
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780136872436
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780136872436
https://plusone.google.com/share?url=http://www.informit.com/title/9780136872436
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780136872436
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780136872436/Free-Sample-Chapter

Red Hat RHCE™ 8
(EX294) Cert Guide

Sander van Vugt

Pearson

221 River Street

Hoboken, NJ 07030 USA

Red Hat RHCE 8 (EX294) Cert Guide
Copyright © 2021 by Pearson Education, Inc.
All rights reserved. No part of this book shall be reproduced, stored in
a retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no respon-
sibility for errors or omissions. Nor is any liability assumed for damages
resulting from the use of the information contained herein.
ISBN-13: 978-0-13-687243-6
ISBN-10: 0-13-687243-3
Library of Congress Control Number: 2020941743
ScoutAutomatedPrintCode

Trademarks

All terms mentioned in this book that are known to be trademarks or ser-
vice marks have been appropriately capitalized. Pearson IT Certification
cannot attest to the accuracy of this information. Use of a term in this book
should not be regarded as affecting the validity of any trademark or service
mark.
Pearson IT Certification and Sander van Vugt have no affiliation with Red
Hat, Inc. The RED HAT and RHCE trademarks are used for identification
purposes only and are not intended to indicate affiliation with or approval
by Red Hat, Inc.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate
as possible, but no warranty or fitness is implied. The information provided
is on an “as is” basis. The author and the publisher shall have neither
liability nor responsibility to any person or entity with respect to any loss
or damages arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special
sales opportunities (which may include electronic versions; custom cover
designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.
For government sales inquiries, please contact
governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact
intlcs@pearson.com.

Editor-in-Chief

Mark Taub

Product Line Manager

Brett Bartow

Executive Editor

Denise Lincoln

Development Editor

Ellie Bru

Managing Editor

Sandra Schroeder

Senior Project Editor

Tonya Simpson

Copy Editor

Chuck Hutchinson

Indexer

Timothy Wright

Proofreader

Donna Mulder

Technical Editors

John McDonough

William “Bo” Rothwell

Publishing Coordinator

Cindy Teeters

Cover Designer

Chuti Prasertsith

Compositor

codeMantra

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Contents at a Glance iii

Contents at a Glance

 Introduction xxii

Part I: Introduction to Ansible

CHAPTER 1 Understanding Configuration Management 3

CHAPTER 2 Installing Ansible 15

CHAPTER 3 Setting Up an Ansible Managed Environment 31

CHAPTER 4 Using Ad Hoc Commands 47

CHAPTER 5 Getting Started with Playbooks 69

CHAPTER 6 Working with Variables and Facts 97

Part II: Common Ansible Management Tasks

CHAPTER 7 Using Task Control 131

CHAPTER 8 Deploying Files 173

CHAPTER 9 Using Ansible Roles 205

CHAPTER 10 Using Ansible in Large Environments 229

CHAPTER 11 Troubleshooting Ansible 251

Part III: Managing Systems with Ansible

CHAPTER 12 Managing Software with Ansible 281

CHAPTER 13 Managing Users 305

CHAPTER 14 Managing Services and the Boot Process 333

CHAPTER 15 Managing Storage 351

CHAPTER 16 Final Preparation 383

Part IV: Practice Exams

 Practice Exam A 387

 Practice Exam B 391

Part V: Appendixes

APPENDIX A Answers to the “Do I Know This Already?” Quizzes and Review
Questions 395

APPENDIX B Getting Started with Ansible Tower 415

iv Red Hat RHCE 8 (EX294) Cert Guide

APPENDIX C Red Hat RHCE 8 (EX294) Cert Guide Exam Updates 431

 Glossary 433

 Index 439

Online Elements:

