
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780136793816
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780136793816
https://plusone.google.com/share?url=http://www.informit.com/title/9780136793816
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780136793816
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780136793816/Free-Sample-Chapter


Quantum Computing 
Fundamentals

9780136793816_Print.indb   1 30/04/21   10:08 PM



This page intentionally left blank 



Quantum Computing 
Fundamentals

Dr. Chuck Easttom

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town 
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City 
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

9780136793816_Print.indb   3 30/04/21   10:08 PM



Many of the designations used by manufacturers and sellers to distinguish their products are 
claimed as trademarks. Where those designations appear in this book, and the publisher was 
aware of a trademark claim, the designations have been printed with initial capital letters or 
in all capitals.

The author and publisher have taken care in the preparation of this book, but make no 
expressed or implied warranty of any kind and assume no responsibility for errors or 
omissions. No liability is assumed for incidental or consequential damages in connection 
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities 
(which may include electronic versions; custom cover designs; and content particular to your 
business, training goals, marketing focus, or branding interests), please contact our corporate 
sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2021903471

Copyright © 2021 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be 
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval 
system, or transmission in any form or by any means, electronic, mechanical, photocopying, 
recording, or likewise. For information regarding permissions, request forms and the 
appropriate contacts within the Pearson Education Global Rights & Permissions Department, 
please visit www.pearson.com/permissions/.

ISBN-13: 978-0-13-679381-6
ISBN-10: 0-13-679381-9

ScoutAutomatedPrintCode

Editor-in-Chief
Mark Taub

Director, ITP Product 
Manager
Brett Bartow

Executive Editor
James Manly

Development Editor
Christopher A. Cleveland

Managing Editor
Sandra Schroeder

Project Editor
Mandie Frank

Copy Editor
Bart Reed

Indexer
Cheryl Ann Lenser

Proofreader
Donna Mulder

Technical Reviewers
Izzat Alsmadi,  
Renita Murimi

Editorial Assistant
Cindy Teeters

Designer
Chuti Prasertsith

Compositor
codeMantra

A01_easttom_FM_pi-pxix.indd   4 04/05/21   2:25 PM

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions/


v

Credits
Cover	 ZinetroN/Shutterstock

Figure Number	 Credit Attribution

Figure 12-1A	 Screenshot © Microsoft Corporation

Figure 16-1	 Screenshot of Microsoft QDK for Visual Studio Code © Microsoft 2021

Figure 16-2	 Screenshot of New Q# Program in Visual Studio Code © Microsoft 2021

Figure 16-3	 Screenshot of Save Program in Visual Studio Code © Microsoft 2021

Figure 16-4	 Screenshot of QDK Samples © Microsoft 2021

Figure 16-5	 Screenshot of Q# Random Number Generator © Microsoft 2021

Figure 16-6	 Screenshot of Q# Open Statements © Microsoft 2021

Figure 16-7	 Screenshot of Operation QuantumPseudoRandomNumberGenerator © Microsoft 2021

Figure 16-8	 Screenshot of Operation RandomNumberInRange © Microsoft 2021

Figure 16-9	 Screenshot of Operation SampleRandomNumber © Microsoft 2021

Figure 16-10	 Screenshot of Open Statements in Grover’s Algorithm Code © Microsoft 2021

Figure 16-11	 Screenshot of ReflectMarked © Microsoft 2021

Figure 16-12	 Screenshot of ReflectUniform © Microsoft 2021

Figure 16-13	 Screenshot of Additional Functions for Grover’s algorithm © Microsoft 2021

Figure 16-14	 Screenshot of Entry Point for Grover’s Algorithm © Microsoft 2021

Figure 16-15	 Screenshot of NumberofIterations Function © Microsoft 2021

Figure 16-16	 Screenshot of Beginning of Deutsch-Jozsa © Microsoft 2021

Figure 16-17	 Screenshot of Deutsch-Jozsa Entry Point © Microsoft 2021

Figure 16-18	 Screenshot of IsConstant Function © Microsoft 2021

Figure 16-19	 Screenshot of Remaining Functions for Deutsch-Jozsa © Microsoft 2021

Figure 16-20	 Screenshot of Entanglement © Microsoft 2021

Figure 17-1	 Screenshot of Quantum Inspire Editor © 2021 Quantum Inspire

Figure 17-2	 Screenshot of Two Qubits © 2021 Quantum Inspire

Figure 17-3	 Screenshot of CNOT Gate © 2021 Quantum Inspire

Figure 17-4	 Screenshot of Hadamard Gate © 2021 Quantum Inspire

Figure 17-5	 Screenshot of Multiple Gates © 2021 Quantum Inspire

Figure 17-6	 Screenshot of Start a New Project © 2021 Quantum Inspire

Figure 17-7	 Screenshot of New Project Editor © 2021 Quantum Inspire

Figure 17-8	 Screenshot of Error Correction © 2021 Quantum Inspire

Figure 17-9	 Screenshot of Grover’s Algorithm © 2021 Quantum Inspire

Figure 17-10	 Screenshot of Grover’s Algorithm Results © 2021 Quantum Inspire

Figure 17-11	 Screenshot of Deutsch-Jozsa Algorithm © 2021 Quantum Inspire

Unnumbered Figure 17-1	 Screenshot of CNOT Gate Symbol © 2021 Quantum Inspire

9780136793816_Print.indb   5 30/04/21   10:08 PM



vi

Dedication

As always, I dedicate my work to my wonderful wife Teresa. A quote 
from my favorite movie is how I usually thank her: “What truly is 

logic? Who decides reason? My quest has taken me to the physical, the 
metaphysical, the delusional, and back. I have made the most important 

discovery of my career—the most important discovery of my life. It is 
only in the mysterious equations of love that any logic or reasons can 

be found. I am only here tonight because of you. You are the only reason 
I am. You are all my reasons.”

9780136793816_Print.indb   6 30/04/21   10:08 PM



Table of Contents vii

Table of Contents
Preface	 xvii

Part I  Preparatory Material

Chapter 1: Introduction to Essential Linear Algebra	 2

	 1.1	 What Is Linear Algebra?.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

	 1.2	 Some Basic Algebra.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1  Groups, Rings, and Fields.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

	 1.3	 Matrix Math.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1  Matrix Addition and Multiplication.. . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.2  Matrix Transposition.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.3  Submatrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.4  Identity Matrix.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.5  Deeper Into the Matrix.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

	 1.4	 Vectors and Vector Spaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

	 1.5	 Set Theory.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

	 1.6	 Summary.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

		  Test Your Skills. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Chapter 2: Complex Numbers	 32

	 2.1	 What Are Complex Numbers?.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

	 2.2	 Algebra of Complex Numbers.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

	 2.3	 Complex Numbers Graphically. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

	 2.4	 Vector Representations of Complex Numbers.. . . . . . . . . . . . . . . . . . . . 45

	 2.5	 Pauli Matrices.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5.1  Algebraic Properties of Pauli Matrices.. . . . . . . . . . . . . . . . . . . . . 52

	 2.6	 Transcendental Numbers.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

	 2.7	 Summary.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

		  Test Your Skills. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

9780136793816_Print.indb   7 30/04/21   10:08 PM



Table of Contentsviii

Chapter 3: Basic Physics for Quantum Computing	 60

	 3.1	 The Journey to Quantum.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

	 3.2	 Quantum Physics Essentials.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.1  Basic Atomic Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.2  Hilbert Spaces.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2.3  Uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.4  Quantum States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2.5  Entanglement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

	 3.3	 Summary.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

		  Test Your Skills. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Chapter 4: Fundamental Computer Science for Quantum Computing	 80

	 4.1	 Data Structures.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1.1  List.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1.2  Binary Tree.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

	 4.2	 Algorithms.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.1  Sorting Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90

	 4.3	 Computational Complexity.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.1  Cyclomatic Complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3.2  Halstead Metrics.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

	 4.4	 Coding Theory.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

	 4.5	 Logic Gates.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5.1  AND.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5.2  OR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5.3  XOR.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5.4  Application of Logic Gates.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

	 4.6	 Computer Architecture.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

9780136793816_Print.indb   8 30/04/21   10:08 PM



Table of Contents ix

	 4.7	 Summary.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

		  Test Your Skills. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Chapter 5: Basic Information Theory	 106

	 5.1	 Basic Probability.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.1.1  Basic Probability Rules.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

	 5.2	 Set Theory.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

	 5.3	 Information Theory.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.3.1  Theorem 1: Shannon’s Source Coding Theorem.. . . . . . . . . . . . 113

5.3.2  Theorem 2: Noisy Channel Theorem.. . . . . . . . . . . . . . . . . . . . . . 113

5.3.3  Information Entropy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.4  Information Diversity.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

	 5.4	 Quantum Information.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

	 5.5	 Summary.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

		  Test Your Skills. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Part II  Basic Quantum Computing

Chapter 6: Basic Quantum Theory	 122

	 6.1	 Further with Quantum Mechanics.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.1.1  Bra-Ket Notation.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.1.2  Hamiltonian.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.1.3  Wave Function Collapse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.1.4  Schrödinger’s Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

	 6.2	 Quantum Decoherence.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

	 6.3	 Quantum Electrodynamics.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

	 6.4	 Quantum Chromodynamics.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

	 6.5	 Feynman Diagram.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

	 6.6	 Summary.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

		  Test Your Skills. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9780136793816_Print.indb   9 30/04/21   10:08 PM



Table of Contentsx

Chapter 7: Quantum Entanglement and QKD	 138

	 7.1	 Quantum Entanglement.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

	 7.2	 Interpretation.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.2.1  The Copenhagen Interpretation.. . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.2.2  The Many-Worlds Interpretation. . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.2.3  Decoherent Histories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.2.4  Objective Collapse Theory.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

	 7.3	 QKE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.3.1  BB84 Protocol.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.3.2  B92 Protocol.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.3.3  SARG04.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.3.4  Six-State Protocol.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.3.5  E91.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.3.6  Implementations.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

	 7.4	 Summary.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

		  Test Your Skills. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Chapter 8: Quantum Architecture	 154

	 8.1	 Further with Qubits.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

	 8.2	 Quantum Gates.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.2.1  Hadamard Gate.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.2.2  Phase Shift Gates.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.2.3  Pauli Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8.2.4  Swap Gates.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.2.5  Fredkin Gate.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.2.6  Toffoli Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.2.7  Controlled Gates.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.2.8  Ising Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.2.9  Gottesman–Knill Theorem.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A01_easttom_FM_pi-pxix.indd   10 30/04/21   11:07 PM



Table of Contents xi

	 8.3	 More with Gates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

	 8.4	 Quantum Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

	 8.5	 The D-Wave Quantum Architecture.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.5.1  SQUID.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

