
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780136820154
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780136820154
https://plusone.google.com/share?url=http://www.informit.com/title/9780136820154
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780136820154
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780136820154/Free-Sample-Chapter

Systems
Performance

Second Edition

This page intentionally left blank

Systems
Performance

Enterprise and the Cloud

Second Edition

Brendan Gregg

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
 omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2020944455

Copyright © 2021 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or likewise. For information regarding permissions, request forms and
the appropriate contacts within the Pearson Education Global Rights & Permissions
Department, please visit www.pearson.com/permissions.

Cover images by Brendan Gregg
Page 9, Figure 1.5: Screenshot of System metrics GUI (Grafana) © 2020 Grafana Labs
Page 84, Figure 2.32: Screenshot of Firefox timeline chart © Netflix
Page 164, Figure 4.7: Screenshot of sar(1) sadf(1) SVG output © 2010 W3C
Page 560, Figure 10.12: Screenshot of Wireshark screenshot © Wireshark
Page 740, Figure 14.3: Screenshot of KernelShark © KernelShark

ISBN-13: 978-0-13-682015-4
ISBN-10: 0-13-682015-8

ScoutAutomatedPrintCode

Publisher
Mark L. Taub

Executive Editor
Greg Doench

Managing Producer
Sandra Schroeder

Sr. Content
Producer
Julie B. Nahil

Project Manager
Rachel Paul

Copy Editor
Kim Wimpsett

Indexer
Ted Laux

Proofreader
Rachel Paul

Compositor
The CIP Group

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions

For Deirdré Straughan,
an amazing person in technology,

and an amazing person—we did it.

This page intentionally left blank

Contents at a Glance
Contents ix

Preface xxix

Acknowledgments xxxv

About the Author xxxvii

1 Introduction 1

2 Methodologies 21

3 Operating Systems 89

4 Observability Tools 129

5 Applications 171

6 CPUs 219

7 Memory 303

8 File Systems 359

9 Disks 423

10 Network 499

11 Cloud Computing 579

12 Benchmarking 641

13 perf 671

14 Ftrace 705

15 BPF 751

16 Case Study 783

A USE Method: Linux 795

B sar Summary 801

C bpftrace One-Liners 803

D Solutions to Selected Exercises 809

E Systems Performance Who’s Who 811

Glossary 815

Index 825

This page intentionally left blank

Contents
Preface xxix

Acknowledgments xxxv

About the Author xxxvii

1 Introduction 1

1.1 Systems Performance 1

1.2 Roles 2

1.3 Activities 3

1.4 Perspectives 4

1.5 Performance Is Challenging 5

1.5.1 Subjectivity 5

1.5.2 Complexity 5

1.5.3 Multiple Causes 6

1.5.4 Multiple Performance Issues 6

1.6 Latency 6

1.7 Observability 7

1.7.1 Counters, Statistics, and Metrics 8

1.7.2 Profiling 10

1.7.3 Tracing 11

1.8 Experimentation 13

1.9 Cloud Computing 14

1.10 Methodologies 15

1.10.1 Linux Perf Analysis in 60 Seconds 15

1.11 Case Studies 16

1.11.1 Slow Disks 16

1.11.2 Software Change 18

1.11.3 More Reading 19

1.12 References 19

2 Methodologies 21

2.1 Terminology 22

2.2 Models 23

2.2.1 System Under Test 23

2.2.2 Queueing System 23

2.3 Concepts 24

2.3.1 Latency 24

2.3.2 Time Scales 25

x Contents

2.3.3 Trade-Offs 26

2.3.4 Tuning Efforts 27

2.3.5 Level of Appropriateness 28

2.3.6 When to Stop Analysis 29

2.3.7 Point-in-Time Recommendations 29

2.3.8 Load vs. Architecture 30

2.3.9 Scalability 31

2.3.10 Metrics 32

2.3.11 Utilization 33

2.3.12 Saturation 34

2.3.13 Profiling 35

2.3.14 Caching 35

2.3.15 Known-Unknowns 37

2.4 Perspectives 37

2.4.1 Resource Analysis 38

2.4.2 Workload Analysis 39

2.5 Methodology 40

2.5.1 Streetlight Anti-Method 42

2.5.2 Random Change Anti-Method 42

2.5.3 Blame-Someone-Else Anti-Method 43

2.5.4 Ad Hoc Checklist Method 43

2.5.5 Problem Statement 44

2.5.6 Scientific Method 44

2.5.7 Diagnosis Cycle 46

2.5.8 Tools Method 46

2.5.9 The USE Method 47

2.5.10 The RED Method 53

2.5.11 Workload Characterization 54

2.5.12 Drill-Down Analysis 55

2.5.13 Latency Analysis 56

2.5.14 Method R 57

2.5.15 Event Tracing 57

2.5.16 Baseline Statistics 59

2.5.17 Static Performance Tuning 59

2.5.18 Cache Tuning 60

2.5.19 Micro-Benchmarking 60

2.5.20 Performance Mantras 61

 Contents xi

2.6 Modeling 62

2.6.1 Enterprise vs. Cloud 62

2.6.2 Visual Identification 62

2.6.3 Amdahl’s Law of Scalability 64

2.6.4 Universal Scalability Law 65

2.6.5 Queueing Theory 66

2.7 Capacity Planning 69

2.7.1 Resource Limits 70

2.7.2 Factor Analysis 71

2.7.3 Scaling Solutions 72

2.8 Statistics 73

2.8.1 Quantifying Performance Gains 73

2.8.2 Averages 74

2.8.3 Standard Deviation, Percentiles, Median 75

2.8.4 Coefficient of Variation 76

2.8.5 Multimodal Distributions 76

2.8.6 Outliers 77

2.9 Monitoring 77

2.9.1 Time-Based Patterns 77

2.9.2 Monitoring Products 79

2.9.3 Summary-Since-Boot 79

2.10 Visualizations 79

2.10.1 Line Chart 80

2.10.2 Scatter Plots 81

2.10.3 Heat Maps 82

2.10.4 Timeline Charts 83

2.10.5 Surface Plot 84

2.10.6 Visualization Tools 85

2.11 Exercises 85

2.12 References 86

3 Operating Systems 89

3.1 Terminology 90

3.2 Background 91

3.2.1 Kernel 91

3.2.2 Kernel and User Modes 93

3.2.3 System Calls 94

xii Contents

3.2.4 Interrupts 96

3.2.5 Clock and Idle 99

3.2.6 Processes 99

3.2.7 Stacks 102

3.2.8 Virtual Memory 104

3.2.9 Schedulers 105

3.2.10 File Systems 106

3.2.11 Caching 108

3.2.12 Networking 109

3.2.13 Device Drivers 109

3.2.14 Multiprocessor 110

3.2.15 Preemption 110

3.2.16 Resource Management 110

3.2.17 Observability 111

3.3 Kernels 111

3.3.1 Unix 112

3.3.2 BSD 113

3.3.3 Solaris 114

3.4 Linux 114

3.4.1 Linux Kernel Developments 115

3.4.2 systemd 120

3.4.3 KPTI (Meltdown) 121

3.4.4 Extended BPF 121

3.5 Other Topics 122

3.5.1 PGO Kernels 122

3.5.2 Unikernels 123

3.5.3 Microkernels and Hybrid Kernels 123

3.5.4 Distributed Operating Systems 123

3.6 Kernel Comparisons 124

3.7 Exercises 124

3.8 References 125

3.8.1 Additional Reading 127

4 Observability Tools 129

4.1 Tool Coverage 130

4.1.1 Static Performance Tools 130

4.1.2 Crisis Tools 131

 Contents xiii

4.2 Tool Types 133

4.2.1 Fixed Counters 133

4.2.2 Profiling 135

4.2.3 Tracing 136

4.2.4 Monitoring 137

4.3 Observability Sources 138

4.3.1 /proc 140

4.3.2 /sys 143

4.3.3 Delay Accounting 145

4.3.4 netlink 145

4.3.5 Tracepoints 146

4.3.6 kprobes 151

4.3.7 uprobes 153

4.3.8 USDT 155

4.3.9 Hardware Counters (PMCs) 156

4.3.10 Other Observability Sources 159

4.4 sar 160

4.4.1 sar(1) Coverage 161

4.4.2 sar(1) Monitoring 161

4.4.3 sar(1) Live 165

4.4.4 sar(1) Documentation 165

4.5 Tracing Tools 166

4.6 Observing Observability 167

4.7 Exercises 168

4.8 References 168

5 Applications 171

5.1 Application Basics 172

5.1.1 Objectives 173

5.1.2 Optimize the Common Case 174

5.1.3 Observability 174

5.1.4 Big O Notation 175

5.2 Application Performance Techniques 176

5.2.1 Selecting an I/O Size 176

5.2.2 Caching 176

5.2.3 Buffering 177

5.2.4 Polling 177

5.2.5 Concurrency and Parallelism 177

xiv Contents

5.2.6 Non-Blocking I/O 181

5.2.7 Processor Binding 181

5.2.8 Performance Mantras 182

5.3 Programming Languages 182

5.3.1 Compiled Languages 183

5.3.2 Interpreted Languages 184

5.3.3 Virtual Machines 185

5.3.4 Garbage Collection 185

5.4 Methodology 186

5.4.1 CPU Profiling 187

5.4.2 Off-CPU Analysis 189

5.4.3 Syscall Analysis 192

5.4.4 USE Method 193

5.4.5 Thread State Analysis 193

5.4.6 Lock Analysis 198

5.4.7 Static Performance Tuning 198

5.4.8 Distributed Tracing 199

5.5 Observability Tools 199

5.5.1 perf 200

5.5.2 profile 203

5.5.3 offcputime 204

5.5.4 strace 205

5.5.5 execsnoop 207

5.5.6 syscount 208

5.5.7 bpftrace 209

5.6 Gotchas 213

5.6.1 Missing Symbols 214

5.6.2 Missing Stacks 215

5.7 Exercises 216

5.8 References 217

6 CPUs 219

6.1 Terminology 220

6.2 Models 221

6.2.1 CPU Architecture 221

6.2.2 CPU Memory Caches 221

6.2.3 CPU Run Queues 222

 Contents xv

6.3 Concepts 223

6.3.1 Clock Rate 223

6.3.2 Instructions 223

6.3.3 Instruction Pipeline 224

6.3.4 Instruction Width 224

6.3.5 Instruction Size 224

6.3.6 SMT 225

6.3.7 IPC, CPI 225

6.3.8 Utilization 226

6.3.9 User Time/Kernel Time 226

6.3.10 Saturation 226

6.3.11 Preemption 227

6.3.12 Priority Inversion 227

6.3.13 Multiprocess, Multithreading 227

6.3.14 Word Size 229

6.3.15 Compiler Optimization 229

6.4 Architecture 229

6.4.1 Hardware 230

6.4.2 Software 241

6.5 Methodology 244

6.5.1 Tools Method 245

6.5.2 USE Method 245

6.5.3 Workload Characterization 246

6.5.4 Profiling 247

6.5.5 Cycle Analysis 251

6.5.6 Performance Monitoring 251

6.5.7 Static Performance Tuning 252

6.5.8 Priority Tuning 252

6.5.9 Resource Controls 253

6.5.10 CPU Binding 253

6.5.11 Micro-Benchmarking 253

6.6 Observability Tools 254

6.6.1 uptime 255

6.6.2 vmstat 258

6.6.3 mpstat 259

6.6.4 sar 260

6.6.5 ps 260

xvi Contents

6.6.6 top 261

6.6.7 pidstat 262

6.6.8 time, ptime 263

6.6.9 turbostat 264

6.6.10 showboost 265

6.6.11 pmcarch 265

6.6.12 tlbstat 266

6.6.13 perf 267

6.6.14 profile 277

6.6.15 cpudist 278

6.6.16 runqlat 279

6.6.17 runqlen 280

6.6.18 softirqs 281

6.6.19 hardirqs 282

6.6.20 bpftrace 282

6.6.21 Other Tools 285

6.7 Visualizations 288

6.7.1 Utilization Heat Map 288

6.7.2 Subsecond-Offset Heat Map 289

6.7.3 Flame Graphs 289

6.7.4 FlameScope 292

6.8 Experimentation 293

6.8.1 Ad Hoc 293

6.8.2 SysBench 294

6.9 Tuning 294

6.9.1 Compiler Options 295

6.9.2 Scheduling Priority and Class 295

6.9.3 Scheduler Options 295

6.9.4 Scaling Governors 297

6.9.5 Power States 297

6.9.6 CPU Binding 297

6.9.7 Exclusive CPU Sets 298

6.9.8 Resource Controls 298

6.9.9 Security Boot Options 298

6.9.10 Processor Options (BIOS Tuning) 299

6.10 Exercises 299

6.11 References 300

 Contents xvii

7 Memory 303

7.1 Terminology 304

7.2 Concepts 305

7.2.1 Virtual Memory 305

7.2.2 Paging 306

7.2.3 Demand Paging 307

7.2.4 Overcommit 308

7.2.5 Process Swapping 308

7.2.6 File System Cache Usage 309

7.2.7 Utilization and Saturation 309

7.2.8 Allocators 309

7.2.9 Shared Memory 310

7.2.10 Working Set Size 310

7.2.11 Word Size 310

7.3 Architecture 311

7.3.1 Hardware 311

7.3.2 Software 315

7.3.3 Process Virtual Address Space 319

7.4 Methodology 323

7.4.1 Tools Method 323

7.4.2 USE Method 324

7.4.3 Characterizing Usage 325

7.4.4 Cycle Analysis 326

7.4.5 Performance Monitoring 326

7.4.6 Leak Detection 326

7.4.7 Static Performance Tuning 327

7.4.8 Resource Controls 328

7.4.9 Micro-Benchmarking 328

7.4.10 Memory Shrinking 328

7.5 Observability Tools 328

7.5.1 vmstat 329

7.5.2 PSI 330

7.5.3 swapon 331

7.5.4 sar 331

7.5.5 slabtop 333

7.5.6 numastat 334

7.5.7 ps 335

7.5.8 top 336

xviii Contents

7.5.9 pmap 337

7.5.10 perf 338

7.5.11 drsnoop 342

7.5.12 wss 342

7.5.13 bpftrace 343

7.5.14 Other Tools 347

7.6 Tuning 350

7.6.1 Tunable Parameters 350

7.6.2 Multiple Page Sizes 352

7.6.3 Allocators 353

7.6.4 NUMA Binding 353

7.6.5 Resource Controls 353

7.7 Exercises 354

7.8 References 355

8 File Systems 359

8.1 Terminology 360

8.2 Models 361

8.2.1 File System Interfaces 361

8.2.2 File System Cache 361

8.2.3 Second-Level Cache 362

8.3 Concepts 362

8.3.1 File System Latency 362

8.3.2 Caching 363

8.3.3 Random vs. Sequential I/O 363

8.3.4 Prefetch 364

8.3.5 Read-Ahead 365

8.3.6 Write-Back Caching 365

8.3.7 Synchronous Writes 366

8.3.8 Raw and Direct I/O 366

8.3.9 Non-Blocking I/O 366

8.3.10 Memory-Mapped Files 367

8.3.11 Metadata 367

8.3.12 Logical vs. Physical I/O 368

8.3.13 Operations Are Not Equal 370

8.3.14 Special File Systems 371

8.3.15 Access Timestamps 371

8.3.16 Capacity 371

 Contents xix

8.4 Architecture 372

8.4.1 File System I/O Stack 372

8.4.2 VFS 373

8.4.3 File System Caches 373

8.4.4 File System Features 375

8.4.5 File System Types 377

8.4.6 Volumes and Pools 382

8.5 Methodology 383

8.5.1 Disk Analysis 384

8.5.2 Latency Analysis 384

8.5.3 Workload Characterization 386

8.5.4 Performance Monitoring 388

8.5.5 Static Performance Tuning 389

8.5.6 Cache Tuning 389

8.5.7 Workload Separation 389

8.5.8 Micro-Benchmarking 390

8.6 Observability Tools 391

8.6.1 mount 392

8.6.2 free 392

8.6.3 top 393

8.6.4 vmstat 393

8.6.5 sar 393

8.6.6 slabtop 394

8.6.7 strace 395

8.6.8 fatrace 395

8.6.9 LatencyTOP 396

8.6.10 opensnoop 397

8.6.11 filetop 398

8.6.12 cachestat 399

8.6.13 ext4dist (xfs, zfs, btrfs, nfs) 399

8.6.14 ext4slower (xfs, zfs, btrfs, nfs) 401

8.6.15 bpftrace 402

8.6.17 Other Tools 409

8.6.18 Visualizations 410

8.7 Experimentation 411

8.7.1 Ad Hoc 411

8.7.2 Micro-Benchmark Tools 412

8.7.3 Cache Flushing 414

xx Contents

8.8 Tuning 414

8.8.1 Application Calls 415

8.8.2 ext4 416

8.8.3 ZFS 418

8.9 Exercises 419

8.10 References 420

9 Disks 423

9.1 Terminology 424

9.2 Models 425

9.2.1 Simple Disk 425

9.2.2 Caching Disk 425

9.2.3 Controller 426

9.3 Concepts 427

9.3.1 Measuring Time 427

9.3.2 Time Scales 429

9.3.3 Caching 430

9.3.4 Random vs. Sequential I/O 430

9.3.5 Read/Write Ratio 431

9.3.6 I/O Size 432

9.3.7 IOPS Are Not Equal 432

9.3.8 Non-Data-Transfer Disk Commands 432

9.3.9 Utilization 433

9.3.10 Saturation 434

9.3.11 I/O Wait 434

9.3.12 Synchronous vs. Asynchronous 434

9.3.13 Disk vs. Application I/O 435

9.4 Architecture 435

9.4.1 Disk Types 435

9.4.2 Interfaces 442

9.4.3 Storage Types 443

9.4.4 Operating System Disk I/O Stack 446

9.5 Methodology 449

9.5.1 Tools Method 450

9.5.2 USE Method 450

9.5.3 Performance Monitoring 452

9.5.4 Workload Characterization 452

9.5.5 Latency Analysis 454

 Contents xxi

9.5.6 Static Performance Tuning 455

9.5.7 Cache Tuning 456

9.5.8 Resource Controls 456

9.5.9 Micro-Benchmarking 456

9.5.10 Scaling 457

9.6 Observability Tools 458

9.6.1 iostat 459

9.6.2 sar 463

9.6.3 PSI 464

9.6.4 pidstat 464

9.6.5 perf 465

9.6.6 biolatency 468

9.6.7 biosnoop 470

9.6.8 iotop, biotop 472

9.6.9 biostacks 474

9.6.10 blktrace 475

9.6.11 bpftrace 479

9.6.12 MegaCli 484

9.6.13 smartctl 484

9.6.14 SCSI Logging 486

9.6.15 Other Tools 487

9.7 Visualizations 487

9.7.1 Line Graphs 487

9.7.2 Latency Scatter Plots 488

9.7.3 Latency Heat Maps 488

9.7.4 Offset Heat Maps 489

9.7.5 Utilization Heat Maps 490

9.8 Experimentation 490

9.8.1 Ad Hoc 490

9.8.2 Custom Load Generators 491

9.8.3 Micro-Benchmark Tools 491

9.8.4 Random Read Example 491

9.8.5 ioping 492

9.8.6 fio 493

9.8.7 blkreplay 493

9.9 Tuning 493

9.9.1 Operating System Tunables 493

xxii Contents

9.9.2 Disk Device Tunables 494

9.9.3 Disk Controller Tunables 494

9.10 Exercises 495

9.11 References 496

10 Network 499

10.1 Terminology 500

10.2 Models 501

10.2.1 Network Interface 501

10.2.2 Controller 501

10.2.3 Protocol Stack 502

10.3 Concepts 503

10.3.1 Networks and Routing 503

10.3.2 Protocols 504

10.3.3 Encapsulation 504

10.3.4 Packet Size 504

10.3.5 Latency 505

10.3.6 Buffering 507

10.3.7 Connection Backlog 507

10.3.8 Interface Negotiation 508

10.3.9 Congestion Avoidance 508

10.3.10 Utilization 508

10.3.11 Local Connections 509

10.4 Architecture 509

10.4.1 Protocols 509

10.4.2 Hardware 515

10.4.3 Software 517

10.5 Methodology 524

10.5.1 Tools Method 525

10.5.2 USE Method 526

10.5.3 Workload Characterization 527

10.5.4 Latency Analysis 528

10.5.5 Performance Monitoring 529

10.5.6 Packet Sniffing 530

10.5.7 TCP Analysis 531

10.5.8 Static Performance Tuning 531

10.5.9 Resource Controls 532

10.5.10 Micro-Benchmarking 533

 Contents xxiii

10.6 Observability Tools 533

10.6.1 ss 534

10.6.2 ip 536

10.6.3 ifconfig 537

10.6.4 nstat 538

10.6.5 netstat 539

10.6.6 sar 543

10.6.7 nicstat 545

10.6.8 ethtool 546

10.6.9 tcplife 548

10.6.10 tcptop 549

10.6.11 tcpretrans 549

10.6.12 bpftrace 550

10.6.13 tcpdump 558

10.6.14 Wireshark 560

10.6.15 Other Tools 560

10.7 Experimentation 562

10.7.1 ping 562

10.7.2 traceroute 563

10.7.3 pathchar 564

10.7.4 iperf 564

10.7.5 netperf 565

10.7.6 tc 566

10.7.7 Other Tools 567

10.8 Tuning 567

10.8.1 System-Wide 567

10.8.2 Socket Options 573

10.8.3 Configuration 574

10.9 Exercises 574

10.10 References 575

11 Cloud Computing 579

11.1 Background 580

11.1.1 Instance Types 581

11.1.2 Scalable Architecture 581

11.1.3 Capacity Planning 582

11.1.4 Storage 584

11.1.5 Multitenancy 585

11.1.6 Orchestration (Kubernetes) 586

xxiv Contents

11.2 Hardware Virtualization 587

11.2.1 Implementation 588

11.2.2 Overhead 589

11.2.3 Resource Controls 595

11.2.4 Observability 597

11.3 OS Virtualization 605

11.3.1 Implementation 607

11.3.2 Overhead 610

11.3.3 Resource Controls 613

11.3.4 Observability 617

11.4 Lightweight Virtualization 630

11.4.1 Implementation 631

11.4.2 Overhead 632

11.4.3 Resource Controls 632

11.4.4 Observability 632

11.5 Other Types 634

11.6 Comparisons 634

11.7 Exercises 636

11.8 References 637

12 Benchmarking 641

12.1 Background 642

12.1.1 Reasons 642

12.1.2 Effective Benchmarking 643

12.1.3 Benchmarking Failures 645

12.2 Benchmarking Types 651

12.2.1 Micro-Benchmarking 651

12.2.2 Simulation 653

12.2.3 Replay 654

12.2.4 Industry Standards 654

12.3 Methodology 656

12.3.1 Passive Benchmarking 656

12.3.2 Active Benchmarking 657

12.3.3 CPU Profiling 660

12.3.4 USE Method 661

12.3.5 Workload Characterization 662

12.3.6 Custom Benchmarks 662

12.3.7 Ramping Load 662

 Contents xxv

12.3.8 Sanity Check 664

12.3.9 Statistical Analysis 665

12.3.10 Benchmarking Checklist 666

12.4 Benchmark Questions 667

12.5 Exercises 668

12.6 References 669

13 perf 671

13.1 Subcommands Overview 672

13.2 One-Liners 674

13.3 perf Events 679

13.4 Hardware Events 681

13.4.1 Frequency Sampling 682

13.5 Software Events 683

13.6 Tracepoint Events 684

13.7 Probe Events 685

13.7.1 kprobes 685

13.7.2 uprobes 687

13.7.3 USDT 690

13.8 perf stat 691

13.8.1 Options 692

13.8.2 Interval Statistics 693

13.8.3 Per-CPU Balance 693

13.8.4 Event Filters 693

13.8.5 Shadow Statistics 694

13.9 perf record 694

13.9.1 Options 695

13.9.2 CPU Profiling 695

13.9.3 Stack Walking 696

13.10 perf report 696

13.10.1 TUI 697

13.10.2 STDIO 697

13.11 perf script 698

13.11.1 Flame Graphs 700

13.11.2 Trace Scripts 700

13.12 perf trace 701

13.12.1 Kernel Versions 702

13.13 Other Commands 702

xxvi Contents

13.14 perf Documentation 703

13.15 References 703

14 Ftrace 705

14.1 Capabilities Overview 706

14.2 tracefs (/sys) 708

14.2.1 tracefs Contents 709

14.3 Ftrace Function Profiler 711

14.4 Ftrace Function Tracing 713

14.4.1 Using trace 713

14.4.2 Using trace_pipe 715

14.4.3 Options 716

14.5 Tracepoints 717

14.5.1 Filter 717

14.5.2 Trigger 718

14.6 kprobes 719

14.6.1 Event Tracing 719

14.6.2 Arguments 720

14.6.3 Return Values 721

14.6.4 Filters and Triggers 721

14.6.5 kprobe Profiling 722

14.7 uprobes 722

14.7.1 Event Tracing 722

14.7.2 Arguments and Return Values 723

14.7.3 Filters and Triggers 723

14.7.4 uprobe Profiling 723

14.8 Ftrace function_graph 724

14.8.1 Graph Tracing 724

14.8.2 Options 725

14.9 Ftrace hwlat 726

14.10 Ftrace Hist Triggers 727

14.10.1 Single Keys 727

14.10.2 Fields 728

14.10.3 Modifiers 729

14.10.4 PID Filters 729

14.10.5 Multiple Keys 730

14.10.6 Stack Trace Keys 730

14.10.7 Synthetic Events 731

 Contents xxvii

14.11 trace-cmd 734

14.11.1 Subcommands Overview 734

14.11.2 trace-cmd One-Liners 736

14.11.3 trace-cmd vs. perf(1) 738

14.11.4 trace-cmd function_graph 739

14.11.5 KernelShark 739

14.11.6 trace-cmd Documentation 740

14.12 perf ftrace 741

14.13 perf-tools 741

14.13.1 Tool Coverage 742

14.13.2 Single-Purpose Tools 743

14.13.3 Multi-Purpose Tools 744

14.13.4 perf-tools One-Liners 745

14.13.5 Example 747

14.13.6 perf-tools vs. BCC/BPF 747

14.13.7 Documentation 748

14.14 Ftrace Documentation 748

14.15 References 749

15 BPF 751

15.1 BCC 753

15.1.1 Installation 754

15.1.2 Tool Coverage 754

15.1.3 Single-Purpose Tools 755

15.1.4 Multi-Purpose Tools 757

15.1.5 One-Liners 757

15.1.6 Multi-Tool Example 759

15.1.7 BCC vs. bpftrace 760

15.1.8 Documentation 760

15.2 bpftrace 761

15.2.1 Installation 762

15.2.2 Tools 762

15.2.3 One-Liners 763

15.2.4 Programming 766

15.2.5 Reference 774

15.2.6 Documentation 781

15.3 References 782

xxviii Contents

16 Case Study 783

16.1 An Unexplained Win 783

16.1.1 Problem Statement 783

16.1.2 Analysis Strategy 784

16.1.3 Statistics 784

16.1.4 Configuration 786

16.1.5 PMCs 788

16.1.6 Software Events 789

16.1.7 Tracing 790

16.1.8 Conclusion 792

16.2 Additional Information 792

16.3 References 793

A USE Method: Linux 795

B sar Summary 801

C bpftrace One-Liners 803

D Solutions to Selected Exercises 809

E Systems Performance Who’s Who 811

Glossary 815

Index 825

Preface
“There are known knowns; there are things we know we know. We also know there are known
unknowns; that is to say we know there are some things we do not know. But there are also
unknown unknowns—there are things we do not know we don’t know.”

—U.S. Secretary of Defense Donald Rumsfeld, February 12, 2002

While the previous statement was met with chuckles from those attending the press briefing,
it summarizes an important principle that is as relevant in complex technical systems as it is
in geopolitics: performance issues can originate from anywhere, including areas of the system
that you know nothing about and you are therefore not checking (the unknown unknowns).
This book may reveal many of these areas, while providing methodologies and tools for their
analysis.

About This Edition
I wrote the first edition eight years ago and designed it to have a long shelf life. Chapters are
structured to first cover durable skills (models, architecture, and methodologies) and then faster-
changing skills (tools and tuning) as example implementations. While the example tools and
tuning will go out of date, the durable skills show you how to stay updated.

There has been a large addition to Linux in the past eight years: Extended BPF, a kernel technol-
ogy that powers a new generation of performance analysis tools, which is used by companies
including Netflix and Facebook. I have included a BPF chapter and BPF tools in this new edition,
and I have also published a deeper reference on the topic [Gregg 19]. The Linux perf and Ftrace
tools have also seen many developments, and I have added separate chapters for them as well.
The Linux kernel has gained many performance features and technologies, also covered. The
hypervisors that drive cloud computing virtual machines, and container technologies, have also
changed considerably; that content has been updated.

The first edition covered both Linux and Solaris equally. Solaris market share has shrunk consid-
erably in the meantime [ITJobsWatch 20], so the Solaris content has been largely removed from
this edition, making room for more Linux content to be included. However, your understanding
of an operating system or kernel can be enhanced by considering an alternative, for perspective.
For that reason, some mentions of Solaris and other operating systems are included in this
edition.

For the past six years I have been a senior performance engineer at Netflix, applying the field of
systems performance to the Netflix microservices environment. I’ve worked on the performance
of hypervisors, containers, runtimes, kernels, databases, and applications. I’ve developed new
methodologies and tools as needed, and worked with experts in cloud performance and Linux
kernel engineering. These experiences have contributed to improving this edition.

xxx Preface

About This Book
Welcome to Systems Performance: Enterprise and the Cloud, 2nd Edition! This book is about the
performance of operating systems and of applications from the operating system context, and it is
written for both enterprise server and cloud computing environments. Much of the material in
this book can also aid your analysis of client devices and desktop operating systems. My aim
is to help you get the most out of your systems, whatever they are.

When working with application software that is under constant development, you may be
tempted to think of operating system performance—where the kernel has been developed and
tuned for decades—as a solved problem. It isn’t! The operating system is a complex body of soft-
ware, managing a variety of ever-changing physical devices with new and different application
workloads. The kernels are also in constant development, with features being added to improve
the performance of particular workloads, and newly encountered bottlenecks being removed as
systems continue to scale. Kernel changes such as the mitigations for the Meltdown vulnerabil-
ity that were introduced in 2018 can also hurt performance. Analyzing and working to improve
the performance of the operating system is an ongoing task that should lead to continual perfor-
mance improvements. Application performance can also be analyzed from the operating system
context to find more clues that might be missed using application-specific tools alone; I’ll cover
that here as well.

Operating System Coverage
The main focus of this book is the study of systems performance, using Linux-based operating
systems on Intel processors as the primary example. The content is structured to help you study
other kernels and processors as well.

Unless otherwise noted, the specific Linux distribution is not important in the examples used.
The examples are mostly from the Ubuntu distribution and, when necessary, notes are included
to explain differences for other distributions. The examples are also taken from a variety of
 system types: bare metal and virtualized, production and test, servers and client devices.

Across my career I’ve worked with a variety of different operating systems and kernels, and this
has deepened my understanding of their design. To deepen your understanding as well, this
book includes some mentions of Unix, BSD, Solaris, and Windows.

Other Content
Example screenshots from performance tools are included, not just for the data shown, but also
to illustrate the types of data available. The tools often present the data in intuitive and self-
explanatory ways, many in the familiar style of earlier Unix tools. This means that screenshots
can be a powerful way to convey the purpose of these tools, some requiring little additional
description. (If a tool does require laborious explanation, that may be a failure of design!)

