including the file’s
name (info.filename), its uncompressed size (info.file_size) and its compressed size
(info.compress_size):

Note that intro.txt’s compressed size is 360 bytes—43% smaller than the original file.
Compression amounts vary considerably, based on the type of content being compressed.

38 // display input's file name and directory listing
39 cout << "\n\nZIP file's name: " << input.get_filename()
40 << "\n\nZIP file's directory listing:\n";
41 input.printdir();
42

ZIP file's name: c:\users\useraccount\Documents\test.zip

ZIP file's directory listing:
 Length Date Time Name
--------- ---------- ----- ----
 632 11/28/2021 16:48 intro.txt
--------- -------
 632 1 file

43 // display info about the compressed intro.txt file
44 miniz_cpp::zip_info info{input.getinfo("intro.txt")};
45

46 cout << "\nFile name: " << info.filename
47 << "\nOriginal size: " << info.file_size
48 << "\nCompressed size: " << info.compress_size;
49

File name: intro.txt
Original size: 632
Compressed size: 360

98 Chapter 4 Control Statements, Part 2

Extracting "intro.txt" and Displaying Its Original Contents
You can extract the original contents of a compressed file from the ZIP archive. Here we
use the input object’s read member function, passing the zip_info object (info) as an
argument. This returns as a string the contents of the file represented by the object info:

We output extractedContent to show that it matches the original string content that we
“zipped up.” This was indeed a lossless compression:

4.14 C++20 Text Formatting with Field Widths and
Precisions
Section 3.13 introduced C++20’s format function (in header <format>), which provides
powerful new text-formatting capabilities. Figure 4.12 shows how format strings can con-
cisely specify what each value’s format should be. We reimplement the formatting intro-
duced in Fig. 4.4’s compound-interest problem. Figure 4.12 produces the same output as
Fig. 4.4, so we’ll focus exclusively on the format strings in lines 13, 14, 17 and 22.

50 // original file contents
51 string extractedContent{input.read(info)};
52

53 cout << "\n\nOriginal contents of intro.txt:\n"
54 << extractedContent << "\n";
55 }

Original contents of intro.txt:
This chapter introduces all but one of the remaining control statements--the
for, do...while, switch, break and continue statements. We explore the
essentials of counter-controlled iteration. We use compound-interest
calculations to begin investigating the issues of processing monetary
amounts. First, we discuss the representational errors associated with
floating-point types. We use a switch statement to count the number of A, B,
C, D and F grade equivalents in a set of numeric grades. We show C++17's
enhancements that allow you to initialize one or more variables of the same
type in the headers of if and switch statements.

1 // fig04_12.cpp
2 // Compound-interest example with C++20 text formatting.
3 #include <iostream>
4 #include <cmath> // for pow function
5 #include <fmt/format.h> // in C++20, this will be #include <format>
6 using namespace std;
7 using namespace fmt; // not needed in C++20
8
9 int main() {

10 double principal{1000.00}; // initial amount before interest
11 double rate{0.05}; // interest rate
12

Fig. 4.12 | Compound-interest example with C++20 string formatting. (Part 1 of 2.)

20

4.14 C++20 Text Formatting with Field Widths and Precisions 99

Formatting the Principal and Interest Rate
The format calls in lines 13 and 14 each use the placeholder {:>7.2f} to format the values
of principal and rate. A colon (:) in a placeholder introduces a format specifier that
indicates how a corresponding value should be formatted. The format specifier >7.2f is
for a floating-point number (f) that should be right-aligned (>) in a 7-character field width
that has two digits of precision (.2) to the right of the decimal point. Unlike setprecision
and fixed shown earlier, format settings specified in placeholders are not “sticky”—they
apply only to the value that’s inserted into that placeholder.

The value of principal (1000.00) requires exactly seven characters to display, so no
spaces are required to fill out the field width. The value of rate (0.05) requires only four
total character positions, so it will be right-aligned in the field of seven characters and filled
from the left with leading spaces, as in

Numeric values are right-aligned by default, so the > is not required here. You can left-
align numeric values in a field width via <.

13 cout << format("Initial principal: {:>7.2f}\n", principal)
14 << format(" Interest rate: {:>7.2f}\n", rate);
15
16 // display headers
17 cout << format("\n{}{:>20}\n", "Year", "Amount on deposit");
18
19 // calculate amount on deposit for each of ten years
20 for (int year{1}; year <= 10; ++year) {
21 double amount = principal * pow(1.0 + rate, year);
22 cout << format("{:>4d}{:>20.2f}\n", year, amount);
23 }
24 }

Initial principal: 1000.00
 Interest rate: 0.05

Year Amount on deposit
 1 1050.00
 2 1102.50
 3 1157.63
 4 1215.51
 5 1276.28
 6 1340.10
 7 1407.10
 8 1477.46
 9 1551.33
 10 1628.89

Fig. 4.12 | Compound-interest example with C++20 string formatting. (Part 2 of 2.)

.0 50

field width 7

two digits for precisionleading spaces
decimal point

100 Chapter 4 Control Statements, Part 2

Formatting the Year and Amount-on-Deposit Column Heads
In line 17’s format string

"\n{}{:>20}\n"

the string "Year" is simply placed at the position of the first placeholder, which does not
contain a format specifier. The second placeholder indicates that "Amount on Deposit" (17
characters) should be right-aligned (>) in a field of 20 characters—format inserts three
leading spaces to right-align the string. Strings are left-aligned by default, so the > is
required here to force right-alignment.

Formatting the Year and Amount-on-Deposit Values in the for Loop
The format string in line 22

"{:>4d}{:>20.2f}\n"

uses two placeholders to format the loop’s output. The placeholder {:>4d} indicates that
year’s value should be formatted as an integer (d means decimal integer) right-aligned (>)
in a field of width 4. This right-aligns all the year values under the "Year" column.

The placeholder {:>20.2f} formats amount’s value as a floating-point number (f)
right-aligned (>) in a field width of 20 with a decimal point and two digits to the right of
the decimal point (.2). Formatting the amounts this way aligns their decimal points verti-
cally, as is typical with monetary amounts. The field width of 20 right-aligns the amounts
under "Amount on Deposit".

4.15 Wrap-Up
In this chapter, we completed our introduction to all but one of C++’s control statements,
which enable you to control the flow of execution in functions. Chapter 3 discussed if,
if…else and while. Chapter 4 demonstrated for, do…while and switch. We showed
C++17’s enhancements that allow you to initialize a variable in the header of an if and
switch statement. You used the break statement to exit a switch statement and to termi-
nate a loop immediately. You used a continue statement to terminate a loop’s current iter-
ation and proceed with the loop’s next iteration. We introduced C++’s logical operators,
which enable you to use more complex conditional expressions in control statements.

In the Objects-Natural case study, we used the miniz-cpp open-source library to cre-
ate and read compressed ZIP archive files. Finally, we introduced more of C++20’s pow-
erful and expressive text-formatting features. In Chapter 5, you’ll create your own custom
functions.

This page intentionally left blank

Symbols
 836
, (comma operator) 75
: in inheritance 345
:: (scope resolution operator)

133, 287, 321
! (logical negation) 88, 90
!= (inequality operator) 31,

32
?: (ternary conditional opera-

tor) 47, 145
. (member selection opera-

tor) 291, 292
' (digit separator, C++14) 63
'\0' (null character) 216
'\n' (newline character) 216
[] (operator for map) 541
[] (regex character class) 262
[&] (lambda introducer, cap-

ture by reference) 562
[=] (lambda introducer, cap-

ture by value) 562
{n,} (quantifier in regex)

264
{n,m} (quantifier in regex)

264
* (multiplication operator)

30
* (pointer dereference or indi-

rection operator) 193, 194
* (quantifier in regex) 263
*= (multiplication assign-

ment operator) 57
/ (division operator) 30
/* */ (multiline comment)

23
// (single-line comment) 23
/= (division assignment oper-

ator) 57

\ (regex metacharacter) 261
\' (single-quote-character es-

cape sequence) 25
\" (double-quote-character

escape sequence) 25
\\ (backslash-character es-

cape sequence) 25
\a (alert escape sequence) 25
\D (regex character class) 262
\d (regex character class) 262,

262
\n (newline escape sequence)

25
\r (carriage-return escape se-

quence) 25
\S (regex character class) 262
\s (regex character class) 262
\t (tab escape sequence) 25
\W (regex character class) 262
\w (regex character class) 262
& (address operator) 193, 194
& (to declare reference) 129
&& (logical AND operator)

88, 89, 145
&= (bitwise AND assignment

operator) 548
% (remainder operator) 30
%= (remainder assignment op-

erator) 57
^ (regex metacharacter) 263
^= (bitwise exclusive OR as-

signment operator) 549
+ (addition operator) 29, 30
+ (quantifier in regex) 263
-- (postfix decrement opera-

tor) 58
++ (postfix increment opera-

tor) 58
on an iterator 513

-- (prefix decrement opera-
tor) 58

++ (prefix increment opera-
tor) 58
on an iterator 513

+= (addition assignment oper-
ator) 57
string concatenation 224

< (less-than operator) 31
<< (stream insertion operator)

24, 30
<= (less-than-or-equal-to op-

erator) 31
<=> (three-way comparison

operator) 418, 459, 460,
511

= (assignment operator) 29,
30, 304, 424, 513

-= (subtraction assignment
operator) 57

= 0 (pure specifier for a pure
virtual function) 363

== (equality operator) 31, 32
-> (arrow member selection)

291
> (greater-than operator) 31
-> (in a compound C++20

concept requirement) 656
>= (greater-than-or-equal-to

operator) 31
>> (stream extraction opera-

tor) 29
| (operator in a C++20 range

pipeline) 178
|= (bitwise inclusive OR as-

signment operator) 548
|| (logical OR operator) 88,

89, 145

Index

862 Index

A
abbreviated function template

(C++20) 137, 634, 634,
650, 651, 662
constrained auto 650

abort standard library func-
tion 299, 480, 489

absolute value 104
abstract class 362, 363, 374

Employee 364
pure 363

access a global variable 133
access function 292
access non-static class data

members and member
functions 324

access privileges 202, 204
access shared data 783
access specifier 274, 275, 313

private 274
public 274

access the caller’s data 129
access violation 508
accounts-receivable system 240
accumulate algorithm 174,

596, 605, 608, 621
acquire

a lock 787
a semaphore 827

acquire member function of
std::binary_sema-

phore 829, 830
action expression in the UML

41
action state in the UML 41

symbol 41
activity diagram in the UML

41, 47
activity in the UML 41
ad-hoc constraint (C++20

concepts) 656
adapter 543
add an integer to a pointer 208
adding strings 38
addition 30, 31

compound assignment op-
erator, += 57

address operator (&) 193,
194, 195, 424

adjacent_difference al-
gorithm 621

adjacent_find algorithm
620

ADL (argument-dependent
lookup) 637

advance function 652
aggregate initialization 673
aggregate type 324, 328, 670

designated initializer 325
aggregation 308
aiming a derived-class pointer

at a base-class object 355
air-traffic-control systems xxi
alert escape sequence ('\a')

25
algebraic expression 30
<algorithm> header 112,

444, 452, 501, 523, 556
algorithms (standard library)

507, 518
accumulate 174, 596,

605
binary_search 168
copy_backward 585
for manipulating contain-

ers 103
for_each 455
gcd 596, 596
iota 596, 597
is_sorted 501
iter_swap 582, 583
lcm 596, 597
max 281, 594, 594
min 594, 594
minmax 594, 595
multipass 515
partial_sum 596, 598
reduce 596, 597
separated from container

558
sort 168, 759
specialized memory 621
swap 582, 583
swap_ranges 582

alias 131
declaration (using) 394
for a type 394, 680
for the name of an object

302
all

algorithm 548
range adaptor (C++20) 612

all_of algorithm 620
ranges version (C++20)

578, 580
allocate memory 112, 425,

425, 427
allocator_type 510
alphanumeric character 262
ambiguity problem 399, 401
angle brackets (< and >) 137

in templates 630
anonymous function 176,

560
any algorithm 548
<any> header 113
any_of algorithm 581, 620

ranges version (C++20)
578, 581

append 224
append data to a file 241
Apple

Xcode xxv, xliii
arbitrary precision integers

BigNumber class 61
archive file 94
argument coercion 109
argument-dependent lookup

(ADL) 637
arguments in correct order

107
arguments passed to member-

object constructors 308
arithmetic

compound assignment op-
erators 57

function object 604
operator xxvi, 30
overflow 492
underflow 492

“arity” of an operator 424

Index 863

array
built-in 199
C style 190
pointer based 190

array class template 154,
482, 508
bounds checking 156,

157, 157
container xxvi
multidimensional 170

<array> header 111, 155,
169
to_array function

(C++20) 191, 201
array names decay to pointers

199
array subscript operator ([])

436
arrow member selection oper-

ator (->) 291, 292, 316
as_const function (C++17)

676
ASCII (American Standard

Code for Information In-
terchange) character set 85,
216

assert

contract keyword 497
macro 483, 495
macro to disable assertions

483
assertion 483
assign

addresses of base-class and
derived-class objects to
base-class and derived-
class pointers 352

class objects 305
one iterator to another

517
assign member function

list 530
string 224

assignment operator 57, 304,
424, 513
*= 57
/= 57

assignment operator (cont.)
%= 57
+= 57
-= 57
= 29
default 304

assignment statement 29
associative container 516,

533, 535
insert function 534, 538
map 533
multimap 533
multiset 533
ordered 508, 509, 533
set 533
unordered 508, 509, 511,

533
unordered_map 533
unordered_multimap 533
unordered_multiset

533
unordered_set 533

associative container member
functions
contains 535
count 534, 540
equal_range 536
extract member func-

tion (C++17) 512
find 535
insert 536, 540
lower_bound 536
merge member function

(C++17) 533
upper_bound 536

associativity of operators 31
asterisk (*) 30
asynchronous

concurrent threads 782
event 481
programming 103
task 836, 849
task completes 834

at member function 524
array 157, 495
string 224, 422
vector 184, 495

<atomic> header 816
atomic operation 784
atomic pointer 819
atomic types 816

std::atomic class tem-
plate 817

std::atomic_ref class
template (C++20) 817,
820

thread safety 757
atomic_ref class template

(C++20) 817, 820
attribute

[[fallthrough]] 83
in the UML 19
of a class 18
of an object 19

audit

contract level 498
level precondition 502

auto keyword 172, 521
automatically destroyed 126
average calculation 48, 49, 50
avoid

naming conflicts 315
protected data 406
repeating code 297

await_ready function of an
awaitable object (corou-
tines) 855

await_resume function of
an awaitable object (corou-
tines) 855

await_suspend function of
an awaitable object (corou-
tines) 855

awaitable object (coroutines)
849, 855
await_ready function

855
await_resume function

855
await_suspend function

855
axiom contract level 498

864 Index

B
back member function

queue 545
sequence containers 524
span class template

(C++20) 214
vector 257

back_inserter function
template 571, 589

background_executor
(concurrencpp) 845

backslash
\ 25
escape sequence, \\ 25

bad data 253, 254
bad_alloc exception 425,

487, 491
bad_cast exception 491
bad_typeid exception 491
Bancila, Marius

blog xxxv
banking systems xxi
bar chart 164

printing program 164
bar of asterisks 164
barrier (C++20) 820, 823
<barrier> header (C++20)

113, 823
base case(s) 140, 144, 146
base class 336, 341

catch 492
default constructor 350
destructor (protected

and non-virtual) 377
destructor (public and
virtual) 377

exception 491
initializer 345
pointer to a base-class ob-

ject 352
pointer to a derived-class

object 352
private member 405
subobject 402

base e 104
base-10 number system 104

basic exception safety guaran-
tee 476

basic searching and sorting al-
gorithms of the standard li-
brary 578

basic_ios class 402
basic_iostream class 402
basic_istream class 402
basic_ostream class 402
begin

function 169, 200
header <array> 169
member function of con-

tainers 512
member function of first-

class containers 513
beginning

of a file 244
of a stream 245

behavior
of a class 18

bell 25
bidirectional iterator 515,

516, 526, 533, 537, 539,
664
operations 517

bidirectional_iterator
concept (C++20) 559, 587

bidirectional_range con-
cept (C++20) 559, 585,
587, 588, 589

big data 222, 250
Big Four C++20 features 628
Big O notation 549, 551
BigNumber class 61

pow member function 64
binary function 605

object 605
binary left fold 685, 686, 689
binary operator 29, 30, 90
binary predicate function

528, 567, 580, 586, 589,
592

binary right fold 686, 689
binary search 500

algorithm 551

binary search (cont.)
binary_search standard

library algorithm 168,
170, 620

binary_search standard
library algorithm ranges
version (C++20) 580

binary tree 508
binary_semaphore (C++20)

827
<bit> header 113
bit manipulation 547
Bitcoin 809
bitset 509, 547
<bitset> header 111
bitwise

assignment operators 548
left-shift operator (<<) 416
operators xxxi
right-shift operator (>>)