	 8.6	 Summary.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

		  Test Your Skills. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Chapter 9: Quantum Hardware	 174

	 9.1	 Qubits.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

9.1.1  Photons.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

9.1.2  Electron.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

9.1.3  Ions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

9.1.4  NMRQC.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

9.1.5  Bose-Einstein Condensate Quantum Computing.. . . . . . . . . . . 179

9.1.6  GaAs Quantum Dots.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

	 9.2	 How Many Qubits Are Needed?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

	 9.3	 Addressing Decoherence.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

9.3.1  Supercooling.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

9.3.2  Dealing with Noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

9.3.3  Filtering Noise.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

	 9.4	 Topological Quantum Computing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

9.4.1  Basic Braid Theory.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

9.4.2  More on Braid Theory.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

9.4.3  More on Topological Computing.. . . . . . . . . . . . . . . . . . . . . . . . . 187

	 9.5	 Quantum Essentials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

9.5.1  Quantum Data Plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

9.5.2  Measurement Plane.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

9.5.3  Control Processor Plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

	 9.6	 Quantum Networking.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

9780136793816_Print.indb   11 30/04/21   10:08 PM



Table of Contentsxii

9.6.1  Tokyo QKD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

9.6.2  Beijing-Shanghai Quantum Link. . . . . . . . . . . . . . . . . . . . . . . . . . 189

9.6.3  Micius Satellite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

9.6.4  Distributed Quantum Computing. . . . . . . . . . . . . . . . . . . . . . . . . 190

	 9.7	 Summary.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

		  Test Your Skills. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Chapter 10: Quantum Algorithms	 194

	 10.1	 What Is an Algorithm?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

	 10.2	 Deutsch’s Algorithm.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

	 10.3	 Deutsch-Jozsa Algorithm.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

	 10.4	 Bernstein-Vazirani Algorithm.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

	 10.5	 Simon’s Algorithm.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

	 10.6	 Shor’s Algorithm.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

10.6.1  The Quantum Period-Finding Function.. . . . . . . . . . . . . . . . . . . 206

	 10.7	 Grover’s Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

	 10.8	 Summary.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

		  Test Your Skills. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

Part III  Quantum Computing and Cryptography

Chapter 11: Current Asymmetric Algorithms	 212

	 11.1	 RSA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

11.1.1  RSA Example 1.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

11.1.2  RSA Example 2.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

11.1.3  Factoring RSA Keys.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

	 11.2	 Diffie-Hellman. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

11.2.1  Elgamal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

11.2.2  MQV.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

9780136793816_Print.indb   12 30/04/21   10:08 PM



xiiiTable of Contents

	 11.3	 Elliptic Curve.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

11.3.1  ECC Diffie-Hellman.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

11.3.2  ECDSA.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

	 11.4	 Summary.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

		  Test Your Skills. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

Chapter 12: The Impact of Quantum Computing on Cryptography	 228

	 12.1	 Asymmetric Cryptography.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

12.1.1  How Many Qubits Are Needed?.. . . . . . . . . . . . . . . . . . . . . . . . 230

	 12.2	 Specific Algorithms.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

12.2.1  RSA.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

12.2.2  Diffie-Hellman.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

12.2.3  ECC.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

12.2.4  Symmetric Ciphers.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

12.2.5  Cryptographic Hashes.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

	 12.3	 Specific Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

12.3.1  Digital Certificates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

12.3.2  SSL/TLS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

12.3.4  Public Key Infrastructure (PKI).. . . . . . . . . . . . . . . . . . . . . . . . . . 237

12.3.5  VPN.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

12.3.6  SSH.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

	 12.4	 Summary.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

		  Test Your Skills. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Chapter 13: Lattice-based Cryptography	 244

	 13.1	 Lattice-Based Mathematical Problems.. . . . . . . . . . . . . . . . . . . . . . . . . 245

13.1.1  Shortest Integer Problem.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

13.1.2  Shortest Vector Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

13.1.3  Closest Vector Problem.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

9780136793816_Print.indb   13 30/04/21   10:08 PM



xiv Table of Contents

	 13.2	 Cryptographic Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

13.2.1  NTRU.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

13.2.2  GGH.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

13.2.3  Peikert’s Ring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

	 13.3	 Solving Lattice Problems.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

13.3.1  Lenstra-Lenstra-Lovász (LLL). . . . . . . . . . . . . . . . . . . . . . . . . . . 256

	 13.4	 Summary.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

		  Test Your Skills. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Chapter 14: Multivariate Cryptography	 262

	 14.1	 Mathematics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

	 14.2	 Matsumoto-Imai. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

	 14.3	 Hidden Field Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

	 14.4	� Multivariate Quadratic Digital Signature Scheme (MQDSS). . . . . . . . . 268

	 14.5	 SFLASH.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

	 14.6	 Summary.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

		  Test Your Skills. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Chapter 15: Other Approaches to Quantum Resistant Cryptography	 274

	 15.1	 Hash Functions.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

15.1.1  Merkle-Damgaard.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

15.1.2  SWIFFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

15.1.3  Lamport Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

	 15.2	 Code-Based Cryptography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

15.2.1  McEliece. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

15.2.2  Niederreiter Cryptosystem.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

	 15.3	 Supersingular Isogeny Key Exchange.. . . . . . . . . . . . . . . . . . . . . . . . . . 281

15.3.1  Elliptic Curves.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

15.3.2  SIDH.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

9780136793816_Print.indb   14 30/04/21   10:08 PM



Table of Contents xv

	 15.4	 Summary.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

		  Test Your Skills. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Part IV  Quantum Programming

Chapter 16: Working with Q#	 292

	 16.1	 Basic Programming Concepts.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

16.1.1  Variables and Statements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

16.1.2  Control Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

16.1.3  Object-Oriented Programming. . . . . . . . . . . . . . . . . . . . . . . . . . 297

	 16.2	 Getting Started with Q#.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

	 16.3	 Grover’s Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

16.3.1  Grover’s Algorithm Reviewed. . . . . . . . . . . . . . . . . . . . . . . . . . . 303

16.3.2  The Code for Grover’s Algorithm.. . . . . . . . . . . . . . . . . . . . . . . . 304

	 16.4	 Deutsch-Jozsa Algorithm.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

16.4.1  Deutsch-Jozsa Algorithm Reviewed.. . . . . . . . . . . . . . . . . . . . . 308

16.4.2  The Code for Deutsch-Jozsa Algorithm.. . . . . . . . . . . . . . . . . . 308

	 16.5	 Bit Flipping.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

	 16.6	 Summary.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

		  Test Your Skills. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Chapter 17: Working with QASM	 314

	 17.1	 Basic Programming Concepts.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

17.1.1  Instructions.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

17.1.2  Commands.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

	 17.2	 Getting Started with QASM.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

	 17.3	 Quantum Error Correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

	 17.4	 Grover’s Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

17.4.1  Grover’s Algorithm Reviewed. . . . . . . . . . . . . . . . . . . . . . . . . . . 322

17.4.2  The Code for Grover’s Algorithm.. . . . . . . . . . . . . . . . . . . . . . . . 324

9780136793816_Print.indb   15 30/04/21   10:08 PM



Table of Contentsxvi

	 17.5	 Deutsch-Jozsa Algorithm.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

17.5.1  Deutsch-Jozsa Algorithm Reviewed.. . . . . . . . . . . . . . . . . . . . . 326

17.5.2  The Code for the Deutsch-Jozsa Algorithm.. . . . . . . . . . . . . . . 326

	 17.6	 Summary.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

		  Test Your Skills. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

Appendix: Answers to Test Your Skills Questions	 330

Index	 338

9780136793816_Print.indb   16 30/04/21   10:08 PM



xvii

Preface
Writing a book is always a challenging project. But with a topic like quantum computing, it is much 
more so. If you cover too much, the reader will be overwhelmed and will not gain much from the book. 
If you cover too little, you will gloss over critical details. With quantum computing, particularly a book 
written for the novice, it is important to provide enough information without overwhelming. It is my 
sincere hope that I have accomplished this.

Clearly some readers will have a more robust mathematical background than others. Some of you 
will probably have some experience in quantum computing; however, for those of you lacking some 
element in your background, don’t be concerned. The book is designed to give you enough information 
to proceed forward. Now this means that every single chapter could be much larger and go much 
deeper. In fact, I cannot really think of a single chapter that could not be a separate book!

When you are reading a section that is a new concept to you, particularly one you struggle with, don’t 
be concerned. This is common with difficult topics. And if you are not familiar with linear algebra, 
Chapter 1, “Introduction to Essential Linear Algebra,” will start right off with new concepts for you—
concepts that some find challenging. I often tell students to not be too hard on themselves. When you 
are struggling with a concept and you see someone else (perhaps the professor, or in this case the 
author) seem to have an easy mastery of the topic, it is easy to get discouraged. You might think you are 
not suited for this field. If you were, would you not understand it as readily as others? The secret that 
no one tells you is that all of those “others,” the ones who are now experts, struggled in the beginning, 
too. Your struggle is entirely natural. Don’t be concerned. You might have to read some sections more 
than once. You might even finish the book with a solid general understanding, but with some “fuzz-
iness” on specific details. That is not something to be concerned about. This is a difficult topic.

For those readers with a robust mathematical and/or physics background, you are likely to find some 
point where you feel I covered something too deeply, or not deeply enough. And you might be correct. 
It is quite difficult when writing a book on a topic such as this, for a novice audience, to find the proper 
level at which to cover a given topic. I trust you won’t be too harsh in your judgment should you 
disagree with the level at which I cover a topic.

Most importantly, this book should be the beginning of an exciting journey for you. This is the cutting 
edge of computer science. Whether you have a strong background and easily master the topics in this 
book (and perhaps knew some already) or you struggle with every page, the end result is the same. You 
will be open to a bold, new world. You will see the essentials of quantum mechanics, understand the 
quantum computing revolution, and perhaps even be introduced to some new mathematics. So please 
don’t get too bogged down in the struggle to master concepts. Remember to relish the journey!