Where it provides useful insight to deepen your understanding, I touch upon the history of
certain technologies. It is also useful to learn a bit about the key people in this industry: you’re
likely to come across them or their work in performance and other contexts. A “who’s who” list
has been provided in Appendix E.

 Preface xxxi

A handful of topics in this book were also covered in my prior book, BPF Performance Tools
[Gregg 19]: in particular, BPF, BCC, bpftrace, tracepoints, kprobes, uprobes, and various BPF-
based tools. You can refer to that book for more information. The summaries of these topics in
this book are often based on that earlier book, and sometimes use the same text and examples.

What Isn’t Covered
This book focuses on performance. To undertake all the example tasks given will require, at times,
some system administration activities, including the installation or compilation of software
(which is not covered here).

The content also summarizes operating system internals, which are covered in more detail in
separate dedicated texts. Advanced performance analysis topics are summarized so that you
are aware of their existence and can study them as needed from additional sources. See the
Supplemental Material section at the end of this Preface.

How This Book Is Structured
Chapter 1, Introduction, is an introduction to systems performance analysis, summarizing key
concepts and providing examples of performance activities.

Chapter 2, Methodologies, provides the background for performance analysis and tuning,
including terminology, concepts, models, methodologies for observation and experimentation,
capacity planning, analysis, and statistics.

Chapter 3, Operating Systems, summarizes kernel internals for the performance analyst. This
is necessary background for interpreting and understanding what the operating system is doing.

Chapter 4, Observability Tools, introduces the types of system observability tools available,
and the interfaces and frameworks upon which they are built.

Chapter 5, Applications, discusses application performance topics and observing them from
the operating system.

Chapter 6, CPUs, covers processors, cores, hardware threads, CPU caches, CPU interconnects,
device interconnects, and kernel scheduling.

Chapter 7, Memory, is about virtual memory, paging, swapping, memory architectures, buses,
address spaces, and allocators.

Chapter 8, File Systems, is about file system I/O performance, including the different caches
involved.

Chapter 9, Disks, covers storage devices, disk I/O workloads, storage controllers, RAID, and the
kernel I/O subsystem.

Chapter 10, Network, is about network protocols, sockets, interfaces, and physical connections.

Chapter 11, Cloud Computing, introduces operating system– and hardware-based virtualiza-
tion methods in common use for cloud computing, along with their performance overhead,
isolation, and observability characteristics. This chapter covers hypervisors and containers.

xxxii Preface

Chapter 12, Benchmarking, shows how to benchmark accurately, and how to interpret others’
benchmark results. This is a surprisingly tricky topic, and this chapter shows how you can avoid
common mistakes and try to make sense of it.

Chapter 13, perf, summarizes the standard Linux profiler, perf(1), and its many capabilities.
This is a reference to support perf(1)’s use throughout the book.

Chapter 14, Ftrace, summarizes the standard Linux tracer, Ftrace, which is especially suited for
exploring kernel code execution.

Chapter 15, BPF, summarizes the standard BPF front ends: BCC and bpftrace.

Chapter 16, Case Study, contains a systems performance case study from Netflix, showing how
a production performance puzzle was analyzed from beginning to end.

Chapters 1 to 4 provide essential background. After reading them, you can reference the remain-
der of the book as needed, in particular Chapters 5 to 12, which cover specific targets for analysis.
Chapters 13 to 15 cover advanced profiling and tracing, and are optional reading for those who
wish to learn one or more tracers in more detail.

Chapter 16 uses a storytelling approach to paint a bigger picture of a performance engineer’s
work. If you’re new to performance analysis, you might want to read this first as an example of
performance analysis using a variety of different tools, and then return to it when you’ve read
the other chapters.

As a Future Reference
This book has been written to provide value for many years, by focusing on background and
methodologies for the systems performance analyst.

To support this, many chapters have been separated into two parts. The first part consists of terms,
concepts, and methodologies (often with those headings), which should stay relevant many years
from now. The second provides examples of how the first part is implemented: architecture,
analysis tools, and tunables, which, while they will become out-of-date, will still be useful as
examples.

Tracing Examples
We frequently need to explore the operating system in depth, which can be done using tracing
tools.

Since the first edition of this book, extended BPF has been developed and merged into the Linux
kernel, powering a new generation of tracing tools that use the BCC and bpftrace front ends.
This book focuses on BCC and bpftrace, and also the Linux kernel’s built-in Ftrace tracer. BPF,
BCC, and bpftrace, are covered in more depth in my prior book [Gregg 19].

Linux perf is also included in this book and is another tool that can do tracing. However, perf is
usually included in chapters for its sampling and PMC analysis capabilities, rather than for tracing.

You may need or wish to use different tracing tools, which is fine. The tracing tools in this book
are used to show the questions that you can ask of the system. It is often these questions, and the
methodologies that pose them, that are the most difficult to know.

 Preface xxxiii

Intended Audience
The intended audience for this book is primarily systems administrators and operators of
enterprise and cloud computing environments. It is also a reference for developers, database
administrators, and web server administrators who need to understand operating system and
application performance.

As a performance engineer at a company with a large compute environment (Netflix), I frequently
work with SREs (site reliability engineers) and developers who are under enormous time pressure
to solve multiple simultaneous performance issues. I have also been on the Netflix CORE SRE
on-call rotation and have experienced this pressure firsthand. For many people, performance is
not their primary job, and they need to know just enough to solve the current issues. Knowing
that your time may be limited has encouraged me to keep this book as short as possible, and
structure it to facilitate jumping ahead to specific chapters.

Another intended audience is students: this book is also suitable as a supporting text for a systems
performance course. I have taught these classes before and learned which types of material work
best in leading students to solve performance problems; that has guided my choice of content for
this book.

Whether or not you are a student, the chapter exercises give you an opportunity to review and
apply the material. These include some optional advanced exercises, which you are not expected
to solve. (They may be impossible; they should at least be thought-provoking.)

In terms of company size, this book should contain enough detail to satisfy environments from
small to large, including those with dozens of dedicated performance staff. For many smaller
companies, the book may serve as a reference when needed, with only some portions of it used
day to day.

Typographic Conventions
The following typographical conventions are used throughout this book:

Example Description

netif_receive_skb() Function name

iostat(1) A command referenced by chapter 1 of its man page

read(2) A system call referenced by its man page

malloc(3) A C library function call referenced by its man page

vmstat(8) An administration command referenced by its man page

Documentation/... Linux documentation in the Linux kernel source tree

kernel/... Linux kernel source code

fs/... Linux kernel source code, file systems

CONFIG_... Linux kernel configuration option (Kconfig)

r_await Command line input and output

xxxiv Preface

Example Description

mpstat 1 Highlighting of a typed command or key detail

Superuser (root) shell prompt

$ User (non-root) shell prompt

^C A command was interrupted (Ctrl-C)

[...] Truncation

Supplemental Material, References, and Bibliography
References are listed are at the end of each chapter rather than in a single bibliography, allowing
you to browse references related to each chapter’s topic. The following selected texts can also be
referenced for further background on operating systems and performance analysis:

[Jain 91] Jain, R., The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modeling, Wiley, 1991.

[Vahalia 96] Vahalia, U., UNIX Internals: The New Frontiers, Prentice Hall, 1996.

[Cockcroft 98] Cockcroft, A., and Pettit, R., Sun Performance and Tuning: Java and the Internet,
Prentice Hall, 1998.

[Musumeci 02] Musumeci, G. D., and Loukides, M., System Performance Tuning, 2nd Edition,
O’Reilly, 2002.

[Bovet 05] Bovet, D., and Cesati, M., Understanding the Linux Kernel, 3rd Edition, O’Reilly,
2005.

[McDougall 06a] McDougall, R., Mauro, J., and Gregg, B., Solaris Performance and Tools:
DTrace and MDB Techniques for Solaris 10 and OpenSolaris, Prentice Hall, 2006.

[Gove 07] Gove, D., Solaris Application Programming, Prentice Hall, 2007.

[Love 10] Love, R., Linux Kernel Development, 3rd Edition, Addison-Wesley, 2010.

[Gregg 11a] Gregg, B., and Mauro, J., DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X and
FreeBSD, Prentice Hall, 2011.

[Gregg 13a] Gregg, B., Systems Performance: Enterprise and the Cloud, Prentice Hall, 2013
(first edition).

[Gregg 19] Gregg, B., BPF Performance Tools: Linux System and Application Observability,
Addison-Wesley, 2019.

[ITJobsWatch 20] ITJobsWatch, “Solaris Jobs,” https://www.itjobswatch.co.uk/jobs/uk/
solaris.do#demand_trend, accessed 2020.

https://www.itjobswatch.co.uk/jobs/uk/solaris.do#demand_trend
https://www.itjobswatch.co.uk/jobs/uk/solaris.do#demand_trend

Acknowledgments
Thanks to all those who bought the first edition, especially those who made it recommended or
required reading at their companies. Your support for the first edition has led to the creation of
this second edition. Thank you.

This is the latest book on systems performance, but not the first. I’d like to thank prior authors
for their work, work that I have built upon and referenced in this text. In particular I’d like to
thank Adrian Cockcroft, Jim Mauro, Richard McDougall, Mike Loukides, and Raj Jain. As they
have helped me, I hope to help you.

I’m grateful for everyone who provided feedback on this edition:

Deirdré Straughan has again supported me in various ways throughout this book, including
using her years of experience in technical copy editing to improve every page. The words you
read are from both of us. We enjoy not just spending time together (we are married now), but
also working together. Thank you.

Philipp Marek is an IT forensics specialist, IT architect, and performance engineer at the
Austrian Federal Computing Center. He provided early technical feedback on every topic in
this book (an amazing feat) and even spotted problems in the first edition text. Philipp started
programming in 1983 on a 6502, and has been looking for additional CPU cycles ever since.
Thanks, Philipp, for your expertise and relentless work.

Dale Hamel (Shopify) also reviewed every chapter, providing important insights for various
cloud technologies, and another consistent point of view across the entire book. Thanks for
taking this on, Dale—right after helping with the BPF book!

Daniel Borkmann (Isovalent) provided deep technical feedback for a number of chapters,
 especially the networking chapter, helping me to better understand the complexities and tech-
nologies involved. Daniel is a Linux kernel maintainer with years of experience working on the
kernel network stack and extended BPF. Thank you, Daniel, for the expertise and rigor.

I’m especially thankful that perf maintainer Arnaldo Carvalho de Melo (Red Hat) helped with
Chapter 13, perf; and Ftrace creator Steven Rostedt (VMware) helped with Chapter 14, Ftrace,
two topics that I had not covered well enough in the first edition. Apart from their help with this
book, I also appreciate their excellent work on these advanced performance tools, tools that I’ve
used to solve countless production issues at Netflix.

It has been a pleasure to have Dominic Kay pick through several chapters and find even more
ways to improve their readability and technical accuracy. Dominic also helped with the first
 edition (and before that, was my colleague at Sun Microsystems working on performance).
Thank you, Dominic.

My current performance colleague at Netflix, Amer Ather, provided excellent feedback on sev-
eral chapters. Amer is a go-to engineer for understanding complex technologies. Zachary Jones
(Verizon) also provided feedback for complex topics, and shared his performance expertise to
improve the book. Thank you, Amer and Zachary.

A number of reviewers took on multiple chapters and engaged in discussion on specific topics:
Alejandro Proaño (Amazon), Bikash Sharma (Facebook), Cory Lueninghoener (Los Alamos

xxxvi Acknowledgments

National Laboratory), Greg Dunn (Amazon), John Arrasjid (Ottometric), Justin Garrison (Amazon),
Michael Hausenblas (Amazon), and Patrick Cable (Threat Stack). Thanks, all, for your technical
help and enthusiasm for the book.

Also thanks to Aditya Sarwade (Facebook), Andrew Gallatin (Netflix), Bas Smit, George Neville-
Neil (JUUL Labs), Jens Axboe (Facebook), Joel Fernandes (Google), Randall Stewart (Netflix),
Stephane Eranian (Google), and Toke Høiland-Jørgensen (Red Hat), for answering questions and
timely technical feedback.

The contributors to my earlier book, BPF Performance Tools, have indirectly helped, as some
 material in this edition is based on that earlier book. That material was improved thanks to
Alastair Robertson (Yellowbrick Data), Alexei Starovoitov (Facebook), Daniel Borkmann, Jason
Koch (Netflix), Mary Marchini (Netflix), Masami Hiramatsu (Linaro), Mathieu Desnoyers
(EfficiOS), Yonghong Song (Facebook), and more. See that book for the full acknowledgments.

This second edition builds upon the work in the first edition. The acknowledgments from the
first edition thanked the many people who supported and contributed to that work; in summary,
across multiple chapters I had technical feedback from Adam Leventhal, Carlos Cardenas,
Darryl Gove, Dominic Kay, Jerry Jelinek, Jim Mauro, Max Bruning, Richard Lowe, and Robert
Mustacchi. I also had feedback and support from Adrian Cockcroft, Bryan Cantrill, Dan
McDonald, David Pacheco, Keith Wesolowski, Marsell Kukuljevic-Pearce, and Paul Eggleton.
Roch Bourbonnais and Richard McDougall helped indirectly as I learned so much from their
prior performance engineering work, and Jason Hoffman helped behind the scenes to make
the first edition possible.

The Linux kernel is complicated and ever-changing, and I appreciate the stellar work by Jonathan
Corbet and Jake Edge of lwn.net for summarizing so many deep topics. Many of their articles are
referenced in this book.

A special thanks to Greg Doench, executive editor at Pearson, for his help, encouragement, and
 flexibility in making this process more efficient than ever. Thanks to content producer Julie
Nahil (Pearson) and project manager Rachel Paul, for their attention to detail and help in deliv-
ering a quality book. Thanks to copy editor Kim Wimpsett for the working through another one
of my lengthy and deeply technical books, finding many ways to improve the text.

And thanks, Mitchell, for your patience and understanding.

Since the first edition, I’ve continued to work as a performance engineer, debugging issues
everywhere in the stack, from applications to metal. I now have many new experiences with
 performance tuning hypervisors, analyzing runtimes including the JVM, using tracers including
Ftrace and BPF in production, and coping with the fast pace of changes in the Netflix micro-
services environment and the Linux kernel. So much of this is not well documented, and it had
been daunting to consider what I needed to do for this edition. But I like a challenge.

http://lwn.net

About the Author
Brendan Gregg is an industry expert in computing performance and cloud computing. He is a
senior performance architect at Netflix, where he does performance design, evaluation, analysis,
and tuning. The author of multiple technical books, including BPF Performance Tools, he received
the USENIX LISA Award for Outstanding Achievement in System Administration. He has also
been a kernel engineer, performance lead, and professional technical trainer, and was program
co-chair for the USENIX LISA 2018 conference. He has created performance tools included
in multiple operating systems, along with visualizations and methodologies for performance
 analysis, including flame graphs.

This page intentionally left blank

Chapter 3

Operating Systems

An understanding of the operating system and its kernel is essential for systems performance
analysis. You will frequently need to develop and then test hypotheses about system behavior,
such as how system calls are being performed, how the kernel schedules threads on CPUs, how
limited memory could be affecting performance, or how a file system processes I/O. These
activities will require you to apply your knowledge of the operating system and the kernel.

The learning objectives of this chapter are:

 ■ Learn kernel terminology: context switches, swapping, paging, preemption, etc.

 ■ Understand the role of the kernel and system calls.

 ■ Gain a working knowledge of kernel internals, including: interrupts, schedulers, virtual
memory, and the I/O stack.

 ■ See how kernel performance features have been added from Unix to Linux.

 ■ Develop a basic understanding of extended BPF.

This chapter provides an overview of operating systems and kernels and is assumed knowl-
edge for the rest of the book. If you missed operating systems class, you can treat this as a crash
course. Keep an eye out for any gaps in your knowledge, as there will be an exam at the end (I’m
kidding; it’s just a quiz). For more on kernel internals, see the references at the end of
this chapter.

This chapter has three sections:

 ■ Terminology lists essential terms.

 ■ Background summarizes key operating system and kernel concepts.

 ■ Kernels summarizes implementation specifics of Linux and other kernels.

Areas related to performance, including CPU scheduling, memory, disks, file systems, network-
ing, and many specific performance tools, are covered in more detail in the chapters that
follow.

90 Chapter 3}}Operating Systems

3.1 Terminology
For reference, here is the core operating system terminology used in this book. Many of these are
also concepts that are explained in more detail in this and later chapters.

 ■ Operating system: This refers to the software and files that are installed on a system so
that it can boot and execute programs. It includes the kernel, administration tools, and
system libraries.

 ■ Kernel: The kernel is the program that manages the system, including (depending on the
kernel model) hardware devices, memory, and CPU scheduling. It runs in a privileged
CPU mode that allows direct access to hardware, called kernel mode.

 ■ Process: An OS abstraction and environment for executing a program. The program runs
in user mode, with access to kernel mode (e.g., for performing device I/O) via system calls
or traps into the kernel.

 ■ Thread: An executable context that can be scheduled to run on a CPU. The kernel has
multiple threads, and a process contains one or more.

 ■ Task: A Linux runnable entity, which can refer to a process (with a single thread), a thread
from a multithreaded process, or kernel threads.

 ■ BPF program: A kernel-mode program running in the BPF1 execution environment.

 ■ Main memory: The physical memory of the system (e.g., RAM).

 ■ Virtual memory: An abstraction of main memory that supports multitasking and over-
subscription. It is, practically, an infinite resource.

 ■ Kernel space: The virtual memory address space for the kernel.

 ■ User space: The virtual memory address space for processes.

 ■ User land: User-level programs and libraries (/usr/bin, /usr/lib...).

 ■ Context switch: A switch from running one thread or process to another. This is a normal
function of the kernel CPU scheduler, and involves switching the set of running CPU
registers (the thread context) to a new set.

 ■ Mode switch: A switch between kernel and user modes.

 ■ System call (syscall): A well-defined protocol for user programs to request the kernel to
perform privileged operations, including device I/O.

 ■ Processor: Not to be confused with process, a processor is a physical chip containing one
or more CPUs.

 ■ Trap: A signal sent to the kernel to request a system routine (privileged action). Trap types
include system calls, processor exceptions, and interrupts.

1 BPF originally stood for Berkeley Packet Filter, but the technology today has so little to do with Berkeley, packets, or

filtering that BPF has become a name in itself rather than an acronym.

 3.2 Background 91

 ■ Hardware interrupt: A signal sent by physical devices to the kernel, usually to request
servicing of I/O. An interrupt is a type of trap.

The Glossary includes more terminology for reference if needed for this chapter, including
address space, buffer, CPU, file descriptor, POSIX, and registers.

3.2 Background
The following sections describe generic operating system and kernel concepts, and will help you
understand any operating system. To aid your comprehension, this section includes some Linux
implementation details. The next sections, 3.3 Kernels, and 3.4 Linux, focus on Unix, BSD, and
Linux kernel implementation specifics.

3.2.1 Kernel
The kernel is the core software of the operating system. What it does depends on the kernel
model: Unix-like operating systems including Linux and BSD have a monolithic kernel that
manages CPU scheduling, memory, file systems, network protocols, and system devices (disks,
network interfaces, etc.). This kernel model is shown in Figure 3.1.

Figure 3.1 Role of a monolithic operating system kernel

Also shown are system libraries, which are often used to provide a richer and easier program-
ming interface than the system calls alone. Applications include all running user-level software,
including databases, web servers, administration tools, and operating system shells.

92 Chapter 3}}Operating Systems

System libraries are pictured here as a broken ring to show that applications can call system calls
(syscalls) directly.2 For example, the Golang runtime has its own syscall layer that doesn’t require
the system library, libc. Traditionally, this diagram is drawn with complete rings, which reflect
decreasing levels of privilege starting with the kernel at the center (a model that originated in
Multics [Graham 68], the predecessor of Unix).

Other kernel models also exist: microkernels employ a small kernel with functionality moved to
user-mode programs; and unikernels compile kernel and application code together as a single pro-
gram. There are also hybrid kernels, such as the Windows NT kernel, which use approaches from
both monolithic kernels and microkernels together. These are summarized in Section 3.5, Other
Topics.

Linux has recently changed its model by allowing a new software type: Extended BPF, which
enables secure kernel-mode applications along with its own kernel API: BPF helpers. This allows
some applications and system functions to be rewritten in BPF, providing higher levels of secu-
rity and performance. This is pictured in Figure 3.2.

Figure 3.2 BPF applications

Extended BPF is summarized is Section 3.4.4, Extended BPF.

Kernel Execution

The kernel is a large program, typically millions of lines of code. It primarily executes on
demand, when a user-level program makes a system call, or a device sends an interrupt. Some
kernel threads operate asynchronously for housekeeping, which may include the kernel clock
routine and memory management tasks, but these try to be lightweight and consume very little
CPU resources.

2 There are some exceptions to this model. Kernel bypass technologies, sometimes used for networking, allow user-

level to access hardware directly (see Chapter 10, Network, Section 10.4.3, Software, heading Kernel Bypass).

I/O to hardware may also be submitted without the expense of the syscall interface (although syscalls are required

for initialization), for example, with memory-mapped I/O, major faults (see Chapter 7, Memory, Section 7.2.3,

Demand Paging), sendfile(2), and Linux io_uring (see Chapter 5, Applications, Section 5.2.6, Non-Blocking I/O).

 3.2 Background 93

Workloads that perform frequent I/O, such as web servers, execute mostly in kernel context.
Workloads that are compute-intensive usually run in user mode, uninterrupted by the kernel.
It may be tempting to think that the kernel cannot affect the performance of these compute-
intensive workloads, but there are many cases where it does. The most obvious is CPU contention,
when other threads are competing for CPU resources and the kernel scheduler needs to decide
which will run and which will wait. The kernel also chooses which CPU a thread will run on
and can choose CPUs with warmer hardware caches or better memory locality for the process,
to significantly improve performance.

3.2.2 Kernel and User Modes
The kernel runs in a special CPU mode called kernel mode, allowing full access to devices and the
execution of privileged instructions. The kernel arbitrates device access to support multitasking,
preventing processes and users from accessing each other’s data unless explicitly allowed.

User programs (processes) run in user mode, where they request privileged operations from the
kernel via system calls, such as for I/O.

Kernel and user mode are implemented on processors using privilege rings (or protection rings) fol-
lowing the model in Figure 3.1. For example, x86 processors support four privilege rings, numbered
0 to 3. Typically only two or three are used: for user mode, kernel mode, and the hypervisor if
present. Privileged instructions for accessing devices are only allowed in kernel mode; executing
them in user mode causes exceptions, which are then handled by the kernel (e.g., to generate a
permission denied error).

In a traditional kernel, a system call is performed by switching to kernel mode and then execut-
ing the system call code. This is shown in Figure 3.3.

Figure 3.3 System call execution modes

Switching between user and kernel modes is a mode switch.

All system calls mode switch. Some system calls also context switch: those that are blocking, such
as for disk and network I/O, will context switch so that another thread can run while the first is
blocked.

94 Chapter 3}}Operating Systems

Since mode and context switches cost a small amount of overhead (CPU cycles),3 there are various
optimizations to avoid them, including:

 ■ User-mode syscalls: It is possible to implement some syscalls in a user-mode library alone.
The Linux kernel does this by exporting a virtual dynamic shared object (vDSO) that is
mapped into the process address space, which contains syscalls such as gettimeofday(2)
and getcpu(2) [Drysdale 14].

 ■ Memory mappings: Used for demand paging (see Chapter 7, Memory, Section 7.2.3,
Demand Paging), it can also be used for data stores and other I/O, avoiding syscall
overheads.

 ■ Kernel bypass: This allows user-mode programs to access devices directly, bypassing
syscalls and the typical kernel code path. For example, DPDK for networking: the Data
Plane Development Kit.

 ■ Kernel-mode applications: These include the TUX web server [Lever 00], implemented
in-kernel, and more recently the extended BPF technology pictured in Figure 3.2.

Kernel and user mode have their own software execution contexts, including a stack and regis-
ters. Some processor architectures (e.g., SPARC) use a separate address space for the kernel, which
means the mode switch must also change the virtual memory context.

3.2.3 System Calls
System calls request the kernel to perform privileged system routines. There are hundreds of system
calls available, but some effort is made by kernel maintainers to keep that number as small
as possible, to keep the kernel simple (Unix philosophy; [Thompson 78]). More sophisticated
 interfaces can be built upon them in user-land as system libraries, where they are easier to
develop and maintain. Operating systems generally include a C standard library that provides
easier-to-use interfaces for many common syscalls (e.g., the libc or glibc libraries).

Key system calls to remember are listed in Table 3.1.

Table 3.1 Key system calls

System Call Description

read(2) Read bytes

write(2) Write bytes

open(2) Open a file

close(2) Close a file

fork(2) Create a new process

clone(2) Create a new process or thread

exec(2) Execute a new program

3 With the current mitigation for the Meltdown vulnerability, context switches are now more expensive. See

Section 3.4.3 KPTI (Meltdown).

 3.2 Background 95

System Call Description

connect(2) Connect to a network host

accept(2) Accept a network connection

stat(2) Fetch file statistics

ioctl(2) Set I/O properties, or other miscellaneous functions

mmap(2) Map a file to the memory address space

brk(2) Extend the heap pointer

futex(2) Fast user-space mutex

System calls are well documented, each having a man page that is usually shipped with the oper-
ating system. They also have a generally simple and consistent interface and use error codes to
describe errors when needed (e.g., ENOENT for “no such file or directory”).4

Many of these system calls have an obvious purpose. Here are a few whose common usage may
be less obvious:

 ■ ioctl(2): This is commonly used to request miscellaneous actions from the kernel, espe-
cially for system administration tools, where another (more obvious) system call isn’t
suitable. See the example that follows.

 ■ mmap(2): This is commonly used to map executables and libraries to the process address
space, and for memory-mapped files. It is sometimes used to allocate the working memory
of a process, instead of the brk(2)-based malloc(2), to reduce the syscall rate and improve
performance (which doesn’t always work due to the trade-off involved: memory-mapping
management).

 ■ brk(2): This is used to extend the heap pointer, which defines the size of the working
memory of the process. It is typically performed by a system memory allocation library,
when a malloc(3) (memory allocate) call cannot be satisfied from the existing space in the
heap. See Chapter 7, Memory.

 ■ futex(2): This syscall is used to handle part of a user space lock: the part that is likely to block.

If a system call is unfamiliar, you can learn more in its man page (these are in section 2 of the
man pages: syscalls).

The ioctl(2) syscall may be the most difficult to learn, due to its ambiguous nature. As an
example of its usage, the Linux perf(1) tool (introduced in Chapter 6, CPUs) performs privileged
actions to coordinate performance instrumentation. Instead of system calls being added for each
action, a single system call is added: perf_event_open(2), which returns a file descriptor for use
with ioctl(2). This ioctl(2) can then be called using different arguments to perform the different
desired actions. For example, ioctl(fd, PERF_EVENT_IOC_ENABLE) enables instrumentation.
The arguments, in this example PERF_EVENT_IOC_ENABLE, can be more easily added and
changed by the developer.

4 glibc provides these errors in an errno (error number) integer variable.

96 Chapter 3}}Operating Systems

3.2.4 Interrupts
An interrupt is a signal to the processor that some event has occurred that needs processing, and
interrupts the current execution of the processor to handle it. It typically causes the processor
to enter kernel mode if it isn’t already, save the current thread state, and then run an interrupt
service routine (ISR) to process the event.

There are asynchronous interrupts generated by external hardware and synchronous interrupts
generated by software instructions. These are pictured in Figure 3.4.

Figure 3.4 Interrupt types

For simplicity Figure 3.4 shows all interrupts sent to the kernel for processing; these are sent to
the CPU first, which selects the ISR in the kernel to run the event.

Asynchronous Interrupts

Hardware devices can send interrupt service requests (IRQs) to the processor, which arrive asyn-
chronously to the currently running software. Examples of hardware interrupts include:

 ■ Disk devices signaling the completion of disk I/O

 ■ Hardware indicating a failure condition

 ■ Network interfaces signaling the arrival of a packet

 ■ Input devices: keyboard and mouse input

To explain the concept of asynchronous interrupts, an example scenario is pictured in Figure 3.5
showing the passage of time as a database (MySQL) running on CPU 0 reads from a file system.
The file system contents must be fetched from disk, so the scheduler context switches to another
thread (a Java application) while the database is waiting. Sometime later, the disk I/O completes,

 3.2 Background 97

but at this point the database is no longer running on CPU 0. The completion interrupt has
occurred asynchronously to the database, showed by a dotted line in Figure 3.5.

Figure 3.5 Asynchronous interrupt example

Synchronous Interrupts

Synchronous interrupts are generated by software instructions. The following describes differ-
ent types of software interrupts using the terms traps, exceptions, and faults; however, these terms
are often used interchangeably.

 ■ Traps: A deliberate call into the kernel, such as by the int (interrupt) instruction. One
implementation of syscalls involves calling the int instruction with a vector for a syscall
handler (e.g., int 0x80 on Linux x86). int raises a software interrupt.

 ■ Exceptions: A exceptional condition, such as by an instruction performing a divide by
zero.

 ■ Faults: A term often used for memory events, such as page faults triggered by accessing a
memory location without an MMU mapping. See Chapter 7, Memory.

For these interrupts, the responsible software and instruction are still on CPU.

Interrupt Threads

Interrupt service routines (ISRs) are designed to operate as quickly as possible, to reduce the
effects of interrupting active threads. If an interrupt needs to perform more than a little work,
especially if it may block on locks, it can be processed by an interrupt thread that can be sched-
uled by the kernel. This is pictured in Figure 3.6.

98 Chapter 3}}Operating Systems

Figure 3.6 Interrupt processing

How this is implemented depends on the kernel version. On Linux, device drivers can be mod-
eled as two halves, with the top half handling the interrupt quickly, and scheduling work to a
bottom half to be processed later [Corbet 05]. Handling the interrupt quickly is important as the
top half runs in interrupt-disabled mode to postpone the delivery of new interrupts, which can
cause latency problems for other threads if it runs for too long. The bottom half can be either
tasklets or work queues; the latter are threads that can be scheduled by the kernel and can sleep
when necessary.

Linux network drivers, for example, have a top half to handle IRQs for inbound packets, which
calls the bottom half to push the packet up the network stack. The bottom half is implemented
as a softirq (software interrupt).

The time from an interrupt’s arrival to when it is serviced is the interrupt latency, which is depen-
dent on the hardware and implementation. This is a subject of study for real-time or low-latency
systems.

Interrupt Masking

Some code paths in the kernel cannot be interrupted safely. An example is kernel code that
acquires a spin lock during a system call, for a spin lock that might also be needed by an inter-
rupt. Taking an interrupt with such a lock held could cause a deadlock. To prevent such a situ-
ation, the kernel can temporarily mask interrupts by setting the CPU’s interrupt mask register.
The interrupt disabled time should be as short as possible, as it can perturb the timely execution
of applications that are woken up by other interrupts. This is an important factor for real-time
systems—those that have strict response time requirements. Interrupt disabled time is also a
target of performance analysis (such analysis is supported directly by the Ftrace irqsoff tracer,
mentioned in Chapter 14, Ftrace).

Some high-priority events should not be ignored, and so are implemented as non-maskable inter-
rupts (NMIs). For example, Linux can use an Intelligent Platform Management Interface (IPMI)

 3.2 Background 99

watchdog timer that checks if the kernel appears to have locked up based on a lack of interrupts
during a period of time. If so, the watchdog can issue an NMI interrupt to reboot the system.5

3.2.5 Clock and Idle
A core component of the original Unix kernel is the clock() routine, executed from a timer inter-
rupt. It has historically been executed at 60, 100, or 1,000 times per second6 (often expressed
in Hertz: cycles per second), and each execution is called a tick.7 Its functions have included
updating the system time, expiring timers and time slices for thread scheduling, maintaining
CPU statistics, and executing scheduled kernel routines.