 Practice Exam C

 Practice Exam D

APPENDIX D Memory Tables

APPENDIX E Memory Tables Answer Key

APPENDIX F Study Planner

 Glossary

Table of Contents v

Table of Contents

 Introduction xxii

Part I: Introduction to Ansible

Chapter 1 Understanding Configuration Management 3

“Do I Know This Already?” Quiz 3

Foundation Topics 6

Understanding Automation 6

What Is Automation? 6

Understanding the DevOps Way of Working 7

Understanding Infrastructure as Code 8

Other Automation Solutions 8

Understanding Ansible Essential Components 9

Ansible Is Python 9

Ansible Architecture 9

Understanding Ansible Tower 10

Understanding the Ansible Way 11

Understanding Ansible Use Cases 11

Using Ansible for Configuration Management 11

Using Ansible for Provisioning 12

Using Ansible for Continuous Delivery 12

Summary 12

Exam Preparation Tasks 12

Review All Key Topics 12

Define Key Terms 13

Chapter 2 Installing Ansible 15

“Do I Know This Already?” Quiz 15

Foundation Topics 18

Understanding an Ansible Environment 18

Understanding Controller Host Requirements 20

Understanding Installation Methods 20

Installing Ansible on RHEL 8 21

Installing Ansible on CentOS 8 21

Using python-pip to Install Ansible 21

vi Red Hat RHCE 8 (EX294) Cert Guide

Configuring Managed Hosts 22

Configuring the Ansible User 23

Setting Up SSH for the Ansible User 23

Configuring sudo for the Ansible User 25

Summary 26

Exam Preparation Tasks 26

Review All Key Topics 26

Memory Tables 27

Define Key Terms 27

Review Questions 27

End-of-Chapter Lab 28

Lab 2-1 28

Chapter 3 Setting Up an Ansible Managed Environment 31

“Do I Know This Already?” Quiz 31

Foundation Topics 34

Understanding Projects 34

Configuring Static Inventory 35

Listing Hosts 35

Inventory Host Groups 36

Using Inventory in Commands 37

Specifying Host Variables 38

Working with Dynamic Inventory 39

Working with Community-Provided Dynamic Inventory Scripts 39

Writing Your Own Inventory Scripts 40

Using Multiple Inventory Files 42

Managing Settings in ansible.cfg 42

Summary 44

Exam Preparation Tasks 44

Review All Key Topics 44

Memory Tables 44

Define Key Terms 44

Review Questions 45

End-of-Chapter Lab 45

Lab 3-1 45

Table of Contents vii

Chapter 4 Using Ad Hoc Commands 47

“Do I Know This Already?” Quiz 47

Foundation Topics 50

Understanding Ad Hoc Commands 50

Working with Modules 53

Exploring Essential Modules 54

command 54

shell 55

raw 55

copy 55

yum 56

service 56

ping 56

Browsing Available Modules 58

Consulting Module Documentation 58

Using ansible-doc 58

Using https://docs.ansible.com 62

Running Ad Hoc Commands from Shell Scripts 64

Summary 66

Exam Preparation Tasks 66

Review All Key Topics 66

Memory Tables 66

Define Key Terms 66

Review Questions 67

End-of-Chapter Lab 67

Lab 4-1 67

Chapter 5 Getting Started with Playbooks 69

“Do I Know This Already?” Quiz 69

Foundation Topics 72

Exploring Your First Playbook 72

From Ad Hoc Commands to Playbook 72

Playbook Elements 73

Running the Playbook 74

Undoing Playbook Modifications 75

viii Red Hat RHCE 8 (EX294) Cert Guide

Working with YAML 77

Indentation 77

Using Key-Value Pairs 78

Understanding YAML Lists 79

Using YAML Strings 79

Verifying Syntax 80

Performing a Playbook Dry Run 81

Managing Multiplay Playbooks 83

Multiplay Playbook Considerations 83

Multiplay Playbook Example 84

Increasing Output Verbosity 86

Summary 92

Exam Preparation Tasks 92

Review All Key Topics 93

Memory Tables 93

Define Key Terms 93

Review Questions 93

End-of-Chapter Lab 94

Lab 5-1 94

Chapter 6 Working with Variables and Facts 97

“Do I Know This Already?” Quiz 97

Foundation Topics 100

Understanding the Use of Variables in Ansible Playbooks 100

Working with Ansible Facts 101

Gathering Facts 102

Understanding How Facts Are Displayed 104

Managing Fact Gathering 108

Working with Custom Facts 109

Working with Variables 111

Defining Variables 112

Using Include Files 112

Managing Host and Group Variables 113

Using Multivalued Variables 115

Working with Magic Variables 117

Understanding Variable Precedence 119

Table of Contents ix

Using Vault to Manage Sensitive Values 119

Understanding Vault 119

Managing Encrypted Files 120

Using Vault in Playbooks 120

Managing Files with Sensitive Variables 121

Capturing Command Output Using register 122

Summary 125

Exam Preparation Tasks 125

Review All Key Topics 125

Memory Tables 125

Define Key Terms 126

Review Questions 126

End-of-Chapter Labs 126

Lab 6-1 127

Lab 6-2 127

Part II: Common Ansible Management Tasks

Chapter 7 Using Task Control 131

“Do I Know This Already?” Quiz 131

Foundation Topics 134

Using Loops and Items 134

Working with Loops 134

Using Loops on Variables 135

Using Loops on Multivalued Variables 136

Understanding with_items 137

Using when to Run Tasks Conditionally 139

Working with when 139

Using Conditional Test Statements 141

Testing Multiple Conditions 144

Combining loop and when 145

Combining loop and register 147

Using Handlers 149

Working with Handlers 149

Understanding Handler Execution and Exceptions 154

x Red Hat RHCE 8 (EX294) Cert Guide

Dealing with Failures 156

Understanding Task Execution 156

Managing Task Errors 156

Specifying Task Failure Conditions 158

Managing Changed Status 161

Using Blocks 163

Using Blocks with rescue and always Statements 164

Summary 169

Exam Preparation Tasks 169

Review All Key Topics 169

Memory Tables 170

Define Key Terms 170

Review Questions 170

End-of-Chapter Lab 171

Lab 7-1 171

Chapter 8 Deploying Files 173

“Do I Know This Already?” Quiz 173

Foundation Topics 176

Using Modules to Manipulate Files 176

File Module Manipulation Overview 176

Managing File Attributes 176

Managing File Contents 180

Creating and Removing Files 182

Moving Files Around 183

Managing SELinux Properties 187

Managing SELinux File Context 188

Applying Generic SELinux Management Tasks 189

Using Jinja2 Templates 194

Working with Simple Templates 194

Applying Control Structures in Jinja2 Using for 197

Using Conditional Statements with if 198

Using Filters 198

Summary 200

Table of Contents xi

Exam Preparation Tasks 200

Review All Key Topics 200

Memory Tables 201

Define Key Terms 201

Review Questions 201

Exercise Answers 201

End-of-Chapter Labs 202

Lab 8-1: Generate an /etc/hosts File 202

Lab 8-2: Manage a vsftpd Service 202

Chapter 9 Using Ansible Roles 205

“Do I Know This Already?” Quiz 205

Foundation Topics 208

Using Ansible Roles 208

Understanding Ansible Roles 208

Understanding Role Location 209

Using Roles from Playbooks 210

Creating Custom Roles 210

Managing Role Dependencies 213

Understanding File Organization Best Practices 213

Using Ansible Galaxy Roles 214

Working with Galaxy 215

Using the ansible-galaxy Command 216

Managing Ansible Galaxy Roles 218

Using RHEL System Roles 219

Understanding RHEL System Roles 220

Installing RHEL System Roles 220

Using the RHEL SELinux System Role 221

Using the RHEL TimeSync System Role 224

Summary 225

Exam Preparation Tasks 225

Review All Key Topics 226

Memory Tables 226

Define Key Terms 226

Review Questions 226

xii Red Hat RHCE 8 (EX294) Cert Guide

End-of-Chapter Labs 227

Lab 9-1 227

Lab 9-2 227

Chapter 10 Using Ansible in Large Environments 229

“Do I Know This Already?” Quiz 229

Foundation Topics 232

Advanced Inventory Usage 232

Working with Host Name Patterns 232

Configuring Dynamic Inventory 233

Using the ansible-inventory Command 235

Working with Multiple Inventory Files 236

Optimizing Ansible Processing 237

Managing Parallel Task Execution 237

Managing Serial Task Execution 238

Including and Importing Files 239

Importing Playbooks 240

Importing and Including Task Files 242

Using Variables When Importing and Including Files 243

Summary 247

Exam Preparation Tasks 247

Review All Key Topics 248

Define Key Terms 248

Review Questions 248

End-of-Chapter Lab 249

Lab 10-1 249

Chapter 11 Troubleshooting Ansible 251

“Do I Know this Already?” Quiz 251

Foundation Topics 254

Managing Ansible Errors and Logs 254

Using Check Mode 254

Understanding Output 256

Optimizing Command Output Error Formatting 259

Logging to Files 259

Running Task by Task 260

Table of Contents xiii

Using Modules for Troubleshooting and Testing 263

Using the Debug Module 263

Using the uri Module 263

Using the stat Module 265

Using the assert Module 268

Using Tags 271

Troubleshooting Common Scenarios 275

Analyzing Connectivity Issues 275

Analyzing Authentication Issues 276

Summary 277

Exam Preparation Tasks 277

Review All Key Topics 278

Memory Tables 278

Define Key Terms 278

Review Questions 278

End-of-Chapter Lab 279

Lab 11-1 279

Part III: Managing Systems with Ansible

Chapter 12 Managing Software with Ansible 281

“Do I Know This Already?” Quiz 281

Foundation Topics 284

Using Modules to Manage Packages 284

Configuring Repository Access 284

Managing Software with yum 285

Managing Package Facts 287

Using Modules to Manage Repositories and Subscriptions 289

Setting Up Repositories 290

Managing GPG Keys 291

Managing RHEL Subscriptions 292

Implementing a Playbook to Manage Software 297

Summary 301

Exam Preparation Tasks 302

Review All Key Topics 302

xiv Red Hat RHCE 8 (EX294) Cert Guide

Memory Tables 302

Define Key Terms 302

Review Questions 302

End-of-Chapter Labs 303

Lab 12-1 303

Lab 12-2 303

Chapter 13 Managing Users 305

“Do I Know This Already?” Quiz 305

Foundation Topics 308

Using Ansible Modules to Manage Users and Groups 308

Modules Overview 308

Managing Users and Groups 308

Managing sudo 309

Managing SSH Connections 313

Understanding SSH Connection Management Requirements 313

Using the Lookup Plug-in 314

Setting Up SSH User Keys 314

Managing Encrypted Passwords 319

Understanding Encrypted Passwords 319

Generating Encrypted Passwords 319

Using an Alternative Approach 321

Managing Users Advanced Scenario Exercise 323

Summary 329

Exam Preparation Tasks 330

Review All Key Topics 330

Memory Tables 330

Define Key Terms 330

Review Questions 330

End-of-Chapter Lab 331

Lab 13-1 331

Chapter 14 Managing Services and the Boot Process 333

“Do I Know This Already?” Quiz 333

Foundation Topics 336

Table of Contents xv

Managing Services 336

Managing Systemd Services 336

Managing cron Jobs 337

Managing at Jobs 338

Managing the Boot Process 341

Managing Systemd Targets 341

Rebooting Managed Hosts 342

Managing the Boot Process and Services Advanced Exercise 344

Summary 346

Exam Preparation Tasks 346

Review All Key Topics 346

Memory Tables 347

Define Key Terms 347

Review Questions 347

End-of-Chapter Lab 348

Lab 14-1 348

Chapter 15 Managing Storage 351

“Do I Know This Already?” Quiz 351

Foundation Topics 354

Discovering Storage-Related Facts 354

Using Storage-Related Facts 354

Using Storage-Related Facts in Conditional Statements 357

Managing Partitions and LVM 364

Creating Partitions 364

Managing Volume Groups and LVM Logical Volumes 366

Creating and Mounting File Systems 367

Configuring Swap Space 368

Configuring Storage Advanced Exercise 371

Summary 379

Exam Preparation Tasks 380

Review All Key Topics 380

Memory Tables 380

Define Key Terms 380

xvi Red Hat RHCE 8 (EX294) Cert Guide

Review Questions 380

End-of-Chapter Lab 381

Lab 15-1 381

Chapter 16 Final Preparation 383

Generic Tips 383

Verifying Your Readiness 383

Registering for the Exam 384

On Exam Day 384

During the Exam 385

The Nondisclosure Agreement 386

Part IV: Practice Exams

 Practice Exam A 387

 Practice Exam B 391

Part V: Appendixes

Appendix A Answers to the “Do I Know This Already?” Quizzes and
Review Questions 395

Appendix B Getting Started with Ansible Tower 415

Appendix C Red Hat RHCE 8 (EX294) Cert Guide Exam Updates 431

 Glossary 433

 Index 439

Online Elements:

 Practice Exam C

 Practice Exam D

Appendix D Memory Tables

Appendix E Memory Tables Answer Key

Appendix F Study Planner

 Glossary

About the Author xvii

About the Author

Sander van Vugt has been teaching Linux classes since 1995 and has written
more than 60 books about different Linux-related topics, including the best-selling
RHCSA-RHCE 7 Cert Guide and the RHCSA 8 Cert Guide: EX200. Sander is also
the author of more than 25 video courses, including his RHCSA and RHCE Com-
plete Video Courses, Hands-On Ansible LiveLessons, and many other titles. He teaches
courses for customers around the world and is also a regular speaker at major con-
ferences related to open-source software. Sander is also the founder of the Living
Open Source Foundation, a nonprofit organization that teaches open-source courses
in African countries.

xviii Red Hat RHCE 8 (EX294) Cert Guide

Dedication

This book is dedicated to my family: Florence, Franck, and Alex. Together we’ve made great
accomplishments over the past year.

Acknowledgments xix

Acknowledgments

This book could not have been written without the help of all the people who con-
tributed to it. To start, I want to thank the people at Pearson—Denise Lincoln and
Ellie Bru in particular. We’ve worked a lot together over the past years, and this
book is another milestone on our road to success! It has been fantastic how you both
have helped me to realize this book in just two months!

Next, I want to thank my technical reviewers. Big thanks to Bo and John! Thanks to
your great feedback, I’ve been able to apply important improvements to the contents
of this book. Also, a special thanks to Ettiene Esterhuizen from New Zealand and
Santos Venter Chibenga and Robert Charles Muchendu from the African Living
Open Source Community, who helped me as volunteer reviewers. And last but not
least, thanks to my fellow instructor and colleague Pascal van Dam, who helped me
make some important last-minute improvements.

xx Red Hat RHCE 8 (EX294) Cert Guide

About the Technical Reviewers

John McDonough has more than 30 years of development experience; currently,
John is a developer advocate for Cisco DevNet. As a developer advocate, John writes
code and creates DevNet Learning Labs about how to write code; writes blogs
about writing code; and presents at Cisco Live, SXSW, AnsibleFest, and other indus-
try events. John focuses on the Cisco computing systems products, Cisco UCS, and
Cisco Intersight. John’s career at Cisco has varied from product engineer to custom
application developer, technical marketing engineer, and now a developer advocate.

William “Bo” Rothwell crossed paths with a TRS-80 Micro Computer System
(affectionately known as a “Trash 80”) at the impressionable age of 14. Soon after,
the adults responsible for Bo made the mistake of leaving him alone with the
TRS-80. He immediately dismantled it and held his first computer class, showing
his friends what made this “computer thing” work.

Since this experience, Bo’s passion for understanding how computers work and shar-
ing this knowledge with others has resulted in a rewarding career in IT training.
His experience includes Linux, UNIX, and programming languages such as Perl,
Python, Tcl, and BASH. He is the founder and president of One Course Source, an
IT training organization.

Reader Services xxi

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do bet-
ter, what areas you’d like to see us publish in, and any other words of wisdom you’re
willing to pass our way.

We welcome your comments. You can email to let us know what you did or didn’t
like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your
name and email address. We will carefully review your comments and share them
with the author and editors who worked on the book.

Email: community@informit.com

mailto:community@informit.com

xxii Red Hat RHCE 8 (EX294) Cert Guide

Introduction

Welcome to the Red Hat RHCE 8 (EX294) Cert Guide! With the release of Red Hat
Enterprise Linux 8, Red Hat has decided to take a completely new direction for the
RHCE exam. The exam is now completely about managing configurations with
Ansible. This is a great choice because in the current IT landscape the days of the
system administrator who applies specialized skills to tune individual servers is over.
Today the work is all about automation, and Ansible has rapidly become one of the
most important solutions to do so.

As a Linux instructor with more than 25 years of experience, I have been certified
for both the RHCSA and RHCE exams for every RHEL version since RHEL 4.
Taking the exams myself has helped me keep current on the progression of the
exam, what is new, and what is different. I am thrilled to be able to share my knowl-
edge with you in this comprehensive Cert Guide so you can get the guidance you
need to pass your RHCE RHEL 8 EX294 exam.

As you will see, this Cert Guide covers every objective in the updated RHCE exam,
with 16 chapters, more than 40 exercises, 4 practice exams (2 printed in the book
and 2 on the companion website), and 1 hour of video training. This Red Hat
RHCE 8 (EX294) Cert Guide is the best resource you can get to prepare for and pass
the exams.

Goals and Methods
To learn the topics described in this book, I recommend that you create your own
testing environment, which is explained in Chapter 2, “Installing Ansible.” You can-
not become an RHCE without practicing a lot. To get familiar with the topics in the
chapters, here is what I recommend:

■■ Read the explanation in the chapters and study the code examples that are
provided in the listings. For your convenience, the listings are also provided in
the book GitHub repository at https://github.com/sandervanvugt/rhce8-book.
Study the examples and try to understand what they do.

■■ Walk through all of the numbered exercises in the book. The numbered exer-
cises provide step-by-step instructions, and you should follow along with all of
them, to walk through configuration tasks and learn how to manage specific
features.

■■ At the end of each chapter, there’s an end-of-chapter lab. This lab is much like
the lab assignments that you will find on the exam.

https://github.com/sandervanvugt/rhce8-book

Introduction xxiii

Within the exercises included in every chapter of the book, you will find all the ex-
amples you need to understand what is on the exam and thoroughly learn the mate-
rial needed to pass it. The exercises in the chapters provide step-by-step procedure
descriptions that you can work through to find working solutions so that you can
get real experience before taking the tests. Although you may feel familiar with some
topics, it’s a good idea to work through all of the exercises in the book. The RHCE
exam is hands-on, which can be a lot of pressure on test day. The exercises in each
chapter help provide the practice you need to make sure you have the experience
you need to not make small errors and mistakes while taking the exam. The exercises
are the best way to make sure you work through common errors and learn from
your mistakes before you take the test.

Each chapter also includes an end-of-chapter lab. These labs ask questions that are
similar to the questions that you might encounter on the exam so you can use them
to practice. I have purposely excluded solutions for these labs for a few reasons: (1)
you need to train yourself to verify your work before test day because you will be
expected to do this on the exam; (2) while taking the test, you will be required to
verify for yourself whether your solution is working as expected; and (3) most labs
have multiple solutions and I don’t want to suggest that my solution is the right one
and yours is wrong because it takes a different approach. Your solution is as good as
mine, as long as it accomplishes what was asked for in the exercise.

Other Resources
This book contains everything you need to pass the exam, but if you want more
guidance and practice, I have a number of video training titles available to help you
study, including the following:

■■ Red Hat Certified Engineer (RHCE) 3/ed Complete Video Course

■■ Hands-on Ansible LiveLessons

Apart from these products, you might also appreciate my website: rhatcert.com.
Through this website, I provide updates on anything that is useful to exam candi-
dates. I recommend that you register on the website so that I can send you messages
about important updates that I’ve made available. Also, you’ll find occasional video
updates on my YouTube channel: rhatcert. I hope that all these resources provide
you with everything you need to pass the Red Hat exams in an affordable way!
Good luck!

Who Should Read This Book?
This book is written as an RHCE exam preparation guide. That means that you
should read it if you want to increase your chances of passing the RHCE exam.

http://rhatcert.com

xxiv Red Hat RHCE 8 (EX294) Cert Guide

I have also written this book to help you become familiar with Ansible. So even if
you’re not interested in the RHCE EX294 exam at all, this book will teach you ev-
erything you need to know to get your Ansible career up and running.

So, why should you consider passing the RHCE exam? That question is simple
to answer. Linux has become a very important operating system, and qualified
professionals are sought after all over the world. If you want to work as a Linux
professional and prove your skills, the RHCE certificate really helps. Having these
certificates dramatically increases your chances of becoming hired as a Linux profes-
sional. Notice that in order to get RHCE certified, you must hold a current RHCSA
certification. You can take the RHCE EX294 exam before you are RHCSA certified,
but you can call yourself an RHCE only if you have passed both the RHCSA exam
and the RHCE exam.

How This Book Is Organized
This book is organized as a reference guide to help you prepare for the exams. If
you’re new to the topics, you can just read it cover to cover. You can also read the
individual chapters that you need to fine-tune your skills in this book. Every chapter
starts with a “Do I Know This Already?” quiz. This quiz asks questions about 10
topics that are covered in each chapter and provides a simple tool to check whether
you’re already familiar with the topics covered in a chapter. These quizzes do not
represent the types of questions you will get on the real exam though.