416
block 34, 46, 124, 125

of memory 531
scope 124
thread until a lock is re-

leased 787
blockchain 809
blocked thread state 769
blogs

Bancila, Marius xxxv
Boccara, Jonathan xxxv
Filipek, Bartlomiej xxxv
Grimm, Rainer xxxv
Microsoft’s C++ Team xxxv
O’Dwyer, Arthur xxxv
Sutter’s Mill xxxv

Boccara, Jonathan
blog xxxv

body
function 24
if statement 32

Bohm, C. 40
bool

contextual conversion 439
data type 44

boolalpha stream manipula-
tor 37

Index 865

Boolean 44
Boolean values in JSON 326
Boost C++ libraries xxiv
Boost.Log logging library 494
Boost.Multiprecision li-

brary (precise floating-
point calculations) 75

born thread state 768
bounds checking 157
braced 443
braced initializer 27, 426

list 443
list as constructor argu-

ment 443
list for custom classes 443
narrowing conversion 109

braces ({}) 24, 34, 46
not required 83

break statement 83, 86
brittle

base-class problem 406
software 406

broadcast operations 440
buffer 777
buffer overflow 158
build level (contracts) 502
built-in array xxvii, 190, 199

C
C xxxiv
C-like pointer-based array

509
C-string xxvii, 190, 216
C-style arrays 190
C-style string 190
C++

code repositories xxxiv
Language Reference xxxv
open-source community

xxxiv
C++ Core Guidelines xxiii,

xxxi, 746
explicit single-parame-

ter construtor 277
Guidelines Support Li-

brary 110
override 361

C++ documentation xxxiv
C++ How to Program, Elev-

enth Edition xxxvii
C++ language documentation

(Microsoft) xxxv
C++ preprocessor 23
C++ standard library xxiv, 22,

103
array class template 154
container 154
exception types 491
headers 111
string class 35, 273
<string> header 37
vector class template 181

C++ Standards Committee
xxxv

C++11 xxi
auto keyword 172
braced initialization 27
braced initializers as con-

structor arguments 443
cend container member

function 522
crbegin container mem-

ber function 522
crend container member

function 522
<cstdint> header 207
default special member

function 361, 444
default type arguments for

function template type
parameters 678

delegating constructor
298

fixed-size integer types
207

in-class initializer 285
launch enum 814
list initialization 541
noexcept 448
nullptr constant 192
override 358, 361
<random> header 113
<regex> header 261, 265

C++11 (cont.)
scoped enumeration (enum
class) 120

shrink_to_fit contain-
er member function for
vector and deque 522

specifying an enum’s inte-
gral type 123

static_assert declara-
tion 659

std::async function
template 808, 814

std::begin function 200
std::call_once 816
std::condition_vari-

able class 787
std::condition_vari-

able_any class 805
std::end function 200
std::forward_list

class template 508
std::future class tem-

plate 814
std::iota algorithm 621
std::lock_guard class

791
std::minmax algorithm

594, 595
std::move function 438,

439
std::mutex class 787,

788
std::once_flag 816
std::packaged_task

function template 815
std::promise 814
std::random_device

random-number source
118, 123

std::shared_future
class template 815

std::shared_lock class
804

std::shared_mutex
class 804

std::shared_ptr class
template 428

866 Index

C++11 (cont.)
std::this_thread::

get_id function 772
std::this_thread::

sleep_for function
773

std::this_thread::

sleep_until function
773

std::thread 771
std::to_string func-

tion 235
std::unique_lock class

788, 789
std::unique_ptr class

template 428, 430
std::unordered_mul-

timap class template
509

std::unordered_mul-

tiset class template
509

std::unordered_set
class template 509

std::weak_ptr class
template 428

stod function 235
stof function 235
stoi function 235
stol function 235
stold function 235
stoll function 235
stoul function 235
stoull function 235
thread_local storage

class 758
<tuple> header 111
variadic template 679

C++14 xxi
digit separator ' 63
generic lambdas 176
heterogeneous lookup (as-

sociative containers)
537

std::make_unique func-
tion template 428, 430

C++14 (cont.)
std::quoted stream ma-

nipulator 246
string-object literal 420
variable template 678

C++17 xxi
<chrono> header 761
class template argument

deduction (CTAD) 158
constexpr if 699
contiguous iterator 515
<execution> header 762
execution policy 762, 763
extract member func-

tion of associative con-
tainers 512

[[fallthrough]] attri-
bute 83

<filesystem> header
241

fold expression 628, 682
merge member function

of associative containers
533

std::as_const function
676

std::exclusive_scan
parallel algorithm 766

std::execution::par
execution policy 762,
763

std::execution::

par_unseq execution
policy 763

std::execution::par-

allel_policy class
763

std::execution::par-

allel_sequenced_

policy class 763
std::execution::seq

execution policy 763
std::execution::se-

quenced_policy class
763

C++17 (cont.)
std::execution::un-

seq execution policy
763

std::execution::un-

sequenced_policy
class 763

std::filesys-

tem::path 241
std::for_each_n paral-

lel algorithm 766
std::inclusive_scan

parallel algorithm 766
std::optional class

template 191
std::reduce parallel al-

gorithm 766
std::scoped_lock class

791
std::string_view 190,

236, 274
std::transform_ex-

clusive_scan parallel
algorithm 766

std::transform_in-

clusive_scan parallel
algorithm 766

std::trans-

form_reduce parallel
algorithm 766

<string_view> header
236

structured binding 595
unpack elements via struc-

tured binding 577
C++20 xxi

abbreviated function tem-
plate 634, 634

ad-hoc constraint in con-
cepts 656

<barrier> header 823
bidirectional_itera-

tor concept 587
bidirectional_range

concept 585, 587, 588,
589

“big four” features 628

Index 867

C++20 (cont.)
C++ standard document

xxxv
co_await operator

(coroutines) 834
co_return statement

(coroutines) 834, 848
co_yield expression

(coroutines) 834, 837,
839

<compare> header 460
concept keyword 648
concepts 411, 556, 558,

636, 640, 652
concepts by header 642
<concepts> header 641
conjunction in a con-

straint or concept 642
consteval function 699
constrained auto 650
constraint expression in a

concept 640, 648
constraint in concepts

640, 641
contiguous_iterator

concept 564
contracts (pushed to a later

standard) 496
coroutine 834
disjunction in a constraint

or concept 642
ends_with member func-

tion of class string 38
forward_iterator con-

cept 569, 576
forward_range concept

569, 571, 576, 580,
586, 593

indirectly_copyable
concept 561

indirectly_readable
concept 561

indirectly_swappable
concept 583

indirectly_writable
concept 561, 572

C++20 (cont.)
input_iterator concept

570, 587
input_or_output_it-

erator concept 565
input_range concept

561, 566, 567, 568,
570, 572, 573, 574,
575, 577, 578, 579,
580, 581, 582, 583,
584, 586, 587, 589,
590, 591, 592, 595

iterator concepts 559
<latch> header 820
output_iterator con-

cept 564
output_range concept

564
permutable concept 575
projection in a ranges algo-

rithm 567
projection in std::rang-
es algorithms 608

random_access_itera-

tor concept 575, 579,
600

random_access_range
concept 575, 579

range 177, 507
range adaptor 611
range concepts 559
<ranges> header 177
ranges library 177, 253
requires clause 640
requires expression 654
<semaphore> header 827
sentinel of a range 525
standard concepts by

header 642
std::all_of algorithm

(ranges) 578, 580
std::any_of algorithm

(ranges) 578, 581
std::atomic_ref class

template 817, 820
std::barrier 820, 823

C++20 (cont.)
std::binary_search al-

gorithm (ranges) 578,
580

std::binary_sema-

phore 827
std::copy algorithm

(ranges) 525, 560
std::copy_backward al-

gorithm (ranges) 584,
585

std::copy_if algorithm
(ranges) 584, 587

std::copy_n algorithm
(ranges) 584, 587

std::count algorithm
(ranges) 574, 575, 577

std::count_if algo-
rithm (ranges) 574

std::counting_sema-

phore 827
std::equal algorithm

(ranges) 566, 566
std::equal_range algo-

rithm (ranges) 592
std::fill algorithm

(ranges) 563, 564
std::fill_n algorithm

(ranges) 563, 564
std::find algorithm

(ranges) 578
std::find_if algorithm

(ranges) 578, 579
std::find_if_not algo-

rithm (ranges) 578, 582
std::for_each algo-

rithm (ranges) 561
std::format function

from header <format>
65, 98

std::generate algo-
rithm (ranges) 563, 564

std::generate_n algo-
rithm (ranges) 563,
565, 565

std::includes algo-
rithm (ranges) 589, 590

868 Index

C++20 (cont.)
std::inplace_merge al-

gorithm (ranges) 588
std::jthread 771, 776
std::latch 820, 820,

821
std::lexicographi-

cal_compare algo-
rithm (ranges) 566, 568

std::lower_bound algo-
rithm (ranges) 592, 593

std::make_heap algo-
rithm (ranges) 600

std::max_element algo-
rithm (ranges) 574, 576

std::merge algorithm
(ranges) 584, 586

std::min_element algo-
rithm (ranges) 574, 576

std::minmax algorithm
(ranges) 595

std::minmax_element
algorithm (ranges) 574,
576

std::mismatch algo-
rithm (ranges) 566, 567

std::move algorithm
(ranges) 586

std::move_backward al-
gorithm (ranges) 586

std::none_of algorithm
(ranges) 578, 581

std::pop_heap algo-
rithm (ranges) 602

std::push_heap algo-
rithm (ranges) 601

std::ranges namespace
525, 560, 561, 563,
566, 568, 572, 574,
578, 582, 584, 588,
589, 592, 594, 599

std::remove algorithm
(ranges) 568, 569

std::remove_copy algo-
rithm (ranges) 568, 570

C++20 (cont.)
std::remove_copy_if

algorithm (ranges) 568,
572

std::remove_if algo-
rithm (ranges) 568, 571

std::replace algorithm
(ranges) 572, 572

std::replace_copy al-
gorithm (ranges) 572,
573

std::replace_copy_if
algorithm (ranges) 572,
574

std::replace_if algo-
rithm (ranges) 572, 573

std::reverse algorithm
(ranges) 584, 587

std::reverse_copy al-
gorithm (ranges) 588,
589

std::same_as concept
649

std::set_difference
algorithm (ranges) 589,
591

std::set_intersec-

tion algorithm (ranges)
589, 591

std::set_symmetric_-

difference algorithm
(ranges) 589, 591

std::set_union algo-
rithm (ranges) 592

std::shuffle algorithm
(ranges) 574, 575

std::sort algorithm
(ranges) 578, 579, 609

std::sort_heap algo-
rithm (ranges) 601

std::span class template
of header 191,
210

std::starts_with
member function of
class string 38

C++20 (cont.)
std::stop_callback for

cooperative cancellation
808

std::stop_source for
cooperative cancellation
807

std::stop_token for co-
operative cancellation
807

std::swap_ranges algo-
rithm (ranges) 583, 584

std::to_array function
of header <array> 191,
201

std::transform algo-
rithm (ranges) 574

std::unique algorithm
(ranges) 584, 586

std::unique_copy algo-
rithm (ranges) 588, 589

std::upper_bound algo-
rithm (ranges) 592, 593

<stop_token> header
805

templated lambda 636
three-way comparison op-

erator (<=>) 460, 511
view 177, 507, 611
viewable_range 611
weakly_incrementable

concept 561
C++20 for Programmers

code download xliii
C++20 Fundamentals Live-

Lessons videos xxxvii
C++20 modules xxiii

transition from the pre-
processor 712

C++20 ranges
| operator in a range pipe-

line 178
pipeline 178
std::views::filter

178, 179
std::views::iota 178

Index 869

C++23 xxi, 411
concurrent map 831
concurrent queue 830
contracts (could be later

than C++23) 496
modular standard library

746
ranges enhancements 622
std::mdarray container

173
C++26 411
Caesar cipher 148
calculations 41
callback function 834
calling functions by reference

195
camel case 28
capacity

of a string 227
of a vector 519

capacity member function
of string 228
of vector 519

capturing variables in a lamb-
da 257, 456

caret (^) regex metacharacter
263

carriage return ('\r') escape
sequence 25

cascading
member function calls

316, 317, 319
stream insertion opera-

tions 30
case insensitive 266

regular expression 261
case keyword 83
case sensitive 28, 266

regular expression 261
case studies xxv
casino 119
<cassert> header 112, 483
cast operator 52, 210, 463

cast away const-ness 670
overloaded 454

catch block 185

catch exceptions in construc-
tors 484

catch handler 476, 480
all exceptions with
catch(...) 492, 493

base-class exception 492
catch related errors 492
catch(...) (catch all excep-

tions) 492, 493
cbegin

member function of con-
tainers 512

member function of vec-
tor 521

<cctype> header 112
ceil function 104
cend

member function of con-
tainers 512

member function of vec-
tor 522

cereal header-only library
251, 327
JSONInputArchive 331
JSONOutputArchive 329

cerr (standard error stream)
239

<cfloat> header 112
chain of constructor calls 349
chain of destructor calls 350
chaining stream insertion op-

erations 30
char data type 28, 110
character array 216
character class (regular expres-

sions) 261, 262
custom 262

character constant 216
character literal 85, 85
character presentation 112
character sequence 246, 274
character string 24
<chrono> header 111, 284,

761
duration_cast 761
steady_clock 761

cin (standard input stream)
29, 239, 242

cipher
Caesar 148
substitution 148
Vigenère 148, 149, 150

ciphertext 148
circular buffer 795
circular wait (necessary condi-

tion for deadlock) 770
clamp algorithm 621
Clang C++ xxiii, xliii, 4

clang++ in a Docker con-
tainer 4

clang-tidy static analysis
tools xxxii, xlviii

class 18
class keyword 137, 273,

273, 630
constructor 275
data member 19
default constructor 278
development 430
diagram in the UML 340
hierarchy 339, 362
implementation program-

mer 290
interface 284
interface described by

function prototypes
107

invariant 295, 495
public services 284

class-average problem 48, 51
class scope 124, 287, 291

static class member 320
class template 155, 409, 627,

629
definition 629
member-function tem-

plates 631
scope 634
specialization 629, 630
Stack 630, 632

870 Index

class template argument de-
duction (CTAD) 158,
181, 523, 537, 568, 673,
676

class template specialization
155

classes
array class template 154
bitset 509, 547
deque 518, 531
exception 491
forward_list 518
invalid_argument 492
list 518, 526
multimap 539
MyArray 432
numeric_limits 63
out_of_range exception

class 185
priority_queue 546,

599, 600, 601
queue 545
runtime_error 472, 480
set 537
stack 543
steady_clock 761
string 35, 273
system_clock 761
tuple 679
unique_ptr 428
vector 180

cleaning data 260
clear member function of

containers 512, 526
client

code 351
of a class 279

client-code programmer 290
<climits> header 112
clog (standard error buff-

ered) 239
close member function of
ofstream 243

closed set of types 391
cloud 326
cloud-based services 326
cmatch 265

<cmath> header 77, 103, 111
isnan function 256
list of functions 104, 105
mathematical special func-

tions 105
co_await expression

(C++20) 849
co_await operator (C++20)

834
co_return statement

(C++20) 834, 848
co_yield expression

(C++20) 834, 837, 839
code 19
code download xliii
code repositories xxxiv
Coffman, E. G. 770
coin tossing 114
collision in a hashtable 552
colon (:) 399

in inheritance 345
column 170
column headings 157
combining control statements

in two ways 92
comma (,) 75
comma operator (,) 75, 145,

690
comma-separated list 27, 34,

75
of base classes 399
of parameters 107

command-line argument 217
Command Prompt window 6
comment 23, 28

multiline 23
single-line 23

CommissionEmployee class
header 369
implementation file 369
test program 343

common programming errors
xxiii

common range 524, 557, 560
common range adaptor

(C++20) 612
communications systems xxi

CommunityMember class hier-
archy 339

commutative operators 459
comparator function object

533, 539
less 533, 546

<compare> header 113, 460
compare iterators 517
compare member function of

class string 226
comparing strings 225
compilation error 57
compile 679
compile a header as a header

unit 714
compile time

calculations 628
compile-time

constant 679
polymorphism 408, 410,

513, 628, 629
predicate 640
programs that write code

628
recursion 682, 683
static polymorphism 628

compiler 23, 53
Apple Xcode xliii
Clang C++ xxiii
g++ 11
GNU C++ xxiii, xliii
GNU g++ 4
Microsoft Visual Studio

xliii
Visual C++ xxii
Visual Studio Community

edition 4
Xcode on macOS 4

Compiler Explorer xxxix
website (godbolt.org)

