The Official

Coding with
Roblox Lua ,

’D Pearson Hou rs

SHARE WITH OTHERS

S 80 8 0 8.

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780136829423
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780136829423
https://plusone.google.com/share?url=http://www.informit.com/title/9780136829423
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780136829423
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780136829423/Free-Sample-Chapter

The Official
ROBLEAX
Guide

Coding with
Roblox Lua

Coding with Roblox Lua in 24 Hours: The Official Roblox Guide

Copyright © 2022 by Roblox Corporation. “Roblox,” the Roblox logo, and “Powering Imagination”
are among the Roblox registered and unregistered trademarks in the U.S. and other countries. All
rights reserved.

All rights reserved. This publication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmis-
sion in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permissions, request forms, and the appropriate contacts within the
Pearson Education Global Rights & Permissions Department, please visit www.pearsoned.com/
permissions/. No patent liability is assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the preparation of this book, the publisher
and author assume no responsibility for errors or omissions. Nor is any liability assumed for dam-
ages resulting from the use of the information contained herein.

ISBN-13: 978-0-13-682942-3

ISBN-10: 0-13-682942-2

Library of Congress Control Number: 2021948694
ScoutAutomatedPrintCode

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Pearson cannot attest to the accuracy of this information. Use of a term
in this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales depart-
ment at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact intics@pearson.com.

Editor-in-Chief
Debra Williams
Cauley

Acquisitions Editor
Kim Spenceley

Editorial Services
The Wordsmithery
LLC

Managing Editor
Sandra Schroeder
Senior Project
Editor

Tonya Simpson

Copy Editor
Charlotte Kughen

Indexer
Cheryl Lenser

Proofreader
Sarah Kearns

Editorial Assistant
Cindy Teeters

Cover Designer
Chuti Prasertsith

Compositor
Bronkella
Publishing LLC

Graphics
Processing

TJ Graham Art

http://www.pearsoned.com/permissions/
http://www.pearsoned.com/permissions/
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Pearson’s Commitment to
Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all learners.
We embrace the many dimensions of diversity, including but not limited to race, ethnic-
ity, gender, socioeconomic status, ability, age, sexual orientation, and religious or political
beliefs.

Education is a powerful force for equity and change in our world. It has the potential to
deliver opportunities that improve lives and enable economic mobility. As we work with
authors to create content for every product and service, we acknowledge our responsibility
to demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve
their potential through learning. As the world’s leading learning company, we have a duty
to help drive change and live up to our purpose to help more people create a better life for
themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:
» Everyone has an equitable and lifelong opportunity to succeed through learning.

» Our educational products and services are inclusive and represent the rich diversity of
learners.

» Our educational content accurately reflects the histories and experiences of the
learners we serve.

» Our educational content prompts deeper discussions with learners and motivates
them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any con-
cerns or needs with this Pearson product so that we can investigate and address them.

Please contact us with concerns about any potential bias at https://www.pearson.com/
report-bias.html.

https://www.pearson.com/report-bias.html
https://www.pearson.com/report-bias.html

Contents at a Glance

Hour 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Appendix A

Coding Your First Project

Properties and Variables

Creating and Using Functions

Working with Parameters and Arguments
Conditional Structures

Debouncing and Debugging

while Loops

for Loops

Working with Arrays

Working with Dictionaries

Client Versus Server

Remote Events: One-Way Communication
Using ModuleScripts

Coding in 3D World Space

Smoothly Animating Obijects

Solving Problems with Algorithms

Saving Data

Creating a Game Loop

Monetization: One-Time Purchases
Object-Oriented Programming
Inheritance

Raycasting

Plopping Obijects in an Experience: Part 1
Plopping Objects in an Experience: Part 2
Roblox Basics

Index

17

31

43

57

73

91
101
113
127
145
161
173
187
199
209
219
229
243
259
271
287
297
313
321
355

Table of Contents

HOUR 1: Coding Your First Project
Installing Roblox Studio
Let’s Take a Tour
Opening the Output Window
Writing Your First Script
Error Messages

Leaving Yourself Comments

HOUR 2: Properties and Variables
Object Hierarchy
Keywords
Properties
Finding Properties and Data Types
Creating Variables
Changing the Color Property

Instances

HOUR 3: Creating and Using Functions
Creating and Calling Functions
Understanding Scope
Using Events to Call Functions

Understanding Order and Placement

HOUR 4: Working with Parameters and Arguments
Giving Functions Information to Use
Working with Multiple Parameters and Arguments
Returning Values from Functions
Returning Multiple Values
Returning Nil
Dealing with Mismatched Arguments and Parameters

Working with Anonymous Functions

%A S I

17
18
19
20
22
22
25
26

31
31
33
33
36

43
43
45
49
50
51
51
52

vi Coding with Roblox Lua in 24 Hours

HOUR 5: Conditional Structures
if/then Statements
elseif
Logical Operators

else

HOUR 6: Debouncing and Debugging
Don'’t Destroy, Debounce

Figuring Out Where Things Go Wrong

HOUR 7: while Loops
Repeat Forever, while true do
Some Things to Keep in Mind

while Loops and Scope

HOUR 8: for Loops
How for Loops Work
Nested Loops
Breaking Out of Loops

HOUR 9: Working with Arrays
What Are Arrays?
Adding Items Later

Getting Information from a Specific Index

Printing an Entire List with ipairs ()

Folders and ipairs ()

Finding a Value on the List and Printing the Index

Removing Values from an Array

Numeric for Loops and Arrays

HOUR 10: Working with Dictionaries

Intro to Dictionaries

Adding and Removing from Dictionaries

Removing Key-Value Pairs
Working with Dictionaries and Pairs

Returning Values from Tables

57
58
62
62
63

73
73
82

91
91
92
98

101
102
109
110

113
113
114
114
115
116
121
122
123

127
127
130
130
132
133

Contents vii

HOUR 11: Client Versus Server 145
Understanding the Client and the Server 145
Working with GUIs 146
Understanding RemoteFunctions 149
Using RemoteFunctions 149

HOUR 12: Remote Events: One-Way Communication 161
Remote Events: A One-Way Street 161
Communicating from the Server to All Clients 162
Communicating from the Client to the Server 165
Communicating from the Server to One Client 170
Communicating from Client to Client 171

HOUR 13: Using ModuleScripts 173
Coding Things Just Once 173
Placing ModuleScripts 174
Understanding How ModuleScripts Work 174
Naming ModuleScripts 174
Adding Functions and Variables 175
Understanding Scope in ModuleScripts 176
Using Modules in Other Scripts 177
Don'’t Repeat Yourself 183
Dealing in Abstractions 183

HOUR 14: Coding in 3D World Space 187
Understanding X, Y, and Z Coordinates 187
Refining Placement with CFrame Coordinates 189
Offsetting CFrames 191
Adding Rotations to CFrames 191
Working with Models 192
Understanding World Coordinates and Local Object Coordinates 193

HOUR 15: Smoothly Animating Objects 199
Understanding Tweens 199
Setting TweenInfo Parameters 201

