Best Practices for Modern C++ e

++

CORE GUIDELINES
EXPLAINED

RAINER GRIMM

@

FREE SAMPLE CHAPTER
SHARE WITH OTHERS

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780136875673
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780136875673
https://plusone.google.com/share?url=http://www.informit.com/title/9780136875673
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780136875673
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780136875673/Free-Sample-Chapter

C++ Core Guidelines
Explained

This page intentionally left blank

C++ Core Guidelines
Explained

Best Practices for Modern C++

Rainer Grimm

vvAddison-Wesley

Boston ¢ Columbus * New York ¢ San Francisco * Amsterdam ¢ Cape Town
Dubai * London * Madrid * Milan * Munich ¢ Paris * Montreal * Toronto * Delhi « Mexico City
S0 Paulo ¢ Sydney * Hong Kong ¢ Seoul * Singapore * Taipei * Tokyo

Cover image: SVPanteon/Shutterstock

Author photo on page xxix: © Karin Ruider

Cippi illustrations on pages 3, 7, 15, 27, 53, 131, 139, 165, 213, 231, 279, 293, 301, 375, 383, 397: © Beatrix Jaud-Grimm

Figure 5.2: © Howard Hinnant

Figure 9.7: © Matt Godbolt

Figures 4.2, 4.3, 8.11, 9.11, 10.13, 10.16, 12.1, 16.9, A.1-A.4: © Microsoft Corporation 2021

Figures 3.1,4.3-4.8,5.2-5.20,6.1,7.1-7.4,7.6,7.7,8.1-8.9, 8.11-8.14,9.1-9.5, 10.5-10.11, 10.13, 10.14, 10.16, 10.17, 13.1-13.11,
13.13-13.17,13.24-13.27, 14.1-14.4, 15.1-15.4, 16.1-16.8, 18.1, 18.2, A.5, A.6: Screenshot of Konsole © KDE

Figures 10.2, 10.3: Screenshot of ThreadSanitizer © Google LLC

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic
versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intles@pearson.com.

Visit us on the Web: informit.com

Library of Congress Control Number: 2022930162

Copyright © 2022 Pearson Education, Inc.

The C++ Core Guidelines are copyright © Standard C++ Foundation and its contributors.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate contacts
within the Pearson Education Global Rights & Permissions Department, please visit www.pearson.com/permissions/.

ISBN-13: 978-0-13-687567-3
ISBN-10: 0-13-687567-X

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com
http://www.pearson.com/permissions/
https://github.com/isocpp/CppCoreGuidelines/graphs/contributors
https://howardhinnant.github.io/
https://github.com/google/sanitizers/wiki/ThreadSanitizerCppManual

Pearson’s Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all
learners. We embrace the many dimensions of diversity, including but not limited to
race, ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and
religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the poten-
tial to deliver opportunities that improve lives and enable economic mobility. As we
work with authors to create content for every product and service, we acknowledge
our responsibility to demonstrate inclusivity and incorporate diverse scholarship so
that everyone can achieve their potential through learning. As the world’s leading
learning company, we have a duty to help drive change and live up to our purpose to
help more people create a better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

e Everyone has an equitable and lifelong opportunity to succeed through
learning.

e Our educational products and services are inclusive and represent the rich
diversity of learners.

¢ Our educational content accurately reflects the histories and experiences of the
learners we serve.

¢ Our educational content prompts deeper discussions with learners and moti-
vates them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about
any concerns or needs with this Pearson product so that we can investigate and
address them.

e Please contact us with concerns about any potential bias at https://
www.pearson.com/report-bias.html.

http://www.pearson.com/report-bias.html
http://www.pearson.com/report-bias.html

This page intentionally left blank

Contents

List of selected C++ Core Guidelinesccviuriinnrennnnnn. xiii
List Of figures .. ovvvtin ittt ittt inneeneenennennennas xxiii
Listoftables .. .vvviiiiii ittt ettt ittt XXVii
Foreword ...ttt ittt i i ettt i i e e XXIX
Preface .o e e e e e e xxxi
Acknowledgmentsitiiiiiiiii it XXXVil
Abouttheauthorttt iinnnnnneeeenns XXXIX

PartI: The Guidelinescoviiiiiniininnenneene. 1

Chapter 1: Introductionouitinrnenenernrnenreneneneannns 3
Target readershipo 3

Al e 4

NON-QIMS vt ettt e e e e et et e 4
Enforcementt 4

SEIUCTULE .ttt et e e e e e e e 4

Major SECtIONS .« vttt et S

Chapter 2: Philosophyiiiii ittt i i i it eeeneannn 7
Chapter 3: Interfacesvvvvnvnenenennrnenreneneneneanenenens 15
The curse of non-const global variables 16
Dependency injection @S a CUTE .o v vt vteve e eieeeenenenanns 18

Making good interfaces 20

Related rules 25

Chapter 4: FUNCHONS + vt v vittnienientnneenenneenenneanennennas 27
Function definitions 28

Good NAMES .+ .ottt 28

Parameter passing: in and oUt it 32

Parameter passing: ownership semantics 38

vii

viil

CONTENTS

Chapter 5:

Chapter 6:

Chapter 7:

Chapter 8:

Value return SEmManticsuvueeent e enenn e, 42
When to return a pointer (T*) or an lvalue reference (T&) 42
Other functionst e e i 46
Lambdas 46
Relatedrules 52
Classes and Class Hierarchiescccvivnen... 53
Summary rules 54
CONCIELE TYPES « v v v vt e et ettt et e e et e e et 58
Constructors, assignments, and destructors 59
Default operations i 60
CONSLIUCLOr . vttt ettt et et 66
Copy and MOVE ..ottt 78
Destructors e 83
Other default operationscccviiiiinnon... 88
Class hierarchiesiiiiin i 98
Generalrules 99
Designing classescoiiiiniiini, 102
Accessing objects ... 114
Overloading and overloaded operators 117
Conventional Usagecvuiinininnnnennnn.. 118
UNIONS ottt e e e e e 126
Relatedrules 129
Enumerationscciiiuiiiiiiiiiiinnneennnens 131
Generalrules 131
Relatedrules 137
Resource Managementccciiiiiiiineeenn. 139
Generalrules i e 140
Allocation and deallocation oo, 145
SMAart POINTErS ... v ittt e e 150
Basicusaget 150
Function parametersot 156
Relatedruleso i 164
Expressions and Statementscoeeueeueenennennn 165
General ... 166
Declarationsiuiiti e 168
Names ..ottt e 168

Variables and their initialization 175

CONTENTS

Macros ..o 184
EXpressionsiuii i 186
Complicated eXpressionsueeeenereunenennnnn. 186
Pointers e 191
Orderof evaluationo, 194
CONVEISIONS vttt ittt e e e e 197
STAtEMENES .« v ittt e 199
[teration Statementsveue et e ennennennennn. 199
Selection StAtEMENTS .« v v v vt e ettt ie e e 201
Arithmetic . ..ot 204
Arithmetic with signed/unsigned integers 204
Typical arithmetic errorsovvvin ... 208
Relatedrules 210
Chapter 9: Performanceccitiitennennennenneanennann 213
Wrong OptimMIZationsv vttt vttt eneaeenenne. 214
Wrong assumptions .. .vvu e vt ettt it eaanene. 214
Enable optimization i 218
Relatedrules i 230
Chapter 10: CONCUITENCY « v vt v vt v vt e eeeeeeeneeneeneeneenennens 231
General guidelines 232
CONCUITEINCY .« v vttt ettt et e ettt ettt e e e s 245
LOoCKS © ot 246
Threads ..ot 250
Condition variables oL 254
Datasharingo, 257
Resourceso 261
Overlookeddanger, 264
Parallelism 266
Message PasSINg .« oottt e 269
Sending a value, or an exception 270
Sending a notification ool 272
Lock-free programmingoeuiiuernrnennnnnn.. 273
Relatedrules 277
Chapter 11: ErrorHandling0itiitiininnennennnnn 279
DesIgn e 281
CommUNICAtION . .ttt ettt ettt e e 281

Invariantst e 282

X

CONTENTS

Chapter 12:

Chapter 13:

Chapter 14:

Chapter 15:

Chapter 16:

Implementation i 283
DO7S o e 283
Dom’ts . e 286

If youcan’tthrow i 288

Relatedrules i 292

Constants and Immutability 293

USE CONSt .ottt e e 294

USE CONSEEXPI vttt et ettt et e ettt 298

Templates and Generic Programming 301

USE o e e 302

INterfaces . .vviii et 305
Advantages of functionobjects 307

Definitiont e 320
Alternative implementations with specializations 325

Hierarchies i 330

Variadic templates ...t 332
Perfect forwarding i 333
Variadic templatesc.. i 335

Metaprogrammingeoue vttt et et 336
Template metaprogrammingc.vveuenennnn.. 337
Type-traits library 345
Constant eXpressionsvuvue v vt eneen oo, 356

Otherrules i e 362

Relatedrules i 372

C-Style Programmingccoueenenneenennennn 375

Entire source code available 376

Entire source code not available 378

SourceFiles ittt it e 383

Interface and implementation files 384

NamMeSPaACES .« vt v it e 391

The Standard Libraryccititininenennnnnn. 397

CONTAINEIS ottt ettt ettt et e et ettt e ee s 398

Xt ettt e 404

Input and OULPUL « v v vttt e e e e 411

Relatedrules i e 419

CONTENTS

Part II: Supporting Sectionscovveeeee.n. 421
Chapter 17: Architectural Ideasccoiiuiiiiiennennnn. 423
Chapter 18: Nonrulesand Myths, 427
Chapter 19: Profilesciitiitinininiinernneeneenennnns 437
Pro.typeTypesafety ...t 438
Pro.boundsBoundssafety, 439
Pro.lifetimeLifetime safety 439

Chapter 20: Guidelines Support Librarycccivuvnen.... 441
VWS ottt e 441

Ownership pointersuiiein i 442

ASSCITIONS .« v vttt ettt e e e ettt 443

Utilities ..o e 443

Part III: Appendixescuovtiiinneernnnneeennnnn 445
Appendix A: Enforcing the C++ Core Guidelines 447
Visual Studioo 448

clang-tidy 450

Appendix B: Concepts .« vvvveenrntnenererneneeneneneaenannens 453
Appendix C: CONITACES + v vt vt v eeneeneeneeneeneeneeneenennens 457

X1

This page intentionally left blank

List of selected C++ Core
Guidelines

P1
P2
P3
P4
PS5
P6

P7
P8
P9
P10
P11

P12
P13
1.2
I.3
I.13
1.27
F4

k6
ES8
E15
E16

Expressideas directlyincode i 8
Write in ISO Standard C++ ... o 8
EXPress INTENT ..o ovt ittt e e 9
Ideally, a program should be statically typesafe 10
Prefer compile-time checking to run-time checking 10
What cannot be checked at compile-time should be checkable

ACTUN-TIMIE ottt et ettt et e et e e et e et e 11
Catchrun-timeerrorsearly i 11
Don’tleak any resourceso 1
Don’t waste time OF SPACE + v v v v v vttt et et ee et e e en e 11
Prefer immutable data to mutabledata, 12

Encapsulate messy constructs, rather than spreading through

thecode ..ot 12
Use supporting tools as appropriatecoeuiuiinenan... 13
Use support libraries as appropriatevvuiiinieneenaon.. 13
Avoid non-const global variables 16
Avoid singletons 17
Do not pass an array as a single pointercoooiiinon... 22
For stable library ABI, consider the Pimplidiom 23
If a function may have to be evaluated at compile-time,

declare it CONSteXPr .« .\ttt 29
If your function may not throw, declare it noexcept 30
Prefer pure functionst 31
Prefer simple and conventional ways of passing information 32

For “in” parameters, pass cheaply-copied types by value and

others by referencetoconst i e 34

xiii

Xiv List OF SELECTED C++ CORE GUIDELINES

E19

E17
E20
E21
F42
E44

E45
F48
EF46
E50

E52

ES3

ES1

ESS

C.1

C.2

C.J3

C4

C.5

Cc.7

C.8

C.9

C.10

C.11

C.20

C.21

C.22

For “forward” parameters, pass by TP&& and only std: : forward

the parameterttt e
For “in-out” parameters, pass by reference to non-const
For “out” output values, prefer return values to output parameters
To return multiple “out” values, prefer returning a struct or tuple
Return a T* to indicate a position (only)ccooin...
Return a T& when copy is undesirable and “returning no object”
isn’tneeded ...
Don’treturn @ T&& oo v vttt e e
Don’treturn std::move(local)uitetnnin i
int is the return type formain()ooiiiiiiiin
Use a lambda when a function won’t do (to capture local variables,
ortowritealocal function)
Prefer capturing by reference in lambdas that will be used locally,
including passed to algorithms,
Avoid capturing by reference in lambdas that will be used nonlocally,
including returned, stored on the heap, or passed to another thread
Where there is a choice, prefer default arguments over overloading
Don’t use va_arg argumentsev e e ettt
Organize related data into structures (structs or classes)
Use class if the class has an invariant; use struct if the data

members can vary independently oo L,
Represent the distinction between an interface and an

implementation usinga classiiriiiiiii i
Make a function a member only if it needs direct access to the
representation of aclass i i
Place helper functions in the same namespace as the class

they SUPPOTT .ot
Don’t define a class or enum and declare a variable of its type

in the SAME STATEMENT . ot vttt ettt et e e e et
Use class rather than struct if any member is non-public
Minimize exposure of members L i i i
Prefer concrete types over class hierarchies
Make concrete types regular
If you can avoid defining any default operations,do
If you define or =delete any default operation, define or
=deletethemall

Make default operations consistentc.oooeuieniinaen...

C.41
C.42

C.43
C.45

C.46
C.47

C.48

C.49
C.51

C.52

C.67
C.30

C.31

C.32

C.33
C.35

C.80

C.81

C.82
C.86

C.87
C.120

C.121

List OF SELECTED C++ CORE GUIDELINES

A constructor should create a fully initialized object 67
If a constructor cannot construct a valid object, throw

AN EXCEPLION + vt e e et e e et e et e e e e e e 68
Ensure that a copyable (value type) class has a default constructor 69
Don’t define a default constructor that only initializes

data members; use member initializersinstead 69
By default, declare single-argument constructors explicit 72
Define and initialize member variables in the order of

member declaration 74
Prefer in-class initializers to member initializers in constructors

for constant initializers 75
Prefer initialization to assignment in CONStrUCLOrSvvvvvvnennn... 76
Use delegating constructors to represent common actions for all
constructors of aclass e 76
Use inheriting constructors to import constructors into a derived

class that does not need further explicit initialization 77
A polymorphic class should suppress copying 81
Define a destructor if a class needs an explicit action at

object destruction 84
All resources acquired by a class must be released by the

class’s destructor ... 84
If a class has a raw pointer (T*) or reference (T&), consider

whether it might beowning i 85
If a class has an owning pointer member, define a destructor 85
A base class destructor should be either public and virtual,

or protected and non-virtual i 86
Use =default if you have to be explicit about using the

default semantics e 89
Use =delete when you want to disable default behavior

(without wanting an alternative)ccvirernrnenenn... 90
Don’t call virtual functions in constructors and destructors 91
Make == symmetric with respect to operand types

AN NOEXCEPE ottt ettt et 95
Beware of ==on baseclasses i i 97
Use class hierarchies to represent concepts with inherent hierarchical
structure (ONly) .. u e e 99

If a base class is used as an interface, make it an abstractclass 101

XV

xvi

List OF SELECTED C++ CORE GUIDELINES

C.122

C.126
C.128

C.130

C.132
C.131
C.133
C.134
C.129

C.135
C.138

C.140

C.146

C.147

C.148

C.152

C.167
C.161
C.164
C.162
C.163
C.168
C.180
C.181
C.182
Enum.1
Enum.2
Enum.3

Enum.5

Use abstract classes as interfaces when complete separation of interface

and implementationisneeded
An abstract class typically doesn’t need a constructor
Virtual functions should specify exactly one of virtual,
override,or final i e e
For making deep copies of polymorphic classes prefer a virtual
clone function instead of copy construction/assignment
Don’t make a function virtual without reason
Avoid trivial getters and setters i
Avoid protecteddataiii
Ensure all non-const data members have the same access level
When designing a class hierarchy, distinguish between
implementation inheritance and interface inheritance
Use multiple inheritance to represent multiple distinct interfaces
Create an overload set for a derived class and its bases
WItD USING ot
Do not provide different default arguments for a virtual function
andanoverrider
Use dynamic_cast where class hierarchy navigation is
unavoidable
Use dynamic_cast to a reference type when failure to find
the required class is considered anerror
Use dynamic_cast to a pointer type when failure to find the
required class is considered a valid alternative
Never assign a pointer to an array of derived class objects to a
pointertoitsbase ...
Use an operator for an operation with its conventional meaning
Use nonmember functions for symmetric operators
Avoid implicit conversion Operatorsc..euueuienn...
Overload operations that are roughly equivalent
Overload only for operations that are roughly equivalent
Define overloaded operators in the namespace of their operands
Use UNions to Save MEMOTY . v v v v vttt i e e e eeenens
Avoid “naked” unions
Use anonymous unions to implement tagged unions
Prefer enumerations OVEr Macros .«vuv e enennennennnn.
Use enumerations to represent sets of related named constants
Prefer enum classes over “plain” enums,

Don’t use ALL_CAPS fOor eNUMEratorsoueuueennnn.

