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Preface
“There are known knowns; there are things we know we know. We also know there are known 
unknowns; that is to say we know there are some things we do not know. But there are also 
unknown unknowns—there are things we do not know we don’t know.”

—U.S. Secretary of Defense Donald Rumsfeld, February 12, 2002 

While the previous statement was met with chuckles from those attending the press briefing, 
it summarizes an important principle that is as relevant in complex technical systems as it is 
in geopolitics: performance issues can originate from anywhere, including areas of the system 
that you know nothing about and you are therefore not checking (the unknown unknowns). 
This book may reveal many of these areas, while providing methodologies and tools for their 
analysis.

About This Edition
I wrote the first edition eight years ago and designed it to have a long shelf life. Chapters are 
structured to first cover durable skills (models, architecture, and methodologies) and then faster-
changing skills (tools and tuning) as example implementations. While the example tools and 
tuning will go out of date, the durable skills show you how to stay updated.

There has been a large addition to Linux in the past eight years: Extended BPF, a kernel technol-
ogy that powers a new generation of performance analysis tools, which is used by companies 
including Netflix and Facebook. I have included a BPF chapter and BPF tools in this new edition, 
and I have also published a deeper reference on the topic [Gregg 19]. The Linux perf and Ftrace 
tools have also seen many developments, and I have added separate chapters for them as well. 
The Linux kernel has gained many performance features and technologies, also covered. The 
hypervisors that drive cloud computing virtual machines, and container technologies, have also 
changed considerably; that content has been updated.

The first edition covered both Linux and Solaris equally. Solaris market share has shrunk consid-
erably in the meantime [ITJobsWatch 20], so the Solaris content has been largely removed from 
this edition, making room for more Linux content to be included. However, your understanding 
of an operating system or kernel can be enhanced by considering an alternative, for perspective. 
For that reason, some mentions of Solaris and other operating systems are included in this 
edition.

For the past six years I have been a senior performance engineer at Netflix, applying the field of 
systems performance to the Netflix microservices environment. I’ve worked on the performance 
of hypervisors, containers, runtimes, kernels, databases, and applications. I’ve developed new 
methodologies and tools as needed, and worked with experts in cloud performance and Linux 
kernel engineering. These experiences have contributed to improving this edition.
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About This Book
Welcome to Systems Performance: Enterprise and the Cloud, 2nd Edition! This book is about the 
performance of operating systems and of applications from the operating system context, and it is 
written for both enterprise server and cloud computing environments. Much of the material in 
this book can also aid your analysis of client devices and desktop operating systems. My aim 
is to help you get the most out of your systems, whatever they are.

When working with application software that is under constant development, you may be 
tempted to think of operating system performance—where the kernel has been developed and 
tuned for decades—as a solved problem. It isn’t! The operating system is a complex body of soft-
ware, managing a variety of ever-changing physical devices with new and different application 
workloads. The kernels are also in constant development, with features being added to improve 
the performance of particular workloads, and newly encountered bottlenecks being removed as 
systems continue to scale. Kernel changes such as the mitigations for the Meltdown vulnerabil-
ity that were introduced in 2018 can also hurt performance. Analyzing and working to improve 
the performance of the operating system is an ongoing task that should lead to continual perfor-
mance improvements. Application performance can also be analyzed from the operating system 
context to find more clues that might be missed using application-specific tools alone; I’ll cover 
that here as well.

Operating System Coverage
The main focus of this book is the study of systems performance, using Linux-based operating 
systems on Intel processors as the primary example. The content is structured to help you study 
other kernels and processors as well.

Unless otherwise noted, the specific Linux distribution is not important in the examples used. 
The examples are mostly from the Ubuntu distribution and, when necessary, notes are included 
to explain differences for other distributions. The examples are also taken from a variety of 
 system types: bare metal and virtualized, production and test, servers and client devices.

Across my career I’ve worked with a variety of different operating systems and kernels, and this 
has deepened my understanding of their design. To deepen your understanding as well, this 
book includes some mentions of Unix, BSD,  Solaris, and Windows.

Other Content
Example screenshots from performance tools are included, not just for the data shown, but also 
to illustrate the types of data available. The tools often present the data in intuitive and self- 
explanatory ways, many in the familiar style of earlier Unix tools. This means that screenshots 
can be a powerful way to convey the purpose of these tools, some requiring little additional 
description. (If a tool does require laborious explanation, that may be a failure of design!)

Where it provides useful insight to deepen your understanding, I touch upon the history of 
certain technologies. It is also useful to learn a bit about the key people in this industry: you’re 
likely to come across them or their work in performance and other contexts. A “who’s who” list 
has been provided in Appendix E.
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A handful of topics in this book were also covered in my prior book, BPF Performance Tools 
[Gregg 19]: in particular, BPF, BCC, bpftrace, tracepoints, kprobes, uprobes, and various BPF-
based tools. You can refer to that book for more information. The summaries of these topics in 
this book are often based on that earlier book, and sometimes use the same text and examples.

What Isn’t Covered
This book focuses on performance. To undertake all the example tasks given will require, at times, 
some system administration activities, including the installation or compilation of software 
(which is not covered here).

The content also summarizes operating system internals, which are covered in more detail in 
separate dedicated texts. Advanced performance analysis topics are summarized so that you 
are aware of their existence and can study them as needed from additional sources. See the 
Supplemental Material section at the end of this Preface.

How This Book Is Structured
Chapter 1, Introduction, is an introduction to systems performance analysis, summarizing key 
concepts and providing examples of performance activities.

Chapter 2, Methodologies, provides the background for performance analysis and tuning, 
including terminology, concepts, models, methodologies for observation and experimentation, 
capacity planning, analysis, and statistics.

Chapter 3, Operating Systems, summarizes kernel internals for the performance analyst. This 
is necessary background for interpreting and understanding what the operating system is doing.

Chapter 4, Observability Tools, introduces the types of system observability tools available, 
and the interfaces and frameworks upon which they are built.

Chapter 5, Applications, discusses application performance topics and observing them from 
the operating system.

Chapter 6, CPUs, covers processors, cores, hardware threads, CPU caches, CPU interconnects, 
device interconnects, and kernel scheduling.

Chapter 7, Memory, is about virtual memory, paging, swapping, memory architectures, buses, 
address spaces, and allocators.

Chapter 8, File Systems, is about file system I/O performance, including the different caches 
involved.

Chapter 9, Disks, covers storage devices, disk I/O workloads, storage controllers, RAID, and the 
kernel I/O subsystem.

Chapter 10, Network, is about network protocols, sockets, interfaces, and physical connections.

Chapter 11, Cloud Computing, introduces operating system– and hardware-based virtualiza-
tion methods in common use for cloud computing, along with their performance overhead, 
isolation, and observability characteristics. This chapter covers hypervisors and containers.
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Chapter 12, Benchmarking, shows how to benchmark accurately, and how to interpret others’ 
benchmark results. This is a surprisingly tricky topic, and this chapter shows how you can avoid 
common mistakes and try to make sense of it.

Chapter 13, perf, summarizes the standard Linux profiler, perf(1), and its many capabilities. 
This is a reference to support perf(1)’s use throughout the book.

Chapter 14, Ftrace, summarizes the standard Linux tracer, Ftrace, which is especially suited for 
exploring kernel code execution.

Chapter 15, BPF, summarizes the standard BPF front ends: BCC and bpftrace.

Chapter 16, Case Study, contains a systems performance case study from Netflix, showing how 
a production performance puzzle was analyzed from beginning to end.

Chapters 1 to 4 provide essential background. After reading them, you can reference the remain-
der of the book as needed, in particular Chapters 5 to 12, which cover specific targets for analysis. 
Chapters 13 to 15 cover advanced profiling and tracing, and are optional reading for those who 
wish to learn one or more tracers in more detail.

Chapter 16 uses a storytelling approach to paint a bigger picture of a performance engineer’s 
work. If you’re new to performance analysis, you might want to read this first as an example of 
performance analysis using a variety of different tools, and then return to it when you’ve read 
the other chapters.

As a Future Reference
This book has been written to provide value for many years, by focusing on background and 
methodologies for the systems performance analyst.

To support this, many chapters have been separated into two parts. The first part consists of terms, 
concepts, and methodologies (often with those headings), which should stay relevant many years 
from now. The second provides examples of how the first part is implemented: architecture, 
analysis tools, and tunables, which, while they will become out-of-date, will still be useful as 
examples.

Tracing Examples
We frequently need to explore the operating system in depth, which can be done using tracing 
tools.

Since the first edition of this book, extended BPF has been developed and merged into the Linux 
kernel, powering a new generation of tracing tools that use the BCC and bpftrace front ends. 
This book focuses on BCC and bpftrace, and also the Linux kernel’s built-in Ftrace tracer. BPF, 
BCC, and bpftrace, are covered in more depth in my prior book [Gregg 19].

Linux perf is also included in this book and is another tool that can do tracing. However, perf is 
usually included in chapters for its sampling and PMC analysis capabilities, rather than for tracing.

You may need or wish to use different tracing tools, which is fine. The tracing tools in this book 
are used to show the questions that you can ask of the system. It is often these questions, and the 
methodologies that pose them, that are the most difficult to know.
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Intended Audience
The intended audience for this book is primarily systems administrators and operators of 
enterprise and cloud computing environments. It is also a reference for developers, database 
administrators, and web server administrators who need to understand operating system and 
application performance.

As a performance engineer at a company with a large compute environment (Netflix), I frequently 
work with SREs (site reliability engineers) and developers who are under enormous time pressure 
to solve multiple simultaneous performance issues. I have also been on the Netflix CORE SRE 
on-call rotation and have experienced this pressure firsthand. For many people, performance is 
not their primary job, and they need to know just enough to solve the current issues. Knowing 
that your time may be limited has encouraged me to keep this book as short as possible, and 
structure it to facilitate jumping ahead to specific chapters.

Another intended audience is students: this book is also suitable as a supporting text for a systems 
performance course. I have taught these classes before and learned which types of material work 
best in leading students to solve performance problems; that has guided my choice of content for 
this book.

Whether or not you are a student, the chapter exercises give you an opportunity to review and 
apply the material. These include some optional advanced exercises, which you are not expected 
to solve. (They may be impossible; they should at least be thought-provoking.)

In terms of company size, this book should contain enough detail to satisfy environments from 
small to large, including those with dozens of dedicated performance staff. For many smaller 
companies, the book may serve as a reference when needed, with only some portions of it used 
day to day.

Typographic Conventions
The following typographical conventions are used throughout this book:

Example Description

netif_receive_skb() Function name

iostat(1) A command referenced by chapter 1 of its man page

read(2) A system call referenced by its man page

malloc(3) A C library function call referenced by its man page

vmstat(8) An administration command referenced by its man page

Documentation/... Linux documentation in the Linux kernel source tree

kernel/... Linux kernel source code

fs/... Linux kernel source code, file systems

CONFIG_... Linux kernel configuration option (Kconfig)

r_await Command line input and output
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Example Description

mpstat 1 Highlighting of a typed command or key detail

# Superuser (root) shell prompt

$ User (non-root) shell prompt

^C A command was interrupted (Ctrl-C)

[...] Truncation

Supplemental Material, References, and Bibliography 
References are listed are at the end of each chapter rather than in a single bibliography, allowing 
you to browse references related to each chapter’s topic. The following selected texts can also be 
referenced for further background on operating systems and performance analysis:

[Jain 91] Jain, R., The Art of Computer Systems Performance Analysis: Techniques for Experimental 
Design, Measurement, Simulation, and Modeling, Wiley, 1991.