Register your copy of Quantum Computing Fundamentals on the InformIT site for convenient access 
to updates and/or corrections as they become available. To start the registration process, go to informit.
com/register and log in or create an account. Enter the product ISBN (9780136793816) and click 
Submit. Look on the Registered Products tab for an Access Bonus Content link next to this product, and 
follow that link to access any available bonus materials. If you would like to be notified of exclusive 
offers on new editions and updates, please check the box to receive email from us.
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Basic Quantum Theory

Chapter Objectives
After reading this chapter and completing the quizzes, you will be able to 
do the following:

■■ Use bra-ket notation

■■ Understand the Hamiltonian operator

■■ Have a working knowledge of wave functions and the wave function collapse

■■ Recognize the role of Schrödinger’s equation

■■ Know the role of quantum decoherence and its impact on quantum computing

■■ Have a generalized understanding of quantum electrodynamics

■■ Demonstrate basic knowledge of quantum chromodynamics

This chapter will introduce you to various aspects of quantum theory. Some of these topics were briefly 
touched on in Chapter 3, “Basic Physics for Quantum Computing.” It is essential that you have a strong 
grasp of Chapters 1 through 3 in order to follow along in this chapter. The first issue to address is what 
precisely is quantum theory? It is actually a number of related theories, including quantum field theory, 
quantum electrodynamics (QED), and in some physicists’ opinion, even quantum chromodynamics, 
which deals with quarks. In this chapter, the goal is to deepen the knowledge you gained in Chapter 3 
and to provide at least a brief introduction to a range of topics that all fit under the umbrella of quantum 
theory.

In this chapter, it is more important than ever to keep in mind our goal. Yes, I will present a fair 
amount of mathematics, some of which may be beyond some readers. However, unless your goal is to 
do actual work in the field of quantum physics or quantum computing research, then what you need 
is simply a general comprehension of what the equations mean. You do not need to have the level of 
mathematical acumen that would allow you to actually do the math. So, if you encounter some math 

Chapter 6
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6.1  Further with Quantum Mechanics 123

you find daunting, simply review it a few times to ensure you get the general gist of it and move on. 
You can certainly work with qubits, Q#, and other quantum tools later in this book without a deep 
understanding of how to do the mathematics.

6.1  Further with Quantum Mechanics
Chapter 3 introduced some fundamental concepts in quantum physics. This section expands our explo-
ration of quantum mechanics a bit. In 1932, Werner Heisenberg was awarded the Nobel Prize in Physics 
for the “creation of quantum mechanics.” I am not sure that one person can be solely credited with the 
creation of quantum mechanics, but certainly Heisenberg deserves that credit as much as anyone.

The publication that earned him the Nobel Prize was titled “Quantum-Theoretical Re-interpretation 
of Kinematic and Mechanical Relations.” This paper is rather sophisticated mathematically, and we 
won’t be exploring it in detail here. The paper introduced a number of concepts that formed the basis of 
quantum physics. The interested reader can consult several resources, including the following:

https://arxiv.org/pdf/quant-ph/0404009.pdf

https://www.heisenberg-gesellschaft.de/3-the-development-of-quantum-mechanics-1925- 
ndash-1927.html

https://inis.iaea.org/collection/NCLCollectionStore/_Public/08/282/8282072.pdf

6.1.1  Bra-Ket Notation
Bra-ket notation was introduced a bit earlier, in Chapter 3. However, this notation is so essential to 
understanding quantum physics and quantum computing that we will revisit it, with more detail. Recall 
that quantum states are really vectors. These vectors include complex numbers. However, it is often 
possible to ignore the details of the vector and work with a representation of the vector. This notation 
is called Dirac notation or bra-ket notation.

A bra is denoted by 〈V, and a ket is denoted by V〉. Yes, the terms are intentional, meaning braket, or 
bracket. But what does this actually mean? A bra describes some linear function that maps each vector 
in V to a number in the complex plane. Bra-ket notation is really about linear operators on complex 
vector spaces, and it is the standard way that states are represented in quantum physics and quantum 
computing. One reason for this notation is to avoid confusion. The term vector in linear algebra is a 
bit different from the term vector in classical physics. In classical physics, a vector denotes something 
like velocity that has magnitude and direction; however, in quantum physics, a vector (linear algebra 
vector) is used to represent a quantum state, thus the need for a different notation. It is important to 
keep in mind that these are really just vectors. Therefore, the linear algebra that you saw in Chapter 1, 
“Introduction to Essential Linear Algebra,” applies.
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6.1.2  Hamiltonian
It is important that you be introduced to the Hamiltonian. A Hamiltonian is an operator in quantum 
mechanics. It represents the sum of the kinetic and potential energies (i.e., the total energy) of all the 
particles in a given system. The Hamiltonian can be denoted by an H, <H>, or Ĥ. When one measures 
the total energy of a system, the set of possible outcomes is the spectrum of the Hamiltonian. The 
Hamiltonian is named after William Hamilton. As you may surmise, there are multiple different ways 
of representing the Hamiltonian. In Equation 6.1, you see a simplified version of the Hamiltonian.

= +ˆ ˆ ˆH T v

EQUATION 6.1  The Hamiltonian

The T̂  represents the kinetic energy, and the v̂ represents the potential energy. The T is a function of p 
(the momentum), and V is a function of q (the special coordinate). This simply states that the Hamil-
tonian is the sum of kinetic and potential energies. This particular formulation is rather simplistic and 
not overly helpful. It represents a one-dimensional system with one single particle of mass, m. This is a 
good place to start understanding the Hamiltonian. Equation 6.2 shows a better formulation.

= −
− ∂

∂
+H

2operator

2 2

2 ( )
h

m x
v x

EQUATION 6.2  The Hamiltonian (Detailed)

Let us examine this formula to understand it. The simplest part is V(x), which simply represents 
potential energy. The x is the coordinate in space. Also rather simple to understand is the m, which 
is the mass. The − ,2  as you will recall from Chapter 3, is the reduced Planck constant, which is 
the Planck constant h (6.626 × 10−34 J⋅s) / 2π. The ∂ symbol indicates a partial derivative. For some 
readers, this will be quite familiar. If you are not acquainted with derivatives and partial derivatives, 
you need not master those topics to continue with this book, but a brief conceptual explanation is in 
order. It should also be noted that there are many other ways of expressing this equation. You can 
see an alternative way at https://support.dwavesys.com/hc/en-us/articles/360003684614-What-Is-the- 
Hamiltonian-.

With any function, the derivative of that function is essentially a measurement of the sensitivity of the 
function’s output with respect to a change in the function’s input. A classic example is calculating an 
object’s position with respect to change in time, which provides the velocity. A partial derivative is a 
function of multiple variables, and the derivative is calculated with respect to one of those variables.

So, you should now have a general conceptual understanding of the Hamiltonian. Our previous 
discussion only concerned a single particle. In a system with multiple particles (as are most systems), 
the Hamiltonian of the system is just the sum of the individual Hamiltonians, as demonstrated in 
Equation 6.3.
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H T Vn
n

N
ˆ ˆ ˆ

1
∑= +

=

EQUATION 6.3  Hamiltonian (Another View)

Let us delve a bit deeper into the Hamiltonian. Any operator can be written in a matrix form. Now 
recall our discussion of linear algebra in Chapter 1. The eigenvalues of the Hamiltonian are the energy 
levels of the system. For the purposes of this book, it is not critical that you understand this at a deep 
working level, but you should begin to see intuitively why linear algebra is so important for quantum 
physics.

It also is interesting to note the relationship between the Hamiltonian and the Lagrangian. First, it is 
necessary to define the Lagrangian. Joseph-Louis Lagrange developed Lagrangian mechanics in 1788. 
It is essentially a reformulation of classical mechanics. Lagrangian mechanics uses the Lagrangian 
function of the coordinates, the time derivatives, and the times of the particles.

In Hamiltonian mechanics, the system is described by a set of canonical coordinates. Canonical 
coordinates are sets of coordinates on a phase space, which can describe a system at any given point 
in time. You can, in fact, derive the Hamiltonian from a Lagrangian. We won’t delve into that topic in 
this chapter, but the interested reader can learn more about that process, and other details about the 
Hamiltonian, at the following sources:

https://scholar.harvard.edu/files/david-morin/files/cmchap15.pdf

https://www.damtp.cam.ac.uk/user/tong/dynamics/four.pdf

https://authors.library.caltech.edu/89088/1/1.5047439.pdf

6.1.3  Wave Function Collapse
In physics, a wave function is a mathematical description of the quantum state of a quantum system. It 
is usually represented by the Greek letter psi, either lowercase (ψ) or uppercase (Ψ). A wave function 
is a function of the degrees of freedom for the quantum system. In such a system, degrees of freedom 
indicate the number of independent parameters that describe the system’s state. As one example, 
photons and electrons have a spin value, and that is a discrete degree of freedom for that particle.

A wave function is a superposition of possible states. More specifically, it is a superposition of eigen-
states that collapses to a single eigenstate based on interaction with the environment. Chapter 1 
discussed eigenvalues and eigenvectors. An eigenstate is basically what physicists call an eigenvector.

Wave functions can be added together and even multiplied (usually by complex numbers, which you 
studied in Chapter 2, “Complex Numbers”) to form new wave functions. Recall the dot product we 
discussed in Chapter 1; the inner product is just another term for the dot product. This is also sometimes 
called the scalar product. Recall the inner/dot product is easily calculated, as shown in Equation 6.4.
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EQUATION 6.4  Inner Product

The inner product of two wave functions is a measure of the overlap between the two wave functions’ 
physical state.

This brings us to another important aspect of quantum mechanics: the Born rule. This postulate was 
formulated by Max Born and is sometimes called the Born law or the Born postulate. The postulate 
gives the probability that a measurement of a quantum system will produce a particular result. The 
simplest form of this is the probability of finding a particle at a given point. That general description 
will be sufficient for you to continue in this book; however, if you are interested in a deeper under-
standing, we will explore it now. The Born rule more specifically states that if some observable 
(position, momentum, etc.) corresponding to a self-adjoint operator A is measured in a system with a 
normalized wave function ψ>, then the result will be one of the eigenvalues of A. This should help 
you become more comfortable with the probabilistic nature of quantum physics.

For those readers not familiar with self-adjoint operators, a brief overview is provided. Recall from 
Chapter 1 that matrices are often used as operators. A self-adjoint operator on a finite complex vector 
space, with an inner product, is a linear map from the vector to itself that is its own adjoint. Note that it 
is a complex vector space. This bring us to Hermitian. Recall from Chapter 2 that Hermitian refers to a 
square matrix that is equal to its own conjugate transpose. Conjugate transpose means first taking the 
transpose of the matrix and then taking the complex conjugate of the matrix. Each linear operator on a 
complex Hilbert space also has an adjoint operator, sometimes called a Hermitian adjoint.

Self-adjoint operators have applications in fields such as functional analysis; however, in quantum 
mechanics, physical observables such as position, momentum, spin, and angular momentum are repre-
sented by self-adjoint operators on a Hilbert space.