498
-pthread compiler flag 771
compiler warnings

enable 93
completion function 823,

826
barriers 823

http://godbolt.org

Index 871

component 18
composable 177
composable views 177, 611
composition 308, 311, 337,

341
compound assignment opera-

tors 57, 59
compound interest 75
compound requirement in

C++20 concepts 654, 655
-> 656

compound statement 34
compression

run-length encoding 94
computing the sum of the el-

ements of an array 163,
174

concatenate 224
stream insertion opera-

tions 30
concept-based overloading

(C++20) 411, 652, 659,
693, 699
concept overloading 411

concept keyword (C++20)
648

concepts (C++20) 411, 558,
636, 640, 652
-> in a compound require-

ment 656
ad-hoc constraint 656
bidirectional_itera-

tor 559, 587
bidirectional_range

559, 585, 587, 588,
589

compound requirement
654, 655

concept keyword 648
conjunction 642
constraint 640, 641
constraint expression 640,

648
contiguous_iterator

559, 564
contiguous_range 559
custom 648

concepts (C++20) (cont.)
disjunction 642
forward_iterator 559,

569, 576
forward_range 559,

569, 571, 576, 580,
586, 593

indirectly_copyable
561

indirectly_readable
561

indirectly_swappable
583

indirectly_writable
561, 572

input_iterator 559,
570, 587, 653

input_or_output_it-

erator 565
input_range 559, 561,

566, 567, 568, 570,
572, 573, 574, 575,
577, 578, 579, 580,
581, 582, 583, 584,
586, 587, 589, 590,
591, 592, 595

iterators 559
listed by header 642
logical AND (&&) operator

in a constraint 642
logical OR (||) operator

in a constraint 642
nested requirement 654,

656
output_iterator 559,

564
output_range 559, 564
permutable 575
random_access_itera-

tor 559, 569, 570,
575, 579, 600, 653

random_access_range
559, 575, 579, 600,
601, 602

ranges 559
requires clause 640
requires expression 654

concepts (C++20) (cont.)
simple requirement 654,

654
standard 640
std::floating_point

641, 648
std::integral 641, 648
std::same_as 649
type requirement 654,

655
weakly_incrementable

561
<concepts> header (C++20)

113, 641
concrete class 362
concrete derived class 365
concurrencpp coroutine

support library 836
background_executor

845
executor 836
inline_executor 845,

845
install 837
result 841
runtime 841, 843
submit function of an ex-

ecutor 844
task 836, 841
thread_executor 844
thread_pool_executor

841, 844, 844
timer 836
utility functions 836
when_all function 848
when_any function 849
worker_thread_execu-

tor 845
concurrent container

Google Concurrency Li-
brary (GCL) 830

Microsoft Parallel Patterns
Library 830

concurrent map (C++23) 831
reference implementation

831
concurrent operations 756

872 Index

concurrent programming
103, 757
with a simple sequential-

like coding style 834
concurrent queue (C++23)

830
reference implementations

830
concurrent threads 783
condition 31, 47, 79

Yoda 93
condition variable 789
condition_variable

wait function 789
condition_variable class

787
<condition_variable>

header (C++11) 112, 787
condition_variable_any

class 805
conditional expression 47
conditional operator, ?: 47
confusing equality (==) and

assignment (=) operators
92

conjunction in a C++20 con-
straint or concept 642

const 306
keyword 115
member function 274,

306
member function on a

non-const object 307
objects and member func-

tions 307
qualifier 162
qualifier before type speci-

fier in parameter decla-
ration 131

version of operator[]
453

const_cast

cast away const-ness 670
const_iterator 510, 512,

516, 535
const_pointer 510
const_reference 510

const_reverse_iterator
510, 512, 516, 522

constant
compile-time 679

constant integral expression
85

constant pointer
to an integer constant 204
to constant data 202, 204,

205
to nonconstant data 202,

204
constant running time 550
constant variable 162
consteval function

(C++20) 699
constexpr function 699
constexpr if (C++17) 699
constexpr qualifier 162,

162
constrained auto (C++20)

650
constraint 640, 648
constraint (C++20 concepts)

640, 641
constraint expression (C++20

concepts) 640, 648
constructor 275, 278

braced-initializer list 443
call chain 349
conversion 462, 464
copy 446
default arguments 296
exception handling 483
explicit 464
function prototype 285
in a class hierarchy 349
injection 386
multiple parameters 280
single argument 464, 465

constructors and destructors
called automatically 298

consumer 757, 776
thread 777

container 103, 111, 436,
506, 508
begin function 512

container (cont.)
cbegin function 512
cend function 512
clear function 512
crbegin function 512
crend function 512
empty function 512
end function 512
erase function 512
insert function 513
map associative container

533
map class template 509
max_size function 513
multimap associative con-

tainer 533
multimap class template

509
multiset associative con-

tainer 533
multiset class template

509
nested type names 672
priority_queue class

template 509
queue class template 509
rbegin function 512
rend function 512
sequence 508
set associative container

533
set class template 509
size function 513
special member functions

511
stack class template 509
swap function 513
unordered_map associa-

tive container 533
unordered_multimap as-

sociative container 533
unordered_multiset as-

sociative container 533
unordered_set associa-

tive container 533
container (Docker) xxxiv, xlv

Index 873

container adaptor 508, 509,
509, 516, 543, 543
priority_queue 546,

599, 600, 601
queue 545
stack 543

container adaptor functions
pop 543
push 543

container in the C++ standard
library 154

container member function
complete list 510

contains function of asso-
ciative container 535

contextual conversion 454,
466

contextual conversion to
bool 439

contiguous iterator (C++17)
515, 558

contiguous_iterator con-
cept (C++20) 559, 564

contiguous_range concept
(C++20) 559

continuation mode (for con-
tract violations) 500

continue statement 86, 87
contract 495, 496

assert contract keyword
497

attributes 497
audit contract level 498
axiom contract level 498
build level 502
continuation mode 500
contract_violation

502
default contract level

498
default violation handler

500
design by contract 496
disable contract checking

500
early access implementa-

tions (GNU C++) 498

contract (cont.)
ensures contract key-

word 497, 498
expects contract key-

word 497, 498
experimental implementa-

tion 471
handle_contract_vio-

lation default contract
violation handler 500

level 498, 502, 503
post contract keyword

(GNU C++ early access
implementation) 499

pre contract keyword
(GNU C++ early access
implementation) 499

proposal 497
violation 500, 502
violation handler 503

contract_violation object
502

control statement xxvi, 41, 43
do...while 78, 79
for 42, 71, 72, 75, 77
if 31
nesting 43
stacking 43
switch 80
while 47, 70

control variable 70, 71, 72
controlling expression of a
switch 83

converge on the base case 146
conversion, contextual con-

version to bool 439
conversion constructor 418,

462, 464
conversion operator 418,

454, 463
explicit 465

convert among user-defined
types and built-in types 463

convert between types 462
convert lowercase letters 112
convert strings to floating-

point types 235

convert strings to integral
types 235

cooperative 805
cooperative cancellation 776,

805, 807
std::stop_callback

808
std::stop_source 807
std::stop_token 807

cooperative multitasking 835
cooperative thread cancella-

tion 805
coordination types (thread

synchronization) 820
copy 472
copy algorithm 441, 444,

523, 620
ranges version (C++20)

525, 560
copy-and-swap idiom 447,

459
strong exception guarantee

477
copy assignment operator (=)

xxviii, 278, 417, 431, 446,
513
overloaded 420

copy-constructible type 472
copy constructor xxviii, 278,

306, 311, 417, 421, 431,
434, 437, 445, 446, 511,
513
default 311

copy of the argument 202
copy semantics xxviii, 417,

432
copy_backward algorithm

585, 620
ranges version (C++20)

584, 585
copy_if algorithm 620

ranges version (C++20)
584, 587

copy_n algorithm 620
ranges version (C++20)

584, 587
CopyConstructible 513

874 Index

coroutine 840
coroutine (C++20) 834

awaitable object 855
co_yield expression 837,

839
coroutine frame 855
coroutine state 855
coroutine support library

835, 849
coroutine_handle 855
generator 837
generator coroutine sup-

port library (Sy Brand)
837

promise object 854
stackless 840
suspend_always 854
suspend_never 854
suspension point 855

<coroutine> header 113
<coroutine> header

(C++20) 854
coroutine libraries

concurrencpp 836
cppcoro 836
folly::coro 836
generator (Sy Brand)

836, 837
correct number of arguments

107
correct order of arguments

107
cos function 104
cosine 104
count algorithm 620

ranges version (C++20)
574, 575, 577

count function
of multimap 540

count function of associative
container 534

count_down member func-
tion of a std::latch 821

count_if algorithm 620
ranges version (C++20)

574

count_if ranges algorithm
(C++20) 257, 258

counted range adaptor
(C++20) 612

counter 48
counter-controlled iteration

xxvi, 48, 48, 52, 70, 71,
146

counting loop 71
counting_semaphore

(C++20) 827
cout (standard output

stream) 24, 26, 239
.cpp filename extension 719
cppcheck static analysis tools

xxxii, xlviii
cppcoro coroutines library

836
cpplang Slack channel xlvii
.cppm filename extension 719
crafting valuable classes with

operator overloading 430
craps simulation 119, 120
crbegin

member function of con-
tainers 512

member function of vec-
tor 522

Create a New Project dialog
in Visual Studio Commu-
nity Edition 5

create a sequential file 240
create an array object from a

built-in array or an initializ-
er list 201

create an object (instance) 36,
271

create your own data types 30
CreateAndDestroy class

definition 299
member-function defini-

tions 300
crend

member function of con-
tainers 512

member function of vec-
tor 522

critical section 784, 787,
788, 795, 827

critical sections 788
cryptocurrency 809
<cstdint> header (C++11)

60, 207
<cstdio> header 112
<cstdlib> header 111, 489,

490
<cstring> header 112
CSV (comma-separated val-

ues)
.csv file extension 250
file format 222, 250
rapidcsv header-only li-

brary 251
CTAD (class template argu-

ment deduction) 158, 523
<ctime> header 111
<Ctrl>-d 82, 242
<Ctrl> key 82
<Ctrl>-z 82, 242
curly braces in format string

66
current position in a stream

245
cursor 25
custom character class 262
custom concept 648
custom exception class 472
custom functions xxvi
customization points for de-

rived classes 377

D
dangling pointer 445
dangling reference 131
data

mutable 757
data analytics 222, 250
data compression 94

lossless 94
lossy 94

data-interchange format
JSON 326

data member 19
data persistence 222

Index 875

data race 783
data science 222, 250
data structure 154, 506
data types

char 110
float 110
int 27
long double 110
long int 110
long long 110
long long int 110
unsigned char 110
unsigned int 110
unsigned long 110
unsigned long int 110
unsigned long long 110
unsigned long long int

110
unsigned short 110
unsigned short int 110

database 804
dataset 222, 250

Titanic disaster 253
date and time utilities 761
Date class 308
dates 103
DbC (design by contract)

496
deadlock 769

four necessary conditions
770

prevention (Havender) 770
process or thread 769
sufficient conditions 770

deallocate memory 425, 427
Debug area (Xcode) 9
decay to a pointer (array

names) 199
decimal point 53, 54
decision 44

making xxvi
symbol in the UML 44

declaration 27
declarative programming 175
decrement

a pointer 208
operator, -- 58, 454

deduction guide 674
deep 445
deep copy 445
deep learning 222, 250
default 311
default arguments 132, 292

with constructors 292
default assignment operator

304
default case in a switch 83,

84, 117
default constructor 278, 285,

292, 313, 511
default contract level 498
default copy constructor 311
default destructor 298
default special member

function 361, 444
autogenerate a virtual

destructor 361, 444
default type argument 604

for a type parameter 678,
678

default violation handler
(contracts) 500

default_random_engine
114

#define preprocessing direc-
tive 711

definition 71
Deitel & Associates, Inc. xlii

virtual and on-site corpo-
rate training xlii

Deitel, Dr. Harvey M. xli
Deitel, Paul J. xli

Full-Throttle training
courses xxxvii

Live Instructor-Led Train-
ing xxxvii

delegating
constructor 298
to other functions 632

delete 425, 429
placement 425

delete[] (dynamic array
deallocation) 426

deleting dynamically allocat-
ed memory 427

dependency injection 386
dependent condition 90
deprecated 111
deque class template 508,

518, 531, 631, 678
push_front function 531
shrink_to_fit member

function 522
<deque> header 111, 531
dereference

a pointer 193, 196, 203
an iterator 513, 515, 517
an iterator positioned out-

side its container 522
dereferencing operator (*)

193
derive one class from another

308
derived class 336, 341

catch 492
customization point 377
pointer to a base-class ob-

ject 352
pointer to a derived-class

object 352
descriptive statistics 256, 256
deserialization xxvii
deserializing data 326
design by contract (DbC;

Bertrand Meyer) 496
design pattern 427
design process 20
designated initializer (aggre-

gates) 325
destructor xxviii, 279, 298,

417, 431, 511
called in reverse order of

constructors 298
in a class hierarchy 350

destructor in a derived class
350

destructors called in reverse
order 350

destructors should not throw
exceptions 483, 486

876 Index

detach a thread 775
device driver

polymorphism in operat-
ing systems 363

devirtualization 362
diagnostics that aid program

debugging 112
diamond in the UML 41
diamond inheritance (in mul-

tiple inheritance) 402
dice game 119
die rolling

using an array instead of
switch 165

difference_type 510
nested type in an iterator

667
digit 28
digit separator ' (C++14) 63
Dionne, Louis 409
direct access elements of a

container 508
direct base class 340, 340
directly reference a value 192
disable assertions 483
Discord server #include
<C++> xlvii

disjunction in a C++20 con-
straint or concept 642

disk space 488, 490
dispatch

a thread 768
display a line of text 22
distance algorithm 652

std::ranges 663
distribution (random-num-

ber generation) 114
DivideByZeroException

476
divides function object 604
division 30, 31

by zero 471
compound assignment op-

erator, /= 57
do...while iteration state-

ment 42, 78

Docker xxxiv, xlv
Clang C++ container xxiii
Clang container 709
clang++ container 4
container xxxiv, xlv, 709
Docker Desktop 13, 14
Docker Engine 13, 14
GCC Docker container

13
GNU C++ container xxiii
GNU Compiler Collec-

tion (GCC) 13
GNU Compiler Collec-

tion (GCC) container
4, 13

image xlv
Docker Desktop installer xlvi
Docker Hub account xlvi
documentation

C++ xxxiv
dot operator (.) 37, 291,

292, 316, 358, 429
dotted line in the UML 42
double-checked locking 815
double data type 28, 50, 109
double dispatch 411
double-ended queue 531
double-precision floating-

point number 77
double quote 25
double-selection statement

42
“doubly initializing” member

objects 313
doubly linked list 508, 526
download examples xxii
dreamincode.net/forums/

forum/15-c-and-c/
xxxvi

driver program 35
drop range adaptor (C++20)

612, 615
drop_while range adaptor

(C++20) 612, 615
dual-core processor 17
duck typing 338, 397, 409
dummy value 50

duplicate keys 533, 539
duration_cast function

template 761
dynamic binding 358, 373,

376
dynamic casting 409
dynamic data structure 190
dynamic memory allocation

220, 417, 425, 427, 428,
481, 488
array of integers 441

dynamic_cast 491
dynamically determine func-

tion to execute 357, 359
Dyno library for type erasure

409

E
Easylogging++ logging library

494
ECMAScript regular expres-

sions 260
Editor area (Xcode) 8, 9
efficiency of

binary search 551
linear search 550

element of an array 155
elements range adaptor

(C++20) 612, 617
else keyword 45
embedded parentheses 31
embedded system xxi, 16,

482
emplace member function

of queue 545
of stack 543

emplace_after 512
emplace_front 512
emplace_hint 512
Employee abstract base class

364
Employee class 308

definition showing com-
position 310

http://dreamincode.net/forums/forum/15-c-and-c/
http://dreamincode.net/forums/forum/15-c-and-c/

Index 877

Employee class (cont.)
definition with a static

data member to track
the number of Employ-
ee objects in memory
321

header 366
implementation file 366
member-function defini-

tions 310, 322
empty member function

of containers 512
of priority_queue 546
of queue 545
of sequence container 525
of stack 543
of string 228

empty member function of
string 38, 419

Empty Project template 5
empty statement (a semico-

lon, ;) 46
empty string 37, 228, 272,

274
enable compiler warnings 93
encapsulation 19, 274, 304
enclosing scope 479
end

function 169, 200
function of header <ar-
ray> 169

member function of con-
tainers 512, 513

end of a stream 245
“end of data entry” 50
end-of-file (EOF)

indicator 82, 242
key combination 242
marker 239

ends_with member function
of class string (C++20)
38

engine (random-number gen-
eration) 114

ensures contract keyword
497, 498

Enter key 29
enum

keyword 123
specifying underlying inte-

gral type 123
enum class 120
enumeration 120

constant 120
equal algorithm 441, 452,

620
ranges version (C++20)