The best exam preparation is offered in the RHCE practice exams; these are an
essential part of readying yourself for the real testing experience. You might be
able to provide the right answer to the multiple-choice chapter questions, but that
doesn’t mean that you can create the configurations when you take the tests. We
have included two practice exams in the printed book. The book’s companion
website then includes two additional practice exams as well as flashcards created
from the book’s glossary so you can further test your knowledge and skills. You
will also find one hour of video from my Red Hat Certified Engineer (RHCE) 3/ed
Complete Video Course.

The following topics are covered in the chapters:

■■ Chapter 1, “Understanding Configuration Management”: In this chapter,
you learn about Ansible as a solution. The chapter explains what can be done
with Ansible and how Ansible relates to other solutions for configuration
management.

■■ Chapter 2, “Installing Ansible”: This chapter covers installation of Ansible. You
learn what is needed to set up the Ansible control node, as well as the other
parts of the Ansible software.

Introduction xxv

■■ Chapter 3, “Setting Up an Ansible Managed Environment”: In this chapter you
learn how to get started with node management. The chapter explains what
is needed on the managed nodes as well as the essential Ansible configuration
files that are required to reach out to the managed nodes.

■■ Chapter 4, “Using Ad Hoc Commands”: In this chapter you learn about
Ansible modules. Modules are the heart of Ansible; they provide solutions for
everything that Ansible can do, and the easiest way to use these modules is in
ad hoc commands. In this chapter you learn how to work with them.

■■ Chapter 5, “Getting Started with Playbooks”: This chapter provides an intro-
duction to working with playbooks. You learn about YAML, the language used
to write playbooks, and how to structure a playbook using plays and tasks.

■■ Chapter 6, “Working with Variables and Facts”: In Ansible, variables can be
used to provide dynamic values to specific configuration items. Using variables
enables you to separate the static code in a playbook with host-specific infor-
mation. In this chapter you learn how to work with variables as well as Ansible
facts, which are variables that are automatically set for managed nodes.

■■ Chapter 7, “Using Task Control”: To make Ansible smart, you must apply task
control. Using task control enables you to run tasks conditionally, and that can
be done in many ways. You learn how to use tests, to test for a specific condi-
tion, as well as loops that allow you to evaluate a range of items, and handlers,
which allow for task execution only if another task was executed successfully.

■■ Chapter 8, “Deploying Files”: Ansible is used for configuration management,
and configuration on Linux is stored in files. Hence, managing files is a key
skill in Ansible. In this chapter you learn how to use modules to modify files
and how to use templates to automatically set up configuration files with spe-
cific parameters obtained from facts or variables.

■■ Chapter 9, “Using Ansible Roles”: When you are working with Ansible, it’s
good if code can be reused. That is what Ansible roles are all about. In this
chapter you learn how to work with roles, which are provided through Ansible
Galaxy, or as RHEL system roles.

■■ Chapter 10, “Using Ansible in Large Environments”: When working with Ansi-
ble in large environments, you should know about a few specific techniques.
These techniques are covered in this chapter. You learn how to optimize
Ansible by modifying the number of concurrent tasks that can be executed.
You also learn how to work with includes and imports, which allow you to set
up modular playbooks.

xxvi Red Hat RHCE 8 (EX294) Cert Guide

■■ Chapter 11, “Troubleshooting Ansible”: In some cases your playbook might
not give you the desired result. Then you need to start troubleshooting. This
chapter contains not only all you need to know about troubleshooting, includ-
ing some best practices while developing playbooks, but also information
about modules that can be used to make troubleshooting easier.

■■ Chapter 12, “Managing Software with Ansible”: This is the first chapter about
specific common tasks that you can perform with Ansible. In this chapter you
learn how to set up repositories and how to manage software packages with
Ansible.

■■ Chapter 13, “Managing Users”: To do anything on Linux, you need user
accounts. In this chapter you learn all that is needed to create user accounts,
including setting encrypted passwords.

■■ Chapter 14, “Managing Services and the Boot Process”: Occasionally, you
might want to run scheduled jobs. These jobs will be executed at a specific
time, using either cron or at. In this chapter you learn how to do that, and you
also learn how to manage the systemd default target.

■■ Chapter 15, “Managing Storage”: Setting up storage is a key task when work-
ing with Linux. In this chapter you learn how to automate storage configura-
tion with Ansible. You also learn how to discover disk devices available on your
managed systems and how to set them up, using partitions, logical volumes,
filesystems, and mounts.

■■ Chapter 16, “Final Preparation”: In this chapter you get some final exam prep-
aration tasks. It contains some test exams and many tips that help you maxi-
mize your chances of passing the exam.

How to Use This Book
To help you customize your study time using these books, the core chapters have
several features that help you make the best use of your time:

■■ “Do I Know This Already?” Quizzes: Each chapter begins with a quiz that helps
you determine the amount of time you need to spend studying that chapter.

■■ Foundation Topics: These are the core sections of each chapter. They explain
the protocols, concepts, and configuration for the topics in that chapter.

■■ Exam Preparation Tasks: At the end of the “Foundation Topics” section of
each chapter, the “Exam Preparation Tasks” section lists a series of study activi-
ties that should be done at the end of the chapter. Each chapter includes the

Introduction xxvii

activities that make the most sense for studying the topics in that chapter. The
activities include the following:

■■ Review Key Topics: The Key Topic icon is shown next to the most
important items in the “Foundation Topics” section of the chapter. The
Key Topics Review activity lists the key topics from the chapter and their
corresponding page numbers. Although the contents of the entire chap-
ter could be on the exam, you should definitely know the information
listed in each key topic.

■■ Complete Tables and Lists from Memory: To help you exercise your
memory and memorize some lists of facts, many of the more important
lists and tables from the chapter are included in a document on the DVD
and companion website. This document lists only partial information,
allowing you to complete the table or list.

■■ Define Key Terms: This section lists the most important terms from the
chapter, asking you to write a short definition and compare your answer
to the glossary at the end of this book.

■■ Review Questions: Questions at the end of each chapter measure insight
in the topics that were discussed in the chapter.

■■ End-of-Chapter Labs: These real labs give you the right impression on
what an exam assignment looks like. The end-of-chapter labs are your
first step in finding out what the exam tasks really look like.

Other Features
In addition to the features in each of the core chapters, this book, as a whole, has
additional study resources on the companion website, including the following:

■■ Four practice exams: The companion website contains the four practice
exams: two provided in the book and two available on the companion website.

■■ Flashcards: The companion website contains interactive flashcards created
from the glossary terms in the book so you can better learn key terms and test
your knowledge.

■■ More than one hour of video training: The companion website contains
more than one hour of video training from the best-selling Red Hat Certified
Engineer (RHCE) 3/ed Complete Video Course.

xxviii Red Hat RHCE 8 (EX294) Cert Guide

Book Organization, Chapters, and Appendixes
I have also included a table that details where every objective in the RHCE exam is
covered in this book so that you can more easily create a successful plan for passing
the tests.

Table 1 RHCE Objectives

Objective Chapter Title Chapter Page

Understand core components of Ansible:
Inventories

Setting Up an Ansible
Managed Environment

3 31

Understand core components of Ansible:
Modules

Using Ad Hoc
Commands

4 47

Understand core components of Ansible:
Variables

Working with Variables
and Facts

6 97

Understand core components of Ansible:
Facts

Working with Variables
and Facts

6 97

Understand core components of Ansible:
Plays

Getting Started with
Playbooks

5 69

Understand core components of Ansible:
Playbooks

Getting Started with
Playbooks

5 69

Understand core components of Ansible:
Configuration files

Setting Up an Ansible
Managed Environment

3 31

Understand core components of Ansible:
Use provided documentation

Using Ad Hoc
Commands

4 47

Install and configure an Ansible control
node: Install required packages

Installing Ansible 2 15

Install and configure an Ansible control
node: Create a static host inventory file

Setting Up an Ansible
Managed Environment

3 31

Install and configure an Ansible control
node: Create a configuration file

Setting Up an Ansible
Managed Environment

3 31

Install and configure an Ansible control
node: Create and use static inventories

Setting Up an Ansible
Managed Environment

3 31

Install and configure an Ansible control
node: Manage parallelism

Using Ansible in Large
Environments

10 229

Configure Ansible managed nodes:
Create and distribute SSH keys to
managed nodes

Installing Ansible 2 15

Configure Ansible managed nodes:
Configure privilege escalation on
managed nodes

Installing Ansible 2 15

Introduction xxix

Objective Chapter Title Chapter Page

Configure Ansible managed nodes:
Validate a working configuration using
ad hoc Ansible commands

Using Ad Hoc
Commands

4 47

Script administration tasks: Create
simple shell scripts

Using Ad Hoc
Commands

4 47

Script administration tasks: Create
simple shell scripts that run ad hoc
Ansible commands

Using Ad Hoc
Commands

4 47

Create Ansible plays and playbooks:
Know how to work with commonly used
Ansible modules

Using Ad Hoc
Commands

4 47

Create Ansible plays and playbooks:
Use variables to retrieve the results of
running a command

Working with Variables
and Facts

6 97

Create Ansible plays and playbooks: Use
conditionals to control play execution

Using Task Control 7 131

Create Ansible plays and playbooks:
Configure error handling

Using Task Control 7 131

Create Ansible plays and playbooks: Create
playbooks to configure systems
to a specified state

Getting Started with
Playbooks

5 69

Use Ansible modules for system
administration tasks that work with:
Software packages and repositories

Managing Software
with Ansible

12 281

Use Ansible modules for system
administration tasks that work with: Services

Managing Processes and
Tasks

14 333

Use Ansible modules for system
administration tasks that work with:
Firewall rules

Getting Started with
Playbooks

5 69

Use Ansible modules for system
administration tasks that work with:
File systems

Managing Storage 15 351

Use Ansible modules for system
administration tasks that work with:
Storage devices

Managing Storage 15 351

Use Ansible modules for system
administration tasks that work with:
File content

Deploying Files 8 173

Use Ansible modules for system
administration tasks that work with:
Archiving

Managing Storage 15 351

xxx Red Hat RHCE 8 (EX294) Cert Guide

Objective Chapter Title Chapter Page

Use Ansible modules for system
administration tasks that work with:
Scheduled tasks

Managing Processes and
Tasks

14 333

Use Ansible modules for system
administration tasks that work with: Security

Managing Users 13 305

Use Ansible modules for system
administration tasks that work with:
Users and Groups

Managing Users 13 305

Work with roles: Create roles Using Ansible Roles 9 205

Work with roles: Download roles
from an Ansible Galaxy and use them

Using Ansible Roles 9 205

Use advanced Ansible features: Create
and use templates to create customized
configuration files

Deploying Files 8 173

Use advanced Ansible features: Use
Ansible Vault in playbooks to protect
sensitive data

Working with Variables
and Facts

6 97

Where Are the Companion Content Files?
Register this print version of Red Hat RHCE 8 (EX294) Cert Guide to access the
bonus content online.

This print version of this title comes with companion content. You have online
access to these files by following these steps:

 1. Go to www.pearsonITcertification.com/register and log in or create a new
account.

 2. Enter the ISBN: 9780136872436.

 3. Answer the challenge question as proof of purchase.

 4. Click on the Access Bonus Content link in the Registered Products section
of your account page to be taken to the page where your downloadable
content is available.

Please note that many of our companion content files can be very large, especially
image and video files.

If you are unable to locate the files for this title by following the steps, please visit
www.pearsonITcertification.com/contact and select the Site Problems/Comments
option. Our customer service representatives will assist you.

http://www.pearsonITcertification.com/register
http://www.pearsonITcertification.com/contact

xxxiCredits

Credits

Chapter opener images by Charlie Edwards/Photodisc/Getty Images

Chapter 1 quote, “a set of practices intended to reduce the time between committing
a change to a system and the change being placed into normal production, while
ensuring high quality,” © Len Bass, Ingo Weber, and Liming Zhu, DevOps:
A Software Architect’s Perspective, Boston, MA: Addison-Wesley Professional, 2015.

Chapter 4 quote, “Your work will be evaluated by applying the playbooks created
during the exam against freshly installed systems and verifying that those systems
and services work as specified,” © 2020 Red Hat, Inc.