There have been performance issues with the clock, improved in later kernels, including:

 ■ Tick latency: For 100 Hertz clocks, up to 10 ms of additional latency may be encountered
for a timer as it waits to be processed on the next tick. This has been fixed using high-
resolution real-time interrupts so that execution occurs immediately.

 ■ Tick overhead: Ticks consume CPU cycles and slightly perturb applications, and are one
cause of what is known as operating system jitter. Modern processors also have dynamic
power features, which can power down parts during idle periods. The clock routine inter-
rupts this idle time, which can consume power needlessly.

Modern kernels have moved much functionality out of the clock routine to on-demand inter-
rupts, in an effort to create a tickless kernel. This reduces overhead and improves power efficiency
by allowing processors to remain in sleep states for longer.

The Linux clock routine is scheduler_tick(), and Linux has ways to omit calling the clock
while there isn’t any CPU load. The clock itself typically runs at 250 Hertz (configured by the
CONFIG_HZ Kconfig option and variants), and its calls are reduced by the NO_HZ functionality
(configured by CONFIG_NO_HZ and variants), which is now commonly enabled [Linux 20a].

Idle Thread

When there is no work for the CPUs to perform, the kernel schedules a placeholder thread that
waits for work, called the idle thread. A simple implementation would check for the availability
of new work in a loop. In modern Linux the idle task can call the hlt (halt) instruction to power
down the CPU until the next interrupt is received, saving power.

3.2.6 Processes
A process is an environment for executing a user-level program. It consists of a memory address
space, file descriptors, thread stacks, and registers. In some ways, a process is like a virtual early
computer, where only one program is executing with its own registers and stacks.

5 Linux also has a software NMI watchdog for detecting lockups [Linux 20d].
6 Other rates include 250 for Linux 2.6.13, 256 for Ultrix, and 1,024 for OSF/1 [Mills 94].
7 Linux also tracks jiffies, a unit of time similar to ticks.

100 Chapter 3}}Operating Systems

Processes are multitasked by the kernel, which typically supports the execution of thousands of
processes on a single system. They are individually identified by their process ID (PID), which is a
unique numeric identifier.

A process contains one or more threads, which operate in the process address space and share
the same file descriptors. A thread is an executable context consisting of a stack, registers, and
an instruction pointer (also called a program counter). Multiple threads allow a single process to
execute in parallel across multiple CPUs. On Linux, threads and processes are both tasks.

The first process launched by the kernel is called “init,” from /sbin/init (by default), with PID 1,
which launches user space services. In Unix this involved running start scripts from /etc, a
method now referred to as SysV (after Unix System V). Linux distributions now commonly use
the systemd software to start services and track their dependencies.

Process Creation

Processes are normally created using the fork(2) system call on Unix systems. On Linux, C librar-
ies typically implement the fork function by wrapping around the versatile clone(2) syscall.
These syscalls create a duplicate of the process, with its own process ID. The exec(2) system call
(or a variant, such as execve(2)) can then be called to begin execution of a different program.

Figure 3.7 shows an example process creation for a bash shell (bash) executing the ls command.

Figure 3.7 Process creation

The fork(2) or clone(2) syscall may use a copy-on-write (COW) strategy to improve performance.
This adds references to the previous address space rather than copying all of the contents. Once
either process modifies the multiple-referenced memory, a separate copy is then made for the
modifications. This strategy either defers or eliminates the need to copy memory, reducing
memory and CPU usage.

Process Life Cycle

The life cycle of a process is shown in Figure 3.8. This is a simplified diagram; for modern mul-
tithreaded operating systems it is the threads that are scheduled and run, and there are some
additional implementation details regarding how these map to process states (see Figures 5.6
and 5.7 in Chapter 5 for more detailed diagrams).

 3.2 Background 101

Figure 3.8 Process life cycle

The on-proc state is for running on a processor (CPU). The ready-to-run state is when the process
is runnable but is waiting on a CPU run queue for its turn on a CPU. Most I/O will block, putting
the process in the sleep state until the I/O completes and the process is woken up. The zombie
state occurs during process termination, when the process waits until its process status has been
reaped by the parent process or until it is removed by the kernel.

Process Environment

The process environment is shown in Figure 3.9; it consists of data in the address space of the
process and metadata (context) in the kernel.

Figure 3.9 Process environment

The kernel context consists of various process properties and statistics: its process ID (PID), the
owner’s user ID (UID), and various times. These are commonly examined via the ps(1) and top(1)
commands. It also has a set of file descriptors, which refer to open files and which are (usually)
shared between threads.

102 Chapter 3}}Operating Systems

This example pictures two threads, each containing some metadata, including a priority in
kernel context8 and user stack in the user address space. The diagram is not drawn to scale; the
kernel context is very small compared to the process address space.

The user address space contains memory segments of the process: executable, libraries, and heap.
For more details, see Chapter 7, Memory.

On Linux, each thread has its own user stack and a kernel exception stack9 [Owens 20].

3.2.7 Stacks
A stack is a memory storage area for temporary data, organized as a last-in, first-out (LIFO) list.
It is used to store less important data than that which fits in the CPU register set. When a func-
tion is called, the return address is saved to the stack. Some registers may be saved to the stack as
well if their values are needed after the call.10 When the called function has finished, it restores
any required registers and, by fetching the return address from the stack, passes execution to the
calling function. The stack can also be used for passing parameters to functions. The set of data
on a stack related to a function’s execution is called a stack frame.

The call path to the currently executing function can be seen by examining the saved return
addresses across all the stack frames in the thread’s stack (a process called stack walking).11 This
call path is referred to as a stack back trace or a stack trace. In performance engineering it is often
called just a “stack” for short. These stacks can answer why something is executing, and are an
invaluable tool for debugging and performance analysis.

How to Read a Stack

The following example kernel stack (from Linux) shows the path taken for TCP transmission, as
printed by a tracing tool:

 tcp_sendmsg+1

 sock_sendmsg+62

 SYSC_sendto+319

 sys_sendto+14

 do_syscall_64+115

 entry_SYSCALL_64_after_hwframe+61

8 The kernel context may be its own full address space (as with SPARC processors) or a restricted range that does

not overlap with user addresses (as with x86 processors).
9 There are also special-purpose kernel stacks per-CPU, including those used for interrupts.
10 The calling convention from the processor ABI specifies which registers should retain their values after a function

call (they are non-volatile) and are saved to the stack by the called function (“callee-saves”). Other registers are

volatile and may be clobbered by the called function; if the caller wishes to retain their values, it must save them to

the stack (“caller-saves”).
11 For more detail on stack walking and the different possible techniques (which include: frame-pointer based,

debuginfo, last branch record, and ORC) see Chapter 2, Tech, Section 2.4, Stack Trace Walking, of BPF Performance

Tools [Gregg 19].

 3.2 Background 103

Stacks are usually printed in leaf-to-root order, so the first line printed is the function currently
executing, and beneath it is its parent, then its grandparent, and so on. In this example, the tcp_
sendmsg() function was executing, called by sock_sendmsg(). In this stack example, to the right
of the function name is the instruction offset, showing the location within a function. The first
line shows tcp_sendmsg() offset 1 (which would be the second instruction), called by sock_
sendmsg() offset 62. This offset is only useful if you desire a low-level understanding of the code
path taken, down to the instruction level.

By reading down the stack, the full ancestry can be seen: function, parent, grandparent, and so
on. Or, by reading bottom-up, you can follow the path of execution to the current function: how
we got here.

Since stacks expose the internal path taken through source code, there is typically no documen-
tation for these functions other than the code itself. For this example stack, this is the Linux kernel
source code. An exception to this is where functions are part of an API and are documented.

User and Kernel Stacks

While executing a system call, a process thread has two stacks: a user-level stack and a kernel-
level stack. Their scope is pictured in Figure 3.10.

Figure 3.10 User and kernel stacks

The user-level stack of the blocked thread does not change for the duration of a system call, as
the thread is using a separate kernel-level stack while executing in kernel context. (An excep-
tion to this may be signal handlers, which may borrow a user-level stack depending on their
configuration.)

On Linux, there are multiple kernel stacks for different purposes. Syscalls use a kernel exception
stack associated with each thread, and there are also stacks associated with soft and hard inter-
rupts (IRQs) [Bovet 05].

104 Chapter 3}}Operating Systems

3.2.8 Virtual Memory
Virtual memory is an abstraction of main memory, providing processes and the kernel with their
own, almost infinite,12 private view of main memory. It supports multitasking, allowing processes
and the kernel to operate on their own private address spaces without worrying about contention.
It also supports oversubscription of main memory, allowing the operating system to transparently
map virtual memory between main memory and secondary storage (disks) as needed.

The role of virtual memory is shown in Figure 3.11. Primary memory is main memory (RAM),
and secondary memory is the storage devices (disks).

Figure 3.11 Virtual memory address spaces13

Virtual memory is made possible by support in both the processor and operating system. It is not
real memory, and most operating systems map virtual memory to real memory only on demand,
when the memory is first populated (written).

See Chapter 7, Memory, for more about virtual memory.

Memory Management

While virtual memory allows main memory to be extended using secondary storage, the kernel
strives to keep the most active data in main memory. There are two kernel schemes for this:

 ■ Process swapping moves entire processes between main memory and secondary storage.

 ■ Paging moves small units of memory called pages (e.g., 4 Kbytes).

12 On 64-bit processors, anyway. For 32-bit processors, virtual memory is limited to 4 Gbytes due to the limits of a

32-bit address (and the kernel may limit it to an even smaller amount).
13 Process virtual memory is shown as starting from 0 as a simplification. Kernels today commonly begin a process’s

virtual address space at some offset such as 0x10000 or a random address. One benefit is that a common pro-

gramming error of dereferencing a NULL (0) pointer will then cause the program to crash (SIGSEGV) as the 0 address

is invalid. This is generally preferable to dereferencing data at address 0 by mistake, as the program would continue

to run with corrupt data.

 3.2 Background 105

Process swapping is the original Unix method and can cause severe performance loss. Paging is
more efficient and was added to BSD with the introduction of paged virtual memory. In both
cases, least recently used (or not recently used) memory is moved to secondary storage and
moved back to main memory only when needed again.

In Linux, the term swapping is used to refer to paging. The Linux kernel does not support the
(older) Unix-style process swapping of entire threads and processes.

For more on paging and swapping, see Chapter 7, Memory.

3.2.9 Schedulers
Unix and its derivatives are time-sharing systems, allowing multiple processes to run at the same
time by dividing execution time among them. The scheduling of processes on processors and
individual CPUs is performed by the scheduler, a key component of the operating system kernel.
The role of the scheduler is pictured in Figure 3.12, which shows that the scheduler operates
on threads (in Linux, tasks), mapping them to CPUs.

Figure 3.12 Kernel scheduler

The basic intent is to divide CPU time among the active processes and threads, and to maintain
a notion of priority so that more important work can execute sooner. The scheduler keeps track
of all threads in the ready-to-run state, traditionally on per-priority queues called run queues
[Bach 86]. Modern kernels may implement these queues per CPU and may also use other data
structures, apart from queues, to track the threads. When more threads want to run than there
are available CPUs, the lower-priority threads wait their turn. Most kernel threads run with a
higher priority than user-level processes.

Process priority can be modified dynamically by the scheduler to improve the performance of
certain workloads. Workloads can be categorized as either:

106 Chapter 3}}Operating Systems

 ■ CPU-bound: Applications that perform heavy compute, for example, scientific and math-
ematical analysis, which are expected to have long runtimes (seconds, minutes, hours,
days, or even longer). These become limited by CPU resources.

 ■ I/O-bound: Applications that perform I/O, with little compute, for example, web servers,
file servers, and interactive shells, where low-latency responses are desirable. When their
load increases, they are limited by I/O to storage or network resources.

A commonly used scheduling policy dating back to UNIX identifies CPU-bound workloads and
decreases their priority, allowing I/O-bound workloads—where low-latency responses are more
desirable—to run sooner. This can be achieved by calculating the ratio of recent compute time
(time executing on-CPU) to real time (elapsed time) and decreasing the priority of processes with
a high (compute) ratio [Thompson 78]. This mechanism gives preference to shorter-running
processes, which are usually those performing I/O, including human interactive processes.

Modern kernels support multiple scheduling classes or scheduling policies (Linux) that apply different
algorithms for managing priority and runnable threads. These may include real-time scheduling,
which uses a priority higher than all noncritical work, including kernel threads. Along with
preemption support (described later), real-time scheduling provides predictable and low-latency
scheduling for systems that require it.

See Chapter 6, CPUs, for more about the kernel scheduler and other scheduling algorithms.

3.2.10 File Systems
File systems are an organization of data as files and directories. They have a file-based interface
for accessing them, usually based on the POSIX standard. Kernels support multiple file system
types and instances. Providing a file system is one of the most important roles of the operating
system, once described as the most important role [Ritchie 74].

The operating system provides a global file namespace, organized as a top-down tree topology
starting with the root level (“/”). File systems join the tree by mounting, attaching their own tree
to a directory (the mount point). This allows the end user to navigate the file namespace transpar-
ently, regardless of the underlying file system type.

A typical operating system may be organized as shown in Figure 3.13.

Figure 3.13 Operating system file hierarchy

 3.2 Background 107

The top-level directories include etc for system configuration files, usr for system-supplied user-
level programs and libraries, dev for device nodes, var for varying files including system logs,
tmp for temporary files, and home for user home directories. In the example pictured, var and
home may reside on their own file system instances and separate storage devices; however, they
can be accessed like any other component of the tree.

Most file system types use storage devices (disks) to store their contents. Some file system types
are dynamically created by the kernel, such as /proc and /dev.

Kernels typically provide different ways to isolate processes to a portion of the file namespace,
including chroot(8), and, on Linux, mount namespaces, commonly used for containers (see
Chapter 11, Cloud Computing).

VFS

The virtual file system (VFS) is a kernel interface to abstract file system types, originally devel-
oped by Sun Microsystems so that the Unix file system (UFS) and the Network file system (NFS)
could more easily coexist. Its role is pictured in Figure 3.14.

Figure 3.14 Virtual file system

The VFS interface makes it easier to add new file system types to the kernel. It also supports
providing the global file namespace, pictured earlier, so that user programs and applications can
access various file system types transparently.

I/O Stack

For storage-device-based file systems, the path from user-level software to the storage device is
called the I/O stack. This is a subset of the entire software stack shown earlier. A generic I/O stack
is shown in Figure 3.15.

Figure 3.15 shows a direct path to block devices on the left, bypassing the file system. This path
is sometimes used by administrative tools and databases.

File systems and their performance are covered in detail in Chapter 8, File Systems, and the
 storage devices they are built upon are covered in Chapter 9, Disks.

108 Chapter 3}}Operating Systems

Figure 3.15 Generic I/O stack

3.2.11 Caching
Since disk I/O has historically had high latency, many layers of the software stack attempt to
avoid it by caching reads and buffering writes. Caches may include those shown in Table 3.2 (in
the order in which they are checked).

Table 3.2 Example cache layers for disk I/O

Cache Examples

1 Client cache Web browser cache

2 Application cache —

3 Web server cache Apache cache

4 Caching server memcached

5 Database cache MySQL buffer cache

6 Directory cache dcache

7 File metadata cache inode cache

8 Operating system buffer cache Buffer cache

9 File system primary cache Page cache, ZFS ARC

10 File system secondary cache ZFS L2ARC

11 Device cache ZFS vdev

 3.2 Background 109

Cache Examples

12 Block cache Buffer cache

13 Disk controller cache RAID card cache

14 Storage array cache —

15 On-disk cache —

For example, the buffer cache is an area of main memory that stores recently used disk blocks.
Disk reads may be served immediately from the cache if the requested block is present, avoiding
the high latency of disk I/O.

The types of caches present will vary based on the system and environment.

3.2.12 Networking
Modern kernels provide a stack of built-in network protocols, allowing the system to communi-
cate via the network and take part in distributed system environments. This is referred to as the
networking stack or the TCP/IP stack, after the commonly used TCP and IP protocols. User-level
applications access the network through programmable endpoints called sockets.

The physical device that connects to the network is the network interface and is usually provided
on a network interface card (NIC). A historical duty of the system administrator was to associate
an IP address with a network interface, so that it can communicate with the network; these
 mappings are now typically automated via the dynamic host configuration protocol (DHCP).

Network protocols do not change often, but there is a new transport protocol seeing growing
adoption: QUIC (summarized in Chapter 10, Network). Protocol enhancements and options
change more often, such as newer TCP options and TCP congestion control algorithms. Newer
protocols and enhancements typically require kernel support (with the exception of user-space
protocol implementations). Another change is support for different network interface cards,
which require new device drivers for the kernel.

For more on networking and network performance, see Chapter 10, Network.

3.2.13 Device Drivers
A kernel must communicate with a wide variety of physical devices. Such communication is
achieved using device drivers: kernel software for device management and I/O. Device drivers are
often provided by the vendors who develop the hardware devices. Some kernels support pluggable
device drivers, which can be loaded and unloaded without requiring a system restart.

Device drivers can provide character and/or block interfaces to their devices. Character devices,
also called raw devices, provide unbuffered sequential access of any I/O size down to a single
character, depending on the device. Such devices include keyboards and serial ports (and in
original Unix, paper tape and line printer devices).

Block devices perform I/O in units of blocks, which have historically been 512 bytes each. These
can be accessed randomly based on their block offset, which begins at 0 at the start of the block

110 Chapter 3}}Operating Systems

device. In original Unix, the block device interface also provided caching of block device buffers
to improve performance, in an area of main memory called the buffer cache. In Linux, this buffer
cache is now part of the page cache.

3.2.14 Multiprocessor
Multiprocessor support allows the operating system to use multiple CPU instances to execute
work in parallel. It is usually implemented as symmetric multiprocessing (SMP) where all CPUs
are treated equally. This was technically difficult to accomplish, posing problems for accessing
and sharing memory and CPUs among threads running in parallel. On multiprocessor systems
there may also be banks of main memory connected to different sockets (physical processors) in
a non-uniform memory access (NUMA) architecture, which also pose performance challenges. See
Chapter 6, CPUs, for details, including scheduling and thread synchronization, and Chapter 7,
Memory, for details on memory access and architectures.

IPIs

For a multiprocessor system, there are times when CPUs need to coordinate, such as for cache
coherency of memory translation entries (informing other CPUs that an entry, if cached, is now
stale). A CPU can request other CPUs, or all CPUs, to immediately perform such work using an
inter-processor interrupt (IPI) (also known as an SMP call or a CPU cross call). IPIs are processor
interrupts designed to be executed quickly, to minimize interruption of other threads.

IPIs can also be used by preemption.

3.2.15 Preemption
Kernel preemption support allows high-priority user-level threads to interrupt the kernel and
execute. This enables real-time systems that can execute work within a given time constraint,
including systems in use by aircraft and medical devices. A kernel that supports preemption is
said to be fully preemptible, although practically it will still have some small critical code paths
that cannot be interrupted.

Another approach supported by Linux is voluntary kernel preemption, where logical stopping
points in the kernel code can check and perform preemption. This avoids some of the complexity
of supporting a fully preemptive kernel and provides low-latency preemption for common work-
loads. Voluntary kernel preemption is commonly enabled in Linux via the CONFIG_PREEMPT_
VOLUNTARY Kconfig option; there is also CONFIG_PREEMPT to allow all kernel code (except
critical sections) to be preemptible, and CONFIG_PREEMPT_NONE to disable preemption,
improving throughput at the cost of higher latencies.

3.2.16 Resource Management
The operating system may provide various configurable controls for fine-tuning access to system
resources, such as CPUs, memory, disk, and the network. These are resource controls and can be
used to manage performance on systems that run different applications or host multiple tenants
(cloud computing). Such controls may impose fixed limits per process (or groups of processes) for
resource usage, or a more flexible approach—allowing spare usage to be shared among them.

 3.3 Kernels 111

Early versions of Unix and BSD had basic per-process resource controls, including CPU priorities
with nice(1), and some resource limits with ulimit(1).

For Linux, control groups (cgroups) have been developed and integrated in Linux 2.6.24 (2008),
and various additional controls have been added since then. These are documented in the kernel
source under Documentation/cgroups. There is also an improved unified hierarchical scheme
called cgroup v2, made available in Linux 4.5 (2016) and documented in Documentation/admin-
guide/cgroup-v2.rst.

Specific resource controls are mentioned in later chapters as appropriate. An example use case
is described in Chapter 11, Cloud Computing, for managing the performance of OS-virtualized
tenants.

3.2.17 Observability
The operating system consists of the kernel, libraries, and programs. These programs include tools
to observe system activity and analyze performance, typically installed in /usr/bin and /usr/
sbin. Third-party tools may also be installed on the system to provide additional observability.

Observability tools, and the operating system components upon which they are built, are
 introduced in Chapter 4.

3.3 Kernels
The following sections discuss Unix-like kernel implementation details with a focus on perfor-
mance. As background, the performance features of earlier kernels are discussed: Unix, BSD, and
Solaris. The Linux kernel is discussed in more detail in Section 3.4, Linux.

Kernel differences can include the file systems they support (see Chapter 8, File Systems), the
system call (syscall) interfaces, network stack architecture, real-time support, and scheduling
algorithms for CPUs, disk I/O, and networking.

Table 3.3 shows Linux and other kernel versions for comparison, with syscall counts based on
the number of entries in section 2 of the OS man pages. This is a crude comparison, but enough
to see some differences.

Table 3.3 Kernel versions with documented syscall counts

Kernel Version Syscalls

UNIX Version 7 48

SunOS (Solaris) 5.11 142

FreeBSD 12.0 222

Linux 2.6.32-21-server 408

Linux 2.6.32-220.el6.x86_64 427

Linux 3.2.6-3.fc16.x86_64 431

Linux 4.15.0-66-generic 480

Linux 5.3.0-1010-aws 493

112 Chapter 3}}Operating Systems

These are just the syscalls with documentation; more are usually provided by the kernel for
private use by operating system software.

UNIX had twenty system calls at the very first, and today Linux—which is a direct
descendant—has over a thousand . . . I just worry about the complexity and the size of
things that grow.

Ken Thompson, ACM Turing Centenary Celebration, 2012

Linux is growing in complexity and exposing this complexity to user-land by adding new sys-
tem calls or through other kernel interfaces. Extra complexity makes learning, programming,
and debugging more time-consuming.

3.3.1 Unix
Unix was developed by Ken Thompson, Dennis Ritchie, and others at AT&T Bell Labs during
1969 and the years that followed. Its exact origin was described in The UNIX Time-Sharing System
[Ritchie 74]:

The first version was written when one of us (Thompson), dissatisfied with the avail-
able computer facilities, discovered a little-used PDP-7 and set out to create a more
hospitable environment.

The developers of UNIX had previously worked on the Multiplexed Information and Computer
Services (Multics) operating system. UNIX was developed as a lightweight multitasked operating
system and kernel, originally named UNiplexed Information and Computing Service (UNICS),
as a pun on Multics. From UNIX Implementation [Thompson 78]:

The kernel is the only UNIX code that cannot be substituted by a user to his own liking.
For this reason, the kernel should make as few real decisions as possible. This does not
mean to allow the user a million options to do the same thing. Rather, it means to
allow only one way to do one thing, but have that way be the least-common divisor of
all the options that might have been provided.

While the kernel was small, it did provide some features for high performance. Processes had
scheduler priorities, reducing run-queue latency for higher-priority work. Disk I/O was per-
formed in large (512-byte) blocks for efficiency and cached in an in-memory per-device buffer
cache. Idle processes could be swapped out to storage, allowing busier processes to run in main
memory. And the system was, of course, multitasking—allowing multiple processes to run con-
currently, improving job throughput.

To support networking, multiple file systems, paging, and other features we now consider stan-
dard, the kernel had to grow. And with multiple derivatives, including BSD, SunOS (Solaris), and
later Linux, kernel performance became competitive, which drove the addition of more features
and code.

 3.3 Kernels 113

3.3.2 BSD
The Berkeley Software Distribution (BSD) OS began as enhancements to Unix 6th Edition at
the University of California, Berkeley, and was first released in 1978. As the original Unix code
required an AT&T software license, by the early 1990s this Unix code had been rewritten in BSD
under a new BSD license, allowing free distributions including FreeBSD.

Major BSD kernel developments, especially performance-related, include:

 ■ Paged virtual memory: BSD brought paged virtual memory to Unix: instead of swapping
out entire processes to free main memory, smaller least-recently-used chunks of memory
could be moved (paged). See Chapter 7, Memory, Section 7.2.2, Paging.

 ■ Demand paging: This defers the mapping of physical memory to virtual memory to
when it is first written, avoiding an early and sometimes unnecessary performance and
memory cost for pages that may never be used. Demand paging was brought to Unix by
BSD. See Chapter 7, Memory, Section 7.2.2, Paging.

 ■ FFS: The Berkeley Fast File System (FFS) grouped disk allocation into cylinder groups,
greatly reducing fragmentation and improving performance on rotational disks, as well as
supporting larger disks and other enhancements. FFS became the basis for many other file
systems, including UFS. See Chapter 8, File Systems, Section 8.4.5, File System Types.

 ■ TCP/IP network stack: BSD developed the first high-performance TCP/IP network stack
for Unix, included in 4.2BSD (1983). BSD is still known for its performant network stack.

 ■ Sockets: Berkeley sockets are an API for connection endpoints. Included in 4.2BSD, they
have become a standard for networking. See Chapter 10, Network.

 ■ Jails: Lightweight OS-level virtualization, allowing multiple guests to share one kernel.
Jails were first released in FreeBSD 4.0.

 ■ Kernel TLS: As transport layer security (TLS) is now commonly used on the Internet,
kernel TLS moves much of TLS processing to the kernel, improving performance14
[Stewart 15].

While not as popular as Linux, BSD is used for some performance-critical environments, includ-
ing for the Netflix content delivery network (CDN), as well as file servers from NetApp, Isilon,
and others. Netflix summarized FreeBSD performance on its CDN in 2019 as [Looney 19]:

“Using FreeBSD and commodity parts, we achieve 90 Gb/s serving TLS-encrypted
connections with ~55% CPU on a 16-core 2.6-GHz CPU.”

There is an excellent reference on the internals of FreeBSD, from the same publisher that brings
you this book: The Design and Implementation of the FreeBSD Operating System, 2nd Edition
[McKusick 15].

14 Developed to improve the performance of the Netflix FreeBSD open connect appliances (OCAs) that are the

Netflix CDN.

114 Chapter 3}}Operating Systems

3.3.3 Solaris
Solaris is a Unix and BSD-derived kernel and OS created by Sun Microsystems in 1982. It was origi-
nally named SunOS and optimized for Sun workstations. By the late 1980s, AT&T developed a new
Unix standard, Unix System V Release 4 (SVR4) based on technologies from SVR3, SunOS, BSD, and
Xenix. Sun created a new kernel based on SVR4, and rebranded the OS under the name Solaris.

Major Solaris kernel developments, especially performance-related, include:

 ■ VFS: The virtual file system (VFS) is an abstraction and interface that allows multiple file
systems to easily coexist. Sun initially created it so that NFS and UFS could coexist. VFS is
covered in Chapter 8, File Systems.

 ■ Fully preemptible kernel: This provided low latency for high-priority work, including
real-time work.

 ■ Multiprocessor support: In the early 1990s, Sun invested heavily in multiprocessor
operating system support, developing kernel support for both asymmetric and symmetric
multiprocessing (ASMP and SMP) [Mauro 01].

 ■ Slab allocator: Replacing the SVR4 buddy allocator, the kernel slab memory allocator
provided better performance via per-CPU caches of preallocated buffers that could be
quickly reused. This allocator type, and its derivatives, has become the standard for ker-
nels including Linux.

 ■ DTrace: A static and dynamic tracing framework and tool providing virtually unlimited
observability of the entire software stack, in real time and in production. Linux has BPF
and bpftrace for this type of observability.

 ■ Zones: An OS-based virtualization technology for creating OS instances that share one
kernel, similar to the earlier FreeBSD jails technology. OS virtualization is now in wide-
spread use as Linux containers. See Chapter 11, Cloud Computing.

 ■ ZFS: A file system with enterprise-level features and performance. It is now available for
other OSes, including Linux. See Chapter 8, File Systems.

Oracle purchased Sun Microsystems in 2010, and Solaris is now called Oracle Solaris. Solaris is
covered in more detail in the first edition of this book.

3.4 Linux
Linux was created in 1991 by Linus Torvalds as a free operating system for Intel personal com-
puters. He announced the project in a Usenet post:

I’m doing a (free) operating system (just a hobby, won’t be big and professional like gnu)
for 386(486) AT clones. This has been brewing since April, and is starting to get ready. I’d
like any feedback on things people like/dislike in minix, as my OS resembles it somewhat
(same physical layout of the file-system (due to practical reasons) among other things).

This refers to the MINIX operating system, which was being developed as a free and small
(mini) version of Unix for small computers. BSD was also aiming to provide a free Unix version
although at the time it had legal troubles.

 3.4 Linux 115

The Linux kernel was developed taking general ideas from many ancestors, including:

 ■ Unix (and Multics): Operating system layers, system calls, multitasking, processes, pro-
cess priorities, virtual memory, global file system, file system permissions, device nodes,
buffer cache

 ■ BSD: Paged virtual memory, demand paging, fast file system (FFS), TCP/IP network stack,
sockets

 ■ Solaris: VFS, NFS, page cache, unified page cache, slab allocator

 ■ Plan 9: Resource forks (rfork), for creating different levels of sharing between processes
and threads (tasks)

Linux now sees widespread use for servers, cloud instances, and embedded devices including
mobile phones.

3.4.1 Linux Kernel Developments
Linux kernel developments, especially those related to performance, include the following
(many of these descriptions include the Linux kernel version where they were first introduced):

 ■ CPU scheduling classes: Various advanced CPU scheduling algorithms have been
developed, including scheduling domains (2.6.7) to make better decisions regarding non-
uniform memory access (NUMA). See Chapter 6, CPUs.

 ■ I/O scheduling classes: Different block I/O scheduling algorithms have been developed,
including deadline (2.5.39), anticipatory (2.5.75), and completely fair queueing (CFQ)
(2.6.6). These are available in kernels up to Linux 5.0, which removed them to support
only newer multi-queue I/O schedulers. See Chapter 9, Disks.

 ■ TCP congestion algorithms: Linux allows different TCP congestion control algorithms to
be configured, and supports Reno, Cubic, and more in later kernels mentioned in this list.
See also Chapter 10, Network.

 ■ Overcommit: Along with the out-of-memory (OOM) killer, this is a strategy for doing
more with less main memory. See Chapter 7, Memory.

 ■ Futex (2.5.7): Short for fast user-space mutex, this is used to provide high-performing user-
level synchronization primitives.

 ■ Huge pages (2.5.36): This provides support for preallocated large memory pages by the
kernel and the memory management unit (MMU). See Chapter 7, Memory.

 ■ OProfile (2.5.43): A system profiler for studying CPU usage and other events, for both the
kernel and applications.

 ■ RCU (2.5.43): The kernel provides a read-copy update synchronization mechanism that
allows multiple reads to occur concurrently with updates, improving performance and
scalability for data that is mostly read.

 ■ epoll (2.5.46): A system call for efficiently waiting for I/O across many open file descriptors,
which improves the performance of server applications.

116 Chapter 3}}Operating Systems

 ■ Modular I/O scheduling (2.6.10): Linux provides pluggable scheduling algorithms for
scheduling block device I/O. See Chapter 9, Disks.

 ■ DebugFS (2.6.11): A simple unstructured interface for the kernel to expose data to user
level, which is used by some performance tools.

 ■ Cpusets (2.6.12): exclusive CPU grouping for processes.