566, 566
equal to 31
equal_range

algorithm 620
algorithm, ranges version

(C++20) 592
function of associative

container 536
equal_to function object

604
equality operators 31, 32

!= 44
== 431
== and != 44

EqualityComparable 513
erase 232

algorithm from header
<vector> 570

member function of con-
tainers 512

member function of first-
class containers 525

member function of
string 233

member function of vec-
tor 569

erase-remove idiom 569,
569, 570

erase_if algorithm from
header <vector> 570

error detected in a constructor
484

error_code class 494
escape character 25

escape sequence 25, 26, 249
\' (single-quote character)

25
\" (double-quote charac-

ter) 25
\\ (backslash character)

25
\a (alert) 25
\n (newline) 25
\r (carriage return) 25
\t (tab) 25

eText (Pearson) xxxvii
examples (download) xxii
exception 157, 185, 185,

469
bad_alloc 425
handler 185
handling 180
invalid_argument 235
memory footprint 470
out_of_bounds 431
out_of_range 185, 236
parameter 185
what member function of

an exception object 186
exception class 491

what virtual function 475
exception guarantee

copy-and-swap idiom 477
exception handling 112, 469

flow of control 470, 503
<exception> header 112,

491
exception in a thread 771
exception parameter 474
exception safe code 476
exception safety guarantees

basic exception safety
guarantee 476

no guarantee 476
no throw exception safety

guarantee 477
strong exception safety

guarantee 477
exception types in the C++

standard libarary 491

878 Index

exceptions
bad_alloc 487
bad_cast 491
bad_typeid 491
filesystem_error 494
length_error 492
logic_error 491
out_of_range 492
overflow_error 492
underflow_error 492

exchange function (header
<utility>) 448

exclusive 776
exclusive resource 776
exclusive_scan

algorithm 621
parallel algorithm

(C++17) 766
execution

parallel 764
<execution> header 113, 762
execution policy

std::execution::par
762

execution policy (C++17)
762, 763

execution-time overhead 373
executor (concurrencpp

coroutine support library)
841, 844
scheduling tasks 836

exit a function 25
exit function 242, 299,

299, 489
exit point

of a control statement 43
EXIT_FAILURE 242
EXIT_FAILURE constant 490
EXIT_SUCCESS 242
exiting a for statement 86
exp function 104
expects contract keyword

497, 498
expiring value 438
explicit

conversion 53
narrowing conversion 110

explicit keyword 277, 465
constructor 464
conversion operators 465

exponential “explosion” of
calls 145

exponential complexity 145
exponential function 104
exponentiation 77
export (C++20 modules)

a block 716
a declaration 716, 716,

719, 719
a namespace 717
a namespace member 717

export import (C++20
modules) 734

export module (C++20
modules) 718
declaration for a module

interface partition 733
expression 44, 53
extensible 337, 351

programming language
270

external iteration 161
extract member function of

associative containers
(C++17) 512

extracting data from text 260

F
fabs function 104
Facebook

Folly open-source library
409

factorial 61, 140, 141
with partial_sum 599

factorials 599
fail fast 483
[[fallthrough]] attribute

83
false 32, 44, 146
fault-tolerant programs 185,

469
features in a dataset 253
Fertig, Andreas xxxviii

Fibonacci series 143, 145,
836
generator coroutine 837

field width 77, 99
FIFO (first-in, first-out) 509,

531, 545
file 222, 244
file compression

ZIP 94
file open mode 241, 243

ios::app 241
ios::ate 241
ios::binary 241
ios::in 241, 243
ios::out 241
ios::trunc 241

file-position pointer 244
file processing 103
file scope 125, 291, 719
filename 241, 243
filename extensions

.cpp 719

.cppm 719

.h 272

.ifc 718

.ixx 718, 718

.pcm 719
<filesystem> header

(C++17) 113, 241, 494
filesystem_error 494
filesystem_error class

494
filesystem::path (C++17)

241
Filipek, Bartlomiej

blog xxxv
fill algorithm 620

ranges version (C++20)
563, 564

fill_n algorithm 620
ranges version (C++20)

563, 564
filter 611
filter range adaptor

(C++20) 612
filtering in functional-style

programming 178, 611

Index 879

final

class 362
member function 361

final state in the UML 41
final value 71
final_suspend function of

a coroutine promise object
854

find algorithm 620
ranges version (C++20)

578, 578
find function of associative

container 535
find member function of

class string 230, 231
find member function of
string_view 239

find_end algorithm 620
find_first_not_of mem-

ber function of class
string 232

find_first_of

algorithm 620
member function of class
string 231

find_if algorithm 620
ranges version (C++20)

578, 579
find_if_not algorithm 620

ranges version (C++20)
578, 582

find_last_of member
function of class string
231

finding strings and characters
in a string 230

first

data member of pair 536
member function of span

class template (C++20)
215

first-class container
begin member function

513
clear function 526
end member function 513
erase function 525

first-in, first-out (FIFO) 509,
531
data struture 545

fixed point
format 53
value 77

fixed-size data structure 199
fixed-size integer types

(C++11) 207
fixed stream manipulator 53
flag value 50
float data type 50, 110
floating-point arithmetic 416
floating-point calculations

(precise)
Boost.Multiprecision

monetary library 75
floating-point division 53
floating-point literal 75, 77

double by default 77
floating-point number 50,

50, 52
double data type 50
double precision 77
float data type 50
single precision 77

floating_point concept
641, 648

floor function 104
flow of control 52

exception handling 470,
503

flow of control in the
if...else statement 45

flow of control of a virtual
function call 375

fmod function 104
-fmodules-ts compiler flag

(g++) 714
{fmt} library (C++20 text

formatting) 65, 66, 67
fold expression (C++17) 628,

682, 685
binary left fold 685, 686
binary right fold 686
unary left fold 686
unary right fold 686

fold operation
binary left 689
binary right 689
unary left 688
unary right 688

Folly open-source library
from Facebook 409
Poly 409

folly::coro coroutine sup-
port library 836

font conventions in this book
xxxiii

for iteration statement 42,
71, 72, 75, 77
header 72

for_each algorithm 441,
455, 620
ranges version (C++20) 561

for_each_n

algorithm 620
parallel algorithm

(C++17) 766
format function from header
<format> (C++20) 65, 98

<format> header (C++20)
113
format function 65, 98

format specifier (C++20 text
formatting) 99

format string 66, 66
placeholder 66

formatted input/output 246
formatted string

curly braces in a replace-
ment field 66

formatted text 246
formatting strings 65
forums

dreamincode.net/fo-

rums/forum/15-c-

and-c/ xxxvi
groups.google.com/g/

comp.lang.c++ xxxvi
reddit.com/r/cpp/

xxxvi
stackoverflow.com

xxxvi

http://dreamincode.net/fo-rums/forum/15-c-and-c/
http://dreamincode.net/fo-rums/forum/15-c-and-c/
http://dreamincode.net/fo-rums/forum/15-c-and-c/
http://groups.google.com/g/comp.lang.c+
http://groups.google.com/g/comp.lang.c+
http://reddit.com/r/cpp/
http://stackoverflow.com

880 Index

forward iterator 515, 527,
558, 583
operations 517

forward_iterator concept
(C++20) 559, 569, 576

forward_list class template
508, 518, 527
splice_after member

function 528
<forward_list> header

111, 527
forward_range concept

(C++20) 559, 569, 571,
576, 580, 586, 593

fragile base-class problem 406
fragile software 406
free function 287, 314, 458
free store 425, 427
friend

of a base class 405
of a derived class 405

friend function 313
can access private mem-

bers of class 314
friendship granted, not

taken 313
friendship

not symmetric 313
not transitive 313

front

member function of
queue 545

member function of se-
quence containers 524

front member function of
span class template
(C++20) 214

front member function of
vector 257

front_inserter function
template 571

fstream 240
<fstream> header 112, 240
full template specialization

697
Full-Throttle training courses

xxxvii

function xxvi, 18, 24
anonymous 176
call overhead 128
consteval 699
constexpr 699
definition 125
free 287, 458
header 107
hypot 104
overloading 134
parameter 107
parameter list 107
prototype 107, 108, 125,

129
signature 108, 135
that calls itself 139

function call operator () 466
function object 533, 533,

539, 553, 557, 603
also called a functor 557,

603
arithmetic 604
binary 605
divides 604
equal_to 604
greater 604
greater_equal 604
less 604
less_equal 604
less<int> 533
less<T> 539, 546
logical 604
logical_end 604
logical_not 604
logical_or 604
minus 604
modulus 604
multiplies 604
negate 604
not_equal_to 604
plus 604
predefined in the STL 604
relational 604

function overloading 182
function parameter scope 124
function pointer 220, 374,

557, 605

function prototype 107, 313
in a class definition 285

function scope 124
function template 137, 627,

652
abbreviated (C++20) 137,

634, 634
unconstrainted 637

function template specializa-
tion 137, 138, 139

function try block 484, 485,
486

<functional> header 112,
604

functional programming 698
functional structure of a pro-

gram 24
functional-style program-

ming xxv, 113, 178, 441,
557, 611
filtering 178
mapping 179
reduction 163, 174, 175

functor (function object)
557, 603

fundamental type xxvi, 28,
60
bool 44
char 28, 110
double 50
float 50
int 57
long 60, 60
long double 50, 77
long long 60, 61
promotion 53

future class template
get member function 815

<future> header 112, 813

G
g++ compiler 11

in a Docker container 4
game of chance 119
game of craps 120
game playing 113
game systems xxi

Index 881

garbage value 278
Gates, William xxxiii
GCC Docker container 13
gcd algorithm 596, 596, 621
general class average problem

50
generalities 351
generalized numeric opera-

tions 619
generate algorithm 620

ranges version (C++20)
563, 564

generate_n algorithm 620
ranges version (C++20)

563, 565
generating values to be placed

into elements of an array
162

generator coroutine 837, 839
Fibonacci sequence 837

generator coroutine sup-
port library 836
Sy Brand 837
tl::generator class

template 837
generator function 563
generic algorithms 558
generic lambda 176, 177,

201, 395, 562
generic programming xxv,

137
get function for obtaining a
tuple member 681

get member function of a
unique_ptr 444

get member function of class
template future 815

get pointer 244
get_id function of the
std::this_thread name-
space (C++11) 772

get_return_object func-
tion of a coroutine promise
object 854

getline function of the
string header 95

gets the value of 32

getting questions answered
xxxvi

Git xliii
GitHub xxiv, xxxiii, xxxiv,

xxxvi, xxxix, xliii
C++20 Standard Docu-

ment xxxv
global 287
global function 103
global module 725
global module (C++20 mod-

ules) 725
global module fragment 725
global namespace scope 124,

125, 298, 719, 720
global object constructors

298
global scope 298, 300
global variable 125, 125,

125, 128, 133
GNU C++ xxiii, xliii, 4
GNU C++ Standard Library

Reference Manual xxxv
GNU Compiler Collection

(GCC) Docker container
xxv, 4, 13

GNU g++ xxv
GNU GCC 709
Godbolt, Matt

Compiler Explorer xxxix
godbolt.org xxxix, xl

Compiler Explorer web-
site 498

Goetz, Brian xl
golden mean (golden ratio)

143
Google C++ Style Guide 493
Google Concurrency Library

(GCL) concurrent contain-
ers 830

Google Logging Library
(glog) 494

Google Search xl
goto elimination 40, 41
goto statement 40
Grammarly xl
graph information 164

greater function object 604
greater_equal function ob-

ject 604
greater-than operator 31
greater-than-or-equal-to op-

erator 31
greatest common divisor 596
greedy evaluation 611, 836
greedy quantifier 263
Grimm, Rainer xl

blog xxxv
grouping (operators) 31
grouping not changed by

overloading 424
groups.google.com/g/

comp.lang.c++ xxxvi
<gsl/gsl> header 110
guard condition in the UML

44
guarding code with a lock

788
Guidelines Support Library

(GSL) 110, 199

H
.h filename extension (head-

er) 272
half-open range 178, 518
handle on an object 291
handle_contract_viola-

tion default contract viola-
tion handler 500

has-a relationship 308, 337
hash (hashable keys) 533
hash bucket 552
hash table 552
hash-table collisions 552, 553
hashable 537, 541

type requirements 533
hashing 533, 552
Havender (deadlock preven-

tion) 770
head of a queue 508
header 111, 286, 495

<cstdlib> 490
<gsl/gsl> 110

header (.h) 272, 272

http://godbolt.org
http://groups.google.com/g/comp.lang.c+
http://groups.google.com/g/comp.lang.c+

882 Index

header <numeric> 596
header of a function 107
header-only library 94, 110,

712
inline variable 679

header unit (C++20 modules)
712, 713, 714, 721
compile a header 714

headers 236
<algorithm> 444, 452,

501, 523, 556, 620
<array> 155
<atomic> 816
<barrier> (C++20) 823
<cassert> 483
<chrono> (C++11) 284,

761
<cmath> 77, 103, 104,

105
<compare> 460
<concepts> 641
<condition_variable>

(C++11) 787
<coroutine> (C++20)

854
<cstdint> 60
<cstdint> (C++11) 207
<deque> 531
<exception> 491
<execution> (C++17)

762
<filesystem> (C++17)

241, 494
<forward_list> 527
<functional> 604
<future> (C++11) 813
<initializer_list>

443
<iomanip> 53
<iostream> 23
<latch> (C++20) 820
<limits> 63
<list> 526
<map> 539, 541
<memory> 427, 556, 621
<mutex> (C++11) 787,

804

headers (cont.)
<numbers> 104
<numeric> 556, 621
<queue> 545, 546
<random> (C++11) 113
<ranges> 177
<regex> 261, 265
<semaphore> (C++20)

827
<set> 533
<stack> 543
<stdexcept> 472, 491
<stop_token> (C++20)

805
<string> 37
<thread> (C++11) 771
<tuple> 679
<type_traits> 644, 701
<unordered_map> 539,

541
<unordered_set> 533,

537
<utility> 448
<variant> 391
<vector> 180

heap 546, 599
max heap 599
min heap 599

heapsort
make_heap algorithm 600
pop_heap algorithm 602
push_heap algorithm 601
sort_heap algorithm 601
sorting algorithm 599

helper function 292
heterogeneous lookup (asso-

ciative containers; C++14)
537

hexadecimal integer 194
hide implementation details

274
hide names in outer scopes

124
hierarchical relationship 339
hierarchy

of employee types 341
of exception classes 490

high-level concurrency fea-
tures 836

higher-order functions 175
highest level of precedence 31
“highest” type 109
hold-and-wait condition 770
Hollman, Dr. Daisy xxxix
horizontal tab ('\t') 25
HTTPS protocol 148
hypot function 104
hypotenuse

in three-dimensional space
104

of a right triangle 104

I
I/O completion 481
identifier 28, 42, 125
IEEE 754 floating-point stan-

dard 500
if single-selection statement

31, 42, 44
with initializer 85

if...else double-selection
statement 42, 44, 45, 52
with initializer 85

.ifc filename extension 718
ifstream 240, 243, 244
IGNORECASE regular expres-

sion flag 266
image (Docker) xlv
immutable 174

data 784
data and thread safety 757
keys 509
string literal 217

implement an interface 385
implementation inheritance

349, 391
implementation of a member

function changes 297
implicit conversion 53, 277,

463, 464
improper 463
user defined 463
via conversion construc-

tors 464

Index 883

implicit first argument 315
implicit handle 291
import statement (C++20

modules) 720
existing header as a header

unit 712
in-class initializer 285, 325
in-memory

formatting 247
I/O 247

in parallel 756
include guard 286, 720
#include <iostream> 23
includes algorithm 620

ranges version (C++20)
589, 590

including a header multiple
times 286

inclusive_scan

algorithm 621
parallel algorithm

(C++17) 766
increment 75

a control variable 70, 71
a pointer 208
an iterator 517, 664
expression 87
operator 454

indefinite postponement 768,
769, 770

indentation 45, 46
index 155
indexed access 531
indexed name used as an rval-

ue 436
indirect base class 340, 340
indirection 192

operator (*) 193
triple 373

indirectly reference a value
192

indirectly_copyable con-
cept (C++20) 561

indirectly_readable con-
cept (C++20) 561

indirectly_swappable
concept (C++20) 583

indirectly_writable con-
cept (C++20) 561, 572

inequality operator (!=) 431
-inf (negative infinity) 471
inf (positive infinity) 471
infer (determine) a variable’s

data type 172
infer a lambda parameter’s

type 176, 201, 562
infinite loop 73, 74, 140
infinite range 613
infinite sequence 836
information hiding 19, 274
inherit 336
inherit members of an exist-

ing class 336
inheritance 19, 308, 336,

337, 340
as an implementation de-

tail 409
hierarchy 339
implementation 391
interface 384, 391
multiple 397, 398, 399
public 341
virtual 403

initial state in the UML 41
initial value of control vari-

able 70
initial_suspend function

of a coroutine promise ob-
ject 854

initialization
once-time, thread-safe 815
std::call_once

(C++11) 816
std::once_flag

(C++11) 816
initialize a pointer 192
initializer 158
initializer list 158
initializer_list class

template 443, 443, 511,
535
size member function 443

<initializer_list> head-
er 443

initializing
an array’s elements to ze-

ros and printing the ar-
ray 156

multidimensional arrays
170

the elements of an array
with a declaration 158

inline 128
function 128
keyword 128
variable 320, 679

inline_executor (concur-
rencpp) 845

inner block 124
inner_product algorithm

621
innermost pair of parentheses

31
inplace_merge algorithm

620
ranges version (C++20)