Chaining Tweens Together 205

viii Coding with Roblox Lua in 24 Hours

HOUR 16: Solving Problems with Algorithms
Defining Algorithms
Sorting an Array
Sorting in Descending Order
Sorting a Dictionary
Sorting by Multiple Pieces of Information

HOUR 17: Saving Data
Enabling Data Stores
Creating a Data Store
Using Data in the Store
Limiting the Number of Calls
Protecting Your Data
Saving Player Data
Using UpdateAsync to Update a Data Store

HOUR 18: Creating a Game Loop
Setting Up Game Loops
Working with BindableEvents

HOUR 19: Monetization: One-Time Purchases
Adding Passes to Your Experience
Configuring the Pass

Prompting In-Game Purchases

HOUR 20: Object-Oriented Programming
What Is OOP?
Organizing Code and Projects
Making a New Class
Adding Class Properties

Using Class Functions

HOUR 21: Inheritance
Setting Up Inheritance
Inheriting Properties
Working with Multiple Child Classes

209
209
210
212
213
216

219
219
220
220
225
225
226
226

229
229
230

243
243
246
247

259
259
259
260
261
263

271
272
274
277

Inheriting Functions
Understanding Polymorphism

Calling Parent Functions

HOUR 22: Raycasting
Setting Up the Function to Raycast
3D Math Trick: Getting the Direction
Setting Raycast Parameters
3D Math Trick: Limit Direction

HOUR 23: Plopping Objects in an Experience: Part 1
Setting Up the Object
Creating a Plop Button
Tracking Mouse Movements

Previewing the Object

HOUR 24: Plopping Objects in an Experience: Part 2
Detecting Mouse Input
Sending a Message to the Server

Getting the Message

APPENDIX A: Roblox Basics
Keywords
DataType Index
Operators
Naming Conventions
Animation Easing

Possible Solutions to Exercises

Index

Contents

278
278
282

287
287
289
290
293

297
298
302
303
307

313
314
316
317

321
322
322
324
325
325
326

355

ix

About the Author

Genevieve Johnson is the senior instructional designer for Roblox, the
world’s largest user-generated social platform for play. In her role, she
oversees creation of educational content and advises educators world-
wide on how to use Roblox in STEAM-based learning programs. Her work
empowers students to pursue careers as entrepreneurs, engineers, and
designers. Prior to Roblox, Johnson was educational content manager for

iD Tech, a nationwide tech education program that reaches more than
50,000 students yearly, ages 6-18. While at iD Tech, she helped launch a successful all-girls
STEAM program, and her team developed educational content for more than 60 technology-
related courses, teaching a variety of subjects from coding to robotics and game design.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you'd like to see us publish in, and any other words of wisdom you’re willing to pass
our way.

You can email or write to let us know what you did or didn’t like about this book—as well
as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you email, please be sure to include this book’s title and author as well as your
name, email address, and phone number. We will carefully review your comments and
share them with the author and editors who worked on the book.

Email: community@informit.com

Reader Services

Register your copy of Roblox Game Development in 24 Hours at www.informit.com/register for
convenient access to downloads, updates, and corrections as they become available. To start
the registration process, go to informit.com/register and log in or create an account.* Enter
the product ISBN (9780136829423) and click Submit.

*Be sure to check the box that you would like to hear from us to receive exclusive discounts
on future editions of this product.

mailto:community@informit.com
http://www.informit.com/register
http://informit.com/register

This page intentionally left blank

HOUR 1

Coding Your First Project

What You’ll Learn in This Hour:

» Why Roblox and Lua are a perfect combination

» What Roblox Studio’s main windows are

» How to say “Hello” to the world with your first code
» How to make a part explode

» How to check for errors

» How to leave a comment

Roblox is the world’s most popular game development platform. All types of people come
together to create amazing virtual experiences: artists, musicians, and—you guessed it—coders.
Coding is what allows players to interact with the world that they see.

In Roblox, the coding language used is Lua. Lua is one of the easiest coding languages to learn,
and when used with Roblox Studio, you can see the results of your code fast. For example, want
to create an enormous explosion with a massive blast radius? You can do that with just a couple
of lines of Lua.

Roblox Studio is the tool in which all Roblox games are created, and when paired with Lua, it
offers seamless access to multiplayer servers, physics and lighting systems, world-building tools,
monetization systems, and more. And even though Roblox provides the environment in which
your program runs, you control the vision. You are the creator and artist. Roblox gives you the
canvas and paints, and Lua the brushes and actions. But you, with some well-placed dabs of
code, get to create your masterpiece. This first hour covers how to set up Roblox Studio, make
your first script, and test your code.

Installing Roblox Studio

Before you get started, make sure you have Roblox Studio installed. It runs on Windows and
MacOS, and you can grab a copy at https://roblox.com/create. Click Start Creating to begin.
You'll need to create a Roblox account if you don’t yet have one (see Figure 1.1).

https://roblox.com/create

2 Coding Your First Project

B Games AvatarShop Create Robux

& Studio

Make Anything You Can Imagine

With our EREE and immersive creation engi

Start Creating

M

FIGURE 1.1
You need an account to use Roblox Studio. It's free and just a quick sign-up away.

Let’s Take a Tour

Roblox Studio provides everything you need to create games. It includes assets such as character
models, items to put in the world, graphics for the sky, soundtracks, and more.

Go ahead and launch Roblox Studio to see the window shown in Figure 1.2. Enter the login infor-
mation for the account you created when you signed up on the Roblox website and click Log In.

& Roblox Studic x o *

RABLEX Studio

Start creat

FIGURE 1.2
Enter your normal Roblox account information.

Let’'s Take a Tour 3

When you first open up Studio, you see templates. These are starting places you can use for your

experiences. The simplest starting point for any project is the Baseplate template. Click on the

Baseplate template, as shown in Figure 1.3.

FIGURE 1.3
Studio offers template places you can use as starting points.

Let’s start with a quick overview of the main parts of the screen in Figure 1.4, and then move

straight into your first line of code:

1.

2.

The offerings in the Toolbar ribbon change according to the menu tab you've selected.

The Toolbox contains existing assets to add to your game. You can also create your own
assets through a 3D modeling program such as Blender3D, and Studio includes a set of
mesh-editing tools to customize the 3D models already available.

. The 3D Editor provides a view of the world. Hold your right mouse button to turn the view,

and use the WASD keys to reposition the camera. Table 1.1 describes the different controls
to move the camera.

. The Explorer window provides convenient access to every key asset or system in the game.

You use this to insert objects into your experience.

. Use the Properties window to make changes to objects in the game, such as color, scale,

value, and attributes. Select an object in the Explorer to see available properties.

4 HOUR 1: Coding Your First Project

FIGURE 1.4
There are a number of panels, buttons, and lists in the Studio, and you’ll quickly become familiar with them.

TABLE 1.1 Camera Controls

Key Movement

WASD Move the camera up, left, down, or right
E Move the camera

Q Lower the camera down

Shift Move the camera slower

Right mouse button (hold and drag mouse) Turn the camera

Middle mouse button Drag the camera
Mouse scroll wheel Zoom the camera in or out
F Focus on selected object

There are numerous ways to configure this main screen, including hiding different sections,
rearranging their positioning to be more convenient, and changing their size.