This is also a good time to discuss Born’s rule, which provides the probability that a measurement of 
a quantum system will yield a particular result. More specifically, the Born rule states that the prob-
ability density of finding a particular particle at a specific point is proportional to the square of the 
magnitude of the particle’s wave function at that point. In more detail, the Born rule states that if an 
observable corresponding to a self-adjoint operator is measured in a system with a normalized wave 
function, the result will be one of the eigenvalues of that self-adjoint operator. There are more details 
to the Born rule, but this should provide you enough information. The interested reader can find more 
information at the following sources:

https://www.math.ru.nl/~landsman/Born.pdf

https://www.quantamagazine.org/the-born-rule-has-been-derived-from-simple-physical- 
principles-20190213/
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Now let us return to the collapse of a wave function, which takes the superposition of possible 
eigenstates and collapses to a single eigenstate based on interaction with the environment. What is this 
interaction with the environment? This is one of the aspects of quantum physics that is often misun-
derstood by the general public. A common interaction with the environment is a measurement, which 
physicists often describe as an observation. This has led many to associate intelligent observation as 
a necessary condition for quantum physics, and thus all of reality. That is simply not an accurate 
depiction of what quantum physics teaches us.

What is termed an observation is actually an interaction with the environment. When a measurement is 
taken, that is an interaction that causes the wave function to collapse.

The fact that a measurement causes the wave function to collapse has substantial implications for 
quantum computing. When one measures a particle, one changes the state. As you will see in later 
chapters, particularly Chapter 8, “Quantum Architecture,” and Chapter 9, “Quantum Hardware,” this is 
something that quantum computing must account for.

The wave function can be expressed as a linear combination of the eigenstates (recall this is the physics 
term for eigenvectors you learned in Chapter 1) of an observable (position, momentum, spin, etc.). 
Using the bra-ket notation discussed previously, this means a wave function has a form such as you see 
in Equation 6.5.

ψ φ>= Σ ci i i

EQUATION 6.5  Wave Function

This is not as complex as it seems. The Greek letter psi (ψ) denotes the wave function. The Σ symbol is 
a summation of what is after it. The φi represents various possible quantum states. The i is to enumerate 
through those possible states, such as φ1, φ2, φ3, etc. The ci values (i.e., c1, c2, c3, etc.) are probability 
coefficients. The letter c is frequently used to denote these because they are represented by complex 
numbers.

Recall from Chapter 1 that if two vectors are both orthogonal (i.e., perpendicular to each other) and 
have a unit length (length 1), the vectors are said to be orthonormal. The bra-ket 〈φiφj 〉 forms an ortho-
normal eigenvector basis. This is often written as follows:

〈φiφj 〉 = δij.

The symbol δ is the Kronecker delta, which is a function of two variables. If the variables are equal, 
the function result is 1. If they are not equal, the function result is 0. This is usually defined as shown 
in Equation 6.6.

i j

i jij

0 if ,

1 if .
δ =

≠
=







EQUATION 6.6  Kronecker Delta
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Now let us discuss the actual process of the wave collapse. Remember that for any observable, the 
wave function is some linear combination of the eigenbasis before the collapse. When there is some 
environmental interaction, such as a measurement of the observable, the function collapses to just one 
of the base’s eigenstates. This can be described in the following rather simple formula:

ψ 〉 → φi〉

But which state will it collapse to? That is the issue with quantum mechanics being probabilistic. We 
can say that it will collapse to a particular eigenstate φk〉 with the Born probability (recall we discussed 
this earlier in this chapter) Pk = ck

2. The value ck is the probability amplitude for that specific eigen-
state. After the measurement, all the other possible eigenstates that are not k have collapsed to 0 (put a 
bit more mathematically, ci ≠ k = 0).

Measurement has been discussed as one type of interaction with the environment. One of the chal-
lenges for quantum computing is that this is not the only type of interaction. Particles interact with 
other particles. In fact, such things as cosmic rays can interact with quantum states of particles. This is 
one reason that decoherence is such a problem for quantum computing.

6.1.4  Schrödinger’s Equation
The Schrödinger equation is quite important in quantum physics. It describes the wave function of 
a quantum system. This equation was published by Erwin Schrödinger in 1926 and resulted in his 
earning the Nobel Prize in Physics in 1933. First, let us examine the equation itself and ensure you have 
a general grasp of it; then we can discuss more of its implications. There are various ways to present 
this equation; we will first examine the time-dependent version. You can see this in Equation 6.7.

i
t

t H t( ) ˆ ( ) ψ ψ∂
∂

=

EQUATION 6.7  Schrödinger Equation

Don’t let this overwhelm you. All of the symbols used have already been discussed, and I will discuss 
them again here to refresh your memory.

Given that we are discussing a time-dependent version of the Schrödinger equation, it should be clear 
to most readers that the t represents time. Remember that the ∂ symbol indicates a partial derivative. 
So, we can see in the denominator that there is a partial derivative with respect to time. The , you 
will recall from Chapter 3 and from earlier in this chapter, is the reduced Planck constant, which is the 
Planck constant h (6.626 × 10−34 j * s) / 2π. The ψ symbol we saw earlier in this chapter. You may also 
recall that the symbol Ĥ denotes the Hamiltonian operator, which is the total energy of the particles in 
a system.

Before we examine the implications of the Schrödinger equation, let us first examine another form of 
the equation. You can see this in Equation 6.8.
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EQUATION 6.8  Schrödinger (Another Form)

You already know that the ∂ symbol indicates a partial derivative. The 2 superposed above it means 
this is a second derivative (i.e., a derivative of a derivative). For those readers who don’t have a solid 
calculus background, or who don’t recall their calculus, a second derivative is actually common. A 
first derivative tells you the rate of change for some function. A second derivative tells you the rate 
of change for that rate of change that you found in the first derivative. Probably the most common 
example is acceleration. Speed is the change in position with respect to time. That is the first derivative. 
Acceleration is the change in speed, which is a second derivative. The ψ symbol denotes the wave 
function, which you should be getting quite familiar with by now. Another symbol you are familiar 
with is the h, for Planck’s constant. Note in this form of the Schrödinger equation that it is the Planck 
constant, not the reduced Planck constant. The E is the kinetic energy, and the V is the potential energy 
of the system. The X is the position.

Remember that in the subatomic world, we have the issue of wave-particle duality. The Schrödinger 
equation allows us to calculate how the wave function changes in time.

6.2  Quantum Decoherence
Quantum decoherence is a very important topic and is, in fact, critical for quantum computing. Deco-
herence is directly related to the previous section on wave functions. Recall that a wave function is a 
mathematical representation of the state of a quantum system. As long as there exists a definite phase 
relation between the states, that system is coherent. Also, recall that interactions with the environment 
cause a wave function to collapse. If one could absolutely isolate a quantum system so that it had no 
interaction at all with any environment, it would maintain coherence indefinitely. However, only by 
interacting with the environment can it be measured; thus, data can be extracted.

What does it mean to have a definite phase relation between states? First, we must examine the concept 
of phase space, which is a concept from dynamical system theory. It is a space in which all the possible 
states of the system are represented. Each state corresponds to a unique point in the phase space. Each 
parameter of the system represents a degree of freedom. In turn, each degree of freedom is represented 
as an axis of a multidimensional space. If you have a one-dimensional system, it is a phase line. Two-
dimensional systems are phase planes.

Two values, p and q, play an important role in phase space. In classical mechanics, the p is usually 
momentum and the q the position. Now, in quantum mechanics, this phase space is a Hilbert space. 
Thus, the p and q are Hermitian operators in that Hilbert space. While momentum and position are the 
most common observables, and are most often used to define phase space, there are other observables 
such as angular momentum and spin.
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To refresh your memory, a Hermitian operator is also called a self-adjoint operator. Remember, we are 
dealing with matrices/vectors, so the operators are themselves matrices. Most operators in quantum 
mechanics are Hermitian. Hermitian operators have some specific properties. They always have real 
eigenvalues, but the eigenvectors or eigenfunctions might include complex numbers. A Hermitian 
operator can be “flipped” to the other side if it appears in an inner product—something like what you 
see here:

〈  〉 = 〈  〉Af gf Ag

Hermitian operators’ eigenfunctions form a “complete set.” That term denotes that any function can be 
written as some linear combination of the eigenfunctions.

In general, if we are dealing with a non-relativistic model, the dimensionality of a system’s phase 
space is the number of degrees of freedom multiplied by the number of systems-free particles. Non-
relativistic spacetime is conceptually rather simple. Relativistic spacetime uses n dimensional space 
and m dimensional time. Non-relativistic spacetime fuses that into a single continuum. Put another 
way, it is simply ignoring the effects of relativity. At the subatomic level that is perfectly reasonable, as 
relativistic effects are essentially irrelevant.

So, when the system interacts with the environment, each environmental degree of freedom contributes 
another dimension to the phase space of the system. Eventually, the system becomes decoupled. There 
is actually a formula for this called the Wigner quasi-probability distribution. This is sometimes called 
the Wigner-Ville distribution or just the Wigner function. The details may be a bit more than are needed 
in this book; however, the general outline is certainly something we can explore. Eugene Wigner first 
introduced this formula in 1932 to examine quantum modifications to classical mechanics. The purpose 
was to link the wave function we have studied in Schrödinger’s equation to a probability distribution 
in phase space.

Equation 6.9 shows the Wigner distribution.

W x p x y x y e dyipy( , )
1

( ) ( )
def

* 2



∫π
ψ ψ= + −

−∞

∞

EQUATION 6.9  Wigner Distribution

By this point, you should not be daunted by complex-looking equations, and much of this equation 
use symbols you already know. But let us briefly examine them. Obviously, the W is the Wigner distri-
bution. X is usually position and p momentum, but they could be any pair (frequency and time of a 
signal, etc.). Of course, ψ is the wave function, and  is the reduced Planck constant. We discussed the 

∫ symbol earlier in the book; it denotes integration. For our purposes, you don’t have to have a detailed 
knowledge of the Wigner distribution, nor do you have to be able to “do the math.” Rather, you just 
need a general understanding of what is happening.

In classical mechanics, a harmonic oscillator’s motion could be completely described by a point in the 
phase space with the particle position x and momentum p. In quantum physics, this is not the case. 
Recall from Chapter 3 our discussion of Heisenberg’s uncertainty principle. You cannot know with 
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precision the position and momentum simultaneously, but by measuring x, p, or their linear combi-
nation on a set of identical quantum states, you can realize a probability density associated with these 
observables (x and p). The Wigner function accomplishes this goal. Our goal is to understand deco-
herence. The Wigner distribution shows the decoupling process because it shows the probability of 
various states.

6.3  Quantum Electrodynamics
Quantum electrodynamics (QED) is a topic that may be considered too advanced for an introductory 
book. The goal is simply for you to acquire a generalized understanding of the topic, and I believe that 
is an achievable goal. QED is the relativistic quantum field theory that applies to electrodynamics. It 
is the first theory wherein quantum mechanics and relativity are in full agreement. QED provides a 
mathematical description of phenomena that involve electrically charged particles.

