
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780136789239
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780136789239
https://plusone.google.com/share?url=http://www.informit.com/title/9780136789239
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780136789239
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780136789239/Free-Sample-Chapter

Praise for this book

“Scrum is described as taking 10 minutes to learn and a lifetime to master. In this book,
Richard provides tips and tricks to mastering Scrum. He marries the practical with the
abstract, providing a foundation of learning that helps Developers deliver high-value
products and solve complex problems. If you are using Azure DevOps and want to get
better at doing it, then this is the book for you.”

—Dave West, Scrum.org Product Owner and CEO

“Like it or not, many teams need tooling to help them with their Scrum implemen-
tation. That’s where Richard comes in. His knowledge and passion shine through in
all that he touches—especially in this essential guide for how to use Azure DevOps
for Scrum Teams. If you know anything about Richard, and you are using Azure
DevOps with Scrum, then you’ll know this book is a must-read.”

—Daniel Vacanti, Co-founder, ActionableAgile

“In this book, Richard Hundhausen does a great job explaining and connecting the
domains of Professional Scrum with professional development using Microsoft Azure
DevOps. Richard introduces the history and current state in both domains and makes
the book even richer with personal tips and illustrations through case studies.”

—Gunther Verheyen, independent Scrum Caretaker,
Professional Scrum Trainer

“Scrum is a framework that is easy to understand but difficult to master. Richard
takes the difficult out of the equation for you. What sets him apart from all others is
his ability to help others not only understand Scrum, but become masters at it.”

—Chris Roan, Wells Fargo Agile Transformation Leader

“If you’re working on a Scrum team, do yourself a favor and read this book. In it,
Richard distills his many years of practical experience leading Scrum teams in order
to help you and your team accelerate your DevOps transformation. If you want to
deliver more customer value at higher velocity, there’s no better place to start.”

—Jeff Beehler, Senior Director, Product Operations, GitHub, Inc.

“During my time on the Azure DevOps team, I became aware of Richard’s passion for
Professional Scrum and his desire for us to build the tool in a way that Scrum Teams
would love it. The essence of DevOps is to get a right blend of processes, tools, and
people working seamlessly to deliver customer value. Combine that with Scrum and

Hundhausen_9780136789239.indb 1 13/01/21 2:57 PM

http://Scrum.org

you have a winner. Richard does a great job of taking the theory of Scrum and convert-
ing it into specific sets of actions that everyone in a team (Product Owners, Developers,
Testers, stakeholders, etc.) can follow. If you want to be an expert at Scrum while put-
ting it into day-to-day practice using Azure DevOps, this is the book for you!”

—Ravi Shanker, Principal Group Program Manager and
former Product Owner for Azure Test Plans

“Richard successfully weaves three important concepts: Azure Devops, Scrum,
and creating quality code. This book is a must-read for anyone interested in
end-to-end solutioning within the Microsoft development environment.”

 —Donis Marshall, Microsoft MVP, Professional Scrum
Developer, President of Innovation in Software

“Richard has been at the forefront of agile and Scrum since the beginning
and was the first ALM/DevOps MVP. The book shows his vast knowledge and
understanding of Professional Scrum and Azure DevOps. It’s a must-have for
teams to continue on their improvement journey.”

—Philip Japikse, CTO Pintas & Mullins, Microsoft MVP,
Professional Scrum Trainer

“Scrum is simple—or it seems that way until you actually try to implement it.
The great thing about Richard’s book is that it gives readers practical imple-
mentation advice to translate the simple words in the Scrum Guide into valu-
able actions by their teams.”

—Steve Porter, Scrum.org Professional Series Manager,
Professional Scrum Trainer

“Azure DevOps is a suite of tools and Scrum is a framework used to deliver a
product in an iterative and incremental way. Both have a lot in common but are
totally different beasts. Richard blends them together in a surprisingly delight-
ful and easy-to-digest way that clearly explains how and where to apply both
to help teams deliver better and more valuable software together.”

—Jesse Houwing, Lead Consultant at Xpirit, Professional Scrum
Trainer, Microsoft MVP

Hundhausen_9780136789239.indb 2 13/01/21 2:57 PM

http://Scrum.org

“If you are working with Azure DevOps, then this book should be required
reading for everyone who touches that system. With 80 percent of all develop-
ment teams using Scrum, this is the book to help you do Professional Scrum
within Azure DevOps and improve the likelihood of success of your team.”

—Martin Hinshelwod, naked Agility, Professional
Scrum Trainer, Azure DevOps MVP

“Scrum is simple to understand but extremely hard to implement well. In his
book Richard offers battle-hardened experience and practices with which mas-
tering Scrum becomes achievable using Azure DevOps.”

—Ognjen Bajic, Professional Scrum Trainer, Azure DevOps MVP

“Richard draws on his expertise as a Professional Scrum Trainer and DevOps
guru to write a fantastic book that describes the “why” and the “how” of doing
Scrum with Azure DevOps. Clear and well written, this should be on your book-
shelf if you are using Azure DevOps with Scrum.”

—Simon Reindl, Professional Scrum Trainer

“Just by following Richard’s actionable recommendations, even first-time users
will get a properly configured and productive implementation of Professional
Scrum with Azure DevOps. Experienced practitioners will be able to confront
their ways of work and experiences with real-world advice from the book.”

—Ana Roje Ivancic, Professional Scrum Trainer, Azure DevOps MVP

“I use Azure DevOps every day. I did not realize how much I had to learn until I
read Professional Scrum Development with Azure DevOps. It is filled with expert
guidance for maximizing value for your team!”

—Cory Isakson, Microsoft Senior Consultant

“If you have to read one book about Scrum, make it the one you are holding
right now. This book teaches you everything you need to know about Profes-
sional Scrum Development—clear and concise, without the fluff.”

—Martin Kulov, Microsoft DevOps MVP, Microsoft Regional Director

Hundhausen_9780136789239.indb 3 13/01/21 2:57 PM

This page intentionally left blank

Professional Scrum
Development with
Azure DevOps

Richard Hundhausen

Hundhausen_9780136789239.indb 5 13/01/21 2:57 PM

PROFESSIONAL SCRUM DEVELOPMENT WITH AZURE DEVOPS
Published with the authorization of Microsoft Corporation by:
Pearson Education, Inc.

Copyright © 2021 by Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms, and the appropriate contacts within
the Pearson Education Global Rights & Permissions Department, please visit
www.pearson.com/permissions. No patent liability is assumed with respect to
the use of the information contained herein. Although every precaution has
been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions. Nor is any liability assumed for dam-
ages resulting from the use of the information contained herein.

ISBN-13: 978-0-13-678923-9
ISBN-10: 0-13-678923-4

Library of Congress Control Number: 2021930493

ScoutAutomatedPrintCode

Trademarks

Microsoft and the trademarks listed at http://www.microsoft.com on the
“Trademarks” webpage are trademarks of the Microsoft group of companies.
“Planning Poker” in Chapter 5 is a registered trademark of Mountain Goat
Software, LLC. Figure 5-21 provided by SpecFlow (https://specflow.org) the
#1 BDD framework for AzureDevops. All other marks are property of their
respective owners.

Warning and disclaimer

Every effort has been made to make this book as complete and as accurate
as possible, but no warranty or fitness is implied. The information provided is
on an “as is” basis. The author, the publisher, and Microsoft Corporation shall
have neither liability nor responsibility to any person or entity with respect to
any loss or damages arising from the information contained in this book or
from the use of the programs accompanying it.

special sales

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearson.com.

crediTs

Editor-in-ChiEf

Brett Bartow

ExECutivE Editor

Loretta Yates

SponSoring Editor

Charvi Arora

dEvElopmEnt Editor

Songlin Qiu

managing Editor

Sandra Schroeder

SEnior projECt Editor

Tracey Croom

Copy Editor

Liz Welch

indExEr

Tim Wright

proofrEadEr

Donna Mulder

tEChniCal Editor

Donis Marshall

Editorial aSSiStant
Cindy Teeters

CovEr dESignEr

Twist Creative, Seattle

CompoSitor
codeMantra

A01_Hundhausen_FM_pi-p.indd 6 13/01/21 5:00 PM

http://www.pearson.com/permissions
http://www.microsoft.com
https://specflow.org
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

This book is dedicated to my Scrum Team:
Esmay, Isla, Berlin, Blaize, Sawyer, and Kristen.