Roblox Studio is a very complete game development environment that goes well beyond Lua. It’s
a big topic on its own, so you may want to check out our other book, Roblox Game Development in
24 Hours, for help.

Opening the Output Window 5

Opening the Output Window

The Output window in Studio isn’t open by default, but you need this before you continue so
that you can see errors and messages that are related to your code.

Use the following steps to display the Output window:

1. Click the View tab (see Figure 1.5). If you ever close a window and need to reopen it, you

can find it here.

FIGURE 1.5
Use the View tab to control which windows are open.

2. Click Output (see Figure 1.6) to display the Output window at the bottom of your screen, as
shown in Figure 1.7.

FIGURE 1.6
Click the Output option to open the Output window.

FEEI AT LY]

FIGURE 1.7
The Output window opens beneath the 3D Editor.

6 HOUR 1: Coding Your First Project

Writing Your First Script

On to coding! You need something to hold your code, and that’s a script. You can insert scripts
directly into objects within the world. In this case, you're inserting a script into a part.

Insert a Script into a Part

A part is the basic building block of Roblox. Parts can range in size from very tiny to extremely
large. They can be different shapes such as a sphere or wedge, or they can be combined into
more complex shapes.

1. Return to the Home tab and click Part (see Figure 1.8). The part appears in the 3D Editor at
the center of your camera view.

FIGURE 1.8
Click Part on the Home tab to insert a part.

2. To add a script, in Explorer, hover over the part and click the + symbol, and then select
Script from the drop-down menu (see Figure 1.9).

FIGURE 1.9
You use Explorer to insert a script into the part.

Writing Your First Script

TIP

7

Finding Items Quickly

Typing the first letter (S, in this case) or two of the items you are adding filters the list so you can
locate that item quickly.

The script automatically opens. At the top, you see words familiar to any coder: "Hello
world!" (see Figure 1.10).

FIGURE 1.10
The window shows the default script and code.

Writing Some Code

Since the 1970s, "Hello World!" has been one of the first pieces of code people have learned.
Here it’s being used in the print function. Functions are chunks of code that serve a specific pur-
pose. As you learn to code, you'll use prebuilt functions like print (), which displays messages
in the Output window. You will, of course, also learn how to create functions of your own.

print () displays a string, which is a type of data usually used with letters and numbers that
need to stay together. In this case, you're printing "Hello world!":

1. Make this code your own by changing the message inside of the quotation marks to what
you want for dinner tonight. Here’s an example:

print ("I want lots of pasta")

2. To test the code, in the Home tab, click Play (see Figure 1.11).

8 HOUR 1: Coding Your First Project

FIGURE 1.11
Click Play to test your script.

Your avatar will fall into the world, and you can see your dinner dreams displayed in the
Output window, along with a note about which script that message came from (see Figure
1.12).

FIGURE 1.12
The string is displayed in Output.

3. To stop the playtest, click the Stop button (see Figure 1.13).

FIGURE 1.13
Click Stop to quit the playtest.

4. Return to your script by clicking on the tab above the 3D Editor, as shown in Figure 1.14.

Writing Your First Script

FIGURE 1.14
Click Script to return to the window where your script is visible.

Code an Explosion

Code of course can do more than just display messages to the output window. It can completely
change how players interact with the world and make it come alive. Let’s take a slightly longer
piece of code and make the block in the Baseplate template destroy anything it touches:

1. Use the Move tool (see Figure 1.15) to move the block off the ground and away from the
spawn point. The code you're going to write will destroy anything it touches, and you
don’t want it to go off prematurely.

FIGURE 1.15
Move the part up and away from the spawn.

9

10 HOUR 1: Coding Your First Project

2. In the Properties window, scroll to Behavior and make sure Anchored (see Figure 1.16) is
selected so the block doesn’t fall when you click Play.

Parent
Position

Behavior

Anchored

FIGURE 1.16
Check Anchored to keep the blocks from falling.

3. In the script, below the print function, add the following code:

print ("I want lots of pasta!")

-- Destroys whatever touches the part

local trap = script.Parent

local function onTouch (partTouched)
partTouched:Destroy ()

end

trap.Touched: Connect (onTouch)

NOTE

Code Boxes

Code boxes for this book will be presented in light mode, unless specifically calling attention to
Studio UX.

4. Click Play and run up and touch the part.

The result should be that your character breaks or parts of your avatar are destroyed. You may
notice that this code only destroys what touches it directly, such as your feet. Try jumping on top

Error Messages 11

of the block or brushing against it with just a hand. You'll see only that part of your avatar is
destroyed.

The reason is that code only does what you tell it, and you told the part to destroy only what it
touches and nothing more. You have to tell it how to destroy the rest of the player. Throughout
this book, you'll learn how to write additional instructions so that the code can handle more
scenarios like this one. In Hour 4, “Parameters and Arguments,” you’ll learn how to make sure it
destroys the entire player character.

Error Messages

What if the code didn’t work? The truth is, all engineers make mistakes in their code. It’s no big
deal, and the editor and the output window can help you spot mistakes and fix them. Try mak-
ing a couple of mistakes to learn how to better spot them later:

1. Delete the second parenthesis from the print function. A red line appears under local.
(See Figure 1.17.) In the editor, red lines indicate a problem.

I script

FIGURE 1.17
A red line indicates Studio has spotted an error.

2. Hover over the red line, and the editor gives you a clue about what’s gone wrong, as
shown in Figure 1.18. But don’t fix the mistake quite yet.

12 HOUR 1: Coding Your First Project

I script

print ("I want

FIGURE 1.18
An error message displays when you hover over the red line.

3. Click Play, which causes an error message to display in the Output window, as shown in
Figure 1.19. Click the red error, and Studio takes you to where it thinks the problem is.

FIGURE 1.19
The error shows up as a clickable red message in the Output window.

Stop the playtest and fix the issue.

TIP

Changes Made While Playtesting Aren’t Permanent

Be careful about making changes while in a playtest because the work you’ve done is not automati-
cally saved. If you do make changes, be sure to click Preserve Changes when you stop the playtest.

Leaving Yourself Comments

In the previous code, you may notice the sentence -- Destroys whatever touches the
part. This is a comment. Comments begin with two dashes. Anything on the same line as the
dashes doesn’t affect the script.

Q&A 13

Coders use comments to leave notes to themselves and others about what the code does. Trust
us: When you haven't looked at a piece of code in months, it’s very easy to forget what it does.

The following code shows what it might look like to add a comment at the top of the script you
wrote earlier in this hour:

-- What do I want for dinner?
print ("I want lots of pastal!")

Summary

In just one hour, you've come a long way, particularly if this happened to be your first time cod-
ing or using Roblox Studio. This hour covered creating an account and opening Roblox for the
first time. By using the + button, you were able to insert a script into a part, and then you added
code that turned the part into a trap for anyone who happened to touch it.

In addition, you learned how to test code using the Play button and use the built-in error detec-
tion within the script editor and Output window to help you troubleshoot when something goes
wrong.

Finally, you learned about comments, which are only readable in the script editor and can be
used to leave notes about the purpose of the code.