Let us begin by defining the quantum field theory (QFT). QFT combines classical field theory, special 
relativity, and quantum mechanics. At this point, you should have a general working knowledge of 
quantum mechanics. Therefore, we will turn our attention to classical field theory and special rela-
tivity, providing a brief description of each.

Classical field theory describes how one or more fields interact with matter, via field equations. An easy-
to-understand example is with weather patterns. The wind velocity at a given time can be described by 
a vector. Each vector describes the direction and movement of the air at a particular point. The set of all 
such vectors in a particular area at a given point in time would be a vector field. Over time, we would 
expect these vectors to change. This is the essence of a classical field theory. Maxwell’s equations of 
electromagnetic fields were among the first rigorous field theories.

Special relativity is something you are likely familiar with. In case you need a bit of a refresher, it 
essentially gives us two concepts. The first is that the laws of physics are invariant; there are no privi-
leged reference points. Also, the speed of light in a vacuum is constant.

The development of quantum electrodynamics began with the study of the interaction between light 
and electrons. When this research began, the only field known was the electromagnetic field, so it was 
an obvious place to begin. The term quantum electrodynamics was posited by Paul Dirac in 1927 in his 
paper “The quantum theory of the emission and absorption of radiation.”

Classical electromagnetism would describe the force between two electrons as being an electric 
field produced by each electron’s position. The force itself can be calculated using Coulomb’s law. 
However, quantum field theory visualizes the force between electrons arising from the exchange of 
virtual photons.

Quantum electrodynamics is the fundamental theory that describes the interaction of light and matter. 
To be a bit more mathematically robust, the charged particles that provide the source for the electro-
magnetic fields are described by relativistic equations of motion (more specifically, the Klein-Gordon 
equation for integer spin and the Dirac equation for a spin). Let us briefly examine these equations. 
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Keep in mind that for the purposes of this book, you need not become an expert in these equations. You 
only need a general understanding of what they do.

Klein-Gordon is a relativistic wave equation that is actually related to the Schrödinger equation, so it 
will at least look a bit familiar to you. Equation 6.10 provides the equation.



1
2

2

2
2

2 2

2c t

m cψ − ψ ψ∂
∂

∇ + = 0.

EQUATION 6.10  Klein-Gordon Equation

Now, much of this you already know. Refreshing your memory a bit, ψ is the wave function,  is the 
reduced Planck constant, and m is mass. We have also discussed second derivatives and partial differ-
ential equations previously in this book. The c is the velocity of light in centimeters per second. I think 
you can already see some connection between this and Einstein’s famous E = mc2. I have yet to explain 
one other symbol, ∇. This one actually shows up frequently in quantum physics. This is the Laplace 
operator, sometimes called the Laplacian. It is sometimes denoted by ∇ ∇ and sometimes by ∇  2. The 
definition of the Laplacian might seem a bit confusing to you. It is a second-order differential operator 
defined as the divergence of the gradient. In this case, the term gradient is a vector calculus term. It 
refers to a scalar-valued function f of several variables that is the vector field. The Laplacian of that 
vector field at some point is the vector whose components are partial derivatives of the function f at 
point p.

Hopefully, this general explanation did not leave you totally confused. Recall from the introduction 
that you need not master all of the mathematics presented in this chapter. Just make sure you under-
stand the general idea. So what is that general idea? The Klein-Gordon equation is a relativistic wave 
function that describes the motion for the field, as it varies in time and space.

The Dirac equation for the spin is also a relativistic wave function. It describes particles such as elec-
trons and quarks. It should be noted that electrons and quarks are the particles that constitute ordinary 
matter and are known as fermions. We will have much more to say about quarks in the section on 
quantum chromodynamics. The spin number describes how many symmetrical facets a particle has in 
one full rotation. Thus, a spin of 1/2 means the particle has to be rotated twice (i.e., 720 degrees) before 
it has the same configuration as when it started. Protons, neutrons, electrons, neutrinos, and quarks all 
have a spin of 1/2, and that is enough for you to move forward with the rest of this book. However, for 
some readers, you not only want to see more of the math, but by this point in this text you have become 
accustomed to it. So, in the interest of not disappointing those readers, Equation 6.11 presents the 
Dirac equation as Paul Dirac originally proposed it.

∑β α ψ ψ
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
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

EQUATION 6.11  Dirac Equation
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Again, you see the now-familiar partial differential symbol, the reduced Planck constant, and the wave 
function—all of which should be quite familiar to you by now. You also see mc2, and I anticipate most 
readers realize this is mass and the velocity of light, just as it is in E = mc2. In this equation, the x and t 
are space and time coordinates, respectively. The p values that are being summed (p1, p2, and p3) 
are components of the momentum. The symbols α and β are 4 × 4 matrices. These are 4 × 4 matrices 
because they have four complex components (i.e. using complex numbers). Such objects are referred 
to in physics as a bispinor.

After our rather extensive excursions into the math of QED, let us complete this section with a return 
to the essential facts of QED. Electrodynamics, as the name suggests, is concerned with electricity. 
However, quantum electrodynamics provides a relativistic explanation of how light and matter interact. 
It is used to understand the interactions among electrically charged elementary particles, at a funda-
mental level. It is a very important part of quantum physics.

6.4  Quantum Chromodynamics
Strictly speaking, one could study quantum computing without much knowledge of quantum chromo-
dynamics (QCD). However, this underpins the very structure of matter; therefore, one should have a 
basic idea of the topic. QCD is the study of the strong interaction between quarks and gluons. Quarks 
are the particles that make up protons and neutrons (also called hadrons). At one time, it was believed 
that protons and neutrons were fundamental particles; however, it was discovered that they are in turn 
made up of quarks. The names for the quarks are frankly whimsical, and not too much attention should 
be paid to the meanings of the names. Quarks have properties such as electric charge, mass, spin, etc. 
Combining three quarks can product a proton or neutron. There are six types of quarks. The whimsical 
nature of nomenclature will become clear here. The types are referred to as “flavors,” and these flavors 
are up, down, strange, charm, bottom, and top. Figure 6.1 illustrates the families of quarks.

First Generation Second Generation Third Generation

Up Charm Top

u c

Down Strange Bottom

d s

t

b

FIGURE 6.1  Quarks

Evidence for the existence of quarks was first found in 1968 at the Stanford Linear Accelerator Center. 
Since that time, experiments have confirmed all six flavors of quarks. Therefore, these are not simply 
hypothetical constructs, but the actual building blocks of hadrons, and have been confirmed by multiple 
experiments over several decades. As one example, a proton is composed of two up quarks and one 
down quark. The gluons mediate the forces between the quarks, thus binding them together.
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The next somewhat whimsical nomenclature comes with the concept of color charge. This has no 
relation at all to the frequency of light generating visible colors. The term color, along with the specific 
labels of red, green, and blue, is being used to identify the charge of a quark. However, this term has 
had far-reaching impact. That is why the study of the interaction between quarks and gluons is referred 
to as chromodynamics.

There are two main properties in QCD. The first is color confinement. This is a result of the force 
between two color charges as they are separated. Separating the quarks in a hadron will require more 
energy the further you separate them. If you do indeed have enough energy to completely separate the 
quarks, they actually spontaneously produce a quark-antiquark pair, and the original hadron becomes 
two hadrons.

The second property is a bit more complex. It is called asymptotic freedom. In simple terms, it means 
that the strength of the interactions between quarks and gluons reduces as the distance decreases. 
That might seem a bit counterintuitive. And as I stated, it is complex. The discoverers of this aspect of 
QCD—David Gross, Frank Wilczek, and David Politzer—received the 2004 Nobel Prize in Physics 
for their work.

6.5  Feynman Diagram
For those readers who are a bit exhausted from all the mathematics presented in this chapter, there is 
help for you. Richard Feynman created the Feynman diagrams to provide a pictorial representation 
of the mathematical expressions used to describe the behavior of subatomic particles. This is a much 
easier way to at least capture the essence of what is occurring. Let us first look at the basic diagram 
symbols used and then see how they work together (see Table 6.1).

TABLE 6.1  Feynman Diagram Symbols

γ

Description Symbol

A fermion (i.e., electron, positron, quark, etc.) is drawn as a straight line  
with an arrow pointing to the direction of the spin.

f f

An antifermion is drawn as a straight line with an arrow pointing to the  
direction of the spin, with the primary difference being the line over the f.

f f 

A photon is drawn as a wavy line.

Therefore, if you wish to draw two electrons with opposite spin, colliding and producing a photon, you 
can use Feynman diagrams without any math, as demonstrated in Figure 6.2.
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γ

e ̄

e ̄
FIGURE 6.2  Feynman diagram of electrons colliding

This is just a very brief introduction to Feynman diagrams, but you will find these useful as you learn 
more about quantum interactions.
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6.6  Summary
This chapter explored many concepts. It is really an extension of Chapter 3 and the application of some 
of the elements of Chapter 1. This is likely to be one of the more difficult chapters for many readers, 
and it is strongly suggested that you read it more than once. While many topics were explored, some 
are absolutely critical for your understanding of quantum computing. The bra-ket notation is used 
throughout quantum computing, so ensure you are quite comfortable with it. Hamiltonians also play 
a prominent role in quantum computing. Quantum decoherence is actually a substantial impediment 
to the progress of quantum computing. To fully understand decoherence, you need to understand the 
wave function and associated equations. Quantum electrodynamics and quantum chromodynamics 
were presented to help round out your basic introduction to quantum theory. However, those two topics 
are a bit less critical for you to move forward with quantum computing.

Test Your Skills

REVIEW QUESTIONS

	 1.	 Why does the reduced Planck constant use 2 π?

	 a.	 2 π denotes the radius of the atom.

	 b.	 2 π is 360 degrees in radians.

	 c.	 2 π accounts for quantum fluctuations.

	 d.	 2 π is a derivative of Einstein’s universal constant.

	 2.	 In quantum mechanics, what does the Greek letter psi represent?

	 a.	 The Hamiltonian

	 b.	 The reduced Planck constant

	 c.	 The wave function

	 d.	 Superposition of states

	 3.	 What would be most helpful in determining the probability of finding a particle at a given 
point?

	 a.	 Born’s rule

	 b.	 Hamiltonian

	 c.	 Reduced Planck constant

	 d.	 Wave function

	 4.	 Which of the following is the most accurate description of the wave function collapse?

	 a.	 The various possible quantum states coalesce into a single quantum state.

	 b.	 The probabilities coalesce to a single actuality based on an observer.
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	 c.	 The bra-ket 〈φiφj 〉 forms an orthonormal eigenvector basis.

	 d.	 The superposition of possible eigenstates collapses to a single eigenstate based on 
interaction with the environment.