—RichaRd hundhausen

Hundhausen_9780136789239.indb 7 13/01/21 2:57 PM

This page intentionally left blank

Contents at a Glance

Foreword xviii
Introduction xx

PART I SCRUMDAMENTALS

CHAPTER 1 Professional Scrum 3

CHAPTER 2 Azure DevOps 49

CHAPTER 3 Azure Boards 71

PART II PRACTICING PROFESSIONAL SCRUM

CHAPTER 4 The Pre-game 109

CHAPTER 5 The Product Backlog 139

CHAPTER 6 The Sprint 189

CHAPTER 7 Planning with Tests 233

CHAPTER 8 Effective Collaboration 261

PART III IMPROVING

CHAPTER 9 Improving Flow 295

CHAPTER 10 Continuous Improvement 321

CHAPTER 11 Scaled Professional Scrum 369

Index 389

Hundhausen_9780136789239.indb 9 13/01/21 2:57 PM

This page intentionally left blank

Contents

Foreword . xviii

Introduction . xx

PART I SCRUMDAMENTALS

Chapter 1 Professional Scrum 3
The Scrum Guide . 4

The Pillars of Scrum . 5

Scrum in Action . 5

Scrum Roles . 8

Scrum Events . 16

Scrum Artifacts . 30

Definition of Done . 40

The Scrum Values . 42

Professional Scrum . 44

The Professional Scrum Developer . 44

Chapter Retrospective . 46

Chapter 2 Azure DevOps 49
A Brief History . 49

Delivering Continuous Value . 51

Azure DevOps Services . 54

Azure Boards . 56

Azure Repos . 57

Azure Pipelines . 58

Azure Test Plans . 59

Azure Artifacts . 60

Azure DevOps Server . 61

Migrating to Azure DevOps Services . 62

 xi

Hundhausen_9780136789239.indb 11 13/01/21 2:57 PM

xii Contents

Visual Studio .63

Visual Studio Subscriptions .65

Azure DevOps Access Levels .66

Stakeholder Access .67

GitHub and the Future .67

Chapter Retrospective .68

Chapter 3 Azure Boards 71
Choosing a Process . 71

Work Item Types .72

The Scrum Process .75

Scrum Work Item Types .75

Scrum Work Item Queries .94

Scrum Guide Drift .97

Process Customization .99

Professional Scrum Process .100

Other Customizations .103

Chapter Retrospective .104

PART II PRACTICING PROFESSIONAL SCRUM

Chapter 4 The Pre-game 109
Setting Up the Development Environment . 110

Creating an Azure DevOps Organization .111

Providing Access to the Organization . 112

Other Organization Configurations . 114

Azure DevOps Marketplace Extensions . 115

Setting Up Product Development . 119

Creating a Project . 119

Adding Project Members . 123

Other Project Configurations . 128

Establishing Information Radiators . 130

Pre-game Checklist . 135

Chapter Retrospective . 137

Hundhausen_9780136789239.indb 12 13/01/21 2:57 PM

 Contents xiii

Chapter 5 The Product Backlog 139
Creating the Product Backlog . 139

Creating a Product Backlog in Azure Boards . 140

Adding Product Backlog Items . 143

Importing Product Backlog Items . 150

Removing a Product Backlog Item . 154

Effective Product Backlog Creation . 155

Reporting a Bug . 155

What Makes a Good Bug Report? . 157

Where Do Bugs Come From? . 159

In-Sprint vs. Out-of-Sprint Bugs . 160

Bug Reactivations . 163

Refining the Product Backlog . 164

Specifying Acceptance Criteria . 166

Sizing Product Backlog Items . 168

Splitting Product Backlog Items . 173

Definition of Ready . 174

Ordering the Product Backlog . 178

Planning a Release . 179

Story Mapping . 182

SpecMap . 183

Product Backlog Checklist . 185

Chapter Retrospective . 186

Chapter 6 The Sprint 189
Sprint Planning . 190

Sprinting in Azure Boards . 192

Creating the Sprint Backlog . 192

Creating the Forecast . 193

Capturing the Sprint Goal . 201

Creating the Plan . 203

Sprint Activities . 206

The Daily Scrum . 207

Decomposing Tasks . 209

Hundhausen_9780136789239.indb 13 13/01/21 2:57 PM

xiv Contents

The Taskboard . 211

Closing Out a Sprint .227

Sprint Planning Checklist .229

Chapter Retrospective .230

Chapter 7 Planning with Tests 233
Azure Test Plans .234

Organizing Tests .234

Test Cases .237

Inspecting Progress . 241

Acceptance Test-Driven Development .244

Test-Driven Development .246

Automated Acceptance Testing .247

Acceptance != Acceptance Testing .252

Reusing Tests .253

Regression Tests .254

Acceptance Testing Checklist .257

Chapter Retrospective .258

Chapter 8 Effective Collaboration 261
Individuals and Interactions .262

Collocate .263

Set Up a Team Room .266

Meet Effectively .267

Listen Actively .269

Collaborate Productively .270

Be T-shaped . 271

Achieve Continuous Feedback .272

Collaborative Development Practices . 274

Collective Code Ownership . 274

Commenting in Code .277

Associating Commits to Work Items .279

Hundhausen_9780136789239.indb 14 13/01/21 2:57 PM

 Contents xv

Pairing, Swarming, and Mobbing .280

Branching . 286

Chapter Retrospective .290

PART III IMPROVING

Chapter 9 Improving Flow 295
Visualizing Flow .296

The Kanban Board . 297

Managing Flow . 299

Limiting WIP . 301

Managing WIP . 302

Inspecting and Adapting Workflow .304

Flow Metrics .306

Calculating Flow Metrics .308

Flow-Based Scrum Events . 310

The Sprint .311

Flow-Based Sprint Planning .311

Flow-Based Daily Scrum . 314

Flow-Based Sprint Review . 317

Flow-Based Sprint Retrospective . 318

Chapter Retrospective . 319

Chapter 10 Continuous Improvement 321
Common Challenges . 322

Impediments . 322

Estimation. 323

Assessing Progress. 326

Renegotiating Scope. 331

Undone Work . 333

Spikes . 338

Fixed-Price Contracts and Scrum . 339

Hundhausen_9780136789239.indb 15 13/01/21 2:57 PM

xvi Contents

Common Dysfunctions .341

Not Getting Done . 342

Flaccid Scrum . 343

Not Inspecting, Not Adapting . 344

Developer Challenges. 346

Working with a Challenging Product Owner 349

Working with Challenging Stakeholders .353

Working with a Challenging Scrum Master .355

Changing Scrum . 358

Becoming a Professional Scrum Team. 360

Get a Coach .361

Build a Cross-Functional Team . 362

Achieve Self-Management . 363

Improve Transparency . 363

Professional Scrum Developer Training . 364

Assess Your Knowledge . 365

Become a High-Performance Scrum Team . 366

Chapter Retrospective .367

Chapter 11 Scaled Professional Scrum 369
The Nexus Framework .370

Nexus Process Flow . 371

Nexus Integration Team .372

Nexus Events .373

Nexus Artifacts .377

Integrated Increment .379

Nexus Support in Azure DevOps . 380

Configuring Additional Teams . 380

Managing the Product Backlog . 385

Chapter Retrospective . 386

Index 389

Hundhausen_9780136789239.indb 16 13/01/21 2:57 PM

 xvii

About the Author

RICHARD HUNDHAUSEN is the president of Accentient, a
company that helps software organizations and teams deliver

better products by understanding and leveraging Azure DevOps
and Scrum. He is a Professional Scrum Trainer and co-creator of
the Nexus Scaled Scrum framework.

As a software developer, consultant, and trainer with nearly
40 years of experience, he understands that software is built

and delivered by people and not by processes or tools. You can reach Richard at
richard@accentient.com.

Hundhausen_9780136789239.indb 17 13/01/21 2:57 PM

mailto:richard@accentient.com

xviii

Foreword

By 2001, the software industry was in trouble—more projects were failing than succeed-
ing. Customers began demanding contracts with penalties and sending work offshore.
Some software developers, though, had increasing success with a development process
known as “lightweight.” Almost uniformly, these processes were based on the well-known
iterative, incremental process.

In February 2001, these developers issued a manifesto—the Agile Manifesto. The Mani-
festo called for Agile software development based on four principle values and twelve
underlying principles. Two of the principles were 1) to satisfy customers through early and
continuous delivery of working software, and 2) to deliver working software frequently,
from a couple of weeks to a couple of months, with a preference for the shorter timescale.

By 2009, the Scrum Agile process was used predominantly. A simple framework, it pro-
vided an easily adopted iterative incremental framework for software development. It also
incorporated the Agile Manifesto’s values and principles. The two authors of Scrum, Jeff
Sutherland and myself, also were among the authors of the Agile Manifesto.

I had anticipated some of the difficulties organizations (and even teams) would face
when they adopted Scrum. However, I believed that developers would bloom in a Scrum
environment. Stifled and choked by waterfall, developers would stand tall, employing
development practices, collaboration, and tooling that nobody had time to use in water-
fall projects.

Much to my surprise, this was only true for perhaps 20 percent of all software developers.

In 2009, Martin Fowler characterized most Agile software development as “flaccid”:

There’s a mess I’ve heard about with quite a few projects recently.
It works out like this:

 ■ They want to use an Agile process, and pick Scrum.

 ■ They adopt the Scrum practices, and maybe even the principles.

 ■ After a while, progress is slow because the codebase is a mess.

What’s happened is that they haven’t paid enough attention to the
internal quality of their software. If you make that mistake you’ll soon
find your productivity dragged down because it’s much harder to add
new features than you’d like. You’ve taken on a crippling Technical Debt

Hundhausen_9780136789239.indb 18 13/01/21 2:57 PM

 Foreword xix

and your Scrum has gone weak at the knees. (And if you’ve been in a
real scrum, you'll know that's a Bad Thing.)” http://martinfowler.com/
bliki/FlaccidScrum.html

Martin’s description of flaccid Scrum resonated with our experience. Most developers
were skilled, but not adequately skilled in the three dimensions required to rapidly build
complete increments of usable functionality. These dimensions are:

 ■ People The ability to work in a small, cross-functional, self-managing team.

 ■ Practices The knowledge of and ability to apply modern engineering practices
that short cycle development mandates.

 ■ Tooling Tools that integrate and automate these practices so that successive
increments can be rapidly integrated without the drag of exponentially accruing
artifacts that must be handled manually.

We put our business on hold while we worked through 2009 to create what has
become known as the Professional Scrum Developer program. Offered in a three-day
format, we formulated a workshop. The input was developers whose knowledge and
capabilities produced flaccid increments. The output were teams of developers who had
developed solid increments of software called for by the Agile Manifesto and demanded
by the modern, competitive organization.

Richard has been there since the beginning. His book, Professional Scrum Development
with Azure DevOps, continues his participation in the movement started by us few in 2009.

When you read Richard’s book, you can learn the three dimensions needed for Agile
software development: people, practices, and tools. Just like in the course, Richard inter-
twines them into something you can absorb. If you are on a Scrum team, read Richard’s
book. List the called-for practices. Identify which practices pose challenges to your team.
Order them by their greatest impact. Then remediate them, one by one.

Many people spend money going to Agile conferences. Save the money and more by
buying this book, discussing it with others, and going to meetups and code camps—the
“un-conferences” for the serious.

Richard and I look forward to your increased skill. Our industry and our society need it.
Software is the last great scalable resource needed by our increasingly complex society.
The effective, productive teamwork of Agile teams is the basis of problem solving that our
society also needs.

Scrum on!

Ken Schwaber

Co-creator of Scrum

Hundhausen_9780136789239.indb 19 13/01/21 2:57 PM

http://martinfowler.com/bliki/FlaccidScrum.html
http://martinfowler.com/bliki/FlaccidScrum.html

xx

Introduction

Scrum is a framework for developing and sustaining complex products such as software.
Scrum is just a set of rules, as defined in the Scrum Guide (https://scrumguides.org), and
it describes the roles, events, and artifacts, as well as the rules that bind them together.
When used correctly, this framework enables a team to address complex problems while
productively and creatively delivering products of the highest possible value. Scrum is an
Agile method. In fact, it is the most popular Agile method in use today.

Scrum employs an iterative and incremental approach to optimizing predictability
and controlling risk. This is due to the empirical process control nature of Scrum. Through
proper use of inspection, adaptation, and transparency, a Scrum Team can try a new way
of doing something (an experiment) and gauge its usefulness after a short iteration. They
can then collectively decide to embrace, extend, or drop the practice. This includes the
tools a team uses and how they use them.

Combining Scrum with the tools found in Microsoft Azure DevOps is a powerful mar-
riage. It is the purpose of this book to establish a baseline understanding of Scrum and
how Scrum is supported in Azure DevOps. I will also illustrate which practices provide
more value when executed without the use of tools. In addition, I will point out the tools
that have been erroneously marketed as agile and contrast them with more preferred
practices.

In software development, anything and everything can change in a moment’s notice.
Healthy teams know this. They also know that continuously inspecting and adapting the
way things are done is a way of life. High-performance Scrum Teams take this a step fur-
ther. They know that within every impediment or dysfunction is an opportunity to learn
and improve. Reading this book is a great first step.

Hundhausen_9780136789239.indb 20 13/01/21 2:57 PM

https://scrumguides.org

 Introduction xxi

This book primarily focuses on using Scrum for software products, mostly because
that’s the target domain for Azure DevOps. Much of this book, however, is applicable
beyond software development and IT projects. Since Scrum is a lightweight framework
for developing adaptive solutions for all types of complex problems, the guidance in this
book can apply to developing any kind of product, such as a service, a physical product, or
something more abstract.

This Book Might Not Be for You If . . .

This book is intended for teams using Scrum and Azure DevOps together as they develop
complex products, such as software. It won’t provide as much value for non-Scrum teams
or Scrum teams developing products that are not complex. It won’t provide any value for
teams running formal waterfall or sequential software development projects, except to
hopefully change the minds of such proponents. Likewise, if a team is using Scrum but
not yet using Azure DevOps, the bulk of the book won’t be very interesting, except to
define and highlight Professional Scrum and point out what goodness those teams might
be missing out on. This is also the case for teams using older versions of Team Founda-
tion Server, which won’t contain the latest, high-value, team-based tools for planning and
managing work and enabling team collaboration.

If you are looking for “best practices,” then you have the wrong book and the wrong
author. I refuse to use that term because it implies a couple of wrong assumptions: (1) that
this practice truly is “best” for all teams working on all products in all organizations, and
(2) that a team can stop looking and experimenting once they’ve found that best practice.
I prefer the term “proven practice” instead. Regardless of what you or I call it, this book is
full of many practices for you and your team to consider on its improvement journey.

Organization of This Book

This book is divided into three sections, each of which focuses on a different aspect of
the marriage of Professional Scrum and Azure DevOps. Part I, “Scrumdamentals,” sets
a baseline understanding of the Scrum framework, Professional Scrum, Azure DevOps,
and specifically the Azure Boards service. Part II, “Practicing Professional Scrum,” consists
of several chapters detailing the practical application of how a Professional Scrum Team

Hundhausen_9780136789239.indb 21 13/01/21 2:57 PM

xxii Introduction

would use the relevant features of Azure DevOps to create and manage a Product Back-
log, plan a Sprint, create a Sprint Backlog, and effectively collaborate during the Sprint.
Part III, “Improving,” includes a chapter on defining and improving a Scrum Team’s flow,
identifying common challenges and dysfunctions in order to remove them, and using
techniques to continually improve your game of Scrum. There is also a chapter on how
to improve at scale by adopting Scaled Professional Scrum using the Nexus scaled Scrum
framework. By reading all sections sequentially, you will see how Azure DevOps and
Scrum can be used together in an effective way and how a Scrum Team can evolve into a
Professional Scrum Team and, further, into a high-performance Professional Scrum Team.