[Vahalia 96] Vahalia, U., UNIX Internals: The New Frontiers, Prentice Hall, 1996.

[Cockcroft 98] Cockcroft, A., and Pettit, R., Sun Performance and Tuning: Java and the Internet, 
Prentice Hall, 1998.

[Musumeci 02] Musumeci, G. D., and Loukides, M., System Performance Tuning, 2nd Edition, 
O’Reilly, 2002.

[Bovet 05] Bovet, D., and Cesati, M., Understanding the Linux Kernel, 3rd Edition, O’Reilly, 
2005.

[McDougall 06a] McDougall, R., Mauro, J., and Gregg, B., Solaris Performance and Tools: 
DTrace and MDB Techniques for Solaris 10 and OpenSolaris, Prentice Hall, 2006.

[Gove 07] Gove, D., Solaris Application Programming, Prentice Hall, 2007.

[Love 10] Love, R., Linux Kernel Development, 3rd Edition, Addison-Wesley, 2010.

[Gregg 11a] Gregg, B., and Mauro, J., DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X and 
FreeBSD, Prentice Hall, 2011.

[Gregg 13a] Gregg, B., Systems Performance: Enterprise and the Cloud, Prentice Hall, 2013 
(first edition).

[Gregg 19] Gregg, B., BPF Performance Tools: Linux System and Application Observability, 
Addison-Wesley, 2019.

[ITJobsWatch 20] ITJobsWatch, “Solaris Jobs,” https://www.itjobswatch.co.uk/jobs/uk/
solaris.do#demand_trend, accessed 2020.

https://www.itjobswatch.co.uk/jobs/uk/solaris.do#demand_trend
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Chapter 3

Operating Systems

An understanding of the operating system and its kernel is essential for systems performance 
analysis. You will frequently need to develop and then test hypotheses about system behavior, 
such as how system calls are being performed, how the kernel schedules threads on CPUs, how 
limited memory could be affecting performance, or how a file system processes I/O. These 
activities will require you to apply your knowledge of the operating system and the kernel.

The learning objectives of this chapter are:

 ■ Learn kernel terminology: context switches, swapping, paging, preemption, etc.

 ■ Understand the role of the kernel and system calls.

 ■ Gain a working knowledge of kernel internals, including: interrupts, schedulers, virtual 
memory, and the I/O stack.

 ■ See how kernel performance features have been added from Unix to Linux.

 ■ Develop a basic understanding of extended BPF.

This chapter provides an overview of operating systems and kernels and is assumed knowl-
edge for the rest of the book. If you missed operating systems class, you can treat this as a crash 
course. Keep an eye out for any gaps in your knowledge, as there will be an exam at the end (I’m 
kidding; it’s just a quiz). For more on kernel internals, see the references at the end of 
this chapter.

This chapter has three sections:

 ■ Terminology lists essential terms.

 ■ Background summarizes key operating system and kernel concepts. 

 ■ Kernels summarizes implementation specifics of Linux and other kernels.

Areas related to performance, including CPU scheduling, memory, disks, file systems, network-
ing, and many specific performance tools, are covered in more detail in the chapters that 
follow.
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3.1 Terminology
For reference, here is the core operating system terminology used in this book. Many of these are 
also concepts that are explained in more detail in this and later chapters.

 ■ Operating system: This refers to the software and files that are installed on a system so 
that it can boot and execute programs. It includes the kernel, administration tools, and 
system libraries. 

 ■ Kernel: The kernel is the program that manages the system, including (depending on the 
kernel model) hardware devices, memory, and CPU scheduling. It runs in a privileged 
CPU mode that allows direct access to hardware, called kernel mode. 

 ■ Process: An OS abstraction and environment for executing a program. The program runs 
in user mode, with access to kernel mode (e.g., for performing device I/O) via system calls 
or traps into the kernel.

 ■ Thread: An executable context that can be scheduled to run on a CPU. The kernel has 
multiple threads, and a process contains one or more.

 ■ Task: A Linux runnable entity, which can refer to a process (with a single thread), a thread 
from a multithreaded process, or kernel threads.

 ■ BPF program: A kernel-mode program running in the BPF1 execution environment.

 ■ Main memory: The physical memory of the system (e.g., RAM).

 ■ Virtual memory: An abstraction of main memory that supports multitasking and over-
subscription. It is, practically, an infinite resource.

 ■ Kernel space: The virtual memory address space for the kernel.

 ■ User space: The virtual memory address space for processes. 

 ■ User land: User-level programs and libraries (/usr/bin, /usr/lib...).

 ■ Context switch: A switch from running one thread or process to another. This is a normal 
function of the kernel CPU scheduler, and involves switching the set of running CPU 
registers (the thread context) to a new set.

 ■ Mode switch: A switch between kernel and user modes.

 ■ System call (syscall): A well-defined protocol for user programs to request the kernel to 
perform privileged operations, including device I/O.

 ■ Processor: Not to be confused with process, a processor is a physical chip containing one 
or more CPUs. 

 ■ Trap: A signal sent to the kernel to request a system routine (privileged action). Trap types 
include system calls, processor exceptions, and interrupts.

1 BPF originally stood for Berkeley Packet Filter, but the technology today has so little to do with Berkeley, packets, or 

filtering that BPF has become a name in itself rather than an acronym.
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 ■ Hardware interrupt: A signal sent by physical devices to the kernel, usually to request 
servicing of I/O. An interrupt is a type of trap. 

The Glossary includes more terminology for reference if needed for this chapter, including 
address space, buffer, CPU, file descriptor, POSIX, and registers.

3.2 Background
The following sections describe generic operating system and kernel concepts, and will help you 
understand any operating system. To aid your comprehension, this section includes some Linux 
implementation details. The next sections, 3.3 Kernels, and 3.4 Linux, focus on Unix, BSD, and 
Linux kernel implementation specifics.

3.2.1 Kernel
The kernel is the core software of the operating system. What it does depends on the kernel 
model: Unix-like operating systems including Linux and BSD have a monolithic kernel that 
manages CPU scheduling, memory, file systems, network protocols, and system devices (disks, 
network interfaces, etc.). This kernel model is shown in Figure 3.1.

Figure 3.1 Role of a monolithic operating system kernel

Also shown are system libraries, which are often used to provide a richer and easier program-
ming interface than the system calls alone. Applications include all running user-level software, 
including databases, web servers, administration tools, and operating system shells.
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System libraries are pictured here as a broken ring to show that applications can call system calls 
(syscalls) directly.2 For example, the Golang runtime has its own syscall layer that doesn’t require 
the system library, libc. Traditionally, this diagram is drawn with complete rings, which reflect 
decreasing levels of privilege starting with the kernel at the center (a model that originated in 
Multics [Graham 68], the predecessor of Unix).

Other kernel models also exist: microkernels employ a small kernel with functionality moved to 
user-mode programs; and unikernels compile kernel and application code together as a single pro-
gram. There are also hybrid kernels, such as the Windows NT kernel, which use approaches from 
both monolithic kernels and microkernels together. These are summarized in Section 3.5, Other 
Topics.

Linux has recently changed its model by allowing a new software type: Extended BPF, which 
enables secure kernel-mode applications along with its own kernel API: BPF helpers. This allows 
some applications and system functions to be rewritten in BPF, providing higher levels of secu-
rity and performance. This is pictured in Figure 3.2.

Figure 3.2 BPF applications

Extended BPF is summarized is Section 3.4.4, Extended BPF.

Kernel Execution

The kernel is a large program, typically millions of lines of code. It primarily executes on 
demand, when a user-level program makes a system call, or a device sends an interrupt. Some 
kernel threads operate asynchronously for housekeeping, which may include the kernel clock 
routine and memory management tasks, but these try to be lightweight and consume very little 
CPU resources.

2 There are some exceptions to this model. Kernel bypass technologies, sometimes used for networking, allow user-

level to access hardware directly (see Chapter 10, Network, Section 10.4.3, Software, heading Kernel Bypass). 

I/O to hardware may also be submitted without the expense of the syscall interface (although syscalls are required 

for initialization), for example, with memory-mapped I/O, major faults (see Chapter 7, Memory, Section 7.2.3, 

Demand Paging), sendfile(2), and Linux io_uring (see Chapter 5, Applications, Section 5.2.6, Non-Blocking I/O).
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Workloads that perform frequent I/O, such as web servers, execute mostly in kernel context. 
Workloads that are compute-intensive usually run in user mode, uninterrupted by the kernel. 
It may be tempting to think that the kernel cannot affect the performance of these compute- 
intensive workloads, but there are many cases where it does. The most obvious is CPU contention, 
when other threads are competing for CPU resources and the kernel scheduler needs to decide 
which will run and which will wait. The kernel also chooses which CPU a thread will run on 
and can choose CPUs with warmer hardware caches or better memory locality for the process, 
to significantly improve performance.

3.2.2 Kernel and User Modes
The kernel runs in a special CPU mode called kernel mode, allowing full access to devices and the 
execution of privileged instructions. The kernel arbitrates device access to support multitasking, 
preventing processes and users from accessing each other’s data unless explicitly allowed.

User programs (processes) run in user mode, where they request privileged operations from the 
kernel via system calls, such as for I/O. 

Kernel and user mode are implemented on processors using privilege rings (or protection rings) fol-
lowing the model in Figure 3.1. For example, x86 processors support four privilege rings, numbered 
0 to 3. Typically only two or three are used: for user mode, kernel mode, and the hypervisor if 
present. Privileged instructions for accessing devices are only allowed in kernel mode; executing 
them in user mode causes exceptions, which are then handled by the kernel (e.g., to generate a 
permission denied error).

In a traditional kernel, a system call is performed by switching to kernel mode and then execut-
ing the system call code. This is shown in Figure 3.3.

Figure 3.3 System call execution modes

Switching between user and kernel modes is a mode switch.

All system calls mode switch. Some system calls also context switch: those that are blocking, such 
as for disk and network I/O, will context switch so that another thread can run while the first is 
blocked.
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Since mode and context switches cost a small amount of overhead (CPU cycles),3 there are various 
optimizations to avoid them, including:

 ■ User-mode syscalls: It is possible to implement some syscalls in a user-mode library alone. 
The Linux kernel does this by exporting a virtual dynamic shared object (vDSO) that is 
mapped into the process address space, which contains syscalls such as gettimeofday(2) 
and getcpu(2) [Drysdale 14].

 ■ Memory mappings: Used for demand paging (see Chapter 7, Memory, Section 7.2.3, 
Demand Paging), it can also be used for data stores and other I/O, avoiding syscall 
overheads.

 ■ Kernel bypass: This allows user-mode programs to access devices directly, bypassing 
syscalls and the typical kernel code path. For example, DPDK for networking: the Data 
Plane Development Kit.

 ■ Kernel-mode applications: These include the TUX web server [Lever 00], implemented 
in-kernel, and more recently the extended BPF technology pictured in Figure 3.2.