	 5.	 When using the Kronecker delta and inputting two eigenstates that are the same, what will be 
the output?

	 a.	 The sum of the eigenstates

	 b.	 1

	 c.	 The superposition of the eigenstates

	 d.	 0

	 6.	 Schrödinger’s equation is used to describe what?

	 a.	 Superposition of eigenstates

	 b.	 Eigenstates

	 c.	 The wave function

	 d.	 The Hamiltonian operator

	 7.	 What equation is most closely related to the decoupling that occurs during decoherence?

	 a.	 Hamiltonian

	 b.	 Schrödinger equation

	 c.	 Wigner function

	 d.	 Klein-Gordon

	 8.	 Which of the following is a wave function related to quantum electrodynamics that describes 
the motion for the field as it varies in time and space?

	 a.	 Hamiltonian

	 b.	 Schrödinger equation

	 c.	 Wigner function

	 d.	 Klein-Gordon

	 9.	 What is a bispinor?

	 a.	 A 4 × 4 matrix with complex components

	 b.	 Superposition of two eigenstates

	 c.	 The product of the Dirac equation

	 d.	 The product of the Wigner function
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of quantum physics

black body radiation, 62–63

nature of light, 61–62

photoelectric effect, 63–64

of rational numbers, 33

of zero, 33

Hoffstein, Jeffery, 249

homeomorphism, 187

homogenous histories, 145

homogenous lists, 82

Hopf, Heinz, 157

Hopf fibration, 157

Huygens, Christian, 61

hyperspheres, 157

I
idempotence, 257

identity elements, 8

identity matrices, 15–16

if statements, 295

imaginary numbers
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348 imaginary numbers

on Cartesian coordinate system, 39

defined, 6, 33–34

symbol of, 34

Imai, Hideki, 264

immutables, 294

“Incoherent and Coherent Eavesdropping 
in the 6-state protocol of Quantum 
Cryptography” (Bechmann-Pasquinnucc 
and Gisn), 151

independent event probability, 108

indicator function, 255

information source

defined, 112

Shannon’s source coding theorem, 113

information theory. See also probability

diversity metrics, 116–118

entropy, 113–116

defined, 114

diversity metrics, 116–118

formulas, 116

types of, 114–116

history of, 106

importance of, 106

noisy channel theorem, 113

quantum information theory, 118–119

Shannon’s source coding theorem, 113

terminology, 112

inheritance, 297

inhomogeneous histories, 145

injective, 158–159, 264

inner products, 52, 69, 125–126, 166–167

Instruction Set Architecture (ISA), 100

instructions (in computer architecture), 100

instructions (in QASM), 315–318

instructions per cycle, 102

int data type, 293

integers

as abelian group, 9

as cyclic group, 9

defined, 5–6

factoring, 213–216

greatest common denominator,  
92–93

as group, 8

as ring, 9

set of, 7

symbol of, 34

integration, 72–73

Internet Protocol Security  
(IPsec), 239

interpretations

Copenhagen, 144

decoherent histories, 145

many-worlds, 144–145

objective collapse theory, 145–146

purpose of, 143–144

summary of, 146

intersection of sets, 26, 110

An Introduction to the Analysis of 
Algorithms, Second Edition (Sedgewick), 88

inverse images, 285

Inverse Simpson index, 117

invertibility, 8

involutory matrices, 51

ions for physical qubits, 178–179

IPsec (Internet Protocol Security), 239

irrational numbers

defined, 6

history of, 33

symbol of, 34

irreducible polynomials, 263

ISA (Instruction Set Architecture), 100

Ising, Ernst, 164

Ising gates, 164–165

isogeny, 285

isometric, 285

isomorphisms, 246, 264

iterations, 294
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linked lists 349

J
j-invariant of elliptic curves, 285

joint entropy, 115

joint probability, 108

Josephson, Brian, 169

Josephson junctions, 169

joules, 64

K
Kane, Bruce, 179

kelvin scale, 185

kernels, 285

key exchange. See QKE (quantum key 
exchange)

Kirchoff, Gustav, 62

Klein-Gordon equation, 132

Kline, Morris, 4

Knill, Emanuel, 165–166

Koblitz, Neil, 220, 282

Kronecker, Leopold, 51

Kronecker delta, 51, 127

L
Lagrange, Joseph-Louis, 125

Lagrangian formulation, 125

Lamport, Leslie, 277–278

Lamport signature algorithm, 277–278

Landau, Edmund, 89

Laplacian, 132

lattice reduction algorithms, 256–258

lattice-based cryptography

algorithms

GGH, 252–253

history of, 249

lattice reduction, 256–258

NTRU, 249–252

Peikert’s Ring, 253–256

problems used in, 230, 245, 248–249

lattice-based mathematics

CVP (Closest Vector Problem), 245, 248–249

definition of lattices, 245–246

SIS (Short Integer Solution), 248

SVP (Shortest Vector Problem), 245, 248

vectors in, 245–247

lattices

cyclic, 20, 247

defined, 245–246

LDDP (limiting density of discrete points), 115

Lee, H.253

Leibniz, Gottfried, 81, 96

length

of complex numbers, 40–41

of vectors, 16, 19, 68

leptons, 180

LIFO (last in, first out), 85

light, nature of, 61–62

limiting density of discrete points (LDDP), 115

line coding, 95

linear algebra. See also matrices; sets;  
vectors

books on, 4

defined, 3–4

importance of, 2

in quantum mechanics, 73–74, 123

linear codes, 279

linear dependence, 25

linear equations, 3

linear functions. See linear transformations

linear independence, 25

linear mapping. See linear transformations

Linear Optical Quantum Computing (LOQC), 
176

linear polarization, 175–176

linear transformations, 16

linearly dependent vectors, 245

linearly independent vectors, 245

linked lists, 82–83, 86–87
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350 Liouville, Joseph

Liouville, Joseph, 56

lists, 81–83

double-linked lists, 87

linked lists, 86–87

queues, 83–84

stacks, 85–86

LLL (Lenstra-Lenstra-Lova’sz) lattice  
reduction algorithm, 256–258

logic gates. See also quantum logic gates

AND, 97

defined, 96, 166

electricity in, 99

history of, 97

NAND, 98–99

NOR, 99

OR, 97–98

reversible, 158–159

XOR, 98

logical qubits. See quantum logic gates

LOQC (Linear Optical Quantum Computing), 
176

Loss, Daniel, 177

Loss-DiVencenzo quantum computers, 177

lossless compression, 95

lossy compression, 95

M
Mach-Zehnder interferometer, 176

magnetic quantum number, 65

manifolds, 187

many-worlds interpretation, 144–145

“A Mathematical Theory of Communication” 
(Shannon), 106

The Mathematical Theory of Communication 
(Shannon and Weaver), 112

Mathematics for the Nonmathematician 
(Kline), 4

Mathieu, Emile, 178

Mathieu function, 178–179

matrices. See also vectors

addition, 11

cyclic lattices, 20

defined, 4, 10

determinant of, 17–19

eigenvalues, 20–23

Hadamard, 99–100, 159–160

identity, 15–16

involutory, 51

multiplication, 11–13, 74

notation, 10

Pauli matrices

in controlled gates, 164

properties of, 52–56

representation of, 48–52, 161–162

properties of, 14

quantum state representation, 2

submatrices, 14–15

transformations of vectors, 20–21

transposition, 13–14

types of, 11

unimodular, 20, 247

Matsumoto, Tsutomu, 264

Matsumoto-Imai algorithm, 264–266

McCabe, Thomas, 93–94

McEliece, Robert, 230, 279

McEliece cryptosystem, 230, 279–280

measurement

in BB84 protocol, 148–149

of particles, 127

of qubits, 157

symbol of, 168

measurement plane, 188

measurement problem, 146

merge sort, quick sort versus, 90

Merkle, Ralph, 230, 275

Merkle-Damgaard construction, 230,  
232–233, 275

mesons, 180

Z02_easttom_Index_p338-p366.indd   350 03/05/21   2:36 PM



351NTRU (N-th degree Truncated polynomial Ring Units)

Micius satellite, 189–190

microarchitecture, 101

Microsoft Quantum Development Kit,  
298–300

Microsoft.Quantum.Canon namespace, 301

Microsoft.Quantum.Convert namespace, 301

Microsoft.Quantum.Intrinsic namespace, 305

Microsoft.Quantum.Math namespace, 301

Microsoft.Quantum.Measurement 
namespace, 301

millennium prize problems, 93

Miller, Victor, 220, 282

min-entropy, 118

modern algebra, sets of numbers and, 6–8

Modern Physics, Second Edition (Harris), 64

modulus operations, 204–205

momentum, 64, 70, 73

Moody, Benjamin, 216

“MQ Challenge: Hardness Evaluation of 
Solving Multivariate Quadratic Problems” 
(IACR), 268

MQDSS (Multivariate Quadratic Digital 
Signature Scheme), 268–269

MQV, 219

multiplication

commutativity of, 74

of complex numbers, 35–36

identity element of, 8

of identity matrices, 15–16

of matrices, 11–13, 74

of vectors, 19–20, 23–25

multivariate cryptography, 230

algorithms

HFE (Hidden Field Equations), 266–268

Matsumoto-Imai algorithm, 264–266

MQDSS, 268–269

SFLASH, 269–270

summary of, 270

mathematics of, 262–264

multivariate polynomials, 263

Multivariate Quadratic Digital Signature 
Scheme (MQDSS), 268–269

mutual information, 115

N
Nakashima, Akira, 97

namespaces, 300–302

NAND logic gate, 98–99

natural numbers

defined, 5, 32–33

history of, 32–33

set of, 7

symbol of, 34

negative numbers, history of, 5–6, 33

NESSIE (New European Schemes for 
Signatures, Integrity and Encryption)  
project, 269

networking. See quantum networking

neutrons, 133

Newton, Isaac, 61, 96

Niederreiter, Harald, 280

Niederreiter cryptosystem, 280–281

NMRQC (nuclear magnetic resonance  
quantum computing), 179

no-cloning theorem, 119

noise

amplification, 185–186

filtering, 186

noisy channel theorem, 113

nonlocality, 139, 140

non-relativistic spacetime, 130

NOR logic gate, 99

norm of vectors, 16, 20, 69, 245, 248

normalizers, 165–166

no-teleportation theory, 118–119

NTRU (N-th degree Truncated polynomial 
Ring Units), 249–252

key generation process, 250–251
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352 NTRU (N-th degree Truncated polynomial Ring Units)

polynomial rings, 249–250

standards, 251–252

nuclear magnetic resonance quantum  
computing (NMRQC), 179

number systems

history of, 32–34

properties of, 5

symbols of, 34

numbers. See also complex numbers

algebraic, 56

sets of, 6–8

transcendental, 56–57

types of, 5–6, 32–34

vectors as, 23

O
objective collapse theory, 145–146

object-oriented programming, 297

objects, 297

observations, 127

OCSP (Online Certificate Status Checking 
Protocol), 237

Omega notation, 89

operations. See also names of specific  
operations (addition, subtraction, etc.)