Throughout each chapter, I suggest and recommend many practices and patterns of
working. I use terms like Professional Scrum Team and high-performance Scrum Team
to differentiate from garden-variety Scrum Teams—those practicing mechanical Scrum
without attention to inspection, adaptation, and improving. At times you may dismiss
my guidance as “magical thinking” and assume that I don’t live in the real world. You may
think that the ideas I propose won’t work for your team, with your people, in your organi-
zation. Although it’s true that I don’t know the specifics of your organization, I’m confident
that improvement can be made regardless of the amount of friction you might face. I’ve
seen it and hundreds of my Professional Scrum Trainer colleagues have, too. Keep in mind
that my descriptions of these high-performance behaviors should be considered a vision
or “perfection goal” of what your team can achieve. It will be hard. It will take time. It will
take help. Ultimately it will be people like you who lead the improvement journey.

Finding Your Best Starting Point in This Book
The different sections of Professional Scrum Development with Azure DevOps cover a
range of topics. Depending on your needs and your existing understanding of Scrum,
Azure DevOps, and the related practices, you may wish to focus on specific areas of the
book. Use the following table to determine how best to proceed through the book.

If you are Follow these steps

New to Scrum or have never heard of it Read the Scrum Guide and then
read Chapter 1

New to Professional Scrum or have never heard of it Read Chapter 1

New to Azure DevOps or its suite of tools Read Chapter 2

New to the Azure Boards service or want to know how to create a
custom, Professional Scrum process

Read Chapter 3

Familiar with Scrum and Azure DevOps and only want to learn
how to set up Azure DevOps for a Scrum Team

Read Chapter 4

Hundhausen_9780136789239.indb 22 13/01/21 2:57 PM

 Introduction xxiii

If you are Follow these steps

Familiar with Scrum and Azure DevOps and only want to learn
how to plan a Sprint and create a Sprint Backlog

Read Chapter 6

New to the concept of acceptance test-driven development and
how to plan and track a Sprint using Azure Test Plans

Read Chapter 7

New to the concept of flow or how a Scrum Team can use the
Kanban board to visualize work and manage its flow

Read Chapter 9

Facing common Scrum challenges and are interested in
overcoming dysfunctional behavior

Read Chapter 10

Facing a scaling situation where several Scrum Teams are
collaborating to build a common product

Read Chapter 11

Conventions and Features in This Book

This book presents information using conventions designed to make the information
readable and easy to follow.

 ■ Screenshots from relevant Azure DevOps features are provided for your reference.

 ■ Boxed elements with labels such as “Note” or “Tip” provide additional information
and guidance related to the subject.

 ■ Some notes and tips are practical guidance provided by fellow Professional Scrum
Developers and Professional Scrum Trainers who have helped review this book.

In addition, I have included two additional boxed elements, one labeled “Smells” and
the other labeled “Fabrikam Fiber Case Study.”

Smell Throughout this book, I point out specific situations and traps that
a Scrum Team or its members should avoid. I refer to these as smells. These
smells typically—but not always—indicate an underlying dysfunction or other
unhealthy behavior. For teams new to Scrum, these smells may be hard to iden-
tify. Once they are brought to light, however, they should be mitigated and
used as learning opportunities. As a team improves, it should be able to rec-
ognize dysfunction on its own, as well as remove it. Professional Scrum Teams
have the ability to identify potential waste or dysfunction, evaluate the risks,
and even decide to opt in to specific behaviors, including those that may be a
smell to the uneducated.

Hundhausen_9780136789239.indb 23 13/01/21 2:57 PM

xxiv Introduction

System Requirements

Although this book does not contain any hands-on exercises, I encourage you to sign up
for Azure DevOps Services in order to experiment and learn as you read. It takes only a
few minutes to create an organization, and the first five users are free on the Basic Plan—
which is more than adequate for you and some colleagues to use all the features men-
tioned in this book. Azure DevOps Services is a cloud-based SaaS offering delivering new
features every three weeks, which means that the screenshots in this book may not match
what you see in your browser.

In addition, you may want to download Visual Studio Community Edition or Visual
Studio Code to explore how they connect to Azure DevOps and how they can be used for
collaboration using Azure Boards and Azure Repos. Both of these products are free.

Downloads: Code Samples

This book contains no code samples.

Acknowledgments

There are several people who helped me write this book. Thanks to: Loretta Yates for
giving me another opportunity to write for Microsoft Press; Charvi Arora, Tracey Croom,
Elizabeth Welch, Songlin Qiu, Vaishnavi Venkatesan and Donna Mulder for patiently
reviewing my content and helping me get the styles right; Donis Marshall for inspiring me
to write another book and giving me such direct (and valuable) feedback; Dan Hellem for

Fabrikam Fiber Case Study
As you flip through the pages, you will read about Fabrikam Fiber as our case study.
Fabrikam Fiber is a fictional broadband communications provider (think: Cox,
Sparklight, Charter/Spectrum, Comcast, etc.). Fabrikam Fiber is a large corporation
that provides services for multiple U.S. states. They also use an on-premises web
application for their customer service representatives to create and manage tickets
for customer support issues. The team has been using Scrum for some time and has
recently moved to Azure DevOps. My opinions on healthy and unhealthy behaviors
are made evident through the choices made by the Fabrikam Fiber Scrum Team.

Hundhausen_9780136789239.indb 24 13/01/21 2:57 PM

 Introduction xxv

answering scores of Azure Boards questions and reviewing chapters; Phil Japikse, Simon
Reindl, Brian Randell, Ognjen Bajić, Ana Roje Ivančić, Martin Kulov, Cory Isakson, David
Corbin, Charles Revell, Daniel Vacanti, and Christian Hassa for providing some great ideas
and helping me sharpen the message; and Ken Schwaber and Jeff Sutherland for updating
the Scrum Guide after I was almost done writing this book.

Errata, Updates, and Book Support

We’ve made every effort to ensure the accuracy of this book and its companion content.
You can access updates to this book—in the form of a list of submitted errata and their
related corrections—at:

MicrosoftPressStore.com/ProfScrumDevelopment/errata

If you discover an error that is not already listed, please submit it to us at the
same page.

For additional book support and information, please visit
www.MicrosoftPressStore.com/Support.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
http://support.microsoft.com.

Stay in Touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

Hundhausen_9780136789239.indb 25 13/01/21 2:57 PM

http://MicrosoftPressStore.com/ProfScrumDevelopment/errata
http://www.MicrosoftPressStore.com/Support
http://support.microsoft.com
http://twitter.com/MicrosoftPress

This page intentionally left blank

 71

C H A P T E R 3

Azure Boards

As I mentioned in the previous chapter, Azure Boards is the Azure DevOps service that helps teams
plan and track their work. It’s the service that provides the work items, backlogs, boards, queries,

and charts—all the building blocks that a team needs to visualize and manage their work.

The look and feel of Azure Boards is partially driven by the process that a team selects when they
create the project. This process defines the building blocks of the work item tracking system. It also
serves as the basis for any process model customization that a team might want to perform.

In this chapter I will dive into Azure Boards and discuss the various processes that can be selected,
focusing on the Scrum process. I will also show you how to create an inherited process to customize
Azure Boards’ behavior. In Part II of this book, “Practicing Professional Scrum,” I will delve even deeper
into how the backlogs and boards explicitly support Scrum.

Choosing a Process

Several processes are available out of the box. These system processes are designed to meet the needs
of most teams. Some of them are more formal, like the Capability Maturity Model Integration (CMMI)
process. Some of them are lightweight, like the Basic process. Some of them are intended to match the
Scrum Guide, like the Scrum process.

Here are the system processes available when creating a new project:

 ■ Agile For teams that use agile planning methods, use user stories, and track development and
test activities separately

 ■ Basic For teams that want the simplest model that uses issues, tasks, and epics to track work

 ■ CMMI For teams that follow more formal project methods that require a framework for
process improvement and an auditable record of decisions

 ■ Scrum For teams that practice Scrum and track Product Backlog items (PBIs) on the backlog
and boards

These system processes differ mainly in the work item types that they provide for planning and
tracking work. Basic is the most lightweight and closely matches GitHub’s work item types. Scrum is
the next most lightweight. The Agile process is a bit “heavier” but supports many agile method terms.
CMMI provides the most support for formal processes and change management.

Hundhausen_9780136789239.indb 71 13/01/21 2:57 PM

72 PART I Scrumdamentals

When creating a project, a process must be selected, as you can see in Figure 3-1. After creation, the
project will use the work item types, workflow states, and backlog configurations as defined by that
process.

FIGURE 3-1 Selecting a process when creating a new project.

Note A process is different than a process template. A process defines the building blocks of
the work item tracking system, supports the inheritance process model, and supports
customization through a rich UI. It’s available in Azure DevOps Services and Azure DevOps
Server, but not for legacy Team Foundation Server versions. A process template is the legacy
way of defining the building blocks of the work item tracking system. Process templates are
expressed in XML and support customization through the modification and importing of
XML definition files.

Work Item Types
Work items are the core elements of planning and tracking within Azure DevOps. They identify and
describe requirements, tasks, bugs, test cases, and other concepts. Work items track what a team and
team members have to do, as well as what they have done. Work items, and the metrics derived from
them, can be visible within various queries, charts, dashboards, and analytics.

Hundhausen_9780136789239.indb 72 13/01/21 2:57 PM

 CHAPTER 3 Azure Boards 73

You can use work items to track anything that your team needs to track. Each work item represents an
object stored in the work item data store. Each work item is based on a work item type and is assigned
an identifier that is unique within an organization (or project collection in Azure DevOps Server). The
work item types that are available to the project are based on the process used when the project was
created, as you can see in Table 3-1.

TABLE 3-1 Work item categories available across the different processes.

Scrum Agile CMMI Basic

Work Item Category

Requirement Product Backlog Item User Story Requirement Issue

Epic Epic Epic Epic Epic

Feature Feature Feature Feature -

Bug Bug Bug Bug Issue

Task Task Task Task Task

Test Case Test Case Test Case Test Case Test Case

Issue Impediment Issue Issue -

Change Request - - Change Request -

Review - - Review -

Risk - - Risk -

As you can see, the Agile process is very similar to the Scrum process. As far as work item types are
concerned, the only differences are the type names of the Requirement and Issue work item categories.
Agile refers to them as a User Story and Issue, respectively, whereas Scrum refers to them as a Product
Backlog Item and Impediment, respectively. Figure 3-2 shows an example of this.

Note Microsoft introduced work item categories in Team Foundation Server 2010.
Categories are essentially a meta-type and enable the various processes to have their own
names and behaviors of work item types, without breaking the functionality of Azure
Boards. Examples of work item categories that have different names include Requirement,
Bug, and Issue.

You can also see how heavy and formal the CMMI process is, with official Change Request, Review,
and Risk work item types, as well as the antiquated Requirement work item type. I’ve helped hundreds
of teams install, understand, and use Azure DevOps and Team Foundation Server and can count the
number of CMMI projects I’ve run into on one hand. Conversely, the Basic process has only a few work
item types—just barely sufficient to track work and also to more closely match how work is managed
on GitHub. It is also the default process, so there are many Basic process projects in existence, if only by
accident.

Hundhausen_9780136789239.indb 73 13/01/21 2:57 PM

74 PART I Scrumdamentals

FIGURE 3-2 Work item types available to a Scrum project.