Kernel and user mode have their own software execution contexts, including a stack and regis-
ters. Some processor architectures (e.g., SPARC) use a separate address space for the kernel, which 
means the mode switch must also change the virtual memory context.

3.2.3 System Calls
System calls request the kernel to perform privileged system routines. There are hundreds of system 
calls available, but some effort is made by kernel maintainers to keep that number as small 
as possible, to keep the kernel simple (Unix philosophy; [Thompson 78]). More sophisticated 
 interfaces can be built upon them in user-land as system libraries, where they are easier to 
develop and maintain. Operating systems generally include a C standard library that provides 
easier-to-use interfaces for many common syscalls (e.g., the libc or glibc libraries).

Key system calls to remember are listed in Table 3.1.

Table 3.1 Key system calls

System Call Description

read(2) Read bytes

write(2) Write bytes

open(2) Open a file

close(2) Close a file

fork(2) Create a new process

clone(2) Create a new process or thread

exec(2) Execute a new program

3 With the current mitigation for the Meltdown vulnerability, context switches are now more expensive. See 

Section 3.4.3 KPTI (Meltdown).
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System Call Description

connect(2) Connect to a network host

accept(2) Accept a network connection

stat(2) Fetch file statistics

ioctl(2) Set I/O properties, or other miscellaneous functions

mmap(2) Map a file to the memory address space

brk(2) Extend the heap pointer

futex(2) Fast user-space mutex

System calls are well documented, each having a man page that is usually shipped with the oper-
ating system. They also have a generally simple and consistent interface and use error codes to 
describe errors when needed (e.g., ENOENT for “no such file or directory”).4

Many of these system calls have an obvious purpose. Here are a few whose common usage may 
be less obvious:

 ■ ioctl(2): This is commonly used to request miscellaneous actions from the kernel, espe-
cially for system administration tools, where another (more obvious) system call isn’t 
suitable. See the example that follows.

 ■ mmap(2): This is commonly used to map executables and libraries to the process address 
space, and for memory-mapped files. It is sometimes used to allocate the working memory 
of a process, instead of the brk(2)-based malloc(2), to reduce the syscall rate and improve 
performance (which doesn’t always work due to the trade-off involved: memory-mapping 
management).

 ■ brk(2): This is used to extend the heap pointer, which defines the size of the working 
memory of the process. It is typically performed by a system memory allocation library, 
when a malloc(3) (memory allocate) call cannot be satisfied from the existing space in the 
heap. See Chapter 7, Memory.

 ■ futex(2): This syscall is used to handle part of a user space lock: the part that is likely to block.

If a system call is unfamiliar, you can learn more in its man page (these are in section 2 of the 
man pages: syscalls).

The ioctl(2) syscall may be the most difficult to learn, due to its ambiguous nature. As an 
example of its usage, the Linux perf(1) tool (introduced in Chapter 6, CPUs) performs privileged 
actions to coordinate performance instrumentation. Instead of system calls being added for each 
action, a single system call is added: perf_event_open(2), which returns a file descriptor for use 
with ioctl(2). This ioctl(2) can then be called using different arguments to perform the different 
desired actions. For example, ioctl(fd, PERF_EVENT_IOC_ENABLE) enables instrumentation. 
The arguments, in this example PERF_EVENT_IOC_ENABLE, can be more easily added and 
changed by the developer.

4 glibc provides these errors in an errno (error number) integer variable.
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3.2.4 Interrupts
An interrupt is a signal to the processor that some event has occurred that needs processing, and 
interrupts the current execution of the processor to handle it. It typically causes the processor 
to enter kernel mode if it isn’t already, save the current thread state, and then run an interrupt 
service routine (ISR) to process the event. 

There are asynchronous interrupts generated by external hardware and synchronous interrupts 
generated by software instructions. These are pictured in Figure 3.4.

Figure 3.4 Interrupt types

For simplicity Figure 3.4 shows all interrupts sent to the kernel for processing; these are sent to 
the CPU first, which selects the ISR in the kernel to run the event.

Asynchronous Interrupts

Hardware devices can send interrupt service requests (IRQs) to the processor, which arrive asyn-
chronously to the currently running software. Examples of hardware interrupts include:

 ■ Disk devices signaling the completion of disk I/O

 ■ Hardware indicating a failure condition

 ■ Network interfaces signaling the arrival of a packet

 ■ Input devices: keyboard and mouse input

To explain the concept of asynchronous interrupts, an example scenario is pictured in Figure 3.5 
showing the passage of time as a database (MySQL) running on CPU 0 reads from a file system. 
The file system contents must be fetched from disk, so the scheduler context switches to another 
thread (a Java application) while the database is waiting. Sometime later, the disk I/O completes, 
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but at this point the database is no longer running on CPU 0. The completion interrupt has 
occurred asynchronously to the database, showed by a dotted line in Figure 3.5.

Figure 3.5 Asynchronous interrupt example

Synchronous Interrupts

Synchronous interrupts are generated by software instructions. The following describes differ-
ent types of software interrupts using the terms traps, exceptions, and faults; however, these terms 
are often used interchangeably.

 ■ Traps: A deliberate call into the kernel, such as by the int (interrupt) instruction. One 
implementation of syscalls involves calling the int instruction with a vector for a syscall 
handler (e.g., int 0x80 on Linux x86). int raises a software interrupt.

 ■ Exceptions: A exceptional condition, such as by an instruction performing a divide by 
zero.

 ■ Faults: A term often used for memory events, such as page faults triggered by accessing a 
memory location without an MMU mapping. See Chapter 7, Memory.

For these interrupts, the responsible software and instruction are still on CPU.

Interrupt Threads

Interrupt service routines (ISRs) are designed to operate as quickly as possible, to reduce the 
effects of interrupting active threads. If an interrupt needs to perform more than a little work, 
especially if it may block on locks, it can be processed by an interrupt thread that can be sched-
uled by the kernel. This is pictured in Figure 3.6.
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Figure 3.6 Interrupt processing

How this is implemented depends on the kernel version. On Linux, device drivers can be mod-
eled as two halves, with the top half handling the interrupt quickly, and scheduling work to a 
bottom half to be processed later [Corbet 05]. Handling the interrupt quickly is important as the 
top half runs in interrupt-disabled mode to postpone the delivery of new interrupts, which can 
cause latency problems for other threads if it runs for too long. The bottom half can be either 
tasklets or work queues; the latter are threads that can be scheduled by the kernel and can sleep 
when necessary.

Linux network drivers, for example, have a top half to handle IRQs for inbound packets, which 
calls the bottom half to push the packet up the network stack. The bottom half is implemented 
as a softirq (software interrupt).

The time from an interrupt’s arrival to when it is serviced is the interrupt latency, which is depen-
dent on the hardware and implementation. This is a subject of study for real-time or low-latency 
systems.

Interrupt Masking

Some code paths in the kernel cannot be interrupted safely. An example is kernel code that 
acquires a spin lock during a system call, for a spin lock that might also be needed by an inter-
rupt. Taking an interrupt with such a lock held could cause a deadlock. To prevent such a situ-
ation, the kernel can temporarily mask interrupts by setting the CPU’s interrupt mask register. 
The interrupt disabled time should be as short as possible, as it can perturb the timely execution 
of applications that are woken up by other interrupts. This is an important factor for real-time 
systems—those that have strict response time requirements. Interrupt disabled time is also a 
target of performance analysis (such analysis is supported directly by the Ftrace irqsoff tracer, 
mentioned in Chapter 14, Ftrace).

Some high-priority events should not be ignored, and so are implemented as non-maskable inter-
rupts (NMIs). For example, Linux can use an Intelligent Platform Management Interface (IPMI) 
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watchdog timer that checks if the kernel appears to have locked up based on a lack of interrupts 
during a period of time. If so, the watchdog can issue an NMI interrupt to reboot the system.5

3.2.5 Clock and Idle
A core component of the original Unix kernel is the clock() routine, executed from a timer inter-
rupt. It has historically been executed at 60, 100, or 1,000 times per second6 (often expressed 
in Hertz: cycles per second), and each execution is called a tick.7 Its functions have included 
updating the system time, expiring timers and time slices for thread scheduling, maintaining 
CPU statistics, and executing scheduled kernel routines.

There have been performance issues with the clock, improved in later kernels, including:

 ■ Tick latency: For 100 Hertz clocks, up to 10 ms of additional latency may be encountered 
for a timer as it waits to be processed on the next tick. This has been fixed using high- 
resolution real-time interrupts so that execution occurs immediately. 

 ■ Tick overhead: Ticks consume CPU cycles and slightly perturb applications, and are one 
cause of what is known as operating system jitter. Modern processors also have dynamic 
power features, which can power down parts during idle periods. The clock routine inter-
rupts this idle time, which can consume power needlessly.

Modern kernels have moved much functionality out of the clock routine to on-demand inter-
rupts, in an effort to create a tickless kernel. This reduces overhead and improves power efficiency 
by allowing processors to remain in sleep states for longer.

The Linux clock routine is scheduler_tick(), and Linux has ways to omit calling the clock 
while there isn’t any CPU load. The clock itself typically runs at 250 Hertz (configured by the 
CONFIG_HZ Kconfig option and variants), and its calls are reduced by the NO_HZ functionality 
(configured by CONFIG_NO_HZ and variants), which is now commonly enabled [Linux 20a].

Idle Thread

When there is no work for the CPUs to perform, the kernel schedules a placeholder thread that 
waits for work, called the idle thread. A simple implementation would check for the availability 
of new work in a loop. In modern Linux the idle task can call the hlt (halt) instruction to power 
down the CPU until the next interrupt is received, saving power.

3.2.6 Processes
A process is an environment for executing a user-level program. It consists of a memory address 
space, file descriptors, thread stacks, and registers. In some ways, a process is like a virtual early 
computer, where only one program is executing with its own registers and stacks.

5 Linux also has a software NMI watchdog for detecting lockups [Linux 20d].
6 Other rates include 250 for Linux 2.6.13, 256 for Ultrix, and 1,024 for OSF/1 [Mills 94].
7 Linux also tracks jiffies, a unit of time similar to ticks.
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Processes are multitasked by the kernel, which typically supports the execution of thousands of 
processes on a single system. They are individually identified by their process ID (PID), which is a 
unique numeric identifier.

A process contains one or more threads, which operate in the process address space and share 
the same file descriptors. A thread is an executable context consisting of a stack, registers, and 
an instruction pointer (also called a program counter). Multiple threads allow a single process to 
execute in parallel across multiple CPUs. On Linux, threads and processes are both tasks.

The first process launched by the kernel is called “init,” from /sbin/init (by default), with PID 1, 
which launches user space services. In Unix this involved running start scripts from /etc, a 
method now referred to as SysV (after Unix System V). Linux distributions now commonly use 
the systemd software to start services and track their dependencies.

Process Creation

Processes are normally created using the fork(2) system call on Unix systems. On Linux, C librar-
ies typically implement the fork function by wrapping around the versatile clone(2) syscall. 
These syscalls create a duplicate of the process, with its own process ID. The exec(2) system call 
(or a variant, such as execve(2)) can then be called to begin execution of a different program.

Figure 3.7 shows an example process creation for a bash shell (bash) executing the ls command.