Q&A

Q. Can you use Studio on a Chromebook?

A. To create, Studio must be run on a MacOS or Windows machine. Once a game has been
published, it's available to be played on Android, Apple, Mac, PC, Chrome, and potentially
even XBox Live.

Q. How do I reopen a script if | close it?

A. If you close out of the script editor, you can reopen it by double-clicking the script object in
Explorer.

Q. How do | save my work?

A. Go to File, Publish to Roblox to save to the cloud, which makes your game accessible from
any computer.

Q. Where do | go if | want additional information about how Roblox Studio works?

A. You can visit developer.roblox.com to find documentation on all of Studio’s features and
API.

http://developer.roblox.com

14

HOUR 1: Coding Your First Project

Workshop

Now that you have finished, let’s review what you've learned. Take a moment to answer the fol-
lowing questions.

Quiz
1. Roblox uses the coding language.
2. Aspects of an object such as color, rotation, and anchored can be found inthe __
window.
3. Game objects are found in the window.
4. To enable the Output window, which displays code messages and errors, enable it in the
tab.
5. True or false: Comments change the code to enable new functionality.
6. To force parts to stay in place, they need to be
Answers
1. Lua
2. Properties
3. Explorer
4. View
5. False. Comments do not affect the code and are used to leave notes to yourself and other
coders as to the purpose of the script.
5. Anchored
Exercise

Before moving on, take a moment to experiment with the creation tools by creating a mini obsta-
cle course. It could be individual parts the player has to avoid, or it could be a lava floor like the
one shown in Figure 1.20.

Exercise 15

FIGURE 1.20
Use what you’'ve learned so far to create a lava obstacle course.

Tips

>

Create more parts and manipulate them with the Move, Translate, and Scale tools found on
the Home tab (see Figure 1.21). You can also change the parts’ appearance with Material
and Color.

FIGURE 1.21
The Home tab has the tools you need to create and manipulate parts.

>

>

Use a single large part and insert a script as you did earlier to turn it into lava.

Additional models can be found in the Toolbox; just be aware that some models may
already have scripts in them.

Don’t forget to anchor all parts and models.

If you know how to use the terrain tools, you can work that into your obstacle course as
well.

This page intentionally left blank

Symbols

[1 (brackets), in key-value pairs,
128-129

: (colon)
accessing functions, 68
for function notation, 281
{} (curly brackets)
for arrays, 113
for dictionaries, 128
. (dot operator)
for dictionary values, 129-130
for embedded objects, 47
object hierarchy and, 18-19
properties and, 20

== (double equal sign) operator,
58

= (equal sign), variable values, 22

>= (greater than or equal to)
operator, 59

__index, naming classes, 260

"" (quotation marks), in key-value
pairs, 128

Index

3D Editor, 3
3D space
CFrames, 189
offsetting, 191
Position property, 190
rotating with, 191

teleporting exercise,
196-197, 341-342

models, positioning, 192

relative jumps example,
194-195

world versus local coor-
dinates, 193-194

X, Y, Z coordinates, 187-189

A

abstractions, 183-184
accessing
Data Stores, 220
functions, 68

ModuleScripts, 177-178,
182-183

356 adding

adding
class functions, 263-268
class properties, 261-263
items to arrays, 114

key-value pairs to dic-
tionaries, 130-132

algorithms
for sorting
alphabetically, 210-211
arrays, 210
ascending, 210-212
descending, 212-213

dictionaries, 213-215,
218, 343

mixed data types, 212

multiple pieces of infor-
mation, 216-218, 343

numerically, 211-212
purpose of, 209-210
alphabetical sorts, 210-211
anchoring blocks, 10

and operator, 62

animal sounds example (poly-
morphism), 279-282

animation

CFrames, LoadCharacter()
function versus, 241

easing, 325
tweens
chaining, 205-206

changing colors, 199-200,

208, 342

elevator doors example,
202-205

setting parameters for,
201-202

TweenService, 199

anonymous functions, 52-55, 328
arguments
definition of, 43
mismatched, 51-52
multiple, 45-49
value types, 86
arithmetic operators, 324
arrays
adding items, 114

converting dictionaries to,
213-215

creating, 113-114

finding and removing all
specific values, 123

indexes, 113
finding from values, 121

retrieving specific values,
114-115

printing with ipairs() function,
115

purpose of, 113

removing items, 122

searching part of, 123-124

sorting, 210
alphabetically, 210-211
ascending, 210-212
descending, 212-213
mixed data types, 212

by multiple pieces of infor-
mation, 216-218, 343

numerically, 211-212
voting simulator, 133-142
ascending sorts, 210-212
assets, organizing, 231-234

assigning variable values, 41

attributes, 64-67
checking values, 85
code reusability and, 79

autocomplete feature, 20

Baseplate template, 3
BindableEvents, 230
BindAction() function, 314

BindToRenderStep() function,
303-305

blacklists versus whitelists in ray-
casting, 310

blocks, anchoring, 10
boolean data type, 22, 36

brackets ([]), in key-value pairs,
128-129

break keyword, 110
bridges
reactivating, 38-40
solidifying, 42, 328
vanishing, 34-36
burning fire, 93-97
buttons

for placing objects, creating,
302-303

testing, 170
viewing/hiding, 320
buying items. See monetization;
Robux

Cc

calling functions, 32
with events, 33-36
parent functions, 282
camera, moving, 4, 321

camouflage raycasting example,
288-289

car class example
adding properties, 262-263
property inheritance, 275-277
case-sensitivity of keywords, 19
cashing out Robux, 243
CFrame.Angles() function, 191
CFrames, 189

LoadCharacter() function
versus, 241

offsetting, 191
Position property, 190
rotating with, 191

teleporting exercise,
196-197, 341-342

chaining tweens, 205-206
changing
gravity, 233
properties, 25

changing seasons exercise,
125-126, 334

child classes, 271-272
calling parent functions, 282
function inheritance, 278
inheritance setup, 272-274
multiple, 277
polymorphism, 278-282
property inheritance, 274-277

child objects, 18
searching, 223

classes. See also child classes;
parent classes

calling parent functions, 282
creating, 260-261, 270, 346
functions of, 263-268
inheritance, 271-272

of functions, 278

job roles exercise, 285,
347

multiple child classes,
277

of properties, 274-277
setup, 272-274

naming, 260

polymorphism, 278-282

properties of, 261-263

purpose of, 259

clients, 145
GUIs. See GUIs
RemoteEvent object, 161-162

clientto-client communi-
cation, 171

client-to-server communi-
cation, 165-170

server-to-all-clients com-
munication, 162-165

server-to-single-client com-
munication, 170-171

RemoteFunction object,
149-151

server/client divide, 149
store purchases, 151-158

cloning particle emitters, 100,
330-332

coordinates in 3D space 357

code organization with OOP, 259
collecting firewood, 100, 330-332
colon (3)

accessing functions, 68

for function notation, 281
color picker, 25

colors, changing, 25, 199-200,
208, 342

comments, 12
concatenation, 23
concatenation operator, 325
conditional structures, 57
elseif keyword, 62
else keyword, 63
if/then statements, 58-59
portals, creating, 63-70
configuring passes, 246-249
connect() function, 33
constants, 84
constructors, 260, 265