Another distinguishing feature of the different processes is the workflow states for the requirement
category work item types. The workflow states define how a work item progresses upon its creation to
its closure. You can see this natural progression by process in Table 3-2. Each state belongs to a state
category (formerly known as a metastate). State categories enable the agile tools in Azure Boards to
operate in a standard way regardless of the project’s process.

TABLE 3-2 Requirement workflow states across the different processes.

Scrum Agile CMMI Basic

New

Approved

Committed

Done

Removed

New

Active

Resolved

Closed

Removed

Proposed

Active

Resolved

Closed

To Do

Doing

Done

Hidden Work Item Types
Team Foundation Server 2012 introduced the concept of a hidden work item type. Work item types that
are in this category are not able to be created from the standard user interfaces, such as the New Work
Item drop-down list in Azure Boards. The reasoning behind this is that there are specialized tools for
creating and managing these types of work items. Besides, creating these types of work items in an ad
hoc way outside the context of the tooling doesn’t make sense.

All processes, even the Basic one, support these hidden work item types:

 ■ Shared Parameter, Shared Steps, Test Plan and Test Suite Created and managed by the
tools in Azure Test Plans. I will take a closer look at all the testing work item types in Chapter 7,
“Planning with Tests.”

Hundhausen_9780136789239.indb 74 13/01/21 2:57 PM

 CHAPTER 3 Azure Boards 75

 ■ Feedback Request and Feedback Response Used to request and respond to stakeholder
feedback using the Test & Feedback extension.

 ■ Code Review Request and Code Review Response Used to exchange messages in legacy
Team Foundation Version Control (TFVC) code review in the My Work page in Visual Studio
Team Explorer. These code reviews are not to be confused with those related to Git pull
requests.

Microsoft knew that teams typically wouldn’t be creating these work item types outside the context
of their dedicated tools. They actually did us a favor by hiding them from the various UIs where we
create and manage work items. Referring back to Figure 3-2, notice that there weren’t any of these
hidden work item types listed.

The Scrum Process

Shortly after Microsoft released Team Foundation Server 2010, they made the Microsoft Visual Studio
Scrum version 1.0 process template available for download. This new template was designed from the
ground up to embrace the rules of Scrum as defined in the Scrum Guide. It was the result of collabora-
tion between Microsoft, Scrum.org, and the Professional Scrum community. Everyone knew that Scrum
had become the dominant agile framework in software development. Microsoft recognized this as
well. They also knew that teams using Team Foundation Server and Scrum together wanted a lighter-
weight experience, resulting in less friction. What resulted was a minimalistic process template that fol-
lowed the rules of Scrum. There were over 100,000 downloads of this new process template in the first
couple of years.

Over the years, through ongoing collaboration with the Professional Scrum community, Micro-
soft learned a thing or two about the Scrum process and the community using it. Primarily, they have
learned that teams liked it! These teams appreciate its simplicity and straightforward support of Scrum.
As you saw in Table 3-1, there are not a lot of extraneous work item types beyond what is needed to
plan and track a project using Scrum. In fact, it’s even more lightweight than the Agile process.

Many Scrum Teams evaluating Azure Boards currently use whiteboards and sticky notes to track
their work. Since you can’t get any lighter weight than that, any prospective software tool would need
to be as lightweight as possible. We kept this guiding principle in mind as we created the Scrum pro-
cess, and I still keep it in mind as I write this book.

Scrum Work Item Types
I want to spend some time talking specifically about the work item types in the Scrum process, and
how a Scrum Team should (and shouldn’t) use them. I will focus on just those items that directly relate
to planning and executing work. The work items related to Azure Test Plans (test plans, test suites, test
cases, etc.) will be covered in Chapter 7.

Hundhausen_9780136789239.indb 75 13/01/21 2:57 PM

http://Scrum.org

76 PART I Scrumdamentals

Product Backlog Item
In Scrum, the Product Backlog is an ordered (prioritized) list of the outstanding work necessary to real-
ize the vision of the product. This list can contain new things that don’t exist yet (features), as well as
broken things that need to be fixed (bugs). In Azure Boards, the Product Backlog Item (PBI) work item
type enables the Scrum Team to capture all of these various requirements with the least amount of
documentation as is necessary. In fact, only the title field is required.

Later, as more detail emerges, the PBI can be updated to include business value, acceptance criteria,
and an estimation of effort, as you can see in Figure 3-3.

FIGURE 3-3 Adding detail to a PBI work item.

As you create or edit PBI work items, consider the following Professional Scrum guidance while
entering data in the pertinent fields:

 ■ Title (Required) Enter a short description that succinctly identifies the PBI.

 ■ Assigned To Select the Product Owner or leave blank, but don’t assign to a Developer. This
will reinforce the fact that the whole team owns the work on the PBI.

 ■ Tags Optionally add tag(s) to help find, filter, and identify the PBI. For example, some Scrum
Teams opt not to use the Bug work item type in lieu of the PBI work item type and will simply
tag those PBIs with “Bug.”

 ■ State Select the appropriate state of the PBI. States are covered later in this section.

 ■ Area Select the best area path for the PBI. Areas must be set up ahead of time and can repre-
sent functional, logical, or physical areas or features of the product. If the PBI applies to all areas

Hundhausen_9780136789239.indb 76 13/01/21 2:57 PM

 CHAPTER 3 Azure Boards 77

your team covers or you aren’t sure of the specific area, then leave it set to its default value. For
Nexus implementations, each team within a project can have its own corresponding areas as
well as a default area. I will talk about Nexus in Chapter 11, “Scaled Professional Scrum.”

 ■ Iteration Select the Sprint in which the Developers forecast that they will develop the PBI. If
they have yet to forecast the PBI, then leave it set to the default (root) value.

 ■ Description Provide as much detail as necessary so that another team member or stake-
holder can understand the purpose of the PBI. The user story format (As a <type of user>, I
want <some goal>, so that <some reason>) works well here to ensure that the who, what, and
why are captured. You should avoid using this field as a repository for detailed requirements,
specifications, or designs.

 ■ Acceptance Criteria Describe the conditions that will be used to verify whether the team has
developed the PBI according to expectations. Acceptance criteria should be clear, concise, and
testable. You should avoid using this field as a repository for detailed requirements. Bulleted
items work well. Gherkin (given-when-then) expressions work even better.

 ■ Discussion Add or curate rich text comments relating to the PBI. You can mention someone,
a group, a work item, or a pull request as you add a comment. Professional Scrum Teams prefer
higher-fidelity, in-person communication instead.

 ■ Effort Enter a number that indicates a relative rating (size) of the amount of work that will be
required to develop the PBI. Larger numbers indicate more effort than smaller numbers. Fibo-
nacci numbers (story points) work well here. T-shirt sizes (S, M, L, XL) don’t, only because this is a
numeric field. Effort can be considered the (I)nvestment in Return on Investment (ROI).

 ■ Business Value Enter a number that indicates a fixed or relative value of delivering the PBI.
Larger numbers indicate more value than smaller numbers. Fibonacci numbers work well here.
Business Value can be considered the (R)eturn in ROI.

 ■ Links Add a link to one or more work items or resources (build artifacts, code branches, com-
mits, pull requests, tags, GitHub commits, GitHub issues, GitHub pull requests, test artifacts, wiki
pages, hyperlinks, documents, and version-controlled items). You can see an example of linking
a PBI to a wiki page in Figure 3-4. You should avoid explicitly linking PBIs to other PBIs, features,
or epics using the Links tab. Instead, use drag and drop to establish hierarchical relationships
within the backlogs. I will cover this in Chapter 5, “The Product Backlog.”

 ■ Attachments Attach one or more files that provide more details about the PBI. Some teams
like to attach notes, whiteboard photos, or even audio/video recordings of the Product Backlog
refinement sessions and Sprint Planning meetings.

 ■ History Every time a team member updates the work item, Azure Boards tracks the team
member who made the change and the fields that were changed. This tab displays a history of
all those changes. The contents are read-only.

Hundhausen_9780136789239.indb 77 13/01/21 2:57 PM

78 PART I Scrumdamentals

FIGURE 3-4 Adding a link to a wiki page.

While the PBI progresses on its journey to “ready” for Sprint Planning, the previous list of fields are
really the only ones that need to be considered and completed. For the other fields on the PBI work
item form, you should discuss as a team whether or not you should be using them because tracking
data in those fields is most likely waste. When the PBI is forecast to be developed, additional fields and
links will start to emerge, including links to task and test case work items, test results, commits, and
builds.

Smell It’s a smell when I see tasks created and associated with a PBI prior to Sprint Planning.
Perhaps the Scrum Team knows what the plan will be, but what if it changes? The creation
and management of those tasks will be wasted time and, what’s worse, stubborn Develop-
ers may want to stick to their archaic plan, even though conditions might have changed. To
avoid this pain and waste, don’t create tasks until Sprint Planning where those PBIs are fore-
cast or later in the Sprint.

A PBI work item can be in one of five states: New, Approved, Committed, Done, or Removed. The
typical workflow progression would be New ⇒ Approved ⇒ Committed ⇒ Done. When a PBI is
created, it is in the New state. When the Product Owner decides that the PBI is valid, its state should
change from New to Approved. When the Developers forecast to develop the PBI in the current Sprint,
its state should change to Committed. Finally, when the PBI is done, according to the Definition of
Done, the state should change to Done. The Removed state is used for situations where the Product
Owner determines that the PBI is invalid for whatever reason, such as it is already in the Product Back-
log, has already been developed, has gone stale, or is an utterly ridiculous idea. Deleting the work item
is another option for these situations.

Hundhausen_9780136789239.indb 78 13/01/21 2:57 PM

 CHAPTER 3 Azure Boards 79

Bug
A bug communicates that a problem or potential problem exists in the product. A bug can be found in
a product that has already been delivered to production, in a done Increment from a previous Sprint,
or in the Increment being developed in the current Sprint. A bug is not—repeat not—a failed test.
Failed tests simply indicate that the team is not yet done. This will be covered more in Chapter 7.

By defining and managing Bug work items, the Scrum Team can track these problems, as well as
prioritize and plan the efforts to fix them. A bug could be as small as a typo in a data entry form or as
large as a vulnerability that allows credit card data to be exposed. Figure 3-5 shows a Bug work item.

FIGURE 3-5 An example of a Bug work item.

Note In Scrum, a bug is just a type of Product Backlog Item, but Azure Boards defines a
separate work item type to track bugs. The reason behind this is that the Bug work item
type tracks additional, defect-specific information, such as severity, steps to reproduce, sys-
tem information, and build numbers. Otherwise, the Bug and PBI work item types are fairly
similar, with a few exceptions. Bug work items don’t have a Business Value field, but they do
have a Remaining Work field. The presence of the Remaining Work field allows the Bug work
item to act like a task and be managed alongside tasks on the Taskboard. By default, the
backlog includes both PBIs and bugs and the Taskboard—when used in accordance with my
guidance—contains only tasks.

When you create a Bug work item, you want to accurately report the problem in a way that helps
the reader understand its full impact. The steps to reproduce the bug should also be listed so that other

Hundhausen_9780136789239.indb 79 13/01/21 2:57 PM

80 PART I Scrumdamentals

Developers can reproduce the behavior. There may be additional analysis (triage) required to confirm
that it is an actual bug rather than a behavior that was by design. By defining and managing Bug work
items, your team can track defects in the product in order to estimate and prioritize their resolution. As
a general rule, bugs should be removed, not managed.

As you create or edit Bug work items, consider the following Professional Scrum guidance while
entering data into the pertinent fields:

 ■ Title (Required) Enter a short description that succinctly identifies the bug.

 ■ Assigned To Select the Product Owner or leave blank, but don’t assign to anyone else. This
will reinforce the fact that the whole team owns the work on the bug.

 ■ Tags Optionally add tag(s) to help find, filter, and identify the bug.

 ■ State Select the appropriate state of the bug. States are covered later in this section.