in fields, 10

in groups, 8–9

on integer set, 7

on natural number set, 7

on real number set, 6–7

in rings, 9

on vectors, 24–25

optimization problems, 170

OR logic gate, 97–98

OR operation, 96

oracles, 199, 304

orbital quantum number, 65

orbitals. See atomic orbitals

order

in groups, 286

in sets, 27, 110

orthogonal vectors, 20, 247

orthonormal vectors, 20, 127, 154–155

Overhauser effect, 181

P
p orbitals, 66

P vs. NP problem, 93

Pan, Jian-Wei, 189

parallelogram law, 47

parameters, 295

partial derivatives, 124

particles. See also wave-particle duality; 
names of types of particles (protons,  
neutrons, etc.)

defined, 64

entanglement, 75–76, 138–143

Feynman diagrams, 134–135

light as, 61–62

measurement, 127

position versus momentum, 70

quasiparticles, 187

types of, 179–180

wavelengths of, 64

Patarin, Jacques, 266

Paul, Wolfgang, 178

Paul ion traps, 178–179

Pauli, Wolfgang, 50, 68

pauli data type, 293

Pauli equation, 50

Pauli exclusion principle, 68

Pauli gates, 161–162

Pauli groups, 165–166

Pauli matrices

in controlled gates, 164

properties of, 52–56

representation of, 48–52, 161–162

Peano, Giuseppe, 4
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programming languages 353

Peikert’s Ring, 253–256

period-finding function in Shor’s algorithm, 
206–209

phase shift gates, 161

phase space, 129–130

photoelectric effect, 63–64

photons

defined, 63

entanglement, 151

in Feynman diagrams, 134

measurement in BB84 protocol, 148–149

in noise filtering, 186

for physical qubits, 175–177

physical qubits, 174–182

Bose-Einstein condensate quantum computing, 
179–180

correlation with logical qubits, 175

electrons for, 177–178

GaAs quantum dots, 181

ions for, 178–179

NMRQC, 179

number needed, 181–182, 230–231

photons for, 175–177

summary of, 181

physics. See also quantum physics

black body radiation, 62–63

entropy in, 113

nature of light, 61–62

photoelectric effect, 63–64

Pipher, Jill, 249

pivot points in quick sorts, 90–91

PKCS (Public-Key Cryptography Standards), 
238

PKI (public key infrastructure), 237–238

PKIX (Public-Key Infrastructure X.509), 238

Planck, Max, 62–63, 64

Planck’s constant, 63, 64, 71, 124

Podolsky, Boris, 75, 139

points, distance between, 41–43

polar coordinates, 47–48

polarization of photons, 175–176

Politzer, David, 134

polymorphism, 297

polynomial rings, 249–250, 253–254, 276

polynomial time, 212–213

polynomials, 263, 276

pop (in stacks), 85

position, momentum versus, 70, 73

post-quantum cryptography. See quantum-
resistant cryptography

power sets, 27–28, 111

powers in cyclic groups, 9

PP (probabilistically polynomial) problems, 
201

primitive elements of groups, 9

primitive roots of unity, 254

principal quantum number, 65

printer buffers, 87

printer queues, 84

probabilistically polynomial (PP) problems, 201

probability

in atomic orbitals, 65–68

in Bell’s inequality, 142

defined, 107

determination versus, 65

Heisenberg uncertainty principle, 70–73

importance of, 106–107

in qubits, 155–157

rules of, 107–108

in wave function collapse, 128

programming languages

concepts in

comments, 302

control structures, 295–296

functions, 295

object-oriented programming, 297

statements, 293–294

variables, 292–293
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Q#

bit flipping, 310

data types, 293

Deutsch-Jozsa algorithm code, 308–310

Grover’s algorithm code, 304–307

program structure, 294–295

statement types, 294

with Visual Studio Code, 298–303

QASM (Quantum Assembly Language), 
314–315

commands, 319

Deutsch-Jozsa algorithm code, 326–327

error correction, 320–322

Grover’s algorithm code, 324–325

instructions, 315–318

project creation, 319–320

projection operators, 257

properties

of groups, 8

of matrices, 14

of number systems, 5

of Pauli matrices, 52–56

of sets, 28, 111–112

of vector spaces, 246

protons, 133

public key infrastructure (PKI), 237–238

Public-Key Cryptography Standards (PKCS), 
238

Public-Key Infrastructure X.509 (PKIX), 238

push (in stacks), 85

Pythagoras, 33

Q
Q# programming language

bit flipping, 310

data types, 293

Deutsch-Jozsa algorithm code, 308–310

Grover’s algorithm code, 304–307

program structure, 294–295

statement types, 294

with Visual Studio Code, 298–303

QASM (Quantum Assembly Language), 
314–315

commands, 319

Deutsch-Jozsa algorithm code, 326–327

error correction, 320–322

Grover’s algorithm code, 324–325

instructions, 315–318

project creation, 319–320

QCD (quantum chromodynamics), 133–134

QDK (Quantum Development Kit), 298–300

QED (quantum electrodynamics), 131–133

QFT (quantum field theory), 131

QFT (quantum Fourier transform), 160–161, 
207–208

QKE (quantum key exchange)

B92 protocol, 149

BB84 protocol, 146–149

E91 protocol, 151

implementations, 151

purpose of, 146

resources for information, 151

SARG04 protocol, 149–150

six-state protocol, 151

Tokyo QKD, 188

quanta, 62–63

quantum algorithms

Bernstein-Vazirani algorithm, 201–202

defined, 197

Deutsch-Jozsa algorithm, 199–200, 308, 326

Q# code for, 308–310

QASM code for, 326–327

Deutsch’s algorithm, 197–199

Grover’s algorithm, 209–210, 303–304,  
322–323

Q# code for, 304–307

QASM code for, 324–325

Shor’s algorithm, 203–209
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quantum hardware 355

example of, 205–206

modulus operations in, 204–205

quantum period-finding function in,  
206–209

Simon’s algorithm, 202–203

quantum annealing, 169–170

quantum architecture

D-Wave, 169–171

quantum annealing, 169–170

SQUIDs, 170–171

quantum circuits, 167–169

diagrams, 168–169

quantum gate notation, 167–168

reversible, 167

quantum logic gates

controlled, 163–164

Fredkin, 163

Gottesman-Knill theorem, 165–166

Hadamard, 159–161

Ising, 164–165

notation, 167–168

operation of, 166–167

Pauli, 161–162

phase shift, 161

reversible, 158–159

swap, 162–163

Toffoli, 163

qubits

defined, 154

mathematics of, 154–158

measurement, 157

probabilities, 155–157

qubit states, 154–155

Quantum Assembly Language (QASM), 
314–315

commands, 319

Deutsch-Jozsa algorithm code, 326–327

error correction, 320–322

Grover’s algorithm code, 324–325

instructions, 315–318

project creation, 319–320

quantum bits. See qubits

quantum chromodynamics (QCD), 133–134

quantum circuits, 167–169

diagrams, 168–169

quantum gate notation, 167–168

reversible, 167

quantum data plane, 187

Quantum Development Kit (QDK), 298–300

quantum dots, 177, 181

quantum electrodynamics (QED), 131–133

quantum error correction

decoherence and, 184

in QASM, 320–322

quantum field theory (QFT), 131

quantum Fourier transform (QFT), 160–161, 
207–208

quantum hardware

decoherence mitigation, 182–186

mechanics of decoherence, 182–184

noise amplification, 185–186

noise filtering, 186

supercooling, 185

quantum computer components, 187–188

quantum networking, 188–190

Beijing-Shanghai link, 189

distributed quantum computing, 190

Micius satellite, 189–190

Tokyo QKD, 188

qubits

Bose-Einstein condensate quantum  
computing, 179–180

correlation of physical and logical qubits, 
175

electrons for, 177–178

GaAs quantum dots, 181

ions for, 178–179

NMRQC, 179
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356 quantum hardware

number needed, 181–182, 230–231

photons for, 175–177

physical realization of, 174–182

summary of, 181

size of computers, 184

topological quantum computing, 186–187

quantum information theory, 118–119

entropy in, 119

qubits, 118–119

resources for information, 119

quantum key exchange (QKE)

B92 protocol, 149

BB84 protocol, 146–149

E91 protocol, 151

implementations, 151

purpose of, 146

resources for information, 151

SARG04 protocol, 149–150

six-state protocol, 151

Tokyo QKD, 188

quantum logic gates

controlled, 163–164

correlation of physical and logical qubits, 175

Fredkin, 163

Gottesman-Knill theorem, 165–166

Hadamard, 99–100, 159–161

Ising, 164–165

matrix representation, 2

notation, 167–168

operation of, 166–167

Pauli, 161–162

phase shift, 161

in QASM, 316

reversible, 158–159

swap, 162–163

Toffoli, 163

quantum mechanics. See quantum physics

quantum networking, 188–190

Beijing-Shanghai link, 189

distributed quantum computing, 190

Micius satellite, 189–190

Tokyo QKD, 188

quantum oracles, 304

quantum period-finding function in Shor’s 
algorithm, 206–209

quantum physics

atomic structure, 65–68

Bohr model, 65

orbitals, 65–68

Pauli exclusion principle, 68

books on, 64

bra-ket notation, 74, 123

decoherence, 129–131

entanglement, 75–76, 138–143

Feynman diagrams, 134–135

Fourier transforms, 71–73

Hamiltonian formulation, 124–125

Heisenberg uncertainty principle, 70–73

Hilbert spaces, 68–70

history of

black body radiation, 62–63

nature of light, 61–62

photoelectric effect, 63–64

interpretations

Copenhagen, 144

decoherent histories, 145

many-worlds, 144–145

objective collapse theory, 145–146

purpose of, 143–144

summary of, 146

QCD (quantum chromodynamics), 133–134

QED (quantum electrodynamics), 131–133

QKE (quantum key exchange)