ContextActionService, 314-316,
320

control variables in for loops, 103,
111

converting dictionaries to arrays,
213-215

coordinates in 3D space
CFrames, 189
offsetting, 191
Position property, 190
rotating with, 191

teleporting exercise,
196-197, 341-342

relative jumps example,
194-195

world versus local, 193-194
X, Y, Z coordinates, 187-189

358 copying meshes

copying meshes, 78

countdowns, creating with
RemoteEvent object, 163-165

crown sales example, 248-255
curly brackets ({})

for arrays, 113

for dictionaries, 128

custom leaderboards, 87

Damage Over Time (DoT),
111-112, 333

dance floor, creating, 92-93
Data Stores

accessing, 220

creating, 220

enabling, 219

limiting network calls, 225

unique key names, 224

updating, 220-228, 344
data types, 22, 27

in Lua, 322

in Roblox Studio, 323
debouncing

Humanoid objects, 73-75,
88-89, 330

with ProximityPrompts, 78-79
debugging

argument value types, 86

attribute values, 85

exercise, 88, 329

string debugging, 82-84

variable order and placement,

84

decals, inserting, 28-29, 327
descending sorts, 212-213
descriptions, 255

destroy() function, 18-19
detecting mouse input, 314-316
detector exercise, 295, 348

Developer Exchange Program,
243

Developer Products, 256
dictionaries
converting to arrays, 213-215
creating, 128
key-value pairs, 128
adding, 130-132
formatting keys, 128-129
removing, 130-131
unique keys, 130
value usage, 129-130
pairs() function, 132-133
purpose of, 127-128
sorting, 213-215, 218, 343
voting simulator, 133-142

direction parameter for ray-
casting, 289-290

distance, limiting for raycasting,
293

doors, creating for elevator,
202-205

DoT (Damage Over Time),
111-112, 333

dot operator (.)
for dictionary values, 129-130
for embedded objects, 47
object hierarchy and, 18-19
properties and, 20

double equal sign (==) operator,
58

doubling and halving variables, 85

DRY coding. See also OOP
abstractions, 183-184
purpose of, 183

easing in animation, 325
elevator doors, creating, 202-205
else keyword, 63

elseif keyword, 62

embedded objects, finding in
hierarchy, 47

enabling Data Stores, 219
end value in for loops, 103
engagement payouts, 256
equal sign (=), variable values, 22
error messages, 11-12
errors
list of, 228
string debugging, 82-84
event connections, order and
placement, 138

events
BindableEvents, 230
calling functions, 33-36
RemoteEvent object, 161-162

client-to-client communi-
cation, 171

client-to-server communi-
cation, 165-170

server-to-all-clients commu-
nication, 162-165

server-to-single-client com-
munication, 170-171

Touched, 34-35

exercises

animating color changes, 208,
342

anonymous functions, 55,
328

changing player speed, 72,
328

changing seasons, 125-126,
334

cloned particle emitters, 100,
330-332

collecting firewood, 100,
330-332

creating NPCs, 29, 327
debouncing, 88-89, 330
debugging, 88, 329

detector with raycasting, 295,
348

dictionary sorting, 218, 343

DoT (Damage Over Time),
111-112, 333

inserting decals, 28-29, 327
job roles, 285, 347
loops, 112, 333-334

map choice announcement,
172, 338-340

NPC person class, 270, 346
obstacle course, 14-15, 326
pass creation, 257, 346
placing objects, 311, 350

player announcements, 242,
345

price lists, 160, 336-338
rotating objects, 320, 351
solidifying bridges, 42, 328
solutions to, 326-351

team assignments, 143, 334

teleporting with CFrames,
196-197, 341-342

traps with ModuleScripts,
185, 340-341

updating player information,
228, 344

Explorer window, 3

explosion script, 9-11

F

false conditions, loops for, 98
files, saving, 13
filtering

lists, 7

objects for raycasting, 294
finding

all specific array values, 123

array indexes from values,
121

embedded objects in
hierarchy, 47

list items, 7
fire
burning, 93-97

collecting firewood, 100,
330-332

folders, modifying items
with for loops, 116-121
with ipairs() function, 116
for loops, 98, 101-102
default increment, 105
examples and exercises,
105-106, 112, 333-334
finding and removing all
specific array values, 123

functions 359

generic, 115

iin, 111

numeric, 123-124

printing arrays, 115

searching part of arrays,
123-124

turning lights on/off, 116-121
values in, 102-105

formatting dictionary keys,

128-129

functions

accessing, 68
anonymous, 52-55, 328
arguments

definition of, 43

mismatched, 51-52

multiple, 45-49

value types, 86
BindAction(), 314
BindToRenderStep(), 303-305
calling, 32

with events, 33-36

from parent classes, 282
CFrame.Angles(), 191
of classes, 263-268
connect(), 33
constructors, 260, 265
creating, 31-32
definition of, 31
destroy(), 18-19
GetAsync(), 220, 225
IncrementAsync(), 227
inheriting, 278
insert(), 114

360 functions

ipairs()
finding array indexes, 121
with folders, 116
pairs versus, 142
printing arrays, 115

LoadCharacter(), 241

as methods, 33

in ModuleScripts
accessing, 177-178
adding, 175-176
scope, 176

MoveTo(), 264

multiple in scripts, 41

named, 52-55, 328

naming conventions, 32, 35,
69

new(), 26
order and placement, 36-40
paint(), 44-48
pairs()
with dictionaries, 132-133
ipairs() versus, 142
parameters
creating, 43-45
definition of, 43
maximum, 54
mismatched, 51-52
multiple, 45-49
pcall(), 225
polymorphism, 278-282
print(), 7-9, 23, 43
for debugging, 82-84

RemoteFunction object,
149-151, 159

remove(), 122

require(), 177

return values
definition of, 49
multiple, 50, 80
nil, 51
scope, 33, 37-38
SetAsync(), 220, 225
table.sort(), 210-213
tostring(), 212
UnbindAction(), 314
UpdateAsync(), 226-227
wait(), 42-43, 201
default value, 86
with while loops, 92-93
workspace:Raycast()

camouflage example,
288-289

direction parameter,
289-290

limiting distance, 293
setup, 287-288

game loops
BindableEvents in, 230
creating, 231-240

for player announcements,
242, 345

purpose of, 229-230
gameplay, moving camera in, 321
generic for loops, 115
GetAsync() function, 220, 225

global coordinates, local versus,
193-194

global variables, 22, 41
glowing lights, 120
goal value in for loops, 103

gold ore script (mining simulator),
79-82

gold ore setup (mining simulator),
78-79

graphical user interfaces. See
GUIs

gravity, changing, 233

greater than or equal to (>=)
operator, 59

grouping parts, 166, 192
GUIs (graphical user interfaces)

creating, 106-109, 146-148,
335

customizing, 147
moving, 154
purpose of, 146

script placement, 148

Hello World! script, 7-9
hiding buttons, 320
hierarchy (of objects), 18
finding embedded objects, 47
instances, 26
IntValue objects, 77
naming conventions, 24
properties, 20-22
changing, 25
data types for, 22, 27