 ■ Area Select the best area path for the bug. Areas must be set up ahead of time and can rep-
resent functional, logical, or physical areas or features of the product. If the bug applies to all
areas your team covers or you aren’t sure of the specific area, then leave it set to its default
value. For Nexus implementations, each team within a project can have its own corresponding
areas as well as a default area.

 ■ Iteration Select the Sprint in which the Developers forecast that they will fix the bug. If they
have yet to forecast the bug, then leave it set to the default (root) value.

 ■ Repro Steps Provide as much detail as necessary so that another team member can reproduce the
bug and better understand the problem that must be fixed. If you use the Test & Feedback extension
to create a Bug work item, this information is provided automatically from your test session.

 ■ System Info Describe the environment in which the bug was found. If you use the Test &
Feedback extension to create the Bug work item, this information is provided automatically
from your test session.

 ■ Acceptance Criteria Describe the conditions that will be used to verify whether the team has
fixed the bug according to expectations. Acceptance criteria should be clear, concise, and test-
able. Consider using this field to document the expected results, as opposed to the actual results.

 ■ Discussion Add or curate rich text comments relating to the bug. You can mention someone,
a group, a work item, or a pull request as you add a comment. Professional Scrum Teams prefer
higher-fidelity, in-person communication instead.

 ■ Severity Since the Bug work item type doesn’t have a Business Value field, you will need to
instead select the value that indicates the impact that the bug has on the product or stakehold-
ers. The range is from 1 (critical) to 4 (low). Lower values indicate a higher severity. The default
severity is 3 (medium).

 ■ Effort Enter a number that indicates a relative rating (size) of the amount of work that will be
required to fix the bug. Larger numbers indicate more effort than smaller numbers. Fibonacci
numbers (story points) work well here. T-shirt sizes don’t, only because this is a numeric field.
Effort can be considered the (I)nvestment in ROI.

Hundhausen_9780136789239.indb 80 13/01/21 2:57 PM

 CHAPTER 3 Azure Boards 81

 ■ Found In Build Optionally select the build in which the defect was found.

 ■ Integrated In Build Optionally, select a build that incorporates the bug fix.

 ■ Links Add a link to one or more work items or resources (build artifacts, code branches, com-
mits, pull requests, tags, GitHub commits, GitHub issues, GitHub pull requests, test artifacts, wiki
pages, hyperlinks, documents, and version-controlled items). You can link the bug to a related
bug, to an article explaining the root cause, to the original PBI that failed, or even to a parent
PBI that serves to gather several bugs into one collective “fix” user story.

 ■ Attachments Attach one or more files that provide more details about the bug. Some teams
like to attach notes, whiteboard photos, or even audio/video recordings. This could also include
screenshots, action recordings, and video, which the Test & Feedback extension can provide
automatically.

 ■ History Every time a team member updates the work item, Azure Boards tracks the team
member who made the change and the fields that were changed. This tab displays a history of
all those changes. The contents are read-only.

Just like a PBI, a Bug work item progresses on its journey to “ready” for Sprint Planning, the previous
list of fields are really the only ones that need to be considered and completed. If there are other fields
on your Bug work item form, you should discuss as a team whether or not you should be using them
because tracking data in those fields is most likely waste. When the bug is forecasted to be fixed, addi-
tional fields and links will start to emerge, including links to task and test case work items, test results,
commits, and builds.

A Bug work item, like the PBI work item, can be in one of five states: New, Approved, Committed,
Done, or Removed. The typical workflow progression would be New ⇒ Approved ⇒ Committed ⇒

Done. When a bug is reported and determined to be genuine (that is, it’s not a feature, a duplicate, or
a training issue), a new Bug work item is created in the New state. When the Product Owner decides
that the bug is valid, its state should change from New to Approved. When the Developers forecast to
fix the bug in the current Sprint, its state should change to Committed. Finally, when the bug is done,
according to the Definition of Done, the state should change to Done. The Removed state is used for
situations where the Product Owner determines that the bug is invalid for whatever reason, such as it’s
already in the Product Backlog, it’s actually a feature, it’s a training issue, it’s not worth the effort, or it
has already been fixed. Deleting the work item is another option for these situations.

Fabrikam Fiber Case Study
Because the Bug work item type does not have a Business Value field and also contains
several extraneous fields, Paula has decided not to use that work item type. This is not to say
that the Product Backlog won’t contain bugs, but rather that the Scrum Team will use the PBI
work item type to track them. They will tag the PBIs accordingly, and put the repro steps and
system information into the Description field. By doing this, the Product Backlog will contain
only Product Backlog Item work items and each will have a Business Value and a Size field to
compute ROI.

Hundhausen_9780136789239.indb 81 13/01/21 2:57 PM

82 PART I Scrumdamentals

Epic
In Scrum, there is only one Product Backlog for a product and it contains only Product Backlog items.
Some PBIs are quite small, deliverable in a single Sprint or less. Other PBIs are larger and may take more
than one Sprint to complete. Huger PBIs may take many Sprints, even up to a year or more to complete.
In Scrum, regardless of size, each item is simply called a Product Backlog item.

Organizations and teams prefer to have more specific language. They also prefer to have separate
backlogs for these different-sized items, and that’s why Azure Boards provides hierarchical backlogs.
With hierarchical backlogs, an organization or team can start with “big picture” ideas called epics
and break them down into more releasable-sized items called features, and finally into smaller, more
executable-sized items.

An epic represents a business initiative to be accomplished, like these examples:

 ■ Increase customer engagement

 ■ Improve and simplify the user experience

 ■ Implement microservices architecture to improve agility

 ■ Integrate with SAP

 ■ Native iPhone app

Note Epics and features are managed on their own backlogs. In Azure Boards, each team
can determine the backlog levels that they want to use. For example, Scrum Teams may
want to focus only on their Product Backlog and the higher-level Features backlog. Leader-
ship may want to only see epics and maybe how they map to features. By default, the Epics
backlog is not visible in Azure Boards. A team administrator must enable it before you can
view and manage epics on that backlog, as you see in Figure 3-6.

FIGURE 3-6 Enabling the Epics backlog.

Hundhausen_9780136789239.indb 82 13/01/21 2:57 PM

 CHAPTER 3 Azure Boards 83

Epic work items are similar to PBI work items. As you create or edit Epic work items, consider the
following Professional Scrum guidance while entering data into the pertinent fields:

 ■ Title (Required) Enter a short description that succinctly identifies the epic.

 ■ Assigned To Select the Product Owner or leave blank. Alternatively, you can assign it to the
stakeholder advocating for the epic.

 ■ Tags Optionally add tag(s) to help find, filter, and identify the epic.

 ■ State Select the appropriate state of the epic. States are covered later in this section.

 ■ Area Select the best area path for the epic. Areas must be set up ahead of time and can
represent functional, logical, or physical areas or features of the product. If the area applies to
all areas your team covers or you aren’t sure of the specific area, then leave it set to its default
value. For Nexus implementations, each team within a project can have its own corresponding
areas as well as a default area.

 ■ Iteration Optional, but you can select the Sprint in which the Developers forecast that they
will either begin or complete the development of the epic. If they have yet to begin work, then
leave it set to the default (root) value.

 ■ Description Provide as much detail as necessary so that another team member or stake-
holder can understand the purpose and goal of the epic.

 ■ Acceptance Criteria Describe the conditions that will be used to verify whether the team has
developed the epic according to expectations.

 ■ Discussion Add or curate rich text comments relating to the epic. You can mention someone,
a group, a work item, or a pull request as you add a comment. Professional Scrum Teams prefer
higher-fidelity, in-person communication instead.

 ■ Start Date Optional, but you can set the date that work will commence on the epic. This could
be the start date of the Sprint when the first PBI related to the epic is forecast for development.
This field is key to using Delivery Plans.

 ■ Target Date Optional, but you can set the date that the epic should be implemented. This
field is key to using Delivery Plans.

 ■ Effort Enter a number that indicates a relative rating (size) of the amount of work that will be
required to develop the epic. Larger numbers indicate more effort than smaller numbers. Fibo-
nacci numbers (story points) work well here. T-shirt sizes don’t, only because this is a numeric
field. Effort can be considered the (I)nvestment in ROI.

 ■ Business Value Enter a number that indicates a fixed or relative value of delivering the epic.
Larger numbers indicate more value than smaller numbers. Fibonacci numbers work well here.
Business Value can be considered the (R)eturn in ROI.

Hundhausen_9780136789239.indb 83 13/01/21 2:57 PM

84 PART I Scrumdamentals

 ■ Links Add a link to one or more work items or resources (build artifacts, code branches, com-
mits, pull requests, tags, GitHub commits, GitHub issues, GitHub pull requests, test artifacts, wiki
pages, hyperlinks, documents, and version-controlled items). You should avoid explicitly linking
epics to other epics, features, or PBIs using the Links tab. Instead, use drag and drop to establish
hierarchical relationships on the backlog using the Mapping pane.

 ■ Attachments Attach one or more files that provide more details about the epic. Some teams
like to attach notes, whiteboard photos, or even audio/video recordings.

 ■ History Every time a team member updates the work item, Azure Boards tracks the team
member who made the change and the fields that were changed. This tab displays a history of
all those changes. The contents are read-only.

Epic work items can be in one of four states: New, In-Progress, Done, or Removed. The typical work-
flow progression would be New ⇒ In-Progress ⇒ Done. When an epic is created it is in the New state.
Once work begins, you should move it to the In Progress state, as I’m doing in Figure 3-7. Finally, when
the epic is finished, because the last related feature is complete, then the state should change to Done.
The Removed state is used for situations where the Product Owner determines that the epic is no lon-
ger needed, for whatever reason. Deleting the work item is another option in this situation.

FIGURE 3-7 Setting an epic to In Progress.

Refining an epic means to break it down, or decompose, into one or more features. Feature work
items are then created and linked back to the parent epic. This can be done manually by using the links
in the work item form; inline on the Epics backlog; or by using the Mapping feature, as I’m doing in
Figure 3-8. Refining is an ongoing process, with the features changing, merging, and splitting again as
the Scrum Team learns more about the domain, the product, and the stakeholders.

Hundhausen_9780136789239.indb 84 13/01/21 2:57 PM

 CHAPTER 3 Azure Boards 85

FIGURE 3-8 Mapping a Feature work item to its parent epic.

Feature
Whether or not you plan on using Epic work items, your team may still want to track features. Features
are typically what stakeholders request and also what they expect to be delivered. If a feature is larger
than can be delivered in a Sprint, then it must be broken down further—into other features or into
more executable-sized items that are tracked and managed at the backlog level. Most teams I work
with refer to these lowest, leaf-level items as user stories, or simply stories.

A feature typically represents a releasable component of software, like these examples:

 ■ View technician details on the dashboard

 ■ Ability to reassign tickets

 ■ Support text alerts

 ■ Find and filter tickets

Feature work items are similar to Epic work items, as you can see in Figure 3-9. As you create or edit
Feature work items, consider the following Professional Scrum guidance while entering data into the
pertinent fields:

 ■ Title (Required) Enter a short description that succinctly identifies the feature.

 ■ Assigned To Select the Product Owner or leave blank, but don’t assign to anyone else. This
will reinforce the fact that the whole team owns the work on the feature.

 ■ Tags Optionally add tag(s) to help find, filter, and identify the feature.

Hundhausen_9780136789239.indb 85 13/01/21 2:57 PM

86 PART I Scrumdamentals

 ■ State Select the appropriate state of the feature. States are covered later in this section.

 ■ Area Select the best area path for the feature. Areas must be set up ahead of time and can
represent functional, logical, or physical areas or features of the product. If the area applies to
all areas your team covers or you aren’t sure of the specific area, then leave it set to its default
value. For Nexus implementations, each team within a project can have its own corresponding
areas as well as a default area.

 ■ Iteration Optional, but you can select the Sprint in which the Developers forecast that it will
either begin or complete the development of the feature. If they have yet to begin work, then
leave it set to the default (root) value.