588
input xxvi
input and output stream iter-

ators 514
input from string in memory

112
input iterator 515, 517, 560
input/output (I/O) 103

header <iostream> 23
library functions 112

input sequence 514
input stream iterator 514
input stream object (cin) 29
input_iterator concept

(C++20) 559, 570, 587,
653

input_or_output_itera-

tor concept (C++20) 565
input_range concept

(C++20) 559, 561, 566,
567, 568, 570, 572, 573,
574, 575, 577, 578, 579,
580, 581, 582, 583, 584,
586, 587, 589, 590, 591,
592, 595

884 Index

inputting from strings in
memory 247

insert 507
at back of vector 518

insert

function of associative
container 536

function of containers 513
function of multimap 540
function of multiset 534
function of sequence con-

tainer 524
function of set 538
function of string 234

inserter function template
571

instance 18
instance variable 273, 281
instantiate

class template 627
template 627

Instructor-Led Training with
Paul Deitel xxxvii

int & 129
int data type 24, 28, 57, 109

operands promoted to
double 53

integer 24, 27
arithmetic 416
BigNumber class 61
division 30, 50
promotion 53
types, fixed-size 207

integral concept 641, 648
integral constant expression

80, 426
integral expression 85
inter-thread communication

814
std::future 814
std::promise 814

interest rate 75
interface 284, 363, 384

dependency 753
inheritance 364, 384, 391
of a class 284
to a hierarchy 364

internal 175
internal iteration 161
internal linkage 719
International Standards Or-

ganization (ISO) 2
invalid_argument excep-

tion 235, 287, 492
invariant 495

class 495
invoke function 610
<iomanip> header 53, 111
ios::app file open mode

241
ios::ate file open mode

241
ios::beg seek direction 245
ios::binary file open mode

241
ios::cur seek direction 245
ios::end seek direction 245
ios::in file open mode 241,

243
ios::out file open mode 241
ios::trunc file open mode

241
<iostream> header 23, 111
iota

algorithm 596, 597, 621
range factory (C++20) 613
range factory (C++20), in-

finite range 613
is-a relationship (inheritance)

337, 407
is_arithmetic type trait

655
is_base_of type trait 699
is_heap algorithm 621
is_heap_until algorithm

621
is_partitioned algorithm

621
is_permutation algorithm

620
is_sorted algorithm 501,

621
is_sorted_until algorithm

621

isEmpty member function of
a stack 632

isnan function of header
<cmath> 256

ISO (International Standards
Organization) 2

Issue navigator 8
istream class 244, 247

seekg function 244
tellg function 245

istream_iterator 514
istringstream class 247,

248, 249
iter_swap algorithm 582,

583, 620
iteration 43, 145, 147

of a loop 87
iteration statement xxvi, 41,

42, 47
do...while 78, 79
while 47, 70

iteration terminates 47
iterative solution 140, 147

factorial 146
iterator 506

contiguous (C++17) 515
minimum requirements

558
nested type names 667,

669
pointing to the first ele-

ment of the container
513

pointing to the first ele-
ment past the end of
container 513

read/write 668
read-only 665
string 568
type names 516

iterator 510, 512, 513,
516, 536, 538

iterator adaptor 570
back_inserter 571
std::reverse_itera-

tor 672

Index 885

iterator concepts (C++20)
559
complete list 559

<iterator> header 112, 571
iterator operation 664
iterator_category nested

type in an iterator 667
.ixx filename extension 718,

718

J
Jacopini, G. 40
Java Platform Module System

(JPMS) 746
join function of a

std::jthread 775
joining a thread 844
Joint Strike Fighter Air Vehi-

cle (JSF AV) C++ Coding
Standards (2005) 493

JSON (JavaScript Object No-
tation) 326, 327
array 326
Boolean values 326
cereal library 251
data-interchange format

326
false 326
JSON object 326
null 326
number 326
RapidJSON library 251
serialization 326
string 326
true 326

JSONInputArchive (cereal
library) 331

JSONOutputArchive (cere-
al library) 329

jthread class (C++20)
771, 776

K
Kalev, Danny Ph.D. xxxix
key 533
key–value pair 509, 539,

540, 542, 552

keyboard 29, 240
keys range adaptor (C++20)

612, 616
keyword 24, 42

auto 172
break 83
case 83
class 137, 273, 630
co_await (C++20) 834
co_return (C++20) 834
co_yield (C++20) 834
concept (C++20) 648
const 115
constexpr 162
continue 86
default 83
do 42, 78
else 42
enum 123
enum class 120
explicit 277, 464
for 42, 71
if 42
inline 128
namespace 719
operator 423
private 274, 275
public 274
static 123, 124
switch 42
template 630, 630
thread_local (C++11)

758
throw 476
typename 137, 630
unsigned 109
while 42, 78

Kühl, Dietmar xxxix, xl

L
label in a switch 83
lambda 176, 557, 560

capture variables 257, 456
expression 176, 455
generic 176, 201, 395
infer a parameter’s type

176, 201, 562

lambda (cont.)
introducer 176, 257, 456,

562
introducer [&] (capture by

reference) 562
introducer [=] (capture by

value) 562
templated (C++20) 636
templatized 634

last-in, first-out (LIFO)
data structure 509, 543
order 629, 632

last member function of
span class template
(C++20) 215

latch (C++20) 820, 820,
820, 821

<latch> header 113
late binding 358
launch a long-running task

asynchronously 834
launch enum 814

async 814
launch policy (multithread-

ing) 814
lazily computed sequence

(generator) 835
lazy evaluation 178, 611, 836
lazy pipeline 179
lcm algorithm 596, 597, 621
leaf node in a class hierarchy

364
least common multiple 597
left align (<) in string format-

ting 99
left brace ({) 24
left fold

binary 689
unary 688

left justified 45
left-shift operator (<<) 416
left side of an assignment 93,

155, 302, 436
left stream manipulator 77
left-to-right evaluation 31
left value 93
legacy code 425

886 Index

length member function of
class string 37

length of a string 217
length_error exception

228, 492
less function object 604
less-than operator 31
less-than-or-equal-to operator

31
less_equal function object

604
less<int> 533, 539
Levi, Inbal xxxix
lexicographical 226

comparison 37, 419
sort 169

lexicographical_com-

pare algorithm 620
ranges version (C++20)

566, 568
lexicographical_com-

pare_three_way algo-
rithm 621

libraries
header-only 94
miniz-cpp 94

lifetime of an object 273
LIFO (last-in, first-out) 509,

543
order 632

“light bulb moment” 418
<limits> header 63, 112
linear running time 550
linear search algorithm 551
linked list 507
Linux

shell prompt 4
list class 518, 526
list class template 508
<list> header 111, 526
list member functions

assign 530
merge 529
pop_back 530
pop_front 530
push_front 527
remove 531

list member functions (cont.)
sort 528
splice 528
swap 530
unique 530

literal
character 261
digits 261
floating point 77

live-code approach xxii
Live Instructor-Led Training

with Paul Deitel xxxvii
LL for long long integer lit-

erals 63
load factor 552
local automatic object 302
local variable 49, 126, 315

static 125
<locale> header 112
lock

an object 789, 790, 791
release 787

lock_guard class (C++11)
791

log function 104
log10 function 104
logarithm 104
logarithmic running time

551
logging 494
logging libraries

Boost.Log 494
Easlylogging++ 494
Google Logging Library

(glog) 494
Loguru 494
Plog 494
spdlog 494

logic error 32
slicing 475

logic_error exception 491
logical AND (&&) operator

88, 90
in a constraint 642

logical complement operator,
! 90

logical function object 604

logical negation, ! 90
logical operators xxvi, 88, 90
logical OR (||) operator 88,

89
in a constraint 642

logical_and function object
604

logical_not function object
604

logical_or function object
604

Loguru logging library 494
long data type 60, 60, 110
long double data type 50,

77, 110
long long data type 60, 60,

61, 110
LL for literals 63

long-running task 834
loop

body 79
continuation condition

42, 70, 71, 72, 78, 79,
87

continuation condition
fails 146

counter 70
statement 42

lossless data-compression al-
gorithm 94

lossy data-compression algo-
rithm 94

lower_bound algorithm 620
ranges version (C++20)

592, 593
lower_bound function of as-

sociative container 536
lowercase letter 28, 112
“lowest type” 109
lvalue ("left value") 93, 131,

155, 193, 302, 436, 454,
532

lvalues as rvalues 93

M
m-by-n array 170
machine dependent 208

Index 887

machine learning 222, 250
macro 111, 711

preprocessor 104
magic numbers 162
main 24

thread 775
“make your point” 119
make_heap algorithm 620

ranges version (C++20)
600

make_pair function 540
make_tuple function 681
make_unique function 428,

430, 446
mangled function name 135
manipulator 77
map associative container 533
map container class template

509
<map> header 111, 539, 541
mapped values 533
mapping in functional-style

programming 179, 611
match_results class 265

suffix member function
of class match_results
267

math library 103, 111
math library functions

ceil 104
cos 104
exp 104
fabs 104
floor 104
fmod 104
log 104
log10 104
pow 104
sin 104
sqrt 104
tan 104

mathematical algorithms of
the standard library 574

mathematical constants 104
mathematical special func-

tions 105
max algorithm 281, 594, 620

max heap 599
max_element algorithm 620

ranges version (C++20)
574, 576

max_size member function
container 513
string 228

maximum function 105
maximum integer value on a

system 761
maximum size of a string

228, 228
mdarray container (C++23)

173
measures of central tendency

257
member function 18

automatically inlined 288
call 19
defined in a class defini-

tion 288
no arguments 288
parameter 107

member-initializer list 276,
311, 399

member object
initializer 311

member selection operator
(.) 291, 292, 358, 429

memberwise assignment 424
memory 16

address 192
alllocate 425, 425
consumption 373
deallocate 425
footprint of exceptions

470
leak 417, 426, 427, 431,

508
leak, preventing 429
management 103
utilization 553

memory-access violation 508
<memory> header 112, 427,

556, 621
memory-space/execution-

time trade-off 552

merge

algorithm 620
algorithm, ranges version

(C++20) 584, 586
member function of asso-

ciative containers
(C++17) 533

member function of list
529

merge symbol in the UML 47
metacharacter (regular expres-

sions) 261
metafunction 696

return value 697
template argument 697
type 697
value 697

metaprogramming xxv
Meyer, Bertrand

design by contract 496
Microsoft xxxiv, 830

Visual C++ xxv
Microsoft C++ language doc-

umentation xxxv
Microsoft C++ Team Blog xxxv
Microsoft modularized stan-

dard library 741
Microsoft open-source C++

standard library 663
Microsoft Parallel Patterns Li-

brary concurrent contain-
ers 830

Microsoft Visual Studio
Community edition xliii, 4

Microsoft Windows 82
midpoint algorithm 621
milliseconds object 761
min algorithm 594, 594, 620
min heap 599
min_element algorithm 620

ranges version (C++20)
574, 576

minimum iterator require-
ments 558

minimum requirements
standard library algo-

rithms 556

888 Index

miniz-cpp library 94
zip_file class 94, 96
zip_info class 97

minmax algorithm 594, 595,
620
ranges version (C++20)

595
minmax_element algorithm

620
ranges version (C++20)

574, 576
minus function object 604
mismatch algorithm 620

ranges version (C++20)
566, 567

mismatch_result 567
mismatch_result for the
mismatch algorithm 567

missing data 254
missing values 253
mixed-type expression 109
Modern C++ xxi, 2, 190

do more at compile-time
163, 626

modifiable data 757
modifiable lvalue 422, 436,

454
modify a constant pointer

204
modify address stored in

pointer variable 204
modular architecture of this

book xxv
modular standard library 740

Microsoft 740
modular standard library

(C++23) 746
modules (C++20) 708, 725

building a module with
partitions 735

clang++ precompiled
module (.pcm) file 722

export a block of declara-
tions 716

export a declaration 716,
716, 719, 752

export a definition 752

modules (C++20) (cont.)
export a namespace 717
export a namespace

member 717
export followed by braces

752
export module 718
export module declara-

tion 752
filename extension .cpp

719
filename extension .cppm

719
filename extension .ifc

718
filename extension .ixx

718, 718
filename extension .pcm

719
-fmodules-ts compiler

flag (g++) 714
global module 752
global module fragment

752
header unit 712, 752
IFC (.ifc) format 752
import a header file 752
import a module 752
import declaration 720,

752
import existing header as

a header unit 712
improve compilation per-

formance 713
interface 716
linkage 753
Microsoft modularized

standard library 741
modular standard library

(C++23) 746
modularized standard li-

braries 740
modularized standard li-

brary (Microsoft) 740
module declaration 718,

718, 726, 753

modules (C++20) (cont.)
module implementation

partition unit 735
module implementation

unit 726, 753
module interface 716
module interface partition

unit 718, 732, 733,
734, 735

module interface partition
unit export module
declaration 733

module interface unit
718, 753

module interface unit
(C++20 modules) 718

module interface unit com-
pile in clang++ 722

module interface unit
compile in g++ 721

module name 718, 753
module partition 753
module purview 718, 753
module unit 717, 753
named 726
named module 732, 753
named module purview

753
partition 732, 753
partition rules 733
precompiled module in-

terface 753
primary module interface

unit 718, 733, 734,
753

:private module frag-
ment 731

private module frag-
ment 753

purview 718
reachability 744
reachable declaration 753
templates 719
visibility 744
visible declaration 753
-x c++-system-header

compiler flag (g++) 714

Index 889

modulus function object 604
modulus operator, % 30
monetary formats 112
money

Boost.Multiprecision
monetary library 75

Moore’s law xxv, 2, 16, 16,
617, 759

most derived class 405
move 438, 447
move algorithm 620

ranges version (C++20)
586

move assignment operator
xxviii, 279, 417, 431, 447,
449, 513

move constructor xxviii, 278,
417, 431, 438, 447, 448,
511, 513

move semantics xxviii, 417,
435, 513
move assignment operator

439
move constructor 438
std::move function 438,

439
move_backward algorithm

620
ranges version (C++20)

586
MoveAssignable 513
multi 759
multi-core 557

architecture 618, 759
processor 17, 154, 174
systems xxix

multicore 618
multidimensional array xxvi
multidimensional array 170
multiline comment 23
multimap associative con-

tainer 509, 533, 539
multipass algorithms 515
multiple inheritance 340, 340,

397, 398, 399, 400, 401
demonstration 397
diamond inheritance 402

multiple-selection statement
42

multiple-source-file program
compilation and linking

process 290
multiplication 30

compound assignment op-
erator, *= 57

multiplies function object
604

multiset associative con-
tainer 533

multiset container class
template 509

multithreading 17, 757
condition variable 789
launch enum 814
std::async function

template 814
std::future class tem-

plate 814
std::packaged_task

function template 815
std::shared_future

class template 815
mutable (modifiable) data

757, 784
mutable data 757
mutating sequence algorithms

619, 619
mutex class (C++11) 787,

788
<mutex> header (C++11)

112, 787, 804
mutual exclusion 784, 787,

788, 827
necessary condition for

deadlock 770
thread safety 757

MyArray class 430, 432, 663,
673
definition 441
definition with overloaded

operators 441
test program 432

N
Nadella, Satya xxxiv
name handle 291

on an object 291
name mangling 135

to enable type-safe linkage
135

name of an array 155
named module (C++20 mod-

ules) 726, 732
named requirements 513
named return value optimiza-

tion (NRVO) 437, 456
namespace

keyword 719
member 720
qualifier 720
scope 124
std 24
std::chrono 761

naming conflict 315, 719
NaN (not a number) 254
narrow_cast operator 110
narrowing conversion 56,

109, 110
braced initializer 109
explicit 110

natural language processing
222

natural logarithm 104
Navigator area (Xcode) 8
Navigators

Issue 8
Project 8

NDEBUG to disable assertions
483

near container 509
negate function object 604
negative infinity (-inf) 471
nested

blocks 124
control statements 54, 55
for statement 164, 173
if...else statement 45
parentheses 31
try blocks 479

890 Index

nested requirement in C++20
concepts 654, 656

nested type 510
names in containers 672
names in iterators 667

nested_exception 477
network message arrival 481
new

failure 487
failure handler 489
operator 425

<new> header 487
new operator

calls the constructor 425
placement version 425
returning nullptr on fail-

ure 489
throwing bad_alloc on

failure 488
newline ('\n') escape se-

quence 25, 25, 216
next_permutation algo-

rithm 621
no guarantee (of what hap-

pens when an exception oc-
curs) 476

no preemption (necessary
condition for deadlock)
770

no throw exception safety
guarantee 477

node_type in an associative
container 512

[[nodiscard]] attribute
292

noexcept keyword (C++11)
448, 477, 486, 497

non-const member function
307
on a const object 307
on a non-const object

307
non-type template parameter

672
non-virtual interfaces 376
nonconstant pointer to con-

stant data 203

nonconstant pointer to non-
constant data 203

noncontiguous memory lay-
out of a deque 531

nondeterministic
random numbers 114
seed 118

none_of algorithm 620
ranges version (C++20)