111

113

115

115

115

Enum.6

Enum.7

Enum.8
R.1

R.3
R.4
R.S
R.10
R.11
R.12

R.13

R.20
R.21

R.22
R.23
R.24
R.30

R.37

ES.1

ES.2
ES.S
ES.6

ES.7

ES.8
ES.9
ES.10
ES.11
ES.12
ES.20

List OF SELECTED C++ CORE GUIDELINES

Avoid unnamed enumerations oLl i 134
Specify the underlying type of an enumeration only

When NECESSary .. vttt e e 135
Specify enumerator values only when necessary 136

Manage resources automatically using resource handles and

RAII (Resource Acquisition Is Initialization) 140
A raw pointer (a T*) IS NON-OWNING .« ¢t vttt vttt eneaeeenenenn 143
A raw reference (a T&) iS NON-OWNING ... vtvvi v e, 143
Prefer scoped objects, don’t heap-allocate unnecessarily 143
Avoidmalloc() and free()viuiriinin i 145
Avoid calling new and delete explicitly 146

Immediately give the result of an explicit resource allocation to a
manager Objectt e 147
Perform at most one explicit resource allocation in a single

EXPresSSION STATEIMENT « v vt vttt ettt e et e e eeaee e 148
Use unique_ptr or shared_ptr to represent ownership 150

Prefer unique_ptr over shared_ptr unless you need to

shareownership i 151
Use make_shared() to make shared_ptrs 153
Use make_unique() to make unique_ptrsoon.n. 153
Use std: :weak_ptr to break cycles of shared_ptrs 154

Take smart pointers as parameters only to explicitly express
lifetime SemManticsc.uuu e e 157
Do not pass a pointer or reference obtained from an aliased
SIMATT POINTEL « v vt e vt e et et ettt et e e e e e e e enes 162

Prefer the standard library to other libraries and to

“handcrafted code” 166
Prefer suitable abstractions to direct use of language features 167
Keepscopessmall i 168
Declare names in for-statement initializers and conditions

to lIMIt SCOPE .ottt 168
Keep common and local names short, and keep uncommon

and nonlocal nameslonger 169
Avoid similar-lookingnames i 170
AVOId ALL_CAPS NAMES .+ . vttt ettt et e e 170
Declare one name (only) per declaration 171
Use auto to avoid redundant repetition of type names 171
Do not reuse names in nested SCOPES .+ v v v v v e e 172

Always initialize anobject i 175

xvii

List OF SELECTED C++ CORE GUIDELINES

ES.21 Don’t introduce a variable (or constant) before you need to use it . ..

ES.22 Don’t declare a variable until you have a value to initialize it with ...

ES.23 Prefer the {}-initializer syntaxcoiiirirninenen...

ES.26
ES.28

ES.40
ES.41
ES.42
ES.45
ES.5S
ES.47
ES.61
ES.65
ES.43
ES.44
ES.48
ES.49
ES.50
ES.78
ES.79
ES.100
ES.101
ES.102
ES.106
ES.103
ES.104
ES.105
Per.7
Per.10
Per.11
Per.19
CP1

CP2
CP3
CP4

Don’t use a variable for two unrelated purposes
Use lambdas for complex initialization, especially of const

variables ...
Avoid complicated expressionsl i
If in doubt about operator precedence, parenthesize
Keep use of pointers simple and straightforward
Avoid “magic constants”; use symbolic constants
Avoid the need for range checking
Use nullptr rather than @ or NULLottt
Delete arrays using delete[] and non-arrays using delete
Don’t dereference an invalid pointer
Avoid expressions with undefined order of evaluation
Don’t depend on order of evaluation of function arguments
AVOId Casts vt e
If you must use a cast, use anamed cast,
Don’t cast away CONSt .ottt
Don’t rely on implicit fallthrough in switch statements
Use default to handle common cases (only)
Don’t mix signed and unsigned arithmetic
Use unsigned types for bit manipulation
Use signed types for arithmetic,
Don’t try to avoid negative values by using unsigned
Don’toverflow
Don’tunderflowo i
Don’tdividebyzero
Design to enable optimization i,
Rely on the static type system ov it en it iiieeanns
Move computation from run time to compile-time
Access memory predictably L i
Assume that your code will run as part of a multi-threaded

PIOGIAIML & ettt ettt ettt e e e e e e e e et e e e
Avoid dataraceso.iiii i e
Minimize explicit sharing of writabledata
Think in terms of tasks, rather thanthreads

CPS8
CP9
CP.20
CP21

CP22
CP.23
CP.24
CP25
CP.26
CP42
CP.31

CP.32
CP40
CP41
CP43
CP.44
CP.100
CP.101
CP.102
E.3
E.14

E.15
E.13
E.30
E.31
Con.1
Con.2
Con.3
Con.4

Con.5
T.1
T2

T.3

List OF SELECTED C++ CORE GUIDELINES

Don’t try to use volatile for synchronization 238
Whenever feasible use tools to validate your concurrent code 238
Use RAII, never plain 1ock()/unlock() «ovvveneninnenennnnnn. 246
Use std: :lock() or std: :scoped_lock to acquire

multiple MUEEXES .ot i e 247
Never call unknown code while holding a lock (e.g., a callback) 249
Think of a joining thread as a scoped container 250
Think of a thread as a global container 250
Prefer std::jthread over std::threadccovuion.. 251
Don’tdetach() athread 0ot iiiiinnnon.. 253
Don’twait withoutacondition oiiuininan... 254

Pass small amounts of data between threads by value, rather

than by reference or pointer i 257
To share ownership between unrelated threads use shared_ptr 258
Minimize context switchingcciitiiniienenenan.. 261
Minimize thread creation and destruction 261
Minimize time spent in a critical section oo 264
Remember to name your lock_guards and unique_locks 264
Don’t use lock-free programming unless you absolutely haveto 273
Distrust your hardware/compiler combination 274
Carefully study the literature i, 276
Use exceptions for error handlingonly 283

Use purpose-designed user-defined types as exceptions

(not built-in types) ... i i e 283
Catch exceptions from a hierarchy by reference 285
Never throw while being the direct owner of an object 286
Don’t use exception Specificationsvuererernenenennennn.s 287
Properly order your catch-clauses L. 288
By default, make objects immutable L 294
By default, make member functionsconst 294
By default, pass pointers and references to consts 297

Use const to define objects with values that do not change after

CONSEIUCTION .+t vttt ettt et 297
Use constexpr for values that can be computed at compile-time 298
Use templates to raise the level of abstractionof code 302

Use templates to express algorithms that apply to many
ATGUMENT EYPES + « v vt et et e et e e e et e e et e e s 304

Use templates to express containers and ranges 305

X1X

XX

T.40
T.42

T43
T44

T.46

T.47

T.48

T.60
T6l
T.62

T.80
T.83
T.140
T.141

T.143
T.144
CPL.1
CPL.2

CPL.3

SE1

SE.2

SES

SE.8

SE9

SE.10
SE11

List OF SELECTED C++ CORE GUIDELINES

Use function objects to pass operations to algorithms
Use template aliases to simplify notation and hide implementation
details

Prefer using over typedef for defining aliases

Use function templates to deduce class template argument types

(where feasible) o
Require template arguments to be at least Regular or

SeMiRegUILAr . . e e e
Avoid highly visible unconstrained templates with

COMIMON NAITIES « « ¢ttt e et ettt e e et e e et e e e et e e e e

If your compiler does not support concepts, fake them with

enable_if

Minimize a template’s context dependencies
Do not over-parameterize members

Place non-dependent class template members in a non-templated

base class

Do not naively templatize a class hierarchy
Do not declare a member function template virtual

Name all operations with potential forreuse
Use an unnamed lambda if you need a simple function object
in one place only

Don’t write unintentionally nongenericcode
Don’t specialize function templates
Prefer C++to C
If you must use C, use the common subset of C and C++, and

compile the C code as C++

If you must use C for interfaces, use C++ in the calling code

using such interfaces

Use a . cpp suffix for code files and . h for interface files if

your project doesn’t already follow another convention

A .h file may not contain object definitions or non-inline function

definitions

A .cpp file must include the .h file(s) that defines its interface

Use #include guards for all . h files

Avoid cyclic dependencies among source files

Avoid dependencies on implicitly #included names

Header files should be self-contained

SE6

SE7

SE.20
SE21
SE22

SL.con.1
SL.con.2

SL.con.3
SL.str.1
SL.str.2
SL.str.4
SL.str.5

SL.str.12

SL.io.1
SL.io.2
SL.io.3
SL.i0.10

SL.i0.50
Al
A2
A4

NR.1

NR.2

NR.3
NR.4

NR.5
NR.6

NR.7

List OF SELECTED C++ CORE GUIDELINES

Use using namespace directives for transition, for foundation

libraries (such as std), or within a local scope (only) 391
Don’t write using namespace at global scope in a header file 393
Use namespaces to express logical structure 394
Don’t use an unnamed (anonymous) namespace in a header 394

Use an unnamed (anonymous) namespace for all
internal/nonexported entitiesiiiiiiiiii 394
Prefer using STL array or vector instead of a C-array 398

Prefer using STL vector by default unless you have a reason

to use a different container il i i 402
Avoid boundserrors 403
Use std: :string to own character sequences 405
Use std: :string_view to refer to character sequences 407
Use char* to refer to a single character 409

Use std: :byte to refer to byte values that do not necessarily
represent characters i 409

Use the s suffix for string literals meant to be standard-library

SE T ANgS ottt et e e 410
Use character-level input only when you haveto 411
When reading, always consider ill-formed input 411
Preferiostreams for /O i 413
Unless you use printf-family functions call
ios_base::sync_with_stdio(false)iuueuniuennn. 414
Avoidendl ..o o e 415
Separate stable code from less stablecode 423
Express potentially reusable parts as alibrary 424
There should be no cycles among libraries 425
Don’t insist that all declarations should be at the top of a

fUNCEION ottt e e e e e 427
Don’t insist to have only a single return-statement in a

fUNCHION ot e 428
Don’t avoid eXCEPHiONS . v vv vttt e 429
Don’t insist on placing each class declaration in its own

source file ... 431
Don’t use two-phase initialization 431

Don’t place all cleanup actions at the end of a function and
GOLO BXAT. o ittt 433
Don’t make all data members protected 436

xXx1

This page intentionally left blank

List of figures

3.1
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
5.9
5.10
511
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
6.1

Dependency injectiono ettt 20
Assembler instructions to the program constexpr.cpp 30
Returninga std::pairo i e 38
The five ownership semanticsc.oiiiiii ... 41
Displaying arbitrary characters, 44
Causinga core dump ... vttt e e 44
Returning a reference to a temporaryueuenennenenen... 45
Summation withva_arg i 51
Summation with fold expressions 52
Automatically generated special member functions 61
Double free detected with AddressSanitizer 63
OUtPUL Of SEFANGE.CPP + vt vt ettt ettt et e e eaeens 66
Directly initializing intheclass 71
Converting CONSIIUCTOT . vt vttt ettt e et et et e e 73
Wrong initialization order of member variables, 75
S CIn g © et e 83
Aclass witha std::unique_ptr ...t 86
delete the destructoro.iiunin it 91
Calling a virtual function in the constructor 92
A virtual clone member function, 105
A virtual clone member function without covariant return type 105
Shadowing of member functions 112
Different default arguments for virtual functions 114
dynamic_cast causes a std: :bad_cast exception 116
Missing overload for int and MyInt 119
Using an explicit CONStIUCTOr « .ttt it vttt it e 121
Implicit operator B0l ...\ttt ittt 124
Explicit operator booliiiinin i 124
Undefined behavior with a “naked” union 128
The enumerators are too big for the underlying type 136

xx1ii

XX1V

LIST OF FIGURES

7.1
7.2
7.3
7.4
7.5
7.6
7.7
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
10.1
10.2
10.3
10.4
10.5
10.6

Resource Acquisition Is Initialization 142
Undefined behavior causes a coredump oo, 146
Two owners with std::unique_ptrouiiuiineineenn.n.. 148
Moving a std: iunique_ptrt e 153
Cycles of smart pointersouueinee .. 154
Cycles of SMart pOINtersuuuun e ie e eeennnn. 156
Lifetime semantics of smart pointersc.c.eueenenan.. 159
Reusing names in nested SCOPES .. oot v e e 173
Hiding member functionsof abase 174
Change visibility with a using declaration 175
The MOSt VEXING PALSE « v vttt e et e e 180
Narrowing CONVErsioOnevuue e ettt nnenaeenaneenn. 181
Narrowing conversiondetectedt .. 182
Usage of the function-like macromax 185
The null pointers @, NULL, and nullptrc.ccvuruunennn.. 193
Unspecified behavior 196
Wrong casts with the Visual Studio compiler 197
Wrong casts with the GCC or Clang compiler 198
Modulo versus overflow with unsigneds and signeds 208
Detecting narrowing CONVErsiOnuvuenenennenenenenn .. 208
Underflow and overflow of a C-arrayccoviininninn.. 209
Performance of the Meyers singleton 217
Performance of the singleton based on acquire-release semantics 218
Performance of the singleton in the single-threaded case 218
Move semantics on a copy-only type 221
Invoking gcd at compile time and run time L 225
The relevant assembler instructions to the algorithmged 225
St idegUE .t e e 226
STt laSt et e 226
std::forward_1ist 226
Memory access for sequence containers on Windows 229
Four categories of variables i i 235
Data race detection with ThreadSanitizer 241
Overview of CppMemttt 242
Adatarace in CppMem . ..ot ittt 245
A deadlock due to multiple locked mutexes 248
Forgottojoinathread i, 252

10.7
10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.15
10.16
10.17
12.1
13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11
13.12
13.13
13.14
13.15
13.16
13.17
13.18
13.19
13.20
13.21
13.22
13.23
13.24
13.25

LIST OF FIGURES

A condition variableinaction L i i 255
A condition variable without a predicate 257
Shared ownership using a pointerc..veeneneunennn.. 259
Shared ownership using a smart pointercooua... 261
Thread creationon Linuxot 263
Thread creation on Windows oo i, 263
Using a temporary lock std::lock_guardcocuon.. 266
Using a named temporary std::lock_guard 266
Usage of std::transform_exclusive scan 269
A value and an exception as MESSAZE .« . v v v e v v ne e 271
Notifications withatask 273
Amutablevariable 296
A function, a function object, and a lambda as sorting criteria 307
A function object withstate i 309
Alambda withstate 310
Template argument deduction 313
A reference is not SeMiReQULAT . ..o\t ii it i et 315
Surprise with argument-dependent lookup 317
Surprises with argument-dependent lookup solved 319
stdiienable_if 320
Comparing tWo ACCOUNTS . v v v vt e et e e et ettt eeee e 326
Comparing two accounts with a binary predicate 330
Compiler error with a virtual member function 332
Calculating primes at compiletimeccoviiiinon... 338
Calculating the factorial of 5 at compiletime 340
Calculating at run time and compile time 343
power as function and metafunction, 345
Type COMPATISONS v vttt et et e e e et e 350
Correctness with the type-traits functions 354
Function versus template argumentsc..eunvenenen... 359
Modification versus new value i i, 359
Recursion versus loop .. .o 360
Template specialization for conditional execution 360
Update versusnew value i 361
Simulatingareturnvalue i 361
Case-insensitive search ina structc.oiiininenn .. 363

Iterating through a few containers 366

XXV

XXV1

LIST OF FIGURES

13.26
13.27
14.1
14.2
14.3
14.4
15.1
15.2

15.3

15.4
16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
18.1
18.2
Al
A2
A3
A4
AS
A6

Specialization and overloading of function templates 370
Specialization of function templates 372
Warnings witha Ccompiler, 376
Errors witha C++compiler i 377
Different size of a char with a C++ compiler 377
Functionoverloading i 379
Multiple definitions of a function 386
Linker error because of mismatch between function

declaration and definition i i 387
Compiler error because of a mismatch between function

declaration and definition i 387
Cyclic dependencies among source files 389
Automatic management of memory, 400
sizeof a C-array, a C++-array, and a std::ivector 402
Accessing a nonexisting element of a std::string 404
Undefined behavior witha C-string 406
No memory allocation with std: :string_view 408
Undefined behavior with printf 414
Performance with/without flushingon Linux 418
Performance with/without flush on Windows 418
Different return types ina functioncoviiiiiin.... 429
Automatic managingof adevice 435
Enable code analysis o i 448
Configure the appliedrules 449
Automatic managingof adevice 449
SUPPIess Warningsoueuintnninineninn ... 450
Check the C++ Core Guidelines exclusively 451
Check the C++ Core Guidelines with clang-tidy 452

List of tables

4.1 Normal parameter passinguutuenennnenenen e, 32
4.2 Advanced parameter passingo.veunein et 33
4.3 Ownership semantics of parameter passingooveun... 38
7.1 Smart pointers as function parametersueuenon... 156
10.1 Typical threadsizeo e 262
10.2 Algorithms of the STL for which parallel versions are available
(the std namespace is omitted). i 267
10.3 Condition variables versus tasks o i 272
10.4 Operation reordering on various platforms. 276
13.1 Comparing two aCCOUNTS. « « . v vttt e it e et et e, 330
13.2 ComposSIte tyPe CALEZOIICS . « v o v vt vt et e e et et et e e e eeeaen 348
13.3 Template metaprogramming versus constexpr functions. 358
13.4 Tterator CAtEZOIICS . . v v v v it et e e e e e et e ettt 366
14.1 Namemanglingo.vtuinn ittt i 380
16.1 Variouskinds of teXto vttt 405
16.2 Stateof thestreamottt e 412

XXVii

This page intentionally left blank

Foreword

C++ is a very rich, very expressive language with lots of features. It has to be because
a successful general-purpose programming language must have more facilities than
any one developer needs, and a living and evolving language will accumulate alterna-
tive idioms for expressing an idea. That can lead to choice overload. So, what does a
developer choose for programming style and mastery? How does a developer avoid
getting stuck with outdated and ineffective techniques and programming styles?