Cover image: Branislav Nenin/Shutterstock

The following RHCE exam objectives are covered in this chapter:

■■ Use Ansible modules for system administration tasks that work with:

■■ File contents

■■ Use advanced Ansible features

■■ Create and use templates to create customized configuration files

“Do I Know This Already?” Quiz
The “Do I Know This Already?” quiz allows you to assess whether you should
read this entire chapter thoroughly or jump to the “Exam Preparation Tasks”
section. If you are in doubt about your answers to these questions or your own
assessment of your knowledge of the topics, read the entire chapter. Table 8-1
lists the major headings in this chapter and their corresponding “Do I Know
This Already?” quiz questions. You can find the answers in Appendix A,
“Answers to the ‘Do I Know This Already?’ Quizzes and Review Questions.”

Table 8-1 “Do I Know This Already?” Section-to-Question Mapping

Foundation Topics Section Questions

Using Modules to Manipulate Files 1–6

Managing SELinux Properties 7, 8

Using Jinja2 Templates 9, 10

 1. Which module should you use to check the current permission mode on
a file?

 a. stat

 b. file

 c. permissions

 d. acl

CHAPTER 8

Deploying Files

174 Red Hat RHCE 8 (EX294) Cert Guide

 2. Which module should you use to replace a line of text in a configuration file
with another line of text?

 a. copy

 b. regex

 c. lineinfile

 d. blockinfile

 3. Which of the following shows correct syntax for a when statement that
runs a task only if the permission mode as discovered by the stat module and
registered to the st variable is not set to 0640?

 a. st.mode != '0640'

 b. st.stat.mode != 0640

 c. st.stat.mode != '0640'

 d. st.mode != 0640

 4. Which of the following lines shows correct use of the lineinfile module to find
a line that begins with PermitRootLogin based on a regular expression?

 a. line: "PermitRootLogin"

 b. line: "^PermitRootLogin"

 c. regexp: "PermitRootLogin"

 d. regexp: "^PermitRootLogin"

 5. Which of the following is not a common task that the file module can do?

 a. Remove files

 b. Copy a line of text into a file

 c. Create links

 d. Set permissions

 6. Which module can you use to copy a file from a managed node to the control
node?

 a. copy

 b. file

 c. sync

 d. fetch

175Chapter 8: Deploying Files

 7. Different modules can be used when working with SELinux. Which of the
following modules should you avoid?

 a. file

 b. sefcontext

 c. command

 d. selinux

 8. After you set an SELinux context, the Linux restorecon command must be
executed. How would you do this?

 a. Use the command module to run the restorecon command.

 b. Use the restorecon module.

 c. Use the selinux module.

 d. No further action is needed; this is done automatically when using the
appropriate SELinux module.

 9. What do you need to transform the contents of a variable to the JSON
format?

 a. The lineinfile module

 b. A Jinja2 template

 c. A filter

 d. The copy module

 10. What should you use to process host-specific facts from a template?

 a. The hostvars macro

 b. The hostvars magic variable

 c. The hostvars module

 d. The hostvars filter

176 Red Hat RHCE 8 (EX294) Cert Guide

Foundation Topics

Using Modules to Manipulate Files
Managing files is an important task for Linux administrators. Different types of
manipulations are performed on files on a frequent basis. They include managing
files, managing file contents, and moving files around. In this section you learn how
to use Ansible modules to apply these different tasks.

File Module Manipulation Overview

Many modules are available to manage different aspects of files. Table 8-2 provides
an overview of some of the most commonly used file modules.

Table 8-2 File Manipulation Module Overview

Module Use

copy Copies files to remote locations

fetch Fetches files from remote locations

file Manages files and file properties

acl Works with file system ACLs

find Finds files based on any property

lineinfile Manages lines in text files

blockinfile Manages blocks in text files

replace Replaces strings in text files based on regex

synchronize Performs rsync-based synchronization tasks

stat Retrieves file or file system status

Most of these modules are discussed in the following sections. When using file-
related modules, you might need a module that is not discussed here. If that is the
case, the best approach is to use the ansible-doc command. When you use this com-
mand on any module, you always see related modules mentioned in the SEE ALSO
section of the documentation.

Managing File Attributes

If you need to work with file attributes, the stat module and the file module come in
handy. The stat module enables you to retrieve file status information. Because this
module gets status information and is not used to change anything, you mainly use it

177Chapter 8: Deploying Files

to check specific file properties and perform an action if the properties are not set as
expected. In Listing 8-1 you can see a playbook that uses the stat and debug modules
to explore what exactly the stat module is doing. Listing 8-2 shows the output shown
while running ansible-playbook listing81.yaml.

Listing 8-1 Exploring the stat Module

- name: stat module tests

 hosts: ansible1

 tasks:

 - stat:

 path: /etc/hosts

 register: st

 - name: show current values

 debug:

 msg: current value of the st variable is {{ st }}

Listing 8-2 Running ansible-playbook listing81.yaml

[ansible@control ~]$ ansible-playbook listing81.yaml

PLAY [stat module tests] ***

TASK [Gathering Facts] ***

ok: [ansible1]

TASK [stat] **

ok: [ansible1]

TASK [show current values] ***

ok: [ansible1] => {

 "msg": "current value of the st variable is {'changed':
False, 'stat': {'exists': True, 'path': '/etc/hosts', 'mode':
'0644', 'isdir': False, 'ischr': False, 'isblk': False, 'isreg':
True, 'isfifo': False, 'islnk': False, 'issock': False, 'uid': 0,
'gid': 0, 'size': 158, 'inode': 16801440, 'dev': 64768, 'nlink':
1, 'atime': 1586230060.147566, 'mtime': 1536580263.0, 'ctime':
1584958718.8117938, 'wusr': True, 'rusr': True, 'xusr': False, 'wgrp':
False, 'rgrp': True, 'xgrp': False, 'woth': False, 'roth': True,
'xoth': False, 'isuid': False, 'isgid': False, 'blocks': 8, 'block_
size': 4096, 'device_type': 0, 'readable': True, 'writeable': True,
'executable': False, 'pw_name': 'root', 'gr_name': 'root', 'checksum':
'7335999eb54c15c67566186bdfc46f64e0d5a1aa', 'mimetype': 'text/plain',
'charset': 'us-ascii', 'version': '408552077', 'attributes': [],
'attr_flags': ''}, 'failed': False}"

}

178 Red Hat RHCE 8 (EX294) Cert Guide

PLAY RECAP ***

ansible1 : ok=3 changed=0 unreachable=0
failed=0 skipped=0 rescued=0 ignored=0

As you can see from Listing 8-2, the stat module returns many file properties. It
tests which permission mode is set, whether it is a link, which checksum is set on the
file, and much more. For a complete list of output data, you can consult the docu-
mentation as provided while running ansible-doc stat.

Based on the output that is provided, a conditional test can be performed. The sam-
ple playbook in Listing 8-3 shows how this can be done and how the playbook can
write a message if the expected permissions mode is not set.

Listing 8-3 Performing File State Tests with the stat Module

- name: stat module tests

 hosts: ansible1

 tasks:

 - command: touch /tmp/statfile

 - stat:

 path: /tmp/statfile

 register: st

 - name: show current values

 debug:

 msg: current value of the st variable is {{ st }}

 - fail:

 msg: "unexpected file mode, should be set to 0640"

 when: st.stat.mode != '0640'

As you can see in the playbook output in Listing 8-4, the playbook fails with the
unexpected file mode message. Also notice the warning in the Listing 8-4 output:
it tells you that there is a better solution to do what you wanted to do here. This
happens on multiple occasions when you might have selected a module that is not
the best solution for the task you want to perform. Remember: Using the command
module will work in almost all cases, but often a better solution is available.

Listing 8-4 Running ansible-playbook listing83.yaml Result

[ansible@control ~]$ ansible-playbook listing83.yaml

PLAY [stat module tests] ***

179Chapter 8: Deploying Files

TASK [Gathering Facts] ***

ok: [ansible1]

TASK [command] ***

[WARNING]: Consider using the file module with state=touch rather
than running 'touch'. If you need to use command because file is
insufficient you can add 'warn: false' to this command task or set
'command_warnings=False' in ansible.cfg to get rid of this message.

changed: [ansible1]

TASK [stat] **

ok: [ansible1]

TASK [show current values] ***

ok: [ansible1] => {

 "msg": "current value of the st variable is {'changed':
False, 'stat': {'exists': True, 'path': '/tmp/statfile', 'mode':
'0644', 'isdir': False, 'ischr': False, 'isblk': False, 'isreg':
True, 'isfifo': False, 'islnk': False, 'issock': False, 'uid': 0,
'gid': 0, 'size': 0, 'inode': 51440456, 'dev': 64768, 'nlink': 1,
'atime': 1586253087.057596, 'mtime': 1586253087.057596, 'ctime':
1586253087.057596, 'wusr': True, 'rusr': True, 'xusr': False, 'wgrp':
False, 'rgrp': True, 'xgrp': False, 'woth': False, 'roth': True,
'xoth': False, 'isuid': False, 'isgid': False, 'blocks': 0, 'block_
size': 4096, 'device_type': 0, 'readable': True, 'writeable': True,
'executable': False, 'pw_name': 'root', 'gr_name': 'root', 'checksum':
'da39a3ee5e6b4b0d3255bfef95601890afd80709', 'mimetype': 'inode/x-
empty', 'charset': 'binary', 'version': '158303785', 'attributes': [],
'attr_flags': ''}, 'failed': False}"

}

TASK [fail] **

fatal: [ansible1]: FAILED! => {"changed": false, "msg": "unexpected
file mode, should be set to 0640"}

PLAY RECAP ***

ansible1 : ok=4 changed=1 unreachable=0
failed=1 skipped=0 rescued=0 ignored=0

In the earlier examples in this section, you saw how you can use the stat module to
show different types of file properties. Based on the output of the stat module, you
may use the file module to set specific file properties. In Listing 8-5 you can see how
the playbook from Listing 8-3 is rewritten to automatically set the desired permis-
sions state.

180 Red Hat RHCE 8 (EX294) Cert Guide

Listing 8-5 Using the file Module to Correct File Properties Discovered with stat

- name: stat module tests

 hosts: ansible1

 tasks:

 - command: touch /tmp/statfile

 - stat:

 path: /tmp/statfile

 register: st

 - name: show current values

 debug:

 msg: current value of the st variable is {{ st }}

 - name: changing file permissions if that's needed

 file:

 path: /tmp/statfile

 mode: 0640

 when: st.stat.mode != '0640'

EXAM TIP In the examples in this chapter, some tasks don’t have a name assigned.
Using a name for each task is not required; however, it does make troubleshooting a
lot easier if each task does have a name. For that reason, on the exam it’s a good idea
to use names anyway. Doing so makes it easier to identify which tasks lead to which
specific result.

Managing File Contents

If you need to manage file contents, multiple modules can be useful. The find
module enables you to find files, just like the Linux find command. The linein-
file module enables you to manipulate lines in files, and blockinfile enables you to
manipulate complete blocks of text. Also don’t forget the copy module. We look at it
in the next section, but you can also use it to copy a specified text to a file. For man-
aging text operations on files, however, it is recommended that you use lineinfile or
blockinfile instead because these give more options to specify where exactly the text
should be written to.

Listing 8-6 shows an example where lineinfile is used to change a string, based on a
regular expression.

181Chapter 8: Deploying Files

Listing 8-6 Changing File Contents Using lineinfile

- name: configuring SSH

 hosts: all

 tasks:

 - name: disable root SSH login

 lineinfile:

 dest: /etc/ssh/sshd_config

 regexp: "^PermitRootLogin"

 line: "PermitRootLogin no"

 notify: restart sshd

 handlers:

 - name: restart sshd

 service:

 name: sshd

 state: restarted

As you can see in Listing 8-6, lineinfile uses the dest key to specify the filename.
Next, a regular expression is used to search for lines that have text starting with
PermitRootLogin. If this regular expression is found, it is changed into the line
PermitRootLogin no.

You can use the lineinfile module to manipulate a single line in a file. In some cases
you have to manage multiple lines in a file. In that case, you can use the blockinfile
module. Listing 8-7 provides an example.

Listing 8-7 Using blockinfile to Manipulate Multiple Lines of Text

- name: modifying file

 hosts: all

 tasks:

 - name: ensure /tmp/hosts exists

 file:

 path: /tmp/hosts

 state: touch

 - name: add some lines to /tmp/hosts

 blockinfile:

 path: /tmp/hosts

 block: |

 192.168.4.110 host1.example.com

 192.168.4.120 host2.example.com

 state: present

http://host1.example.com
http://host2.example.com

182 Red Hat RHCE 8 (EX294) Cert Guide

Based on what you’ve learned so far, the use of blockinfile should be easy to under-
stand. Just remember the use of the | after block:. This character is used to specify
that the next couple of lines should be treated as lines, adding the newline character
to the end of the line. Alternatively, you could use block: >, but that would add one
long line to the destination file.