578, 581
non-member function to

overload an operator 459
nonmodifiable lvalue 422
nonmodifying sequence algo-

rithms 619, 620
non-module translation unit

725
non-parameterized stream

manipulator 53
non-static member func-

tion 315, 463
non-virtual interface idiom

(NVI) 338, 376
nonzero treated as true 92
not a number 84
not equal 31
not_equal_to function ob-

ject 604
note in the UML 41
nothrow object 489
nothrow_t type 489
notify_all function of a
std::condition_vari-

able_any 805
notify_one function of a
std::condition_vari-

able 789, 790, 791, 799
NRVO (named return value

optimization) 437, 456
nth_element algorithm 621
NULL 192
null character ('\0') 216
null in JSON 326
null pointer (0) 192, 194
null-terminated string 217
nullptr 482

on new failure 489

nullptr constant 192
number of arguments 107
number systems xxxi
<numbers> header 104
numbers in JSON 326
numeric algorithms 605, 621
<numeric> header 174, 556,

596, 621
numeric literal

with many digits 63
numeric_limits class tem-

plate 63
max function 761

numerical data type limits 112
NVI (non-virtual interface id-

iom) 376

O
O(1) 550
O(log n) 551
O(n) 550
O(n2) 550
object

leaves scope 298
lifetime 273
of a class 17, 19
of a derived class 352, 354
of a derived class is instan-

tiated 349
object-oriented analysis and

design (OOAD) 20
object-oriented language 20
object-oriented programming

(OOP) xxv, 20, 336
object’s vtable pointer 376
objects contain only data 290
objects natural

case studies xxiv
Objects-Natural Approach

xxiii, 2
octa-core processor 17
O’Dwyer, Arthur xxxix

blog xxxv
offset

from the beginning of a
file 245

into a vtable 375

Index 891

ofstream class 240, 241,
242
open function 242

once_flag (C++11) 816
One Definition Rule (ODR)

711, 712
one-pass algorithm 515
one-time, thread-safe initial-

ization of an object 815
one-to-many

mapping 509
relationship 539

one-to-one mapping 509,
541

online forums xxxvi
OOAD (object-oriented anal-

ysis and design) 20
OOP (object-oriented pro-

gramming) 20, 336
open a file

for input 241
for output 241
that does not exist 242

open function of ofstream
242

open source
code xxxiii
community xxxiv
Microsoft C++ standard li-

brary 663
open-source class libraries 61
Open Web Application Secu-

rity Project (OWASP) 327
opened 239
operand 25, 29
operating system xxi

device driver polymor-
phism 363

operator xxvi
-- (predecrement/post-

decrement) 58
-- (prefix decrement/post-

fix decrement) 58
! (logical negation) 88
! (logical NOT) 90
!= (inequality) 31, 32

operator (cont.)
?: (ternary conditional)

47
() (parentheses) 31
* (multiplication) 30
* (pointer dereference or

indirection) 193, 194
*= (multiplication assign-

ment) 57
/ (division) 30
/= (division assignment)

57
&& (logical AND) 88, 89
% (remainder) 30
%= (remainder assignment)

57
+ (addition) 29, 30
++ (prefix increment/post-

fix increment) 58
++ (preincrement/postin-

crement) 58
+= (addition assignment)

57, 224
< (less-than operator) 31
<< (stream insertion) 24,

30
<= (less-than-or-equal-to)

31
= (assignment) 29, 30
-= (subtraction assign-

ment) 57
== (equality) 31
> (greater-than) 31
>= (greater-than-or-equal-

to) 31
>> (stream extraction) 29
|| (logical OR) 88, 89
address (&) 194
arrow member selection (-
>) 292

associativity 31
co_await 849
compound assignment 57,

59
conditional operator, ?:

47
decrement operator, -- 58

operator (cont.)
delete 425
dot (.) 37
grouping 31
logical AND, && 88, 90
logical complement, ! 90
logical negation, ! 90
logical operators 88, 90,

91
logical OR, || 88, 89
member selection (.) 291,

292
modulus, % 30
narrow_cast 110
new 425
overloading 30, 137
postfix decrement 58
postfix increment 58
precedence 30
precedence and grouping

chart 35
prefix decrement 58
prefix increment 58
remainder, % 30, 858
scope resolution (::) 287
sizeof 205, 206
sizeof... 674
static_cast 52
that cannot be overloaded

423
that you do not have to

overload 424
unary minus (-) 53
unary plus (+) 53
unary scope resolution

(::) 133
operator

functions 423
keyword 423

operator bool stream mem-
ber function 242, 244

operator overloading 182,
416
addition assignment oper-

ator (+=) 440
addition operator (+) 423,

424

892 Index

operator overloading (cont.)
binary operators 424
cast operator 454
choosing member vs. non-

member functions 458
commutative operators

459
conversion operator 454
copy assignment (=) 435,

446
copy assignment operator

(=) 420
decrement operators 454
equality operator (==)

435, 451
function call operator ()

466
increment operators 454
inequality operator 434,

452
is not automatic 423
member vs. non-member

functions 459
operator[] 453
operator+ 423
operator++ 455
operator<< 457, 458
operator= 446
operator== 451
operator>> 457
postfix increment operator

455
preincrement operator

(++) 455
rules and restrictions 424
self-assignment 421
stream extraction operator
>> 457

stream insertion and
stream extraction opera-
tors 432, 433, 440

subscript operator 436,
453

operator[]

const version 453
non-const version 453

operator+ 423

operator<< 457, 458
operator= 446, 511
operator== 451, 566
operator>> 457
optimizing compiler 77
optional class (C++17) 191
<optional> header 113
order in which constructors

and destructors are called
298, 300, 349

order in which operators are
applied to their operands
144

order of evaluation 145
ordered associative container

508, 509, 509, 533
O’Reilly Online Learning

xxxvi
free trial xlii

ostream class 244
seekp function 244
tellp function 245

ostream_iterator 514
ostringstream class 247,

451
out-of-bounds array ele-

ments 157
out of scope 127
out_of_bounds exception

431, 524
out_of_range exception

185, 224, 236, 492
header <stdexcept> 454

outer block 124
outer for statement 173
outliers 260
output xxvi
output iterator 515, 517, 560
output sequence 514
output stream 523
output to string in memory

112
output_iterator concept

(C++20) 559, 564
output_range concept

(C++20) 559, 564

outputting to strings in
memory 247

overflow_error exception
492

overhead of runtime poly-
morphism 373

overload set in overload reso-
lution 637, 658

overloaded function defini-
tions 134

overloaded parentheses opera-
tor 533

overloaded stream insertion
operator << 457

overloading 30, 134
concept based 652
constructor 297
function templates 651
functions 651
resolution 651

overloading << and >> 137
overloading operators 137
overload-resolution rules 453
override a function 357
override keyword 358, 361
OWASP (Open Web Appli-

cation Security Project)
327

P
P operation on Dijkstra sema-

phore 827
pack a tuple 681
pair 536
pair class template 679
pair of braces {} 34
par execution policy of a par-

allel algorithm (C++17)
762, 763

par_unseq execution policy
of a parallel algorithm
(C++17) 763

parallel algorithms 618
std::execution::par

execution policy 762,
763

Index 893

parallel algorithms (cont.)
std::execution::

par_unseq execution
policy 763

std::execution::

parallel_policy
class 763

std::execution::

parallel_se-

quenced_policy class
763

std::execution::seq
execution policy 763

std::execution::

sequenced_policy
class 763

std::execution::

unseq execution policy
763

std::execution::

unsequenced_policy
class 763

parallel execution 764
parallel operations 756, 756
parallel_policy class

(C++17) 763
parallel_sequenced_pol-

icy class (C++17) 763
parameter 107

list 107
parameter pack 674, 683

expansion 684
variadic template 685

parameterized stream manip-
ulator 53, 77
quoted 246

parameterized type 629
parentheses operator (()) 31
parentheses to force order of

evaluation 35
partial template specialization

703, 704
partial_sort algorithm

621
partial_sort_copy algo-

rithm 621

partial_sum algorithm 596,
598, 621

partition 753
partition algorithm 621
partition in a C++20 module

732
name 732, 733

partition_copy algorithm
621

partition_point algorithm
621

partitions
building a module with

735
partitions (C++20 modules

rules 733
pass-by-pointer 195
pass-by-reference 129, 191,

195, 196, 198
with a pointer parameter

used to cube a variable’s
value 196

with pointer parameters
195

with reference parameters
130, 195

pass-by-value 129, 130, 195,
197, 203

passing arguments by value
and by reference 130

path (C++17) 241
Paul Deitel

Full-Throttle training
courses xxxvii

Live Instructor-Led Train-
ing xxxvii

payroll system using runtime
polymorphism 363

.pcm (precompiled module)
file in clang++ 719, 722

Pearson eText xxxvii
Pearson Revel xxxvii
percent sign (%) (remainder

operator) 30
perform operations sequen-

tially 756

performance issues with ex-
ceptions 474, 477, 482

performance tips xxiii
performing operations con-

currently 756
permutable concept

(C++20) 575
pipeline in C++20 ranges 178
placeholder in a format string

66
placeholder type 854
placement delete 425
placement new 425
platform dependency 769
Plog logging library 494
plus function object 604
pointer xxvii, 190, 191, 208

arithmetic 208
arithmetic, machine de-

pendent 208
comparison 210
declared const 204
dereference (*) operator

193, 194
expression 208
handle 291
operators & and * 194
to a function 373, 373
to an implementation 385
to dynamically allocated

storage 445
to void (void *) 210

pointer 510
pointer-based array xxvii,

190, 191
pointer-based string 190,

xxvii, 190, 191, 216
pointer nested type in an it-

erator 667
poll analysis program 167
Poly class template (Face-

book Folly library) 409
polymorphic behavior 358
polymorphic processing 220
polymorphic video game 350

894 Index

polymorphically invoking
functions in a derived class
402

polymorphism 85, 334, 376
compile-time (static) 408,

410, 513, 628, 629
runtime 337

pop

member function of a
stack 632

member function of con-
tainer adapters 543

member function of pri-
ority_queue 546

member function of
queue 545

member function of
stack 543

pop_back member function
of list 530

pop_front 527, 532, 545
pop_heap algorithm 620

ranges version (C++20)
602

position number 155
positive infinity (inf) 471
post contract keyword

(GNU C++ early access im-
plementation) 499

postcondition 495
violations 495

postdecrement 58
postfix decrement operator

58
postfix increment operator 58
postincrement 58, 58, 59
postincrement an iterator 517
pow function 77, 104
pow member function of class
BigNumber 64

power 104
power of 2 larger than 100 47
#pragma once 284
#pragma once directive 286
pre contract keyword (GNU

C++ early access implemen-
tation) 499

precedence 30, 60, 75, 144
of arithmetic operators

xxvi
precedence chart 35
precedence not changed by

overloading 424
precision 53, 99
precision of a floating-point

value 50
precompiled module (.pcm)

file (clang++) 722
precondition 495

violations 495
predecrement 58
predefined function objects

604
predicate function 292, 528,

567, 571, 573, 579, 580,
581, 582, 586, 589, 592

preemptive scheduling 769
prefix decrement operator 58
prefix increment operator 58
preincrement 58, 58, 59
preincrement operator (++)

overloaded 455
“prepackaged” functions 103
preprocessor xxxi

directives 23
macro 104
state 714

prev_permutation algo-
rithm 621

prevent memory leak 429
primary module interface unit

(C++20 modules) 718,
733, 734

prime factorization 808
prime numbers

University of Tennessee
Martin Prime Pages
website 809

principal in an interest calcu-
lation 75

principle of least privilege
125, 203, 283, 306, 516

print spooling 776

printing
line of text with multiple

statements 26
multiple lines of text with

a single statement 26
priority_emplace mem-

ber function
of queue 546

priority_queue adapter
class 546, 599, 600, 601
emplace function 546
empty function 546
pop function 546
push function 546
size function 546
top function 546

priority_queue container
class template 509

privacy 148
private

access specifier 274, 275
base class 407
base-class data cannot be

accessed from derived
class 346

inheritance 341, 406
members of a base class

341
static data member 321

:private module fragment
(C++20 modules) 731

private virtual function
377

private virtual member
functions 409

probability 114
procedural programming xxv
producer 757, 776, 777
producer–consumer relation-

ship 776
profiling xxix, 759, 764
program in the general 337
program in the specific 337
program termination 302
program to an interface, not

an implementation 383

Index 895

programming paradigms
functional-style xxv
generic xxv
metaprogramming xxv
object-oriented xxv
procedural xxv

programming tips
C++ Core Guidelines

xxiii, xxxi
C++20 modules xxiii
common programming er-

rors xxiii
performance tips xxiii
security best practices xxiii
software engineering ob-

servations xxiii
project 5, 8
Project navigator 8
projection in C++20
std::ranges algorithms
567, 608

promise object (coroutines)
854
final_suspend member

function 854
get_return_object

member function 854
initial_suspend mem-

ber function 854
return_value member

function 854
return_void member

function 854
unhandled_exception

member function 854
yield_value member

function 855
promotion 53
promotion rules 109
prompt 29
property injection 386
protected 405

base class 407
base class member func-

tion 406
data, avoid 406
inheritance 341, 406, 407

protected (cont.)
member of a class 405
virtual function 377

pseudorandom numbers 117
-pthread compiler flag 771
public

member of a subclass 405
method 287

public access specifier 275
public base class 407
public inheritance 341, 406
public keyword 274
public services of a class 284
public static

class member 321
member function 321

pure abstract class 363, 384
pure specifier (= 0) for a vir-
tual function 363

pure virtual function 363
purview (C++20 modules) 718
push member function

container adapters 543
priority_queue 546
queue 545
stack 543, 632

push_back member function
vector 186, 520

push_front member function
deque 531
list 527

push_heap algorithm 620
ranges version (C++20) 601

put pointer 244

Q
quad-core processor 17
quadratic running time 550
quantifier

? 264
{n,} 264
{n,m} 264
* 263
+ 263
greedy 263
in regular expressions 262

quantum 768

questions, getting answered
xxxvi

queue 508
queue adapter class 545

back function 545
emplace function 545
empty function 545
front function 545
pop function 545
push function 545
size function 545

queue container class tem-
plate 509

<queue> header 111, 545,
546

quotation marks 24
quoted stream manipulator

246

R
race condition 783
radians 104
RAII (Resource Acquisition Is

Initialization) 417, 427,
431, 482, 487, 493, 776,
790

raise to a power 104
random-access iterator 515,

516, 531
operations 517, 664

random access to elements of
a container 508

<random> header 111, 113
random integers in range 1 to

6 114
random number 117

generation xxvi
random-number generation

distribution 114
engine 114

random_access_iterator
concept (C++20) 559, 569,
570, 575, 579, 600, 653

random_access_range con-
cept (C++20) 559, 575,
579, 600, 601, 602

896 Index

random_device random-
number source 118, 123

randomizing 117
die-rolling program 118

range (C++20) 177, 507, 514
range adaptor (C++20) 611

all 612
common 612
counted 612
drop 612, 615
drop_while 612, 615
elements 612, 617
filter 612
keys 612, 616
reverse 612, 614
split 612
take 612, 613
take_while 612, 614
transform 612, 615
values 612, 616

range-based for statement
159, 224
with initializer 161

range checking 224, 431
range concept (C++20) 559
range factory 613
range factory (C++20)

iota 613
iota for an infinite range

613
range of elements 525
range-v3 project 622
range variable 160, 172
ranges concepts (C++20) 559
<ranges> header (C++20)

113, 177
ranges library (C++20) 177,

253
rapidcsv header-only library

251
Document class 252
GetColumn member func-

tion of class Document
252, 254

GetRowCount member
function of class Docu-
ment 255

rapidcsv library 223
RapidJSON library 251
raw data 246
raw string literal 249
Raz, Saar xxxix
rbegin

member function of con-
tainers 512

member function of vec-
tor 522

reachability (C++20 modules)
744

read 665
read and print a sequential file

243
read data sequentially from a

file 243
readers and writers problem

804
std::shared_mutex

class (C++11) 804
ready thread state 768
real-time systems xxi
record 240
recursion xxvi, 139, 146, 147

step 140, 144
recursive

call 140, 144
factorial 142
function 139
solution 147

reddit.com/r/cpp/ xxxvi
reduce

algorithm 596, 597, 621
parallel algorithm

(C++17) 766
reduction 163, 174, 175,

180, 597, 685
refactor 338

payroll example 384
reference 510

argument 195
parameter 129, 129
to a constant 131
to a local variable 131
to an int 129
to private data 302

reference nested type in an
iterator 667

<regex> header 261, 265
regex library

cmatch 265
match_results class 265
regex_constants 266
regex_match function

261
regex_replace function

265
regex_search algorithm

265
regex_search function

265
smatch 265

regular expression 103, 247,
259, 266
? quantifier 264
[] character class 262
{n,} quantifier 264
{n,m} quantifier 264
* quantifier 263
\ metacharacter 261
\d character clas 262
\D character class 262
\d character class 262
\S character class 262
\s character class 262
\W character class 262
\w character class 262
+ quantifier 263
caret (^) metacharacter