 ■ Description Provide as much detail as necessary so that another team member or
stakeholder can understand the purpose and goal of the feature.

 ■ Acceptance Criteria Describe the conditions that will be used to verify whether the team has
developed the feature according to expectations.

 ■ Discussion Add or curate rich text comments relating to the feature. You can mention some-
one, a group, a work item, or a pull request as you add a comment. Professional Scrum Teams
prefer higher-fidelity, in-person communication instead.

 ■ Start Date Optional, but you can set the date that work will commence on the feature. This
could be the start date of the Sprint when the first PBI related to the feature is forecasted for
development. If using epics, then the epic’s start date might coincide with the first related fea-
ture’s start date. This field is key to using Delivery Plans.

 ■ Target Date Optional, but you can set the date that the feature should be implemented. If
using epics, then the epic’s target date might coincide with the last related feature’s start date.
This field is key to using Delivery Plans.

 ■ Effort Enter a number that indicates a relative rating (size) of the amount of work that will
be required to develop the feature. Larger numbers indicate more effort than smaller num-
bers. Fibonacci numbers (story points) work well here. T-shirt sizes don’t, only because this is a
numeric field. Effort can be considered the (I)nvestment in ROI.

 ■ Business Value Enter a number that indicates a fixed or relative value of delivering the fea-
ture. Larger numbers indicate more value than smaller numbers. Fibonacci numbers work well
here. Business Value can be considered the (R)eturn in ROI.

 ■ Links Add a link to one or more work items or resources (build artifacts, code branches, com-
mits, pull requests, tags, GitHub commits, GitHub issues, GitHub pull requests, test artifacts, wiki
pages, hyperlinks, documents, and version-controlled items). You should avoid explicitly link-
ing features to other features, epics, or PBIs using the Links tab. Instead, use drag and drop to
establish hierarchical relationships on the backlog using the Mapping pane.

Hundhausen_9780136789239.indb 86 13/01/21 2:57 PM

 CHAPTER 3 Azure Boards 87

 ■ Attachments Attach one or more files that provide more details about the feature. Some
teams like to attach notes, whiteboard photos, or even audio/video recordings.

 ■ History Every time a team member updates the work item, Azure Boards tracks the team
member who made the change and the fields that were changed. This tab displays a history of
all those changes. The contents are read-only.

Feature work items can be in one of four states: New, In-Progress, Done, or Removed. The typical
workflow progression would be New ⇒ In-Progress ⇒ Done. When a feature is created it is in the
New state. Once work begins, you should move it to the In-Progress state. Finally, when the feature is
finished, because the last related PBI is complete, then the state should change to Done. The Removed
state is used for situations where the Product Owner determines that the feature is no longer needed,
for whatever reason. Deleting the work item is another option in this situation.

FIGURE 3-9 Creating a Feature work item (notice the related epic in the lower right).

Refining a feature means to break it down, or decompose, into one or more PBI work items. PBI work
items are then created and linked back to the parent feature. This can be done manually by using the
links in the work item form; inline on the Features backlog; or by using the Mapping feature, as I’m
doing in Figure 3-10. Refining is an ongoing process, with the PBIs changing, merging, and possibly
splitting again as the Scrum Team learns more about the domain, the product, and the stakeholders.

Hundhausen_9780136789239.indb 87 13/01/21 2:57 PM

88 PART I Scrumdamentals

FIGURE 3-10 Mapping a PBI work item to its parent Feature work item.

Tip Azure Boards provides a few ways of visualizing and filtering by parent work items in
the hierarchical backlogs. One option is to show parents in the backlog as nested read-only
rows in the backlog. This option also includes an unparented section for those work items
that don’t have parents. These extra rows, while informational, can make your backlog view
quite messy, especially if you have many parent rows. Another option is to select Column
Options and add a Parent column, which will simply show the parent work item’s title as a
virtual field, as you see in Figure 3-11.

FIGURE 3-11 Displaying the parent work item title in the backlog.

Hundhausen_9780136789239.indb 88 13/01/21 2:57 PM

 CHAPTER 3 Azure Boards 89

Task
A Task work item represents a piece of detailed work that Developers must accomplish when develop-
ing a PBI. All tasks form the Sprint plan for achieving the Sprint Goal. These tasks, along with their asso-
ciated PBIs, constitute the Sprint Backlog.

A task can be analysis, design, development, testing, documentation, deployment, or operations in
nature. For example, the team can identify and create Task work items that are development focused,
such as implementing an interface or creating a database table. They can also create testing-focused
tasks, such as creating a test plan and running tests. A deployment-focused task might be to provision
a set of virtual machines for hosting the deployed application. Figure 3-12 shows an example Task work
item.

FIGURE 3-12 Creating a Task work item.

As you create or edit Task work items, consider the following Professional Scrum guidance while
entering data in the pertinent fields:

 ■ Title (Required) Enter a short description that provides a concise overview of the task. The
title should be short but descriptive enough to allow the team to quickly understand what work
is to be performed. Some teams have adopted a simple verb-noun naming convention (e.g.,
Create tests, Write code, Deploy app, etc.).

 ■ Assigned To Select the team member who is responsible for ensuring that the task is com-
pleted. A task can be assigned to only one person at a time, so if two people pair up on a task,

Hundhausen_9780136789239.indb 89 13/01/21 2:57 PM

90 PART I Scrumdamentals

or the team mobs on a task, just pick one of them to be the owner. Leave it blank until someone
starts working on it.

 ■ Tags Optionally add tag(s) to help find and identify the task.

 ■ State Select the appropriate state of the task. States are covered later in this section.

 ■ Area (optional) Typically matches the associated PBI that you are working on. When tasks are
created from the Taskboard, the Area is automatically populated with the parent PBI’s area.

 ■ Iteration Select the Sprint in which your team will be working on the task. The Sprint should
be the same as the associated PBI. When tasks are created from the Taskboard, the Iteration is
automatically populated.

 ■ Description (optional) Provide as much detail as is necessary so that another team member
can understand the nature of work to be performed in the task. A meaningful title might be
sufficient. Some teams like to track task-level acceptance criteria for particularly complex tasks
in this field. Avoid using this field as a repository for detailed requirements, specifications, or
designs.

 ■ Discussion Add or curate rich text comments relating to the task. You can mention someone,
a group, a work item, or a pull request as you add a comment. Professional Scrum Teams prefer
higher-fidelity, in-person communication instead.

 ■ Remaining Work The estimated hours of work remaining to complete the task.

Tip Initially, during Sprint Planning, the Remaining Work value should be an estimated pro-
vided by the entire team. Later, after a team member begins working on the task, it should
be updated by that person, who has more up-to-date knowledge of the work. Ideally, tasks
should be 8 hours or less. If a task is going to take longer than 8 hours, it should be decom-
posed into smaller tasks, in order to reduce risk and enable more collaboration options.
Remaining work estimates should be updated daily.

 ■ Blocked (optional) Indicates whether the task is blocked from being accomplished. Blocked
work should be identified and mitigated immediately. Instead of using the Blocked field, some
teams have opted to use a “Blocked” tag.

 ■ Links Add a link to one or more work items or resources (build artifacts, code branches,
commits, pull requests, tags, GitHub commits, GitHub issues, GitHub pull requests, test arti-
facts, wiki pages, hyperlinks, documents, and version-controlled items). In general, you should
avoid manually linking tasks to other PBIs, preferring to use the Sprint Backlog or Taskboard
instead. Linking tasks to other tasks can help visualize dependencies, but it also has the smell of
a command-and-control work breakdown structure.

 ■ Attachments Attach one or more files that provide more details about the task. Some teams
like to attach notes, whiteboard photos, or even audio/video recordings.

Hundhausen_9780136789239.indb 90 13/01/21 2:57 PM

 CHAPTER 3 Azure Boards 91

 ■ History Every time a team member updates the work item, Azure Boards tracks the team
member who made the change and the fields that were changed. This tab displays a history of
all those changes. The contents are read-only.

As your team uses tasks to plan, visualize, and manage its Sprint work, the previous list contains the
only fields that you need to consider and complete. If there are other fields on your Task work item
form, such as Priority or Activity, you should discuss as a team whether or not you should be using
them because tracking data in those fields is most likely waste. That said, at the end of the day, how
the team works, which includes how they will use Azure Boards, is up to them—which is an example of
self-management.

Smell It’s a smell when I see that a team is using the Activity field on tasks. Professional
Scrum Teams know that everything they do is considered a development activity, so using
this field seems like waste. There is also a risk that Developers will become conditioned to
look for their favorite type of task. For example, someone with a background in testing may
only look for unassigned testing tasks, which is not necessarily what is best for the team’s
productivity, let alone achieving the Sprint Goal. An even greater fear is that others outside
the Scrum Team will begin using the activity type for resource planning or assignment of
work!

A Task work item can be in one of four states: To Do, In Progress, Done, or Removed. The typical
workflow progression would be To Do ⇒ In Progress ⇒ Done. When a task is created, it is in the To Do
state. When a team member begins working on a task, the state should be set to In Progress. When
the task is finished, the state should be set to Done. The Removed state is used for situations where the
Developers determine that the task is invalid for whatever reason, such as it doesn’t apply anymore or it
was a duplicate. Deleting the work item is another option for these situations.

Impediment
An Impediment work item is a report of any situation that blocks the team or a team member from
completing work efficiently. By defining and managing Impediment work items, a Scrum Team can
identify and track problems that are blocking it. More importantly, they’ll have a backlog from which to
work on improvements.

Impediments can be identified and, optionally recorded, at any time. They should be made trans-
parent at least once a day, perhaps during the Daily Scrum. Professional Scrum Teams, however, don’t
wait until the Daily Scrum to raise and/or fix impediments. If the impediment is something that can be
removed immediately, that’s what should be done. If not, then the impediment could be recorded as
an Impediment work item. The Scrum Team may also record impediments on a physical board or on a
wiki page. Regardless, it’s better to remove impediments than to track and manage them. The Scrum
Master is responsible for facilitating the resolution of impediments—that the team cannot resolve
themselves—as well as improving team productivity.

Hundhausen_9780136789239.indb 91 13/01/21 2:57 PM

92 PART I Scrumdamentals

Tip Having a transparent, prioritized backlog of impediments and improvement ideas at a
team’s fingertips can be very beneficial. If and when management comes offering to help,
an item can be pulled from the top and discussed. Even if the budget is tight and manage-
ment can’t afford new hardware, software, or services, you may still have impediments that
don’t require an expenditure. For example, management may not have any money for faster
laptops, but they could ask the Project Management Office (PMO) to ease off on the weekly
status report requirements.

Figure 3-13 shows you an example of an Impediment work item.

FIGURE 3-13 An example of an Impediment work item.

As you create or edit Impediment work items, consider the following Professional Scrum guidance
while entering data in the pertinent fields:

 ■ Title (Required) Enter a short description that accurately and succinctly describes the
impediment.

 ■ Assigned To Select the team member or stakeholder who will be responsible for resolving
the impediment. Don’t assume that the Scrum Master will always own/remove impediments.

 ■ Tags Optionally add tag(s) to help find and identify the impediment.

 ■ State Select the appropriate state of the impediment. States are covered later in this section.

 ■ Area (optional) Select the best area for the impediment. If the impediment applies to all areas
your team covers or you aren’t sure of the specific area, then leave it set to its default value.

Hundhausen_9780136789239.indb 92 13/01/21 2:57 PM

 CHAPTER 3 Azure Boards 93

 ■ Iteration (optional) Typically a team selects the Sprint in which the impediment occurred, but
Iteration could also represent the Sprint in which the impediment was removed. Leaving it set to
its default value is fine as well.

 ■ Description Provide as much detail as necessary so that another person can understand the
impediment and its impact.

 ■ Resolution Provide as much detail as necessary to describe how the impediment was
resolved. Over time, these resolutions could establish a “lessons learned” reference.