Notice that when blockinfile is used, the text specified in the block is copied with a
start and end indicator. See Listing 8-8 for an example:

Listing 8-8 Resulting File Modification by blockinfile

127.0.0.1 localhost localhost.localdomain localhost4 localhost4.
localdomain4

::1 localhost localhost.localdomain localhost6 localhost6.
localdomain6

192.168.4.200. control.example.com. control

192.168.4.201 ansible1.example.com ansible1

192.168.4.202 ansible2.example.com ansible2

BEGIN ANSIBLE MANAGED BLOCK

192.168.4.110 host1.example.com

192.168.4.120 host2.example.com

END ANSIBLE MANAGED BLOCK

Creating and Removing Files

In an earlier example in this chapter you saw how the command module was used to
create a new file by using the Linux touch command. While running this playbook,
you saw a warning that you shouldn’t do it this way, but you should use the file mod-
ule instead, and that is totally right.

You can use the file module to perform some pretty common tasks:

■■ Create new files or directories

■■ Create links

■■ Remove files

■■ Set permissions and ownership

Listing 8-9 shows a sample playbook where the file module is used to create a new
directory and in that directory create an empty file, after which the same file module
is used again to remove the directory recursively. This approach is not very useful,
but at least it shows you some of the most common uses of the file module.

http://control.example.com
http://ansible1.example.com
http://ansible2.example.com
http://host1.example.com
http://host2.example.com

183Chapter 8: Deploying Files

Listing 8-9 Creating and Removing Files with the file Module

- name: using the file module

 hosts: ansible1

 tasks:

 - name: create directory

 file:

 path: /newdir

 owner: ansible

 group: ansible

 mode: 770

 state: directory

 - name: create file in that directory

 file:

 path: /newdir/newfile

 state: touch

 - name: show the new file

 stat:

 path: /newdir/newfile

 register: result

 - debug:

 msg: |

 This shows that newfile was created

 "{{ result }}"

 - name: removing everything again

 file:

 path: /newdir

 state: absent

In Listing 8-9, you can see that the last task is configured to remove a directory. Just
specifying the path to the directory and state: absent recursively removes the direc-
tory. You don’t need to specify any other options here, and the recurse key also is
not required.

Moving Files Around

Three modules are particularly useful for moving files around. The copy module
copies a file from the Ansible control host to a managed machine. The fetch module
enables you to do the opposite, and the synchronize module performs Linux rsync-
like tasks, ensuring that a file from the control host is synchronized to a file with
that name on the managed host. The main difference between copy and synchronize

184 Red Hat RHCE 8 (EX294) Cert Guide

is that the copy module always creates a new file, whereas the synchronize module
updates a current existing file. In Listing 8-10 you can see how these modules are
used.

Listing 8-10 Moving a File Around with Ansible

- name: file copy modules

 hosts: all

 tasks:

 - name: copy file demo

 copy:

 src: /etc/hosts

 dest: /tmp/

 - name: add some lines to /tmp/hosts

 blockinfile:

 path: /tmp/hosts

 block: |

 192.168.4.110 host1.example.com

 192.168.4.120 host2.example.com

 state: present

 - name: verify file checksum

 stat:

 path: /tmp/hosts

 checksum_algorithm: md5

 register: result

 - debug:

 msg: "The checksum of /tmp/hosts is {{ result.stat.checksum }}"

 - name: fetch a file

 fetch:

 src: /tmp/hosts

 dest: /tmp/

After running the playbook in Listing 8-10, you might expect to find the file /tmp/hosts
on the Ansible control machine. This, however, is not the case, and the reason is easy to
understand. Ansible playbooks typically are used on multiple hosts, so if a file is fetched
from a managed host, it must be stored in a unique location. To guarantee the unique-
ness, Ansible creates a subdirectory for each managed host in the dest directory and puts
the file that fetch has copied from the remote host in that subdirectory. So the result of
the playbook in Listing 8-10 is stored as /tmp/ansible1/hosts and /tmp/ansible2/hosts.
You practice working with files in Exercise 8-1.

http://host1.example.com
http://host2.example.com

185Chapter 8: Deploying Files

Exercise 8-1 Managing Files with Ansible

 1. Create a file with the name exercise81.yaml and give it the following play
header:

- name: testing file manipulation skills

 hosts: ansible1

 tasks:

 2. Add a task that creates a new empty file:

- name: testing file manipulation skills

 hosts: ansible1

 tasks:

 - name: create a new file

 file:

 name: /tmp/newfile

 state: touch

 3. Use the stat module to check on the status of the new file:

- name: testing file manipulation skills

 hosts: ansible1

 tasks:

 - name: create a new file

 file:

 name: /tmp/newfile

 state: touch

 - name: check status of the new file

 stat:

 path: /tmp/newfile

 register: newfile

 4. To see what the status module is doing, add a line that uses the debug module:
- name: testing file manipulation skills

 hosts: ansible1

 tasks:

 - name: create a new file

 file:

 name: /tmp/newfile

 state: touch

 - name: check status of the new file

 stat:

 path: /tmp/newfile

186 Red Hat RHCE 8 (EX294) Cert Guide

 register: newfile

 - name: for debugging only

 debug:

 msg: the current values for newfile are {{ newfile }}

 5. Now that you understand which values are stored in newfile, you can add a
conditional playbook that changes the current owner if not set correctly:

- name: testing file manipulation skills

 hosts: ansible1

 tasks:

 - name: create a new file

 file:

 name: /tmp/newfile

 state: touch

 - name: check status of the new file

 stat:

 path: /tmp/newfile

 register: newfile

 - name: for debugging only

 debug:

 msg: the current values for newfile are {{ newfile }}

 - name: change file owner if needed

 file:

 path: /tmp/newfile

 owner: ansible

 when: newfile.stat.pw_name != 'ansible'

 6. Add a second play to the playbook that fetches a remote file:
- name: fetching a remote file

 hosts: ansible1

 tasks:

 - name: fetch file from remote machine

 fetch:

 src: /etc/motd

 dest: /tmp

 7. Now that you have fetched the file so that it is on the Ansible control machine,
use blockinfile to edit it:
- name: adding text to the file that is now on localhost

 hosts: localhost

 tasks:

 - name: add a message

 blockinfile:

187Chapter 8: Deploying Files

 path: /tmp/ansible1/etc/motd

 block: |

 welcome to this server

 for authorized users only

 state: present

 8. In the final step, copy the modified file to ansible2 by including the following play:
- name: copy the modified file to ansible2

 hosts: ansible2

 tasks:

 - name: copy motd file

 copy:

 src: /tmp/ansible1/etc/motd

 dest: /tmp

 9. At this point you’re ready to run the playbook. Type ansible-playbook
exercise81.yaml to run it and observe the results.

 10. Type ansible ansible2 -a "cat /tmp/motd" to verify that the modified motd
file was successfully copied to ansible2.

Managing SELinux Properties
In the security of any Linux system, SELinux is an important component. SELinux
can be used on files to manage file context; apart from that, context can be set on
ports; and SELinux properties can be managed using Booleans. Ansible has a few
modules that allow for making changes to the SELinux configuration, which are
listed in Table 8-3.

TIP To work with SELinux in Ansible, you need to have knowledge about SELinux.
This is a part of the RHCSA-level knowledge that is required for anyone who wants
to take EX294. This section does not explain SELinux itself. For more information
about SELinux, consult the Red Hat RHCSA 8 Cert Guide.

Table 8-3 Modules for Managing Changes on SELinux

Module Use

file Manages context on files but not in the SELinux policy

sefcontext Manages file context in the SELinux policy

command Is required to run the restorecon command after using sefcontext

selinux Manages current SELinux state

seboolean Manages SELinux Booleans

188 Red Hat RHCE 8 (EX294) Cert Guide

Managing SELinux File Context

The essential thing to understand when working with SELinux to secure files is
that the context type that is set on the file defines which processes can work with
the files. The file context type can be set on a file directly, or it can be set on the
SELinux policy.

When you’re working with SELinux, all of its properties should be set in the
SELinux policy. To do this, you use the Ansible sefcontext module. Setting a context
type in the policy doesn’t automatically apply it to files though. You still need to run
the Linux restorecon command to do this. Ansible does not offer a module to run
this command; it needs to be invoked using the command module.

As an alternative, you can use the file module to set SELinux context. The disadvan-
tage of this approach is that the context is set directly on the file, not in the SELinux
policy. As a result, if at any time default context is applied from the policy to the
file system, all context that has been set with the Ansible file module risks being
overwritten. For that reason, the recommended way to manage SELinux context in
Ansible is to use the sefcontext module.

To be able to work with the Ansible sefcontext module and the Linux restorecon
command, you also need to make sure that the appropriate software is installed on
Linux. This software comes from the policycoreutils-python-utils RPM package,
which is not installed by default in all installation patterns.

Listing 8-11 shows a sample playbook that uses this module to manage SELinux
context type.

Listing 8-11 Managing SELinux Context with sefcontext

- name: show selinux

 hosts: all

 tasks:

 - name: install required packages

 yum:

 name: policycoreutils-python-utils

 state: present

 - name: create testfile

 file:

 name: /tmp/selinux

 state: touch

 - name: set selinux context

 sefcontext:

189Chapter 8: Deploying Files

 target: /tmp/selinux

 setype: httpd_sys_content_t

 state: present

 notify:

 - run restorecon

 handlers:

 - name: run restorecon

 command: restorecon -v /tmp/selinux

In the sample playbook in Listing 8-11, the required software package is installed
first. Next, a test file is created using the file module; then in the next task the
sefcontext command is used to write the new context to the policy. If executed
successfully, this task will trigger a handler to run the Linux restorecon command
by using the command module.

Don’t forget: A handler will run only if the task that triggers it generates a changed
status. If the current state already matches the desired state, no changes are applied
and the handler won’t run!

EXAM TIP The exam assignment might not be as specific as to ask you to change a
context using SELinux. You might just have to configure a service with a nondefault
documentroot, which means that SELinux will deny access to the service. So also
on the EX294 exam, with all tasks, you should ask yourself if this task requires any
changes at an SELinux level.

Applying Generic SELinux Management Tasks

Some additional SELinux related modules are available as well. The selinux module
enables you to set the current state of SELinux to either permissive, enforcing, or dis-
abled. The seboolean module enables you to easily enable or disable functionality in
SELinux using Booleans. Listing 8-12 shows an example of a playbook that uses both of
these modules.

Listing 8-12 Changing SELinux State and Booleans

- name: enabling SELinux and a boolean

 hosts: ansible1

 vars:

 myboolean: httpd_read_user_content

 tasks:

 - name: enabling SELinux

 selinux:

190 Red Hat RHCE 8 (EX294) Cert Guide

 policy: targeted

 state: enforcing

 - name: checking current {{ myboolean }} Boolean status

 shell: getsebool -a | grep {{ myboolean }}

 register: bool_stat

 - name: showing boolean status

 debug:

 msg: the current {{ myboolean }} status is {{ bool_stat.stdout }}

 - name: enabling boolean

 seboolean:

 name: "{{ myboolean }}"

 state: yes

 persistent: yes

In the sample playbook in Listing 8-12, to start with, the selinux module is used to
ensure that SELinux is in the enforcing state. When using this module, you also
have to specify the name of the policy, which in most cases is the targeted policy.

Next, the seboolean module is used to enable a Boolean. As you can see, this Bool-
ean is defined as the variable myboolean. Before the Boolean is enabled, the shell
and debug modules are used to show its current status. In Exercise 8-2 you practice
working with SELinux.

Exercise 8-2 Changing SELinux Context

In this exercise you configure a more complicated playbook, running different
tasks. To guide you through this process, which will prepare you for the exam in a
somewhat better way, I show you a different approach this time. To start with, this is
the assignment you’re going to work on.

Install, start, and configure a web server that has the DocumentRoot set to the /web
directory. In this directory, create a file named index.html that shows the message
“welcome to the Exercise 8-2 webserver.” Ensure that SELinux is enabled and allows
access to the web server document root. Also ensure that SELinux allows users to
publish web pages from their home directory.