263
case insensitive 261
case sensitive 261
character class 261, 262
ECMAScript grammar

260
escape sequence 262
flavors 260
grammars 260
metacharacter 261
regex_con-

stants::icase 266
search pattern 260
validating data 260

http://reddit.com/r/cpp/

Index 897

relational
function object 604
operator 31, 32

release
a lock 787, 790
a semaphore 827

release member function of
std::binary_sema-

phore 829, 830
relinquish the processor

(yield) 819
remainder after integer divi-

sion 30
remainder compound assign-

ment operator, %= 57
remainder operator (%) 30,

30, 31, 858
remove algorithm 620

ranges version (C++20)
568, 569

remove member function of
list 531

remove_copy algorithm 620
ranges version (C++20)

568, 570
remove_copy_if algorithm

620
ranges version (C++20)

568, 572
remove_if algorithm 620

ranges version (C++20)
568, 571

remove_prefix member
function of string_view
238

remove_suffix member
function of string_view
238

rend

member function of con-
tainers 512

member function of vec-
tor 522

repetition
counter controlled 52
sentinel controlled 50, 51,

52

repetition statement 42
do...while 42
for 42
while 42, 49, 52

replace == operator with = 92
replace algorithm 572, 620

ranges version (C++20)
572, 572

replace member function of
class string 232, 233

replace_copy algorithm
620
ranges version (C++20)

572, 573
replace_copy_if algorithm

620
ranges version (C++20)

572, 574
replace_if algorithm 620

ranges version (C++20)
572, 573

representational 78
representational error 78
representational error in float-

ing point 78
reproducibility xxxiv
request_stop member

function of a
std::jthread 807, 808

requirements 20
requires clause (C++20)

640
requires expression

(C++20) 654
reserve member function of

class string 230
reserved word 42

false 44
true 44

reset 547
resize member function of

class string 230
Resource Acquisition Is Ini-

tialization (RAII) 417,
427, 482, 487, 493

resource leak 429, 475, 493
resource sharing 769

result (concurrencpp)
841

rethrow an exception 477
return a value 24
Return key 29
return statement 25, 108,

140
return_value function of a

coroutine promise object
854

return_void function of a
coroutine promise object
854

returning a reference from a
function 131

returning a reference to a
private data member 302

reusable software components
17

reuse 18, 37, 272
Revel (Pearson) xxxvii
reverse algorithm 620

ranges version (C++20)
584, 587

reverse range adaptor
(C++20) 612, 614

reverse_copy algorithm
620
ranges version (C++20)

588, 589
reverse_iterator 510,

512, 516, 522
rfind member function of

class string 231
right align > (C++20 text for-

matting) 99, 100
right brace (}) 24, 49, 52
right fold

binary 689
unary 688

right operand 25
right shift operator (>>) 416
right stream manipulator 77
right value 93
rightmost (trailing) argu-

ments 133
robust application 469

898 Index

rolling dice 115, 119
rotate algorithm 620
rotate_copy algorithm 620
round a floating-point num-

ber for display purposes 54
round-robin scheduling 769
rounding numbers 54, 78,

104
rows 170
RSA Public-Key Cryptogra-

phy algorithm
 808

RTTI (runtime type informa-
tion) 409

Rule of Five (for special mem-
ber functions) 444

Rule of Five defaults 444
Rule of Zero (for special

member functions) 279,
444, 665

rules of operator precedence
30

run-length encoding 94
running state 768
runtime (concurrencpp)

841, 843
runtime concept idiom 408

private virtual mem-
ber functions 409

runtime polymorphism 337
using class hierarchies 376
with virtual functions

358
runtime type information

(RTTI) 409
runtime_error class 472,

480, 491, 492
what function 476

rvalue ("right value") 93
rvalue (“right value”) 131
rvalue reference (&&) 435,

438, 439, 447, 448, 449

S
SalariedEmployee class

header 367
implementation file 368

same_as concept (C++20)
649

sample algorithm 620
savings account 75
schedule a task to execute 844
scheduling threads 769
scientific notation 53
scope 124, 719

class 124
example 125
file 125
function 124
function parameter 124
namespace 124

scope of a variable 73
scope resolution operator (::)

121, 124, 287, 321, 399,
634, 720

scoped enumeration (enum
class) 120

scoped_lock class (C++11)
791

scraping 260
screen 23
screen-manager program 350
scrutinize data 287
search algorithm 620
search pattern (regular expres-

sions) 260
search_n algorithm 620
searching 508, 578

arrays xxvi, 168
second data member of pair

536
secondary storage 16
secondary storage device 222
security 148

best practices xxiii
flaws 157

seed
nondeterministic 118
the random-number gen-

erator 117, 118
seek

direction 245
get 244
put 244

seekg function of istream
244

seekp function of ostream
244

selection 43
selection statement xxvi, 41, 42

if 42, 44
if...else 42, 44, 45, 52
switch 42, 84
with initializer 85

self-assignment 449
in operator overloading

421
self-driving car 469
semaphore 826

acquire 827
release 827

<semaphore> header
(C++20) 113, 827

semicolon (;) 24, 34
send a message to an object 19
sentinel (C++20 ranges) 525
sentinel-controlled iteration

xxvi, 51, 52
sentinel value 50, 52
separate interface from imple-

mentation 284
seq execution policy (C++17)

763
sequence 41, 43, 170, 514
sequence container 508, 508,

516, 518, 524, 528, 545
back function 524
empty function 525
front function 524
insert function 524

sequence of random numbers
117

sequenced_policy class
(C++17) 763

sequential file 240, 243, 246,
247

serialization xxvii
avoid language native seri-

alization 327
pure data formats 327
security 327

Index 899

serializing data 326
set associative container

533, 537
set container class template

509
set function

validate data 279
<set> header 111, 533, 537
set_new_handler function

487, 489, 490
set operations of the stan-

dard library 590
set_difference algorithm

620
ranges version (C++20)

589, 591
set_intersection algo-

rithm 620
ranges version (C++20)

589, 591
set_symmetric_differ-

ence algorithm 620
ranges version (C++20)

589, 591
set_union algorithm 620

ranges version (C++20)
592

setprecision stream ma-
nipulator 53

setw parameterized stream
manipulator 77

SFINAE (substitution failure
is not an error) 410, 658
obviated by C++20 con-

cepts 410
shadow 315
shallow copy 445
Shape class hierarchy 340
share data 757
shared buffer 777
shared mutable data 757, 784
shared_lock class (C++11)

804
shared_mutex class (C++11)

804
<shared_mutex> header 112
shared_ptr class 428

shell prompt on Linux 4
shift_left algorithm 620
shift_right algorithm 620
shifted, scaled integers 115
short-circuit evaluation 90,

642
shrink_to_fit member

function of classes vector
and deque 522

shuffle algorithm 620
ranges version (C++20)

574, 575
side effect 129

of an expression 125, 129,
145

signal
a latch 820
operation on semaphore

827
signal value 50
signature 108, 135

of overloaded prefix and
postfix increment oper-
ators 455

overridding a base-class
virtual function 357

SIMD (single instruction,
multiple data) instructions
759

simple condition 88
simple requirement in C++20

concepts 654, 654
simulation

techniques xxvi
sin function 104
sine 104
single-argument constructor

464, 465
single-entry/single-exit con-

trol statements 43
single inheritance 340, 399,

401, 402
single instruction, multiple

data (SIMD) instruction
759

single-line comment 23

single-precision floating-
point number 77

single quote 25
single quote (') 216
single-selection statement 42

if 44
single-threaded application 757
single-use gateway 820
singly linked list 508, 527
six-sided die 114
size

of a string 227
of a vector 519
of an array 205

size global function 181
size member function

array 155
containers 513
initializer_list 443
priority_queue 546
queue 545
stack 543, 632
string_view 239
vector 181

size_t type 157, 205
size_type 510
sizeof operator 205, 206

applied to an array name
returns the number of
bytes in the array 206

used to determine stan-
dard data type sizes 206

sizeof... operator 674
sleep interval 768
sleep_for function of the
std::this_thread name-
space (C++11) 773

sleep_until function of the
std::this_thread name-
space (C++11) 773

sleeping thread 768
slicing (logic error) 475
small circles in the UML 41
smart pointer 427

make_unique function
template 428, 430

unique_ptr 431

900 Index

smatch 265
str member function 267

software engineering
information hiding 274
observations xxiii
reuse 37, 272, 283
separate interface from im-

plementation 284
software reuse 103, 630
solid circle in the UML 41
solid circle surrounded by a

hollow circle in the UML 41
solution 5
Solution Explorer 5
Solution Explorer in Visual

Studio Community Edi-
tion 5

sort algorithm 168, 169,
459, 620, 759
ranges version (C++20)

578, 579, 609, 610
sort member function of
list 528

sort_heap algorithm 620
ranges version (C++20)

601
sorting 508, 578

arrays xxvi
arrays 168
order 580, 586
related algorithms 619
strings 112

space–time trade-off 521
spaceship operator (<=>)

xxviii, 459
span class template (C++20)

191, 210
back member function

214
first member function

215
front member function

214
last member function

215
subspan member func-

tion 215

 header (C++20) 113,
191, 210

spdlog logging library 494
special characters 28
special member functions

xxviii, 278, 417, 431
constructor 275, 278
containers 511
copy assignment operator

xxviii, 278, 417, 420,
446

copy constructor xxviii,
278, 417, 446

destructor xxviii, 279,
298, 417

move assignment operator
xxviii, 279, 417

move constructor xxviii,
278, 417

remove with = delete
444

Rule of Five 444
Rule of Zero 444

specialized memory algo-
rithms 621

specialized memory opera-
tions 619

spiral 143
splice member function of
list 528

splice_after member
function of class template
forward_list 528

split range adaptor (C++20)
612

spooling 777
spurious wakeup 789
sqrt function of <cmath>

header 104
square function 110
square root 104
<sstream> header 112, 247,

247
stable_partition algo-

rithm 621
stable_sort algorithm 621
stack 507

stack adapter class 509, 543
emplace function 543
empty function 543
pop function 543
push function 543
size function 543
top function 543

Stack class template 629,
632, 633

stack data structure 629, 630
<stack> header 111, 543
stack overflow 140
stack unwinding 476, 479,

487
stackful coroutine 840
stackless coroutine 840
StackOverflow xxxiii, xxxvi
stackoverflow.com xxxvi
stale value 784
Standard C++ Foundation

xxxv
standard C++20 concepts by

header 642
standard concepts (C++20)

640
standard data type sizes 206
standard document (C++)

xxxv
standard exception classes

492
bad_alloc 487, 491
bad_cast 491
bad_typeid 491
exception 491, 491
invalid_argument 492
length_error 492
logic_error 491
out_of_range 492
overflow_error 492
runtime_error 472,

480, 491, 492
underflow_error 492

standard input stream object
(cin) 240

standard library 103
class string 35, 418
deque class template 532

http://stackoverflow.com

Index 901

standard library (cont.)
exception hierarchy 490
headers 112
list class template 527
map class template 541
multimap class template

539
multiset class template

534
priority_queue adapter

class 547
queue adapter class tem-

plates 545
set class template 538
stack adapter class 543
vector class template 519

standard library algorithms
minimum requirements

556
standard library exception

filesystem_error 494
standard library exception hi-

erarchy 490
standard output object (cout)

24
standard output stream object

(cout) 240
Standard Template Library

(STL) 506
Start Window 4
Start Window in Visual Stu-

dio Community Edition 4
starts_with member func-

tion of class string
(C++20) 38

starts_with member func-
tion of string_view 239

starvation 769
state dependent 777
statement 24

break 83, 86
continue 86
control statement 41, 43
control-statement nesting

43
control-statement stacking

43

statement (cont.)
do...while 42, 78
double selection 42
empty 46
for 42, 71, 75, 77
if 31, 42, 44
if...else 42, 44, 45, 52
iteration 41, 47
looping 42
multiple selection 42
nested control statements

54
nested if...else 45
repetition 42
return 25
selection 41, 42
single selection 42
spread over several lines 34
switch 42, 80, 84
throw 287
try 185
while 42, 47, 49, 52, 70

static binding 358
static code analysis tools xxxii

clang-tidy xxxii, xlviii
cppcheck xxxii, xlviii

static data member 320,
321
save storage 320
tracking the number of

objects of a class 323
static keyword 123, 124
static local object 299, 301,

302
static local variable 125,

127, 564
thread-safe initialization

815, 816
static member 321
static member function

321
static polymorphism 408,

410, 629
static polymorphism (com-

pile-time) 628
static_assert declaration

659

static_cast operator 52,
60, 92

statistics
measures of central ten-

dency 257
std namespace 24
std::add_const metafunc-

tion 703
std::advance function 652
std::as_const function

(C++17) 676
std::async (C++11) 808
std::async function tem-

plate 814
std::atomic class template

817
std::atomic type 817
std::atomic_ref class tem-

plate (C++20) 817, 820
std::barrier (C++20) 820,

823
std::binary_semaphore

(C++20) 827
acquire member func-

tion 829, 830
release member func-

tion 829, 830
std::call_once (C++11)

816
std::call_oncedefault

para font> (C++11) 816
std::chrono namespace

761
std::chrono::duration

class 761
std::cin 29
std::condition_vari-

able class
notify_one function

789, 790, 791, 799
std::condition_vari-

able class (C++11) 787
std::condition_vari-

able_any class (C++11)
805
notify_all function 805

902 Index

std::counting_sema-

phore (C++20) 827
std::cout 24
std::distance function

652
std::execution::par exe-

cution policy (C++17)
762, 762, 763

std::execution::

par_unseq execution poli-
cy (C++17) 763

std::execution::

parallel_policy class
(C++17) 763

std::execution::paral-

lel_sequenced_policy
class (C++17) 763

std::execution::seq exe-
cution policy (C++17) 763

std::execution::

sequenced_policy class
(C++17) 763

std::execution::unseq
execution policy (C++17)
763

std::execution::unse-

quenced_policy class
(C++17) 763

std::floating_point con-
cept 641, 648

std::future class template
814

std::hash 533
std::initializer_list

class template 443
std::integral concept

641, 648
std::invoke function 610
std::jthread (C++20)

join function 775
request_stop function

807, 808
std::latch (C++20) 820

count_down member
function 821

wait member function
821, 821

std::launch enum
async 814
deferred 814

std::lock_guard class
(C++11) 791

std::move function 438,
439

std::mutex class (C++11)
787, 788

std::numeric_lim-

its::max() 761
std::once_flag (C++11)

816
std::optional class

(C++17) 191
std::packaged_task func-

tion template 815
std::promise (C++11) 814
std::ranges namespace

507, 556
all_of algorithm 578,

580
any_of algorithm 578

std::ranges namespace
(C++20) 525, 560, 561,
563, 566, 568, 572, 574,
578, 582, 584, 588, 589,
592, 594, 599

std::ranges::count_if
algorithm (C++20) 257,
258

std::ranges::distance
algorithm 663

std::reverse_iterator
iterator adatpor 672

std::same_as concept
(C++20) 649

std::scoped_lock class
(C++17) 791

std::shared_future class
template 815

std::shared_lock class
(C++11) 804

std::shared_mutex class
(C++11) 804

std::size global function
181

std::stop_callback
(C++20) 808

std::stop_source for co-
operative cancellation
(C++20) 807

std::stop_token for coop-
erative cancellation
(C++20) 807
stop_requested func-

tion 807
std::string_literals

168
std::this_thread name-

space
yield function 819

std::this_-

thread::get_id function
(C++11) 772

std::this_-

thread::sleep_for
function (C++11) 773

std::this_-

thread::sleep_until
function (C++11) 773

std::thread class

(C++11) 771
std::thread::id 772
std::unique_lock class

(C++11) 788, 789
std::variant class template

391
for runtime polymor-

phism 391
std::visit standard library

function 391, 395, 396
std:jthread (C++20) 771,

771, 776
std.core in the Microsoft

modularized standard li-
brary 740

std.filesystem in the Mic-
rosoft modularized stan-
dard library 740

std.memory in the Microsoft
modularized standard li-
brary 740

Index 903

std.regex in the Microsoft
modularized standard li-
brary 740

std.threading in the Mic-
rosoft modularized stan-
dard library 741

<stdexcept> header 112,
472, 491
out_of_range 454

steady_clock class 761
sticky setting 54, 77
STL (Standard Template Li-

brary) 506
stod function 235
stof function 235
stoi function 235
stol function 235
stold function 235
stoll function 235
stop_requested member

function of a
std::stop_token 807

<stop_token> header 113
<stop_token> header

(C++20) 805, 820
stoul function 235
stoull function 235
str member function of an
smatch 267

str member function of class
ostringstream 247, 248

stream extraction operator >>
29, 34, 137, 416, 456

stream input/output 23
stream insertion operator <<

("put to") 416
stream insertion operator <<

25, 29, 137, 243, 456
stream manipulator 77

boolalpha 37
quoted 246

stream manipulators 53
fixed 53
left 77
right 77
setprecision 53
setw 77

stream of characters 24
streaming 757
<string> header 112
string 168, 616

C style 190
pointer based 190
processing xxvii

string

iterators 568
string built-in type

in JSON 326
string class 35, 36, 112,

273, 417, 418, 509
assignment 223
assignment and concate-

nation 223
at member function 422
concatenation 223
empty member function

38, 419
ends_with member func-

tion (C++20) 38
find functions 230
find member function

230
insert functions 234
insert member function

234
length member function

37
starts_with member

function (C++20) 38
subscript operator [] 224
substr member function

421
string concatenation 38, 685
string concatenation assign-

ment 420
string formatting 65

C++20 65, 66, 67
<string> header 37
string literal 24

raw string literal 249
string object literal 168,

420, 616, 635
string of characters 24
string processing 103

string stream processing
247

string_literals 168
string_view class (C++17)