 ■ Discussion Add or curate rich text comments relating to the impediment. You can mention
someone, a group, a work item, or a pull request as you add a comment. Professional Scrum
Teams prefer higher-fidelity, in-person communication instead.

 ■ Priority Select the level of importance for the impediment on a scale of 1 (most important) to
4 (least important). The default value is 2.

 ■ Links Add a link to one or more work items or resources (build artifacts, code branches,
commits, pull requests, tags, GitHub commits, GitHub issues, GitHub pull requests, test artifacts,
wiki pages, hyperlinks, documents, and version-controlled items). For example, you may want
to link the impediment to one or more blocked tasks or PBIs or other impediments.

 ■ Attachments Attach one or more files that provide more details about the impediment.
Some teams like to attach notes, whiteboard photos, or even audio/video recordings.

 ■ History Every time a team member updates the work item, Azure Boards tracks the team
member who made the change and the fields that were changed. This tab displays a history of
all those changes. The contents are read-only.

Note Impediments may seem similar to tasks, and vice versa. To add further confusion,
impediments are referred to as issues in other processes, and issues in the Basic process
represent work to be done. To keep it straight in your head, consider this simple definition of
an impediment—which is anything that hinders or prevents you or your team from achiev-
ing the Sprint Goal. In other words, Impediment work items are used to track unplanned
situations that block work from getting done, whereas Task work items represent the plan
for developing the forecasted PBIs in the Sprint Backlog and achieving the Sprint Goal.

An Impediment work item can be either Open or Closed. When an impediment is created, it is in the
Open state. When the impediment is resolved/removed, the state should be set to Closed. Deleting the
impediment after it has been removed is another option.

Impediments can be configured to show on the Boards. You can also track and manage them using
a work item query. A team administrator could create a shared query looking for Work Item Type of
Impediment and State of Open sorted by Priority. This query could then be surfaced on a dashboard or
a wiki page, as I’ve done in Figure 3-14.

Hundhausen_9780136789239.indb 93 13/01/21 2:57 PM

94 PART I Scrumdamentals

FIGURE 3-14 Displaying open impediments on a wiki page.

Scrum Work Item Queries
Work item queries allow you to view, understand, and manage your workload. By running the appro-
priate query, you can return lists of work items showing you the PBIs, bugs, tasks, impediments, test
cases, and other work items that pertain to you or your team. You can filter and sort those items in
many ways. You can then decide on which of these work items to take action. Queries can also be used
to perform bulk work item updates. For example, the Product Owner can query those PBIs in a specific
area in order to make bulk changes to the Business Value field.

With queries, you can perform these functions:

 ■ Review work that’s planned, in progress, or recently done

 ■ Perform bulk updates, such as assigning new PBIs to the Product Owner

 ■ Create a chart to get a count of items or the sum of a field

 ■ Create a chart and add it to a dashboard

 ■ View a tree of parent-child-related work items

Note Queries can be executed from Microsoft Excel and other clients. When you have
many work items to add or modify, Excel can really save you time. Simply create a flat list
query of epics, features, PBIs, bugs, or tasks and open it in Excel. You must first install the
(free) Azure DevOps Office Integration plug-in, which supports Microsoft Excel 2010 or later
versions, including Microsoft Office Excel 365.

Hundhausen_9780136789239.indb 94 13/01/21 2:57 PM

 CHAPTER 3 Azure Boards 95

When saving a query, you can save it to My Queries or, if you have permissions, save it to Shared
Queries. As you might guess, only you can view and run queries saved under My Queries. Queries that
you and others save under Shared Queries can be viewed by everyone with access to the project. Que-
ries can be organized within folders and even marked as favorites.

Here are some queries that your Professional Scrum Team may want to create:

 ■ Open impediments The Scrum Team and especially the Scrum Master should be mindful of these.

 ■ PBIs assigned to someone other than the Product Owner In Scrum, the Product Owner,
not anyone else, “owns” the Product Backlog items. Empty assigned-to values are okay.

 ■ New or approved PBIs with tasks It is wasteful to create tasks ahead of Sprint Planning.

 ■ Approved PBIs without acceptance criteria How will the team members know what the
expectations are or when development is done?

 ■ New or approved PBIs with a root-level area Are these items really cross-cutting, or did
someone just forget to assign an area?

 ■ New or approved PBIs assigned to a Sprint Either someone entered the wrong iteration or
someone forgot to set the state.

 ■ Committed or done PBIs without a Sprint Either someone forgot to set the iteration or
someone goofed up the state.

 ■ PBIs without links to features Assuming you are using features, it may be useful to see the
unparented items.

 ■ Features without links to epics Assuming you are using epics and features, it may be useful
to see the unparented items.

 ■ Features without links to PBIs Assuming you are using features, it may be useful to see the
items without children.

 ■ Epics without links to features Assuming you are using epics and features, it may be useful
to see the items without children.

Here are some additional query ideas that pertain to the current Sprint:

 ■ Committed PBIs without tasks Perhaps the plan for delivering these items really is that
simple. It’s more likely that the team forgot to create a plan or a PBI was snuck into the Sprint
after Sprint Planning.

 ■ Committed PBIs with associated tasks from other Sprints These PBIs were either rolled
over from a previous Sprint with a part of the plan remaining in that Sprint, or there are some
serious problems with your iteration values or planning practices.

 ■ Committed or done PBIs with no business value How will the Product Owner explain the
investment in something with no value? More likely, someone forgot to enter the business value.

 ■ Committed or done PBIs with no effort Well, that was easy. Somebody probably forgot to
enter the effort.

Hundhausen_9780136789239.indb 95 13/01/21 2:57 PM

96 PART I Scrumdamentals

 ■ Committed or done PBIs without acceptance criteria How will the team members know
what the expectations are or when development is done?

 ■ To-do or in-progress tasks outside of current Sprint Looks like a previous Sprint plan was
not cleaned up correctly.

 ■ To-do tasks are assigned to a team member It’s better to leave to-do tasks unassigned so
that any team member with capacity can help out in order to increase the chances of meeting
the Sprint Goal.

 ■ To-do or in-progress tasks without remaining work Assuming your team has a working
agreement to estimate hours for tasks, this query can show those tasks that were overlooked.

 ■ To-do or in-progress tasks with remaining work > 8 Assuming your team has a working
agreement that no task should take longer than 8 hours, this query can show those tasks that
need to be decomposed.

 ■ Tasks not linked to a PBI Not all work in the Sprint Backlog needs to pertain to developing
the forecasted PBIs, but it can be a smell if there are “free-floating” tasks in there.

 ■ Tasks with activity set Assuming you follow my advice in this chapter and don’t see any
value in using this field, then it can be helpful to see which tasks may have this accidentally set.
You can then turn this into a learning opportunity.

 ■ Blocked tasks Whether the Scrum Team uses the Blocked field or sets a tag or both, it can be
useful to know which tasks are currently blocked.

 ■ In-progress tasks not assigned to a team member Who’s working on these tasks?

 ■ One team member has multiple in-progress tasks Don’t you know that multitasking is a
myth and attempting it will damage your brain? Perhaps one of the tasks is actually done or
blocked.

 ■ Team members without tasks With the exception of the Product Owner and Scrum Master
(unless they are also a Developer), everyone should be working out of the Sprint Backlog. Be
careful with this query—it could become a weapon in the wrong hands.

 ■ Done tasks have remaining work > 0 How can you be done with a task if there is still
remaining work? More than likely, this was just an oversight.

 ■ Done PBI has new or in-progress tasks How can you be done with a PBI if one or more
associated tasks are not done?

If the Scrum Team is using Azure Test Plans, there are a few more query ideas to consider, specifically
related to testing:

 ■ New or approved PBIs with test cases It is wasteful to create test cases ahead of Sprint
Planning.

 ■ Committed PBIs without test cases Perhaps you are proving acceptance in some other way,
such as exploratory testing.

Hundhausen_9780136789239.indb 96 13/01/21 2:57 PM

 CHAPTER 3 Azure Boards 97

 ■ No test plan for current Sprint Maybe this Sprint is exceptional and doesn’t require any
acceptance testing, or more likely, someone hasn’t created a test plan for it yet.

 ■ Test cases not linked to a PBI It’s a smell to see test cases in a test plan that are not explicitly
linked to one or more PBIs. Perhaps it is a cross-cutting acceptance test, but it could also be an
oversight.

Scrum Guide Drift
When the Scrum process (formerly known as the Visual Studio Scrum process template) was intro-
duced at Microsoft’s TechEd North America conference in New Orleans in 2010, it exactly matched
the Scrum Guide. Over the years, however, the two have drifted apart. The Scrum Guide evolved while
the Scrum process template did not. For example, in late 2014 Microsoft went crazy and added sup-
port for the Scaled Agile Framework (SAFe) to all of their process templates—even our beloved Scrum
one. Although this was good in that users now had additional hierarchy support in the backlog, it also
added extraneous fields.

Also, in 2014 the Scrum Guide was moved off Scrum.org and posted to the neutral ScrumGuides.org.
At the same time, all the major Scrum organizations in the world acknowledged this as the official defi-
nition of Scrum. Unfortunately, Microsoft didn’t get the memo. Sure, they still have a Scrum process,
but it no longer matched the Scrum Guide and it was no longer “barely sufficient.”

Note For more than a decade, survey after survey has demonstrated that agile is and
remains the most popular and successful way to develop software. Those same surveys also
show that Scrum is the most popular framework to become agile—always in the 80–90
percent range of agile organizations. With this in mind, Microsoft should make the Scrum
process the default process when creating a project. It used to be.

Over the years the Professional Scrum community has maintained in close relationship with Micro-
soft, and we’ve done what we could to keep the Scrum process from drifting too far from the Scrum
Guide. In this section, I will explore the current differences between the two.

Work Item Types
Azure DevOps offers more than a dozen work item types—most of which don’t particularly relate to
planning and managing work. Therefore, I will focus only on those work item types that I have previ-
ously listed in the Scrum process section.

 ■ Bug The Scrum Guide does not mention bugs at all. That’s because a bug is a type of PBI. The
confusing part is that the Scrum process also includes a PBI work item type. In my opinion, the
only reason the Bug work item type exists is so that tooling such as the Test & Feedback exten-
sion can create a specific work item with repro steps and system information—both of which
could be tracked in a PBI work item’s description field.

Hundhausen_9780136789239.indb 97 13/01/21 2:57 PM

http://offScrum.org
http://ScrumGuides.org

98 PART I Scrumdamentals

 ■ Epic and Feature Again, the Scrum Guide only mentions Product Backlog items. It doesn’t
mention epics and it doesn’t mention features. Microsoft did this back in 2014 to support SAFe.
Professional Scrum Teams using Azure Boards have since become comfortable with hierarchical
backlogs, even though they could have engineered these backlogs to use the existing PBI work
item type on all backlog levels.

Backlog Levels
As I have mentioned, Microsoft introduced hierarchical backlogs to support scaled agile practices. If
they had kept the PBI work item type at each backlog level, that would have kept in alignment with
Scrum. But since they didn’t, we now have epics, features, and PBI work item types, and the result is a
goofy mix of terminology.

If organizations and teams want to use the hierarchical backlogs, and most of the ones I consult
with do, then perhaps Microsoft could rename the lowest leaf-level “Backlog items” to something like
“Stories”—which is the most popular term I see used. In this way, it’s made clearer that the names of
the backlog levels are all not Scrum but more industry-standard names for types of PBIs. You and your
organization can refer to the items in this lowest level however you’d like.

PBI Work Item Fields
Over the years, Microsoft has added many fields to the “barely sufficient” PBI work item type. In this
section, I will take a look at those fields in the PBI work item type and give my Professional Scrum opin-
ions, including why the use of some may be considered waste.

 ■ Assigned To Sounds very command-and-control. The label and underlying field should be
changed to something that sounds more like a tool for self-managing teams, such as Owned
By. Also, Azure DevOps should let you tag which user in the project is the “Product Owner” and
make that the default value of this field.