 1. Because this is a complex task, you should start this time by creating a playbook
outline. A good approach for doing this is to create the playbook play header

http://index.html

191Chapter 8: Deploying Files

and list all tasks that need to be accomplished by providing a name as well as the
name of the task that you want to run. Create this structure as follows:

- name: Managing web server SELinux properties

 hosts: ansible1

 tasks:

 - name: ensure SELinux is enabled and enforcing

 - name: install the webserver

 - name: start and enable the webserver

 - name: open the firewall service

 - name: create the /web directory

 - name: create the index.html file in /web

 - name: use lineinfile to change webserver configuration

 - name: use sefcontext to set context on new documentroot

 - name: run the restorecon command

 - name: allow the web server to run user content

 2. Now that the base structure has been defined, you can define the rest of the task
properties. To start with, enable SELinux and set to the enforcing state:

- name: Managing web server SELinux properties

 hosts: ansible1

 tasks:

 - name: ensure SELinux is enabled and enforcing

 selinux:

 policy: targeted

 state: enforcing

 3. You can install the web server, start and enable it, create the /web directory,
and create the index.html file in the /web directory. You should be familiar with
these tasks, so you can do them all in one run:
 - name: install the webserver

 yum:

 name: httpd

 state: latest

 - name: start and enable the webserver

 service:

 name: httpd

 state: started

 enabled: yes

 - name: open the firewall service

 firewalld:

192 Red Hat RHCE 8 (EX294) Cert Guide

 service: http

 state: enabled

 immediate: yes

 - name: create the /web directory

 file:

 name: /web

 state: directory

 - name: create the index.html file in /web

 copy:

 content: 'welcome to the exercise82 web server'

 dest: /web/index.html

 - name: use lineinfile to change webserver configuration

 - name: use sefcontext to set context on new documentroot

 - name: run the restorecon command

 - name: allow the web server to run user content

 4. You must use the lineinfile module to change the httpd.conf contents. Two
different lines need to be changed, which you accomplish by making the
following modifications:
 - name: use lineinfile to change webserver configuration

 lineinfile:

 path: /etc/httpd/conf/httpd.conf

 regexp: '^DocumentRoot "/var/www/html"'

 line: DocumentRoot "/web"

 - name: use lineinfile to change webserver security

 lineinfile:

 path: /etc/httpd/conf/httpd.conf

 regexp: '^<Directory "/var/www">'

 line: '<Directory "/web">'

 - name: use sefcontext to set context on new documentroot

 - name: run the restorecon command

 - name: allow the web server to run user content

 5. In the final steps, you take care of configuring the SELinux-specific settings:
 - name: use sefcontext to set context on new documentroot

 sefcontext:

 target: '/web(/.*)?

 setype: httpd_sys_content_t

 state: present

 - name: run the restorecon command

 command: restorecon -Rv /web

193Chapter 8: Deploying Files

 - name: allow the web server to run user content

 seboolean:

 name: httpd_read_user_content

 state: yes

 persistent: yes

 6. At this point, the complete playbook should look as follows:

- name: Managing web server SELinux properties

 hosts: ansible1

 tasks:

 - name: ensure SELinux is enabled and enforcing

 selinux:

 policy: targeted

 state: enforcing

 - name: install the webserver

 yum:

 name: httpd

 state: latest

 - name: start and enable the webserver

 service:

 name: httpd

 state: started

 enabled: yes

 - name: open the firewall service

 firewalld:

 service: http

 state: enabled

 immediate: yes

 - name: create the /web directory

 file:

 name: /web

 state: directory

 - name: create the index.html file in /web

 copy:

 content: 'welcome to the exercise82 web server'

 dest: /web/index.html

 - name: use lineinfile to change webserver configuration

 lineinfile:

 path: /etc/httpd/conf/httpd.conf

 regexp: '^DocumentRoot "/var/www/html"'

 line: DocumentRoot "/web"

194 Red Hat RHCE 8 (EX294) Cert Guide

 - name: use lineinfile to change webserver security

 lineinfile:

 path: /etc/httpd/conf/httpd.conf

 regexp: '^<Directory "/var/www">'

 line: '<Directory "/web">'

 - name: use sefcontext to set context on new documentroot

 sefcontext:

 target: '/web(/.*)?'

 setype: httpd_sys_content_t

 state: present

 - name: run the restorecon command

 command: restorecon -Rv /web

 - name: allow the web server to run user content

 seboolean:

 name: httpd_read_user_content

 state: yes

 persistent: yes

 7. Run the playbook by using ansible-playbook exercise82.yaml and verify its
output.

 8. Verify that the web service is accessible by using curl http://ansible1. In this
case, it should not show the expected welcome text. Try to analyze why. You can
find the answer at the end of this chapter before the end-of-chapter. So what
should you learn from this? A playbook may run without any errors, but that
doesn't mean that it has produced the desired results. You should always verify!

Using Jinja2 Templates
A template is a configuration file that contains variables and, based on the variables,
is generated on the managed hosts according to host-specific requirements. Using
templates allows for a structural way to generate configuration files, which is much
more powerful than changing specific lines from specific files. Ansible uses Jinja2 to
generate templates.

Working with Simple Templates

Jinja2 is a generic templating language for Python developers. It is used in Ansible
templates, but Jinja2-based approaches are also found in other parts of Ansible. For
instance, the way variables are referred to is based on Jinja2.

In a Jinja2 template, three elements can be used. Table 8-4 provides an overview.

http://ansible1

195Chapter 8: Deploying Files

Table 8-4 Jinja2 Template Elements

Element Example

data sample text

comment {# sample text #}

variable {{ ansible_facts['default_ipv4']['address'] }}

expression {% for myhost in groups['web'] %}

{{ myhost }}

{% endfor %}

To work with a template, you must create a template file, written in Jinja2. Next, this
template file must be included in an Ansible playbook that uses the template mod-
ule. Listing 8-13 shows what a template file might look like, and Listing 8-14 shows
an example of a playbook that calls the template.

Listing 8-13 Sample Template

{{ ansible_managed }}

<VirtualHost *:80>

 ServerAdmin webmaster@{{ ansible_facts['fqdn'] }}

 ServerName {{ ansible_facts['fqdn'] }}

 ErrorLog logs/{{ ansible_facts['hostname'] }}-error.log

 CustomLog logs/{{ ansible_facts['hostname'] }}-common.
log common

 DocumentRoot /var/www/vhosts/{{ ansible_facts['hostname'] }}/

 <Directory /var/www/vhosts/{{ ansible_facts['hostname'] }}>

 Options +Indexes +FollowSymlinks +Includes

 Order allow,deny

 Allow from all

 </Directory>

</VirtualHost>

The sample template in Listing 8-13 starts with # {{ ansible_managed }}. This
string is commonly used to identify that a file is managed by Ansible so that admin-
istrators are not going to change file contents by accident. While processing the
template, this string is replaced with the value of the ansible_managed variable.

196 Red Hat RHCE 8 (EX294) Cert Guide

This variable can be set in ansible.cfg. For instance, you can use ansible_managed =
This file is managed by Ansible to substitute the variable with its value while gen-
erating the template.

As for the remainder, the template file is just a text file that uses variables to substi-
tute specific variables to their values. In this case that is just the ansible_fqdn and
ansible_hostname variables that are set as Ansible facts. To generate the template,
you need a playbook that uses the template module to call the template. Listing 8-14
shows an example.

Listing 8-14 Sample Playbook

- name: installing a template file

 hosts: ansible1

 tasks:

 - name: install http

 yum:

 name: httpd

 state: latest

 - name: start and enable httpd

 service:

 name: httpd

 state: started

 enabled: true

 - name: install vhost config file

 template:

 src: listing813.j2

 dest: /etc/httpd/conf.d/vhost.conf

 owner: root

 group: root

 mode: 0644

 - name: restart httpd

 service:

 name: httpd

 state: restarted

In the sample playbook in Listing 8-14, the template module is used to work on the
source file specified as src, to generate the destination file, specified as dest. The
result is that on the managed host the template is generated, with all the variables
substituted to their values.

197Chapter 8: Deploying Files

Applying Control Structures in Jinja2 Using for

In templates, control structures can be used to dynamically generate contents. A for
statement can be used to iterate over all elements that exist as the value of a variable.
Let’s look at some examples.

To start with, Listing 8-15 shows a template where a for statement is shown.

Listing 8-15 Exploring Jinja2 for Statements

{% for node in groups['all'] %}

host_port={{ node }}:8080

{% endfor %}

In this Jinja2 file, a variable with the name host_ports is defined on the second line
(which is the line that will be written to the target file). To produce its value, the
host group all is processed in the for statement on the first line. While processing
the host group, a temporary variable with the name node is defined. This value of
the node variable is replaced with the name of the host while it is processed, and
after the host name, the string :8080 is copied, which will result in a separate line for
each host that was found. As the last element, {% endfor %} is used to close the for
loop. In Listing 8-16 you can see an example of a playbook that runs this template.

Listing 8-16 Generating a Template with a Conditional Statement

- name: generate host list

 hosts: ansible2

 tasks:

 - name: template loop

 template:

 src: listing815.j2

 dest: /tmp/hostports.txt

As you can see, the sample playbook in Listing 8-16 uses the template as the source
file and, based on the template, produces the file /tmp/hostports.txt on the managed
host. To verify, you can use the ad hoc command ansible ansible2 -a "cat /tmp/
hostports.txt".

198 Red Hat RHCE 8 (EX294) Cert Guide

Using Conditional Statements with if

The for statement can be used in templates to iterate over a series of values. The if
statement can be used to include text only if a variable contains a specific value or
evaluates to a Boolean true. Listing 8-17 shows a sample template file that reacts on
a variable that is set in the sample playbook in Listing 8-18.

Listing 8-17 Template Example with if

{% if apache_package == 'apache2' %}

 Welcome to Apache2

{% else %}

 Welcome to httpd

{% endif %}

Listing 8-18 Using the Template with if

- name: work with template file

 vars:

 apache_package: 'httpd'

 hosts: ansible2

 tasks:

 - template:

 src: listing817.j2

 dest: /tmp/httpd.conf

Using Filters

In Jinja2 templates, you can use filters. Filters are a way to perform an operation on the
value of a template expression, such as a variable. The filter is included in the variable
definition itself, and the result of the variable and its filter is used in the file that is gener-
ated. Table 8-5 gives an overview of some common filters. In Exercise 8-3 you practice
your skills and work with templates that use a conditional statement.

Table 8-5 Common Filters Overview

Filter Example Use

{{ myvar | to_json}} Writes the contents of myvar in JSON format

{{ myvar || to_yaml }} Writes the contents of myvar in YAML format

{{ myvar | ipaddr }} Tests whether myvar contains an IP address

199Chapter 8: Deploying Files

EXAM TIP The Ansible documentation at https://docs.ansible.com contains a sec-
tion with the title “Frequently Asked Questions.” In this section you can find the
question “How do I loop over a list of hosts in a group, inside a template?” Read it
now, and study it. The response here provides a very nice example of using condi-
tional statements in templates, and that information might be useful on the exam.

Exercise 8-3 Working with Conditional Statements in Templates

 1. Use your editor to create the file exercise83.j2. Include the following line to
open the Jinja2 conditional statement:
{% for host in groups['all'] %}

 2. This statement defines a variable with the name host. This variable iterates over
the magic variable groups, which holds all Ansible host groups as defined in
inventory. Of these groups, the all group (which holds all inventory host names)
is processed.

 3. Add the following line (write it as one line; it will wrap over two lines, but do
not press Enter to insert a newline character):
{{ hostvars[host]['ansible_default_ipv4']['address'] }} {{
hostvars[host]['ansible_fqdn'] }} {{ hostvars[host]['ansible_
hostname'] }}

This line writes a single line for each inventory host, containing three items.
To do so, you use the magic variable hostvars, which can be used to identify
Ansible facts that were discovered on the inventory host. The [host] part is
replaced with the name of the current host, and after that, the specific facts
are referred to. As a result, for each host a line is produced that holds the IP
address, the FQDN, and next the host name.

 4. Add the following line to close the for loop:
{% endfor %}

 5. Verify that the complete file contents look like the following and write and quit
the file:
{% for host in groups['all'] %}

{{ hostvars[host]['ansible_default_ipv4']['address'] }} {{
hostvars[host]['ansible_fqdn'] }} {{

hostvars[host]['ansible_hostname'] }}

{% endfor %}

 6. Use your editor to create the file exercise83.yaml. It should contain the
following lines:

- name: generate /etc/hosts file

https://docs.ansible.com

200 Red Hat RHCE 8 (EX294) Cert Guide

 hosts: all

 tasks:

 - name:

 template:

 src: exercise83.j2

 dest: /tmp/hosts

 7. Run the playbook by using ansible-playbook exercise83.yaml.

 8. Verify the /tmp/hosts file was generated by using ansible all -a "cat /tmp/
hosts".

Summary
In this chapter you learned how to manipulate text files with Ansible. In the first sec-
tion you learned about the most important Ansible modules that can be used. Next,
you learned how to manage SELinux with Ansible. In the last part of this chapter,
you read about generating configuration files using Jinja2 templates.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the Introduction, you have
a couple of choices for exam preparation: the exercises here, Chapter 16, “Final
Preparation,” and the exam simulation questions on the companion website.