The C++ Core Guidelines (https://github.com/isocpp/CppCoreGuidelines/blob/
master/CppCoreGuidelines.md) are an ongoing open-source project to address such
issues by gathering widely recognized modern C++ best practices together in one
place. The Core Guidelines rely on decades of experience and earlier sets of coding
rules. They share a conceptual framework with C++ itself, with a focus on type
safety, resource safety, and the elimination of avoidable complexities and inefficien-
cies. The Core Guidelines are organized to address known problem areas and partly
phrased to enable enforcement by a static analyzer.

The Core Guidelines are organized as a reference work to make it easy to look up
and share specific topics, not as a tutorial to be read sequentially to learn themes for
using modern C++ well. We are therefore very pleased to see Rainer Grimm apply-
ing his teaching skills and industrial background to tackle the hard and necessary
task of making the rules accessible to more people. We hope that you find learning
the Core Guidelines stimulating and, especially, that applying them to your real-
world problems will make your work significantly more effective and more
enjoyable.

Bjarne Stroustrup

Herb Sutter

XXIX

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

This page intentionally left blank

Preface

This preface serves one purpose: to give you, dear reader, the necessary background
to get the most out of this book. This background includes technical details about
me, my writing style, my motivation for writing this book, and the challenges of
writing such a book. If you want to skip this section, fine, but at least read the
Acknowledgments section.

Conventions
I promise, only a few conventions.

Rules versus guidelines

The authors of the C++ Core Guidelines often refer to them as rules. So do I. In the
context of this book, I use both terms interchangeably.

Special fonts

Bold Sometimes I use bold font to emphasize important terms.
Italic Italics designate hyperlinks (eBook only).

Monospace Code, instructions, keywords, names of types, variables, functions, and
classes are displayed in monospace font.

Boxes

I use boxes with a bullet list for the information concluding each chapter.

Related rules

Often rules are related to other rules. I provide this valuable information at the end
of the chapter if necessary.

Distilled

Important

Get the essential information at the end of each chapter.

xxXX1

XXXil

PREFACE

Source code

I dislike using directives and declarations because they hide the origin of the library
functions. Due to the limited length of a page, I have to use them from time to time. [use
them in such a way that the origin can always be deduced from the using directive (using
namespace std;) or the using declaration (using std: :cout;). Not all headers are dis-
played in the code snippets. Boolean values are displayed with true or false. The neces-
sary I/O manipulator std: :boolalpha is mostly not part of the code snippets.

Three dots (. . .) in the code snippets stand for missing code.

When I present a complete program as a code example, you will find the name of
the source file in the first line of the code. I assume that you use a C++14 compiler. If
the example needs C++17 or C++20 support, [mention the required C++ standard
after the name.

I often use markers such as // (1) in the source file to ease my explanations. If
possible, I write the marker in the cited line or, if not, one line before. The markers are
not part of the more than 100 source files that are part of the book (available from
https://github.com/RainerGrimm/CppCoreGuidelines). For layout reasons, I often
adjusted the source code in this book.

When I use examples from the C++ Core Guidelines, I often rewrite them for
readability by adding namespace std if it is missing, or unify the layout.

Why guidelines?

This subjective observation is mainly based on my more than 15 years of experience
as a trainer for C++, Python, and software development in general. In the last few
years, | was responsible for the team and the software deployed on defibrillators. My
responsibility included regulatory affairs for our devices. Writing software for a defi-
brillator is extremely challenging because they can cause death or serious injury for
the patient and the operator.

I have a question in mind that we should answer as a C++ community. This ques-
tion is: Why do we need guidelines for modern C++? Here are my thoughts, which
consist for simplicity reasons of three observations.

Complex for novices

C++ is, in particular for beginners, an inherently complex language. This is mainly
because the problems we want to solve are inherently complicated and often complex

https://github.com/RainerGrimm/CppCoreGuidelines

PREFACE

as well. When you teach C++, you should provide a set of rules that work for your
participants in at least 95% of all use cases. I think about rules such as

e Let the compiler deduce your types.
e Initialize with curly braces.
e Prefer tasks over threads.

e Use smart pointers instead of raw pointers.

I teach rules such as the ones mentioned in my seminars. We need a canon of best
practices or rules in C++. These rules should be formulated positively and not nega-
tively. They should declare how you should write code and not what should be
avoided.

Challenging for professionals

I’m not worried about the sheer amount of new features that we get with each new
C++ standard every three years. ’m worried about the new ideas that modern C++
supports. Think about event-driven programming with coroutines, lazy evaluation,
infinite data streams, or function composition with the ranges library. Think about
concepts, which introduce semantic categories to template parameters. It can be
quite challenging to teach C programmers object-oriented ideas. When you shift,
therefore, to these new paradigms, you have to rethink and presumably change the
way you solve your programming challenges. [assume that this plethora of new ideas
will, in particular, overwhelm professional programmers. They are the ones who are
used to solving the problems with their classical techniques. With high probability,
they fall into the hammer-nail trap.

Used in safety-critical software

In the end, I have a strong concern. In safety-critical software development, you often
have to stick to guidelines. The most prominent are MISRA C++. The current
MISRA C++:2008 guidelines were published by the Motor Industry Software Relia-
bility Association. They are based on the MISRA C guidelines from the year 1998.
Initially designed for the automotive industry, they became the de facto standard for
the implementation of safety-critical software in the aviation, military, and medical
sectors. As MISRA C, MISRA C++ describes guidelines for a safe subset of C++.
But there is a conceptual problem. MISRA C++ is not state of the art for modern

XXX1i1

https://www.misra.org.uk/Activities/tabid/56/Default.aspx
https://www.misra.org.uk/Activities/tabid/56/Default.aspx
https://de.wikipedia.org/wiki/MISRA-C
https://en.wiktionary.org/wiki/if_all_you_have_is_a_hammer,_everything_looks_like_a_nail
https://de.wikipedia.org/wiki/MISRA-C
https://en.wikipedia.org/wiki/Short-circuit_evaluation
https://en.cppreference.com/w/cpp/language/coroutines

XXX1V

PREFACE

software development in C++. It’s four standards behind! Here is an example:
MISRA C++ doesn’t allow operator overloading. 1 teach in my seminars that you
should use user-defined literals to implement type-safe arithmetic: auto constexpr
dist = 4 * 5_m + 16_cm - 3_dm. To implement such type-safe arithmetic, you have
to overload the arithmetic operators and the literal operators for the suffixes. To be
honest, I don’t believe that MISRA C++ will ever evolve in lockstep with the current
C++ standard. Only community-driven guidelines such as the C++ Core Guidelines
can face this challenge.

MISRA C++ integrates AUTOSAR C++14

However, there is hope. MISRA C++ integrates AUTOSAR C++14. AUTOSAR
C++14 is based on C++14 and should become an extension of the MISRA C++
standard. ’'m highly skeptical that organization-driven guidelines can keep in
lockstep with the dynamics of modern C++.

My challenge

Let me share the essential lines of my e-mail discussion in May 2019 with Bjarne
Stroustrup and Herb Sutter telling them that I wanted to write a book about the
C++ Core Guidelines: “I’'m an absolute fan of the value which is inside the C++
Core Guidelines because my strong belief is that we need guidelines for the correct/
safe usage of modern C++. I often use examples or ideas from the C++ Core Guide-
lines in my C++ classes. The format reminds me of the MISRA C++ or AUTOSAR
C++14 rules which is presumably intentional, but this is not the ideal format for a
big audience. I think that more people would read and reason about the guidelines if
we had a second document which describes the general ideas of the guidelines.”

I want to add a few remarks to these previous conversations. In the last few years,
[wrote on my German and English blogs more than a hundred posts about the C++
Core Guidelines. Additionally, I write for the German Linux-Magazin a series on the
C++ Core Guidelines. I do this for two reasons: First, the C++ Core Guidelines
should become better known, and second, I want to present them in a readable form,
extended with background information if necessary.

Here is my challenge: The C++ Core Guidelines consist of over five hundred
guidelines, most of the time just called rules. These rules are designed with static
analysis in mind. Many of the rules are lifesaving for a professional C++ software
developer, but also many of the rules are quite special, often incomplete or
redundant, and sometimes the rules even contradict. My challenge is to boil these
valuable rules down to a readable, even entertaining, story, removing the esoteric
stuff and filling the gaps if necessary. In the end, the book should contain the rules
that are mandatory for a professional software developer in C++.

http://bit.ly/31udh7J
http://bit.ly/31udh7J
http://bit.ly/31udh7J
http://bit.ly/31udh7J
http://bit.ly/31udh7J
https://www.linux-magazin.de/

PREFACE XXXV

Panta rbei

Panta rhei, or “everything flows,” from the Greek philosopher Heraclitus stands for
the challenge ’'m faced with while writing this book. The C++ Core Guidelines are a
GitHub-hosted project with more than 200 contributors. While I was writing this
book, the source I was basing my writing on may have changed.

C++98 . C++11 .C++14. C++17 .C++20

[1ess 2011 2014 2017 2020 >
Templates Move semantic Reader-writer locks Fold expressions Corputings
Unified initialization Genernc lambda constexpr if Modules
STL with containers auco and decltype functions Structured binding Concepts
and algorithms Lambda functions Generalized Ranges library
Stnngs COnITexXpI COnSTexpr atd: jatring_view
IO Streams functions Parallel algonthms of the STL

Multithreading and the
memory model

Filesystem library
std:rany, stdiioptional
and stdi:variant

Ragular expressions
Smart pointers
Hash tables
acd:rarray

- o=

The guidelines already include C++ features, which may become part of an
upcoming standard, such as contracts in C++23. To reflect this challenge, I made a
few decisions.

1. I provide links in the electronic version of this book to the mentioned C++
Core Guidelines so you can quite easily refer to their origins.

2. My focus is on the C++17 standard. If appropriate, I include guidelines target-
ing the C++20 standard, such as concepts.

3. The C++ Core Guidelines evolve constantly, in particular as new C++
standards are published. So will this book. My plan is to update this book
accordingly.

How to read this book

The structure of this book represents the structure of the C++ Core Guidelines. It
has the corresponding major sections and parts of the supporting sections. In addi-
tion to the C++ Core Guidelines, I included appendixes, which provide concise over-
views of missing topics, including C++20 or even C++23 features.

https://en.wikipedia.org/wiki/Heraclitus
https://github.com/isocpp/CppCoreGuidelines
https://github.com/isocpp/CppCoreGuidelines/graphs/contributors

XXXVi

PREFACE

I still have not answered one question: how to read this book. Of course, you
should start with the major sections, best from top to toe. The supporting sections
provide additional information and introduce, in particular, the Guidelines Support
Library. Use the appendixes as a kind of reference to get the necessary background
information to understand the major sections. Without this additional information,
this book would not be complete.

Acknowledgments

First of all, I have to thank all contributors to the C++ Core Guidelines. The Core
Guidelines are the work of about 250 contributors; the most prolific so far have
been Herb Sutter, Bjarne Stroustrup, Gabriel Dos Reis, Sergey Zubkov, Jonathan
Wakely, and Neil Maclntosh (Guidelines Support Library). If you want to know
all other contributors, go to https://github.com/isocpp/CppCoreGuidelines/graphs/
contributors.

Second, I want to thank my proofreaders very much. Without their help, the book
would not have the quality it has now. Here are their names in alphabetic order: Yaser
Afshar, Nicola Bombace, Sylvain Dupont, Fabio Fracassi, Juliette Grimm, Michael
Mollney, Mateusz Nowak, Arthur O’Dwyer, and Moritz Striibe.

Third, many thanks to my wife, Beatrix Jaud-Grimm, for drawing the illustra-
tions for this book.

XXXVil

https://github.com/isocpp/CppCoreGuidelines/graphs/contributors
https://github.com/isocpp/CppCoreGuidelines/graphs/contributors
https://github.com/isocpp/CppCoreGuidelines/graphs/contributors
https://github.com/isocpp/CppCoreGuidelines/graphs/contributors
https://github.com/isocpp/CppCoreGuidelines/graphs/contributors

This page intentionally left blank

About the author

I have worked as a software architect, team lead, and instructor since 1999. In 2002, 1
created a continuing education program at my company. I have given seminars since
2002. My first seminars were about proprietary management software, but seminars
for Python and C++ followed immediately. In my spare time, I like to write articles
about C++, Python, and Haskell. I also like to speak at conferences. I publish weekly
in English and German on my blog Modernes Cpp, hosted by Heise Developer.

Since 2016, I have been an independent instructor giving seminars about modern
C++ and Python. I have published several books in various languages about modern
C++ and concurrency, in particular. Due to my profession, I always search for the
best way to teach modern C++.

XXXIX

https://www.modernescpp.com/

This page intentionally left blank

Chapter 3

Interfaces

Cippi assembles components.

An interface is a contract between a service provider and a service user. Interfaces
are, according to the C++ Core Guidelines, “probably the most important single
aspect of code organization.” The section on interfaces has about twenty rules. Four
of the rules are related to contracts, which didn’t make it into the C++20 standard.
A few rules related to interfaces involve contracts, which may be part of C++23.
A contract specifies preconditions, postconditions, and invariants for functions that

15

16

PART I THE GUIDELINES

can be checked at run time. Due to the uncertainty of the future, I ignore these rules.
The appendix provides a short introduction to contracts.
Let me end this introduction with my favorite quote from Scott Meyers:

Make interfaces easy to use correctly and hard to use incorrectly.

Avoid non-const global variables

Of course, you should avoid non-const global variables. But why? Why is a global
variable, in particular when it is non-constant, bad? A global injects a hidden depend-
ency into the function, which is not part of the interface. The following code snippet
makes my point:

int glob{2011};

int multiply(int fac) {
glob *= glob;
return glob * fac;

3

The execution of the function multiply changes, as a side effect, the value of the
global variable glob. Therefore, you cannot test the function or reason about the
function in isolation. When more threads use multiply concurrently, you have to
protect the variable glob. There are more drawbacks to non-const global variables.
If the function multiply had no side effects, you could have stored the previous result
and reused the cached value for performance reasons.

The curse of non-const global variables

Using non-const globals has many drawbacks. First and foremost, non-const globals
break encapsulation. This breaking of encapsulation makes it impossible to think
about your functions/classes (entities) in isolation. The following bullet points enu-
merate the main drawbacks of non-const global variables.

¢ Testability: You cannot test your entities in isolation. There are no units, and
therefore, there is no unit testing. You can only perform system testing. The
effect of your entities depends on the state of the entire system.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/System_testing
https://en.wikipedia.org/wiki/Scott_Meyers

CHAPTER 3 INTERFACES 17

¢ Refactoring: It is quite challenging to refactor your code because you cannot
reason about your code in isolation.

e Optimization: You cannot easily rearrange the function invocations or per-
form the function invocations on different threads because there may be hid-
den dependencies. It’s also extremely dangerous to cache previous results of
function calls.

e Concurrency: The necessary condition for having a data race is a shared,
mutable state. Non-const global variables are shared and mutable.

Avoid singletons

Sometimes, global variables are very well disguised.

// singleton.cpp
class MySingleton {

public:
MySingleton(const MySingleton&)= delete;
MySingleton& operator = (const MySingleton&)= delete;

static MySingleton* getInstance() {
if (!'instance){
instance= new MySingleton();

}

return instance;

private:
static MySingleton* instance;
MySingleton()= default;
~MySingleton()= default;

Y

MySingleton* MySingleton::instance= nullptr;

int main() {

std::cout << MySingleton::getInstance() << "\n";

http://www.modernescpp.com/index.php/race-condition-versus-data-race

18

PART I THE GUIDELINES

std::cout << MySingleton::getInstance() << "\n";

A singleton is just a global, and you should, therefore, avoid singletons, if possible. A
singleton gives the straightforward guarantee that only one instance of a class exists.
As a global, a singleton injects a dependency, which ignores the interface of a func-
tion. This is due to the fact that singletons as static variables are typically invoked
directly: Singleton::getInstance() as shown in the two lines of the main function.
The direct invocation of the singleton has a few serious consequences. You cannot
unit test a function having a singleton because there is no unit. Additionally, you can-
not fake your singleton and replace it during run time because the singleton is not
part of the function interface. To make it short: Singletons break the testability of
your code.