 ■ Voluntary kernel preemption (2.6.13): This process provides low-latency scheduling
without the complexity of full preemption.

 ■ inotify (2.6.13): A framework for monitoring file system events.

 ■ blktrace (2.6.17): A framework and tool for tracing block I/O events (later migrated into
tracepoints).

 ■ splice (2.6.17): A system call to move data quickly between file descriptors and pipes,
without a trip through user-space. (The sendfile(2) syscall, which efficiently moves data
between file descriptors, is now a wrapper to splice(2).)

 ■ Delay accounting (2.6.18): Tracks per-task delay states. See Chapter 4, Observability Tools.

 ■ IO accounting (2.6.20): Measures various storage I/O statistics per process.

 ■ DynTicks (2.6.21): Dynamic ticks allow the kernel timer interrupt (clock) to not fire
during idle, saving CPU resources and power.

 ■ SLUB (2.6.22): A new and simplified version of the slab memory allocator.

 ■ CFS (2.6.23): Completely fair scheduler. See Chapter 6, CPUs.

 ■ cgroups (2.6.24): Control groups allow resource usage to be measured and limited for
groups of processes.

 ■ TCP LRO (2.6.24): TCP Large Receive Offload (LRO) allows network drivers and hardware
to aggregate packets into larger sizes before sending them to the network stack. Linux also
supports Large Send Offload (LSO) for the send path.

 ■ latencytop (2.6.25): Instrumentation and a tool for observing sources of latency in the
operating system.

 ■ Tracepoints (2.6.28): Static kernel tracepoints (aka static probes) that instrument logical
execution points in the kernel, for use by tracing tools (previously called kernel markers).
Tracing tools are introduced in Chapter 4, Observability Tools.

 ■ perf (2.6.31): Linux Performance Events (perf) is a set of tools for performance observabil-
ity, including CPU performance counter profiling and static and dynamic tracing. See
Chapter 6, CPUs, for an introduction.

 ■ No BKL (2.6.37): Final removal of the big kernel lock (BKL) performance bottleneck.

 ■ Transparent huge pages (2.6.38): This is a framework to allow easy use of huge (large)
memory pages. See Chapter 7, Memory.

 ■ KVM: The Kernel-based Virtual Machine (KVM) technology was developed for Linux by
Qumranet, which was purchased by Red Hat in 2008. KVM allows virtual operating sys-
tem instances to be created, running their own kernel. See Chapter 11, Cloud Computing.

 3.4 Linux 117

 ■ BPF JIT (3.0): A Just-In-Time (JIT) compiler for the Berkeley Packet Filter (BPF) to improve
packet filtering performance by compiling BPF bytecode to native instructions.

 ■ CFS bandwidth control (3.2): A CPU scheduling algorithm that supports CPU quotas and
throttling.

 ■ TCP anti-bufferbloat (3.3+): Various enhancements were made from Linux 3.3 onwards
to combat the bufferbloat problem, including Byte Queue Limits (BQL) for the transmis-
sion of packet data (3.3), CoDel queue management (3.5), TCP small queues (3.6), and the
Proportional Integral controller Enhanced (PIE) packet scheduler (3.14).

 ■ uprobes (3.5): The infrastructure for dynamic tracing of user-level software, used by other
tools (perf, SystemTap, etc.).

 ■ TCP early retransmit (3.5): RFC 5827 for reducing duplicate acknowledgments required
to trigger fast retransmit.

 ■ TFO (3.6, 3.7, 3.13): TCP Fast Open (TFO) can reduce the TCP three-way handshake to a
single SYN packet with a TFO cookie, improving performance. It was made the default in
3.13.

 ■ NUMA balancing (3.8+): This added ways for the kernel to automatically balance memory
locations on multi-NUMA systems, reducing CPU interconnect traffic and improving
performance.

 ■ SO_REUSEPORT (3.9): A socket option to allow multiple listener sockets to bind to the
same port, improving multi-threaded scalability.

 ■ SSD cache devices (3.9): Device mapper support for an SSD device to be used as a cache for
a slower rotating disk.

 ■ bcache (3.10): An SSD cache technology for the block interface.

 ■ TCP TLP (3.10): TCP Tail Loss Probe (TLP) is a scheme to avoid costly timer-based retransmits
by sending new data or the last unacknowledged segment after a shorter probe timeout, to
trigger faster recovery.

 ■ NO_HZ_FULL (3.10, 3.12): Also known as timerless multitasking or a tickless kernel, this
allows non-idle threads to run without clock ticks, avoiding workload perturbations
[Corbet 13a].

 ■ Multiqueue block I/O (3.13): This provides per-CPU I/O submission queues rather than
a single request queue, improving scalability especially for high IOPS SSD devices [Corbet
13b].

 ■ SCHED_DEADLINE (3.14): An optional scheduling policy that implements earliest deadline
first (EDF) scheduling [Linux 20b].

 ■ TCP autocorking (3.14): This allows the kernel to coalesce small writes, reducing the sent
packets. An automatic version of the TCP_CORK setsockopt(2).

 ■ MCS locks and qspinlocks (3.15): Efficient kernel locks, using techniques such as per-
CPU structures. MCS is named after the original lock inventors (Mellor-Crummey and
Scott) [Mellor-Crummey 91][Corbet 14].

118 Chapter 3}}Operating Systems

 ■ Extended BPF (3.18+): An in-kernel execution environment for running secure kernel-
mode programs. The bulk of extended BPF was added in the 4.x series. Support for
attached to kprobes was added in 3.19, to tracepoints in 4.7, to software and hardware
events in 4.9, and to cgroups in 4.10. Bounded loops were added in 5.3, which also
increased the instruction limit to allow complex applications. See Section 3.4.4,
Extended BPF.

 ■ Overlayfs (3.18): A union mount file system included in Linux. It creates virtual file systems
on top of others, which can also be modified without changing the first. Often used for
containers.

 ■ DCTCP (3.18): The Data Center TCP (DCTCP) congestion control algorithm, which aims
to provide high burst tolerance, low latency, and high throughput [Borkmann 14a].

 ■ DAX (4.0): Direct Access (DAX) allows user space to read from persistent-memory storage
devices directly, without buffer overheads. ext4 can use DAX.

 ■ Queued spinlocks (4.2): Offering better performance under contention, these became the
default spinlock kernel implementation in 4.2.

 ■ TCP lockless listener (4.4): The TCP listener fast path became lockless, improving
performance.

 ■ cgroup v2 (4.5, 4.15): A unified hierarchy for cgroups was in earlier kernels, and consid-
ered stable and exposed in 4.5, named cgroup v2 [Heo 15]. The cgroup v2 CPU controller
was added in 4.15.

 ■ epoll scalability (4.5): For multithreaded scalability, epoll(7) avoids waking up all threads
that are waiting on the same file descriptors for each event, which caused a thundering-
herd performance issue [Corbet 15].

 ■ KCM (4.6): The Kernel Connection Multiplexor (KCM) provides an efficient message-
based interface over TCP.

 ■ TCP NV (4.8): New Vegas (NV) is a new TCP congestion control algorithm suited for
high-bandwidth networks (those that run at 10+ Gbps).

 ■ XDP (4.8, 4.18): eXpress Data Path (XDP) is a BPF-based programmable fast path for
high-performance networking [Herbert 16]. An AF_XDP socket address family that can
bypass much of the network stack was added in 4.18.

 ■ TCP BBR (4.9): Bottleneck Bandwidth and RTT (BBR) is a TCP congestion control algo-
rithm that provides improved latency and throughput over networks suffering packet loss
and bufferbloat [Cardwell 16].

 ■ Hardware latency tracer (4.9): An Ftrace tracer that can detect system latency caused by
hardware and firmware, including system management interrupts (SMIs).

 ■ perf c2c (4.10): The cache-to-cache (c2c) perf subcommand can help identify CPU cache
performance issues, including false sharing.

 ■ Intel CAT (4.10): Support for Intel Cache Allocation Technology (CAT) allowing tasks to
have dedicated CPU cache space. This can be used by containers to help with the noisy
neighbor problem.

 3.4 Linux 119

 ■ Multiqueue I/O schedulers: BPQ, Kyber (4.12): The Budget Fair Queueing (BFQ) multi-
queue I/O scheduler provides low latency I/O for interactive applications, especially for
slower storage devices. BFQ was significantly improved in 5.2. The Kyber I/O scheduler is
suited for fast multiqueue devices [Corbet 17].

 ■ Kernel TLS (4.13, 4.17): Linux version of kernel TLS [Edge 15].

 ■ MSG_ZEROCOPY (4.14): A send(2) flag to avoid extra copies of packet bytes between an
application and the network interface [Linux 20c].

 ■ PCID (4.14): Linux added support for process-context ID (PCID), a processor MMU feature
to help avoid TLB flushes on context switches. This reduced the performance cost of the
kernel page table isolation (KPTI) patches needed to mitigate the meltdown vulnerability.
See Section 3.4.3, KPTI (Meltdown).

 ■ PSI (4.20, 5.2): Pressure stall information (PSI) is a set of new metrics to show time spent
stalled on CPU, memory, or I/O. PSI threshold notifications were added in 5.2 to support
PSI monitoring.

 ■ TCP EDT (4.20): The TCP stack switched to Early Departure Time (EDT): This uses a
timing-wheel scheduler for sending packets, providing better CPU efficiency and smaller
queues [Jacobson 18].

 ■ Multi-queue I/O (5.0): Multi-queue block I/O schedulers became the default in 5.0, and
classic schedulers were removed.

 ■ UDP GRO (5.0): UDP Generic Receive Offload (GRO) improves performance by allowing
packets to be aggregated by the driver and card and passed up stack.

 ■ io_uring (5.1): A generic asynchronous interface for fast communication between applica-
tions and the kernel, making use of shared ring buffers. Primary uses include fast disk and
network I/O.

 ■ MADV_COLD, MADV_PAGEOUT (5.4): These madvise(2) flags are hints to the kernel that
memory is needed but not anytime soon. MADV_PAGEOUT is also a hint that memory can
be reclaimed immediately. These are especially useful for memory-constrained embedded
Linux devices.

 ■ MultiPath TCP (5.6): Multiple network links (e.g., 3G and WiFi) can be used to improve
the performance and reliability of a single TCP connection.

 ■ Boot-time tracing (5.6): Allows Ftrace to trace the early boot process. (systemd can pro-
vide timing information on the late boot process: see Section 3.4.2, systemd.)

 ■ Thermal pressure (5.7): The scheduler accounts for thermal throttling to make better
placement decisions.

 ■ perf flame graphs (5.8): perf(1) support for the flame graph visualization.

Not listed here are the many small performance improvements for locking, drivers, VFS, file sys-
tems, asynchronous I/O, memory allocators, NUMA, new processor instruction support, GPUs,
and the performance tools perf(1) and Ftrace. System boot time has also been improved by the
adoption of systemd.

120 Chapter 3}}Operating Systems

The following sections describe in more detail three Linux topics important to performance:
systemd, KPTI, and extended BPF.

3.4.2 systemd
systemd is a commonly used service manager for Linux, developed as a replacement for the orig-
inal UNIX init system. systemd has various features including dependency-aware service startup
and service time statistics.

An occasional task in systems performance is to tune the system’s boot time, and the systemd time
statistics can show where to tune. The overall boot time can be reported using systemd-analyze(1):

systemd-analyze

Startup finished in 1.657s (kernel) + 10.272s (userspace) = 11.930s

graphical.target reached after 9.663s in userspace

This output shows that the system booted (reached the graphical.target in this case) in 9.663
seconds. More information can be seen using the critical-chain subcommand:

systemd-analyze critical-chain

The time when unit became active or started is printed after the "@" character.

The time the unit took to start is printed after the "+" character.

graphical.target @9.663s

└─multi-user.target @9.661s

 └─snapd.seeded.service @9.062s +62ms

 └─basic.target @6.336s

 └─sockets.target @6.334s

 └─snapd.socket @6.316s +16ms

 └─sysinit.target @6.281s

 └─cloud-init.service @5.361s +905ms

 └─systemd-networkd-wait-online.service @3.498s +1.860s

 └─systemd-networkd.service @3.254s +235ms

 └─network-pre.target @3.251s

 └─cloud-init-local.service @2.107s +1.141s

 └─systemd-remount-fs.service @391ms +81ms

 └─systemd-journald.socket @387ms

 └─system.slice @366ms

 └─-.slice @366ms

This output shows the critical path: the sequence of steps (in this case, services) that causes the
latency. The slowest service was systemd-networkd-wait-online.service, taking 1.86 seconds
to start.

There are other useful subcommands: blame shows the slowest initialization times, and plot
produces an SVG diagram. See the man page for systemd-analyze(1) for more information.

 3.4 Linux 121

3.4.3 KPTI (Meltdown)
The kernel page table isolation (KPTI) patches added to Linux 4.14 in 2018 are a mitigation for
the Intel processor vulnerability called “meltdown.” Older Linux kernel versions had KAISER
patches for a similar purpose, and other kernels have employed mitigations as well. While these
work around the security issue, they also reduce processor performance due to extra CPU cycles
and additional TLB flushing on context switches and syscalls. Linux added process-context ID
(PCID) support in the same release, which allows some TLB flushes to be avoided, provided the
processor supports pcid.

 I evaluated the performance impact of KPTI as between 0.1% and 6% for Netflix cloud pro-
duction workloads, depending on the workload’s syscall rate (higher costs more) [Gregg 18a].
Additional tuning will further reduce the cost: the use of huge pages so that a flushed TLB
warms up faster, and using tracing tools to examine syscalls to identify ways to reduce their rate.
A number of such tracing tools are implemented using extended BPF.

3.4.4 Extended BPF
BPF stands for Berkeley Packet Filter, an obscure technology first developed in 1992 that
improved the performance of packet capture tools [McCanne 92]. In 2013, Alexei Starovoitov
proposed a major rewrite of BPF [Starovoitov 13], which was further developed by himself and
Daniel Borkmann and included in the Linux kernel in 2014 [Borkmann 14b]. This turned BPF
into a general-purpose execution engine that can be used for a variety of things, including net-
working, observability, and security.

BPF itself is a flexible and efficient technology composed of an instruction set, storage objects
(maps), and helper functions. It can be considered a virtual machine due to its virtual instruc-
tion set specification. BPF programs run in kernel mode (as pictured earlier in Figure 3.2) and
are configured to run on events: socket events, tracepoints, USDT probes, kprobes, uprobes, and
perf_events. These are shown in Figure 3.16.

Figure 3.16 BPF components

122 Chapter 3}}Operating Systems

BPF bytecode must first pass through a verifier that checks for safety, ensuring that the BPF
program will not crash or corrupt the kernel. It may also use a BPF Type Format (BTF) system for
understanding data types and structures. BPF programs can output data via a perf ring buffer, an
efficient way to emit per-event data, or via maps, which are suited for statistics.

Because it is powering a new generation of efficient, safe, and advanced tracing tools, BPF is
important for systems performance analysis. It provides programmability to existing kernel
event sources: tracepoints, kprobes, uprobes, and perf_events. A BPF program can, for example,
record a timestamp on the start and end of I/O to time its duration, and record this in a custom
histogram. This book contains many BPF-based programs using the BCC and bpftrace front-
ends. These front-ends are covered in Chapter 15.

3.5 Other Topics
Some additional kernel and operating system topics worth summarizing are PGO kernels,
Unikernels, microkernels, hybrid kernels, and distributed operating systems.

3.5.1 PGO Kernels
Profile-guided optimization (PGO), also known as feedback-directed optimization (FDO), uses
CPU profile information to improve compiler decisions [Yuan 14a]. This can be applied to kernel
builds, where the procedure is:

1. While in production, take a CPU profile.

2. Recompile the kernel based on that CPU profile.

3. Deploy the new kernel in production.

This creates a kernel with improved performance for a specific workload. Runtimes such as the
JVM do this automatically, recompiling Java methods based on their runtime performance, in
conjunction with just-in-time (JIT) compilation. The process for creating a PGO kernel instead
involves manual steps.

A related compile optimization is link-time optimization (LTO), where an entire binary is com-
piled at once to allow optimizations across the entire program. The Microsoft Windows kernel
makes heavy use of both LTO and PGO, seeing 5 to 20% improvements from PGO [Bearman 20].
Google also use LTO and PGO kernels to improve performance [Tolvanen 20].

The gcc and clang compilers, and the Linux kernel, all have support for PGO. Kernel PGO
typically involves running a specially instrumented kernel to collect profile data. Google has
released an AutoFDO tool that bypasses the need for such a special kernel: AutoFDO allows a
profile to be collected from a normal kernel using perf(1), which is then converted to the correct
format for compilers to use [Google 20a].

The only recent documentation on building a Linux kernel with PGO or AutoFDO is two talks
from Linux Plumber’s Conference 2020 by Microsoft [Bearman 20] and Google [Tolvanen 20].15

15 For a while the most recent documentation was from 2014 for Linux 3.13 [Yuan 14b], hindering adoption on newer

kernels.

 3.5 Other Topics 123

3.5.2 Unikernels
A unikernel is a single-application machine image that combines kernel, library, and application
software together, and can typically run this in a single address space in either a hardware VM
or on bare metal. This potentially has performance and security benefits: less instruction text
means higher CPU cache hit ratios and fewer security vulnerabilities. This also creates a prob-
lem: there may be no SSH, shells, or performance tools available for you to log in and debug the
system, nor any way to add them.

For unikernels to be performance tuned in production, new performance tooling and metrics
must be built to support them. As a proof of concept, I built a rudimentary CPU profiler that
ran from Xen dom0 to profile a domU unikernel guest and then built a CPU flame graph, just to
show that it was possible [Gregg 16a].

Examples of unikernels include MirageOS [MirageOS 20].

3.5.3 Microkernels and Hybrid Kernels
Most of this chapter discusses Unix-like kernels, also described as monolithic kernels, where all
the code that manages devices runs together as a single large kernel program. For the microkernel
model, kernel software is kept to a minimum. A microkernel supports essentials such as memory
management, thread management, and inter-process communication (IPC). File systems, the
network stack, and drivers are implemented as user-mode software, which allows those user-
mode components to be more easily modified and replaced. Imagine not only choosing which
database or web server to install, but also choosing which network stack to install. The micro-
kernel is also more fault-tolerant: a crash in a driver does not crash the entire kernel. Examples
of microkernels include QNX and Minix 3.

A disadvantage with microkernels is that there are additional IPC steps for performing I/O
and other functions, reducing performance. One solution for this is hybrid kernels, which com-
bine the benefits of microkernels and monolithic kernels. Hybrid kernels move performance-
critical services back into kernel space (with direct function calls instead of IPC) as they are
with a monolithic kernel, but retains the modular design and fault tolerance of a micro kernel.
Examples of hybrid kernels include the Windows NT kernel and the Plan 9 kernel.

3.5.4 Distributed Operating Systems
A distributed operating system runs a single operating system instance across a set of separate
computer nodes, networked together. A microkernel is commonly used on each of the nodes.
Examples of distributed operating systems include Plan 9 from Bell Labs, and the Inferno operat-
ing system.

While an innovative design, this model has not seen widespread use. Rob Pike, co-creator of
Plan 9 and Inferno, has described various reasons for this, including [Pike 00]:

“There was a claim in the late 1970s and early 1980s that Unix had killed operating
systems research because no one would try anything else. At the time, I didn’t believe
it. Today, I grudgingly accept that the claim may be true (Microsoft notwithstanding).”

124 Chapter 3}}Operating Systems

On the cloud, today’s common model for scaling compute nodes is to load-balance across a
group of identical OS instances, which may scale in response to load (see Chapter 11, Cloud
Computing, Section 11.1.3, Capacity Planning).

3.6 Kernel Comparisons
Which kernel is fastest? This will depend partly on the OS configuration and workload and how
much the kernel is involved. In general, I expect that Linux will outperform other kernels due to
its extensive work on performance improvements, application and driver support, and widespread
use and the large community who discover and report performance issues. The top 500 supercom-
puters, as tracked by the TOP500 list since 1993, became 100% Linux in 2017 [TOP500 17]. There
will be some exceptions; for example, Netflix uses Linux on the cloud and FreeBSD for its CDN.16

Kernel performance is commonly compared using micro-benchmarks, and this is error-prone.
Such benchmarks may discover that one kernel is much faster at a particular syscall, but that
syscall is not used in the production workload. (Or it is used, but with certain flags not tested by
the microbenchmark, which greatly affect performance.) Comparing kernel performance accu-
rately is a task for a senior performance engineer—a task that can take weeks. See Chapter 12,
Benchmarking, Section 12.3.2, Active Benchmarking, as a methodology to follow.

In the first edition of this book, I concluded this section by noting that Linux did not have a
mature dynamic tracer, without which you might miss out on large performance wins. Since
that first edition, I have moved to a full-time Linux performance role, and I helped develop the
dynamic tracers that Linux was missing: BCC and bpftrace, based on extended BPF. These are
covered in Chapter 15 and in my previous book [Gregg 19].

Section 3.4.1, Linux Kernel Developments, lists many other Linux performance developments
that have occurred in the time between the first edition and this edition, spanning kernel ver-
sions 3.1 and 5.8. A major development not listed earlier is that OpenZFS now supports Linux as
its primary kernel, providing a high-performance and mature file system option on Linux.

With all this Linux development, however, comes complexity. There are so many performance
features and tunables on Linux that it has become laborious to configure and tune them for each
workload. I have seen many deployments running untuned. Bear this in mind when comparing
kernel performance: has each kernel been tuned? Later chapters of this book, and their tuning
sections, can help you remedy this.

3.7 Exercises
1. Answer the following questions about OS terminology:

 ■ What is the difference between a process, a thread, and a task?

 ■ What is a mode switch and a context switch?

16 FreeBSD delivers higher performance for the Netflix CDN workload, especially due to kernel improvements made by

the Netflix OCA team. This is routinely tested, most recently during 2019 with a production comparison of Linux 5.0

versus FreeBSD, which I helped analyze.

 3.8 References 125

 ■ What is the difference between paging and process swapping?

 ■ What is the difference between I/O-bound and CPU-bound workloads?

2. Answer the following conceptual questions:

 ■ Describe the role of the kernel.

 ■ Describe the role of system calls.

 ■ Describe the role of VFS and its location in the I/O stack.

3. Answer the following deeper questions:

 ■ List the reasons why a thread would leave the current CPU.

 ■ Describe the advantages of virtual memory and demand paging.

3.8 References
[Graham 68] Graham, B., “Protection in an Information Processing Utility,” Communications
of the ACM, May 1968.

[Ritchie 74] Ritchie, D. M., and Thompson, K., “The UNIX Time-Sharing System,”
Communications of the ACM 17, no. 7, pp. 365–75, July 1974.

[Thompson 78] Thompson, K., UNIX Implementation, Bell Laboratories, 1978.

[Bach 86] Bach, M. J., The Design of the UNIX Operating System, Prentice Hall, 1986.

[Mellor-Crummey 91] Mellor-Crummey, J. M., and Scott, M., “Algorithms for Scalable
Synchronization on Shared-Memory Multiprocessors,” ACM Transactions on Computing
Systems, Vol. 9, No. 1, https://www.cs.rochester.edu/u/scott/papers/1991_TOCS_synch.pdf,
1991.

[McCanne 92] McCanne, S., and Jacobson, V., “The BSD Packet Filter: A New Architecture
for User-Level Packet Capture”, USENIX Winter Conference, 1993.

[Mills 94] Mills, D., “RFC 1589: A Kernel Model for Precision Timekeeping,” Network Working
Group, 1994.

[Lever 00] Lever, C., Eriksen, M. A., and Molloy, S. P., “An Analysis of the TUX Web Server,”
CITI Technical Report 00-8, http://www.citi.umich.edu/techreports/reports/citi-tr-00-8.pdf,
2000.

[Pike 00] Pike, R., “Systems Software Research Is Irrelevant,” http://doc.cat-v.org/bell_labs/
utah2000/utah2000.pdf, 2000.

[Mauro 01] Mauro, J., and McDougall, R., Solaris Internals: Core Kernel Architecture, Prentice
Hall, 2001.

[Bovet 05] Bovet, D., and Cesati, M., Understanding the Linux Kernel, 3rd Edition, O’Reilly,
2005.

[Corbet 05] Corbet, J., Rubini, A., and Kroah-Hartman, G., Linux Device Drivers, 3rd Edition,
O’Reilly, 2005.

https://www.cs.rochester.edu/u/scott/papers/1991_TOCS_synch.pdf
http://www.citi.umich.edu/techreports/reports/citi-tr-00-8.pdf
http://doc.cat-v.org/bell_labs/utah2000/utah2000.pdf
http://doc.cat-v.org/bell_labs/utah2000/utah2000.pdf

126 Chapter 3}}Operating Systems

[Corbet 13a] Corbet, J., “Is the whole system idle?” LWN.net, https://lwn.net/Articles/
558284, 2013.

[Corbet 13b] Corbet, J., “The multiqueue block layer,” LWN.net, https://lwn.net/Articles/
552904, 2013.

[Starovoitov 13] Starovoitov, A., “[PATCH net-next] extended BPF,” Linux kernel mailing list,
https://lkml.org/lkml/2013/9/30/627, 2013.

[Borkmann 14a] Borkmann, D., “net: tcp: add DCTCP congestion control algorithm,”
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/
?id=e3118e8359bb7c59555aca60c725106e6d78c5ce, 2014.

[Borkmann 14b] Borkmann, D., “[PATCH net-next 1/9] net: filter: add jited flag to indicate
jit compiled filters,” netdev mailing list, https://lore.kernel.org/netdev/1395404418-25376-1-
git-send-email-dborkman@redhat.com/T, 2014.

[Corbet 14] Corbet, J., “MCS locks and qspinlocks,” LWN.net, https://lwn.net/Articles/
590243, 2014.

[Drysdale 14] Drysdale, D., “Anatomy of a system call, part 2,” LWN.net, https://lwn.net/
Articles/604515, 2014.

[Yuan 14a] Yuan, P., Guo, Y., and Chen, X., “Experiences in Profile-Guided Operating
System Kernel Optimization,” APSys, 2014.

[Yuan 14b] Yuan P., Guo, Y., and Chen, X., “Profile-Guided Operating System Kernel
Optimization,” http://coolypf.com, 2014.

[Corbet 15] Corbet, J., “Epoll evolving,” LWN.net, https://lwn.net/Articles/633422, 2015.

[Edge 15] Edge, J., “TLS in the kernel,” LWN.net, https://lwn.net/Articles/666509, 2015.

[Heo 15] Heo, T., “Control Group v2,” Linux documentation, https://www.kernel.org/doc/
Documentation/cgroup-v2.txt, 2015.

[McKusick 15] McKusick, M. K., Neville-Neil, G. V., and Watson, R. N. M., The Design and
Implementation of the FreeBSD Operating System, 2nd Edition, Addison-Wesley, 2015.

[Stewart 15] Stewart, R., Gurney, J. M., and Long, S., “Optimizing TLS for High-Bandwidth
Applicationsin FreeBSD,” AsiaBSDCon, https://people.freebsd.org/~rrs/asiabsd_2015_tls.pdf,
2015.

[Cardwell 16] Cardwell, N., Cheng, Y., Stephen Gunn, C., Hassas Yeganeh, S., and Jacobson,
V., “BBR: Congestion-Based Congestion Control,” ACM queue, https://queue.acm.org/detail.
cfm?id=3022184, 2016.

[Gregg 16a] Gregg, B., “Unikernel Profiling: Flame Graphs from dom0,” http://
www.brendangregg.com/blog/2016-01-27/unikernel-profiling-from-dom0.html, 2016.

[Herbert 16] Herbert, T., and Starovoitov, A., “eXpress Data Path (XDP): Programmable and
High Performance Networking Data Path,” https://github.com/iovisor/bpf-docs/raw/master/
Express_Data_Path.pdf, 2016.

[Corbet 17] Corbet, J., “Two new block I/O schedulers for 4.12,” LWN.net, https://lwn.net/
Articles/720675, 2017.

http://LWN.net
https://lwn.net/Articles/558284
https://lwn.net/Articles/558284
http://LWN.net
https://lwn.net/Articles/552904
https://lwn.net/Articles/552904
https://lkml.org/lkml/2013/9/30/627
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e3118e8359bb7c59555aca60c725106e6d78c5ce
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e3118e8359bb7c59555aca60c725106e6d78c5ce
https://lore.kernel.org/netdev/1395404418-25376-1-git-send-email-dborkman@redhat.com/T
https://lore.kernel.org/netdev/1395404418-25376-1-git-send-email-dborkman@redhat.com/T
http://LWN.net
https://lwn.net/Articles/590243
https://lwn.net/Articles/590243
http://LWN.net
https://lwn.net/Articles/604515
https://lwn.net/Articles/604515
http://coolypf.com
http://LWN.net
https://lwn.net/Articles/633422
http://LWN.net
https://lwn.net/Articles/666509
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://people.freebsd.org/~rrs/asiabsd_2015_tls.pdf
https://queue.acm.org/detail.cfm?id=3022184
https://queue.acm.org/detail.cfm?id=3022184
http://www.brendangregg.com/blog/2016-01-27/unikernel-profiling-from-dom0.html
http://www.brendangregg.com/blog/2016-01-27/unikernel-profiling-from-dom0.html
https://github.com/iovisor/bpf-docs/raw/master/Express_Data_Path.pdf
https://github.com/iovisor/bpf-docs/raw/master/Express_Data_Path.pdf
http://LWN.net
https://lwn.net/Articles/720675
https://lwn.net/Articles/720675

 3.8 References 127

[TOP500 17] TOP500, “List Statistics,” https://www.top500.org/statistics/list, 2017.

[Gregg 18a] Gregg, B., “KPTI/KAISER Meltdown Initial Performance Regressions,” http://
www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html, 2018.

[Jacobson 18] Jacobson, V., “Evolving from AFAP: Teaching NICs about Time,” netdev 0x12,
https://netdevconf.info/0x12/session.html?evolving-from-afap-teaching-nics-about-time,
2018.

[Gregg 19] Gregg, B., BPF Performance Tools: Linux System and Application Observability,
Addison-Wesley, 2019.

[Looney 19] Looney, J., “Netflix and FreeBSD: Using Open Source to Deliver Streaming
Video,” FOSDEM, https://papers.freebsd.org/2019/fosdem/looney-netflix_and_freebsd, 2019.

[Bearman 20] Bearman, I., “Exploring Profile Guided Optimization of the Linux Kernel,”
Linux Plumber’s Conference, https://linuxplumbersconf.org/event/7/contributions/771, 2020.

[Google 20a] Google, “AutoFDO,” https://github.com/google/autofdo, accessed 2020.

[Linux 20a] “NO_HZ: Reducing Scheduling-Clock Ticks,” Linux documentation, https://
www.kernel.org/doc/html/latest/timers/no_hz.html, accessed 2020.

[Linux 20b] “Deadline Task Scheduling,” Linux documentation, https://www.kernel.org/doc/
Documentation/scheduler/sched-deadline.rst, accessed 2020.

[Linux 20c] “MSG_ZEROCOPY,” Linux documentation, https://www.kernel.org/doc/html/
latest/networking/msg_zerocopy.html, accessed 2020.

[Linux 20d] “Softlockup Detector and Hardlockup Detector (aka nmi_watchdog),” Linux
documentation, https://www.kernel.org/doc/html/latest/admin-guide/lockup-watchdogs.
html, accessed 2020.

[MirageOS 20] MirageOS, “Mirage OS,” https://mirage.io, accessed 2020.

[Owens 20] Owens, K., et al., “4. Kernel Stacks,” Linux documentation, https://www.kernel.org/
doc/html/latest/x86/kernel-stacks.html, accessed 2020.