Figure 3.7 Process creation

The fork(2) or clone(2) syscall may use a copy-on-write (COW) strategy to improve performance. 
This adds references to the previous address space rather than copying all of the contents. Once 
either process modifies the multiple-referenced memory, a separate copy is then made for the 
modifications. This strategy either defers or eliminates the need to copy memory, reducing 
memory and CPU usage.

Process Life Cycle

The life cycle of a process is shown in Figure 3.8. This is a simplified diagram; for modern mul-
tithreaded operating systems it is the threads that are scheduled and run, and there are some 
additional implementation details regarding how these map to process states (see Figures 5.6 
and 5.7 in Chapter 5 for more detailed diagrams).
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Figure 3.8 Process life cycle

The on-proc state is for running on a processor (CPU). The ready-to-run state is when the process 
is runnable but is waiting on a CPU run queue for its turn on a CPU. Most I/O will block, putting 
the process in the sleep state until the I/O completes and the process is woken up. The zombie 
state occurs during process termination, when the process waits until its process status has been 
reaped by the parent process or until it is removed by the kernel.

Process Environment

The process environment is shown in Figure 3.9; it consists of data in the address space of the 
process and metadata (context) in the kernel.

Figure 3.9 Process environment

The kernel context consists of various process properties and statistics: its process ID (PID), the 
owner’s user ID (UID), and various times. These are commonly examined via the ps(1) and top(1) 
commands. It also has a set of file descriptors, which refer to open files and which are (usually) 
shared between threads.
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This example pictures two threads, each containing some metadata, including a priority in 
kernel context8 and user stack in the user address space. The diagram is not drawn to scale; the 
kernel context is very small compared to the process address space.

The user address space contains memory segments of the process: executable, libraries, and heap. 
For more details, see Chapter 7, Memory.

On Linux, each thread has its own user stack and a kernel exception stack9 [Owens 20].

3.2.7 Stacks
A stack is a memory storage area for temporary data, organized as a last-in, first-out (LIFO) list. 
It is used to store less important data than that which fits in the CPU register set. When a func-
tion is called, the return address is saved to the stack. Some registers may be saved to the stack as 
well if their values are needed after the call.10 When the called function has finished, it restores 
any required registers and, by fetching the return address from the stack, passes execution to the 
calling function. The stack can also be used for passing parameters to functions. The set of data 
on a stack related to a function’s execution is called a stack frame.

The call path to the currently executing function can be seen by examining the saved return 
addresses across all the stack frames in the thread’s stack (a process called stack walking).11 This 
call path is referred to as a stack back trace or a stack trace. In performance engineering it is often 
called just a “stack” for short. These stacks can answer why something is executing, and are an 
invaluable tool for debugging and performance analysis.

How to Read a Stack

The following example kernel stack (from Linux) shows the path taken for TCP transmission, as 
printed by a tracing tool:

    tcp_sendmsg+1

    sock_sendmsg+62

    SYSC_sendto+319

    sys_sendto+14

    do_syscall_64+115

    entry_SYSCALL_64_after_hwframe+61

8 The kernel context may be its own full address space (as with SPARC processors) or a restricted range that does 

not overlap with user addresses (as with x86 processors).
9 There are also special-purpose kernel stacks per-CPU, including those used for interrupts. 
10 The calling convention from the processor ABI specifies which registers should retain their values after a function 

call (they are non-volatile) and are saved to the stack by the called function (“callee-saves”). Other registers are 

volatile and may be clobbered by the called function; if the caller wishes to retain their values, it must save them to 

the stack (“caller-saves”).
11 For more detail on stack walking and the different possible techniques (which include: frame-pointer based, 

debuginfo, last branch record, and ORC) see Chapter 2, Tech, Section 2.4, Stack Trace Walking, of BPF Performance 

Tools [Gregg 19].
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Stacks are usually printed in leaf-to-root order, so the first line printed is the function currently 
executing, and beneath it is its parent, then its grandparent, and so on. In this example, the tcp_
sendmsg() function was executing, called by sock_sendmsg(). In this stack example, to the right 
of the function name is the instruction offset, showing the location within a function. The first 
line shows tcp_sendmsg() offset 1 (which would be the second instruction), called by sock_
sendmsg() offset 62. This offset is only useful if you desire a low-level understanding of the code 
path taken, down to the instruction level.

By reading down the stack, the full ancestry can be seen: function, parent, grandparent, and so 
on. Or, by reading bottom-up, you can follow the path of execution to the current function: how 
we got here.

Since stacks expose the internal path taken through source code, there is typically no documen-
tation for these functions other than the code itself. For this example stack, this is the Linux kernel 
source code. An exception to this is where functions are part of an API and are documented.

User and Kernel Stacks

While executing a system call, a process thread has two stacks: a user-level stack and a kernel-
level stack. Their scope is pictured in Figure 3.10.

Figure 3.10 User and kernel stacks

The user-level stack of the blocked thread does not change for the duration of a system call, as 
the thread is using a separate kernel-level stack while executing in kernel context. (An excep-
tion to this may be signal handlers, which may borrow a user-level stack depending on their 
configuration.)

On Linux, there are multiple kernel stacks for different purposes. Syscalls use a kernel exception 
stack associated with each thread, and there are also stacks associated with soft and hard inter-
rupts (IRQs) [Bovet 05].
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3.2.8 Virtual Memory
Virtual memory is an abstraction of main memory, providing processes and the kernel with their 
own, almost infinite,12 private view of main memory. It supports multitasking, allowing processes 
and the kernel to operate on their own private address spaces without worrying about contention. 
It also supports oversubscription of main memory, allowing the operating system to transparently 
map virtual memory between main memory and secondary storage (disks) as needed.

The role of virtual memory is shown in Figure 3.11. Primary memory is main memory (RAM), 
and secondary memory is the storage devices (disks).

Figure 3.11 Virtual memory address spaces13

Virtual memory is made possible by support in both the processor and operating system. It is not 
real memory, and most operating systems map virtual memory to real memory only on demand, 
when the memory is first populated (written).

See Chapter 7, Memory, for more about virtual memory.

Memory Management

While virtual memory allows main memory to be extended using secondary storage, the kernel 
strives to keep the most active data in main memory. There are two kernel schemes for this:

 ■ Process swapping moves entire processes between main memory and secondary storage. 

 ■ Paging moves small units of memory called pages (e.g., 4 Kbytes). 

12 On 64-bit processors, anyway. For 32-bit processors, virtual memory is limited to 4 Gbytes due to the limits of a 

32-bit address (and the kernel may limit it to an even smaller amount).
13 Process virtual memory is shown as starting from 0 as a simplification. Kernels today commonly begin a process’s 

virtual address space at some offset such as 0x10000 or a random address. One benefit is that a common pro-

gramming error of dereferencing a NULL (0) pointer will then cause the program to crash (SIGSEGV) as the 0 address 

is invalid. This is generally preferable to dereferencing data at address 0 by mistake, as the program would continue 

to run with corrupt data.
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Process swapping is the original Unix method and can cause severe performance loss. Paging is 
more efficient and was added to BSD with the introduction of paged virtual memory. In both 
cases, least recently used (or not recently used) memory is moved to secondary storage and 
moved back to main memory only when needed again.

In Linux, the term swapping is used to refer to paging. The Linux kernel does not support the 
(older) Unix-style process swapping of entire threads and processes. 

For more on paging and swapping, see Chapter 7, Memory.

3.2.9 Schedulers
Unix and its derivatives are time-sharing systems, allowing multiple processes to run at the same 
time by dividing execution time among them. The scheduling of processes on processors and 
individual CPUs is performed by the scheduler, a key component of the operating system kernel. 
The role of the scheduler is pictured in Figure 3.12, which shows that the scheduler operates 
on threads (in Linux, tasks), mapping them to CPUs.

Figure 3.12 Kernel scheduler

The basic intent is to divide CPU time among the active processes and threads, and to maintain 
a notion of priority so that more important work can execute sooner. The scheduler keeps track 
of all threads in the ready-to-run state, traditionally on per-priority queues called run queues 
[Bach 86]. Modern kernels may implement these queues per CPU and may also use other data 
structures, apart from queues, to track the threads. When more threads want to run than there 
are available CPUs, the lower-priority threads wait their turn. Most kernel threads run with a 
higher priority than user-level processes.

Process priority can be modified dynamically by the scheduler to improve the performance of 
certain workloads. Workloads can be categorized as either:
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 ■ CPU-bound: Applications that perform heavy compute, for example, scientific and math-
ematical analysis, which are expected to have long runtimes (seconds, minutes, hours, 
days, or even longer). These become limited by CPU resources. 

 ■ I/O-bound: Applications that perform I/O, with little compute, for example, web servers, 
file servers, and interactive shells, where low-latency responses are desirable. When their 
load increases, they are limited by I/O to storage or network resources. 

A commonly used scheduling policy dating back to UNIX identifies CPU-bound workloads and 
decreases their priority, allowing I/O-bound workloads—where low-latency responses are more 
desirable—to run sooner. This can be achieved by calculating the ratio of recent compute time 
(time executing on-CPU) to real time (elapsed time) and decreasing the priority of processes with 
a high (compute) ratio [Thompson 78]. This mechanism gives preference to shorter-running 
processes, which are usually those performing I/O, including human interactive processes.

Modern kernels support multiple scheduling classes or scheduling policies (Linux) that apply different 
algorithms for managing priority and runnable threads. These may include real-time scheduling, 
which uses a priority higher than all noncritical work, including kernel threads. Along with 
preemption support (described later), real-time scheduling provides predictable and low-latency 
scheduling for systems that require it.

See Chapter 6, CPUs, for more about the kernel scheduler and other scheduling algorithms.

3.2.10 File Systems
File systems are an organization of data as files and directories. They have a file-based interface 
for accessing them, usually based on the POSIX standard. Kernels support multiple file system 
types and instances. Providing a file system is one of the most important roles of the operating 
system, once described as the most important role [Ritchie 74].

The operating system provides a global file namespace, organized as a top-down tree topology 
starting with the root level (“/”). File systems join the tree by mounting, attaching their own tree 
to a directory (the mount point). This allows the end user to navigate the file namespace transpar-
ently, regardless of the underlying file system type.

A typical operating system may be organized as shown in Figure 3.13.

Figure 3.13 Operating system file hierarchy
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The top-level directories include etc for system configuration files, usr for system-supplied user-
level programs and libraries, dev for device nodes, var for varying files including system logs, 
tmp for temporary files, and home for user home directories. In the example pictured, var and 
home may reside on their own file system instances and separate storage devices; however, they 
can be accessed like any other component of the tree.

Most file system types use storage devices (disks) to store their contents. Some file system types 
are dynamically created by the kernel, such as /proc and /dev.

Kernels typically provide different ways to isolate processes to a portion of the file namespace, 
including chroot(8), and, on Linux, mount namespaces, commonly used for containers (see 
Chapter 11, Cloud Computing).

VFS

The virtual file system (VFS) is a kernel interface to abstract file system types, originally devel-
oped by Sun Microsystems so that the Unix file system (UFS) and the Network file system (NFS) 
could more easily coexist. Its role is pictured in Figure 3.14.

Figure 3.14 Virtual file system

The VFS interface makes it easier to add new file system types to the kernel. It also supports 
providing the global file namespace, pictured earlier, so that user programs and applications can 
access various file system types transparently.