Implementing a singleton seems like a piece of cake but is not. You are faced with
a few challenges:

e Who is responsible for destroying the singleton?
e Should it be possible to derive from the singleton?
¢ How can you initialize a singleton in a thread-safe way?

e In which sequence are singletons initialized when they depend on each other
and are in different translation units? This is to scare you. This challenge is
called the static initialization order problem.

The bad reputation of the singleton is, in particular, due to an additional fact. Sin-
gletons were heavily overused. I see programs that consist entirely of singletons.
There are no objects because the developer wants to prove that they apply design
patterns.

Dependency injection as a cure

When an object uses a singleton, it injects a hidden dependency into the object.
Thanks to dependency injection, this dependency is part of the interface, and the
service is injected from the outside. Consequently, there is no dependency between
the client and the injected service. Typical ways to inject dependencies are construc-
tors, setter members, or template parameters.

The following program shows how you can replace a logger using dependency
injection.

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-singleton
https://en.wikipedia.org/wiki/Unit_testing
https://isocpp.org/wiki/faq/ctors#static-init-order
https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Design_Patterns

CHAPTER 3 INTERFACES

// dependencyInjection.cpp

#include <chrono>
#include <iostream>
#include <memory>

class Logger {

public:
virtual void write(const std::string&) = 0;
virtual ~Logger() = default;

}

class SimplelLogger: public Logger {
void write(const std::string& mess) override {
std::cout << mess << std::endl;

3

class TimelLogger: public Logger {

using MySecondTick = std::chrono::duration<long double>;

long double timeSinceEpoch() {
auto timeNow = std::chrono::system_clock: :now();
auto duration = timeNow.time_since_epoch();
MySecondTick sec(duration);
return sec.count();

}

void write(const std::string& mess) override {
std::cout << std::fixed;
std::cout << "Time since epoch: " << timeSinceEpoch()

3

class Client {
public:
Client(std::shared_ptr<Logger> log): logger(log) {}
void doSomething() {
logger->write("Message");
}
void setLogger(std::shared_ptr<Logger> log) {
logger = log;

19

https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/header/iostream

20

PART I THE GUIDELINES

private:
std::shared_ptr<Logger> logger;
}

int main() {
std::cout << '\n';

Client cl(std::make_shared<SimpleLogger>()); // (1)
cl.doSomething();
cl.setLogger(std: :make_shared<TimeLogger>()); /7 (2)
cl.doSomething();
cl.doSomething();

std::cout << '\n';

}

The client c1 supports the constructor (1) and the member function setLogger (2) to
inject the logger service. In contrast to the SimpleLogger, the TimeLogger includes
the time since epoch in its message (see Figure 3.1).

File Edit View Bookmarks Settings Help
rainer@seminar:~> dependendyInjection
Message

Time since epoch: 1588108879.042703: Message
Time since epoch: 1588108879.042741: Message

rainer@seminar:~> [] i

Figure 3.1 Dependency injection

Making good interfaces

Functions should not communicate via global variables but through interfaces. Now
we are in the core of this chapter. According to the C++ Core Guidelines, here are
the recommendations for interfaces. Interfaces should follow these rules:

e Make interfaces explicit (I.1).

e Make interfaces precise and strongly typed (1.4).

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
https://en.cppreference.com/w/cpp/memory/shared_ptr

CHAPTER 3 INTERFACES

¢ Keep the number of function arguments low (1.23).

¢ Avoid adjacent unrelated parameters of the same type (1.24).

The first function showRectangle breaks all mentioned rules for interfaces:

void showRectangle(double a, double b, double c, double d) {
floor(a);
ceil(b);

T @
1

void showRectangle(Point top_left, Point bottom_right);

Although the first function showRectangle should show only a rectangle, it modifies
its arguments. Essentially, it has two purposes and has, as a consequence, a mislead-
ing name (I.1). Additionally, the function signature does not provide any information
about what the arguments should be, nor in which sequence the arguments must be
given (.23 and [.24). Furthermore, the arguments are doubles without a constraint
value range. This constraint must, therefore, be established in the function body
(I.4). In contrast, the second function showRectangle takes two concrete points.
Checking to see if a Point has valid value is the job of the constructor of Point. This
responsibility should not be the job of the function.

[want to elaborate more on the rules .23 and [.24 and the function std::transform_
reduce from the Standard Template Library (STL). First, I need to define the term
callable. A callable is something that behaves like a function. This can be a function
but also a function object, or a lambda expression. If a callable accepts one argu-
ment, it is called a unary callable; if it takes two arguments, it is called a binary
callable.

std::transform_reduce first applies a unary callable to one range or a binary
callable to two ranges and then a binary callable to the resulting range. When you
use std: : transform_reduce with a unary lambda expression, the call is easy to use
correctly:

std::vector<std::string> strVec{"Only", "for", "testing", "purpose"};

std::size_t res = std::transform_reduce(
std: :execution::par,
strVec.begin(), strVec.end(),
0,
[J(std::size_t a, std::size_t b) { return a + b; },

21

https://en.cppreference.com/w/cpp/algorithm/transform
https://en.cppreference.com/w/cpp/algorithm/transform
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
https://en.cppreference.com/w/cpp/algorithm/transform
https://en.cppreference.com/w/cpp/algorithm/transform_reduce
https://en.cppreference.com/w/cpp/algorithm/transform_reduce
https://en.cppreference.com/w/cpp/utility/functional

22

PART I THE GUIDELINES

[1(std::string s) { return s.size(); }

);

The function std::transform_reduce transforms each string onto its length ([]
(const std::string s) { return s.size(); }) and applies the binary callable ([]
(std::size_t a, std::size_t b) { return a + b; }) to the resulting range. The
initial value for the summation is 0. The whole calculation is performed in parallel:
std::execution: :par.

When you use the overload, which accepts two binary callables, the declaration of
the function becomes quite complicated and error prone. Consequently, it breaks the
rules [.23 and 1.24.

template<class ExecutionPolicy,
class ForwardItl, class ForwardIt2, class T,
class BinaryOpl, class BinaryOp2>
T transform_reduce(ExecutionPolicy&& policy,
ForwardItl firstl, ForwardItl lastil,
ForwardIt2 first2,
T init, BinaryOpl binary_opl, BinaryOp2 binary_op2);

Calling this overload would require six template arguments and seven function argu-
ments. Using the binary callables in the correct sequence may also be a challenge.
transform | reduce

The main reason for the complicated function std: :transform_reduce is that two
functions are combined into one. Defining two separate functions transform and
reduce and supporting function composition via the pipe operator would be a better
choice: transform | reduce.

Do not pass an array as a single pointer

The guideline that you should not pass an array as a single pointer is special. I can
tell you from experience that this rule is a common cause of undefined behavior. For
instance, the function copy_n is quite error prone.

template <typename T>
void copy_n(const T* p, T* q, int n); // copy from [p:p+n) to [q:qg+n)

https://en.cppreference.com/w/cpp/algorithm/transform_reduce
https://en.cppreference.com/w/cpp/algorithm/transform_reduce

CHAPTER 3 INTERFACES

int a[100] {0, 3},
int b[100] = {0, };

copy_n(a, b, 101);

Maybe you had an exhausting day and you miscounted by one. The result is an off-
by-one error and, therefore, undefined behavior. The cure is simple. Use a container
from the STL such as std: :vector and check the size of the container in the function
body. C++20 offers std: : span, which solves this issue more elegantly. A std: :span
is an object that can refer to a contiguous sequence of objects. A std: :span is never
an owner. This contiguous memory can be an array, a pointer with a size, or a
std::vector.

template <typename T>
void copy(std::span<const T> src, std::span<T> des);

int arri[] = {1, 2, 3};
{3, 4, 5};

int arr2[]

copy(arrl, arr2);

copy doesn’t need the number of elements. Hence, a common cause of errors is elim-
inated with std: : span<T>.

.27 For stable library ABI, consider the Pimpl idiom

An application binary interface (ABI) is the interface between two binary programs.

Thanks to the PImpl idiom, you can isolate the users of a class from its implemen-
tation and, therefore, avoid recompilation. PImpl stands for pointer to implementa-
tion and is a programming technique in C++ that removes implementation details
from a class by placing them in a separate class. This separate class is accessed by a
pointer. This is done because private data members participate in class layout and
private member functions participate in overload resolution. These dependencies
mean that changes to those implementation details require recompilation of all users
of a class. A class holding a pointer to implementation (PImpl) can isolate the users
of a class from changes in its implementation at the cost of an indirection.

23

https://en.cppreference.com/w/cpp/container/span
https://en.cppreference.com/w/cpp/container/span
https://en.cppreference.com/w/cpp/container/span
https://en.cppreference.com/w/cpp/language/pimpl

PART I THE GUIDELINES

The C++ Core Guidelines show a typical implementation.

o Interface: widget.h

class Widget {
class impl;
std::unique_ptr<impl> pimpl;
public:
void draw(); // public API that will be forwarded
// to the implementation
widget(int); // defined in the implementation file
~Widget(); // defined in the implementation file,
// where impl is a complete type
widget(wWidget&&) = default;
widget(const Widget&) = delete;
widget& operator = (Widget&&); // defined in the
// implementation file
widget& operator = (const Widget&) = delete;

}i

¢ Implementation: widget.cpp

class Widget::impl {
int n; // private data
public:
void draw(const widget& w) { /* ... */ }
impl(int n) : n(n) {3}
}
void Widget::draw() { pimpl->draw(*this); 3}
wWidget::wWidget(int n) : pimpl{std::make_unique<impl>(n)} {}
widget::~Widget() = default;
widget& Widget::operator = (Widget&&) = default;

cppreference.com provides more information about the PImpl idiom. Additionally,
the rule “C.129: When designing a class hierarchy, distinguish between implementa-
tion inheritance and interface inheritance” shows how to apply the PImpl idiom to
dual inheritance.

http://cppreference.com
https://en.cppreference.com/w/cpp/language/pimpl
https://en.cppreference.com/w/cpp/language/pimpl
https://en.cppreference.com/w/cpp/memory/unique_ptr

CHAPTER 3 INTERFACES 25

Related rules

I present the rule “I.10: Use exceptions to signal a failure to perform a required task”
in Chapter 11, Error Handling, the rule “I.11: Never transfer ownership by a raw
pointer (T*) or reference (T&)” in Chapter 4, Functions, the rule “1.22: Avoid complex
initialization of global objects” in Chapter 8, Expressions and Statements, and the
rule “I.25: Prefer abstract classes as interfaces to class hierarchies” in Chapter 5,
Classes and Class Hierarchies.

Distilled

Important

e Don’t use global variables. They introduce hidden dependencies.
e Singletons are global variables in disguise.
e Interfaces and in particular functions should express their intent.

e Interfaces should be strongly typed and have few arguments that cannot be
easily confused.

e Don’t take a C-array by pointer but use a std: : span.

e If you want to separate the users of a class from its implementation, use
the PImpl idiom.

https://en.cppreference.com/w/cpp/container/span
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-except
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-raw
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-raw
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-global-init
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-global-init
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-abstract
https://en.cppreference.com/w/cpp/language/pimpl

This page intentionally left blank

Chapter 4

Functions

Cippi uses functions to solve the challenge.

Software developers master complexity by dividing complex tasks into smaller units.
After the small units are addressed, they put the smaller units together to master the
complex task. A function is a typical unit and, therefore, the basic building block for
a program. Functions are “the most critical part in most interfaces . . .” (C++ Core

Guidelines about functions).

27

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-functions
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-functions

28

PART I THE GUIDELINES

The C++ Core Guidelines have about forty rules for functions. They provide
valuable information on the definition of functions, how you should pass the argu-
ments (e.g., by copy or by reference), and what that means for the ownership seman-
tics. They also state rules about the semantics of the return value and other functions
such as lambdas. Let’s dive into them.

Function definitions

Presumably, the most important principle for good software is good names. This
principle is often ignored and holds true in particular for functions.

Good names

The C++ Core Guidelines dedicate the first three rules to good names: “F.1: ‘Package’
meaningful operations as carefully named functions,” “E2: A function should per-
form a single logical operation,” and “E.3: Keep functions short and simple.”

Let me start with a short anecdote. A few years ago, a software developer asked
me, “How should I call my function?” I told him to give the function a name such as
verbobject. In case of a member function, a verb may be fine because the function
already operates on an object. The verb stands for the operation that is performed
on the object. The software developer replied that this is not possible; the function
must be called getTimeAndAddToPhonebook or just processData because the func-
tions perform more than one job (single-responsibility principle). When you don’t
find a meaningful name for your function (E1), that’s a strong indication that your
function does more than one logical operation (F.2) and that your function isn’t short
and simple (E3). A function is too long if it does not fit on a screen. A screen means
roughly 60 lines by 140 characters, but your measure may differ. Now you should
identify the operations of the function and package these operations into carefully
named functions.

The guidelines present an example of a bad function:

void read_and_print() { // bad
int x;
std::cin >> x;
// check for errors
std::cout << x << '\n';

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-package
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-package
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-logical
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-logical
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-single
https://en.wikipedia.org/wiki/Single-responsibility_principle
https://en.cppreference.com/w/cpp/io/cin
https://en.cppreference.com/w/cpp/io/cout

CHAPTER 4 FUNCTIONS

The function read_and_print is bad for many reasons. The function is tied to a
specific input and output and cannot be used in a different context. Refactoring the
function into two functions solves these issues and makes it easier to test and to

maintain:

int read(std::istream& is) { // better
int x;
is >> x;
// check for errors
return x;

void print(std::ostream& os, int x) {
0s << X << '\n';

If a function may have to be evaluated at compile-time,
declare it constexpr

A constexpr function is a function that has the potential to run at compile time.
When you invoke a constexpr function within a constant expression, or you take the
result of a constexpr with a constexpr variable, it runs at compile time. You can
invoke a constexpr function with arguments that can be evaluated only at run time,
too. constexpr functions are implicit inline.

The result of constexpr evaluated at compile time is stored in the ROM (read-
only memory). Performance is, therefore, the first big benefit of a constexpr func-
tion. The second is that constexpr functions evaluated at compile time are const
and, therefore, thread safe.

Finally, a result of the calculation is made available at run time as a constant in
ROM.

// constexpr.cpp

constexpr auto gcd(int a, int b) {
while (b !'= 0) {

auto t = b;
b =a%b;
a=t;

}

return a;

29

30 PART I THE GUIDELINES

int main() {

constexpr int i = gcd(11, 121); // (1)

int a = 11;
int b = 121;
int j = gcd(a, b); /7 (2)

Figure 4.1 shows the output of Compiler Explorer and depicts the assembly code
generated by the compiler for this function. I used the Microsoft Visual Studio Com-
piler 19.22 without optimization.

32 malin FROC

33 $LNZ

3 sub rsp, 56 ; BEEEEOSSH
mov DWORD PTR i%$[rsp], 11
mov WORD PTR a${rsp]. 11

3 mov DWORD PTR b$[rspl, 121 . 00BE8079H

38 mov edx, Dw PTR b%[rsp]

39 mov ecx, DWORD PTR a$[rsp]

40 call int ged(int,int) ; gcd

41 mov DWORD PTR j%$[rsp]l., eax

42 xXor eax, sax

43 add rsp, S6 ; BEOERO3BH

44 ret @

45 main ENDF

Figure 4.1 Assembler instructions to the program constexpr.cpp

Based on the colors, you can see that (1) in the source code corresponds to line 35 in
the assembler instructions and (2) in the source code corresponds to lines 38—41 in
the assembler instructions. The call constexpr int i = gecd(11, 121); boils down
to the value 11, but the call int j = gcd(a, b); resultsin a function call.

If your function may not throw, declare it noexcept

By declaring a function as noexcept, you reduce the number of alternative control
paths; therefore, noexcept is a valuable hint to the optimizer. Even if your function can

https://godbolt.org/
https://visualstudio.microsoft.com/

CHAPTER 4 FUNCTIONS

throw, noexcept often makes much sense. noexcept means in this case: I don’t care.
The reason may be that you have no way to react to an exception. Therefore, the only
way to deal with exceptions is to invoke std: : terminate(). This noexcept declaration
is also a piece of valuable information for the reader of your code.

The next function just crashes if it runs out of memory.

std::vector<std::string> collect(std::istream& is) noexcept {
std::vector<std::string> res;
for (std::string s; is >> s;) {
res.push_back(s);

}

return res;

The following types of functions should never throw: destructors (see the section
Failing Destructor in Chapter 5), swap functions, move operations, and default
constructors.

Prefer pure functions

Pure functions are functions that always return the same result when given the same
arguments. This property is also called referential transparency. Pure functions
behave like infinite big lookup tables.

The function template square is a pure function:

template<class T>
auto square(T t) {
return t * t;

Conversely, impure functions are functions such as random() or time(), which can
return a different result from call to call. To put it another way, functions that inter-
act with state outside the function body are impure.