variables and, 28

Humanoid objects, 59-61

changing player speed, 72,
328

debouncing, 73-75, 88-89,
330

VectorForce objects, adding,
179-182

HumanoidRootPart, MoveTo()
function and, 264

i as control variable, 111

if/then statements, 58-59

ignoring objects in raycasting,
290-293

IncrementAsync() function, 227

increment value in for loops,
103-105

indenting code, 32

indexes, 113
finding from values, 121
key-value pairs versus, 129

retrieving specific values,
114-115

in-game purchases. See moneti-
zation; Robux

inheritance, 271-272
of functions, 278
job roles exercise, 285, 347
multiple child classes, 277
overriding, 278-282
of properties, 274-277
setup, 272-274

insert() function, 114

inserting
decals, 28-29, 327
scripts into parts, 6-7
installing Roblox Studio, 1-2
instances, 26
IntValue objects, 77
ipairs() function
finding array indexes, 121
with folders, 116
pairs() versus, 142
printing arrays, 115

iterations, 105

J-K

job roles exercise, 285, 347
jump pads

creating, 178-183

relative jumps with, 194-195

keys
for moving camera, 321

uniqueness in Data Stores,
224

key-value pairs, 128
adding, 130-132

in Data Stores, accessing,
220

formatting keys, 128-129
indexes versus, 129
removing, 130-131
unique keys, 130

value usage, 129-130

LocalScript object 361

keywords, 19-20
break, 110
case-sensitivity, 19
else, 63
elseif, 62
nil, 51
reserved names, 322
return, 49-50
script, 20
type, 217

workspace, 19

L

leaderboards
creating, 75-77, 87
maximum number of stats, 87
value types, 86-87

leaderstats folder, 77

length operator, 325

lights

colors, changing via tweens,
208, 342

glowing, 120

SpotLight objects, 117

turning on/off, 116-121
limiting

distance for raycasting, 293

network calls, 225
lists, filtering, 7
LoadCharacter() function, 241
load times for scripts, 109

local object coordinates, world
versus, 193-194

LocalScript object, 148, 154-155

362 local variables

local variables, 22, 184
logging in to Roblox Studio, 2
logical operators, 62-63, 324
loops
break keyword, 110
exercises, 112, 333-334
for false conditions, 98
for, 98, 101-102
default increment, 105
examples, 105-106

finding and removing all
specific array values,
123

generic, 115

iin, 111

numeric, 123-124
printing arrays, 115

searching part of arrays,
123-124

turning lights on/off,
116-121

values in, 102-105
game loops

BindableEvents in, 230

creating, 231-240

for player announcements,
242, 345

purpose of, 229-230
nested, 109-110
repeat until, 237
while, 91-92

with ProximityPrompts,

93-97
scope, 98
with wait() function, 92-93

Lua, 1

arrays
adding items, 114

converting dictionaries to,
213-215

creating, 113-114

finding and removing all
specific values, 123

indexes, 113-115, 121

printing with ipairs()
function, 115

purpose of, 113

removing items, 122

searching part of, 123-124

sorting, 210-213,
216-218, 343

voting simulator, 133-142

classes. See also child
classes; parent classes

calling parent functions,
282

creating, 260-261, 270,
346

function inheritance, 278
functions of, 263-268

inheritance, 271-274,
285, 347

multiple child classes, 277
naming, 260
polymorphism, 278-282
properties of, 261-263

property inheritance,
274-277

conditional structures, 57
elseif keyword, 62
else keyword, 63
if/then statements, 58-59
portals, creating, 63-70

data types, 22, 27, 322
debugging
argument value types, 86
attribute values, 85
exercise, 88, 329
string debugging, 82-84
variable order and
placement, 84

dot operator

for dictionary values,
129-130

for embedded objects, 47

object hierarchy and,
18-19

properties and, 20
functions. See functions
keywords, 19-20
loops

break keyword, 110

exercises, 112, 333-334

for false conditions, 98

for, 98, 101-106, 111,
115124

game loops, 229-242, 345

nested, 109-110

repeat until, 237

while, 91-98
ModuleScripts

accessing in scripts,
177-178, 182-183

code structure, 174

creating, 234-237

DRY coding and, 183

functions and variables in,
175-176

jump pad example,
179-182

naming, 174-175
placing, 174
purpose of, 173
scope in, 176

trap exercise, 185,
340-341

naming conventions, list of,
325

object hierarchy, 18

finding embedded objects,
47

instances, 26
IntValue objects, 77

naming conventions, 24,
260

properties, 20-22, 25, 27
variables and, 28
operators
arithmetic, 324
concatenation, 325
double equal sign (==), 58
greater than or equal to
(>=), 59
length, 325
logical, 62-63, 324
most common, 58
purpose of, 324
relational, 324
reserved names, 322
scripts, 6
autocomplete feature, 20
comments, 12
DRY coding, 183-184
error messages, 11-12
explosion example, 9-11
GUI script placement, 148
Hello World!, 7-9

indenting code, 32
inserting into parts, 6-7
load times, 109
for mining simulator, 79-82
multiple functions in, 41
opening, 13
order and placement in,
36-40

renaming, 18-19
saving, 13

strings, 7

variables
combining with strings, 23
creating, 22-25
naming conventions, 24
properties and, 28
updating, 23

map choice announcement
exercise, 172, 338-340

map pickers, creating, 166-170
meshes, copying, 78
messages
receiving on server, 317-319
sending to server, 316
methods. See functions
mining simulator, 75
gold ore script, 79-82
gold ore setup, 78-79
leaderboard, creating, 75-77

mismatched arguments/
parameters, 51-52

mixed data types, sorting, 212

monetization 363

models
creating, 192
grouping parts into, 166
positioning, 192
modifying folder items
with for loops, 116-121
with ipairs(), 116
ModuleScripts

accessing in scripts, 177-178,
182-183

code structure, 174
creating, 234-237
DRY coding and, 183

functions and variables in,
175176

jump pad example, 179-182

naming, 174-175

placing, 174

purpose of, 173

scope in, 176

trap exercise, 185, 340-341
monetization. See also Robux

Developer Products, 256

engagement payouts, 256

ideas for, 256

passes

checking for ownership,
252-255

configuring, 246-249

creating, 244-245, 257,
346

crown sales example,
248-255

prompting purchases,
247-250

purpose of, 243
testing, 251-252
updating, 245

364 mouse input

mouse input, detecting, 314-316

mouse movements, tracking,
303-306

BindToRenderStep() function,
303-305

raycasting from mouse,
305-306

MoveTo() function, 264
moving

camera, 4, 321

GUIs, 154
multiple arguments, 45-49
multiple child classes, 277
multiple functions in scripts, 41
multiple parameters, 45-49

multiple pieces of information,
sorting by, 216-218, 343

multiple player interactions,
variables for, 70

multiple players, testing for,
138-139

multiple return values, 80

named functions, 52-55, 328
naming
classes, 260
ModuleScripts, 174-175
objects, 260