Review All Key Topics
Review the most important topics in this chapter, noted with the Key Topics icon in
the outer margin of the page. Table 8-6 lists a reference of these key topics and the
page numbers on which each is found.

Table 8-6 Key Topics for Chapter 8

Key Topic Element Description Page Number

List File module tasks 182

Table 8-4 Jinja2 Template Elements 195

201Chapter 8: Deploying Files

Memory Tables
Print a copy of Appendix D, “Memory Tables” (found on the companion website), or
at least the section for this chapter, and complete the tables and lists from memory.
Appendix E, “Memory Tables Answer Key,” also on the companion website, includes
completed tables and lists to check your work.

Define Key Terms
Define the following key terms from this chapter, and check your answers in the
glossary:

Jinja2, template

Review Questions
 1. Which module should you use to work with file system ACLs?

 2. Which modules can you use to replace strings in text files based on regex?
(List two.)

 3. Which module should you use to retrieve file status?

 4. List three tasks that are commonly executed using the file module.

 5. Which module should you use to synchronize the contents of a file with the
contents of a file on the control host?

 6. What is wrong with using the file module to manipulate SELinux file context?

 7. Which module can you use to change SELinux Booleans?

 8. A playbook runs successfully, but the handler in that playbook is not triggered.
What is the most common explanation?

 9. How do you include a comment line in a Jinja2 template?

 10. What is the if statement used for in Ansible templates?

Exercise Answers
After you perform all the steps in Exercise 8-2, the web server still doesn’t work.
Further analysis shows that the changes in httpd.conf have been made successfully
and also that the SELinux context is set correctly. However, after you apply
the changes with lineinfile, the web server needs to be started. You can do this
either by using a handler or by moving the service task to be performed after the
lineinfile task.

202 Red Hat RHCE 8 (EX294) Cert Guide

End-of-Chapter Labs

Lab 8-1: Generate an /etc/hosts File
Write a playbook that generates an /etc/hosts file on all managed hosts. Apply the
following requirements:

■■ All hosts that are defined in inventory should be added to the /etc/hosts file.

Lab 8-2: Manage a vsftpd Service
Write a playbook that uses at least two plays to install a vsftpd service, configure the
vsftpd service using templates, and configure permissions as well as SELinux. Apply
the following requirements:

■■ Install, start, and enable the vsftpd service. Also open a port in the firewall to
make it accessible.

■■ Use the /etc/vsftpd/vsftpd.conf file to generate a template. In this template,
you should use the following variables to configure specific settings. Replace
these settings with the variables and leave all else unmodified:

■■ anonymous_enable: yes

■■ local_enable: yes

■■ write_enable: yes

■■ anon_upload_enable: yes

■■ Set permissions on the /var/ftp/pub directory to mode 0777.

■■ Configure the ftpd_anon_write Boolean to allow anonymous user writes.

■■ Set the public_content_rw_t SELinux context type to the /var/ftp/pub
directory.

■■ If any additional tasks are required to get this done, take care of them.

Index

A
ad hoc commands, 50–51, 72

arguments, 50
components, 51
modules, 57–58
output, 51–52
running, 53
running from shell scripts, 64–65

Ansible, 6, 8. See also conditional
statements; playbooks; SELinux;
variables

ad hoc commands, 50–51, 72
components, 51
output, 51–52
running, 53
running from shell scripts, 64–65

architecture, 9–10
controller node, 9, 18

installation, 20
declarative approach, 11
docs.ansible.com website, 62–63
documentation, 63–64
dynamic inventory scripts, 40–41
environments, 18
facts, 101–102

commonly used, 104
gathering, 102–104, 108
injected variables, 104–108

Galaxy
collections, 217
role installation, 218–219
role management, 218–219

roles, 214, 217–218
website, 215–217

handlers, 149–156
installation methods, 20
installing

on CentOS 8, 21
on RHEL 8, 21
using python-pip, 21–22

inventory, 35
cache management, 235
commands, 37–38
dynamic, 39, 233–235
host groups, 36–38, 232–233
host name patterns, 232–233
listing hosts, 35
specifying host variables, 38–39
working with multiple inventory

files, 236–237
managed hosts, configuring, 22
modules, 10, 50, 53–54, 308

assert, 268–270, 357
at, 338–339
authorized_key, 315–316
browsing, 58
command, 54
consulting documentation, 58
copy, 55
correcting file properties, 180
cron, 337
debug, 118, 263, 322–323
filesystem, 367–368
lvol, 366–367

http://docs.ansible.com

440 Ansible

managing file attributes, 176–180
managing SSH connections, 313
managing sudo, 309–311
manipulating files, 176
mount, 368
parted, 364–365
ping, 56 –57
raw, 55
service, 56
shell, 55
stat, 265–268
for storage management, 354
uri module, 264–265
user and group management,

308–309, 311–312
using in ad hoc commands, 57–58
yum, 56

parallel task execution, 237–239
playbooks, 10, 34, 72

arrays, 115
check mode, 254–255
defining variables, 112
dictionaries, 116
elements, 73
file management, 177–187
host and group variables, 113–115
importing, 240–242
include files, 112–113
increasing output verbosity, 86–90
indentation, 73
magic variables, 117
multiplay, 83–85, 90–92
performing a dry run, 81–82
running, 74–77
tags, 271–273
troubleshooting, 90
undoing modifications, 75
variables, 100, 111–112
Vault-encrypted files, 120–121

projects, 34–35
and Python, 9
RHEL 8 managed node, setting up, 23

roles, 208–209
calling from playbooks, 210
custom, 210–213
dependencies, 213
directories, 209
file organization best practices,

213–214
locations, 209–210
recommendations, 214

rules, 11
serial task execution, 237–238
use cases

configuration management, 11
continuous delivery, 12
provisioning, 12

users
configuring, 23
managing, 323–328
setting up SSH, 23–25
sudo, 25

variables
facts, 100
loops, 135–136

Vault, 119, 121–122
managing encrypted files, 120
managing files with sensitive

variables, 121
when statement, 139, 148–149

checking for variables, 142–143
combining multiple conditions, 144
combining with loop, 145–146
for conditional software installation,

140–141
conditional tests, 141–142
evaluating multiple conditions, 144
integer checks, 144

ansible command, 38
Ansible Engine, 10
Ansible Tower, 10
ansible.cfg file

creating, 43
managing settings, 42–43

441commands

ansible-doc command, 58–60
output elements, 60–61
showing usage information, 62

ansible-galaxy command, 217
ansible-galaxy info command, 217–218
ansible-inventory command, 37, 235–236
ansible-playbook command, 75, 101

output, 256–257
output verbosity options, 257–259

ansible-vault command, 119
options, 120

Appstream modules, installing, 286–287
architecture, Ansible, 9–10
arguments

at module, 338–339
set_fact, 360

arrays, 115
assert module, 268–270, 357
authentication, SSH (Secure Shell),

configuring, 24–25
authorized_key module, 315–316
automation, 6. See also Ansible

Ansible, 8
architecture, 9–10
controller node, 9, 18
declarative approach, 11
documentation, 63–64
environments, 18
installation methods, 20
installing on controller node, 20
installing on RHEL 8, 21
listing hosts, 35
modules, 10, 53
playbooks, 10, 34, 72
projects, 34–35
and Python, 9
rules, 11
specifying host variables, 38–39
use cases, 11–12

Ansible Engine, 10
Ansible Tower, 10
Chef, 8

machine-readable code, 8
Puppet, 8
SaltStack, 9
shell scripts, 6

B
best practices, file organization, 213–214
blockinfile module, 181–182
blocks, 163–169

using with rescue and always
statements, 164–165

Booleans, 190. See also seboolean module
boot process, managing, 341

boot state, 344
rebooting managed hosts, 342–343
services, 345–346
systemd targets, 341

browsing available modules, 58
building, 7

C
calling roles from playbooks, 210
cat/etc/passwd command, 122–123
CentOS 8, installing Ansible, 21
check mode, 254–255

templates, 261–262
Chef, 8
chmod+x command, 39
code, infrastructure as, 8
coding, 7
combining

multiple conditions, loop and register
statements, 147

when and loop statements, 145–146
command module, 54
commands. See also ad hoc commands

ansible, 38
ansible-doc, 58–60

output elements, 60–61
showing usage information, 62

ansible-galaxy, 217
ansible-galaxy info, 217–218

442 commands

ansible-inventory, 37, 235–236
ansible-playbook, 75, 101

output, 256–257
output verbosity options, 257–259

ansible-vault, 119
options, 120

cat/etc/passwd, 122–123
chmod+x, 39
echo password, 321
mkdir base, 38
optimizing output error formatting, 259
register parameter, 122–124
restorecon, 188
sefcontext, 188–189
ssh, 23
useradd, 309
visudo, 25

commonly used facts, 104
conditional statements

blocks, 163–164, 165–169
using with rescue and always

statements, 164–165
changed_when, 162–163
combining multiple conditions, 144
evaluating multiple conditions, 144
failed_when, 158–160
generating Jinja2 templates, 197
if, 198
in templates, 199–200
using storage-related facts, 357–360

conditional tests, 141–142
file state, 178

configuration management, 11
configuring, 7

Ansible
managed hosts, 22
sudo, 25
user, 23

managed nodes, 297–301
SSH (Secure Shell), key-based user

authentication, 24–25
swap space, 368–369

connectivity, troubleshooting, 275–277
consulting documentation, Ansible, 58
controller node, Ansible, 9, 18
copy module, 55, 184
copying, user SSH public key, 317
creating

ansible.cfg file, 43
custom facts, 110–111
custom roles, 210–213
LVM logical volume, 367
partitions, 364–366
users with encrypted passwords, 322
volume groups, 366–367
XFS file system, 368

cron jobs
managing, 337, 339–340
removing, 338
running, 337–338

cron module, 337
custom facts, 109–110

creating, 110–111
custom roles, 210

creating, 210–213
CVS (Concurrent Version System), 8

D
debug module, 118, 263, 322–323
defining, variables, 112
device names

managing, 360–361
storing in variables, 360–361

DevOps way of working, 7
dictionaries, 115

addressing specific keys, 116
discovering storage-related facts, 354

using ansible -m setup, 355–357
disk device

configuring swap space, 368–369
creating LVM logical volume, 367
creating LVM volume groups,

366–367
file system, mounting, 368

443importing

partitions, creating, 364–366
setting up storage, 369––373
storing name in variables, 360–361

docs.ansible.com website, 62–63
documentation

Ansible, 63–64
ansible-doc command, 58–61
consulting, 58

dynamic inventory, Ansible, 39
dynamic inventory scripts, 40, 41,

233–235

E
echo password command, 321
encrypted files, 121

managing with Ansible
Vault, 120

passwords, 121–122
creating, 322
generating, 319–321
managing, 319

F
facts, 100–102

caching, 108
commonly used, 104
custom, 109–110

creating, 110–111
gathering, 102–104, 108
injected variables, 104–108
storage-related, 354–355

discovering using ansible -m setup,
355–357

using in conditional statements,
357–360

failed_when conditional, 158–160
fetch module, 184
file module, correcting file properties,

180
file systems, 367

creating, 368
mounting, 368

files
best practices, 213–214
content management, 180–182
creating and removing, 182–183
including and importing, 239
inventory, 236–237
logging to, 259
managing, 177–187
managing attributes, 176–180
manipulating, 176
moving, 184
properties, 180

filesystem module, 367–368
filters, Jinja2, 198–199
find module, managing file contents,

180–182
FTP-based repositories, setting up,

290–291

G
gathering, facts, 102–104, 108
generating, encrypted passwords,

319–321
GitHub, 41
GPG keys, managing, 291–292
group variables, 113–115
groups, managing, 308–309, 311–312

H
handlers, 149–156, 189. See also tasks

forcing to run, 158
host groups, Ansible, 36–38

wildcards, 232–233
host variables, 113–115

I
idempotent, 10
if statements, 198
importing

files, 239
playbooks, 240–242
task files, 242–247

http://docs.ansible.com

444 include files

include files, 112–113, 242–247
infrastructure, as code, 8
installing

Ansible
on CentOS 8, 21
on controller node, 20
on RHEL 8, 21
using python-pip, 21–22