Pure functions have a few very interesting properties. You should, therefore, pre-
fer pure functions, if possible.

Pure functions can

e Be tested in isolation

e Be verified or refactorized in isolation

31

https://en.wikipedia.org/wiki/Referential_transparency
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-pure
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-pure
https://en.cppreference.com/w/cpp/error/terminate

32

PART I THE GUIDELINES

e Cache their result

e Automatically be reordered or be executed on other threads

Pure functions are also often called mathematical functions. Functions in C++ are
by default not pure such as in the pure functional programming language Haskell.
Using pure functions is based on the discipline of the programmer. constexpr func-
tions are pure when evaluated at compile time. Template metaprogramming is a pure
functional language embedded in the imperative language C++.

Chapter 13, Templates and Generic Programming, gives a concise introduction to
programming at compile time, including template metaprogramming.

Parameter passing: in and out

The C++ Core Guidelines have a few rules to express various ways to pass parameters
in and out of functions.

Prefer simple and conventional ways of passing
information

The first rule presents the big picture. First, it provides an overview of the various
ways to pass information in and out of a function (see Table 4.1).

Table 4.1 Normal parameter passing

Cheap to move or

Cheap to copy or moderate cost to move

impossible to copy | or don’t know Expensive to move
In

func(X) func(const X&)

In & retain “copy”
In/Out func (X&)
Out X func() | func (X&)

The table is very concise: The headings describe the characteristics of the data
regarding the cost of copying and moving. The rows indicate the direction of param-
eter passing.

e Kind of data

* Cheap to copy or impossible to copy: int or std: :unique_ptr

https://www.haskell.org/
https://en.cppreference.com/w/cpp/memory/unique_ptr

CHAPTER 4 FUNCTIONS

° Cheap to move: std: :vector<T>or std::string

* Moderate cost to move: std::array<std::vector> or BigPob (POD
stands for Plain Old Data—that is, a class without constructors, destruc-

tors, and virtual member functions.)

* Don’t know: template

* Expensive to move: BigPOD[] or std: :array<BigPOD>

e Direction of parameter passing

* In:input parameter

* In & retain “copy”: caller retains its copy

® QOut: output parameter

In/Out: parameter that is modified

A cheap operation is an operation with a few ints; moderate cost is about one thou-

sand bytes without memory allocation.

These normal parameter passing rules should be your first choice. However, there

are also advanced parameter passing rules (see Table 4.2). Essentially, the case with

the “in & move from” semantics was added.

Table 4.2 Advanced parameter passing

Cheap to copy or
impossible to copy

Cheap to move or

or don’t know

moderate cost to move

Expensive to move

In func(X) func(constX&)

In & retain “copy”

In & move from func(X&&)

In/Out func (X&)

Out X func() | func (X&)

After the “in & move from” call, the argument is in the so-called moved-from state.

Moved-from means that it is in a valid but not nearer specified state. Essentially, you

have to initialize the moved-from object before using it again.

33

34

PART I THE GUIDELINES

The remaining rules to parameter passing provide the necessary background
information for these tables.

For “in” parameters, pass cheaply-copied types by value
and others by reference to const

The rule is straightforward to follow. Input values should be copied by default if pos-
sible. When they cannot be cheaply copied, take them by const reference. The C++
Core Guidelines give a rule of thumb to the question, Which objects are cheap to
copy or expensive to copy?

* You should pass a parameter par by value if sizeof (par) < 3 * sizeof(void*).

* You should pass a parameter par by const reference if sizeof(par) > 3 *
sizeof(void*).

void fi(const std::string& s); // OK: pass by reference to const;
// always cheap

void f2(std::string s); // bad: potentially expensive
void f3(int x); // OK: unbeatable
void f4(const int& x); // bad: overhead on access in f4()

For “forward” parameters, pass by TP&& and only
std: : forward the parameter

This rule stands for a special input value. Sometimes you want to forward the param-
eter par. This means an Ivalue is copied and an rvalue is moved. Therefore, the const-
ness of an lvalue is ignored and the rvalueness of an rvalue is preserved.

The typical use case for forwarding parameters is a factory function that creates
an arbitrary object by invoking its constructor. You do not know if the arguments are
rvalues nor do you know how many arguments the constructor needs.

// forwarding.cpp

#include <string>

#include <utility>

template <typename T, typename ... T1>
T create(T1&& ... t1) {
return T(std::forward<T1>(t1)...);

struct MyType {
MyType(int, double, bool) {}
}

int main() {
// lvalue
int five=5;

int myFive= create<int>(five);

// rvalues
int myFive2= create<int>(5);

// no arguments
int myZero= create<int>();

/7 (1)

// three arguments; (lvalue, rvalue, rvalue)
MyType myType = create<MyType>(myZero, 5.5, true);

CHAPTER 4 FUNCTIONS

The three dots (ellipsis) in the function create (1) denote a parameter pack. We call

a template using a parameter pack a variadic template.

Packing and unpacking of the parameter pack

When the ellipsis is on the left of the type parameter T1, the parameter pack

is packed; when on the right, it is unpacked. This unpacking in the return

statement T(std: : forward<T1>(t1)...) essentially means that the expression

std::forward<T1>(t1) is repeated until all arguments of the parameter pack

are consumed and a comma is put between each subexpression. For the curi-

ous, C++ Insights shows this unpacking process.

35

https://cppinsights.io/s/ad5b8b5d

36

PART I THE GUIDELINES

The combination of forwarding together with variadic templates is the typical cre-
ation pattern in C++. Here is a possible implementation of std: :make_unique<T>.

template<typename T, typename... Args>
std::unique_ptr<T> make_unique(Args&&... args) {
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));

}

std: :make_unique<T> creates a std::unique_ptr for T

F.17 For “in-out” parameters, pass by reference to non-const

The rule communicates its intention to the caller: This function modifies its
argument.

std::vector<int> myVec{1, 2, 3, 4, 5};

void modifyVector(std::vector<int>& vec) {
vec.push_back(6);
vec.insert(vec.end(), {7, 8, 9, 10});

For “out” output values, prefer return values to output
parameters

The rule is straightforward. Just return the value, but don’t use a const value because
it has no added value and interferes with move semantics. Maybe you think that cop-
ying a value is an expensive operation. Yes and no. Yes, you are right, but no, the
compiler applies RVO (Return Value Optimization) or NRVO (Named Return Value
Optimization). RVO means that the compiler is allowed to remove unnecessary copy
operations. What was a possible optimization step becomes in C++17 a guarantee.

MyType func() {
return MyType{}; // no copy with C++17

}
MyType myType = func(); // no copy with C++17

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr

CHAPTER 4 FUNCTIONS

Two unnecessary copy operations can happen in these few lines, the first in the
return call and the second in the function call. With C++17, no copy operation
takes place. If the return value has a name, we call it NRVO. Maybe you guessed that.

MyType func() {
MyType myValue;
return myvalue; // one copy allowed

}
MyType myType = func(); // no copy with C++17

The subtle difference is that the compiler can still copy the value myvalue in the
return statement according to C++17. But no copy will take place in the function
call.

Often, a function has to return more than one value. Here, the rule F21 kicks in.

To return multiple “out” values, prefer returning a struct or
tuple

When you insert a value into a std: : set, overloads of the member function insert
return a std: :pair of an iterator to the inserted element and a bool set to true if the
insertion was successful. std::tie with C++11 or structured binding with C++17 are
two elegant ways to bind both values to a variable.

// returnPair.cpp; C++17
#include <iostream>
#include <set>
#include <tuple>
int main() {
std::cout << '"\n';
std::set<int> mySet;
std::set<int>::iterator iter;
bool inserted = false;
std::tie(iter, inserted) = mySet.insert(2011); // (1)

if (inserted) std::cout << "2011 was inserted successfully\n";

auto [iter2, inserted2] = mySet.insert(2017); // (2)

37

https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/language/structured_binding
https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/io/cout
https://en.cppreference.com/w/cpp/utility/tuple/tie

38

PART I THE GUIDELINES

if (inserted2) std::cout << "2017 was inserted successfully\n";

std::cout << '\n';

Line (1) uses std: : tie to unpack the return value of insert into iter and inserted.
Line (2) uses structured binding to unpack the return value of insert into iter2 and
inserted2. std::tie needs, in contrast to structured binding, a predeclared varia-

ble. See Figure 4.2.

B x64 Native Tools Command Prompt for VS 2019

C:\Users\rainer>returnPair.exe

2011 was inserted suc
2017 was inserted succe

C:\Users\rainer>

fully
fully

Figure 4.2 Returning a std: :pair

Parameter passing: ownership semantics

The last section was about the flow of parameters: which parameters are input,
input/output, or output values. But there is more to arguments than the direction of
the flow. Passing parameters is about ownership semantics. This section presents five
typical ways to pass parameters: by copy, by pointer, by reference, by std: :unique_
ptr, or by std: :shared_ptr. Only the rules to smart pointers are inside this section.
The rule to pass by copy is part of the previous section Parameter Passing: In and

Out, and the rules to pointers and references are part of Chapter 3, Interfaces.

Table 4.3 provides the first overview.

Table 4.3 Ownership semantics of parameter passing

Example Ownership Rule
func(value) func is a single owner of the resource. F16
func(pointer®) func has borrowed the resource. I.11and E7

func(reference&)

func has borrowed the resource.

I.11and E7

func(std: :unique_ptr)

func is a single owner of the resource.

F.26

func(std: :shared_ptr)

func is a shared owner of the resource.

E27

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-interfaces
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/language/structured_binding
https://en.cppreference.com/w/cpp/language/structured_binding
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie

CHAPTER 4 FUNCTIONS

Here are more details:

® func(value): The function func has its own copy of the value and is its owner.

func automatically releases the resource.

func (pointer+): func has borrowed the resource and is, therefore, not author-
ized to delete the resource. func has to check before each usage that the pointer
is not a null pointer.

func (references&): func has borrowed the resource. In contrast to the pointer,
the reference always has a valid value.

func(std::unique_ptr): func is the new owner of the resource. The caller of
the func has explicitly transferred the ownership of the resource to the callee.
func automatically releases the resource.

func(std: :shared_ptr): func is an additional owner of the resource. func
extends the lifetime of the resource. At the end of func, func ends its ownership of
the resource. This end causes the release of the resource if func was the last owner.

Who is the owner?

It’s very important to indicate ownership clearly. Just imagine that your
program is written in legacy C++, and you have only a raw pointer at your
disposal to express the four kinds of ownership by pointer, by reference, by
std: :unique_ptr, or by std: :shared_ptr. The key question in legacy C++ is,
Who is the owner?

The following code snippet makes my point:

void func(double* ptr) {

double* ptr = new double[];
func(ptr);

The critical question is, Who is the owner of the resource? The callee of func
that uses the array, or the caller of the func that created the array? If func is the
owner, it has to release the resource. If not, func is not allowed to release the
resource. This condition is not satisfactory. If func does not release the
resource, a memory leak may happen. If func does release the resource, unde-
fined behavior may be the result.

39

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr

40 PART I THE GUIDELINES

In consequence, ownership needs to be documented. Defining the contract
using the type system in modern C++ is a big step in the right direction to
eliminate this ambiguity in documentation.

Using std: :move on application level is not about moving. Using std: :move
on application level is about the transfer of ownership—for example, apply-
ing std: :move to a std: :unique_ptr transfers the ownership of the memory
to another std: :unique_ptr. The smart pointer uniquePtri is the original
owner, but uniquePtr2 becomes the new owner.

auto uniquePtrl = std::make_unique<int>(2011);
std::unique_ptr<int> uniquePtr2{ std::move(uniquePtril) };

Here are five variants of ownership semantics in practice.

1 // ownershipSemantic.cpp
2

3 #include <iostream>

4 #include <memory>

5 #include <utility>

class MyInt {
public:

© 00 N O

explicit MyInt(int val): myInt(val) {}
10 ~MyInt() noexcept {

11 std::cout << myInt << '\n';

12 3

13 private:

14 int myInt;

15 };

16

17 void funcCopy(MyInt myInt) {3}

18 void funcPtr(MyInt* myInt) {}

19 void funcRef(MyInt& myInt) {}

20 void funcUniqPtr(std::unique_ptr<MyInt> myInt) {}
21 void funcSharedPtr(std::shared_ptr<MyInt> myInt) {}
22

23 int main() {

24

25 std::cout << '\n';

26

27 std::cout << "=== Begin" << '\n';

28

29 MyInt myInt{19983};

https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr
https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie

CHAPTER 4 FUNCTIONS

30 MyInt* myIntPtr = &myInt;

31 MyInt& myIntRef = myInt;

32 auto unigPtr = std::make_unique<MyInt>(2011);
33 auto sharedPtr = std::make_shared<MyInt>(2014);
34

35 funcCopy(myInt);
36 funcPtr(myIntPtr);

37 funcRef(myIntRef);

38 funcUnigPtr(std: :move(uniqgPtr));
39 funcSharedPtr (sharedPtr);

40

41 std::cout << "==== End" << '\n';
42

43 std::cout << '\n';

44

45 }

The type MyInt displays in its destructor (lines 10-12) the value of myInt (line 14).
The five functions in the lines 17-21 implement each of the ownership semantics.
The lines 2933 have the corresponding values. See Figure 4.3.

rainer : bash — Ko

File Edit View Bookmarks Settings Help
rainer@seminar:~> ownershipSemantic o

=== Begin
1998

2011

=== End

2014
1998
rainer@seminar:~> [J

[>] rainer : bash

Figure 4.3 The five ownership semantics

The screenshot shows that two destructors are called before and two destructors are
called at the end of the main function. The destructors of the copied myInt (line 35)
and the moved uniquePtr (line 38) are called before the end of main. In both cases,
funcCopy or funcUnigPtr becomes the owner of the resource. The lifetime of the
functions ends before the lifetime of main. This end of the lifetime does not hold for
the original myInt (line 29) and the sharedPtr (line 33). Their lifetime ends with
main, and therefore, the destructor is called at the end of the main function.

141

https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie

42

PART I THE GUIDELINES

Value return semantics

The seven rules in this section are in accordance with the previously mentioned rule
“F.20: For ‘out’ output values, prefer return values to output parameters.” The rules
of this section are, in particular, about special use cases and don’ts.

When to return a pointer (T*) or an lvalue reference (T&)

As we know from the last section (Parameter Passing: Ownership Semantics),
a pointer or a reference should never transfer ownership.

Return a T* to indicate a position (only)

A pointer should indicate only a position. This is exactly what the function find
does.

Node* find(Node* t, const string& s) {
if (!t || t->name == s) return t;
if ((auto p = find(t->left, s))) return p;
if ((auto p = find(t->right, s))) return p;
return nullptr;

The pointer indicates that the Node is holding the position of s.

Return a T& when copy is undesirable and “returning no
object” isn't needed

When return no object is not an option, using a reference instead of a pointer comes
into play.

Sometimes you want to chain operations without unnecessary copying and
destruction of temporaries. Typical use cases are input and output streams or assign-
ment operators (“F47: Return T& from assignment operators”). What is the subtle
difference between returning by T& or returning by T in the following code snippet?

A& operator = (const A& rhs) { ... };
A operator = (const A& rhs) { ... };

https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-assignment-op

CHAPTER 4 FUNCTIONS

A = al, a2, a3;
al = a2 = a3;

The copy assignment operator returning a copy (A) triggers the creation of two addi-
tional temporary objects of type A.

A reference to a local
Returning a reference (pointer) to a local is undefined behavior.

Undefined behavior essentially means this: Don’t make any assumptions about
your program. Fix undefined behavior. The program lambdaFunctionCapture.cpp
returns a reference to a local.

// lambdaFunctionCapture.cpp

#include <functional>
#include <iostream>
#include <string>

auto makeLambda() {
const std::string val = "on stack created";
return [&val]{return val;}; // (2)

int main() {

auto bad = makeLambda(); // (1)
std::cout << bad(); // (3)

The main function calls the function makeLambda() (1). The function returns a
lambda expression, which has a reference to the local variable val (2).

The call bad() (3) causes the undefined behavior because the lambda expression
uses a reference to the local val. As local, its lifetime ends with the scope of
makeLambda().

Executing the program gives unpredictable results. Sometimes I get the entire
string, sometimes a part of the string, or sometimes just the value 0. As an example,
here are two runs of the program.

In the first run, arbitrary characters are displayed until the string terminating
symbol (\0) ends it (see Figure 4.4).

43

https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/utility/tuple/tie

44

PART I THE GUIDELINES

@e

0kBEx66006 1696

60@pHHH;S 56" W%O)"BOPOBOPWYG
[T A Dx86_64

Figure 4.4 Displaying arbitrary characters

In the second run, the program causes a core dump (see Figure 4.5).