naming conventions, 24, 32, 35,
69

constants, 84
constructors, 265
list of, 325

nested loops, 109-110

network calls, 225

Network Simulator, testing for
multiple people, 138-139

new() function, 26
nil keyword, 51, 157
not operator, 62

NPCs (Non Playable Characters),
17

adding face to, 28-29, 327
creating, 23-25, 29, 327
exercise, 270, 346

number data type, 22

numbers, sorting with strings, 212

numeric for loops, 123-124

numerical sorts, 211-212

o

object hierarchy, 18
finding embedded objects, 47
instances, 26
IntValue objects, 77
naming conventions, 24
properties, 20-22
changing, 25
data types for, 22, 27
variables and, 28
object-oriented programming.
See OOP (object-oriented pro-
gramming)
objects
filtering for raycasting, 294
ignoring in raycasting,
290-293
naming, 260

placing, 297-298, 313. See
also 3D space

creating button for,
302-303

detecting mouse input,
314-316

with other object coor-
dinates, 190

previewing placement,
307-309

receiving messages on
server, 317-319

second object exercise,
311, 350

sending messages to
server, 316

setup, 298-301

tracking mouse
movements, 303-306

purpose of, 259

rotating
with CFrames, 191
while placing, 320, 351

obstacle course exercise, 14-15,
326

offsetting CFrames, 191
one-time purchases. See passes

OOP (object-oriented pro-
gramming)

classes. See also child
classes; parent classes

calling parent functions,
282

creating, 260-261, 270,
346

function inheritance, 278
functions of, 263-268

inheritance, 271-274,
285, 347

multiple child classes, 277
naming, 260
polymorphism, 278-282
properties of, 261-263

property inheritance,
274277

purpose of, 259
code organization with, 259
objects
filtering for raycasting, 294
ignoring in raycasting,
290-293
naming, 260
placing. See placing,
objects
purpose of, 259
rotating, 191, 320, 351
opening
Output window, 5
scripts, 13

operating system requirements,
13

operators
arithmetic, 324

concatenation, 325

double equal sign (==), 58

greater than or equal to (>=),
59

length, 325

logical, 62-63, 324
most common, 58
purpose of, 324
relational, 324
organizing

assets, 231-234
with OOP, 259
variables, 305

or operator, 62
Output window, opening, 5

overriding inheritance, 278-282

P

paint() function, 44-48
pairs() function
with dictionaries, 132-133
ipairs() versus, 142
parameters
creating, 43-45
definition of, 43
maximum, 54
mismatched, 51-52
multiple, 45-49

setting for raycasting,
290-293

for tweens, 201-202
parent classes, 271-272

calling parent functions from
child classes, 282

inheritance setup, 272-274
parent objects, 18
ParticleEmitter objects, 72

particle emitters, cloning, 100,
330-332

parts, 6

colors, changing via tweens,
199-200

creating instances, 26
grouping, 166, 192
initial location, 26
inserting scripts into, 6-7

ProximityPrompts for, 78-79

placing 365

textures, showing activation,
67

Touched event, 34-35
passes

checking for ownership,
252-255

configuring, 246-249
creating, 244-245, 257, 346

crown sales example,
248-255

prompting purchases,
247-250

purpose of, 243

testing, 251-252

updating, 245
pcall() function, 225

pet class example, adding
functions, 264-268

placing
models, 192
ModuleScripts, 174

objects, 297-298, 313. See
also 3D space

creating button for,
302-303

detecting mouse input,
314-316

with other object coor-
dinates, 190

previewing placement,
307-309

receiving messages on
server, 317-319

rotating while, 320, 351

second object exercise,
311, 350

sending messages to
server, 316

366 placing

setup, 298-301

tracking mouse
movements, 303-306

player announcements exercise,

242, 345
playerID, saving data with, 226

player management, services for,

237-240
playtesting
changes during, 12

for multiple players, 138-139

references, checking, 165

scripts, 7-8
polymorphism, 278-282
portals, creating, 63-70

positioning. See placing

Position property (CFrames), 190

previewing object placement,
307-309

price list exercise, 160, 336-338

PrimaryParts (models), 192
print() function, 7-9, 23, 43
for debugging, 82-84
printing arrays with ipairs()

function, 115
prompting in-game purchases,
247-250
properties, 20-22
changing, 25
of classes, 261-263
data types for, 22, 27
inheriting, 274-277
variables and, 28
Properties window, 3

protected calls, 225

ProximityPrompt objects, 64,
67-70
debouncing with, 78-79
with ServerScriptService,
79-82
viewing, 268
with while loops, 93-97
ProximityPromptService, 68-70

purchases. See monetization;
Robux

Q-R

quotation marks ("") in key-value
pairs, 128

raycasting
camouflage example, 288-289
detector exercise, 295, 348
direction parameter, 289-290
filtering objects, 294
from mouse, 305-306
function setup, 287-288
limiting distance, 293
purpose of, 287
setting parameters, 290-293
through windows, 292-293

whitelists versus blacklists,
310

reactivating bridges, 38-40

receiving messages on server,
317-319

red lines in editor, 11-12
references, checking, 165
relational operators, 324

relative jumps, creating, 194-195

RemoteEvent object, 161-162

client-to-client communication,
171

client-to-server communi-
cation, 165-170

server-to-all-clients communi-
cation, 162-165

server-to-single-client commu-
nication, 170-171

RemoteFunction object, 149-151,
159

remove() function, 122
removing
all specific array values, 123
items from arrays, 122

key-value pairs from dic-
tionaries, 130-131

renaming scripts, 18-19
renderstep, 303-305
repeat until loops, 237
require() function, 177
reserved hames, 322

resources for information, 13,
319

retrieving specific array values,
114-115

return keyword, 49-50
return values
definition of, 49
multiple, 50, 80
nil, 51
returning table values, 133
Roblox Premium
engagement payouts, 256
monetization and, 247
Roblox Studio, 1
blocks, anchoring, 10

camera controls, 4

data types, 323
files, saving, 13
GUIs

creating, 106-109,
146-148, 335

customizing, 147
moving, 154
purpose of, 146
script placement, 148
Humanoid objects, 59-61
changing player speed,
72,328

debouncing, 73-75, 88-89,
330

VectorForce objects,
adding, 179-182

installing, 1-2
leaderboards
creating, 75-77, 87

maximum number of stats,
87

value types, 86-87
leaderstats folder, 77
logging in, 2
moving camera in, 321
object hierarchy, 18

finding embedded objects,
47

instances, 26
IntValue objects, 77
naming conventions, 24
properties, 20-22, 25-27
variables and, 28
operating system
requirements, 13

Output window, opening, 5

parts, 6
colors, changing via
tweens, 199-200
creating instances, 26
grouping, 166, 192
initial location, 26
inserting scripts into, 6-7