Ansible Galaxy roles, 218–219
Appstream modules, 286–287
package groups, 286
RHEL system roles, 220

integer checks, 144
inventory, Ansible, 35

cache management, 235
commands, 37–38
dynamic, 39
dynamic inventory scripts, 40–41
host groups, 36–38
host name patterns, 232–233
listing hosts, 35
scripts, 233–235
specifying host variables, 38–39
working with multiple inventory files,

236–237
inventory scripts, 40–41
IT, 7

DevOps way of working, 7

J
Jinja2, 194

if statements, 198
for statements, 197
templates, 189–194

conditional statements, 199–200
filters, 198–199
generating with a conditional

statement, 197

K
key-based user authentication, setting up

on SSH, 24–25

keys, SSH (Secure Shell), 313
copying, 317
creating the user, 317
lookup plug-in, 314
setting up, 314–316
user management, 317–318

key-value pairs, 78

L
lineinfile module, 181
Linux command-line utilities, managing

subscriptions, 293
listing

Ansible hosts, 35
tags and tasks, 273–274

lists. See also arrays; loops, YAML, 79
logging, to files, 259
loops, 134–135, 138–139

with_items, 137–138
combining with register statement, 147
combining with when statement,

145–146
for multivalued variables, 136–137
for variables, 135–136

LVM volume groups, creating, 366–367
lvol module, 366–367

M-N
machine-readable code, 8
magic variables, 117
managed hosts

configuring, 22
rebooting, 342–343

managed nodes, configuring, 297–301
managing

Ansible Galaxy roles, 218–219
boot process, 341

boot state, 344
rebooting managed hosts, 342–343
services, 345–346
systemd targets, 341

cron jobs, 337, 339–340

445multivalued variables

device names, 360–361
files, 177–187
GPG keys, 291–292
SELinux properties, 187

file context, 188–194
services, 336

systemd, 336–337
software packages, 284, 289

configuring repository access,
284–285

package_facts module, 287
yum module, 285–287

SSH connections, 313
storage, 354
subscriptions, 292–294
sudo, 309–311

template file, 310–311
variables, 310

users and groups, 308–309, 311–312,
317–318, 323–328

mkdir base command, 38
at module

arguments, 338–339
running commands in the

future, 339
modules, 308

Ansible, 10, 53, 54
Appstream, installing, 286–287
assert, 268–270, 357
at

arguments, 338–339
running commands in the future,

339
authorized_key, 315–316
blockinfile, 181–182
browsing, 58
command, 54
consulting documentation, 58
copy, 55, 184
cron, 337
debug, 118, 263, 322–323
fetch module, 184

file
correcting file properties, 180
creating and removing files, 182–183

filesystem, 367–368
find, managing file contents, 180–182
lineinfile, 181
lvol, 366–367
for managing SELinux changes, 187
managing software packages, 284–285
managing SSH connections, 313
managing sudo, 309–311
manipulating files, 176
mount, 368
package_facts, 287
parted, 364–365

creating partitions with, 365–366
ping, 56, 57
raw, 55
seboolean, 189–190
sefcontext, 188–189
service, 56
for service management, 336
shell, 55
stat, 265–268

managing file attributes, 176–180
for storage management, 354
synchronize, 184
for troubleshooting, 271
uri, 264–265
user and group management, 308–309,

311–312
using in ad hoc commands, 57–58
yum, 56

managing software packages,
285–287

monitoring, 7
mount module, 368
mounting, file systems, 368
moving, files, 184
multiplay playbooks, 83–85, 90–92
multivalued variables

arrays, 115

446 multivalued variables

dictionaries, 116
addressing specific keys, 116

loops, 136–139
with_items, 137–138

square brackets notation, 117

O
optimizing, command output error

formatting, 259
output

ansible-playbook command, 256–257
optimizing error formatting, 259

P
package groups, installing, 286
package_facts module, 287
packaging, 7
parallel task execution, 237–239
parted module, 364–365
partitions

creating, 364–365
creating with parted module, 365–366

passphrases, 24
passwords, encrypted, 121–122

creating users with, 322
generating, 319–321
managing, 319

ping module, 56–57
playbooks. See also roles

Ansible, 10, 72
automating RHEL host setup, 297–301
check mode, 254–255

templates, 261–262
conditional statements

blocks, 163–169
changed_when, 162–163
failed_when, 158–160

elements, 73
file management, 177–187
importing, 240–242
including and importing files, 239
increasing output verbosity, 86–90

indentation, 73
injected variables, 104–108
multiplay, 83–85, 90–92
perfoming a dry run, 81–82
register parameter, 122–123
running, 74–77
SELinux System Role, 222–223
for software management, 297
stat module, managing file attributes,

176–180
for storage management, 354
tags, 271–273

for debugging, 274–275
special, 274

tasks, 149
errors, 156–157
execution, 156
handlers, 149–156, 189
parallel execution, 237–239
running one by one, 260–261
serial execution, 237–238
specifying failure conditions,

158–160
troubleshooting, 90
undoing modifications, 75
variables, 100, 111–112

arrays, 115
defining, 112
dictionaries, 116
facts, 101–104, 108–110
host and group, 113–115
include files, 112–113
loops, 135–139
magic, 117
precedence, 119
showing, 118

Vault-encrypted files, 120–121
when statement, 139, 148–149

checking for variables, 142–143
combining multiple conditions, 144
for conditional software installation,

140–141

447security

conditional tests, 141–142
evaluating multiple conditions, 144
integer checks, 144
referring to variables in, 142

plays, 73
practicing, YAML, 82–83
precedence, variable, 119
privilege escalation, setting up, 25–26
projects, Ansible, 34–35
provisioning, 12
Puppet, 8
Python, 9, 20

dictionaries, 115
dynamic inventory scripts, 40–41
scripts, 20
versions, 20

python-pip, installing Ansible, 21–22

R
raw module, 55
rebooting managed hosts, 342–343
register parameter, combining with loops,

147
registering for the exam, 384
releasing, 7
removing cron jobs, 338
repositories

GPG keys, 291–292
RPM keys, fetching, 292
setting up, 290–291, 294–297
subscriptions, managing, 292–294

restorecon command, 188
RHCE exam

exam day, 384–386
nondisclosure agreement, 386
registration, 384
verifying your readiness, 383

RHEL 8
installing Ansible, 21
managed node, setting up, 23
managed nodes, configuring, 297–301
subscriptions, managing, 292–294

system roles, 219–220
installing, 220
SELinux, 221–224
TimeSync, 224–225

roles, 208–209
Ansible Galaxy, 214

installing, 218–219
managing, 218–219
requesting additional information,

217–218
calling from playbooks, 210
custom, 210–213
dependencies, 213
directories, 209
file organization best practices,

213–214
locations, 209–210
recommendations, 214
RHEL, 219–220

installing, 220
SELinux System Role, 221–224
TimeSync System Role, 224–225

RPM keys, fetching, 292
rules, Ansible, 11
running

ad hoc commands, 53
from shell scripts, 64–65

cron jobs, 337–338
playbooks, 74–77
tasks, 260–261

S
SaltStack, 9
scripts

inventory, 40, 41, 233–235
Python, 20

seboolean module, 189–190
security

Ansible Vault, 121–122
managing encrypted files, 120
privilege escalation, 25–26
Vault-encrypted files, 120–121

448 sefcontext module

sefcontext module, 188–189
SELinux

changing context, 191–194
managing properties, 187

file context, 188–194
SELinux System Role, 221

playbooks, 222–223
rebooting managed hosts, 223–224
variables, 222

serial task execution, 237–238
servers, 6
service module, 56
services

and boot process, 345–346
managing, 336
systemd, 336–337

set_fact argument, 360
setting up

Ansible, 23–25
privilege escalation, 25–26
repositories, 290–291, 294–297
RHEL 8 managed node, 23
SSH keys, 314–316
storage, 369–371, 372–373
test networks, 19
users, Ansible, 323–328

settings, Ansible, 42–43
shell module, 55
shell scripts, 6

running ad hoc commands, 64–65
software packages

managing, 284–285, 289
package_facts module, 287
yum module, 285–287

repositories, setting up, 290–291
special tags, 274
SSH (Secure Shell), 18

key-based user authentication,
configuring, 24–25

keys
copying, 317
creating the user, 317

lookup plug-in, 314
setting up, 314–316
user management, 317–318

managing, 313
public/private keys, 24

stat module, 265–268
managing file attributes, 176–180

for statements, 197
storage-related facts, 354–355

discovering, 354
using in conditional statements,

357–360
storing

disk device name in variables, 360–361
roles, 209–210

strings, YAML, 79–80
subscriptions, managing, 292–294
sudo

configuring for the Ansible user, 25
managing, 309–311

template file, 310–311
variables, 310

swap space configuring, 368–369
synchronize module, 184
syntax, YAML, verifying, 80–81
system roles

SELinux, 222–224
TimeSync, 224–225

systemd services, 336–337
systemd targets, managing, 341

T
tags, 271–273

for debugging, 274–275
listing, 273–274
special, 274

tasks, 149
errors, 156–157
execution, 156
handlers, 149–156, 189

forcing to run, 158
includes and imports, 242–247

449when statement

listing, 273–274
parallel execution, 237–239
running, 260–261
serial execution, 237–238
specifying failure conditions, 158–160

templates
Jinja2, 189–194

conditional statements, 199–200
filters, 198–199
generating with a conditional

statement, 197
for managing sudo, 310–311
using in check mode, 261–262

test networks, setting up, 19
testing, 7
TimeSync System Role, 224–225
troubleshooting

assert module, 268–270
connectivity, 275–277
debug module, 263
with modules, 263
playbooks, 90
stat module, 265–268
tasks, 156–157
uri module, 264–265

U
undoing playbook modifications, 75
uri module, 264–265
use cases, Ansible, configuration

management, 11
useradd command, 309
users

creating with encrypted passwords, 322
managing, 308–309, 311–312, 323–328
managing with SSH keys, 317–318

V
variables, 100, 111–112

checking for, 142–143
defining, 112
encrypted files, 121

facts, 100–102
caching, 108
commonly used, 104
custom, 109–110
gathering, 102–104, 108
injected variables, 104–108
storage-related, 354–357
storage-related, discovering, 354

host and group, 113–115
for importing and including files, 243
include files, 112–113
loops, 135–139

with_items, 137–138
magic, 117
for managing sudo, 310
multivalued

arrays, 115
dictionaries, 116
square brackets notation, 117

precedence, 119
SELinux System Role, 222
showing, 118
storing disk device name in, 360–361
when statements, 142

verbosity options, ansible-playbook
command, 257–259

verifying, YAML syntax, 80–81
versions, Python, 20
visudo command, 25
volume groups, creating, 366–367

W
websites

Ansible Galaxy, 215–217
docs.ansible.com, 62–63

when statement, 139, 148–149
blocks, 163–169

using with rescue and always
statements, 164–165

checking for variables, 142–143
for conditional software installation,

140–141

http://docs.ansible.com

450 when statement

conditional tests, 141–142
evaluating multiple conditions, 144
integer checks, 144
referring to variables in, 142

wildcards, host group, 232–233

X-Y-Z
XFS file system, creating, 368
YAML, 8, 10, 73, 77

indentation, 77
key-value pairs, 78
lists, 79
practicing, 82–83
strings, 79–80
verifying syntax, 80–81

yum module, 56
managing software packages, 285–287

ZeroMQ message queue, 9

	Cover
	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	Introduction
	Chapter 8 Deploying Files
	“Do I Know This Already?” Quiz
	Foundation Topics
	Using Modules to Manipulate Files
	File Module Manipulation Overview
	Managing File Attributes
	Managing File Contents
	Creating and Removing Files
	Moving Files Around

	Managing SELinux Properties
	Managing SELinux File Context
	Applying Generic SELinux Management Tasks

	Using Jinja2 Templates
	Working with Simple Templates
	Applying Control Structures in Jinja2 Using for
	Using Conditional Statements with if
	Using Filters

	Summary
	Exam Preparation Tasks
	Review All Key Topics
	Memory Tables
	Define Key Terms
	Review Questions
	Exercise Answers
	End-of-Chapter Labs
	Lab 8-1: Generate an /etc/hosts File
	Lab 8-2: Manage a vsftpd Service

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M-N
	O
	P
	R
	S
	T
	U
	V
	W
	X-Y-Z