File Edit View Bookmarks Settings Help
; tation f 1‘“1'"1". dusped)
&) n fau core
ratnerglinus: Af-- r\d‘eﬁnmhav;elut
Segrentation fault (core durpe
Fainerglinuxi=> undef inedBehaviour
ar in "undef tnedBehaviour' s freel): Lavalid pointer: BxBOBOTIfcSE114108 »o+
BacKErace: semssssss
.rl\bbcl.fltk.w,&b‘iﬂk”ih?fﬂ“fcmﬂ
/Lib64/Tibe 50, 61 +0xTO846] [BxTfE1EIFCB0LE]
/11b64/11bc, 50,61 +0x7a393 1 [Bx7 18163129393]
fusr/1ib64/1ibstde++. 50.6(_ZNSsD2Ev+ax3e | [0x71B1648eT06e]
undef inedBehaviour [Bxatabds
/1ib68/ibe 50,81 _1ibc_start mainedxfS|[ex7fa163f61725]
undef {nedBehay tour [Bxdpaofa]
S Ilenry up [.
800 r-xp GROBOGOD BS113 G987 Jhome/ rainer/undef inedBahaviour
mmu mzm re-p BBOA106 85:13 6947 home/ rainerfundef inedBehaviour
0468 2800 - DGO 3000 BBOE20A 6813 6987 /hone/ ratner fundet {nedBehaviour
80162080061 40008 rv-p BEOGGESD -6 B [heap]
7£315c000000-7F815C021008 rw-p 0086080 80:00 B
7£815c821000-712150000000 ---p ORGABOBE B8:8 &
718163141B08-7181640ea008 r-xp BOGABOBE 88:27 1415842 F1ib64s1(be-2,22. 50
7fA164BeB08-7 18164220000 ———p DAIILORE 80:27 1415842 /1ib64/1ibc-2,22.50
7f8164200008- 718164200000 r--p BO19LOSS 08:27 1415842 Alibbd/1ibc-2.22. 50
7181642e000- 118164210068 rw-p SH1S1088 88:27 mmz JUibbas1ibc-2.22.50
718164210808- 718154214008 rw-p GB0B6088 80:00 B
71316821 7000-7216430000 r-xp 00608088 §0:27 1359149 /lib64/1ibgec_s.50,1
3164300808 -7E164504008 ---p 00017008 88:27 1355145 Flibbds1ibgec_s5.50.1
7£8164500806-71516450c008 r--p BBO1086 88:27 1359149 FUibbas1 ibgee_s. 5.1
718164500000 78164501080 rw-p OBO17688 80:27 1359149 /1641 bgec 5. 50,1
71816450 1000-718164600000 r-xp DOGB00A8 89:27 1815850 J1ib6a/1iba-2,22, 50
7f8164600000-718164500000 ---p BOETLOA0 88117 1415358 Alibbd/libn-2,22. 50
718164B0800- 718164800000 r--p BB6TLOBE 88:27 1415858 /1ib64/1ibn-2,22 30
71816480b806-7 1816480008 rw-p DOGTCHRE 69:27 1415850 /Uib6d/1ibn-2,22 .50
77516460 1000-778164080000 r-xp BROARORE §9:27 1359277 Jusr/Lib64/Libstdces. 50.6.8.25
1fa164 TfaL64 ==<p BA1ThOGE 80127 1359277 Fusr/1ibb4/1ibstdoss. 50.6.0.2! S
164b8aB08-718164b54000 r--p SRITHOAN 88:27 1358277 Jusr/Lib64/Libsticrs. s0.6.8.2
718164b94806-718164b96000 rw-p BB1ASA8R 89:27 1359277 Just/Lib64/Libstice+.50.6.8. 25
7fi 78164 rv-p GA0GB0GA §0:00 B
7fa164bafean-Tfa164bcB008 r-xp GEDAGA0 BH:2T 1415834 libsds14-2.22.50
18 B00- 71164051008 rw-p OBBORGRE 888 8
718164d0e008-7A1540c060 rw-p DBGSBBS 80:06 B
7Fa164000000-718154dc 1000 r—-p ORO21000 §0:27 1415834 /lib64/18-2.22.50
1181640c 1800-7181640c 2008 rw-p 8622006 86:27 1413834 JUib64718-2.32.50
7181644 2808-T18164dc 4008 rw-p ORGANORS B8 B
718164dc4008-781540c 5000 rw-p 08008080 80:86 §
7ffcsGef7o00-7ffc56T 16000 rw-p DO0G00SE 80:00 § [stack]
Hf:”fh)”&-?fr:!ﬁhm n-y BBOBEGAN B0:80 [wvar]
x) HOBIBON B6:80 § [vdsa]
f\‘(f!h‘lf\‘m \‘ﬂﬂ\‘lfﬂ GO10E8 r-xp DEGBE0SE B0:00 B [vsyscall]
k= teore dumped)
rainarlimuxi-= ||
] raine ; bash
Figure 4.5 Causing a core dump
J.
Don't return a T&&
and
. L)
Don't return std: :move(local)

Both rules are very rigorous.

CHAPTER 4 FUNCTIONS

T&&
You should not use a T&& as a return type. Here is a small example to demonstrate the
issue.

// returnRvalueReference.cpp

int&& returnRvalueReference() {
return int{};

int main() {

auto myInt = returnRvalueReference();

When compiled, the GCCcompiler complains immediately about a reference to a
temporary (see Figure 4.6). To be precise, the lifetime of the temporary ends with the
end of the full expression auto myInt = returnRvalueReference();.

File Edit View Bookmarks Settings Help

rainer@linux:~> g++-6 -std=c++14 returnRvalueReference.cpp -o returnRvalueReference

returnRvalueReference.cpp: In function ‘int&& returnRvalueReference()’:

returnRvalueReference.cpp:4:16: warning: returning reference to temporary [-Wreturn-local-addr]
return int{};

3

ratner@linux:~> J§

. rainer : bash

Figure 4.6 Returning a reference to a temporary

std: :move(local)

Thanks to copy elision with RVO and NRVO, using return std: :move(local) is not an
optimization but a pessimization. Pessimization means that your program may become
slower.

int is the return type for main()

According to the C++ standard, there are two variations of the main function:

int main() { ... }
int main(int argc, char** argv) { ... }

45

https://en.cppreference.com/w/cpp/utility/move
https://en.cppreference.com/w/cpp/utility/move

46

PART I THE GUIDELINES

The second version is equivalent to int main(int argc, char* argv[]) { ... }.

The main function does not need a return statement. If control reaches the end
of the main function without encountering a return statement, the effect is that of
executing return 0;. return 0 stands for the successful execution of the program.

Other functions

The rules in this section advise on when to use lambdas and compare va_arg with
fold expressions.

Lambdas

Use a lambda when a function won’t do (to capture local
variables, or to write a local function)

This rule states the use case for lambdas. This immediately raises the question, When
do you have to use a lambda or a function? Here are two obvious reasons.

1. If your callable has to capture local variables or is declared in a local scope, you
have to use a lambda function.

2. If your callable should support overloading, use a function.

Now I want to present my crucial arguments for lambdas that are often ignored.

Expressiveness

“Explicit is better than implicit.” This meta-rule from Python (PEP 20—The Zen of
Python) also applies to C++. It means that your code should explicitly express its
intent (see rule “P.1: Express ideas directly in code”). Of course, this holds true in
particular for lambdas.

std::vector<std::string> myStrVec = {"523345", "4336893456", "7234",
"564", "199", "433", "2435345"};

std::sort(myStrVvec.begin(), myStrVec.end(),

[J(const std::string& f, const std::string& s) {
return f.size() < s.size();

)i

https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
https://www.modernescpp.com/index.php/fold-expressions

CHAPTER 4 FUNCTIONS 47

Compare this lambda with the function lessLength, which is subsequently used.

std::vector<std::string> myStrVec = {"523345", "4336893456", "7234",
"564", "199", "433", "2435345"};

bool lessLength(const std::string& f, const std::string& s) {
return f.size() < s.size();

std::sort(myStrVec.begin(), myStrVec.end(), lessLength);

Both the lambda and the function provide the same order predicate for the sort algo-
rithm. Imagine that your coworker named the function foo. This means you have no
idea what the function is supposed to do. As a consequence, you have to document
the function.

// sorts the vector ascending, based on the length of its strings
std::sort(myStrVec.begin(), myStrVec.end(), foo);

Further, you have to hope that your coworker did it right. If you don’t trust them, you
have to analyze the implementation. Maybe that’s not possible because you have the
declaration of the function. With a lambda, your coworker cannot fool you. The
code is the truth. Let me put it more provocatively: Your code should be so expressive
that it does not require documentation.

Expressiveness versus don’t repeat yourself (DRY)

The design rule to write expressive code with lambdas often contradicts
another important design rule: Don’t repeat yourself (DRY). DRY means that
you should not write the same code more than once. Making a reusable unit
such as a function and giving it a self-explanatory name is the appropriate cure
for DRY. In the end, you have to decide in the concrete case if you rate expres-
siveness higher than DRY.

Prefer capturing by reference in lambdas that will be used
locally, including passed to algorithms

and

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

48

PART I THE GUIDELINES

Avoid capturing by reference in lambdas that will be used
nonlocally, including returned, stored on the heap, or
passed to another thread

Both rules are strongly related, and they boil down to the following observation: A

lambda should operate only on valid data. When the lambda captures the data by copy,

the data is by definition valid. When the lambda captures data by reference, the lifetime

of the data must outlive the lifetime of the lambda. The previous example with a

reference to a local showed different results of a lambda referring to invalid data.
Sometimes the issue is not so easy to catch.

int main() {
std::string str{"C++11"};

std::thread thr([&str]{ std::cout << str << '\n'; });
thr.detach();

}

Okay, I hear you say, “That is easy.” The lambda expression used in the created thread
thr captures the variable str by reference. Afterward, thr is detached from the life-
time of its creator, which is the main thread. Therefore, there is no guarantee that the
created thread thr uses a valid string str because the lifetime of str is bound to the
lifetime of the main thread. Here is a straightforward way to fix the issue. Capture
str by copy:

int main() {
std::string str{"C++11"};

std::thread thr([str]{ std::cout << str << '\n'; });
thr.detach();

}

Problem solved? No! The crucial question is, Who is the owner of std::cout?
std::cout’s lifetime is bound to the lifetime of the process. This means that the
thread thr may be gone before std: :cout prints C++11 onscreen. The way to fix this

https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie

CHAPTER 4 FUNCTIONS

problem is to join the thread thr. In this case, the creator waits until the created is
done, and therefore, capturing by reference is also fine.

int main() {
std::string str{"C++11"};

std::thread thr([&str]{ std::cout << str << '\n'; });
thr.join();

Where there is a choice, prefer default arguments over
overloading

If you need to invoke a function with a different number of arguments, prefer default
arguments over overloading if possible. Therefore, you follow the DRY principle
(don’t repeat yourself).

void print(const string& s, format f = {});
The equivalent functionality with overloading requires two functions:

void print(const string& s); // use default format
void print(const string& s, format f);

Don't use va_arg arguments

The title of this rule is too short. Use variadic templates instead of va_arg argu-
ments when your function should accept an arbitrary number of arguments.
Variadic functions are functions such as std: :printf that can take an arbitrary
number of arguments. The issue is that you have to assume that the correct types
were passed. Of course, this assumption is very error prone and relies on the disci-
pline of the programmer.
To understand the implicit danger of variadic functions, here is a small example.

49

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.cppreference.com/w/cpp/utility/tuple/tie

50

PART

I THE GUIDELINES

// vararg.cpp

#include <iostream>
#include <cstdarg>

int sum(int num, ...) {

int

sum = 0;

va_list argPointer;

va_start(argPointer, num);
for(int 1 = 0; 1 < num; i++)

sum += va_arg(argPointer, int);

va_end(argPointer);

return sum;

int main() {

std:
std:
std:

std:

rcout <<
rcout <<
rcout <<
<<
rcout <<
<<

"sum(1, 5): " << sum(1, 5) << '\n';

"sum(3, 1, 2, 3): " << sum(3, 1, 2, 3) << '\n';
"sum(3, 1, 2, 3, 4): "

sum(3, 1, 2, 3, 4) << '\n'; // (1)

"sum(3, 1, 2, 3.5): "

sum(3, 1, 2, 3.5) << '\n'; /7 (2)

sum is a variadic function. Its first argument is the number of arguments that should

be summed up. The following background information about va_arg macros helps

with understanding the code.

va_list: holds the necessary information for the following macros

va_start: enables access to the variadic function arguments

va_arg: accesses the next variadic function argument

va_end: ends the access of the variadic function arguments

For more information, read cppreference.com about variadic functions.

In (1) and (2), I had a bad day. First, the number of the arguments num is wrong;
second, I provided a double instead of an int. The output shows both issues. The
last element in (1) is missing, and the double is interpreted as int (2). See Figure 4.7.

http://cppreference.com
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie

CHAPTER 4 FUNCTIONS

rainer: bash — Konsole v

File Edit View Bookmarks >
rainer@seminar:~> vararg ~
sum(l; 5): 5

sum{3, 1, 2, 3): 6

sum(3, 1, 2, 3, 4): 6
sum(3, 1, 2, 3.5): 539767595
rainer@seminar:~> |

B rainer: bash

Figure 4.7 Summation with va_arg

These issues can be easily overcome with fold expressions in C++17. In contrast
to va_args, fold expressions automatically deduce the number and the type of their
arguments.

// foldExpressions.cpp

#include <iostream>

template<class ... Args>
auto sum(Args ... args) {

return (... + args);
}

int main() {

std::cout << "sum(5): " << sum(5) << '\n';

std::cout << "sum(1, 2, 3): " << sum(1, 2, 3) << '\n’';
std::cout << "sum(1, 2, 3, 4): " << sum(1, 2, 3, 4) << '\n';
std::cout << "sum(1, 2, 3.5): " << sum(1, 2, 3.5) << '\n';

The function sum may look scary to you. It requires at least one argument and uses
C++11 variadic templates. These are templates that can accept an arbitrary number
of arguments. The arbitrary number is held by a so-called parameter pack denoted
by an ellipsis (. . .). Additionally, with C++17, you can directly reduce a parameter
pack with a binary operator. This addition, based on variadic templates, is called
fold expressions. In the case of the sum function, the binary + operator (. ..+ args)
is applied. If you want to know more about fold expressions in C++17, details are at
hetps://www.modernescpp.com/index.php/fold-expressions.

https://www.modernescpp.com/index.php/fold-expressions
https://www.modernescpp.com/index.php/fold-expressions
https://www.modernescpp.com/index.php/fold-expressions
https://www.modernescpp.com/index.php/fold-expressions
https://www.modernescpp.com/index.php/fold-expressions
https://en.cppreference.com/w/cpp/header/iostream
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie
https://en.cppreference.com/w/cpp/utility/tuple/tie

52

PART I THE GUIDELINES

The output of the program is as expected (see Figure 4.8).

File Edit View Bookmarks Settings Help
rainer@seminar:~> foldExpressions A
sum(5): 5

sum(1l, 2, 3): 6

sum(1l, 2, 3, 4): 10

sum(1l, 2, 3.5): 6.5

rainer@seminar:~> [[

rainer : bash — Konsole

rainer : bash

Figure 4.8 Summation with fold expressions

Related rules

An additional rule to lambdas is in Chapter 8, Expressions and Statements: “ES.28:

Use lambdas for complex initialization, especially of const variables.”

I skipped the C++20 feature std: : span in this chapter and provided basic infor-

mation on std: :span in Chapter 7, Resource Management.

Distilled

Important

A function should perform one operation, be short and simple, and have a
carefully chosen name.

Make functions that could run at compile-time constexpr.
Make your functions pure if possible.

Distinguish between the in, in/out, and out parameters of a function. Use
passing by value or by const reference for in, use passing by reference for
in/out, and use passing by value for the out parameter.

Passing parameters to functions is a question of ownership semantics.
Passing by value makes the function an independent owner of the resource.
Passing by pointer or reference means the function only borrows the
resource. A std::unique_ptr transfers the ownership to the function.
std: :shared_ptr makes the function a shared owner.