[Tolvanen 20] Tolvanen, S., Wendling, B., and Desaulniers, N., “LTO, PGO, and AutoFDO
in the Kernel,” Linux Plumber’s Conference, https://linuxplumbersconf.org/event/7/
contributions/798, 2020.

3.8.1 Additional Reading
Operating systems and their kernels is a fascinating and extensive topic. This chapter summa-
rized only the essentials. In addition to the sources mentioned in this chapter, the following are
also excellent references, applicable to Linux-based operating systems and others:

[Goodheart 94] Goodheart, B., and Cox J., The Magic Garden Explained: The Internals of UNIX
System V Release 4, an Open Systems Design, Prentice Hall, 1994.

[Vahalia 96] Vahalia, U., UNIX Internals: The New Frontiers, Prentice Hall, 1996.

[Singh 06] Singh, A., Mac OS X Internals: A Systems Approach, Addison-Wesley, 2006.

https://www.top500.org/statistics/list
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
http://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
https://netdevconf.info/0x12/session.html?evolving-from-afap-teaching-nics-about-time
https://papers.freebsd.org/2019/fosdem/looney-netflix_and_freebsd
https://linuxplumbersconf.org/event/7/contributions/771
https://github.com/google/autofdo
https://www.kernel.org/doc/html/latest/timers/no_hz.html
https://www.kernel.org/doc/html/latest/timers/no_hz.html
https://www.kernel.org/doc/Documentation/scheduler/sched-deadline.rst
https://www.kernel.org/doc/Documentation/scheduler/sched-deadline.rst
https://www.kernel.org/doc/html/latest/networking/msg_zerocopy.html
https://www.kernel.org/doc/html/latest/networking/msg_zerocopy.html
https://www.kernel.org/doc/html/latest/admin-guide/lockup-watchdogs.html
https://www.kernel.org/doc/html/latest/admin-guide/lockup-watchdogs.html
https://mirage.io
https://www.kernel.org/doc/html/latest/x86/kernel-stacks.html
https://www.kernel.org/doc/html/latest/x86/kernel-stacks.html
https://linuxplumbersconf.org/event/7/contributions/798
https://linuxplumbersconf.org/event/7/contributions/798

128 Chapter 3}}Operating Systems

[McDougall 06b] McDougall, R., and Mauro, J., Solaris Internals: Solaris 10 and OpenSolaris
Kernel Architecture, Prentice Hall, 2006.

[Love 10] Love, R., Linux Kernel Development, 3rd Edition, Addison-Wesley, 2010.

[Tanenbaum 14] Tanenbaum, A., and Bos, H., Modern Operating Systems, 4th Edition,
Pearson, 2014.

[Yosifovich 17] Yosifovich, P., Ionescu, A., Russinovich, M. E., and Solomon, D. A., Windows
Internals, Part 1 (Developer Reference), 7th Edition, Microsoft Press, 2017.

Index

A

Accelerated receive flow steering, 523

Accelerators in USE method, 49

accept system calls, 95

Access timestamps, 371

ACK detection in TCP, 512

Actions in bpftrace, 769

Active benchmarking, 657–660

Active listening in three-way handshakes,
511

Active pages in page caches, 318

Activities overview, 3–4

Ad hoc checklist method, 43–44

Adaptive mutex locks, 198

Adaptive Replacement Cache (ARC), 381

Address space, 304

guests, 603

kernel, 90

memory, 304, 310

processes, 95, 99–102, 319–322

threads, 227–228

virtual memory, 104, 305

Address space layout randomization
(ASLR), 723

Advanced Format for magnetic rotational
disks, 437

AF_NETLINK address family, 145–146

Agents

monitoring software, 137–138

product monitoring, 79

AKS (Azure Kubernetes Service), 586

826 Alerts

Alerts, 8

Algorithms

caching, 36

congestion control, 115, 118, 513–514

big O notation, 175–176

Allocation groups in XFS, 380

Allocators

memory, 309

multithreaded applications, 353

process virtual address space, 320–321

Amazon EKS (Elastic Kubernetes Service),
586

Amdahl’s Law of Scalability, 64–65

Analysis

benchmarking, 644–646, 665–666

capacity planning, 38, 71–72

drill-down, 55–56

I/O traces, 478–479

latency, 56–57, 384–386, 454–455

off-CPU, 188–192

resource, 38–39

thread state, 193–197

workload, 4–5, 39–40

Analysis step in scientific method, 44–45

Analysis strategy in case study, 784

annotate subcommand for perf, 673

Anonymous memory, 304

Anonymous paging, 305–307

Anti-methods

blame-someone-else, 43

random change, 42–43

streetlight, 42

Apdex (application performance index), 174

Application calls, tuning, 415–416

Application I/O, 369, 435

Application instrumentation in off-CPU
analysis, 189

Application internals, 213

Application layer, file system latency in, 384

Application performance index (Apdex), 174

Applications, 171

basics, 172–173

big O notation, 175–176

bpftrace for, 765

common case optimization, 174

common problems, 213–215

exercises, 216–217

internals, 213

latency documentation, 385

methodology. See Applications
methodology

missing stacks, 215–216

missing symbols, 214

objectives, 173–174

observability, 174

observability tools. See Applications
observability tools

performance techniques. See
Applications performance techniques

programming languages. See
Applications programming languages

references, 217–218

Applications methodology

CPU profiling, 187–189

distributed tracing, 199

lock analysis, 198

off-CPU analysis, 189–192

overview, 186–187

static performance tuning, 198–199

syscall analysis, 192

thread state analysis, 193–197

USE method, 193

Applications observability tools

bpftrace, 209–213

execsnoop, 207–208

offcputime, 204–205

overview, 199–200

perf, 200–203

profile, 203–204

strace, 205–207

syscount, 208–209

 BATCH scheduling policy 827

Applications performance techniques

buffers, 177

caching, 176

concurrency and parallelism, 177–181

I/O size selection, 176

non-blocking I/O, 181

Performance Mantras, 182

polling, 177

processor binding, 181–182

Applications programming languages,
182–183

compiled, 183–184

garbage collection, 184–185

interpreted, 184–185

virtual machines, 185

Appropriateness level in methodologies,
28–29

ARC (Adaptive Replacement Cache), 381

Architecture

CPUs. See CPUs architecture

disks. See Disks architecture

file systems. See File systems architecture

vs. loads, 581–582

memory. See Memory architecture

networks. See Networks architecture

scalable, 581–582

archive subcommand for perf, 673

arcstat.pl tool, 410

arg variables for bpftrace, 778

argdist tool, 757–759

Arguments

kprobes, 152

networks, 507

tracepoints, 148–149

uprobes, 154

Arithmetic mean, 74

Arrival process in queueing systems, 67

ASG (auto scaling group)

capacity planning, 72

cloud computing, 583–584

ASLR (address space layout
randomization), 723

Associativity in caches, 234

Asynchronous disk I/O, 434–435

Asynchronous interrupts, 96–97

Asynchronous writes, 366

atop tool, 285

Auto scaling group (ASG)

capacity planning, 72

cloud computing, 583–584

available_filter_functions file, 710

Available swap, 309

available_tracers file, 710

Averages, 74–75

avg function, 780

await metric, 461

Axes

flame graphs, 10, 187, 290

heat maps, 289, 410, 488–489

line charts, 59, 80

scalability tests, 62

scatter plots, 81–82, 488

Azure Kubernetes Service (AKS), 586

B

Back-ends in instruction pipeline, 224

Background color in flame graphs, 291

Backlogs in network connections, 507,
519–520, 556–557, 569

Bad paging, 305

Balloon drivers, 597

Bandwidth

disks, 424

interconnects, 237

networks, 500, 508, 532–533

OS virtualization, 614–615

Bare-metal hypervisors, 587

Baseline statistics, 59

BATCH scheduling policy, 243

http://arcstat.pl

828 BBR (Bottleneck Bandwidth and RTT) algorithm

BBR (Bottleneck Bandwidth and RTT)
algorithm, 118, 513

bcache technology, 117

BCC (BPF Compiler Collection), 12

vs. bpftrace, 760

disks, 450

documentation, 760–761

installing, 754

multi-purpose tools, 757

multi-tool example, 759

networks, 526

one-liners, 757–759

overview, 753–754

vs. perf-tools, 747–748

single-purpose tools, 755–757

slow disks case study, 17

system-wide tracing, 136

tool overview, 754–755

bcc-tools tool package, 132

BEGIN probes in bpftrace, 774

bench subcommand for perf, 673

Benchmark paradox, 648–649

Benchmarketing, 642

Benchmarking, 641–642

analysis, 644–646

capacity planning, 70

CPUs, 254

effective, 643–644

exercises, 668

failures, 645–651

industry standards, 654–656

memory, 328

micro-benchmarking. See
Micro-benchmarking

questions, 667–668

reasons, 642–643

references, 669–670

replay, 654

simulation, 653–654

specials, 650

SysBench system, 294

types, 13, 651–656

Benchmarking methodology

active, 657–660

checklist, 666–667

CPU profiling, 660–661

custom benchmarks, 662

overview, 656

passive, 656–657

ramping load, 662–664

sanity checks, 664–665

statistical analysis, 665–666

USE method, 661

workload characterization, 662

Berkeley Packet Filter (BPF), 751–752

BCC compiler. See BCC (BPF Compiler
Collection)

bpftrace. See bpftrace tool

description, 12–13

extended. See Extended BPF

iterator, 562

JIT compiler, 117

kernels, 92

OS virtualization tracing, 620, 624–625,
629

vs. perf-tools, 747–748

program, 90

Berkeley Software Distribution (BSD), 113

BFQ (Budget Fair Queueing) I/O schedulers,
119, 449

Big kernel lock (BKL) performance
bottleneck, 116

Big O notation, 175–176

Billing in cloud computing, 584

Bimodal performance, 76

Binary executable files, 183

Binary translations in hardware
virtualization, 588, 590

 bpftrace tool 829

Binding

CPU, 253, 297–298

NUMA, 353

processor, 181–182

bioerr tool, 487

biolatency tool

BCC, 753–755

disks, 450, 468–470

example, 753–754

biopattern tool, 487

BIOS, tuning, 299

biosnoop tool

BCC, 755

disks, 470–472

event tracing, 58

hardware virtualization, 604–605

outliers, 471–472

queued time, 472

system-wide tracing, 136

biostacks tool, 474–475

biotop tool

BCC, 755

disks, 450, 473–474

Bit width in CPUs, 229

bitesize tool

BCC, 755

perf-tools, 743

blame command, 120

Blame-someone-else anti-method, 43

Blanco, Brenden, 753

Blind faith benchmarking, 645

blk tracer, 708

blkio control group, 610, 617

blkreplay tool, 493

blktrace tool

action filtering, 478

action identifiers, 477

analysis, 478–479

default output, 476–477

description, 116

disks, 475–479

RWBS description, 477

visualizations, 479

Block-based file systems, 375–376

Block caches in disk I/O, 430

Block device interface, 109–110, 447

Block I/O state in delay accounting, 145

Block I/O times for disks, 427–428, 472

Block interleaving, 378

Block size

defined, 360

FFS, 378

Block stores in cloud computing, 584

Blue-green cloud computing deployments,
3–4

Bonnie and Bonnie++ benchmarking tools

active benchmarking, 657–660

file systems, 412–414

Boolean expressions in bpftrace,
775–776

Boot options, security, 298–299

Boot-time tracing, 119

Borkmann, Daniel, 121

Borrowed virtual time (BVT) schedulers,
595

Bottleneck Bandwidth and RTT (BBR)
 algorithm, 118, 513

Bottlenecks

capacity planning, 70–71

complexity, 6

defined, 22

USE method, 47–50, 245, 324, 450–451

BPF. See Berkeley Packet Filter (BPF)

bpftrace tool, 12–13

application internals, 213

vs. BCC, 752–753, 760

block I/O events, 625, 658–659

description, 282

disk I/O errors, 483

830 bpftrace tool

disk I/O latency, 482–483

disk I/O size, 480–481

event sources, 558

examples, 284, 761–762

file system internals, 408

hardware virtualization, 602

I/O profiling, 210–212

installing, 762

lock tracing, 212–213

malloc() bytes flame graph, 346

memory internals, 346–347

one-liners for CPUs, 283, 803–804

one-liners for disks, 479–480, 806–807

one-liners for file systems, 402–403,
805–806

one-liners for memory, 343–344,
804–805

one-liners for networks, 550–552,
807–808

one-liners overview, 763–765

package contents, 132

packet inspection, 526

page fault flame graphs, 346

programming. See bpftrace tool
programming

references, 782

scheduling internals, 284–285

signal tracing, 209–210

socket tracing, 552–555

stacks viewing, 450

syscall tracing, 403–405

system-wide tracing, 136

TCP tracing, 555–557

tracepoints, 149

user allocation stacks, 345

VFS tracing, 405–408

bpftrace tool programming

actions, 769

comments, 767

documentation, 781

example, 766

filters, 769

flow control, 775–777

functions, 770–772, 778–781

Hello, World! program, 770

operators, 776–777

probe arguments, 775

probe format, 768

probe types, 774–775

probe wildcards, 768–769

program structure, 767

timing, 772–773

usage, 766–767

variables, 770–771, 777–778

BQL (Byte Queue Limits)

driver queues, 524

tuning, 571

Branch prediction in instruction pipeline, 224

Breakpoints in perf, 680

brk system calls, 95

brkstack tool, 348

Broadcast network messages, 503

BSD (Berkeley Software Distribution), 113

btrace tool, 476, 478

btrfs file system, 381–382, 399

btrfsdist tool, 755

btrfsslower tool, 755

btt tool, 478

Buckets

hash tables, 180

heat maps, 82–83

Buddy allocators, 317

Budget Fair Queueing (BFQ) I/O schedulers,
119, 449

buf function, 778

Buffer caches, 110, 374

Bufferbloat, 507

Buffers

applications, 177

block devices, 110, 374

networks, 507

 Capacity planning 831

ring, 522

TCP, 520, 569

bufgrow tool, 409

Bug database systems

applications, 172

case studies, 792–793

buildid-cache subcommand for perf, 673

Built-in bpftrace variables, 770, 777–778

Bursting in cloud computing, 584,
614–615

Buses, memory, 312–313

BVT (borrowed virtual time) schedulers,
595

Bypass, kernel, 94

Byte Queue Limits (BQL)

driver queues, 524

tuning, 571

Bytecode, 185

C

C, C++

compiled languages, 183

symbols, 214

stacks, 215

C-states in CPUs, 231

c2c subcommand for perf, 673, 702

Cache Allocation Technology (CAT), 118, 596

Cache miss rate, 36

Cache warmth, 222

cachegrind tool, 135

Caches and caching

applications, 176

associativity, 234

block devices, 110, 374

cache line size, 234

coherency, 234–235

CPUs, hardware virtualization, 596

CPUs, memory, 221–222, 314

CPUs, OS virtualization, 615–616

CPUs, processors, 230–235

CPUs, vs. GPUs, 240

defined, 23

dentry, 375

disks, I/O, 430

disks, on-disk, 437

disks, tuning, 456

file systems, flushing, 414

file systems, OS virtualization, 613

file systems, overview, 361–363

file systems, tuning, 389, 414–416

file systems, types, 373–375

file systems, usage, 309

inode, 375

methodologies, 35–37

micro-benchmarking test, 390

operating systems, 108–109

page, 315, 374

perf events, 680

RAID, 445

tuning, 60

write-back, 365

cachestat tool

file systems, 399, 658–659

memory, 348

perf-tools, 743

slow disks case study, 17

Caching disk model, 425–426

Canary testing, 3

Capacity-based utilization, 34

Capacity of file systems, 371

Capacity planning

benchmarking for, 642

cloud computing, 582–584

defined, 4

factor analysis, 71–72

micro-benchmarking, 70

overview, 69

resource analysis, 38

resource limits, 70–71

scaling solutions, 72–73

832 CAPI (Coherent Accelerator Processor Interface)

CAPI (Coherent Accelerator Processor
Interface), 236

Carrier sense multiple access with collision
detection (CSMA/CD) algorithm, 516

CAS (column address strobe) latency, 311

Cascading failures, 5

Case studies

analysis strategy, 784

bug database systems, 792–793

conclusion, 792

configuration, 786–788

PMCs, 788–789

problem statement, 783–784

references, 793

slow disks, 16–18

software change, 18–19

software events, 789–790

statistics, 784–786

tracing, 790–792

Casual benchmarking, 645

CAT (Cache Allocation Technology), 118,
596

cat function, 779

CAT (Intel Cache Allocation Technology),
118, 596

CFQ (completely fair queueing), 115, 449

CFS (completely fair scheduler), 116–117

CPU scheduling, 241

CPU shares, 614–615

description, 243

cgroup file, 141

cgroup variable, 778

cgroupid function, 779

cgroups

block I/O, 494

description, 116, 118

Linux kernel, 116

memory, 317, 353

OS virtualization, 606, 608–611,
613–620, 630

resource management, 111, 298

statistics, 139, 141, 620–622, 627–628

cgtop tool, 621

Character devices, 109–110

Characterizing memory usage, 325–326

Cheating in benchmarking, 650–651

Checklists

ad hoc checklist method, 43–44

benchmarking, 666

CPUs, 247, 527

disks, 453

file systems, 387

Linux 60-second analysis, 15

memory, 325

Chip-level multiprocessing (CMP), 220

chrt command, 295

Cilium, 509, 586, 617

Circular buffers for applications, 177

CISCs (complex instruction set computers),
224

clang complier, 122

Classes, scheduling

CPUs, 242–243

I/O, 493

kernel, 106, 115

priority, 295

Clean memory, 306

clear function in bpftrace, 780

clear subcommand in trace-cmd, 735

clock routine, 99

Clocks

CPUs, 223, 230

CPUs vs. GPUs, 240

operating systems, 99

clone system calls, 94, 100

Cloud APIs, 580

Cloud computing, 579–580

background, 580–581

capacity planning, 582–584

 CONFIG options 833

comparisons, 634–636

vs. enterprise, 62

exercises, 636–637

hardware virtualization. See Hardware
virtualization

instance types, 581

lightweight virtualization, 630–633

multitenancy, 585–586

orchestration, 586

OS virtualization. See OS virtualization

overview, 14

PMCs, 158

proof-of-concept testing, 3

references, 637–639

scalable architecture, 581–582

storage, 584–585

types, 634

Cloud-native databases, 582

Clue-based approach in thread state
analysis, 196

Clusters in cloud computing, 586

CMP (chip-level multiprocessing), 220

CNI (container network interface) software,
586

Co-routines in applications, 178

Coarse view in profiling, 35

Code changes in cloud computing, 583

Coefficient of variation (CoV), 76

Coherence

caches, 234–235

models, 63

Coherent Accelerator Processor Interface
(CAPI), 236

Cold caches, 36

collectd agent, 138

Collisions

hash, 180

networks, 516

Colors in flame graphs, 291

Column address strobe (CAS) latency, 311

Column quantizations, 82–83

comm variable in bpftrace, 778

Comma-separated values (CSV) format for
sar, 165

Comments in bpftrace, 767

Common case optimization in applications,
174

Communication in multiprocess vs.
multithreading, 228

Community applications, 172–173

Comparing benchmarks, 648

Competition, benchmarking, 649

Compiled programming languages

optimizations, 183–184

overview, 183

Compilers

CPU optimization, 229

options, 295

Completely fair queueing (CFQ), 115, 449

Completely fair scheduler (CFS), 116–117

CPU scheduling, 241

CPU shares, 614–615

description, 243

Completion target in workload analysis, 39

Complex benchmark tools, 646

Complex instruction set computers (CISCs),
224

Complexity, 5

Comprehension in flame graphs, 249

Compression

btrfs, 382

disks, 369

ZFS, 381

Compute kernel, 240

Compute Unified Device Architecture
(CUDA), 240

Concurrency

applications, 177–181

micro-benchmarking, 390, 456

CONFIG options, 295–296

834 CONFIG_TASK_DELAY_ACCT option

CONFIG_TASK_DELAY_ACCT option, 145

Configuration

applications, 172

case study, 786–788

network options, 574

Congestion avoidance and control

Linux kernel, 115

networks, 508

TCP, 510, 513

tuning, 570

connect system calls, 95

Connections for networks, 509

backlogs, 507, 519–520, 556–557, 569

characteristics, 527–528

firewalls, 517

latency, 7, 24–25, 505–506, 528

life span, 507

local, 509

monitoring, 529

NICs, 109

QUIC, 515

TCP queues, 519–520

three-way handshakes, 511–512

UDP, 514

Container network interface (CNI) software,
586

Containers

lightweight virtualization, 631–632

orchestration, 586

observability, 617–630

OS virtualization, 605–630

resource controls, 52, 70, 613–617, 626

Contention

locks, 198

models, 63

Context switches

defined, 90

kernels, 93

Contributors to system performance
technologies, 811–814

Control groups (cgroups). See cgroups

Control paths in hardware virtualization, 594

Control units in CPUs, 230

Controllers

caches, 430

disk, 426

mechanical disks, 439

micro-benchmarking, 457

network, 501–502, 516

solid-state drives, 440–441

tunable, 494–495

USE method, 49, 451

Controls, resource. See Resource controls

Cookies, TCP, 511, 520

Copy-on-write (COW) file systems, 376

btrfs, 382

ZFS, 380

Copy-on-write (COW) process strategy, 100

CoreLink Interconnects, 236

Cores

CPUs vs. GPUs, 240

defined, 220

Corrupted file system data, 365

count function in bpftrace, 780

Counters, 8–9

fixed, 133–135

hardware, 156–158

CoV (coefficient of variation), 76

COW (copy-on-write) file systems, 376

btrfs, 382

ZFS, 380

COW (copy-on-write) process strategy, 100

CPCs (CPU performance counters), 156

CPI (cycles per instruction), 225

CPU affinity, 222

CPU-bound applications, 106

cpu control group, 610

CPU mode for applications, 172

CPU performance counters (CPCs), 156

CPU registers, perf-tools for, 746–747

 CPUs architecture 835

cpu variable in bpftrace, 777

cpuacct control group, 610

cpudist tool

BCC, 755

case study, 790–791

threads, 278–279

cpufreq tool, 285

cpuinfo tool, 142

cpupower tool, 286–287

CPUs, 219–220

architecture. See CPUs architecture

benchmark questions, 667–668

binding, 181–182

bpftrace for, 763, 803–804

clock rate, 223

compiler optimization, 229

cross calls, 110

exercises, 299–300

experiments, 293–294

feedback-directed optimization, 122

flame graphs. See Flame graphs

FlameScope tool, 292–293

garbage collection, 185

hardware virtualization, 589–592,
596–597

I/O wait, 434

instructions, defined, 220

instructions, IPC, 225

instructions, pipeline, 224

instructions, size, 224

instructions, steps, 223

instructions, width, 224

memory caches, 221–222

memory tradeoffs with, 27

methodology. See CPUs methodology

models, 221–222

multiprocess and multithreading,
227–229

observability tools. See CPUs
observability tools

OS virtualization, 611, 614, 627, 630

preemption, 227

priority inversion, 227

profiling. See CPUs profiling

references, 300–302

run queues, 222

saturation, 226–227

scaling in networks, 522–523

schedulers, 105–106

scheduling classes, 115

simultaneous multithreading, 225

statistic accuracy, 142–143

subsecond-offset heat maps, 289

terminology, 220

thread pools, 178

tuning. See CPUs tuning

USE method, 49–51, 795–797

user time, 226

utilization, 226

utilization heat maps, 288–289

virtualization support, 588

visualizations, 288–293

volumes and pools, 383

word size, 229

CPUs architecture, 221, 229

accelerators, 240–242

associativity, 234

caches, 230–235

GPUs, 240–241

hardware, 230–241

idle threads, 244

interconnects, 235–237

latency, 233–234

memory management units, 235

NUMA grouping, 244

P-states and C-states, 231

PMCs, 237–239

processors, 230

schedulers, 241–242

scheduling classes, 242–243

software, 241–244

836 CPUs methodology

CPUs methodology

CPU binding, 253

cycle analysis, 251

micro-benchmarking, 253–254

overview, 244–245

performance monitoring, 251

priority tuning, 252–253

profiling, 247–250

resource controls, 253

sample processing, 247–248

static performance tuning, 252

tools method, 245

USE, 245–246

workload characterization, 246–247

CPUs observability tools, 254–255

bpftrace, 282–285

cpudist, 278–279

GPUs, 287

hardirqs, 282

miscellaneous, 285–286

mpstat, 259

perf, 267–276

pidstat, 262

pmcarch, 265–266

profile, 277–278

ps, 260–261

ptime, 263–264

runqlat, 279–280

runqlen, 280–281

sar, 260

showboost, 265

softirqs, 281–282

time, 263–264

tlbstat, 266–267

top, 261–262

turbostat, 264–265

uptime, 255–258

vmstat, 258

CPUs profiling

applications, 187–189

benchmarking, 660–661

perf, 200–201

record, 695–696

steps, 247–250

system-wide, 268–270

CPUs tuning

compiler options, 295

CPU binding, 297–298

exclusive CPU sets, 298

overview, 294–295

power states, 297

processor options, 299

resource controls, 298

scaling governors, 297

scheduler options, 295–296

scheduling priority and class, 295

security boot options, 298–299

Cpusets, 116

CPU binding, 253

exclusive, 298

cpusets control group, 610, 614, 627

cpuunclaimed tool, 755

Crash resilience, multiprocess vs.
multithreading, 228

Credit-based schedulers, 595

Crisis tools, 131–133

critical-chain command, 120

Critical paths in systemd service manager,
120

criticalstat tool, 756

CSMA/CD (carrier sense multiple access
with collision detection) algorithm, 516

CSV (comma-separated values) format for
sar, 165

CUBIC algorithm for TCP congestion
control, 513

CUDA (Compute Unified Device
Architecture), 240

CUMASK values in MSRs, 238–239

current_tracer file, 710

curtask variable for bpftrace, 778

 Direct buses 837

Custom benchmarks, 662

Custom load generators, 491

Cycle analysis

CPUs, 251

memory, 326

Cycles per instruction (CPI), 225

Cylinder groups in FFS, 378

D

Daily patterns, monitoring, 78

Data Center TCP (DCTCP) congestion
control, 118, 513

Data deduplication in ZFS, 381

Data integrity in magnetic rotational disks,
438

Data paths in hardware virtualization, 594

Data Plane Development Kit (DPDK), 523

Data rate in throughput, 22

Databases

applications, 172

case studies, 792–793

cloud computing, 582

Datagrams

OSI model, 502

UDP, 514

DAX (Direct Access), 118

dbslower tool, 756

dbstat tool, 756

Dcache (dentry cache), 375

dcsnoop tool, 409

dcstat tool, 409

DCTCP (Data Center TCP) congestion
control, 118, 513

dd command

disks, 490–491

file systems, 411–412

DDR SDRAM (double data rate
synchronous dynamic random-access
memory), 313

Deadline I/O schedulers, 243, 448

DEADLINE scheduling policy, 243

DebugFS interface, 116

Decayed average, 75

Deflated disk I/O, 369

Defragmentation in XFS, 380

Degradation in scalability, 31–32

Delay accounting

kernel, 116

off-CPU analysis, 197

overview, 145

Delayed ACKs algorithm, 513

Delayed allocation

ext4, 379

XFS, 380

delete function in bpftrace, 780

Demand paging

BSD kernel, 113

memory, 307–308

Dentry caches (dcaches), 375

Dependencies in perf-tools, 748

Development, benchmarking for, 642

Development attribute, multiprocess vs.
multithreading, 228

Devices

backlog tuning, 569

disk I/O caches, 430

drivers, 109–110, 522

hardware virtualization, 588, 594, 597

devices control group, 610

df tool, 409

Dhrystone benchmark

CPUs, 254

simulations, 653

Diagnosis cycle, 46

diff subcommand for perf, 673

Differentiated Services Code Points
(DSCPs), 509–510

Direct Access (DAX), 118

Direct buses, 313

838 Direct I/O

Direct I/O, 366

Direct mapped caches, 234

Direct measurement approach in thread
state analysis, 197

Direct-reclaim memory method, 318–319

Directories in file systems, 107

Directory indexes in ext3, 379

Directory name lookup cache (DNLC), 375

Dirty memory, 306

Disk commands, 424

Disk controllers

caches, 430

magnetic rotational disks, 439

tunable, 494–495

USE method, 451

Disk I/O state in thread state analysis,
194–197

Disk request time, 428

Disk response time, 428

Disk service time, 428–429

Disk wait time, 428

Disks, 423–424

architecture. See Disks architecture

exercises, 495–496

experiments, 490–493

I/O. See Disks I/O

IOPS, 432

latency analysis, 384–386

methodology. See Disks methodology

models. See Disks models

non-data-transfer disk commands, 432

observability tools. See Disks
observability tools

read/write ratio, 431

references, 496–498

resource controls, 494

saturation, 434

terminology, 424

tunable, 494

tuning, 493–495

USE method, 451

utilization, 433

visualizations, 487–490

Disks architecture

interfaces, 442–443

magnetic rotational disks, 435–439

operating system disk I/O stack,
446–449

persistent memory, 441

solid-state drives, 439–441

storage types, 443–446

Disks I/O

vs. application I/O, 435

bpftrace for, 764, 806–807

caching, 430

errors, 483

heat maps, 488–490

latency, 428–430, 454–455, 467–472,
482–483

operating system stacks, 446–449

OS virtualization, 613, 616

OS virtualization strategy, 630

random vs. sequential, 430–431

scatter plots, 488

simple disk, 425

size, 432, 480–481

synchronous vs. asynchronous,
434–435

time measurements, 427–429

time scales, 429–430

wait, 434

Disks methodology

cache tuning, 456

latency analysis, 454–455

micro-benchmarking, 456–457

overview, 449–450

performance monitoring, 452

resource controls, 456

scaling, 457–458

static performance tuning, 455–456

 Duplex for networks 839

tools method, 450

USE method, 450–451

workload characterization, 452–454

Disks models

caching disk, 425–426

controllers, 426

simple disk, 425

Disks observability tools, 484–486

biolatency, 468–470

biosnoop, 470–472

biostacks, 474–475

biotop, 473–474

blktrace, 475–479

bpftrace, 479–483

iostat, 459–463

iotop, 472–473

MegaCli, 484

miscellaneous, 487

overview, 458–459

perf, 465–468

pidstat, 464–465

PSI, 464

sar, 463–464

SCSI event logging, 486

diskstats tool, 142, 487

Dispatcher-queue latency, 222

Distributed operating systems, 123–124

Distributed tracing, 199

Distributions

multimodal, 76–77

normal, 75

dmesg tool

CPUs, 245

description, 15

memory, 348

OS virtualization, 619

dmidecode tool, 348–349

DNLC (directory name lookup cache), 375

DNS latency, 24–25

Docker 607, 620–622

Documentation

application latency, 385

BCC, 760–761

bpftrace, 781

Ftrace, 748–749

kprobes, 153

perf, 276, 703

perf-tools, 748

PMCs, 158

sar, 165–166

trace-cmd, 740

tracepoints, 150–151

uprobes, 155

USDT, 156

Domains

scheduling, 244

Xen, 589

Double data rate synchronous dynamic
random-access memory (DDR SDRAM),
313

Double-pumped data transfer for CPUs,
237

DPDK (Data Plane Development Kit), 523

DRAM (dynamic random-access memory),
311

Drill-down analysis

overview, 55–56

slow disks case study, 17

Drivers

balloon, 597

device, 109–110, 522

parameterized, 593–595

drsnoop tool

BCC, 756

memory, 342

DSCPs (Differentiated Services Code
Points), 509–510

DTrace tool

description, 12

Solaris kernel, 114

Duplex for networks, 508

840 Duplicate ACK detection

Duplicate ACK detection, 512

Duration in RED method, 53

DWARF (debugging with attributed record
formats) stack walking, 216, 267, 676,
696