I/O Stack

For storage-device-based file systems, the path from user-level software to the storage device is 
called the I/O stack. This is a subset of the entire software stack shown earlier. A generic I/O stack 
is shown in Figure 3.15.

Figure 3.15 shows a direct path to block devices on the left, bypassing the file system. This path 
is sometimes used by administrative tools and databases.

File systems and their performance are covered in detail in Chapter 8, File Systems, and the 
 storage devices they are built upon are covered in Chapter 9, Disks.
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Figure 3.15 Generic I/O stack

3.2.11 Caching
Since disk I/O has historically had high latency, many layers of the software stack attempt to 
avoid it by caching reads and buffering writes. Caches may include those shown in Table 3.2 (in 
the order in which they are checked).

Table 3.2 Example cache layers for disk I/O

Cache Examples

1 Client cache Web browser cache

2 Application cache —

3 Web server cache Apache cache

4 Caching server memcached

5 Database cache MySQL buffer cache

6 Directory cache dcache

7 File metadata cache inode cache

8 Operating system buffer cache Buffer cache

9 File system primary cache Page cache, ZFS ARC

10 File system secondary cache ZFS L2ARC

11 Device cache ZFS vdev
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Cache Examples

12 Block cache Buffer cache

13 Disk controller cache RAID card cache

14 Storage array cache —

15 On-disk cache —

For example, the buffer cache is an area of main memory that stores recently used disk blocks. 
Disk reads may be served immediately from the cache if the requested block is present, avoiding 
the high latency of disk I/O.

The types of caches present will vary based on the system and environment.

3.2.12 Networking
Modern kernels provide a stack of built-in network protocols, allowing the system to communi-
cate via the network and take part in distributed system environments. This is referred to as the 
networking stack or the TCP/IP stack, after the commonly used TCP and IP protocols. User-level 
applications access the network through programmable endpoints called sockets.

The physical device that connects to the network is the network interface and is usually provided 
on a network interface card (NIC). A historical duty of the system administrator was to associate 
an IP address with a network interface, so that it can communicate with the network; these 
 mappings are now typically automated via the dynamic host configuration protocol (DHCP).

Network protocols do not change often, but there is a new transport protocol seeing growing 
adoption: QUIC (summarized in Chapter 10, Network). Protocol enhancements and options 
change more often, such as newer TCP options and TCP congestion control algorithms. Newer 
protocols and enhancements typically require kernel support (with the exception of user-space 
protocol implementations). Another change is support for different network interface cards, 
which require new device drivers for the kernel.

For more on networking and network performance, see Chapter 10, Network.

3.2.13 Device Drivers
A kernel must communicate with a wide variety of physical devices. Such communication is 
achieved using device drivers: kernel software for device management and I/O. Device drivers are 
often provided by the vendors who develop the hardware devices. Some kernels support pluggable 
device drivers, which can be loaded and unloaded without requiring a system restart.

Device drivers can provide character and/or block interfaces to their devices. Character devices, 
also called raw devices, provide unbuffered sequential access of any I/O size down to a single 
character, depending on the device. Such devices include keyboards and serial ports (and in 
original Unix, paper tape and line printer devices).

Block devices perform I/O in units of blocks, which have historically been 512 bytes each. These 
can be accessed randomly based on their block offset, which begins at 0 at the start of the block 
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device. In original Unix, the block device interface also provided caching of block device buffers 
to improve performance, in an area of main memory called the buffer cache. In Linux, this buffer 
cache is now part of the page cache.

3.2.14 Multiprocessor
Multiprocessor support allows the operating system to use multiple CPU instances to execute 
work in parallel. It is usually implemented as symmetric multiprocessing (SMP) where all CPUs 
are treated equally. This was technically difficult to accomplish, posing problems for accessing 
and sharing memory and CPUs among threads running in parallel. On multiprocessor systems 
there may also be banks of main memory connected to different sockets (physical processors) in 
a non-uniform memory access (NUMA) architecture, which also pose performance challenges. See 
Chapter 6, CPUs, for details, including scheduling and thread synchronization, and Chapter 7, 
Memory, for details on memory access and architectures.

IPIs

For a multiprocessor system, there are times when CPUs need to coordinate, such as for cache 
coherency of memory translation entries (informing other CPUs that an entry, if cached, is now 
stale). A CPU can request other CPUs, or all CPUs, to immediately perform such work using an 
inter-processor interrupt (IPI) (also known as an SMP call or a CPU cross call). IPIs are processor 
interrupts designed to be executed quickly, to minimize interruption of other threads.

IPIs can also be used by preemption. 

3.2.15 Preemption
Kernel preemption support allows high-priority user-level threads to interrupt the kernel and 
execute. This enables real-time systems that can execute work within a given time constraint, 
including systems in use by aircraft and medical devices. A kernel that supports preemption is 
said to be fully preemptible, although practically it will still have some small critical code paths 
that cannot be interrupted. 

Another approach supported by Linux is voluntary kernel preemption, where logical stopping 
points in the kernel code can check and perform preemption. This avoids some of the complexity 
of supporting a fully preemptive kernel and provides low-latency preemption for common work-
loads. Voluntary kernel preemption is commonly enabled in Linux via the CONFIG_PREEMPT_
VOLUNTARY Kconfig option; there is also CONFIG_PREEMPT to allow all kernel code (except 
critical sections) to be preemptible, and CONFIG_PREEMPT_NONE to disable preemption, 
improving throughput at the cost of higher latencies.

3.2.16 Resource Management
The operating system may provide various configurable controls for fine-tuning access to system 
resources, such as CPUs, memory, disk, and the network. These are resource controls and can be 
used to manage performance on systems that run different applications or host multiple tenants 
(cloud computing). Such controls may impose fixed limits per process (or groups of processes) for 
resource usage, or a more flexible approach—allowing spare usage to be shared among them.
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Early versions of Unix and BSD had basic per-process resource controls, including CPU priorities 
with nice(1), and some resource limits with ulimit(1).

For Linux, control groups (cgroups) have been developed and integrated in Linux 2.6.24 (2008), 
and various additional controls have been added since then. These are documented in the kernel 
source under Documentation/cgroups. There is also an improved unified hierarchical scheme 
called cgroup v2, made available in Linux 4.5 (2016) and documented in Documentation/admin-
guide/cgroup-v2.rst.

Specific resource controls are mentioned in later chapters as appropriate. An example use case 
is described in Chapter 11, Cloud Computing, for managing the performance of OS-virtualized 
tenants.

3.2.17 Observability
The operating system consists of the kernel, libraries, and programs. These programs include tools 
to observe system activity and analyze performance, typically installed in /usr/bin and /usr/
sbin. Third-party tools may also be installed on the system to provide additional observability.

Observability tools, and the operating system components upon which they are built, are 
 introduced in Chapter 4.

3.3 Kernels
The following sections discuss Unix-like kernel implementation details with a focus on perfor-
mance. As background, the performance features of earlier kernels are discussed: Unix, BSD, and 
Solaris. The Linux kernel is discussed in more detail in Section 3.4, Linux.

Kernel differences can include the file systems they support (see Chapter 8, File Systems), the 
system call (syscall) interfaces, network stack architecture, real-time support, and scheduling 
algorithms for CPUs, disk I/O, and networking.

Table 3.3 shows Linux and other kernel versions for comparison, with syscall counts based on 
the number of entries in section 2 of the OS man pages. This is a crude comparison, but enough 
to see some differences.

Table 3.3 Kernel versions with documented syscall counts

Kernel Version Syscalls

UNIX Version 7 48

SunOS (Solaris) 5.11 142

FreeBSD 12.0 222

Linux 2.6.32-21-server 408

Linux 2.6.32-220.el6.x86_64 427

Linux 3.2.6-3.fc16.x86_64 431

Linux 4.15.0-66-generic 480

Linux 5.3.0-1010-aws 493
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These are just the syscalls with documentation; more are usually provided by the kernel for 
private use by operating system software.

UNIX had twenty system calls at the very first, and today Linux—which is a direct 
descendant—has over a thousand . . . I just worry about the complexity and the size of 
things that grow.

Ken Thompson, ACM Turing Centenary Celebration, 2012 

Linux is growing in complexity and exposing this complexity to user-land by adding new sys-
tem calls or through other kernel interfaces. Extra complexity makes learning, programming, 
and debugging more time-consuming.

3.3.1 Unix
Unix was developed by Ken Thompson, Dennis Ritchie, and others at AT&T Bell Labs during 
1969 and the years that followed. Its exact origin was described in The UNIX Time-Sharing System 
[Ritchie 74]:

The first version was written when one of us (Thompson), dissatisfied with the avail-
able computer facilities, discovered a little-used PDP-7 and set out to create a more 
hospitable environment.

The developers of UNIX had previously worked on the Multiplexed Information and Computer 
Services (Multics) operating system. UNIX was developed as a lightweight multitasked operating 
system and kernel, originally named UNiplexed Information and Computing Service (UNICS), 
as a pun on Multics. From UNIX Implementation [Thompson 78]:

The kernel is the only UNIX code that cannot be substituted by a user to his own liking. 
For this reason, the kernel should make as few real decisions as possible. This does not 
mean to allow the user a million options to do the same thing. Rather, it means to 
allow only one way to do one thing, but have that way be the least-common divisor of 
all the options that might have been provided.

While the kernel was small, it did provide some features for high performance. Processes had 
scheduler priorities, reducing run-queue latency for higher-priority work. Disk I/O was per-
formed in large (512-byte) blocks for efficiency and cached in an in-memory per-device buffer 
cache. Idle processes could be swapped out to storage, allowing busier processes to run in main 
memory. And the system was, of course, multitasking—allowing multiple processes to run con-
currently, improving job throughput.

To support networking, multiple file systems, paging, and other features we now consider stan-
dard, the kernel had to grow. And with multiple derivatives, including BSD, SunOS (Solaris), and 
later Linux, kernel performance became competitive, which drove the addition of more features 
and code.
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3.3.2 BSD
The Berkeley Software Distribution (BSD) OS began as enhancements to Unix 6th Edition at 
the University of California, Berkeley, and was first released in 1978. As the original Unix code 
required an AT&T software license, by the early 1990s this Unix code had been rewritten in BSD 
under a new BSD license, allowing free distributions including FreeBSD.

Major BSD kernel developments, especially performance-related, include:

 ■ Paged virtual memory: BSD brought paged virtual memory to Unix: instead of swapping 
out entire processes to free main memory, smaller least-recently-used chunks of memory 
could be moved (paged). See Chapter 7, Memory, Section 7.2.2, Paging.

 ■ Demand paging: This defers the mapping of physical memory to virtual memory to 
when it is first written, avoiding an early and sometimes unnecessary performance and 
memory cost for pages that may never be used. Demand paging was brought to Unix by 
BSD. See Chapter 7, Memory, Section 7.2.2, Paging.

 ■ FFS: The Berkeley Fast File System (FFS) grouped disk allocation into cylinder groups, 
greatly reducing fragmentation and improving performance on rotational disks, as well as 
supporting larger disks and other enhancements. FFS became the basis for many other file 
systems, including UFS. See Chapter 8, File Systems, Section 8.4.5, File System Types.

 ■ TCP/IP network stack: BSD developed the first high-performance TCP/IP network stack 
for Unix, included in 4.2BSD (1983). BSD is still known for its performant network stack.