ProximityPrompts for,
7879

textures, showing acti-
vation, 67

Touched event, 34-35
red lines in editor, 11-12

resources for information, 13,
319

user interface, 2-4

Robux. See also monetization
cashing out, 243
engagement payouts, 256
uses for, 243

rotating objects, 320, 351
with CFrames, 191

Run command, testing code, 48

S

saving data

in Data Stores
accessing, 220
creating, 220
enabling, 219
limiting network calls, 225
unique key names, 224
updating, 220-228, 344

methods of, 227

with playerlD, 226

scripts 367

saving scripts, 13
scope
of functions, 33, 37-38
in ModuleScripts, 176
of variables, 41
of while loops, 98
ScreenGui object, 146-147
script keyword, 20
scripts, 6
arrays
adding items, 114

converting dictionaries to,
213-215

creating, 113-114

finding and removing all
specific values, 123

indexes, 113-115, 121

printing with ipairs()
function, 115

purpose of, 113

removing items, 122

searching part of, 123-124

sorting, 210-213,
216-218, 343

voting simulator, 133-142
autocomplete feature, 20
comments, 12
conditional structures, 57

elseif keyword, 62

else keyword, 63

if/then statements, 58-59

portals, creating, 63-70
DRY coding

abstractions, 183-184

purpose of, 183

error messages, 11-12

368 scripts

explosion example, 9-11
functions. See functions
GUI script placement, 148
Hello World!, 7-9
indenting code, 32
inserting into parts, 6-7
load times, 109
loops
break keyword, 110
exercises, 112, 333-334
for false conditions, 98

for, 98, 101-106, 111,
115124

game loops, 229-242, 345
nested, 109-110
repeat until, 237
while, 91-98
for mining simulator, 79-82
ModuleScripts

accessing, 177-178,
182-183

code structure, 174
creating, 234-237

functions and variables in,
175176

jump pad example,
179-182

naming, 174-175

placing, 174

purpose of, 173

scope in, 176

trap exercise, 185,
340-341

multiple functions in, 41
opening, 13
order and placement in, 36-40

renaming, 18-19

saving, 13

ServerScriptService, 156-158
searching

child objects, 223

part of arrays, 123-124
seasons, changing, 125-126, 334
self, as naming convention, 260
sending messages to server, 316
servers, 145

receiving messages, 317-319

RemoteEvent object, 161-162

client-to-server communi-
cation, 165-170

server-to-all-clients commu-
nication, 162-165

serve-to-single-client com-
munication, 170-171

RemoteFunction object,
149-151

sending messages to, 316
server/client divide, 149
store purchases, 151-158

ServerScriptService, 76, 79-82,
156-158

services

ContextActionService,
314-316, 320

definition of, 68
player management, 237-240
ProximityPromptService, 68-70

ServerScriptService, 76,
79-82, 156-158

SetAsync() function, 220, 225

solidifying bridges, 42, 328

solutions to exercises, 326-351
animating color changes, 342

anonymous functions, 328

changing player speed, 328
changing seasons, 334

cloned particle emitters,
330-332

collecting firewood, 330-332
creating NPCs, 327
debouncing, 330

debugging, 329

detector with raycasting, 348
dictionary sorting, 343

DoT (Damage Over Time), 333
inserting decals, 327

job roles, 347

loops, 333-334

map choice announcement,
338-340

NPC person class, 346
obstacle course, 326

pass creation, 346

placing objects, 350

player announcements, 345
price lists, 336-338
rotating objects, 351
solidifying bridges, 328
team assignments, 334

teleporting with CFrames,
341-342

traps with ModuleScripts,
340-341

updating player information,
344

sorting
arrays, 210
alphabetically, 210-211
ascending, 210-212
descending, 212-213

mixed data types, 212

by multiple pieces of infor-
mation, 216-218, 343

numerically, 211-212

dictionaries, 213-215, 218,
343

SpeedBoost tweaks, 85
speed of players, changing, 72,
328
SpotLight objects, 117
StarterGUI object, 146
storage
for BindableEvents, 230
for ModuleScripts, 174
store purchases, 151-158
string debugging, 82-84
strings, 7, 22
combining with variables, 23
sorting with numbers, 212
Studio. See Roblox Studio
SurfaceGui objects, 106-108

T

tables, 22
arrays
adding items, 114

converting dictionaries to,
213-215

creating, 113-114

finding and removing all
specific values, 123

indexes, 113-115, 121

printing with ipairs()
function, 115

purpose of, 113

user interface for Roblox Studio 369

removing items, 122
searching part of, 123-124

sorting, 210-213,
216-218, 343

voting simulator, 133-142
dictionaries

converting to arrays,
213215

creating, 128

key-value pairs, 128-132
pairs() function, 132-133
purpose of, 127-128

sorting, 213-215, 218,
343

voting simulator, 133-142
purpose of, 113
returning values, 133
table.sort() function, 210-213

team assignments exercise, 143,
334

teleporting exercise, 196-197,
341-342

templates, Baseplate, 3

testing
buttons, 170
changes during, 12
for multiple players, 138-139
passes, 251-252
references, checking, 165
with Run command, 48
scripts, 7-8

TextLabel objects, 106-109

textured parts, showing activation,
67

Toolbar ribbon, 3
Toolbox, 3
tostring() function, 212

Touched event, 34-35

tracking mouse movements,
303-306

BindToRenderStep() function,
303-305

raycasting from mouse,
305-306

traps exercise, 185, 340-341
turning lights on/off, 116-121
tweens

chaining, 205-206

changing colors, 199-200,
208, 342

elevator doors example,
202-205

setting parameters for,
201-202

TweenService, 199
TweenService, 199

type keyword, 217

UnbindAction() function, 314
unique keys

in Data Stores, 224

in dictionaries, 130
UpdateAsync() function, 226-227
updating

Data Stores, 220-228, 344

passes, 245

variables, 23

user interface for Roblox Studio,
2-4

370 vanishing bridges

'/

vanishing bridges, 34-36
variables
combining with strings, 23
creating, 22-25

without assigning value,
41

doubling and halving, 85

in for loops, 102-105

local, 184

in ModuleScripts
accessing, 177-178
adding, 175-176
scope, 176

for multiple player inter-
actions, 70

naming conventions, 24

order and placement, 36-40,

45, 84
organizing, 305

properties and, 28
scope, 41
updating, 23

VectorForce objects, adding to
humanoids, 179-182

vehicle class example (property
inheritance), 275-277

viewing
buttons, 320
ProximityPrompts, 268
voting simulator, 133-142

w

wait() function, 42-43, 201
default value, 86
with while loops, 92-93

WET coding, 183

while loops, 91-92
exercises, 112, 333-334

with ProximityPrompts, 93-97

scope, 98
with wait() function, 92-93

whitelists versus blacklists in ray-
casting, 310

windows
raycasting through, 292-293
in Roblox Studio, opening, 5
workspace keyword, 19
workspace:Raycast() function
camouflage example, 288-289
direction parameter, 289-290
limiting distance, 293
setup, 287-288

world coordinates, local versus,
193-194

writing scripts, 7-9

X coordinates, 187-189

Y coordinates, 187-189

Z coordinates, 187-189

	Cover
	Title Page
	Copyright Page
	Contents at a GlanceHour
	Table of Contents
	HOUR 1: Coding Your First Project
	Installing Roblox Studio
	Let’s Take a Tour
	Opening the Output Window
	Writing Your First Script
	Error Messages
	Leaving Yourself Comments

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'InDesignCS6_Print'] [Based on 'InDesignCS6_Print'] [Based on 'InDesignCS4_200902'] RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 18
 18
 18
 18
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 18
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