Dynamic instrumentation

kprobes, 151

latency analysis, 385

overview, 12

Dynamic priority in scheduling classes,
242–243

Dynamic random-access memory (DRAM),
311

Dynamic sizing in cloud computing,
583–584

Dynamic tracers, 12

Dynamic tracing

DTrace, 114

perf, 677–678

tools, 12

Dynamic USDT, 156

DynTicks, 116

E

e2fsck tool, 418

Early Departure Time (EDT), 119, 524

eBPF. See Extended BPF

EBS (Elastic Block Store), 585

ECC (error-correcting code) for magnetic
rotational disks, 438

ECN (Explicit Congestion Notification) field

IP, 508–510

TCP, 513

tuning, 570

EDT (Early Departure Time), 119, 524

EFS (Elastic File System), 585

EKS (Elastic Kubernetes Service), 586

elasped variable in bpftrace, 777

Elastic Block Store (EBS), 585

Elastic File System (EFS), 585

Elastic Kubernetes Service (EKS), 586

Elevator seeking in magnetic rotational
disks, 437–438

ELF (Executable and Linking Format)
binaries

description, 183

missing symbols in, 214

Embedded caches, 232

eMLC (enterprise multi-level cell) flash
memory, 440

Encapsulation for networks, 504

END probes in bpftrace, 774

End-to-end network arguments, 507

Enterprise models, 62

Enterprise multi-level cell (eMLC) flash
memory, 440

Environment

benchmarking, 647

processes, 101–102

Ephemeral drives, 584

Ephemeral ports, 531

epoll system call, 115, 118

EPTs (extended page tables), 593

Erlang virtual machines, 185

Error-correcting code (ECC) for magnetic
rotational disks, 438

Errors

applications, 193

benchmarking, 647

CPUs, 245–246, 796, 798

disk controllers, 451

disk devices, 451

I/O, 483, 798

kernels, 798

memory, 324–325, 796, 798

networks, 526–527, 529, 796–797

RED method, 53

storage, 797

task capacity, 799

USE method overview, 47–48, 51–53

user mutex, 799

Ethernet congestion avoidance, 508

 ext4dist tool 841

ethtool tool, 132, 546–547

Event-based concurrency, 178

Event-based tools, 133

Event-select MSRs, 238

Event sources for Wireshark, 559

Event tracing

disks, 454

file systems, 388

Ftrace, 707–708

kprobes, 719–720

methodologies, 57–58

perf-tools for, 745–746

trace-cmd for, 737

uprobes, 722–723

Event worker threads, 178

Events

case study, 789–790

CPUs, 273–274

frequency sampling, 682–683

observability source, 159

perf. See perf tool events

SCSI logging, 486

selecting, 274–275

stat filters, 693–694

synthetic, 731–733

trace, 148

events directory in tracefs, 710

Eviction policies for caching, 36

evlist subcommand for perf, 673

Exceptions

synchronous interrupts, 97

user mode, 93

Exclusive CPU sets, 298

exec system calls

kernel, 94

processes, 100

execsnoop tool

BCC, 756

CPUs, 285

perf-tools, 743

process tracing, 207–208

static instrumentation, 11–12

tracing, 136

Executable and Linking Format (ELF)
binaries

description, 183

missing symbols in, 214

Executable data in process virtual address
space, 319

Executable text in process virtual address
space, 319

Execution in kernels, 92–93

execve system call, 11

exit function in bpftrace, 770, 779

Experimentation-based performance gains,
73–74

Experiments

CPUs, 293–294

disks, 490–493

file systems, 411–414

networks, 562–567

observability, 7

overview, 13–14

scientific method, 45–46

Experts for applications, 173

Explicit Congestion Notification (ECN) field

IP, 508–510

TCP, 513

tuning, 570

Explicit logical metadata in file systems,
368

Exporters for monitoring, 55, 79, 137

Express Data Path (XDP) technology

description, 118

event sources, 558

kernel bypass, 523

ext3 file system, 378–379

ext4 file system

features, 379

tuning, 416–418

ext4dist tool, 399–401, 756

842 ext4slower tool

ext4slower tool, 401–402, 756

Extended BPF, 12

BCC 751–761

bpftrace 752–753, 761–781, 803–808

description, 118

firewalls, 517

histograms, 744

kernel-mode applications, 92

overview, 121–122

tracing tools, 166

Extended page tables (EPTs), 593

Extent-based file systems, 375–376

Extents, 375–376

btrfs, 382

ext4, 380

External caches, 232

F

FaaS (functions as a service), 634

FACK (forward acknowledgments) in TCP,
514

Factor analysis in capacity planning, 71–72

Failures, benchmarking, 645–651

Fair-share schedulers, 595

False sharing for hash tables, 181

Families of instance types, 581

Fast File System (FFS)

description, 113

overview, 377–378

Fast open in TCP, 510

Fast recovery in TCP, 510

Fast retransmits in TCP, 510, 512

Fast user-space mutex (Futex), 115

Fastpath state in Mutex locks, 179

fatrace tool, 395–396

Faults

in synchronous interrupts, 97

page faults. See page faults

faults tool, 348

FC (Fibre Channel) interface, 442–443

fd tool, 141

Feedback-directed optimization (FDO), 122

ffaults tool, 348

FFS (Fast File System)

description, 113

overview, 377–378

Fiber threads, 178

Fibre Channel (FC) interface, 442–443

Field-programmable gate arrays (FPGAs),
240–241

FIFO scheduling policy, 243

File descriptor capacity in USE method, 52

File offset pattern, micro-benchmarking
for, 390

File stores in cloud computing, 584

File system internals, bpftrace for, 408

File systems

access timestamps, 371

ad hoc tools, 411–412

architecture. See File systems
architecture

bpftrace for, 764, 805–806

caches. See File systems caches

capacity, OS virtualization, 616

capacity, performance issues, 371

exercises, 419–420

experiments, 411–414

hardware virtualization, 597

I/O, logical vs. physical, 368–370

I/O, non-blocking, 366–367

I/O, random vs. sequential, 363–364

I/O, raw and direct, 366

I/O, stack, 107–108

interfaces, 361

latency, 362–363

memory-mapped files, 367

metadata, 367–368

methodology. See File systems
methodology

micro-benchmark tools, 412–414

 Filters 843

models, 361–362

observability tools. See File systems
observability tools

operations, 370–371

OS virtualization, 611–612

overview, 106–107, 359–360

paging, 306

prefetch, 364–365

read-ahead, 365

reads, micro-benchmarking for, 61

record size tradeoffs, 27

references, 420–421

special, 371

synchronous writes, 366

terminology, 360

tuning, 414–419

types. See File systems types

visualizations, 410–411

volumes and pools, 382–383

File systems architecture

caches, 373–375

features, 375–377

I/O stacks, 107–108, 372

VFS, 107, 373

File systems caches, 361–363

defined, 360

flushing, 414

hit ratio, 17

OS virtualization, 616

OS virtualization strategy, 630

tuning, 389

usage, 309

write-back, 365

File systems methodology

cache tuning, 389

disk analysis, 384

latency analysis, 384–386

micro-benchmarking, 390–391

overview, 383–384

performance monitoring, 388

static performance tuning, 389

workload characterization, 386–388

workload separation, 389

File systems observability tools

bpftrace, 402–408

cachestat, 399

ext4dist, 399–401

ext4slower, 401–402

fatrace, 395–396

filetop, 398–399

free, 392–393

LatencyTOP, 396

miscellaneous, 409–410

mount, 392

opensnoop, 397

overview, 391–392

sar, 393–394

slabtop, 394–395

strace, 395

top, 393

vmstat, 393

File systems types

btrfs, 381–382

ext3, 378–379

ext4, 379

FFS, 377–378

XFS, 379–380

ZFS, 380–381

FileBench tool, 414

filelife tool, 409, 756

fileslower tool, 409

filetop tool, 398–399

filetype tool, 409

Filters

bpftrace, 769, 776

event, 693–694

kprobes, 721–722

PID, 729–730

tracepoints, 717–718

uprobes, 723

844 fio (Flexible IO Tester) tool

fio (Flexible IO Tester) tool

disks, 493

file systems, 413–414

Firecracker project, 631

Firewalls, 503

misconfigured, 505

overview, 517

tuning, 574

First-byte latency, 506, 528

Five Whys in drill-down analysis, 56

Fixed counters, 133–135

Flame graphs

automated, 201

characteristics, 290–291

colors, 291

CPU profiling, 10–11, 187–188, 278,
660–661

generating, 249, 270–272

interactivity, 291

interpretation, 291–292

malloc() bytes, 346

missing stacks, 215

off-CPU time, 190–191, 205

overview, 289–290

page faults, 340–342, 346

perf, 119

performance wins, 250

profiles, 278

sample processing, 249–250

scripts, 700

FlameScope tool, 292–293, 700

Flash-memory-based SSDs, 439–440

Flash translation layer (FTL) in solid-state
drives, 440–441

Flent (FLExible Network Tester) tool, 567

Flexible IO Tester (fio) tool

disks, 493

file systems, 413–414

FLExible Network Tester (Flent) tool, 567

Floating point events in perf, 680

floating-point operations per second
(FLOPS) in benchmarking, 655

Flow control in bpftrace, 775–777

Flusher threads, 374

Flushing caches, 365, 414

fmapfault tool, 409

Footprints, off-CPU, 188–189

fork system calls, 94, 100

forks.bt tool, 624–625

Format string for tracepoints, 148–149

Forward acknowledgments (FACK) in TCP,
514

4-wide processors, 224

FPGAs (field-programmable gate arrays),
240–241

Fragmentation

FFS, 377

file systems, 364

memory, 321

packets, 505

reducing, 380

Frames

defined, 500

networks, 515

OSI model, 502

Free memory lists, 315–318

free tool

description, 15

file systems, 392–393

memory, 348

OS virtualization, 619

FreeBSD

jails, 606

jemalloc, 322

kernel, 113

TSA analysis, 217

network stack, 514

performance vs. Linux, 124

TCP LRO, 523

Freeing memory, 315–318

 Geometric mean 845

Frequency sampling for hardware events,
682–683

Front-ends in instruction pipeline, 224

Front-side buses, 235–237

fsck time in ext4, 379

fsrwstat tool, 409

FTL (flash translation layer) in solid-state
drives, 440–441

ftrace subcommand for perf, 673

Ftrace, 13, 705–706

capabilities overview, 706–708

description, 166

documentation, 748–749

function_graph, 724–725

function profiler, 711–712

function tracer, 713–716

hist triggers, 727–733

hwlat, 726

kprobes, 719–722

options, 716

OS virtualization, 629

perf, 741

perf-tools, 741–748

references, 749

trace-cmd, 734–740

trace file, 713–715

trace_pipe file, 715

tracefs, 708–711

tracepoints, 717–718

tracing, 136

uprobes, 722–723

Full I/O distributions disk latency, 454

Full stack in systems performance, 1

Fully associative caches, 234

Fully-preemptible kernels, 110, 114

func variable in bpftrace, 778

funccount tool

BCC, 756–758

example, 747

perf-tools, 744, 748

funcgraph tool

Ftrace, 706–707

perf-tools, 744, 748

funclatency tool, 757

funcslower tool

BCC, 757

perf-tools, 744

function_graph tracer

description, 708

graph tracing, 724–725

options, 725

trace-cmd for, 737, 739

function_profile_enabled file, 710

Function profiling

Ftrace, 707, 711–712

observability source, 159

Function tracer. See Ftrace tool

Function tracing

profiling, 248

trace-cmd for, 736–737

Functional block diagrams in USE method,
49–50

Functional units in CPUs, 223

Functions as a service (FaaS), 634

Functions in bpftrace, 770, 778–781

functrace tool, 744

Futex (fast user-space mutex), 115

futex system calls, 95

G

Garbage collection, 185–186

gcc compiler

optimizations, 183–184

PGO kernels, 122

gdb tool, 136

Generic segmentation offload (GSO) in
networks, 520–521

Generic system performance
methodologies, 40–41

Geometric mean, 74

846 getdelays.c tool

getdelays.c tool, 286

gethostlatency tool, 561, 756

github.com tool package, 132

GKE (Google Kubernetes Engine), 586

glibc allocator, 322

Glossary of terms, 815–823

Golang

goroutines, 178

syscalls, 92

Good/fast/cheap trade-offs, 26–27

Google Kubernetes Engine (GKE), 586

Goroutines for applications, 178

gprof tool, 135

Grafana, 8-9, 138

Graph tracing, 724–725

Graphics processing units (GPUs)

vs. CPUs, 240

tools, 287

GRO (Generic Receive Offload), 119

Growth

big O notation, 175

heap, 320

memory, 185, 316, 327

GSO (generic segmentation offload) in
networks, 520–521

Guests

hardware virtualization, 590–593,
596–605

lightweight virtualization, 632–633

OS virtualization, 617, 627–629

gVisor project, 631

H

Hard disk drives (HDDs), 435–439

Hard interrupts, 282

hardirqs tool, 282, 756

Hardware

memory, 311–315

networks, 515–517

threads, 220

tracing, 276

Hardware-assisted virtualization, 590

Hardware counters. See Performance
monitoring counters (PMCs)

Hardware events

CPUs, 273–274

frequency sampling, 682–683

perf, 680–683

selecting, 274–275

Hardware instances in cloud computing,
580

Hardware interrupts, 91

Hardware latency detector (hwlat), 708,
726

Hardware latency tracer, 118

Hardware probes, 774

Hardware RAID, 444

Hardware resources in capacity planning,
70

Hardware virtualization

comparisons, 634–636

CPU support, 589–592

I/O, 593–595

implementation, 588–589

memory mapping, 592–593

multi-tenant contention, 595

observability, 597–605

overhead, 589–595

overview, 587–588

resource controls, 595–597

Harmonic mean, 74

Hash fields in hist triggers, 728

Hash tables in applications, 180–181

HBAs (host bus adapters), 426

HDDs (hard disk drives), 435–439

hdparm tool, 491–492

Head-based sampling in distributed
tracing, 199

Heads in magnetic rotational disks, 436

http://github.com

 IDLE scheduling policy 847

Heap

anonymous paging, 306

description, 304

growth, 320

process virtual address space, 319

Heat maps

CPU utilization, 288–289

disk offset, 489–490

disk utilization, 490

file systems, 410–411

FlameScope, 292–293

I/O latency, 488–489

overview, 82–83

subsecond-offset, 289

Hello, World! program, 770

hfaults tool, 348

hist function in bpftrace, 780

Hist triggers

fields, 728–729

modifiers, 729

multiple keys, 730

perf-tools, 748

PID filters, 729–730

single keys, 727–728

stack trace keys, 730–731

synthetic events, 731–733

usage, 727

hist triggers profiler, 707

Histogram, 76–77

Hits, cache, 35–36, 361

Hold times for locks, 198

Holistic approach, 6

Horizontal pod autoscalers (HPAs), 73

Horizontal scaling and scalability

capacity planning, 72

cloud computing, 581–582

Host bus adapters (HBAs), 426

Hosts

applications, 172

cloud computing, 580

hardware virtualization, 597–603

lightweight virtualization, 632

OS virtualization, 617, 619–627

Hot caches, 37

Hot/cold flame graphs, 191

Hourly patterns, monitoring, 78

HPAs (horizontal pod autoscalers), 73

HT (HyperTransport) for CPUs, 236

htop tool, 621

HTTP/3 protocol, 515

Hubs in networks, 516

Hue in flame graphs, 291

Huge pages, 115–116, 314, 352–353

hugetlb control group, 610

hwlat (hardware latency detector), 708, 726

Hybrid clouds, 580

Hybrid kernels, 92, 123

Hyper-Threading Technology, 225

Hyper-V, 589

Hypercalls in paravirtualization, 588

Hyperthreading-aware scheduling classes,
243

HyperTransport (HT) for CPUs, 236

Hypervisors

cloud computing, 580

hardware virtualization, 587–588

kernels, 93

Hypothesis step in scientific method, 44–45

I

I/O. See Input/output (I/O)

IaaS (infrastructure as a service), 580

Icicle graphs, 250

icstat tool, 409

IDDs (isolated driver domains), 596

Identification in drill-down analysis, 55

Idle memory, 315

Idle scheduling class, 243

IDLE scheduling policy, 243

848 Idle state in thread state analysis

Idle state in thread state analysis, 194,
196–197

Idle threads, 99, 244

ieee80211scan tool, 561

If statements, 776

ifconfig tool, 537–538

ifpps tool, 561

iftop tool, 562

Implicit disk I/O, 369

Implicit logical metadata, 368

Inactive pages in page caches, 318

Incast problem in networks, 524

Index nodes (inodes)

caches, 375

defined, 360

VFS, 373

Indirect disk I/O, 369

Individual synchronous writes, 366

Industry benchmarking, 60–61

Industry standards for benchmarking,
654–655

Inflated disk I/O, 369

Infrastructure as a service (IaaS), 580

init process, 100

Initial window in TCP, 514

inject subcommand for perf, 673

Inodes (index nodes)

caches, 375

defined, 360

VFS, 373

inotify framework, 116

inotify tool, 409

Input

event tracing, 58

solid-state drive controllers, 440

Input/output (I/O)

disks. See Disks I/O

file systems, 360

hardware virtualization, 593–595, 597

I/O-bound applications, 106

latency, 424

logical vs. physical, 368–370

merging, 448

multiqueue schedulers, 119

non-blocking, 181, 366–367

OS virtualization, 611–612, 616–617

random vs. sequential, 363–364

raw and direct, 366

request time, 427

schedulers, 448

scheduling, 115–116

service time, 427

size, applications, 176

size, micro-benchmarking, 390

stacks, 107–108, 372

USE method, 798

wait time, 427

Input/output operations per second.
See IOPS (input/output operations per
second)

Input/output profiling

bpftrace, 210–212

perf, 202–203

syscall analysis, 192

Installing

BCC, 754

bpftrace, 762

instances directory in tracefs, 710

Instances in cloud computing

description, 14

types, 580

Instruction pointer for threads, 100

Instructions, CPU

defined, 220

IPC, 225

pipeline, 224

size, 224

steps, 223

text, 304

width, 224

 iostat tool 849

Instructions per cycle (IPC), 225, 251, 326

Integrated caches, 232

Intel Cache Allocation Technology (CAT),
118, 596

Intel Clear Containers, 631

Intel processor cache sizes, 230–231

Intel VTune Amplifier XE tool, 135

Intelligent Platform Management Interface
(IPMI), 98–99

Intelligent prefetch in ZFS, 381

Inter-processor interrupts (IPIs), 110

Inter-stack latency in networks, 529

Interactivity in flame graphs, 291

Interconnects

buses, 313

CPUs, 235–237

USE method, 49–51

Interfaces

defined, 500

device drivers, 109–110

disks, 442–443

file systems, 361

kprobes, 153

network, 109, 501

network hardware, 515–516

network IOPS, 527–529

network negotiation, 508

PMCs, 157–158

scheduling in NAPI, 522

tracepoints, 149–150

uprobes, 154–155

Interleaving in FFS, 378

Internet Protocol (IP)

congestion avoidance, 508

overview, 509–510

sockets, 509

Interpretation of flame graphs, 291–292

Interpreted programming languages,
184–185

Interrupt coalescing mode for networks,
522

Interrupt-disabled mode, 98

Interrupt service requests (IRQs), 96–97

Interrupt service routines (ISRs), 96

Interrupts

asynchronous, 96–97

defined, 91

hardware, 282

masking, 98–99

network latency, 529

overview, 96

soft, 281–282

synchronous, 97

threads, 97–98

interrupts tool, 142

interval probes in bpftrace, 774

Interval statistics, stat for, 693

IO accounting, 116

io_submit command, 181

io_uring_enter command, 181

io_uring interface, 119

ioctl system calls, 95

iolatency tool, 743

ionice tool, 493–494

ioping tool, 492

ioprofile tool, 409

IOPS (input/output operations per
second)

defined, 22

description, 7

disks, 429, 431–432

networks, 527–529

performance metric, 32

resource analysis, 38

iosched tool, 487

iosnoop tool, 743

iostat tool

bonnie++ tool, 658

default output, 459–460

description, 15

disks, 450, 459–463

850 iostat tool

extended output, 460–463

fixed counters, 134

memory, 348

options, 460

OS virtualization, 619, 627

percent busy metric, 33

slow disks case study, 17

iotop tool, 450, 472–473

IP (Internet Protocol)

congestion avoidance, 508

overview, 509–510

sockets, 509

ip tool, 525, 536–537

ipc control group, 608

IPC (instructions per cycle), 225, 251,
326

ipecn tool, 561

iperf tool

example, 13–14

network micro-benchmarking, 10

network throughput, 564–565

IPIs (inter-processor interrupts), 110

IPMI (Intelligent Platform Management
Interface), 98–99

iproute2 tool package, 132

IRQs (interrupt service requests), 96–97

irqsoff tracer, 708

iscpu tool, 285

Isolated driver domains (IDDs), 596

Isolation in OS virtualization, 629

ISRs (interrupt service routines), 96

istopo tool, 286

J

Jails in BSD kernel, 113, 606

Java

analysis, 29

case study, 783–792

flame graphs, 201, 271

dynamic USDT, 156, 213

garbage colleciton, 185–186

Java Flight Recorder, 135

stack traces, 215

symbols, 214

uprobes, 213

USDT probes, 155, 213

virtual machines, 185

Java Flight Recorder (JFR), 135

JavaScript Object Notation (JSON) format,
163–164

JBOD (just a bunch of disks), 443

jemalloc allocator, 322

JFR (Java Flight Recorder), 135

JIT (just-in-time) compilation

Linux kernel, 117

PGO kernels, 122

runtime missing symbols, 214

Jitter in operating systems, 99

jmaps tool, 214

join function, 778

Journaling

btrfs, 382

ext3, 378–379

file systems, 376

XFS, 380

JSON (JavaScript Object Notation) format,
163–164

Jumbo frames

packets, 505

tuning, 574

Just a bunch of disks (JBOD), 443

Just-in-time (JIT) compilation

Linux kernel, 117

PGO kernels, 122

runtime missing symbols, 214

K

kaddr function, 779

Kata Containers, 631

KCM (Kernel Connection Multiplexor), 118

 kswapd tool 851

Keep-alive strategy in networks, 507

Kendall’s notation for queueing systems,
67–68

Kernel-based Virtual Machine (KVM)
technology

CPU quotas, 595

description, 589

I/O path, 594

Linux kernel, 116

observability, 600–603

Kernel bypass for networks, 523

Kernel Connection Multiplexor (KCM), 118

Kernel mode, 93

Kernel page table isolation (KPTI) patches,
121

Kernel space, 90

Kernel state in thread state analysis,
194–197

Kernel statistics (Kstat) framework, 159–160

Kernel time

CPUs, 226

syscall analysis, 192

Kernels

bpftrace for, 765

BSD, 113

comparisons, 124

defined, 90

developments, 115–120

execution, 92–93

file systems, 107

filtering in OS virtualization, 629

Linux, 114–122, 124

microkernels, 123

monolithic, 123

overview, 91–92

PGO, 122

PMU events, 680

preemption, 110

schedulers, 105–106

Solaris, 114

stacks, 103

system calls, 94–95

time analysis, 202

unikernels, 123

Unix, 112

USE method, 798

user modes, 93–94

versions, 111–112

KernelShark software, 83–84, 739–740

kfunc probes, 774

killsnoop tool

BCC, 756

perf-tools, 743

klockstat tool, 756

kmem subcommand for perf, 673, 702

Knee points

models, 62–64

scalability, 31

Known-knowns, 37

Known-unknowns, 37

kprobe_events file, 710

kprobe probes, 774

kprobe profiler, 707

kprobe tool, 744

kprobes, 685–686

arguments, 686–687, 720–721

event tracing, 719–720

filters, 721–722

overview, 151–153

profiling, 722

return values, 721

triggers, 721–722

kprobes tracer, 708

KPTI (kernel page table isolation) patches,
121

kretfunc probes, 774

kretprobes, 152–153, 774

kstack function in bpftrace, 779

kstack variable in bpftrace, 778

Kstat (kernel statistics) framework, 159–160

kswapd tool, 318–319, 374

852 ksym function

ksym function, 779

kubectl command, 621

Kubernetes

 node, 608

orchestration, 586

OS virtualization, 620–621

KVM. See Kernel-based Virtual Machine
(KVM) technology

kvm_entry tool, 602

kvm_exit tool, 602

kvm subcommand for perf, 673, 702

kvm_vcpu_halt command, 592

kvmexits.bt tool, 602–603

Kyber multi-queue schedulers, 449

L

L2ARC cache in ZFS, 381

Label selectors in cloud computing, 586

Language virtual machines, 185

Large Receive Offload (LRO), 116

Large segment offload for packet size, 505

Last-level caches (LLCs), 232

Latency

analysis methodologies, 56–57

applications, 173

biolatency, 468–470

CPUs, 233–234

defined, 22

disk I/O, 428–430, 454–455, 467–472,
482–483

distributions, 76–77

file systems, 362–363, 384–386, 388

graph tracing, 724–725

hardware, 118

hardware virtualization, 604

heat maps, 82–83, 488–489

I/O profiling, 210–211

interrupts, 98

line charts, 80–81

memory, 311, 441

methodologies, 24–25

networks, analysis, 528–529

networks, connections, 7, 24–25, 505–
506, 528

networks, defined, 500

networks, types, 505–507

outliers, 58, 186, 424, 471–472

overview, 6–7

packets, 532–533

percentiles, 413–414

perf, 467–468

performance metric, 32

run-queue, 222

scatter plots, 81–82, 488

scheduler, 226, 272–273

solid-state drives, 441

ticks, 99

transaction costs analysis, 385–386

VFS, 406–408

workload analysis, 39–40

LatencyTOP tool for file systems, 396

latencytop tool for operating systems,
116

Lazy shootdowns, 367

LBR (last branch record), 216, 676, 696

Leak detection for memory, 326–327

Least frequently used (LFU) caching
algorithm, 36

Least recently used (LRU) caching
algorithm, 36

Level 1 caches

data, 232

instructions, 232

memory, 314

Level 2 ARC, 381

Level 2 caches

embedded, 232

memory, 314

Level 3 caches

LLC, 232

memory, 314

 Locks 853

Level of appropriateness in methodologies,
28–29

LFU (least frequently used) caching
algorithm, 36

lhist function, 780

libpcap library as observability source, 159

Life cycle for processes, 100–101

Life span

network connections, 507

solid-state drives, 441

Lightweight threads, 178

Lightweight virtualization

comparisons, 634–636

implementation, 631–632

observability, 632–633

overhead, 632

overview, 630

resource controls, 632

Limit investigations, benchmarking for, 642

Limitations of averages, 75

Limits for OS virtualization resources, 613

limits tool, 141

Line charts

baseline statistics, 59

disks, 487–488

working with, 80–81

Linear scalability

methodologies, 32

models, 63

Link aggregation tuning, 574

Link-time optimization (LTO), 122

Linux 60-second analysis, 15–16

Linux operating system

crisis tools, 131–133

extended BPF, 121–122

kernel developments, 115–120

KPTI patches, 121

network stacks, 518–519

observability sources, 138–146

observability tools, 130

operating system disk I/O stack, 447–448

overview, 114–115

static performance tools, 130–131

systemd service manager, 120

thread state analysis, 195–197

linux-tools-common linux-tools tool
package, 132

list subcommand

perf, 673

trace-cmd, 735

Listen backlogs in networks, 519

listen subcommand in trace-cmd, 735

Listing events

perf, 674–675

trace-cmd for, 736

Little’s Law, 66

Live reporting in sar, 165

LLCs (last-level caches), 232

llcstat tool

BCC, 756

CPUs, 285

Load averages for uptime, 255–257

Load balancers

capacity planning, 72

schedulers, 241

Load generation

capacity planning, 70

custom load generators, 491

micro-benchmarking, 61

Load vs. architecture in methodologies,
30–31

loadavg tool, 142

Local memory, 312

Local network connections, 509

Localhost network connections, 509

Lock state in thread state analysis,
194–197

lock subcommand for perf, 673, 702

Locks

analysis, 198

applications, 179–181

tracing, 212–213

854 Logging

Logging

applications, 172

SCSI events, 486

ZFS, 381

Logical CPUs

defined, 220

hardware threads, 221

Logical I/O

defined, 360

vs. physical, 368–370

Logical metadata in file systems, 368

Logical operations in file systems, 361

Longest-latency caches, 232

Loopbacks in networks, 509

Loops in bpftrace, 776–777

LRO (Large Receive Offload), 116

LRU (least recently used) caching
algorithm, 36

lsof tool, 561

LTO (link-time optimization), 122

LTTng tool, 166

M

M/D/1 queueing systems, 68–69

M/G/1 queueing systems, 68

M/M/1 queueing systems, 68

M/M/c queueing systems, 68

Macro-benchmarks, 13, 653–654

MADV_COLD option, 119

MADV_PAGEOUT option, 119

madvise system call, 367, 415–416

Magnetic rotational disks, 435–439

Main memory

caching, 37–39

defined, 90, 304

latency, 26

managing, 104–105

overview, 311–312

malloc() bytes flame graphs, 346

Map functions in bpftrace, 771–772,
780–781

Map variables in bpftrace, 771

Mapping memory. See Memory mappings

maps tool, 141

Marketing, benchmarking for, 642

Markov model, 654

Markovian arrivals in queueing systems,
68–69

Masking interrupts, 98–99

max function in bpftrace, 780

Maximum controller operation rate, 457

Maximum controller throughput, 457

Maximum disk operation rate, 457

Maximum disk random reads, 457

Maximum disk throughput

magnetic rotational disks, 436–437

micro-benchmarking, 457

Maximum transmission unit (MTU) size for
packets, 504–505

MCS locks, 117

mdflush tool, 487

Mean, 74

"A Measure of Transaction Processing
Power," 655

Measuring disk time, 427–429

Medians, 75

MegaCli tool, 484

Melo, Arnaldo Carvalho de, 671

Meltdown vulnerability, 121

mem subcommand for perf, 673

meminfo tool, 142

memleak tool

BCC, 756

memory, 348

Memory, 303–304

allocators, 309, 353

architecture. See Memory architecture

benchmark questions, 667–668

bpftrace for, 763–764, 804–805

 Memory observability tools 855

BSD kernel, 113

CPU caches, 221–222

CPU tradeoffs with, 27

demand paging, 307–308

exercises, 354–355

file system cache usage, 309

garbage collection, 185

hardware virtualization, 596–597

internals, 346–347

mappings. See Memory mappings

methodology. See Memory methodology

multiple page sizes, 352–353

multiprocess vs. multithreading, 228

NUMA binding, 353

observability tools. See Memory
observability tools

OS virtualization, 611, 613, 615–616

OS virtualization strategy, 630

overcommit, 308

overprovisioning in solid-state drives, 441

paging, 306–307

persistent, 441

process swapping, 308–309

references, 355–357

resource controls, 353–354

shared, 310

shrinking method, 328

terminology, 304

tuning, 350–354

USE method, 49–51, 796–798

utilization and saturation, 309

virtual, 90, 104–105, 304–305

word size, 310

working set size, 310

Memory architecture, 311

buses, 312–313

CPU caches, 314

freeing memory, 315–318

hardware, 311–315

latency, 311

main memory, 311–312

MMU, 314

process virtual address space, 319–322

software, 315–322

TLB, 314

memory control group, 610, 616

Memory locality, 222

Memory management units (MMUs), 235,
314

Memory mappings

displaying, 337–338

files, 367

hardware virtualization, 592–593

heap growth, 320

kernel, 94

micro-benchmarking, 390

OS virtualization, 611

Memory methodology

cycle analysis, 326

leak detection, 326–327

memory shrinking, 328

micro-benchmarking, 328

overview, 323

performance monitoring, 326

resource controls, 328

static performance tuning, 327–328

tools method, 323–324

usage characterization, 325–326

USE method, 324–325

Memory observability tools

bpftrace, 343–347

drsnoop, 342

miscellaneous, 347–350

numastat, 334–335

overview, 328–329

perf, 338–342

pmap, 337–338

ps, 335–336

PSI, 330–331

sar, 331–333

856 Memory observability tools

slabtop, 333–334

swapon, 331

top, 336–337

vmstat, 329–330

wss, 342–343

Memory reclaim state in delay accounting,
145

Metadata

ext3, 378

file systems, 367–368

Method R, 57

Methodologies, 21–22

ad hoc checklist method, 43–44

anti-methods, 42–43

applications. See Applications
methodology

baseline statistics, 59

benchmarking. See Benchmarking
methodology

cache tuning, 60

caching, 35–37

capacity planning, 69–73

CPUs. See CPUs methodology

diagnosis cycle, 46

disks. See Disks methodology

drill-down analysis, 55–56

event tracing, 57–58

exercises, 85–86

file systems. See File systems
methodology

general, 40–41

known-unknowns, 37

latency analysis, 56–57

latency overview, 24–25

level of appropriateness, 28–29

Linux 60-second analysis checklist, 15–16

load vs. architecture, 30–31

memory. See Memory methodology

Method R, 57

metrics, 32–33

micro-benchmarking, 60–61

modeling. See Methodologies modeling

models, 23–24

monitoring, 77–79

networks. See Networks methodology

performance, 41–42

performance mantras, 61

perspectives, 37–40

point-in-time recommendations, 29–30

problem statement, 44

profiling, 35

RED method, 53

references, 86–87

resource analysis, 38–39

saturation, 34–35

scalability, 31–32

scientific method, 44–46

static performance tuning, 59–60

statistics, 73–77

stop indicators, 29

terminology, 22–23

time scales, 25–26

tools method, 46

trade-offs, 26–27

tuning efforts, 27–28

USE method, 47–53

utilization, 33–34

visualizations. See Methodologies
visualizations

workload analysis, 39–40

workload characterization, 54

Methodologies modeling, 62

Amdahl’s Law of Scalability, 64–65

enterprise vs. cloud, 62

queueing theory, 66–69

Universal Scalability Law, 65–66

visual identification, 62–64

Methodologies visualizations, 79

heat maps, 82–83

line charts, 80–81

scatter plots, 81–82

 Monitoring 857

surface plots, 84–85

timeline charts, 83–84

tools, 85

Metrics, 8–9

applications, 172

fixed counters, 133–135

methodologies, 32–33

observability tools, 167–168

resource analysis, 38

USE method, 48–51

workload analysis, 40

MFU (most frequently used) caching
algorithm, 36

Micro-benchmarking

capacity planning, 70

CPUs, 253–254

description, 13

design example, 652–653

disks, 456–457, 491–492

file systems, 390–391, 412–414

memory, 328

methodologies, 60–61

networks, 533

overview, 651–652

Micro-operations (uOps), 224

Microcode ROM in CPUs, 230

Microkernels, 92, 123

Microservices

cloud computing, 583–584

USE method, 53

Midpath state for Mutex locks, 179

Migration types for free lists, 317

min function in bpftrace, 780

MINIX operating system, 114

Minor faults, 307

MIPS (millions of instructions per second)
in benchmarking, 655

Misleading benchmarks, 650

Missing stacks, 215–216

Missing symbols, 214

Mixed-mode CPU profiles, 187

Mixed-mode flame graphs, 187

MLC (multi-level cell) flash memory, 440

mmap sys call

description, 95

memory mapping, 320, 367

mmapfiles tool, 409

mmapsnoop tool, 348

mmiotrace tracer, 708

MMUs (memory management units), 235,
314

mnt control group, 609

Mode switches

defined, 90

kernels, 93

Model-specific registers (MSRs)