 ■ Sockets: Berkeley sockets are an API for connection endpoints. Included in 4.2BSD, they 
have become a standard for networking. See Chapter 10, Network.

 ■ Jails: Lightweight OS-level virtualization, allowing multiple guests to share one kernel. 
Jails were first released in FreeBSD 4.0.

 ■ Kernel TLS: As transport layer security (TLS) is now commonly used on the Internet, 
kernel TLS moves much of TLS processing to the kernel, improving performance14 
[Stewart 15].

While not as popular as Linux, BSD is used for some performance-critical environments, includ-
ing for the Netflix content delivery network (CDN), as well as file servers from NetApp, Isilon, 
and others. Netflix summarized FreeBSD performance on its CDN in 2019 as [Looney 19]:

“Using FreeBSD and commodity parts, we achieve 90 Gb/s serving TLS-encrypted 
connections with ~55% CPU on a 16-core 2.6-GHz CPU.”

There is an excellent reference on the internals of FreeBSD, from the same publisher that brings 
you this book: The Design and Implementation of the FreeBSD Operating System, 2nd Edition 
[McKusick 15].

14 Developed to improve the performance of the Netflix FreeBSD open connect appliances (OCAs) that are the 

Netflix CDN.
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3.3.3 Solaris
Solaris is a Unix and BSD-derived kernel and OS created by Sun Microsystems in 1982. It was origi-
nally named SunOS and optimized for Sun workstations. By the late 1980s, AT&T developed a new 
Unix standard, Unix System V Release 4 (SVR4) based on technologies from SVR3, SunOS, BSD, and 
Xenix. Sun created a new kernel based on SVR4, and rebranded the OS under the name Solaris.

Major Solaris kernel developments, especially performance-related, include:

 ■ VFS: The virtual file system (VFS) is an abstraction and interface that allows multiple file 
systems to easily coexist. Sun initially created it so that NFS and UFS could coexist. VFS is 
covered in Chapter 8, File Systems. 

 ■ Fully preemptible kernel: This provided low latency for high-priority work, including 
real-time work. 

 ■ Multiprocessor support: In the early 1990s, Sun invested heavily in multiprocessor 
operating system support, developing kernel support for both asymmetric and symmetric 
multiprocessing (ASMP and SMP) [Mauro 01]. 

 ■ Slab allocator: Replacing the SVR4 buddy allocator, the kernel slab memory allocator 
provided better performance via per-CPU caches of preallocated buffers that could be 
quickly reused. This allocator type, and its derivatives, has become the standard for ker-
nels including Linux.

 ■ DTrace: A static and dynamic tracing framework and tool providing virtually unlimited 
observability of the entire software stack, in real time and in production. Linux has BPF 
and bpftrace for this type of observability.

 ■ Zones: An OS-based virtualization technology for creating OS instances that share one 
kernel, similar to the earlier FreeBSD jails technology. OS virtualization is now in wide-
spread use as Linux containers. See Chapter 11, Cloud Computing. 

 ■ ZFS: A file system with enterprise-level features and performance. It is now available for 
other OSes, including Linux. See Chapter 8, File Systems. 

Oracle purchased Sun Microsystems in 2010, and Solaris is now called Oracle Solaris. Solaris is 
covered in more detail in the first edition of this book.

3.4 Linux
Linux was created in 1991 by Linus Torvalds as a free operating system for Intel personal com-
puters. He announced the project in a Usenet post:

I’m doing a (free) operating system (just a hobby, won’t be big and professional like gnu) 
for 386(486) AT clones. This has been brewing since April, and is starting to get ready. I’d 
like any feedback on things people like/dislike in minix, as my OS resembles it somewhat 
(same physical layout of the file-system (due to practical reasons) among other things).

This refers to the MINIX operating system, which was being developed as a free and small 
(mini) version of Unix for small computers. BSD was also aiming to provide a free Unix version 
although at the time it had legal troubles.
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The Linux kernel was developed taking general ideas from many ancestors, including:

 ■ Unix (and Multics): Operating system layers, system calls, multitasking, processes, pro-
cess priorities, virtual memory, global file system, file system permissions, device nodes, 
buffer cache

 ■ BSD: Paged virtual memory, demand paging, fast file system (FFS), TCP/IP network stack, 
sockets 

 ■ Solaris: VFS, NFS, page cache, unified page cache, slab allocator

 ■ Plan 9: Resource forks (rfork), for creating different levels of sharing between processes 
and threads (tasks) 

Linux now sees widespread use for servers, cloud instances, and embedded devices including 
mobile phones.

3.4.1 Linux Kernel Developments
Linux kernel developments, especially those related to performance, include the following 
(many of these descriptions include the Linux kernel version where they were first introduced):

 ■ CPU scheduling classes: Various advanced CPU scheduling algorithms have been 
developed, including scheduling domains (2.6.7) to make better decisions regarding non- 
uniform memory access (NUMA). See Chapter 6, CPUs.

 ■ I/O scheduling classes: Different block I/O scheduling algorithms have been developed, 
including deadline (2.5.39), anticipatory (2.5.75), and completely fair queueing (CFQ) 
(2.6.6). These are available in kernels up to Linux 5.0, which removed them to support 
only newer multi-queue I/O schedulers. See Chapter 9, Disks.

 ■ TCP congestion algorithms: Linux allows different TCP congestion control algorithms to 
be configured, and supports Reno, Cubic, and more in later kernels mentioned in this list. 
See also Chapter 10, Network.

 ■ Overcommit: Along with the out-of-memory (OOM) killer, this is a strategy for doing 
more with less main memory. See Chapter 7, Memory. 

 ■ Futex (2.5.7): Short for fast user-space mutex, this is used to provide high-performing user-
level synchronization primitives.

 ■ Huge pages (2.5.36): This provides support for preallocated large memory pages by the 
kernel and the memory management unit (MMU). See Chapter 7, Memory.

 ■ OProfile (2.5.43): A system profiler for studying CPU usage and other events, for both the 
kernel and applications.

 ■ RCU (2.5.43): The kernel provides a read-copy update synchronization mechanism that 
allows multiple reads to occur concurrently with updates, improving performance and 
scalability for data that is mostly read.

 ■ epoll (2.5.46): A system call for efficiently waiting for I/O across many open file descriptors, 
which improves the performance of server applications.
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 ■ Modular I/O scheduling (2.6.10): Linux provides pluggable scheduling algorithms for 
scheduling block device I/O. See Chapter 9, Disks. 

 ■ DebugFS (2.6.11): A simple unstructured interface for the kernel to expose data to user 
level, which is used by some performance tools.

 ■ Cpusets (2.6.12): exclusive CPU grouping for processes.

 ■ Voluntary kernel preemption (2.6.13): This process provides low-latency scheduling 
without the complexity of full preemption.

 ■ inotify (2.6.13): A framework for monitoring file system events.

 ■ blktrace (2.6.17): A framework and tool for tracing block I/O events (later migrated into 
tracepoints).

 ■ splice (2.6.17): A system call to move data quickly between file descriptors and pipes, 
without a trip through user-space. (The sendfile(2) syscall, which efficiently moves data 
between file descriptors, is now a wrapper to splice(2).)

 ■ Delay accounting (2.6.18): Tracks per-task delay states. See Chapter 4, Observability Tools.

 ■ IO accounting (2.6.20): Measures various storage I/O statistics per process.

 ■ DynTicks (2.6.21): Dynamic ticks allow the kernel timer interrupt (clock) to not fire 
during idle, saving CPU resources and power.

 ■ SLUB (2.6.22): A new and simplified version of the slab memory allocator.

 ■ CFS (2.6.23): Completely fair scheduler. See Chapter 6, CPUs.

 ■ cgroups (2.6.24): Control groups allow resource usage to be measured and limited for 
groups of processes.

 ■ TCP LRO (2.6.24): TCP Large Receive Offload (LRO) allows network drivers and hardware 
to aggregate packets into larger sizes before sending them to the network stack. Linux also 
supports Large Send Offload (LSO) for the send path.

 ■ latencytop (2.6.25): Instrumentation and a tool for observing sources of latency in the 
operating system.

 ■ Tracepoints (2.6.28): Static kernel tracepoints (aka static probes) that instrument logical 
execution points in the kernel, for use by tracing tools (previously called kernel markers). 
Tracing tools are introduced in Chapter 4, Observability Tools.

 ■ perf (2.6.31): Linux Performance Events (perf) is a set of tools for performance observabil-
ity, including CPU performance counter profiling and static and dynamic tracing. See 
Chapter 6, CPUs, for an introduction.

 ■ No BKL (2.6.37): Final removal of the big kernel lock (BKL) performance bottleneck.

 ■ Transparent huge pages (2.6.38): This is a framework to allow easy use of huge (large) 
memory pages. See Chapter 7, Memory.

 ■ KVM: The Kernel-based Virtual Machine (KVM) technology was developed for Linux by 
Qumranet, which was purchased by Red Hat in 2008. KVM allows virtual operating sys-
tem instances to be created, running their own kernel. See Chapter 11, Cloud Computing. 
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 ■ BPF JIT (3.0): A Just-In-Time (JIT) compiler for the Berkeley Packet Filter (BPF) to improve 
packet filtering performance by compiling BPF bytecode to native instructions.

 ■ CFS bandwidth control (3.2): A CPU scheduling algorithm that supports CPU quotas and 
throttling.

 ■ TCP anti-bufferbloat (3.3+): Various enhancements were made from Linux 3.3 onwards 
to combat the bufferbloat problem, including Byte Queue Limits (BQL) for the transmis-
sion of packet data (3.3), CoDel queue management (3.5), TCP small queues (3.6), and the 
Proportional Integral controller Enhanced (PIE) packet scheduler (3.14).

 ■ uprobes (3.5): The infrastructure for dynamic tracing of user-level software, used by other 
tools (perf, SystemTap, etc.).

 ■ TCP early retransmit (3.5): RFC 5827 for reducing duplicate acknowledgments required 
to trigger fast retransmit.

 ■ TFO (3.6, 3.7, 3.13): TCP Fast Open (TFO) can reduce the TCP three-way handshake to a 
single SYN packet with a TFO cookie, improving performance. It was made the default in 
3.13.

 ■ NUMA balancing (3.8+): This added ways for the kernel to automatically balance memory 
locations on multi-NUMA systems, reducing CPU interconnect traffic and improving 
performance.

 ■ SO_REUSEPORT (3.9): A socket option to allow multiple listener sockets to bind to the 
same port, improving multi-threaded scalability.

 ■ SSD cache devices (3.9): Device mapper support for an SSD device to be used as a cache for 
a slower rotating disk.

 ■ bcache (3.10): An SSD cache technology for the block interface.

 ■ TCP TLP (3.10): TCP Tail Loss Probe (TLP) is a scheme to avoid costly timer-based retransmits 
by sending new data or the last unacknowledged segment after a shorter probe timeout, to 
trigger faster recovery.

 ■ NO_HZ_FULL (3.10, 3.12): Also known as timerless multitasking or a tickless kernel, this 
allows non-idle threads to run without clock ticks, avoiding workload perturbations 
[Corbet 13a].

 ■ Multiqueue block I/O (3.13): This provides per-CPU I/O submission queues rather than 
a single request queue, improving scalability especially for high IOPS SSD devices [Corbet 
13b].