Use variadic templates instead of va_arg arguments when your function
should accept an arbitrary number of arguments.

https://en.cppreference.com/w/cpp/container/span
https://en.cppreference.com/w/cpp/container/span
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-lambda-init
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-lambda-init
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr

Index

Symbols

() (parentheses), 187
{} (curly braces), 144, 166

A

ABI (application binary interface), 23-24
Abrahams, David, 280
abstract class, 101, 102
abstraction, 167, 302-304
access
memory, 225-229
nonexisting element of a std::string, 404
objects, 114-117
sequence containers, 229
accounts, comparing, 326
accumulate algorithm, 166
acquire-release semantics, singletons, 218
ADL (argument-dependent lookup), 126, 314,
315-316
algorithms, 8
Euclidean, 223
expressing, 304
function objects, 305-307
ged, 223-225
generic programming, 301, 302. See also
generic programming
parallel, 266
preference over raw loops, 201
std::accumulate, 166
std::transform_exclusive_scan, 269
STL (Standard Template Library), 12, 266
aliases
defining, 311
smart pointers, 162—-164
templates, 310, 311
ALL_CAPS, 134, 170-171
allocation
memory, 147, 246
resource management, 145-150

analysis, enabling code, 448
annotated graphs, 243
anonymous unions, 128—129
application binary interface. See ABI
(application binary interface)
architecture, 423425
code stability, 423
cycles among libraries, 425
expressing reusable parts as libraries,
424425
argument-dependent lookup. See ADL
(argument-dependent lookup)
arguments
binary callables, 21, 22
defaults, 49, 113-114
functions, 359
metafunctions, 343
order of evaluation, 195-196
Regular type/SemiRegular type, 313-314
template argument deduction, 313
templates, 359
va_arg, 49-52
arithmetic
errors, 208-210
rules, 204
signed/unsigned integers, 204208
array, 401-403
arrays, deleting, 194
artificial scope, 144
assembler instructions, 30
assertions, 443
assignments
classes, 59-60, 78-80
copy-assignment operator, 221,222
pointers, 117
auto, applying, 171-172
automatic management of devices, 435, 449
automatic memory management, 398. See also
memory
automatic type deduction, 179
availability of source code, 376-377

459

460

INDEX

B

bad functions, example of, 28-29
Bartosz, Milewski, 276
base classes, 101
basic exception safety, 280
behaviors
default, 71
defining, 368
implementation-defined, 9
regular types, 58
shadowing, 111-113

undefined, 9, 22, 42, 63, 234-235. See also

undefined behaviors

unspecified, 196
big six, 59, 60, 61, 85, 130, 222
binary callables, 21, 22
binding, late, 114
bit manipulation, 205
block scope, 166
Boost C++ Library, 280
boundaries, 282, 403—404
bounds

errors, 403—404

safety, 439
built-in types, 283-285, 294
byte, 409

C

calculating (at compile time), 339-341
callables
definition of, 21, 22
providing, 305
C-arrays
bounds errors, 403—404
size of, 402
std::array instead of, 401-403
std::vector instead of, 398—400
case-sensitivity, 363
casts
avoiding, 197
naming, 198
Visual Studio compiler, 197
catch-clauses, ordering, 288
catch-fire semantics, 9
catching exceptions, 285-286. See also
exceptions
categories
types, 346—349
C++ Core Guidelines, enforcing, 447452

chain operations, 42
characters
arbitrary, 44
character-level input, 411
owning sequences, 405—406
std::string_view, 407—408
termination, 405, 406
cheap operations, 33
Clang compiler, 172, 196-197, 219
clang-tidy tool, 450452
classes
abstract, 101, 102
accessing, 56
assignments, 59-60, 78-80
base, 101
concrete types, 5859
constructors, 59-60, 66—78. See also
constructors
copying, 69, 78-83
declarations, 431
default arguments, 113-114
default constructors, 68-74
default operations, 60-66, 88—98
definitions of, 53
designing, 102-117
destructors, 59-60, 83—88
dynamic-cast, 114-117
enum, 133—-134
explicit actions, 84
functions, 55
hierarchies, 59, 98-117, 331
implementation, 56
inheritance, 54
initializing, 71
invariant, 55
moving, 78-83
non-dependent class template members,
323-325
objects, 114-117. See also objects
operators, 117-126. See also operators
overloading, 111
Plmpl idiom, 23-24
polymorphic, 81-83
RAII (Resource Acquisition Is
Initialization), 140—142
resources, 84
special constructors, 76—78
versus struct, 54
summary rules, 54-58
unions, 126—129

classical enumerations, 131, 132. See also
enumerations
cleanup actions, 433—435
clients, communication, 281
clone function, 103-105
code. See also performance
abstraction, 302-304
enabling analysis, 448
expressing ideas in, 8
expressiveness, 307
generic code based on
templates, 10
messy, 12, 13
multi-threaded programs, 232-234
null pointers, 192-193
optimization, 354-356
quality of, 167
repetition, 291
reusing, 232
source. See source code
stability, 423
unknown, 249-250
writing, 223
wrong assumptions, 214-218
common names, 169—170
communication
error handling, 281-282
functions, 20-22
comparisons, 325-330
type-traits library, 349-351
compiler errors, 332, 387
Compiler Explorer, 30, 219
compilers, default operations, 60—66
compile time, 338
calculating at, 338, 339-341
checking, 10, 11
gcd algorithms, 223-225
type manipulation at, 340-341
complicated expressions, 186
composite type categories, 347-348
concepts, 453456
concrete types, 5859
concurrency, 17,231-232, 245
data sharing, 257-261
general guidelines, 232-245
lock-free programming, 273-276
locks, 246-250
message passing, 269273
parallelism and, 232, 266-269
resources, 261-264

INDEX

threads, 250-257

validating, 238-245
conditional execution, 360
condition variables, 254-257

versus tasks, 272

without predicates, 257
configuring applied rules, 449
consistency

of default operations, 63-66

initialization preferences, 76
const

casts, 199

correctness, 294

defining objects, 297-298

member functions, 294-296
constant expressions, 29-30

functions, 357

templates, 356-362

user-defined types, 357358

variables, 356
constants, 293-298

enumerations, 133

initializers, 75

introducing, 176

magic, 190

symbolic, 190
constexpr, 29-30, 298, 342

metaprogramming, 358
constructors

calling virtual functions, 91-98

classes, 59—60, 66—78

conversion, 73

copy, 65

default, 68-74

defining, 62

delegating, 76, 77

explicit, 121

inheriting, 77-78

special, 76-78

throwing exceptions, 68
containers, 23

expressing, 305

iterating through, 366

sequence, 229

STL (Standard Template Library), 60,

398—404

threads as, 250-251
context

minimizing dependencies, 320-321

minimizing switching, 261

461

462

INDEX

contracts, 457458
interfaces, 15-16. See also interfaces
conventional usage, 118-126
conversions
constructors, 121
decay, 117
expressions, 197-199
implicit conversion operators, 122124
narrowing, 180-182
copy-and-swap idiom, 93-94
copy-assignment operator, 63, 221, 222
copy constructors, 65
copying, 42
classes, 69, 78-83
deep copying, 80
parameters, 34
semantics, 80-83
shallow copying, 80
copy-only type, 221
copy semantics, 12
core dumps, 44, 146
correctness, type-traits library, 353-354
covariant return type, 103, 104
.cpp files, 384, 386-387
CppMem, 241-245
C-strings, 406
C-style programming, 375
availability of source code, 376-377
entire source code not available, 378-380
preference for C++, 375-376
using interfaces for, 378-380
curly braces (), 144, 166
cycles
breaking, 154-156
of smart pointers, 154, 156
cyclic dependencies, 388-390

D

data members

accessing specifiers, 105

non-const, 107
data races, 234-235

in CppMem, 245
data sharing, concurrency, 257-261
deadlocks, 248
deallocation, resource management, 145-150
decay, 117

declaration
classes, 431
expressions, 168
functions, 427—428
naming, 168-169, 171
statements, 168
static_assert, 10
deduction
automatic type, 179
template argument, 311-312
deep copying, 80. See also copying
polymorphic classes, 103
=default, §9-90
defaults
arguments, 49, 113-114
behaviors, 71
constructors, 68—74, 69—74
operations, 60—66, 88—98
statements, 202-204
=delete, 89, 90-91
deleting
arrays, 194
destructors, 91
dependencies
avoiding, 390
cyclic, 388-390
injection, 18-20
minimizing context, 320-321
non-dependent class template members,
323-325
between special member functions, 61
deque, 226
dereferencing pointers, 191-193, 194
design
classes, 102-117
error handling, 281-282
Gang of Four (GoF), 111
optimizations, 219-222
Design Patterns: Elements of Reusable Object-
Oriented Software (Gamma, Helm,
Johnson, Vlissides), 111
destructors, 145
calling virtual functions, 91-98
classes, 59—-60, 83—-88
defining, 84, 85
deleting, 91
failing, 88
need for, 83

nonvirtual, 87
protected, 87
public, 86-87
virtual, 86-87
detection
errors, 10
overflow, 208
deterministic, definition of, 437
devices, automatic management of, 435, 449
direct ownership, 286-287
discriminated unions, 126
documentation, intention of, 9
don’t repeat yourself. See DRY (don’t repeat
yourself)
do while loops, 199, 200
DRY (don’t repeat yourself), 49, 291, 364, 365
dynamic-cast, 114-117

E

enable_if, 319-320, 352, 356
enabling code analysis, 448
endl, 415-418
enforcing rules, 447-452
enumerations, 131-137
ALL_CAPS, 134
constants, 133
enum class, 133-134
enumerator values, 136
over macros, 132—-133
strongly typed enums, 131
underlying types, 135
unnamed, 134-135
equality operators, 94-96, 97-98
equivalent operations, 124-125
error handling, 279, 280-281. See also errors
design, 281-282
implementation, 283-291
errors
arithmetic, 208-210
bounds, 403—404
with C++ compilers, 377
compilation, 174
compiler, 387
detecting, 10
run-time, 11
SFINAE (Substitution Failure Is Not An
Error), 320, 352
single pointers and, 22-23

INDEX

static_assert declarations, 10
use-before-set, 177
Euclidean algorithm, 223
evaluation, order of, 150, 194-195, 194-196
exceptions
avoiding, 429431
basic exception safety, 280
catching, 285-286
dynamic-cast, 116
error handling, 283. See also error handling
ordering catch-clauses, 288
purpose-designed user-defined types,
283-285
safety, 280
sending, 270-271
specifications, 287-288
strong exception safety, 280
throwing, 68
execution
conditional, 360
metafunctions, 342
policies, 267
selecting, 243
single-threaded, 218
explicit constructors, 121
explicit sharing, minimizing, 236-237
expressions, 165-166, 186
complicated, 186
constant, 29-30
conversions, 197-199
general rules, 166—168
magic constants, 190
operator precedence, 187
order of evaluation, 194-195
pointers, 187-190, 191-193
range checking, 190-191
statements, 148—150
summation with fold, 51
expressiveness, 46—47
function objects, 307

F

failing destructors, 88
failure transparency, 280
fallthrough, 201, 202
files
.cpp, 384, 386-387
.h, 384, 385-386, 388

463

464

INDEX

header, 391, 393-394
source. See source files
final, 102, 103
flushing, 415-418
fold expressions, summation with, 51
for loops, 199, 200
format strings, 413—414
for-statements, 168—169
forwarding, perfect, 333-335
forward_list, 226
forward parameters, 34-36
forward std, 144, 198, 226
free, 145-146
func, 39
function objects
advantages of, 307-310
algorithms, 305-307
as sorting criteria, 307
with state, 309
functions, 27-28
ADL (argument-dependent lookup), 126
arguments, 359
callables, 21, 22
classes, 55
cleanup actions, 433-435
clone, 103-105
communication, 20-22
constant expressions, 357
constexpr, 29-30, 298, 342, 356
declarations, 427—428
=default, §9-90
defining, 368, 385
definitions, 28-29
=delete, 89, 90-91
dependencies between special member, 61
free, 145-146
helper, 57
invariants for, 15
ISP (interface segregation principle), 100
lambdas, 46
main, 42
malloc, 145-146
members, 56
metafunctions, 342-345
naming, 28-29
noexcept, 30-31, 88
nonmember, 118—122
order of evaluation, 195-196
overloading, 379

parameter packs, 35, 51, 335, 336

parameters, 156—159

passing parameters, 32-38. See also
parameters

printf, 413-414

pure, 31-32

refactoring, 29

return-statements in, 428—429

as sorting criteria, 307

specialization of templates, 367-372

std::move(local), 45-46

struct, 55

swap, 92-94

templates, 311-313

unit tests, 18

virtual, 82, 102, 223, 331, 357

virtual clone member, 105

fundamental types, 176, 181

G

Gang of Four design. See GoF (Gang of Four)
design
GCC compiler, 172,174, 196, 197, 219, 354
gcd algorithm, 223-225
general rules. See rules
generic code. See also code
templates, 10
generic programming, 301, 302
getters, 106
global containers, threads as, 250-251
global scope, 176
global variables, non-const, 16-17
GoF (Gang of Four) design, 111
graphs, annotated, 243
GSL (Guidelines Support Library), 441-444
assertions, 443
ownership pointers, 442—443
utilities, 443—444
views, 441-442
guarantees
evaluation order, 150, 196
exceptions, 280. See also exceptions
Guidelines Support Library. See GSL
(Guidelines Support Library)

H

hardware/compiler combinations, 274-276
Haskell, 32

header files, 391
unnamed namespaces, 394
using namespaces, 393-394
helper functions, 57
' files, 384, 385-386
#include guard, 388
hiding
implementation details, 310
member functions, 174
hierarchies
catching exceptions, 285-286
classes, 53, 59, 98-117, 331. See also classes
equality operators, 97-98
navigating, 115
templates, 330332
hints, compilers, 223

I

IILE (Immediately Invoked Lambda
Expression), 183
Immediately Invoked Lambda Expression. See
IILE (Immediately Invoked Lambda
Expression)
immutable data, 12, 293-298
implementation
classes, 56
error handling, 283-291
hiding details, 310
inheritance, 98, 107-111
Plmpl idiom, 23-24, 109
singletons, 18
source files, 384-391
templates with specializations, 325-330
ThreadSanitizer, 239-241
implementation-defined behavior, 9, 205
implicit conversion operators, 122-124
in-class initializers, 75
inheritance
classes, 54
implementation, 98, 107-111
interfaces, 107-111
multiple, 107, 111
initialization, 177—-182
lambdas, 183-184
objects, 175-176
two-phase, 431-433
variables, 175-184

INDEX

injection
dependency, 18-20
inline, 30, 354, 357, 385
in-out parameters, 36
in parameters, 34
input/output. See I/O (input/output)
integers, signed/unsigned, 204-208
interfaces, 15-16
ABI (application binary interface), 23-24
abstract classes, 101
applying classes, 56
base classes, 101
C-style programming, 378-380
defining, 386-387
dependency injection, 18-20
function communication, 20—22
functions, 27-28. See also functions
inheritance, 107-111
multiple inheritance, 111
non-const global variables, 16-17
segregation principle, 100
single pointers, 22-23
singletons, 17-18
source files, 384-391
templates, 305-320
interface segregation principle. See ISP
(interface segregation principle)
internal linkage, 394-395
invariants
error handling, 282
for functions, 15
/O (input/output)
character-level input, 411
iostreams, 413—414
std::endl, 415418
STL (Standard Template Library), 411-418
stream synchronization, 414415
iostreams, 411, 413—414
ISO Standards, 8, 9
ISP (interface segregation principle), 100
iteration
statements, 199-201
through containers, 366
iterator categories, 366—367

J

jthread, 251-253

465

466

INDEX

K

keep it simple, stupid. See KISS (keep it simple,
stupid)

keywords, overriding, 102

KISS (keep it simple, stupid), 59

Koenig lookup, 126, 314, 315-316

L

lambdas, 46
initializing, 183-184
overloading, 117
references, 47, 48—49
as sorting criteria, 307
with state, 310
unnamed, 364-365
languages
features, 167-168
Haskell, 32
late binding, 114
leaks
memory, 287
resources, 11
libraries, 166. See also STL (Standard
Template Library)
Boost C++ Library, 280
cycles among, 425
expressing reusable parts as, 424425
GSL (Guidelines Support Library),
441444
reusing code, 232
STL (Standard Template Library). See STL
(Standard Template Library)
support, 13
type-traits, 345-346, 351
life cycles of objects, 59
lifetimes
objects, 142
safety, 439
semantics, 157-159
limiting scope, 168—169
linker errors, 387
Linux systems
creation of threads, 262
flushing, 418
size of threads, 261
list, 226
literal type, 224
LoadLoad, 276

local names, 169170
local objects, 140, 141, 287. See also objects
lock-free programming, 273-276
lock_guard, 264-266
locks
concurrency, 246-250
mutexes, 264
std::lock_guard, 264-266
std::unique_lock, 264-266
logical constness, 295
logical structure, expressing, 394
lookups, 126, 314, 315
loops, 199, 200
raw, 201
recursion versus, 360
lost wakeups, 255, 256
Ivalue references, 42-46

M

macros
enumerations over, 132-133
statements, 184-185
magic constants, 190
malloc, 145-146
management
automatic management of devices, 435,
449
automatic memory management, 398
memory, 398, 405
resources, 139-140. See also resource
management
Martin, Robert C., 100
mathematical functions, 32. See also pure
functions
member functions, 56
boundary-checking, 403—404
compiler errors, 332
const, 294-296
hiding, 174
reserve, 399
shadowing, 112
virtual member function templates,
331-332
members
accessing specifiers for data, 1035
declaring, 74
dependencies between special functions, 61
initializing, 74-76,75
ISP (interface segregation principle), 100

minimizing exposure, 58
non-dependent class template, 323-325
nonpublic, 58
parameters, 321-322
pointers, 85
variables, 75
memory
accessing, 225-229
allocation, 147, 246
automatic memory management, 398
leaks, 287
management, 398, 405
models, 242
ROM (readonly memory), 29
saving, 126
sequence containers, 229
messages
as exceptions and values, 271
passing, 269-273
messy code, 12,13
metadata, templates, 341
metafunctions, templates, 342-345
metaprogramming, 336-356
constexpr function, 358
templates, 351
meta-rules. See philosophical rules
Metaware compiler, 338
Meyers singleton, 217
Microsoft Visual Studio Compiler, 30
minimizing
context dependencies, 320-321
context switching, 261
thread creation/destruction, 261-263
time locking mutexes, 264
models, memory, 242
modification versus new value, 359
most vexing parse, 177, 179
move(local) function, 45-46
moving
classes, 7883
semantics, 80-83
std::unique_ptr, 153
MSVC compiler, 172
multiple inheritance, 107, 111
multiple mutexes, acquiring, 247-248
multi-threaded programs, 232-234
mutable data, 12
mutexes
acquiring, 247-248
locks, 264