CPUs, 238

observability source, 159

Models

Amdahl’s Law of Scalability, 64–65

CPUs, 221–222

disks, 425–426

enterprise vs. cloud, 62

file systems, 361–362

methodologies, 23–24

networks, 501–502

overview, 62

queueing theory, 66–69

Universal Scalability Law, 65–66

visual identification, 62–64

wireframe, 84–85

Modular I/O scheduling, 116

Monitoring, 77–79

CPUs, 251

disks, 452

drill-down analysis, 55

file systems, 388

memory, 326

networks, 529, 537

observability tools, 137–138

858 Monitoring

products, 79

sar, 161–162

summary-since-boot values, 79

time-based patterns, 77–78

Monolithic kernels, 91, 123

Most frequently used (MFU) caching
algorithm, 36

Most recently used (MRU) caching
algorithm, 36

Mount points in file systems, 106

mount tool

file systems, 392

options, 416–417

Mounting file systems, 106, 392

mountsnoop tool, 409

mpstat tool

case study, 785–786

CPUs, 245, 259

description, 15

fixed counters, 134

lightweight virtualization, 633

OS virtualization, 619

mq-deadline multi-queue schedulers, 449

MR-IOV (multiroot I/O virtualization),
593–594

MRU (most recently used) caching
algorithm, 36

MSG_ZEROCOPY flag, 119

msr-tools tool package, 132

MSRs (model-specific registers)

CPUs, 238

observability source, 159

mtr tool, 567

Multi-level cell (MLC) flash memory, 440

Multi-queue schedulers

description, 119

operating system disk I/O stack, 449

Multiblock allocators in ext4, 379

Multicalls in paravirtualization, 588

Multicast network transmissions, 503

Multichannel memory buses, 313

Multics (Multiplexed Information and
Computer Services) operating system,
112

Multimodal distributions, 76–77

MultiPath TCP, 119

Multiple causes as performance
challenge, 6

Multiple page sizes, 352–353

Multiple performance issues, 6

Multiple prefetch streams in ZFS, 381

Multiple-zone disk recording, 437

Multiplexed Information and Computer
Services (Multics) operating system, 112

Multiprocess CPUs, 227–229

Multiprocessors

applications, 177–181

overview, 110

Solaris kernel support, 114

Multiqueue block I/O, 117

Multiqueue I/O schedulers, 119

Multiroot I/O virtualization (MR-IOV),
593–594

Multitenancy in cloud computing, 580

contention in hardware virtualization,
595

contention in OS virtualization,
612–613

overview, 585–586

Multithreading

applications, 177–181

CPUs, 227–229

SMT, 225

Mutex (MUTually EXclusive) locks

applications, 179–180

contention, 198

tracing, 212–213

USE method, 52

MySQL database

bpftrace tracing, 212–213

CPU flame graph, 187–188

 Networks 859

CPU profiling, 200, 203, 269–270, 277,
283–284, 697–700

disk I/O tracing, 466–467, 470–471, 488

file tracing, 397–398, 401–402

memory allocation, 345

memory mappings, 337–338

network tracing, 552–554

Off–CPU analysis, 204–205, 275–276

Off–CPU Time flame graphs, 190–192

page fault sampling, 339–341

query latency analysis, 56

scheduler latency, 272, 279–280

shards, 582

slow query log, 172

stack traces, 215

syscall tracing, 201–202

working set size, 342

mysqld_qslower tool, 756

N

NAGLE algorithm for TCP congestion
control, 513

Name resolution latency, 505, 528

Namespaces in OS virtualization, 606–609,
620, 623–624

NAPI (New API) framework, 522

NAS (network-attached storage), 446

Native Command Queueing (NCQ), 437

Native hypervisors, 587

Negative caching in Dcache, 375

Nested page tables (NPTs), 593

net control group, 609

net_cls control group, 610

Net I/O state in thread state analysis,
194–197

net_prio control group, 610

net tool

description, 562

socket information, 142

Netfilter conntrack as observability source,
159

Netflix cloud performance team, 2–3

netlink observability tools, 145–146, 536

netperf tool, 565–566

netsize tool, 561

netstat tool, 525, 539–542

nettxlat tool, 561

Network-attached storage (NAS), 446

Network interface cards (NICs)

description, 501–502

network connections, 109

sent and received packets, 522

Networks, 499–500

architecture. See Networks architecture

benchmark questions, 668

bpftrace for, 764–765, 807–808

buffers, 27, 507

congestion avoidance, 508

connection backlogs, 507

controllers, 501–502

encapsulation, 504

exercises, 574–575

experiments, 562–567

hardware virtualization, 597

interface negotiation, 508

interfaces, 501

latency, 505–507

local connections, 509

methodology. See Networks
methodology

micro-benchmarking for, 61

models, 501–502

observability tools. See Networks
observability tools

on-chip interfaces, 230

operating systems, 109

OS virtualization, 611–613, 617, 630

packet size, 504–505

protocol stacks, 502

protocols, 504

references, 575–578

round-trip time, 507, 528

860 Networks

routing, 503

sniffing, 159

stacks, 518–519

terminology, 500

throughput, 527–529

tuning. See Networks tuning

USE method, 49–51, 796–797

utilization, 508–509

Networks architecture

hardware, 515–517

protocols, 509–515

software, 517–524

Networks methodology

latency analysis, 528–529

micro-benchmarking, 533

overview, 524–525

packet sniffing, 530–531

performance monitoring, 529

resource controls, 532–533

static performance tuning, 531–532

TCP analysis, 531

tools method, 525

USE method, 526–527

workload characterization, 527–528

Networks observability tools

bpftrace, 550–558

ethtool, 546–547

ifconfig, 537–538

ip, 536–537

miscellaneous, 560–562

netstat, 539–542

nicstat, 545–546

nstat, 538–539

overview, 533–534

sar, 543–545

ss, 534–536

tcpdump, 558–559

tcplife, 548

tcpretrans, 549–550

tcptop, 549

Wireshark, 560

Networks tuning, 567

configuration, 574

socket options, 573

system-wide, 567–572

New API (NAPI) framework, 522

New Vegas (NV) congestion control
algorithm, 118

nfsdist tool

BCC, 756

file systems, 399

nfsslower tool, 756

nfsstat tool, 561

NFU (not frequently used) caching
algorithm, 36

nice command

CPU priorities, 252

resource management, 111

scheduling priorities, 295

NICs (network interface cards)

description, 501–502

network connections, 109

sent and received packets, 522

nicstat tool, 132, 525, 545–546

"A Nine Year Study of File System and
Storage Benchmarking," 643

Nitro hardware virtualization

description, 589

I/O path, 594–595

NMIs (non-maskable interrupts), 98

NO_HZ_FULL option, 117

Node taints in cloud computing, 586

Node.js

dynamic USDT, 156

event-based concurrency, 178

non-blocking I/O, 181

symbols, 214

USDT tracing, 677, 690–691

 Observability tools 861

Nodes

cloud computing, 586

free lists, 317

main memory, 312

Noisy neighbors

multitenancy, 585

OS virtualization, 617

Non-blocking I/O

applications, 181

file systems, 366–367

Non-data-transfer disk commands, 432

Non-idle time, 34

Non-maskable interrupts (NMIs), 98

Non-regression testing

benchmarking for, 642

software change case study, 18

Non-uniform memory access (NUMA)

CPUs, 244

main memory, 312

memory balancing, 117

memory binding, 353

multiprocessors, 110

Non-uniform random distributions, 413

Non-Volatile Memory express (NVMe)
interface, 443

Noop I/O schedulers, 448

nop tracer, 708

Normal distribution, 75

NORMAL scheduling policy, 243

Not frequently used (NFU) caching
algorithm, 36

NPTs (nested page tables), 593

nsecs variable in bpftrace, 777

nsenter command, 624

nstat tool, 134, 525, 538–539

ntop function, 779

NUMA. See Non-uniform memory access
(NUMA)

numactl command, 298, 353

numactl tool package, 132

numastat tool, 334–335

Number of service centers in queueing
systems, 67

NV (New Vegas) congestion control
algorithm, 118

nvmelatency tool, 487

O

O in Big O notation, 175–176

O(1) scheduling class, 243

Object stores in cloud computing, 584

Observability

allocators, 321

applications, 174

benchmarks, 643

counters, statistics, and metrics, 8–9

hardware virtualization, 597–605

operating systems, 111

OS virtualization. See OS virtualization
observability

overview, 7–8

profiling, 10–11

RAID, 445

tracing, 11–12

volumes and pools, 383

Observability tools, 129

applications. See Applications
observability tools

coverage, 130

CPUs. See CPUs observability tools

crisis, 131–133

disks. See Disks observability tools

evaluating results, 167–168

exercises, 168

file system. See File systems
observability tools

fixed counters, 133–135

memory. See Memory observability tools

monitoring, 137–138

network. See Networks observability
tools

862 Observability tools

profiling, 135

references, 168–169

sar, 160–166

static performance, 130–131

tracing, 136, 166

types, 133

Observability tools sources, 138–140

delay accounting, 145

hardware counters, 156–158

kprobes, 151–153

miscellaneous, 159–160

netlink, 145–146

/proc file system, 140–143

/sys file system, 143–144

tracepoints, 146–151

uprobes, 153–155

USDT, 155–156

Observation-based performance gains, 73

Observational tests in scientific method,
44–45

Observer effect in metrics, 33

off-CPU

analysis process, 189–192

footprints, 188–189

thread state analysis, 197

time flame graphs, 205

offcputime tool

BCC, 756

description, 285

networks, 561

scheduler tracing, 190

slow disks case study, 17

stack traces, 204–205

time flame graphs, 205

Offset heat maps, 289, 489–490

offwaketime tool, 756

On-chip caches, 231

On-die caches, 231

On-disk caches, 425–426, 430, 437

Online balancing, 382

Online defragmentation, 380

OOM killer (out-of-memory killer), 316–317,
324

OOM (out of memory), defined, 304

oomkill tool

BCC, 756

description, 348

open command

description, 94

non-blocking I/O, 181

Open Container Interface, 586

openat syscalls, 404

opensnoop tool

BCC, 756

file systems, 397

perf-tools, 743

Operating systems, 89

additional reading, 127–128

caching, 108–109

clocks and idle, 99

defined, 90

device drivers, 109–110

disk I/O stack, 446–449

distributed, 123–124

exercises, 124–125

file systems, 106–108

hybrid kernels, 123

interrupts, 96–99

jitter, 99

kernels, 91–95, 111–114, 124

Linux. See Linux operating system

microkernels, 123

multiprocessors, 110

networking, 109

observability, 111

PGO kernels, 122

preemption, 110

processes, 99–102

 Overhead 863

references, 125–127

resource management, 110–111

schedulers, 105–106

stacks, 102–103

system calls, 94–95

terminology, 90–91

tunables for disks, 493–494

unikernels, 123

virtual memory, 104–105

virtualization. See OS virtualization

Operation rate

defined, 22

file systems, 387–388

Operations

applications, 172

defined, 360

file systems, 370–371

micro-benchmarking, 390

Operators for bpftrace, 776–777

OProfile system profiler, 115

oprofile tool, 285

Optimistic spinning in Mutex locks, 179

Optimizations

applications, 174

compiler, 183–184, 229

feedback-directed, 122

networks, 524

Orchestration in cloud computing, 586

Ordered mode in ext3, 378

Orlov block allocator, 379

OS instances in cloud computing, 580

OS virtualization

comparisons, 634–636

control groups, 609–610

implementation, 607–610

namespaces, 606–609

overhead, 610–613

overview, 605–607

resource controls, 613–617

OS virtualization observability

BPF tracing, 624–625

containers, 620–621

guests, 627–629

hosts, 619–627

namespaces, 623–624

overview, 617–618

resource controls, 626–627

strategy, 629–630

tracing tools, 629

traditional tools, 618–619

OS X syscall tracing, 205

OS wait time for disks, 472

OSI model, 502

Out-of-memory killer (OOM killer), 316–317,
324

Out of memory (OOM), defined, 304

Out-of-order packets, 529

Outliers

heat maps, 82

latency, 186, 424, 471–472

normal distributions, 77

Output formats in sar, 163–165

Output with solid-state drive controllers, 440

Overcommit strategy, 115

Overcommitted main memory, 305, 308

Overflow sampling

hardware events, 683

PMCs, 157–158

Overhead

hardware virtualization, 589–595

kprobes, 153

lightweight virtualization, 632

metrics, 33

multiprocess vs. multithreading, 228

OS virtualization, 610–613

strace, 207

ticks, 99

tracepoints, 150

864 Overhead

uprobes, 154–155

volumes and pools, 383

Overlayfs file system, 118

Overprovisioning cloud computing, 583

override function, 779

Oversize arenas, 322

P

P-caches in CPUs, 230

P-states in CPUs, 231

Pacing in networks, 524

Packages, CPUs vs. GPUs, 240

Packets

defined, 500

latency, 532–533

networks, 504

OSI model, 502

out-of-order, 529

size, 504–505

sniffing, 530–531

throttling, 522

Padding locks for hash tables, 181

Page caches

file systems, 374

memory, 315

Page faults

defined, 304

flame graphs, 340–342, 346

sampling, 339–340

Page-outs

daemons, 317

working with, 306

Page scanning, 318–319, 323, 374

Page tables, 235

Paged virtual memory, 113

Pages

defined, 304

kernel, 115

sizes, 352–353

Paging

anonymous, 305–307

demand, 307–308

file system, 306

memory, 104–105

overview, 306

PAPI (performance application
programming interface), 158

Parallelism in applications, 177–181

Paravirtualization (PV), 588, 590

Paravirtualized I/O drivers, 593–595

Parity in RAID, 445

Partitions in Hyper-V, 589

Passive benchmarking, 656–657

Passive listening in three-way handshakes,
511

pathchar tool, 564

Pathologies in solid-state drives, 441

Patrol reads in RAID, 445

Pause frames in congestion avoidance, 508

pchar tool, 564

PCI pass-through in hardware virtualization,
593

PCP (Performance Co-Pilot), 138

PE (Portable Executable) format, 183

PEBS (precise event-based sampling), 158

Per-I/O latency values, 454

Per-interval I/O averages latency values,
454

Per-interval statistics with stat, 693

Per-process observability tools, 133

fixed counters, 134–135

/proc file system, 140–141

profiling, 135

tracing, 136

Percent busy metric, 33

Percentiles

description, 75

latency, 413–414

perf c2c command, 118

 Performance and performance monitoring 865

perf_event control group, 610

perf-stat-hist tool, 744

perf tool, 13

case study, 789–790

CPU flame graphs, 201

CPU one-liners, 267–268

CPU profiling, 200–201, 245, 268–270

description, 116

disk block devices, 465–467

disk I/O, 450, 467–468

documentation, 276

events. See perf tool events

flame graphs, 119, 270–272

hardware tracing, 276

hardware virtualization, 601–602, 604

I/O profiling, 202–203

kernel time analysis, 202

memory, 324

networks, 526, 562

one-liners for counting events, 675

one-liners for CPUs, 267–268

one-liners for disks, 467

one-liners for dynamic tracing, 677–678

one-liners for listing events, 674–675

one-liners for memory, 338–339

one-liners for profiling, 675–676

one-liners for reporting, 678–679

one-liners for static tracing, 676–677

OS virtualization, 619, 629

overview, 671–672

page fault flame graphs, 340–342

page fault sampling, 339–340

PMCs, 157, 273–274

process profiling, 271–272

profiling overview, 135

references, 703–704

scheduler latency, 272–273

software tracing, 275–276

subcommands. See perf tool
subcommands

syscall tracing, 201–202

thread state analysis, 196

tools collection. See perf-tools collection

vs. trace-cmd, 738–739

tracepoint events, 684–685

tracepoints, 147, 149

tracing, 136, 166

perf tool events

hardware, 274–275, 680–683

kprobes, 685–687

overview, 679–681

software, 683–684

uprobes, 687–689

USDT probes, 690–691

perf tool subcommands

documentation, 703

ftrace, 741

miscellaneous, 702–703

overview, 672–674

record, 694–696

report, 696–698

script, 698–701

stat, 691–694

trace, 701–702

perf-tools collection

vs. BCC/BPF, 747–748

coverage, 742

documentation, 748

example, 747

multi-purpose tools, 744–745

one-liners, 745–747

overview, 741–742

single-purpose tools, 743–744

perf-tools-unstable tool package, 132

Performance and performance monitoring

applications, 172

challenges, 5–6

cloud computing, 14, 586

CPUs, 251

disks, 452

866 Performance and performance monitoring

file systems, 388

memory, 326

networks, 529

OS virtualization, 620

resource analysis investments, 38

Performance application programming
interface (PAPI), 158

Performance Co-Pilot (PCP), 138

Performance engineers, 2–3

Performance instrumentation counters
(PICs), 156

Performance Mantras

applications, 182

list of, 61

Performance monitoring counters (PMCs),
156

case study, 788–789

challenges, 158

CPUs, 237–239, 273–274

cycle analysis, 251

documentation, 158

example, 156–157

interface, 157–158

memory, 326

Performance monitoring unit (PMU) events,
156, 680

perftrace tool, 136

Periods in OS virtualization, 615

Persistent memory, 441

Personalities in FileBench, 414

Perspectives

overview, 4–5

performance analysis, 37–38

resource analysis, 38–39

workload analysis, 39–40

Perturbations

benchmarks, 648

FlameScope, 292–293

system tests, 23

pfm-events, 681

PGO (profile-guided optimization) kernels,
122

Physical I/O

defined, 360

vs. logical, 368–370

Physical metadata in file systems, 368

Physical operations in file systems, 361

Physical resources in USE method,
795–798

PICs (performance instrumentation
counters), 156

pid control group, 609

pid variable in bpftrace, 777

pids control group, 610

PIDs (process IDs)

filters, 729–730

process environment, 101

pidstat tool

CPUs, 245, 262

description, 15

disks, 464–465

OS virtualization, 619

thread state analysis, 196

Ping latency, 505–506, 528

ping tool, 562–563

Pipelines in ZFS, 381

pktgen tool, 567

Platters in magnetic rotational disks,
435–436

Plugins for monitoring software, 137

pmap tool, 135, 337–338

pmcarch tool

CPUs, 265–266

memory, 348

PMCs. See Performance monitoring
counters (PMCs)

pmheld tool, 212–213

pmlock tool, 212

PMU (performance monitoring unit) events,
156, 680

 Processes 867

Pods in cloud computing, 586

Point-in-time recommendations in
methodologies, 29–30

Policies for scheduling classes, 106,
242–243

poll system call, 177

Polling applications, 177

Pooled storage

btrfs, 382

overview, 382–383

ZFS, 380

Portability of benchmarks, 643

Portable Executable (PE) format, 183

Ports

ephemeral, 531

network, 501

posix_fadvise call, 415

Power states in processors, 297

Preallocation in ext4, 379

Precise event-based sampling (PEBS), 158

Prediction step in scientific method, 44–45

Preemption

CPUs, 227

Linux kernel, 116

operating systems, 110

schedulers, 241

Solaris kernel, 114

preemptirsqoff tracer, 708

preemptoff tracer, 708

Prefetch caches, 230

Prefetch for file systems

overview, 364–365

ZFS, 381

Presentability of benchmarks, 643

Pressure stall information (PSI)

CPUs, 257–258

description, 119

disks, 464

memory, 323, 330–331

pressure tool, 142

Price/performance ratio

applications, 173

benchmarking for, 643

print function, 780

printf function, 770, 778

Priority

CPUs, 227, 252–253

OS virtualization resources, 613

schedulers, 105–106

scheduling classes, 242–243, 295

Priority inheritance scheme, 227

Priority inversion, 227

Priority pause frames in congestion
avoidance, 508

Private clouds, 580

Privilege rings in kernels, 93

probe subcommand for perf, 673

probe variable in bpftrace, 778

Probes and probe events

bpftrace, 767–768, 774–775

kprobes, 685–687

perf, 685

uprobes, 687–689

USDT, 690–691

wildcards, 768–769

Problem statement

case study, 16, 783–784

determining, 44

/proc file system observability tools,
140–143

Process-context IDs (PCIDs), 119

Process IDs (PIDs)

filters, 729–730

process environment, 101

Processes

accounting, 159

creating, 100

defined, 90

environment, 101–102

life cycle, 100–101

868 Processes

overview, 99–100

profiling, 271–272

schedulers, 105–106

swapping, 104–105, 308–309

syscall analysis, 192

tracing, 207–208

USE method, 52

virtual address space, 319–322

Processors

binding, 181–182

defined, 90, 220

power states, 297

tuning, 299

procps tool package, 131

Products, monitoring, 79

Profile-guided optimization (PGO) kernels,
122

profile probes, 774

profile tool

applications, 203–204

BCC, 756

CPUs, 245, 277–278

profiling, 135

trace-cmd, 735

Profilers

Ftrace, 707

perf-tools for, 745

Profiling

CPUs. See CPUs profiling

I/O, 203–204, 210–212

interpretation, 249–250

kprobes, 722

methodologies, 35

observability tools, 135

overview, 10–11

perf, 675–676

uprobes, 723

Program counter threads, 100

Programming languages

bpftrace. See bpftrace tool
programming

compiled, 183–184

garbage collection, 185–186

interpreted, 184–185

overview, 182–183

virtual machines, 185

Prometheus monitoring software, 138

Proofs of concept

benchmarking for, 642

testing, 3

Proportional set size (PSS) in shared
memory, 310

Protection rings in kernels, 93

Protocols

HTTP/3, 515

IP, 509–510

networks, 502, 504, 509–515

QUIC, 515

TCP, 510–514

UDP, 514

ps tool

CPUs, 260–261

fixed counters, 134

memory, 335–336

OS virtualization, 619

PSI. See Pressure stall information (PSI)

PSS (proportional set size) in shared
memory, 310

Pterodactyl latency heat maps, 488–489

ptime tool, 263–264

ptrace tool, 159

Public clouds, 580

PV (paravirtualization), 588, 590

Q

qdisc-fq tool, 561

QEMU (Quick Emulator)

hardware virtualization, 589

lightweight virtualization, 631

qemu-system-x86 process, 600

QLC (quad-level cell) flash memory, 440

 Receive Side Scaling (RSS) in networks 869

QoS (quality of service) for networks,
532–533

QPI (Quick Path Interconnect), 236–237

Qspinlocks, 117–118

Quad-level cell (QLC) flash memory, 440

Quality of service (QoS) for networks,
532–533

Quantifying issues, 6

Quantifying performance gains, 73–74

Quarterly patterns, monitoring, 79

Question step in scientific method, 44–45

Queued spinlocks, 117–118

Queued time for disks, 472

Queueing disciplines

networks, 521

OS virtualization, 617

tuning, 571

Queues

I/O schedulers, 448–449

interrupts, 98

overview, 23–24

queueing theory, 66–69

run. See Run queues

TCP connections, 519–520

QUIC protocol, 515

Quick Emulator (QEMU)

hardware virtualization, 589

lightweight virtualization, 631

Quick Path Interconnect (QPI), 236–237

Quotas in OS virtualization, 615

R

RACK (recent acknowledgments) in TCP,
514

RAID (redundant array of independent
disks) architecture, 444–445

Ramping load benchmarking, 662–664

Random-access pattern in micro-
benchmarking, 390

Random change anti-method, 42–43

Random I/O

disk read example, 491–492

disks, 430–431, 436

latency profile, micro-benchmarking,
457

vs. sequential, 363–364

Rate transitions in networks, 517

Raw hardware event descriptors, 680

Raw I/O, 366, 447

Raw tracepoints, 150

RCU (read-copy update), 115

RCU-walk (read-copy-update-walk)
algorithm, 375

rdma control group, 610

Re-exec method in heap growth, 320

Read-ahead in file systems, 365

Read-copy update (RCU), 115

Read-copy-update-walk (RCU-walk)
algorithm, 375

Read latency profile in micro-
benchmarking, 457

Read-modify-write operation in RAID, 445

read syscalls

description, 94

tracing, 404–405

Read/write ratio in disks, 431

readahead tool, 409

Reader/writer (RW) locks, 179

Real-time scheduling classes, 106, 253

Real-time systems, interrupt masking in, 98

Realism in benchmarks, 643

Reaping memory, 316, 318

Rebuilding volumes and pools, 383

Receive Flow Steering (RFS) in networks,
523

Receive Packet Steering (RPS) in networks,
523

Receive packets in NICs, 522

Receive Side Scaling (RSS) in networks,
522–523

870 Recent acknowledgments (RACK) in TCP

Recent acknowledgments (RACK) in TCP,
514

Reclaimed pages, 317

Record size, defined, 360

record subcommand for perf

CPU profiling, 695–696

example, 672

options, 695

overview, 694–695

software events, 683–684

stack walking, 696

record subcommand for trace-cmd, 735

RED method, 53

Reduced instruction set computers (RISCs),
224

Redundant array of independent disks
(RAID) architecture, 444–445

reg function, 779

Regression testing, 18

Remote memory, 312

Reno algorithm for TCP congestion control,
513

Repeatability of benchmarks, 643

Replay benchmarking, 654

report subcommand for perf

example, 672

overview, 696–697

STDIO, 697–698

TUI interface, 697

report subcommand for trace-cmd, 735

Reporting

perf, 678–679

sar, 163, 165

trace-cmd, 737

Request latency, 7

Request rate in RED method, 53

Request time in I/O, 427

Requests in workload analysis, 39

Resident memory, defined, 304

Resident set size (RSS), 308

Resilvering volumes and pools, 383

Resource analysis perspectives, 4–5, 38–39

Resource controls

cloud computing, 586

CPUs, 253, 298

disks, 456, 494

hardware virtualization, 595–597

lightweight virtualization, 632

memory, 328, 353–354

networks, 532–533

operating systems, 110–111

OS virtualization, 613–617, 626–627

tuning, 571

USE method, 52

Resource isolation in cloud computing, 586

Resource limits in capacity planning,
70–71

Resource lists in USE method, 49

Resource utilization in applications, 173

Resources in USE method, 47

Response time

defined, 22

disks, 452

latency, 24

restart subcommand in trace-cmd, 735

Results in event tracing, 58

Retention policy for caching, 36

Retransmits

latency, 528

TCP, 510, 512, 529

UDP, 514

Retrospectives, 4

Return values

kprobes, 721

kretprobes, 152

ukretprobes, 154

uprobes, 723

retval variable in bpftrace, 778

RFS (Receive Flow Steering) in networks,
523

 Saturation 871

Ring buffers

applications, 177

networks, 522

RISCs (reduced instruction set computers),
224

Robertson, Alastair 761

Roles, 2–3

Root level in file systems, 106

Rostedt, Steven, 705, 711, 734, 739–740

Rotation time in magnetic rotational disks,
436

Round-trip time (RTT) in networks, 507, 528

Route tables, 537

Routers, 516–517

Routing networks, 503

RPS (Receive Packet Steering) in networks,
523

RR scheduling policy, 243

RSS (Receive Side Scaling) in networks,
522–523

RSS (resident set size), 308

RT scheduling class, 242–243

RTT (round-trip time) in networks, 507, 528

Run queues

CPUs, 222

defined, 220

latency, 222

schedulers, 105, 241

Runnability of benchmarks, 643

Runnable state in thread state analysis,
194–197

runqlat tool

CPUs, 279–280

description, 756

runqlen tool

CPUs, 280–281

description, 756

runqslower tool

CPUs, 285

description, 756

RW (reader/writer) locks, 179

S

S3 (Simple Storage Service), 585

SaaS (software as a service), 634

SACK (selective acknowledgment)
algorithm, 514

SACKs (selective acknowledgments), 510

Sampling

CPU profiling, 35, 135, 187, 200–201,
247–248

distributed tracing, 199

off-CPU analysis, 189–190

page faults, 339–340

PMCs, 157–158

run queues, 242–243

Sanity checks in benchmarking, 664–665

sar (system activity reporter)