B92 protocol, 149

BB84 protocol, 146–149

E91 protocol, 151

implementations, 151

purpose of, 146
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qubits 357

resources for information, 151

SARG04 protocol, 149–150

six-state protocol, 151

quantum states, 73–75

resources for information, 123

Schrödinger’s equation, 128–129

wave function collapse, 125–128

quantum states

coefficients of, 74

vector representation, 2, 46, 73–75, 123

quantum theory

defined, 122

QCD (quantum chromodynamics), 133–134

QED (quantum electrodynamics), 131–133

“The quantum theory of the emission and 
absorption of radiation” (Dirac), 131

quantum wells, 177

quantum wires, 177

quantum-resistant cryptography

code-based cryptography, 230, 279

McEliece cryptosystem, 279–280

Niederreiter cryptosystem, 280–281

hash-based algorithms, 230, 232–233

Lamport signature, 277–278

Merkle-Damgaard construction, 275

requirements for, 274–275

SWIFFT, 275–277

lattice-based cryptography

GGH, 252–253

history of, 249

lattice reduction algorithms, 256–258

NTRU, 249–252

Peikert’s Ring, 253–256

problems used in, 230, 245, 248–249

multivariate cryptography, 230

HFE (Hidden Field Equations), 266–268

mathematics of, 262–264

Matsumoto-Imai algorithm, 264–266

MQDSS, 268–269

SFLASH, 269–270

summary of algorithms, 270

standards, 229

super-singular elliptic curve cryptography, 230, 
281, 285–288

symmetric cryptography, 232

quantum-safe cryptography. See quantum-
resistant cryptography

“Quantum-Theoretical Re-interpretation 
of Kinematic and Mechanical Relations” 
(Heisenberg), 123

quarks, 133–134

quasiparticles, 187

qubit allocations, 294

qubit data type, 293

qubit states

BB84 protocol, 148–149

SARG04 protocol, 150

six-state protocol, 151

vector representation, 154–155

qubits

correlation of physical and logical  
qubits, 175

defined, 118–119, 154

flux, 169

logic gates. See quantum logic gates

mathematics of, 154–158

measurement, 157

probabilities, 155–157

qubit states, 154–155

no-cloning theorem, 119

no-teleportation theory, 118–119

physical realization of, 174–182

Bose-Einstein condensate quantum  
computing, 179–180

electrons for, 177–178

GaAs quantum dots, 181

ions for, 178–179

NMRQC, 179

number needed, 181–182, 230–231
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photons for, 175–177

summary of, 181

SQUIDs, 170–171

supercooling, 185

queues, 83–84

quick sort algorithm, 90–91

R
RA (registration authority), 238

radians, degree conversion, 48, 71

range data type, 293

rational numbers

defined, 6

as field, 10

history of, 33

symbol of, 34

real numbers

on Cartesian coordinate system, 38

defined, 6, 33–34

in Euclidean space, 69

set of, 6–7

symbol of, 34

receivers, 112

recursive algorithms, 90, 197

reduced Planck constant, 71

registration authority (RA), 238

relativistic spacetime, 130

Re’nyi entropy, 117–118

repeat statements, 294

result data type, 293

return statements, 294

reversible logic gates, 158–159

reversible quantum circuits, 167

revoking digital certificates, 237

Rijindael algorithm, 232

Ring Learning With Errors (RLWE), 253–254

rings

defined, 9, 249, 276

polynomial, 249–250, 253–254, 276

RISC (reduced instruction set) processors, 
100

Rivest, Ron, 213

RLWE (Ring Learning With Errors), 253–254

roots of unity, 160, 208, 254

Rosen, Nathan, 75, 139

row matrices, 11

row vectors, 10

RSA, 213–216

examples of, 215

factoring keys, 216

key generation process, 213–214

quantum computing impact on, 231

qubits needed to crack, 181–182, 230–231

Rydberg, Johannes, 177

Rydberg formula, 177–178

Rydberg states, 177

S
s orbitals, 65–66

sampling problems, 170

SARG04 protocol, 149–150

scalar products. See inner products

scalar values, 17

scalars

defined, 11

eigenvalues, 20–23

matrix multiplication by, 11

vector multiplication by, 23–25

in vector space, 16

scaling vectors, 23–25

Schechter, L. M.253

Schlafi, Ludwig, 69

Schrödinger, Erwin, 128, 143

Schrödinger’s cat, 144

Schrödinger’s equation, 128–129

second derivatives, 129

Secure Shell (SSH), 240

Secure Socket Layer (SSL), 234–236
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Sedgewick, Robert, 88

self-adjoint operators, 126, 129–130, 156

set theory, 25–28, 108–112

sets

defined, 25, 108

lists as, 82

notation, 25–26, 109

order in, 27, 110

power sets, 27–28

properties of, 28, 111–112

relationships, 26–27, 109–110

subsets, 27, 110–111

sets of numbers, 6–8

fields, 10

groups

abelian, 9

cyclic, 9

properties of, 8

rings, 9

SFLASH, 269–270

Shamir, Adi, 213

Shannon, Claude, 106, 112, 116

Shannon diversity index, 116–117

Shannon entropy, 114

Shannon’s source coding theorem, 113

Shannon-Weaver index, 116–117

shells, 65

Shor, Peter, 88, 203, 216

Shor’s algorithm, 88, 203–209

Diffie-Hellman and, 217

example of, 205–206

modulus operations in, 204–205

quantum computing impact on, 231

quantum period-finding function in, 206–209

RSA and, 216

Shor’s error correction code, 175

Short Integer Solution (SIS), 248

Shortest Vector Problem (SVP), 230, 245, 248

SIDH (supersingular isogeny Diffie-Hellman), 
285–288

signal function, 255

Silverman, Joseph, 249

Simon’s algorithm, 202–203

Simpson index, 117

singlet state, 139

SIS (Short Integer Solution), 248

six-state protocol (SSP), 151

Sliding Windowed Infinite Fast Fourier 
Transform (SWIFFT), 275–277

sorting algorithms

bubble sort, 91–92

quick sort, 90–91

types of, 90

special relativity, 131

spin number, 132

square matrices

defined, 11

determinant of, 17

Hermitian, 49

unitary, 49

square roots

imaginary numbers and, 6, 33–34

of swap gates, 163

SQUIDs (superconducting qubits), 170–171

SSH (Secure Shell), 240

SSL (Secure Socket Layer), 234–236

SSP (six-state protocol), 151

stacks, 85–86

state space, 68

state vectors, 68

statements

defined, 293–294

in Q#294

Stewart, Balfour, 62

string data type, 293

subgroups, 245–246

Z02_easttom_Index_p338-p366.indd   359 03/05/21   2:36 PM



360 submatrices

submatrices, 14–15

subsets, 27, 110–111

subspaces, 25

subtraction of complex numbers, 35

superconducting qubits (SQUIDs), 170–171

supercooling, 185

super-singular elliptic curve cryptography, 
230, 281, 285–288

surjective, 158–159, 264, 285

SVP (Shortest Vector Problem), 230, 245, 248

swap gates, 162–163

SWIFFT (Sliding Windowed Infinite Fast 
Fourier Transform), 275–277

symbols

of measurement, 168

of number systems, 34

of Pauli matrices, 50–51

of quantum gates, 167–168

symmetric cryptography, 95

quantum computing impact on, 232

T
tail (in queues), 83

teleportation, 118–119

temperatures in quantum computing, 185

tensor products

in BB84 protocol, 147–148

defined, 20

in lattice-based mathematics, 247

Theory of Extension (Grassman), 4

Theta notation, 89

time-bin encoding, 176

TLS (Transport Layer Security), 234–236

Toffoli, Tommaso, 163

Toffoli gates, 163

Tokyo QKD, 188

topological quantum computing, 186–187

torsion subgroups, 286

transcendental numbers, 56–57

transformations of vectors, 20–21

transmitters, 112

transmons, 161

Transport Layer Security (TLS), 234–236

transposition

conjugate transpose, 49

of matrices, 13–14

transverse waves, 175–176

trapdoor functions, 263

tuple data type, 293

U
unbounded queues, 84

uncertainty

entropy as, 114

Heisenberg uncertainty principle, 70–73, 
130–131

unimodular matrices, 20, 247

union

in probability, 107

of sets, 26, 109

unit data type, 293

unit vectors, 16, 20, 68

unitary mapping, 166

unitary matrices

conjugate transpose and, 159

defined, 49

univariate polynomials, 263

universal gates, 99

using statements, 296

V
variable declaration statements, 294

variables, 292–293

vector spaces

defined, 16, 24–25

Hilbert spaces, 52, 68–70

in lattice-based mathematics, 246–247

Z02_easttom_Index_p338-p366.indd   360 03/05/21   2:36 PM



z-plane 361

linear dependence/independence, 25

properties of, 246

subspaces, 25

tensor products, 147–148

vectors

addition, 47

angle between, 19

basis, 25, 50, 154–155

complex number representation, 45–48

CVP (Closest Vector Problem), 230, 245, 
248–249

defined, 10, 19

dot product of, 19–20

eigenvectors, 20–23

in lattice-based mathematics, 245–247

length of, 16, 19, 68

as numbers, 23

orthogonal, 20

orthonormal, 20, 127, 154–155

polar coordinates, 47–48

quantum state representation, 2, 46, 73–75, 123

scalar multiplication of, 23–25

SVP (Shortest Vector Problem), 230, 245, 248

transformations of, 20–21

Visual Studio Code, 298–303

von Neuman entropy, 119

VPNs (virtual private networks), 239

W
Walsh-Hadamard transformation. See 

Hadamard transform (gate)

Washington, Lawrence, 220

wavelengths of particles, 64

wave-particle duality, 62, 63–64

waves

Dirac equation, 132–133

Fourier transforms, 71–73

Klein-Gordon equation, 132

light as, 61–62

quantum decoherence, 129–131

Schrödinger’s equation, 128–129

wave function, 182

wave function collapse, 125–128

Weaver, Warren, 112

Wessel, Caspar, 41

Wigner, Eugene, 130

Wigner distribution, 130–131, 183–184

Wilczek, Frank, 134

world lines, 187

X
X.509 digital certificates, 233–234

XOR logic gate, 98

XOR operation, 96–97

Y
Ylonen, Tatu, 240

Young, Thomas, 61

Z
zero, history of, 33

zero matrices, 11

Zollar, Peter, 179

z-plane, 41

Z02_easttom_Index_p338-p366.indd   361 03/05/21   2:36 PM


	Cover
	Half Title
	Title
	Copyright Page
	Credits
	Dedication
	Table of Contents
	Preface
	Part II: Basic Quantum Computing
	Chapter 6: Basic Quantum Theory
	6.1 Further with Quantum Mechanics
	6.1.1 Bra-Ket Notation
	6.1.2 Hamiltonian
	6.1.3 Wave Function Collapse
	6.1.4 Schrödinger’s Equation

	6.2 Quantum Decoherence
	6.3 Quantum Electrodynamics
	6.4 Quantum Chromodynamics
	6.5 Feynman Diagram
	6.6 Summary
	Test Your Skills


	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z