INDEX

MyGuard, 265
myths, 427436

N

naked unions, 127-128
Named Return Value Optimization. See
NRVO (Named Return Value
Optimization)
names
ALL_CAPS, 170-171
casts, 198
common names, 169-170
conventions, 342
declarations, 168—-169, 171
expressions, 168—185
functions, 28-29
local names, 169170
mangling, 380
operations, 362-364
redundancy, 171-172
reusing names, 172-175
similar names, 170
statements, 168—185
templates, 314-319
namespaces, 57
defining overloaded operators, 125-126
source code, 391-395
narrowing conversion, 180—182
negative values, 206208
nested scopes, reusing names, 172-175
NNM (No Naked Mutex), 246
NNN (No Naked New), 147, 246
noexcept, 30, 31,79, 95
destructors, 88
function definition, 88
noexcept function, 30-31, 88
no exception safety, 280
no-leak guarantee, 280
No Naked Mutex. See NNM (No Naked
Mutex)
No Naked New. See NNN (No Naked New)
non-const data members, 107
non-const global variables, 16-17
non-dependent class template members,
323-325
nongeneric code, writing, 365-367
nonmember functions, 118—122
nonpublic members, 58
nonrules, 427-436

467

468

INDEX

nonvirtual, destructors, 87
normal parameter passing, 32
no-throw guarantees, 280
notifications
sending, 272-273
with tasks, 273
NRVO (Named Return Value Optimization),
36,37
NULL, 192
nullptr, 191-193, 192-193. See also pointers

@)

objects
accessing, 114-117
constructors creating, 67
creating, 145
defining, 297-298, 385-386
direct ownership, 286-287
function objects. See function objects
immutable data and, 294
initializing, 175-176
life cycles of, 59
lifetimes, 142
local, 140, 141
moving, 80
scoped, 143—144
ODR (One Definition Rule), 385
One Definition Rule. See ODR (One
Definition Rule)
operands, defining overloaded operators,
125-126
operations
cheap, 33
equivalent, 124-125
naming, 362-364
naming functions, 28-29
passing to algorithms, 305-307
reordering, 276
operators
ADL (argument-dependent lookup), 126
conventional usage, 118-126
copy-assignment, 221, 222
defining, 125-126
equality, 94-96, 97-98
implicit conversion, 122124
overloading, 117-126
precedence, 187
symmetric, 118-122

optimization, 17
code, 167
design, 219-222
enabling, 218-229
type-traits library, 354-356
wrong, 214
order of evaluation, expressions, 194-195
out_of_range, 190, 403
out parameter, 52
output parameters, 36—37
out values, 37-38
overflow, 208
overloading, 49
ADL (argument-dependent lookup), 126
classes, 111
conventional usage, 118-126
defining operators, 125-126
functions, 379
function templates, 369-370
implicit conversion operators, 122-124
operators, 117-126
override, 102
ownership
direct, 286-287
pointers/references, 143, 442443
semantics, 38—41
sharing, 164, 258-261
std::shared_ptr, 151-153
std::unique_ptr, 150-151

P

packing parameters, 35
parallelism, concurrency and, 232, 266-269
parameters

in, 34

forward, 34-36

functions, 156-159

in-out, 36

members, 321-322

normal parameter passing, 32

out, 52

output, 36-37

ownership semantics, 38—41

packs, 35, 51, 335, 336

passing, 32-38

value return semantics, 42—46
Parent, Sean, 167
parentheses (), 187

passing
messages, 269-273
pointers, 297
references, 297
passing parameters, 32-38
normal parameter passing, 32
ownership semantics, 38—41
value return semantics, 42—46
perfect forwarding, 333-335
performance, 213
enabling optimization, 218-229
function objects, 307
measurements, 214
Meyers singleton, 217
wrong assumptions, 214-218
wrong optimizations, 214
philosophical rules, 7
compile-time checking, 10
expressing ideas in code, 8
expressing intent, 9
immutable data, 12
messy code, 12, 13
resource leaks, 11
run-time checking, 11
run-time errors, 11
saving space and time, 11-12
statically type safe programs, 10
supporting tools, 13
support libraries, 13
writing in ISO standard C++, 8-9
physical constness, 295
Pikus, Fedor, 274
Plain Old Data. See POD (Plain Old Data)
Plmpl idiom, 23-24, 109
POD (Plain Old Data), 33
pointers, 42-46, 84
assigning, 117
dereferencing, 191-193, 194
dynamic-cast, 114, 115, 116
expressions, 187-190, 191-193
members, 85
null, 191-193
passing, 162-164, 297
Plmpl idiom, 23-24, 109
raw, 85, 140, 143
rules, 191
single, 22-23
smart, 150-164
policy execution, 266, 267
polymorphic classes, 81-83, 103

INDEX

portably enforceable, definition of, 437

POSIX Threads, 256

postconditions, 15

power as function/metafunction, 345

pragma once, 388

preconditions, 15

predicates, condition variables without, 257

predictability, 225-229

Preshing, Jeff, 276

primary type categories, 346-349

principle of least astonishment, 118

printf function, 413-414

profiles, 437439
Pro.boundsBounds safety, 439
Pro.lifetimeLifetime safety, 439
Pro.typeType safety, 438

programming
C-style, 375. See also C-style programming
generic. See generic programming
metaprogramming, 336-356, 351, 358. See

also metaprogramming

programs
multi-threaded, 232-234
statically type safe, 10

property types, 348-349

protected data, 106-107, 436

protected destructors, 87

public destructors, 86-87

pure functions, 31-32. See also functions

purpose-designed user-defined types, 283-285

Q

quality of code, 167

R

race conditions, 253

RAII (Resource Acquisition Is Initialization),
140-142, 246, 264, 287, 288, 289

range checking, 190-191

ranges, expressing, 305

raw loops, 201

raw pointers, 85, 140, 143

raw references, 143

read-only memory. See ROM (read-only
memory)

recursion versus loop, 360

redundancy, naming, 171-172

refactoring, 17, 29

469

INDEX

references, 84, 140
catching exceptions, 285-286
dynamic-cast, 114, 115, 116
lambdas, 47, 48—49
to locals, 42—44
Ivalue, 4246
passing, 297
raw, 143
SemiRegular type, 315
universal, 334
referential transparency, 31
Regular, 313-314
regular types, 58, 59
relations, enabling, 243
relaxed semantics, 275
reordering operations, 276
repetition of code, 291
reserve function, 399
Resource Acquisition Is Initialization.
See RAII (Resource Acquisition Is
Initialization)
resource management, 139-140
allocation, 145-150
deallocation, 145-150
general rules, 140-144
smart pointers, 150-164
resources
concurrency, 261-264
leaks, 11
ownership of, 39
return-statements in functions, 428—429

Return Value Optimization. See RVO (Return

Value Optimization)
return values
metafunctions, 343
simulations, 361
reusing
expressing reusable parts as libraries,
424-425
operations, 362-364
ROM (read-only memory), 29
rule of five, 61, 83, 84, 89
rule of six, 61
rule of zero, 60
rules
arithmetic, 204
class hierarchies, 99—101
configuring applied, 449
enforcing, 447-452

expressions, 166—168
interfaces, 20-22
NNN (No Naked New), 147
ODR (One Definition Rule), 385
passing parameters, 32—38
philosophical, 7. See also philosophical
rules
pointers, 191
resource management, 140—144
statements, 166—168
summary, 54-58
templates, 362372
user-defined types, 53
running code analysis, 449
run time
calculating at, 343
checking, 10, 11
constant expression in ROM, 29-30
errors, 11
gcd algorithms, 223-225
RVO (Return Value Optimization), 36, 37

S

safety
basic exception, 280
bounds, 439
exceptions, 280
lifetimes, 439
types, 438
scoped enums, 131, 135, 137
scoped objects, 143-144
scopes
block, 166
global, 176
limiting, 168-169
reusing names, 172—-175
sizes, 168
selection statements, 201-204
self-assignment, 79-80
semantics
acquire-release, 218
catch-fire, 9
copy, 65
copying, 80—83
copy-only type, 221
lifetime, 157-159
moving, 80-83
ownership, 38—41

relaxed, 275
summary rules, 54-58
value return, 42-46
SemiRegular, 313-314
sequence containers, 229
sequential consistency, 218, 243,274,275
setters, 106
SFINAE (Substitution Failure Is Not An
Error), 320, 352
shadowing, 111-113
shallow copying, 80. See also copying
sharing ownership, 258-261
signed/unsigned integers, 204208
SIMD (Single Instruction, Multiple Data), 267
similar names, 170. See also naming
simulations, return values, 361
single-argument constructors, 72-74
Single Instruction, Multiple Data. See SIMD
(Single Instruction, Multiple Data)
single pointers, 22-23
single return-statements in functions,
428-429
single-threaded case, 218
singletons, 17-18
six, rule of, 61
sizes
of C-arrays, 402
of chars with C++ compilers, 377
of enumerators, 136
of scopes, 168
of threads, 261
of vectors, 399, 400
slicing, 81
smart pointers, 150-164
aliases, 162-164
cycles of, 154
as function parameters, 156
lifetime semantics of, 157—159
sharing ownership, 261
std::unique_ptr, 160-162
software units, 281
source code
availability of, 376-377
entire code not available, 378-380
namespaces, 391-395
source files, 383, 384
cyclic dependencies, 388-390
implementation, 384-391
interfaces, 384-391
span, 10, 23, 52, 101

INDEX

special constructors, 76-78
specialization,
function templates, 367-372
templates, 360
special member functions, 61
specifications, exceptions, 287288
spurious wakeups, 256
stability, code, 423
Standard Template Library. See STL (Standard
Template Library)
state, function objects, 308-310
statements, 165-166, 199. See also declarations
defaults, 202-204
definitions of, 166
expressions, 148—150
for-statements, 168—169
general rules, 166-168
initializing variables, 175-184
iteration, 199-201
macros, 184-185
naming, 168185
return-statements in functions, 428—429
selection, 201-204
switch, 201-202
statically type safe programs, 10
static_assert declarations, 10
static type systems, 222223
std::forward, 144, 198, 226, 334
std::make_unique, 36, 148, 153, 334, 335
std::shared_ptr, 140, 151-153
std::unique_ptr, 140, 146-147, 150-151
moving, 152
smart pointers, 160—-162
std::weak_ptr, 140, 154-156
STL (Standard Template Library), 8, 21, 303,
397
algorithms, 8, 12, 266
containers, 23, 60, 398—404
expressions, 166
I/O (input/output), 411418
RAII (Resource Acquisition Is
Initialization), 140—142
strings, 410
text, 404411
streams
state, 411-413
synchronization, 414415
strings
accessing nonexisting element of, 404
format, 413414

471

472

INDEX

owning character sequences, 405—406
STL (Standard Template Library), 410
string_view, referring to character sequences,
407-408
strong exception safety, 280
strongly typed enums, 131
Stroustrup, Bjarne, 169
struct, 55
case-sensitivity, 363
class versus, 54
structures, organizing data into, 54-55
Substitution Failure Is Not An Error. See
SFINAE (Substitution Failure Is Not
An Error)
suffixes, .cpp, 384
summary rules, 54-58
summation
with fold expressions, 51
with va_arg, 51
support
C-arrays, 403—404
libraries, 13
tools, 13
Sutter, Herb, 274, 276
swap function, 92-94
switch statements, 201-202
symbolic constants, 190
symmetric operators, 118-122
synchronization, 255
streams, 414—415
volatile for, 238
sync_with_stdio, 404, 415

T

tagged unions, 128-129
tasks
condition variables versus, 272
notifications with, 273
versus threads, 237-238
Technical Report on C++ Performance, 430
templates, 301, 302
aliases, 310, 311
applying, 302-305
argument deduction, 313
arguments, 359
constant expressions, 356362
defining, 320-330

faking concepts, 319-320
function objects. See function objects
functions, 311-313
function template specialization, 367-372
generic code, 10
hierarchies, 330-332
implementations with specializations,
325-330
instantiation, 338
interfaces, 305-320
metadata, 341
metafunctions, 342-345
metaprogramming, 336-356, 351. See also
metaprogramming
naming, 314-319
parameter packs, 35, 51, 335, 336
Regular type, 313-314
rules, 362-372
specialization, 360
STL (Standard Template Library), 8
variadic, 332-336
virtual member function, 331-332
terminate, 88, 251, 252, 287
termination characters, 405, 406
testability, 16
text
STL (Standard Template Library), 404411
types of, 405
threads
concurrency, 250-257
creation/destruction, 261-263
detaching, 253
as global containers, 250-251
joining, 250
passing data to, 257-258
POSIX Threads, 256
sharing ownership, 258-261
sizes of, 261
std::jthread, 251-253
versus tasks, 237-238
ThreadSanitizer, 239-241
throwing exceptions, 68
direct ownership, 286-287
troubleshooting, 288-291
throwing functions, 30-31. See also functions
tools, 238
clang-tidy, 450-452
CppMem, 241-245

supporting, 13

ThreadSanitizer, 239-241
transform_exclusive_scan algorithm, 269
transform_reduce, 21, 22
transparency, referential, 31
troubleshooting throwing exceptions,

288-291

two-phase initializations, 431-433
typedef, defining aliases, 311
types

automatic type deduction, 179

built-in, 283-285, 294

categories, 346—-349

concrete, 58—59

copy-only, 221

fundamental, 176, 181

literal, 224

manipulation at compile time, 340-341

modifying, 351-352

properties, 348-349

purpose-designed user-defined, 283-285

regular, 58, 59

Regular, 313-314

return, 103, 104

safety, 438

SemiRegular, 313-314

static type systems, 222223

of text, 405

underlying, 135

unsigned, 205

user-defined, 357-358
type-traits library, 345-346

comparisons, 349-351

correctness, 353-354

metaprogramming, 351

modifying types, 351-352

optimization, 354-356

type categories, 346—-349

U

Uncle Bob, 100

undefined behaviors, 9, 22, 42, 63
core dumps, 146
C-strings, 405
data races, 234-235
naked unions, 127
order of evaluation, 194-195
printf function, 414

INDEX

underflow, 208. See also overflow
underlying types, 135
unions, 126—129
anonymous, 128—-129
discriminated, 126
naked, 127
saving memory, 126—128
tagged, 128-129
unique_lock, 264-266
unit tests, 18
universal references, 334
unknown code, calling, 249-250
unnamed enumerations, 134—135
unnamed lambdas, 364365
unnamed namespaces, 394
unpacking parameters, 35
Unruh, Erwin, 337, 338
unsigned/signed integers, 204-208
unspecified behavior, 196
use-before-set error, 177
user-defined types
constant expressions, 357-358
rules, 53
using
defining aliases, 311
namespaces, 393-394
utilities. See libraries; tools

A%

va_arg arguments, 49-52
value return semantics, 42—46
values
declaring variables, 176-177
enumerations. See enumerations
enumerator, 136
negative, 206-208
out, 37-38
return, 343
sending, 270-271
Van Eerd, Tony, 274
variables
categories of, 235
condition, 254-257. See also condition
variables
constant expressions, 356
declaring, 57
global, 16-17. See also global variables
initializing, 175-184, 176

473

INDEX

introducing, 176
member, 74
mutable, 296
naming, 169-170
purposes of, 182-183
variadic templates, 332-336
vector, 398—400, 402—403
vectorization, 267
vectors, size of, 399, 400
views, 441442
virtual, 82,223, 331, 357
virtual clone member function, 105
virtual destructors, 86—-87
virtual functions, 102
calling, 91-98
clone, 105
default arguments, 113-114
reasons for, 105
virtuality, 102-105
virtual member function templates,
331-332
visibility, modifying, 175
Visual Studio
casts, 197
enforcing C++ Core Guidelines,
448-450
volatile for synchronization, 238

W

wakeups

lost, 255

spurious, 256
warnings with C compilers, 376
while loops, 199, 200
Williams, Anthony, 274, 276
Windows systems

creation of threads, 262

flushing, 418

size of threads, 261
writing

code, 223

in ISO standard C++, 8-9

nongeneric code, 365-367
wrong assumptions, 214-218
wrong optimizations, 214

Y

YAGNI (you aren’t gonna need it), 424

Z

The Zen of Python, 198, 364, 365
zero. See also arithmetic

dividing by, 210

rule of, 60

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	List of selected C++ Core Guidelines
	List of figures
	List of tables
	Foreword
	Preface
	Acknowledgments
	About the author
	Chapter 3: Interfaces
	The curse of non-const global variables
	Dependency injection as a cure
	Making good interfaces
	Related rules

	Chapter 4: Functions
	Function definitions
	Good names

	Parameter passing: in and out
	Parameter passing: ownership semantics
	Value return semantics
	When to return a pointer (T*) or an lvalue reference (T&)

	Other functions
	Lambdas

	Related rules

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