190, 236, 274
find member function

239
remove_prefix member

function 238
remove_suffix member

function 238
size member function

239
starts_with member

function 239
<string_view> header

(C++17) 236
string::npos 231
strings as full-fledged objects

216
strong encapsulation 722,

743
strong exception guarantee

446
copy-and-swap idiom 477

strong exception safety guar-
antee 477

Stroustrup, Bjarne
website xxxv

struct 324
structured binding (C++17)

595
unpack elements 577

structured binding declara-
tion 577

structured programming 40,
88

student-poll-analysis program
167

subclass 336
submit function of a con-
currencpp executor 844

subobject of a base class 402
subproblem 140
subscript 155
subscript operator 532

map 541, 542

904 Index

subscripted name used as an
rvalue 436

subscripting 531
subspan member function of
span class template
(C++20) 215

substitution cipher 148
substr 227
substr member function of

class string 226, 421
substring of a string 226
subtract one pointer from an-

other 208
subtraction 30, 31
subtraction compound as-

signment operator, -= 57
sufficient conditions for dead-

lock 770
suffix member function of

class match_results 267
sum of the elements of an ar-
ray 163, 174

superclass 336
survey 166, 168
suspend a coroutine’s execu-

tion 839
suspend_always (corou-

tines) 854
suspend_never (corou-

tines) 854
suspension point (coroutines)

855
Sutter, Herb 376

blog 482, 496
ISO C++ Convener 496
Sutter’s Mill Blog xxxv

swap

member function of class
unique_ptr 459

standard library function
459

swap algorithm 583
swap member function

of containers 513
of list 530

swap member function of
class string 227

swap_ranges algorithm 582,
620
ranges version (C++20)

583, 584
swapping strings 227
switch logic 85
switch multiple-selection

statement 42, 80, 84
case label 83
controlling expression 83
default case 83, 84

switch with initializer 85
synchronization 784, 785
synchronization point 820
synchronized block of code

787
synchronized threads 757
synchronous error 481
syntax coloring conventions

in this book xxxiii
system_clock class 761

T
Tab key 24
tab stop 25
table of values 170
tabular format 157
tag dispatch 411, 658

obviated by C++20 con-
cepts 411

tail of a queue 508
tails 114
take range adaptor (C++20)

612, 613
take_while range adaptor

(C++20) 612, 614
tan function 104
tangent 104
task (concurrencpp) 841
task for asynchronous opera-

tions 836
tellg function of istream

245
tellp function of ostream

245
template definition 138
template function 138

template header 630
template instantiations 137
template keyword 137, 630
template metaprogramming

xxv
template metaprogramming

(TMP) xxv, 628, 693
metafunction 696
Turing complete 694
type metafunction 697
value metafunction 697

template parameter 630
template parameter list 137
templated lambda (C++20)

636
templated lambda expression

634
templates

compile-time code genera-
tion 410

constraints 411
deduction guide 673
default type argument for

a type parameter 678
defining in C++20 mod-

ules 719
partial specialization 703
requirements for a type

410
type argument 630
variable template 678

temporary value 52, 110
terminate a program 489
terminate normally 242
terminate standard library

function 480
terminate successfully 25
terminated state 769
terminating condition 141
terminating right brace (}) of

a block 124
termination

abort function 480, 489
exit function 489
terminate function 480

termination condition 157

Index 905

termination housekeeping
298

termination model of excep-
tion handling 475

termination test 146
ternary conditional operator

(?:) 145
ternary operator 47
test 548
test characters 112
text editor 243
text formatting 98

C++20 65, 66, 67
format specifier 99

text-printing program 23
the cloud 326
this pointer 315, 316, 324,

447, 450
used explicitly 315
used implicitly and explic-

itly to access members
of an object 315

thread 757
exception 771
of execution 757
scheduling 768, 782
state 767
synchronization 784

thread class (C++11) 771
thread-coordination primi-

tives 816
thread-coordination types

820
<thread> header 112, 771
thread launch policy 814
thread-local storage

thread safe 758
thread pool 841
thread safe 757, 783, 787

one-time initialization
815

atomic type 757
immutable data 757
linked data structures 819
mutual exclusion 757
thread local storage 758

thread scheduler 769

thread states
blocked 769
born 768
ready 768
running 768
terminated 769
timed waiting 768
waiting 768

thread synchronization
coordination types 820

thread_executor (concur-
rencpp) 844

thread_local storage class
(C++11) 758

thread_pool_executor
(concurrencpp) 841, 844

thread::id 772
C++20) xxviii, 113, 279,

459, 460, 511
three-way comparison opera-

tor (<=> xxviii, 113, 279,
459, 460, 511

throw 476, 491
standard exceptions 491

throw an exception 184, 185,
287, 287, 474
from a constructor 484

throw point 474, 480
tightly coupled 383
tilde character (~) 298
time and date utilities 761
Time class

constructor with default
arguments 293

definition 285
definition modified to en-

able cascaded member-
function calls 317

member-function defini-
tions 286

member-function defini-
tions, including a con-
structor that takes
arguments 294

timed waiting thread state 768
timer for performing a task in

the future 836

times 103
timeslice 768, 769
Titanic disaster dataset 223,

253
tl::generator class tem-

plate (generator library)
837

TMP (template metapro-
gramming) 628, 693

to_array function of header
<array> (C++20) 191,
201

to_string function 235
token 246
top member function

of priority_queue 546
of stack 543

top member function of a
stack 631

top of a stack 507
topical xxi
trailing requires clause 649
trailing return types 563
transaction processing 539
transform algorithm 620

ranges version (C++20)
574

transform range adaptor
(C++20) 612, 615

transform_exclusive_s-

can algorithm 621
transform_exclusive_s-

can parallel algorithm
(C++17) 766

transform_inclusive_s-

can algorithm 621
transform_inclusive_s-

can parallel algorithm
(C++17) 766

transform_reduce algo-
rithm 621

transform_reduce parallel
algorithm (C++17) 766

transforming data 260
transition arrow in the UML

41

906 Index

transition from the preproces-
sor to modules 712

translation look-aside buffers
(TLBs) 553

translation unit 679, 710,
713, 732
non-module 725
part of a module 717

treat warnings as errors 131
trigonometric cosine 104
trigonometric sine 104
trigonometric tangent 104
triple indirection 373
trivially copyable type 819,

820
true 32, 44
truncate 30, 241
truncate fractional part of a

calculation 50
truncate fractional part of a
double 109

truth tables for logical opera-
tors 88, 89

try block 185, 477, 480
expiration 475
nested 479

try statement 185
tuple

pack 681
unpacking 681

tuple class template 679
getting a tuple member

681
make_tuple function 681

<tuple> header (C++11)
111, 679

Turing complete 694
two-dimensional array 170
type alias 680
type argument 430, 604, 630
type category 648
type erasure 409
type-erasure-based runtime

polymorphism 409
type metafunction 697

predefine 704
type name, alias 394

type of the this pointer 315
type parameter 137, 138,

630
type requirement in C++20

concepts 640, 654, 655
type-safe linkage 135
type-safe union 394
type trait 628

is_base_of 699
value member 646

<type_traits> header 701,
644

typeid 491
<typeinfo> header 112
typename keyword 137, 630
typename... in a variadic

template 683

U
Ubuntu Linux 7

in the Windows Subsys-
tem for Linux 7

UML (Unified Modeling
Language)
activity diagram 41, 41,

47, 79
arrow 41
diamond 44
dotted line 42
final state 41
guard condition 44
merge symbol 47
note 41
solid circle 41
solid circle surrounded by

a hollow circle 41
UML class diagram 340
unary left fold 686, 688
unary minus (-) operator 53
unary operator 53, 90, 193
unary operator overload 424
unary plus (+) operator 53
unary predicate function 571,

573
unary right fold 686, 688
unary scope resolution opera-

tor (::) 133

uncaught exception 479, 480
unconstrained function tem-

plate 637
undefined behavior 63, 194,

426, 445
division by zero 471

undefined value 278
underflow_error excep-

tion 492
underlying data structure 546
underscore (_) 28
unhandled_exception

function of a coroutine
promise object 854

Unicode character set 85
uniform_int_distribu-

tion 114
unincremented copy of an ob-

ject 455
union 394
unique algorithm 620

ranges version (C++20)
584, 586

unique keys 533, 537, 541
unique member function of
list 530

unique_copy algorithm 620
ranges version (C++20)

588, 589
unique_lock class (C++11)

788, 789
unlock function 790

unique_ptr 431
unique_ptr class (C++11)

428, 428, 431
built-in array 430
create with make_unique

function template 446
get member function 444
swap member function 459

universal-time format 287
University of Tennessee Mar-

tin Prime Pages website
809

UNIX 82, 242
unlock function of a
unique_lock 790

Index 907

unordered associative con-
tainers 508, 509, 511, 533

unordered_map associative
container class template
509, 533, 541

<unordered_map> header
111, 539, 541

unordered_multimap asso-
ciative container class tem-
plate 509, 533, 539

unordered_multiset asso-
ciative container class tem-
plate 509, 533

unordered_set associative
container class template
509, 533, 537

<unordered_set> header
111, 533, 537

unpack elements (C++17
structured binding 577

unpacking a tuple 681
Unruh, Erwin 694
unseq execution policy

(C++17) 763
unsequenced_policy class

(C++17) 763
unsigned char data type 110
unsigned data type 110
unsigned int data type 110
unsigned integer types 109
unsigned long data type 110
unsigned long int data type

110
unsigned long long data

type 110
unsigned long long int

data type 110
unsigned short data type

110
unsigned short int data

type 110
unwinding the function call

stack 479
update records in place 246
upper_bound algorithm 620

ranges version (C++20)
592, 593

upper_bound function of as-
sociative container 536

uppercase letter 28, 112
user-defined function 105
user-defined type 120, 121,

272, 462
using a dynamically allocated
ostringstream object
247

using a function template 137
using arrays instead of
switch 165

using declaration 33, 720
in headers 274

using declaration to create an
alias for a type 394, 680

using directive 33, 720
in headers 274

using enum statement 124
using function swap to swap

two strings 227
using standard library func-

tions to perform a heapsort
600

using virtual base classes
403

Utilities area (Xcode) 8, 9
utility function 292
<utility> header 112

exchange function 448

V
V operation on semaphore

827
validate a first name 262
validate data in a set function

279
validating data (regular ex-

pressions) 260
value initialization 159, 199,

278, 325, 426, 682
memory 443
objects 426
rules 426

value member of a type-trait
class 646

value metafunction 697

value of an array element
155

value_type 510
nested type in an iterator

667
values range adaptor

(C++20) 612, 616
variable 27
variable scope 73
variable template (C++14)

646, 678
variadic function template

686
compile-time recursion

682
typename... 683

variadic template 628, 674,
679
parameter pack 674, 683
sizeof... operator 674

variadic template parameter
pack 685

<variant> header 391
variant standard library

class template 391
vector 631

capacity 519
vector class 180, 482
vector class template 154,

508, 519
capacity function 519
crbegin function 522
crend function 522
erase member function

569
push_back function 520
push_back member func-

tion 186
push_front function 520
rbegin function 522
rend function 522
shrink_to_fit member

function 522
vector class template ele-

ment-manipulation func-
tions 523

908 Index

vector hardware operations
759

<vector> header 111, 180
vector mathematics 618, 759
vectorized execution 764
version control tools xxxiv
video streaming 795
videos

C++20 Fundamentals
LiveLessons xxxvii

view (C++20) 177, 507, 611
all range adaptor 612
common range adaptor 612
composable 177
composing 611
counted range adaptor

612
drop range adaptor 612,

615
drop_while range adap-

tor 612, 615
elements range adaptor

612, 617
filter range adaptor 612
iota range factory 613
iota range factory for an

infinite range 613
keys range adaptor 612,

616
reverse range adaptor

612, 614
split range adaptor 612
take range adaptor 612,

613
take_while range adap-

tor 612, 614
transform range adaptor

612, 615
values range adaptor

612, 616
view into a container 210
viewable_range (C++20)

611
views of contiguous container

elements 210
views::filter 178, 179
views::iota 178

Vigenère secret key cipher
147, 148, 149, 150

violation handler (contracts)
503
default 500

virtual base class 402, 403
virtual destructor 361
virtual function 337, 357,

357, 373, 375, 402
as an internal implementa-

tion detail 382, 412
call 375
call illustrated 374
overhead 373
private 377, 409
protected 377
table (vtable) 373
"under the hood" 373

virtual inheritance 403
virtual memory 488, 490
Virtuality (paper) 376
visibility (C++20 modules)

744
visit standard library func-

tion 391, 395, 396
visitor pattern 411
Visual C++ xxii
Visual C++ compiler xliv
Visual Studio Community

Edition xliii, 4
Command Prompt win-

dow 6
Create a New Project dia-

log 5
Create a New Project-

Configure your new
project 5

Empty Project template 5
Solution Explorer 5
Start Window 4

void * 210
void return type 107, 108,

109
volume of a cube 128
vtable 373, 376
vtable pointer 376
vtable pointer 376

W
wait-for (necessary condition

for deadlock) 770
wait function of a condi-
tion_variable 789

wait member function of a
std::latch 821

wait operation on semaphore
827

waiting thread 790
state 768

“walk off” either end of an ar-
ray 430

-Wall GNU g++ compiler
flag 93

warnings
treat as errors 131

weak_ptr class (C++11) 428
weakly_incrementable

concept (C++20) 561
web service 326
Welcome to Xcode window

8
what virtual function of class
exception 186, 475, 476,
488

when_all function (concur-
rencpp library) 848

when_any function (concur-
rencpp library) 849

while iteration statement 42,
47, 49, 52, 70

whitespace characters 23, 24
whole number 27
Williams, Anthony xxxix
Windows 82
Windows Subsystem for Li-

nux (WSL) xxvi, xlv, 7
word character 262
worker_thread_executor

(concurrencpp) 845
workflow 41
workspace window 8

X
-x c++-system-header

compiler flag (g++) 714

Index 909

x86-64 gcc (contracts) 498
Xcode xliii

Debug area 9
Editor area 8, 9
Navigator area 8
Utilities area 8, 9
Welcome to Xcode win-

dow 8
Xcode navigators

Issue 8
Project 8

Xcode on Mac OS X 4

XML (eXtensible Markup
Language) 326

xvalue (expiring value) 438

Y
yield function of namespace
std::this_thread 819

yield the processor 819
yield_value function of a

coroutine promise object
855

Yoda condition 93

Z
zero-overhead principle of

C++ features 470
ZIP file format 94
zip_file class from the
minix-cpp library 94, 96

zip_info class from the
minix-cpp library 97

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Preface
	Before You Begin
	4 Control Statements: Part 2
	4.1 Introduction
	4.2 Essentials of Counter-Controlled Iteration
	4.3 for Iteration Statement
	4.4 Examples Using the for Statement
	4.5 Application: Summing Even Integers
	4.6 Application: Compound-Interest Calculations
	4.7 do…while Iteration Statement
	4.8 switch Multiple-Selection Statement
	4.9 C++17 Selection Statements with Initializers
	4.10 break and continue Statements
	4.11 Logical Operators
	4.11.1 Logical AND (&&) Operator
	4.11.2 Logical OR (||) Operator
	4.11.3 Short-Circuit Evaluation
	4.11.4 Logical Negation (!) Operator
	4.11.5 Example: Producing Logical-Operator Truth Tables

	4.12 Confusing the Equality (==) and Assignment (=) Operators
	4.13 Objects-Natural Case Study: Using the miniz-cpp Library to Write and Read ZIP files
	4.14 C++20 Text Formatting with Field Widths and Precisions
	4.15 Wrap-Up

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	W
	X
	Y
	Z