 ■ SCHED_DEADLINE (3.14): An optional scheduling policy that implements earliest deadline 
first (EDF) scheduling [Linux 20b].

 ■ TCP autocorking (3.14): This allows the kernel to coalesce small writes, reducing the sent 
packets. An automatic version of the TCP_CORK setsockopt(2).

 ■ MCS locks and qspinlocks (3.15): Efficient kernel locks, using techniques such as per-
CPU structures. MCS is named after the original lock inventors (Mellor-Crummey and 
Scott) [Mellor-Crummey 91][Corbet 14].
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 ■ Extended BPF (3.18+): An in-kernel execution environment for running secure kernel-
mode programs. The bulk of extended BPF was added in the 4.x series. Support for 
attached to kprobes was added in 3.19, to tracepoints in 4.7, to software and hardware 
events in 4.9, and to cgroups in 4.10. Bounded loops were added in 5.3, which also 
increased the instruction limit to allow complex applications. See Section 3.4.4, 
Extended BPF.

 ■ Overlayfs (3.18): A union mount file system included in Linux. It creates virtual file systems 
on top of others, which can also be modified without changing the first. Often used for 
containers.

 ■ DCTCP (3.18): The Data Center TCP (DCTCP) congestion control algorithm, which aims 
to provide high burst tolerance, low latency, and high throughput [Borkmann 14a].

 ■ DAX (4.0): Direct Access (DAX) allows user space to read from persistent-memory storage 
devices directly, without buffer overheads. ext4 can use DAX.

 ■ Queued spinlocks (4.2): Offering better performance under contention, these became the 
default spinlock kernel implementation in 4.2.

 ■ TCP lockless listener (4.4): The TCP listener fast path became lockless, improving 
performance.

 ■ cgroup v2 (4.5, 4.15): A unified hierarchy for cgroups was in earlier kernels, and consid-
ered stable and exposed in 4.5, named cgroup v2 [Heo 15]. The cgroup v2 CPU controller 
was added in 4.15.

 ■ epoll scalability (4.5): For multithreaded scalability, epoll(7) avoids waking up all threads 
that are waiting on the same file descriptors for each event, which caused a thundering-
herd performance issue [Corbet 15].

 ■ KCM (4.6): The Kernel Connection Multiplexor (KCM) provides an efficient message-
based interface over TCP.

 ■ TCP NV (4.8): New Vegas (NV) is a new TCP congestion control algorithm suited for 
high-bandwidth networks (those that run at 10+ Gbps).

 ■ XDP (4.8, 4.18): eXpress Data Path (XDP) is a BPF-based programmable fast path for 
high-performance networking [Herbert 16]. An AF_XDP socket address family that can 
bypass much of the network stack was added in 4.18.

 ■ TCP BBR (4.9): Bottleneck Bandwidth and RTT (BBR) is a TCP congestion control algo-
rithm that provides improved latency and throughput over networks suffering packet loss 
and bufferbloat [Cardwell 16].

 ■ Hardware latency tracer (4.9): An Ftrace tracer that can detect system latency caused by 
hardware and firmware, including system management interrupts (SMIs).

 ■ perf c2c (4.10): The cache-to-cache (c2c) perf subcommand can help identify CPU cache 
performance issues, including false sharing.

 ■ Intel CAT (4.10): Support for Intel Cache Allocation Technology (CAT) allowing tasks to 
have dedicated CPU cache space. This can be used by containers to help with the noisy 
neighbor problem.
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 ■ Multiqueue I/O schedulers: BPQ, Kyber (4.12): The Budget Fair Queueing (BFQ) multi-
queue I/O scheduler provides low latency I/O for interactive applications, especially for 
slower storage devices. BFQ was significantly improved in 5.2. The Kyber I/O scheduler is 
suited for fast multiqueue devices [Corbet 17].

 ■ Kernel TLS (4.13, 4.17): Linux version of kernel TLS [Edge 15].

 ■ MSG_ZEROCOPY (4.14): A send(2) flag to avoid extra copies of packet bytes between an 
application and the network interface [Linux 20c].

 ■ PCID (4.14): Linux added support for process-context ID (PCID), a processor MMU feature 
to help avoid TLB flushes on context switches. This reduced the performance cost of the 
kernel page table isolation (KPTI) patches needed to mitigate the meltdown vulnerability. 
See Section 3.4.3, KPTI (Meltdown).

 ■ PSI (4.20, 5.2): Pressure stall information (PSI) is a set of new metrics to show time spent 
stalled on CPU, memory, or I/O. PSI threshold notifications were added in 5.2 to support 
PSI monitoring.

 ■ TCP EDT (4.20): The TCP stack switched to Early Departure Time (EDT): This uses a 
timing-wheel scheduler for sending packets, providing better CPU efficiency and smaller 
queues [Jacobson 18].

 ■ Multi-queue I/O (5.0): Multi-queue block I/O schedulers became the default in 5.0, and 
classic schedulers were removed.

 ■ UDP GRO (5.0): UDP Generic Receive Offload (GRO) improves performance by allowing 
packets to be aggregated by the driver and card and passed up stack.

 ■ io_uring (5.1): A generic asynchronous interface for fast communication between applica-
tions and the kernel, making use of shared ring buffers. Primary uses include fast disk and 
network I/O.

 ■ MADV_COLD, MADV_PAGEOUT (5.4): These madvise(2) flags are hints to the kernel that 
memory is needed but not anytime soon. MADV_PAGEOUT is also a hint that memory can 
be reclaimed immediately. These are especially useful for memory-constrained embedded 
Linux devices. 

 ■ MultiPath TCP (5.6): Multiple network links (e.g., 3G and WiFi) can be used to improve 
the performance and reliability of a single TCP connection.

 ■ Boot-time tracing (5.6): Allows Ftrace to trace the early boot process. (systemd can pro-
vide timing information on the late boot process: see Section 3.4.2, systemd.)

 ■ Thermal pressure (5.7): The scheduler accounts for thermal throttling to make better 
placement decisions.

 ■ perf flame graphs (5.8): perf(1) support for the flame graph visualization.

Not listed here are the many small performance improvements for locking, drivers, VFS, file sys-
tems, asynchronous I/O, memory allocators, NUMA, new processor instruction support, GPUs, 
and the performance tools perf(1) and Ftrace. System boot time has also been improved by the 
adoption of systemd.
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The following sections describe in more detail three Linux topics important to performance: 
systemd, KPTI, and extended BPF.

3.4.2 systemd
systemd is a commonly used service manager for Linux, developed as a replacement for the orig-
inal UNIX init system. systemd has various features including dependency-aware service startup 
and service time statistics.

An occasional task in systems performance is to tune the system’s boot time, and the systemd time 
statistics can show where to tune. The overall boot time can be reported using systemd-analyze(1):

# systemd-analyze

Startup finished in 1.657s (kernel) + 10.272s (userspace) = 11.930s 

graphical.target reached after 9.663s in userspace

This output shows that the system booted (reached the graphical.target in this case) in 9.663 
seconds. More information can be seen using the critical-chain subcommand:

# systemd-analyze critical-chain

The time when unit became active or started is printed after the "@" character.

The time the unit took to start is printed after the "+" character.

graphical.target @9.663s

└─multi-user.target @9.661s

  └─snapd.seeded.service @9.062s +62ms

    └─basic.target @6.336s

      └─sockets.target @6.334s

        └─snapd.socket @6.316s +16ms

          └─sysinit.target @6.281s

            └─cloud-init.service @5.361s +905ms

              └─systemd-networkd-wait-online.service @3.498s +1.860s

                └─systemd-networkd.service @3.254s +235ms

                  └─network-pre.target @3.251s

                    └─cloud-init-local.service @2.107s +1.141s

                      └─systemd-remount-fs.service @391ms +81ms

                        └─systemd-journald.socket @387ms

                          └─system.slice @366ms

                            └─-.slice @366ms

This output shows the critical path: the sequence of steps (in this case, services) that causes the 
latency. The slowest service was systemd-networkd-wait-online.service, taking 1.86 seconds 
to start.

There are other useful subcommands: blame shows the slowest initialization times, and plot 
produces an SVG diagram. See the man page for systemd-analyze(1) for more information.
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3.4.3 KPTI (Meltdown)
The kernel page table isolation (KPTI) patches added to Linux 4.14 in 2018 are a mitigation for 
the Intel processor vulnerability called “meltdown.” Older Linux kernel versions had KAISER 
patches for a similar purpose, and other kernels have employed mitigations as well. While these 
work around the security issue, they also reduce processor performance due to extra CPU cycles 
and additional TLB flushing on context switches and syscalls. Linux added process-context ID 
(PCID) support in the same release, which allows some TLB flushes to be avoided, provided the 
processor supports pcid.

 I evaluated the performance impact of KPTI as between 0.1% and 6% for Netflix cloud pro-
duction workloads, depending on the workload’s syscall rate (higher costs more) [Gregg 18a]. 
Additional tuning will further reduce the cost: the use of huge pages so that a flushed TLB 
warms up faster, and using tracing tools to examine syscalls to identify ways to reduce their rate. 
A number of such tracing tools are implemented using extended BPF.

3.4.4 Extended BPF
BPF stands for Berkeley Packet Filter, an obscure technology first developed in 1992 that 
improved the performance of packet capture tools [McCanne 92]. In 2013, Alexei Starovoitov 
proposed a major rewrite of BPF [Starovoitov 13], which was further developed by himself and 
Daniel Borkmann and included in the Linux kernel in 2014 [Borkmann 14b]. This turned BPF 
into a general-purpose execution engine that can be used for a variety of things, including net-
working, observability, and security.

BPF itself is a flexible and efficient technology composed of an instruction set, storage objects 
(maps), and helper functions. It can be considered a virtual machine due to its virtual instruc-
tion set specification. BPF programs run in kernel mode (as pictured earlier in Figure 3.2) and 
are configured to run on events: socket events, tracepoints, USDT probes, kprobes, uprobes, and 
perf_events. These are shown in Figure 3.16.

Figure 3.16 BPF components
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BPF bytecode must first pass through a verifier that checks for safety, ensuring that the BPF 
program will not crash or corrupt the kernel. It may also use a BPF Type Format (BTF) system for 
understanding data types and structures. BPF programs can output data via a perf ring buffer, an 
efficient way to emit per-event data, or via maps, which are suited for statistics.

Because it is powering a new generation of efficient, safe, and advanced tracing tools, BPF is 
important for systems performance analysis. It provides programmability to existing kernel 
event sources: tracepoints, kprobes, uprobes, and perf_events. A BPF program can, for example, 
record a timestamp on the start and end of I/O to time its duration, and record this in a custom 
histogram. This book contains many BPF-based programs using the BCC and bpftrace front-
ends. These front-ends are covered in Chapter 15.

3.5 Other Topics
Some additional kernel and operating system topics worth summarizing are PGO kernels, 
Unikernels, microkernels, hybrid kernels, and distributed operating systems.

3.5.1 PGO Kernels
Profile-guided optimization (PGO), also known as feedback-directed optimization (FDO), uses 
CPU profile information to improve compiler decisions [Yuan 14a]. This can be applied to kernel 
builds, where the procedure is:

1. While in production, take a CPU profile.

2. Recompile the kernel based on that CPU profile.

3. Deploy the new kernel in production.

This creates a kernel with improved performance for a specific workload. Runtimes such as the 
JVM do this automatically, recompiling Java methods based on their runtime performance, in 
conjunction with just-in-time (JIT) compilation. The process for creating a PGO kernel instead 
involves manual steps.