configuration, 162

coverage, 161

CPUs, 260

description, 15

disks, 463–464

documentation, 165–166

file systems, 393–394

fixed counters, 134

live reporting, 165

memory, 331–333

monitoring, 137, 161–165

networks, 543–545

options, 801–802

OS virtualization, 619

output formats, 163–165

overview, 160

reporting, 163

thread state analysis, 196

SAS (Serial Attached SCSI) disk interface,
442

SATA (Serial ATA) disk interface, 442

Saturation

applications, 193

CPUs, 226–227, 245–246, 251, 795, 797

872 Saturation

defined, 22

disk controllers, 451

disk devices, 434, 451

flame graphs, 291

I/O, 798

kernels, 798

memory, 309, 324–326, 796–797

methodologies, 34–35

networks, 526–527, 796–797

resource analysis, 38

storage, 797

task capacity, 799

USE method, 47–48, 51–53

user mutex, 799

Saturation points in scalability, 31

Scalability and scaling

Amdahl’s Law of Scalability, 64–65

capacity planning, 72–73

cloud computing, 581–584

CPU, 522–523

CPUs vs. GPUs, 240

disks, 457–458

methodologies, 31–32

models, 63–64

multithreading, 227

Universal Scalability Law, 65–66

Scalability ceiling, 64

Scalable Vector Graphics (SVG) files, 164

Scaling governors, 297

Scanning pages, 318–319, 323, 374

Scatter plots

disk I/O, 81–82

I/O latency, 488

sched command, 141

SCHED_DEADLINE policy, 117

sched subcommand for perf, 272–273,
673, 702

schedstat tool, 141–142

Scheduler latency

CPUs, 226, 272–273

delay accounting, 145

run queues, 222

Scheduler tracing off-CPU analysis,
189–190

Schedulers

CPUs, 241–242

defined, 220

hardware virtualization, 596–597

kernel, 105–106

multiqueue I/O, 119

options, 295–296

OS disk I/O stack, 448–449

scheduling internals, 284–285

Scheduling classes

CPUs, 115, 242–243

I/O, 115, 493

kernel, 106

priority, 295

Scheduling in Kubernetes, 586

Scientific method, 44–46

Scratch variables in bpftrace, 770–771

scread tool, 409

script subcommand

flame graphs, 700

overview, 698–700

trace scripts, 700–701

script subcommand for perf, 673

Scrubbing file systems, 376

SCSI (Small Computer System Interface)

disks, 442

event logging, 486

scsilatency tool, 487

scsiresult tool, 487

SDT events, 681

Second-level caches in file systems, 362

Sectors in disks

defined, 424

size, 437

zoning, 437

Security boot options, 298–299

 skbdrop tool 873

SEDA (staged event-driven architecture), 178

SEDF (simple earliest deadline first)
schedulers, 595

Seek time in magnetic rotational disks, 436

seeksize tool, 487

seekwatcher tool, 487

Segments

defined, 304

OSI model, 502

process virtual address space, 319

segmentation offload, 520–521

Selective acknowledgment (SACK)
algorithm, 514

Selective acknowledgments (SACKs), 510

Self-Monitoring, Analysis and Reporting
Technology (SMART) data, 485

self tool, 142

Semaphores for applications, 179

Send packets in NICs, 522

sendfile command, 181

Sequential I/O

disks, 430–431, 436

vs. random, 363–364

Serial ATA (SATA) disk interface, 442

Serial Attached SCSI (SAS) disk interface,
442

Server instances in cloud computing, 580

Service consoles in hardware virtualization,
589

Service thread pools for applications, 178

Service time

defined, 22

I/O, 427–429

queueing systems, 67–69

Set associative caches, 234

set_ftrace_filter file, 710

Shadow page tables, 593

Shadow statistics, 694

Shards

capacity planning, 73

cloud computing, 582

Shared memory, 310

Shared system buses, 312

Shares in OS virtualization, 614–615, 626

Shell scripting, 184

Shingled Magnetic Recording (SMR) drives,
439

shmsnoop tool, 348

Short-lived processes, 12, 207–208

Short-stroking in magnetic rotational disks,
437

showboost tool, 245, 265

signal function, 779

Signal tracing, 209–210

Simple disk model, 425

Simple earliest deadline first (SEDF)
schedulers, 595

Simple Network Management Protocol
(SNMP), 55, 137

Simple Storage Service (S3), 585

Simulation benchmarking, 653–654

Simultaneous multithreading (SMT), 220,
225

Single-level cell (SLC) flash memory, 440

Single root I/O virtualization (SR-IOV),
593

Site reliability engineers (SREs), 4

Size

blocks, 27, 360, 375, 378

cloud computing, 583–584

disk I/O, 432, 480–481

disk sectors, 437

free lists, 317

I/O, 176, 390

instruction, 224

multiple page, 352–353

packets, 504–505

virtual memory, 308

word, 229, 310

working set. See Working set size (WSS)

sizeof function, 779

skbdrop tool, 561

874 skblife tool

skblife tool, 561

Slab

allocator, 114

process virtual address space, 321–322

slabinfo tool, 142

slabtop tool, 333–334, 394–395

SLC (single-level cell) flash memory, 440

Sleeping state in thread state analysis,
194–197

Sliding windows in TCP, 510

SLOG log in ZFS, 381

Sloth disks, 438

Slow disks case study, 16–18

Slow-start in TCP, 510

Slowpath state in Mutex locks, 179

SLUB allocator, 116, 322

Small Computer System Interface (SCSI)

disks, 442

event logging, 486

smaps tool, 141

SMART (Self-Monitoring, Analysis and
Reporting Technology) data, 485

smartctl tool, 484–486

SMP (symmetric multiprocessing), 110

smpcalls tool, 285

SMR (Shingled Magnetic Recording) drives,
439

SMs (streaming multiprocessors), 240

SMT (simultaneous multithreading), 220,
225

Snapshots

btrfs, 382

ZFS, 381

Sniffing packets, 530–531

SNMP (Simple Network Management
Protocol), 55, 137

SO_BUSY_POLL socket option, 522

SO_REUSEPORT socket option, 117

SO_TIMESTAMP socket option, 529

SO_TIMESTAMPING socket option, 529

so1stbyte tool, 561

soaccept tool, 561

socketio tool, 561

socketio.bt tool, 553–554

Sockets

BSD, 113

defined, 500

description, 109

local connections, 509

options, 573

statistics, 534–536

tracing, 552–555

tuning, 569

socksize tool, 561

sockstat tool, 561

soconnect tool, 561

soconnlat tool, 561

sofamily tool, 561

Soft interrupts, 281–282

softirqs tool, 281–282

Software

memory, 315–322

networks, 517–524

Software as a service (SaaS), 634

Software change case study, 18–19

Software events

case study, 789–790

observability source, 159

perf, 680, 683–684

recording and tracing, 275–276

software probes, 774

Software resources

capacity planning, 70

USE method, 52, 798–799

Solaris

kernel, 114

Kstat, 160

Slab allocator, 322, 652

syscall tracing, 205

 Static performance tuning 875

top tool Solaris mode, 262

zones, 606, 620

Solid-state disks (SSDs)

cache devices, 117

overview, 439–441

soprotocol tool, 561

sormem tool, 561

Source code for applications, 172

SPEC (Standard Performance Evaluation
Corporation) benchmarks, 655–656

Special file systems, 371

Speedup with latency, 7

Spin locks

applications, 179

contention, 198

queued, 118

splice call, 116

SPs (streaming processors), 240

SR-IOV (single root I/O virtualization), 593

SREs (site reliability engineers), 4

ss tool, 145–146, 525, 534–536

SSDs (solid-state disks)

cache devices, 117

overview, 439–441

Stack helpers, 214

Stack traces

description, 102

displaying, 204–205

keys, 730–731

Stack walking, 102, 696

stackcount tool, 757–758

Stacks

I/O, 107–108, 372

JIT symbols, 214

missing, 215–216

network, 109, 518–519

operating system disk I/O, 446–449

overview, 102

process virtual address space, 319

protocol, 502

reading, 102–103

user and kernel, 103

Staged event-driven architecture (SEDA), 178

Stall cycles in CPUs, 223

Standard deviation, 75

Standard Performance Evaluation
Corporation (SPEC) benchmarks,
655–656

Starovoitov, Alexei, 121

start subcommand in trace-cmd, 735

Starvation in deadline I/O schedulers, 448

stat subcommand in perf

description, 635

event filters, 693–694

interval statistics, 693

options, 692–693

overview, 691–692

per-CPU balance, 693

shadow statistics, 694

stat subcommand in trace-cmd, 735

stat tool, 95, 141–142

Stateful workload simulation, 654

Stateless workload simulation, 653

Statelessness of UDP, 514

States

TCP, 511–512

thread state analysis, 193–197

Static instrumentation

overview, 11–12

perf events, 681

tracepoints, 146, 717

Static performance tuning

applications methodology, 198–199

CPUs, 252

disks, 455–456

file systems, 389

memory, 327–328

methodologies, 59–60

networks, 531–532

tools, 130–131

876 Static priority of threads

Static priority of threads, 242–243

Static probes, 116

Static tracing in perf, 676–677

Statistical analysis in benchmarking,
665–666

Statistics, 8–9

averages, 74–75

baseline, 59

case study, 784–786

coefficient of variation, 76

line charts, 80–81

multimodal distributions, 76–77

outliers, 77

quantifying performance gains, 73–74

standard deviation, percentiles, and
median, 75

statm tool, 141

stats function, 780

statsnoop tool, 409

status tool, 141

STDIO report option, 697–698

stop subcommand in trace-cmd, 735

Storage

benchmark questions, 668

cloud computing, 584–585

disks. See Disks

sample processing, 248–249

USE method, 49–51, 796–797

Storage array caches, 430

Storage arrays, 446

str function, 770, 778

strace tool

bonnie++ tool, 660

file system latency, 395

format strings, 149–150

limitations, 202

networks, 561

overhead, 207

system call tracing, 205–207

tracing, 136

stream subcommand in trace-cmd, 735

Streaming multiprocessors (SMs), 240

Streaming processors (SPs), 240

Streaming workloads in disks, 430–431

Streetlight effect, 42

Stress testing in software change case
study, 18

Stripe width of volumes and pools, 383

Striped allocation in XFS, 380

Stripes in RAID, 444–445

strncmp function, 778

Stub domains in hardware virtualization, 596

Subjectivity, 5

Subsecond-offset heat maps, 289

sum function in bpftrace, 780

Summary-since-boot values monitoring, 79

Super-serial model, 65–66

Superblocks in VFS, 373

superping tool, 561

Superscalar architectures for CPUs, 224

Surface plots, 84–85

SUT (system under test) models, 23

SVG (Scalable Vector Graphics) files, 164

Swap areas, defined, 304

Swap capacity in OS virtualization, 613, 616

swapin tool, 348

swapon tool

disks, 487

memory, 331

Swapping

defined, 304

memory, 316, 323

overview, 305–307

processes, 104–105, 308–309

Swapping state

delay accounting, 145

thread state analysis, 194–197

Switches in networks, 516–517

Symbol churn, 214

 Systems performance overview 877

Symbols, missing, 214

Symmetric multiprocessing (SMP), 110

SYN backlogs, 519

SYN cookies, 511, 520

Synchronization primitives for applications,
179

Synchronous disk I/O, 434–435

Synchronous interrupts, 97

Synchronous writes, 366

syncsnoop tool

BCC, 756

file systems, 409

Synthetic events in hist triggers, 731–733

/sys file system, 143–144

/sys/fs options, 417–418

SysBench system benchmark, 294

syscount tool

BCC, 756

CPUs, 285

file systems, 409

perf-tools, 744

system calls count, 208–209

sysctl tool

congestion control, 570

network tuning, 567–568

schedulers, 296

SCSI logging, 486

sysstat tool package, 131

System activity reporter. See sar (system
activity reporter)

System calls

analysis, 192

connect latency, 528

counting, 208–209

defined, 90

file system latency, 385

kernel, 92, 94–95

micro-benchmarking for, 61

observability source, 159

send/receive latency, 528

tracing in bpftrace, 403–405

tracing in perf, 201–202

tracing in strace, 205–207

System design, benchmarking for, 642

system function in bpftrace, 770, 779

System statistics, monitoring, 138

System under test (SUT) models, 23

System-wide CPU profiling, 268–270

System-wide observability tools, 133

fixed counters, 134

/proc file system, 141–142

profiling, 135

tracing, 136

System-wide tunable parameters

byte queue limits, 571

device backlog, 569

ECN, 570

networks, 567–572

production example, 568

queueing disciplines, 571

resource controls, 571

sockets and TCP buffers, 569

TCP backlog, 569

TCP congestion control, 570

Tuned Project, 572

systemd-analyze command, 120

systemd service manager, 120

Systems performance overview, 1–2

activities, 3–4

cascading failures, 5

case studies, 16–19

cloud computing, 14

complexity, 5

counters, statistics, and metrics, 8–9

experiments, 13–14

latency, 6–7

methodologies, 15–16

multiple performance issues, 6

observability, 7–13

performance challenges, 5–6

878 Systems performance overview

perspectives, 4–5

references, 19–20

roles, 2–3

SystemTap tool, 166

T

Tagged Command Queueing (TCQ), 437

Tahoe algorithm for TCP congestion
control, 513

Tail-based sampling in distributed tracing,
199

Tail Loss Probe (TLP), 117, 512

Task capacity in USE method, 799

task tool, 141

Tasklets with interrupts, 98

Tasks

defined, 90

idle, 99

taskset command, 297

tc tool, 566

tcdump tool, 136

TCMalloc allocator, 322

TCP. See Transmission Control Protocol (TCP)

TCP Fast Open (TFO), 117

TCP/IP stack

BSD, 113

kernels, 109

protocol, 502

stack bypassing, 509

TCP segmentation offload (TSO), 521

TCP Small Queues (TSQ), 524

TCP Tail Loss Probe (TLP), 117

TCP TIME_WAIT latency, 528

tcpaccept tool, 561

tcpconnect tool, 561

tcpdump tool

BPF for, 12

description, 526

event tracing, 57–58

overview, 558–559

packet sniffing, 530–531

tcplife tool

BCC, 756

description, 525

overview, 548

tcpnagle tool, 561

tcpreplay tool, 567

tcpretrans tool

BCC, 756

overview, 549–550

perf-tools, 743

tcpsynbl.bt tool, 556–557

tcptop tool

BCC, 756

description, 526

top processes, 549

tcpwin tool, 561

TCQ (Tagged Command Queueing), 437

Temperature-aware scheduling classes, 243

Temperature sensors for CPUs, 230

Tenancy in cloud computing, 580

contention in hardware virtualization,
595

contention in OS virtualization,
612–613

overview, 585–586

Tensor processing units (TPUs), 241

Test errors in benchmarking, 646–647

Text step in scientific method, 44–45

Text user interface (TUI), 697

TFO (TCP Fast Open), 117

Theoretical maximum disk throughput,
436–437

Thermal pressure in Linux kernel, 119

THP (transparent huge pages)

Linux kernel, 116

memory, 353

Thread blocks in GPUs, 240

Thread pools in USE method, 52

 tiptop tool package 879

Thread state analysis, 193–194

Linux, 195–197

software change case study, 19

states, 194–195

Threads

applications, 177–181

CPU time, 278–279

CPUs, 227–229

CPUs vs. GPUs, 240

defined, 90

flusher, 374

hardware, 221

idle, 99, 244

interrupts, 97–98

lightweight, 178

micro-benchmarking, 653

processes, 100

schedulers, 105–106

SMT, 225

static priority, 242–243

USE method, 52

3-wide processors, 224

3D NAND flash memory, 440

3D XPoint persistent memory, 441

Three-way handshakes in TCP, 511

Throttling

benchmarks, 661

hardware virtualization, 597

OS virtualization, 626

packets, 522

Throughput

applications, 173

defined, 22

disks, 424

file systems, 360

magnetic rotational disks, 436–437

networks, defined, 500

networks, measuring, 527–529

networks, monitoring, 529

performance metric, 32

resource analysis, 38

solid-state drives, 441

workload analysis, 40

Tickless kernels, 99, 117

Ticks, clock, 99

tid variable in bpftrace, 777

Time

averages over, 74

disk measurements, 427–429

event tracing, 58

kernel analysis, 202

Time-based patterns in monitoring, 77–78

Time-based utilization, 33–34

time control group, 609

time function in bpftrace, 778

Time scales

disks, 429–430

methodologies, 25–26

Time-series metrics, 8

Time sharing for schedulers, 241

Time slices for schedulers, 242

Time to first byte (TTFB) in networks, 506

time tool for CPUs, 263–264

TIME_WAIT latency, 528

TIME_WAIT state, 512

timechart subcommand for perf, 673

Timeline charts, 83–84

Timer-based profile sampling, 247–248

Timer-based retransmits, 512

Timerless multitasking, 117

Timers in TCP, 511–512

Timestamps

CPU counters, 230

file systems, 371

TCP, 511

tiptop tool, 348

tiptop tool package, 132

880 TLBs

TLBs. See Translation lookaside buffers
(TLBs)

tlbstat tool

CPUs, 266–267

memory, 348

TLC (tri-level cell) flash memory, 440

TLP (Tail Loss Probe), 117, 512

TLS (transport layer security), 113

Tools method

CPUs, 245

disks, 450

memory, 323–324

networks, 525

overview, 46

Top-level directories, 107

Top of file system layer, file system latency
in, 385

top subcommand for perf, 673

top tool

CPUs, 245, 261–262

description, 15

file systems, 393

fixed counters, 135

hardware virtualization, 600

lightweight virtualization, 632–633

memory, 324, 336–337

OS virtualization, 619, 624

TPC (Transaction Processing Performance
Council) benchmarks, 655

TPC-A benchmark, 650–651

tpoint tool, 744

TPUs (tensor processing units), 241

trace-cmd front end, 132

documentation, 740

function_graph, 739

KernelShark, 739–740

one-liners, 736–737

overview, 734

vs. perf, 738–739

subcommands overview, 734–736

trace file, 710, 713–715

trace_options file, 710

trace_pipe file, 710, 715

Trace scripts, 698, 700–701

trace_stat directory, 710

trace subcommand for perf, 673,
701–702

trace tool, 757–758

tracefs file system, 149–150

contents, 709–711

overview, 708–709

tracepoint probes, 774

Tracepoints

arguments and format string, 148–149

description, 11

documentation, 150–151

events in perf, 681, 684–685

example, 147–148

filters, 717–718

interface, 149–150

Linux kernel, 116

overhead, 150

overview, 146

triggers, 718

tracepoints tracer, 707

traceroute tool, 563–564

Tracing

BPF, 12–13

bpftrace. See bpftrace tool

case study, 790–792

distributed, 199

dynamic instrumentation, 12

events. See Event tracing

Ftrace. See Ftrace tool

locks, 212–213

observability tools, 136

OS virtualization, 620, 624–625, 629

perf, 676–678

perf-tools for, 745

schedulers, 189–190

sockets, 552–555

 Tunable parameters 881

software, 275–276

static instrumentation, 11–12

strace, 136, 205–207

tools, 166

trace-cmd. See trace-cmd front end

virtual file system, 405–406

tracing_on file, 710

Trade-offs in methodologies, 26–27

Traffic control utility in networks, 566

Transaction costs of latency, 385–386

Transaction groups (TXGs) in ZFS, 381

Transaction Processing Performance
Council (TPC) benchmarks, 655

Translation lookaside buffers (TLBs)

cache statistics, 266–267

CPUs, 232

flushing, 121

memory, 314–315

MMU, 235

shootdowns, 367

Translation storage buffers (TSBs), 235

Transmission Control Protocol (TCP)

analysis, 531

anti-bufferbloat, 117

autocorking, 117

backlog, tuning, 569

buffers, 520, 569

congestion algorithms, 115

congestion avoidance, 508

congestion control, 118, 513, 570

connection latency, 24, 506, 528

connection queues, 519–520

connection rate, 527–529

duplicate ACK detection, 512

features, 510–511

first-byte latency, 528

friends, 509

initial window, 514

Large Receive Offload, 116

lockless listener, 118

New Vegas, 118

offload in packet size, 505

out-of-order packets, 529

retransmits, 117, 512, 528–529

SACK, FACK, and RACK, 514

states and timers, 511–512

three-way handshakes, 511

tracing in bpftrace, 555–557

transfer time, 24–25

Transmit Packet Steering (XPS) in
networks, 523

Transparent huge pages (THP)

Linux kernel, 116

memory, 353

Transport, defined, 424

Transport layer security (TLS), 113

Traps

defined, 90

synchronous interrupts, 97

Tri-level cell (TLC) flash memory, 440

Triggers

hist. See Hist triggers

kprobes, 721–722

tracepoints, 718

uprobes, 723

Troubleshooting, benchmarking for, 642

TSBs (translation storage buffers), 235

tshark tool, 559

TSO (TCP segmentation offload), 521

TSQ (TCP Small Queues), 524

TTFB (time to first byte) in networks, 506

TUI (text user interface), 697

Tunable parameters

disks, 494

memory, 350–351

micro-benchmarking, 390

networks, 567

operating systems, 493–495

point-in-time recommendations, 29–30

tradeoffs with, 27

882 tune2fs tool

tune2fs tool, 416–417

Tuned Project, 572

Tuning

benchmarking for, 642

caches, 60

CPUs. See CPUs tuning

disk caches, 456

disks, 493–495

file system caches, 389

file systems, 414–419

memory, 350–354

methodologies, 27–28

networks, 567–574

static performance. See Static
performance tuning

targets, 27–28

turboboost tool, 245

turbostat tool, 264–265

TXGs (transaction groups) in ZFS, 381

Type 1 hypervisors, 587

Type 2 hypervisors, 587

U

uaddr function, 779

Ubuntu Linux distribution

crisis tools, 131–132

memory tunables, 350–351

sar configuration, 162

scheduler options, 295–296

UDP Generic Receive Offload (GRO), 119

UDP (User Datagram Protocol), 514

udpconnect tool, 561

UDS (Unix domain sockets), 509

uid variable in bpftrace, 777

UIDs (user IDs) for processes, 101

UIO (user space I/O) in kernel bypass, 523

ulimit command, 111

Ultra Path Interconnect (UPI), 236–237

UMA (uniform memory access) memory
system, 311–312

UMA (universal memory allocator), 322

UMASK values in MSRs, 238–239

Unicast network transmissions, 503

UNICS (UNiplexed Information and
Computing Service), 112

Unified buffer caches, 374

Uniform memory access (UMA) memory
system, 311–312

Unikernels, 92, 123, 634

UNiplexed Information and Computing
Service (UNICS), 112

Units of time for latency, 25

Universal memory allocator (UMA), 322

Universal Scalability Law (USL), 65–66

Unix domain sockets (UDS), 509

Unix kernels, 112

UnixBench benchmarks, 254

Unknown-unknowns, 37

Unrelated disk I/O, 368

unroll function, 776

UPI (Ultra Path Interconnect), 236–237

uprobe_events file, 710

uprobe profiler, 707

uprobe tool, 744

uprobes, 687–688

arguments, 154, 688–689, 723

bpftrace, 774

documentation, 155

event tracing, 722–723

example, 154

filters, 723

Ftrace, 708

interface and overload, 154–155

Linux kernel, 117

overview, 153

profiling, 723

return values, 723

triggers, 723

uptime tool

case study, 784–785

CPUs, 245

 uts control group 883

description, 15

load averages, 255–257

OS virtualization, 619

PSI, 257–258

uretprobes, 154

usdt probes, 774

USDT (user-level static instrumentation
events)

perf, 681

probes, 690–691

USDT (user-level statically defined tracing),
11, 155–156

USE method. See Utilization, saturation,
and errors (USE) method

User address space in processes, 102

User allocation stacks, 345

user control group, 609

User Datagram Protocol (UDP), 514

User IDs (UIDs) for processes, 101

User land, 90

User-level static instrumentation events
(USDT)

perf, 681

probes, 690–691

User-level statically defined tracing (USDT),
11, 155–156

User modes in kernels, 93–94

User mutex in USE method, 799

User space, defined, 90

User space I/O (UIO) in kernel bypass, 523

User stacks, 103

User state in thread state analysis,
194–197

User time in CPUs, 226

username variable in bpftrace, 777

USL (Universal Scalability Law), 65–66

ustack function in bpftrace, 779

ustack variable in bpftrace, 778

usym function, 779

util-linux tool package, 131

Utilization

applications, 173, 193

CPUs, 226, 245–246, 251, 795, 797

defined, 22

disk controllers, 451

disk devices, 451

disks, 433, 452

heat maps, 288–289, 490

I/O, 798

kernels, 798

memory, 309, 324–326, 796–797

methodologies, 33–34

networks, 508–509, 526–527, 796–797

performance metric, 32

resource analysis, 38

storage, 796–797

task capacity, 799

USE method, 47–48, 51–53

user mutex, 799

Utilization, saturation, and errors (USE)
method

applications, 193

benchmarking, 661

CPUs, 245–246

disks, 450–451

functional block diagrams, 49–50

memory, 324–325

metrics, 48–51

microservices, 53

networks, 526–527

overview, 47

physical resources, 795–798

procedure, 47–48

references, 799

resource controls, 52

resource lists, 49

slow disks case study, 17

software resources, 52, 798–799

uts control group, 609

884 V-NAND (vertical NAND) flash memory

V

V-NAND (vertical NAND) flash memory, 440

valgrind tool

CPUs, 286

memory, 348

Variable block sizes in file systems, 375

Variables in bpftrace, 770–771, 777–778

Variance

benchmarks, 647

description, 75

FlameScope, 292–293

Variation, coefficient of, 76

vCPUs (virtual CPUs), 595

Verification of observability tool results,
167–168

Versions

applications, 172

kernel, 111–112

Vertical NAND (V-NAND) flash memory, 440

Vertical scaling

capacity planning, 72

cloud computing, 581

VFIO (virtual function I/O) drivers, 523

VFS. See Virtual file system (VFS)

VFS layer, file system latency analysis in,
385

vfs_read function in bpftrace, 772–773

vfs_read tool in Ftrace, 706–707

vfscount tool, 409

vfssize tool, 409

vfsstat tool, 409

Vibration in magnetic rotational disks, 438

Virtual CPUs (vCPUs), 595

Virtual disks

defined, 424

utilization, 433

Virtual file system (VFS)

defined, 360

description, 107

interface, 373

latency, 406–408

Solaris kernel, 114

tracing, 405–406

Virtual function I/O (VFIO) drivers, 523

Virtual machine managers (VMMs)

cloud computing, 580

hardware virtualization, 587–605

Virtual machines (VMs)

cloud computing, 580

hardware virtualization, 587–605

programming languages, 185

Virtual memory

BSD kernel, 113

defined, 90, 304

managing, 104–105

overview, 305

size, 308

Virtual processors, 220

Virtual-to-guest physical translation, 593

Virtualization

hardware. See Hardware virtualization

OS. See OS virtualization

Visual identification of models, 62–64

Visualizations, 79

blktrace, 479

CPUs, 288–293

disks, 487–490

file systems, 410–411

flame graphs. See Flame graphs

heat maps. See Heat maps

line charts, 80–81

scatter plots, 81–82

surface plots, 84–85

timeline charts, 83–84

tools, 85

VMMs (virtual machine managers)

cloud computing, 580

hardware virtualization, 587–588

 Write amplification in solid-state drives 885

VMs (virtual machines)

cloud computing, 580

hardware virtualization, 587–588

programming languages, 185

vmscan tool, 348

vmstat tool, 8

CPUs, 245, 258

description, 15

disks, 487

file systems, 393

fixed counters, 134

hardware virtualization, 604

memory, 323, 329–330

OS virtualization, 619

thread state analysis, 196

VMware ESX, 589

Volume managers, 360

Volumes

defined, 360

file systems, 382–383

Voluntary kernel preemption, 110, 116

W

W-caches in CPUs, 230

Wait time

disks, 434

I/O, 427

off-CPU analysis, 191–192

wakeup tracer, 708

wakeup_rt tracer, 708

wakeuptime tool, 756

Warm caches, 37

Warmth of caches, 37

watchpoint probes, 774

Waterfall charts, 83–84

Wear leveling in solid-state drives, 441

Weekly patterns, monitoring, 79

Whetstone benchmark, 254, 653

Whys in drill-down analysis, 56

Width

flame graphs, 290–291

instruction, 224

Wildcards for probes, 768–769

Windows

DiskMon, 493

fibers, 178

hybrid kernel, 92

Hyper-V, 589

LTO and PGO, 122

microkernel, 123

portable executable format, 183

ProcMon, 207

syscall tracing, 205

TIME_WAIT, 512

word size, 310

Wireframe models, 84–85

Wireshark tool, 560

Word size

CPUs, 229

memory, 310

Work queues with interrupts, 98

Working set size (WSS)

benchmarking, 664

memory, 310, 328, 342–343

micro-benchmarking, 390–391, 653

Workload analysis perspectives, 4–5,
39–40

Workload characterization

benchmarking, 662

CPUs, 246–247

disks, 452–454

file systems, 386–388

methodologies, 54

networks, 527–528

workload analysis, 39

Workload separation in file systems, 389

Workloads, defined, 22

Write amplification in solid-state drives,
440

886 Write-back caches

Write-back caches

file systems, 365

on-disk, 425

virtual disks, 433

write system calls, 94

Write-through caches, 425

Write type, micro-benchmarking for, 390

writeback tool, 409

Writes starving reads, 448

writesync tool, 409

wss tool, 342–343

WSS (working set size)

benchmarking, 664

memory, 310, 328, 342–343

micro-benchmarking, 390–391, 653

X

XDP (Express Data Path) technology

description, 118

event sources, 558

kernel bypass, 523

Xen hardware virtualization

CPU usage, 595

description, 589

I/O path, 594

network performance, 597

observability, 599

xentop tool, 599

XFS file system, 379–380

xfsdist tool

BCC, 756

file systems, 399

xfsslower tool, 757

XPS (Transmit Packet Steering) in
networks, 523

Y

Yearly patterns, monitoring, 79

Z

zero function, 780

ZFS file system

features, 380–381

options, 418–419

pool statistics, 410

Solaris kernel, 114

zfsdist tool

BCC, 757

file systems, 399

zfsslower tool, 757

ZIO pipeline in ZFS, 381

zoneinfo tool, 142

Zones

free lists, 317

magnetic rotational disks, 437

OS virtualization, 606, 620

Solaris kernel, 114

zpool tool, 410

	Cover
	Half Title Page
	Title Page
	Copyright Page
	Contents at a Glance
	Contents
	Preface
	Acknowledgments
	About the Author
	3 Operating Systems
	3.1 Terminology
	3.2 Background
	3.2.1 Kernel
	3.2.2 Kernel and User Modes
	3.2.3 System Calls
	3.2.4 Interrupts
	3.2.5 Clock and Idle
	3.2.6 Processes
	3.2.7 Stacks
	3.2.8 Virtual Memory
	3.2.9 Schedulers
	3.2.10 File Systems
	3.2.11 Caching
	3.2.12 Networking
	3.2.13 Device Drivers
	3.2.14 Multiprocessor
	3.2.15 Preemption
	3.2.16 Resource Management
	3.2.17 Observability

	3.3 Kernels
	3.3.1 Unix
	3.3.2 BSD
	3.3.3 Solaris

	3.4 Linux
	3.4.1 Linux Kernel Developments
	3.4.2 systemd
	3.4.3 KPTI (Meltdown)
	3.4.4 Extended BPF

	3.5 Other Topics
	3.5.1 PGO Kernels
	3.5.2 Unikernels
	3.5.3 Microkernels and Hybrid Kernels
	3.5.4 Distributed Operating Systems

	3.6 Kernel Comparisons
	3.7 Exercises
	3.8 References
	3.8.1 Additional Reading

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'PDFX-1a2001_LSC'] [Based on 'PDFX-1a2001'])
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks false
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