A related compile optimization is link-time optimization (LTO), where an entire binary is com-
piled at once to allow optimizations across the entire program. The Microsoft Windows kernel 
makes heavy use of both LTO and PGO, seeing 5 to 20% improvements from PGO [Bearman 20]. 
Google also use LTO and PGO kernels to improve performance [Tolvanen 20].

The gcc and clang compilers, and the Linux kernel, all have support for PGO. Kernel PGO 
typically involves running a specially instrumented kernel to collect profile data. Google has 
released an AutoFDO tool that bypasses the need for such a special kernel: AutoFDO allows a 
profile to be collected from a normal kernel using perf(1), which is then converted to the correct 
format for compilers to use [Google 20a].

The only recent documentation on building a Linux kernel with PGO or AutoFDO is two talks 
from Linux Plumber’s Conference 2020 by Microsoft [Bearman 20] and Google [Tolvanen 20].15

15 For a while the most recent documentation was from 2014 for Linux 3.13 [Yuan 14b], hindering adoption on newer 

kernels.
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3.5.2 Unikernels
A unikernel is a single-application machine image that combines kernel, library, and application 
software together, and can typically run this in a single address space in either a hardware VM 
or on bare metal. This potentially has performance and security benefits: less instruction text 
means higher CPU cache hit ratios and fewer security vulnerabilities. This also creates a prob-
lem: there may be no SSH, shells, or performance tools available for you to log in and debug the 
system, nor any way to add them.

For unikernels to be performance tuned in production, new performance tooling and metrics 
must be built to support them. As a proof of concept, I built a rudimentary CPU profiler that 
ran from Xen dom0 to profile a domU unikernel guest and then built a CPU flame graph, just to 
show that it was possible [Gregg 16a].

Examples of unikernels include MirageOS [MirageOS 20].

3.5.3 Microkernels and Hybrid Kernels
Most of this chapter discusses Unix-like kernels, also described as monolithic kernels, where all 
the code that manages devices runs together as a single large kernel program. For the microkernel 
model, kernel software is kept to a minimum. A microkernel supports essentials such as memory 
management, thread management, and inter-process communication (IPC). File systems, the 
network stack, and drivers are implemented as user-mode software, which allows those user-
mode components to be more easily modified and replaced. Imagine not only choosing which 
database or web server to install, but also choosing which network stack to install. The micro-
kernel is also more fault-tolerant: a crash in a driver does not crash the entire kernel. Examples 
of microkernels include QNX and Minix 3.

A disadvantage with microkernels is that there are additional IPC steps for performing I/O 
and other functions, reducing performance. One solution for this is hybrid kernels, which com-
bine the benefits of microkernels and monolithic kernels. Hybrid kernels move performance-
critical services back into kernel space (with direct function calls instead of IPC) as they are 
with a monolithic kernel, but retains the modular design and fault tolerance of a micro kernel. 
Examples of hybrid kernels include the Windows NT kernel and the Plan 9 kernel.

3.5.4 Distributed Operating Systems
A distributed operating system runs a single operating system instance across a set of separate 
computer nodes, networked together. A microkernel is commonly used on each of the nodes. 
Examples of distributed operating systems include Plan 9 from Bell Labs, and the Inferno operat-
ing system.

While an innovative design, this model has not seen widespread use. Rob Pike, co-creator of 
Plan 9 and Inferno, has described various reasons for this, including [Pike 00]:

“There was a claim in the late 1970s and early 1980s that Unix had killed operating 
systems research because no one would try anything else. At the time, I didn’t believe 
it. Today, I grudgingly accept that the claim may be true (Microsoft notwithstanding).”
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On the cloud, today’s common model for scaling compute nodes is to load-balance across a 
group of identical OS instances, which may scale in response to load (see Chapter 11, Cloud 
Computing, Section 11.1.3, Capacity Planning).

3.6 Kernel Comparisons
Which kernel is fastest? This will depend partly on the OS configuration and workload and how 
much the kernel is involved. In general, I expect that Linux will outperform other kernels due to 
its extensive work on performance improvements, application and driver support, and widespread 
use and the large community who discover and report performance issues. The top 500 supercom-
puters, as tracked by the TOP500 list since 1993, became 100% Linux in 2017 [TOP500 17]. There 
will be some exceptions; for example, Netflix uses Linux on the cloud and FreeBSD for its CDN.16

Kernel performance is commonly compared using micro-benchmarks, and this is error-prone. 
Such benchmarks may discover that one kernel is much faster at a particular syscall, but that 
syscall is not used in the production workload. (Or it is used, but with certain flags not tested by 
the microbenchmark, which greatly affect performance.) Comparing kernel performance accu-
rately is a task for a senior performance engineer—a task that can take weeks. See Chapter 12, 
Benchmarking, Section 12.3.2, Active Benchmarking, as a methodology to follow.

In the first edition of this book, I concluded this section by noting that Linux did not have a 
mature dynamic tracer, without which you might miss out on large performance wins. Since 
that first edition, I have moved to a full-time Linux performance role, and I helped develop the 
dynamic tracers that Linux was missing: BCC and bpftrace, based on extended BPF. These are 
covered in Chapter 15 and in my previous book [Gregg 19].

Section 3.4.1, Linux Kernel Developments, lists many other Linux performance developments 
that have occurred in the time between the first edition and this edition, spanning kernel ver-
sions 3.1 and 5.8. A major development not listed earlier is that OpenZFS now supports Linux as 
its primary kernel, providing a high-performance and mature file system option on Linux.

With all this Linux development, however, comes complexity. There are so many performance 
features and tunables on Linux that it has become laborious to configure and tune them for each 
workload. I have seen many deployments running untuned. Bear this in mind when comparing 
kernel performance: has each kernel been tuned? Later chapters of this book, and their tuning 
sections, can help you remedy this.

3.7 Exercises
1. Answer the following questions about OS terminology:

 ■ What is the difference between a process, a thread, and a task?

 ■ What is a mode switch and a context switch?

16 FreeBSD delivers higher performance for the Netflix CDN workload, especially due to kernel improvements made by 

the Netflix OCA team. This is routinely tested, most recently during 2019 with a production comparison of Linux 5.0 

versus FreeBSD, which I helped analyze.
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 ■ What is the difference between paging and process swapping?

 ■ What is the difference between I/O-bound and CPU-bound workloads?

2. Answer the following conceptual questions:

 ■ Describe the role of the kernel.

 ■ Describe the role of system calls.

 ■ Describe the role of VFS and its location in the I/O stack.

3. Answer the following deeper questions:

 ■ List the reasons why a thread would leave the current CPU.

 ■ Describe the advantages of virtual memory and demand paging.
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BBR (Bottleneck Bandwidth and RTT) 
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bcache technology, 117

BCC (BPF Compiler Collection), 12
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documentation, 760–761
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multi-tool example, 759
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overview, 753–754

vs. perf-tools, 747–748

single-purpose tools, 755–757

slow disks case study, 17

system-wide tracing, 136

tool overview, 754–755

bcc-tools tool package, 132

BEGIN probes in bpftrace, 774

bench subcommand for perf, 673

Benchmark paradox, 648–649

Benchmarketing, 642

Benchmarking, 641–642

analysis, 644–646

capacity planning, 70

CPUs, 254

effective, 643–644

exercises, 668

failures, 645–651

industry standards, 654–656
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questions, 667–668
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specials, 650

SysBench system, 294
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Benchmarking methodology
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CPU profiling, 660–661

custom benchmarks, 662

overview, 656

passive, 656–657

ramping load, 662–664

sanity checks, 664–665

statistical analysis, 665–666

USE method, 661
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Berkeley Packet Filter (BPF), 751–752

BCC compiler. See BCC (BPF Compiler 
Collection)

bpftrace. See bpftrace tool
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extended. See Extended BPF

iterator, 562

JIT compiler, 117

kernels, 92

OS virtualization tracing, 620, 624–625, 
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program, 90

Berkeley Software Distribution (BSD), 113

BFQ (Budget Fair Queueing) I/O schedulers, 
119, 449

Big kernel lock (BKL) performance 
bottleneck, 116
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Billing in cloud computing, 584

Bimodal performance, 76

Binary executable files, 183

Binary translations in hardware 
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Binding

CPU, 253, 297–298
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processor, 181–182

bioerr tool, 487

biolatency tool
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disks, 450, 468–470

example, 753–754

biopattern tool, 487

BIOS, tuning, 299

biosnoop tool

BCC, 755

disks, 470–472

event tracing, 58

hardware virtualization, 604–605

outliers, 471–472

queued time, 472

system-wide tracing, 136

biostacks tool, 474–475

biotop tool

BCC, 755

disks, 450, 473–474

Bit width in CPUs, 229
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perf-tools, 743

blame command, 120

Blame-someone-else anti-method, 43

Blanco, Brenden, 753

Blind faith benchmarking, 645

blk tracer, 708

blkio control group, 610, 617

blkreplay tool, 493

blktrace tool

action filtering, 478
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analysis, 478–479

default output, 476–477
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disks, 475–479

RWBS description, 477

visualizations, 479

Block-based file systems, 375–376

Block caches in disk I/O, 430

Block device interface, 109–110, 447
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Block I/O times for disks, 427–428, 472
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Boot-time tracing, 119
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BPF. See Berkeley Packet Filter (BPF)
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block I/O events, 625, 658–659
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disk I/O errors, 483
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disk I/O latency, 482–483

disk I/O size, 480–481

event sources, 558

examples, 284, 761–762

file system internals, 408

hardware virtualization, 602

I/O profiling, 210–212

installing, 762

lock tracing, 212–213
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brk system calls, 95

brkstack tool, 348

Broadcast network messages, 503

BSD (Berkeley Software Distribution), 113

btrace tool, 476, 478

btrfs file system, 381–382, 399

btrfsdist tool, 755

btrfsslower tool, 755
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Buddy allocators, 317

Budget Fair Queueing (BFQ) I/O schedulers, 
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buf function, 778
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ring, 522

TCP, 520, 569

bufgrow tool, 409

Bug database systems

applications, 172

case studies, 792–793

buildid-cache subcommand for perf, 673

Built-in bpftrace variables, 770, 777–778

Bursting in cloud computing, 584, 
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BVT (borrowed virtual time) schedulers, 
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C-states in CPUs, 231
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Cache miss rate, 36

Cache warmth, 222

cachegrind tool, 135
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file systems, usage, 309
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operating systems, 108–109

page, 315, 374

perf events, 680
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write-back, 365

cachestat tool
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perf-tools, 743
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Capacity-based utilization, 34

Capacity of file systems, 371
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conclusion, 792
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CPU scheduling, 241
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comparisons, 634–636
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hardware virtualization. See Hardware 
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lightweight virtualization, 630–633
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OS virtualization. See OS virtualization
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CPU scheduling, 241
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cpu variable in bpftrace, 777
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scheduler options, 295–296
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tunable, 494–495

USE method, 451

Disk I/O state in thread state analysis, 
194–197

Disk request time, 428
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