 ■ Reason For the Scrum process, the reasons are all read-only and weak. This field should just
be removed or hidden from the form.

 ■ Iteration Should always default to the root level when adding a PBI. Rarely would a Scrum
Team add a PBI directly to an existing Sprint. Microsoft got carried away with the use of a team’s
default iteration in this regard.

 ■ Priority Product Owners don’t necessarily need a field for priority, as the position of the PBI
in the ordered Product Backlog suggests its “priority.” If a Product Owner wants to track an indi-
vidual PBI’s priority, it would be better to express business priority using the Business Value field
so that all PBIs can be compared relative to each other on a common field and using a common
scale like Fibonacci.

 ■ Effort Invokes thoughts of specifying hours and classic project management, instead of
something more abstract and better suited for complex work like Fibonacci numbers or story
points. Size would be a better label and underlying field name.

Hundhausen_9780136789239.indb 98 13/01/21 2:57 PM

 CHAPTER 3 Azure Boards 99

 ■ Value area Product Backlog items can have value for a number of reasons, well beyond the
two options in this drop-down. What’s more, teams may think that architecture work has value,
which is rarely the case. Architectural work is required to deliver the kind of value that a stake-
holder is looking for, but it’s rarely of direct value itself. It’s better to not use this field so that all
items can have a measure of value relative across the same stratification.

 ■ Business Value As a corollary to what I mentioned earlier, I think Value would be a much sim-
pler and better label and underlying field name.

PBI Work Item Workflow States
One of the most controversial updates to the 2011 Scrum Guide was the removal of the term “commit”
in favor of “forecast” in regard to the work selected for a Sprint. Prior to this change, practitioners used
to say that the Development Team commits to the Product Backlog Items that it will deliver by the end
of the Sprint. Scrum now calls that selection and practice a forecast—because it better reflects the real-
ity of doing complex work in a complex domain.

Well, as you can guess, Microsoft never updated the Scrum process. The Scrum community has
had to put up with the Committed workflow state, as you can see in Figure 3-15. I would welcome the
change to Forecasted, or even Planned.

FIGURE 3-15 The Committed workflow state, another example of misalignment with the Scrum Guide.

Another small nit I have with the workflow states is the state of Approved. It’s not bad, but Ready
would be preferred. Although “Ready” is not an official thing in Scrum, it is mentioned in older Scrum
Guides: “Product Backlog items that can be ‘Done’ by the Development Team within one Sprint are
deemed ‘Ready’ for selection in a Sprint Planning.”

Process Customization

As you’ve learned, each Azure DevOps project is based on a process that defines the building blocks
for tracking work. Of the out-of-the-box system processes, the Scrum process most closely matches the
Scrum Guide, but not entirely. There has been some drift over the past 10 years.

Hundhausen_9780136789239.indb 99 13/01/21 2:57 PM

100 PART I Scrumdamentals

Fortunately, you can customize the Scrum process to make it more closely match the Scrum Guide,
and even your own organization or team’s specific needs. Achieving this requires you to create an
inherited process first and then make customizations to that. Any changes you make to the inherited
process automatically appear in the projects that use that process. You cannot make changes to the
system processes.

You primarily customize a process by adding or modifying its work item types. This is done through
an administrative user interface in the web portal.

The general sequence for process customization looks like this:

 ■ Create an inherited process Select a system process (for example, Scrum) and create an
inherited process (such as Professional Scrum) based on it.

 ■ Customize the inherited process Add or modify work item types, work item fields, work
item workflow states, and work item form UIs. You can also update backlog behavior.

 ■ Apply inherited process to project(s) Create new projects using the inherited process or
change existing projects to use the new inherited process.

 ■ Refresh and verify Refresh the web portal and explore the changes to the work items and
backlogs.

Note This section covers the inheritance process model, which is available in Azure DevOps
Services and Azure DevOps Server. Legacy Team Foundation Server instances used an XML
process model, which provided support for customizing work tracking objects and agile
tools for a project. With this older model, you had to update the XML definitions of work
item types, process configuration, categories, and more. On-premises XML process configu-
ration is beyond the scope of this book.

Professional Scrum Process
If your organization or team cares about the Scrum Guide and wants to address the drift between it
and the system Scrum process, you should consider following the instructions in this section to create a
custom, inherited Professional Scrum process. Doing so is completely optional but may result in a bet-
ter experience for Scrum teams. It will also help organizations and teams that are just adopting Scrum
where precise language and terms are important for establishing a new mental model.

Process customization takes place at the organization level (or at the collection level for the on-
premises Azure DevOps Server). You can select any of the system processes and create an inherited
process, as I’ve done with the Scrum process in Figure 3-16.

Hundhausen_9780136789239.indb 100 13/01/21 2:57 PM

 CHAPTER 3 Azure Boards 101

FIGURE 3-16 Creating a Professional Scrum process from the Scrum system process.

After I create the inherited Professional Scrum process and set it to be the default process, I then
disable the Bug work item type. This allows the Scrum Team to use the PBI work item type for all work
in the Product Backlog. Teams can add a “Bug” tag to those PBIs if they wish.

Next, I update the Product Backlog Item work item type, making the following changes:

 ■ Hide the Priority and Value Type fields from the layout I would like to remove these fields
altogether, but that customization isn’t allowed in Azure Boards.

 ■ Change the Effort label to Size I could also create a new Size field behind the scenes, but I
will leave the Effort field in use.

 ■ Change the Business Value label to “Value” I could also create a new value field behind the
scenes, but I will leave the Business Value field in use.

 ■ Rename the Details group to “ROI” The only two fields in this group now are related to ROI.
It would be awesome to include a computed ROI field, but that functionality is not available
outside of using an extension.

Hundhausen_9780136789239.indb 101 13/01/21 2:57 PM

102 PART I Scrumdamentals

Next, I make changes to the workflow states by adding two new states: Ready (which maps to the
Proposed category) and Forecasted (which maps to the In Progress category). I keep the default colors
for these new states. Next, I hide the Approved and Committed states, replacing them with the Ready
and Forecasted states that I just created, as you can see in Figure 3-17.

FIGURE 3-17 Customizing PBI workflow states in the Professional Scrum process.

For organizations and teams that use the Epic and Feature work item types, you can make similar
customizations by hiding those extraneous fields that you don’t use (e.g., Priority, Time Criticality, Value
Area, and even Start Date and Target Date). You could also rename the labels and normalize the work-
flow states, as I did for the PBI work item type.

I also hide the Priority and Activity fields from the Task work item type. The last customization I do
is to rename the lowest leaf-level backlog from “Backlog items” to “Stories” (or whatever the organiza-
tion/team would like it to be called). Leaving it named Backlog items is confusing, because in actuality,
all backlog levels contain “backlog items.”

After these changes are made, I can start creating projects based on the Professional Scrum process.
If I have any existing projects, I can also change them to use the new Professional Scrum process, which
you can see in Figure 3-18. Later, if I make any changes to the Professional Scrum process, all projects
based on it will instantly reflect that change.

Hundhausen_9780136789239.indb 102 13/01/21 2:57 PM

 CHAPTER 3 Azure Boards 103

FIGURE 3-18 PBI work item form after applying the Professional Scrum process.

Other Customizations
Beyond matching the Scrum process to the Scrum Guide, organizations and teams may want to make
additional customizations to work items and backlogs. Here are some examples I’ve collected over the
years from various teams and other consultants:

 ■ Add a Team field to the PBI work item type to indicate which team owns it, rather than using the
Area field gimmick.

 ■ Add a Value Stream work item type and corresponding top-level backlog that sits above Epic.

 ■ Add a Planned Sprint field to the Impediment work item type for planning when the improve-
ment will be done. The system Iteration field can be used for the Sprint where the impediment
was discovered.

 ■ Add a new workflow state to the Impediment work item type to indicate which improvement(s)
are currently in-progress.

 ■ Add an Improvement work item type to plan and track any improvement experiments being
performed.

 ■ Add a Remaining Work field to the PBI work item type to store the rolled-up sum of any child
task Remaining Work values. External automation, such as an extension, would be required to
do the rolling up.

 ■ Add default user story description text (“As a <type of user>, I want <some goal> so that <some
reason>”) to the Description field of the PBI work item type.

Hundhausen_9780136789239.indb 103 13/01/21 2:57 PM

104 PART I Scrumdamentals

 ■ Add default text to the PBI work item type Acceptance Criteria fields to suggest a “given-when-
then” behavior-driven development (BDD) or “given-when-then-fail” format.

 ■ Add a Hypothesis work item type to support hypothesis-driven development.

Tip Use your Scrum or Professional Scrum process the way that it was designed for a few
Sprints before customizing anything. I’ve seen teams want to immediately make their new
project look and behave like their old project or culture. For example, if after reading this
book you decide to abandon your Agile process project, creating a new Professional Scrum
project, don’t immediately add the fields that used to be in your old project (for example,
the Original Estimate and Completed (hours) fields in the Task work item type—which we
removed from the Scrum process for a reason; tracking original estimates and actual hours
are generally considered waste). Just know what you are doing and why you are doing it
before making any “improvements” and weigh the benefits against potential waste and mis-
use. Don’t inadvertently change the rules of Scrum by customizing the tool!

Fabrikam Fiber Case Study
The Scrum Team has decided to follow the guidance in this section and create and use the
Professional Scrum process, inherited from the Scrum process. They will apply this new
process to their existing Fabrikam project. This will be the process that is referenced in the
coming chapters. For that reason, you may want to take a moment and create a Professional
Scrum process yourself so that you can better follow along.

Chapter Retrospective

Here are the key concepts I covered in this chapter:

 ■ Process When creating a project, you will need to select a process. Microsoft provides several
out-of-the-box processes, referred to as system processes.

 ■ Scrum process A Scrum-centric process created through a collaboration of Microsoft and the
Professional Scrum community.

 ■ Work item types Although there are more than a dozen Azure DevOps work item types,
including a number of hidden ones, the ones that apply to planning and managing work are
Product Backlog Item, Bug, Epic, Feature, Task, and Impediment. Task and Test Case work items
should be created and linked only during the Sprint in which you are working on their parent PBIs.

Hundhausen_9780136789239.indb 104 13/01/21 2:57 PM

 CHAPTER 3 Azure Boards 105

 ■ Queries There are a number of queries that a Scrum Team could create and share to track and
manage the work in the Scrum development effort.

 ■ Scrum Guide drift Over the years, the Scrum Guide has evolved while the Scrum process has
not. This issue can be overcome by creating and customizing an inherited process.

 ■ Inherited process A child of one of the system processes that can be customized in a struc-
tured way, inherited processes can be used to create new projects as well as applied to existing
projects. Future changes to the inherited process are instantly visible in all the projects that use
that process.

Hundhausen_9780136789239.indb 105 13/01/21 2:57 PM

Index

 389

Numerics
10x developers, 262

A
AAD (Azure Active Directory), 111
acceptance criteria, specifying, 166
acceptance tests, 233. See also ATDD (acceptance
test-driven development); software development

automated, 247–252
naming convention, 249

checklist, 257–258
and Definition of Done, 252–253
Fabrikan Fiber Case Study, 253
inspecting progress, 241–244
Test Case work items, 237

access levels, Azure DevOps, 66–67
ActionableAgile Analytics extension, 303, 310
active listening, 269
activities, 206–207

Developers, 9
execution, 109
pre-game, 109, 114–115

adaptation, 5
agile, 3, 4, 50, 52, 71, 73

estimation techniques, 169
Agile Manifesto, 262, 263, 369
ALM (application lifecycle management),
49–50, 263. See also Azure DevOps; DevOps

2010 version, 49
2012 version, 49–50
2015 version, 50

anchoring, 171
artifacts, 5, 30–31. See also Increments; Product
Backlog; Sprint Backlog

Increments, 39
Nexus framework, 377

Product Backlog, 31, 32–33, 34–35
developer interactions, 32
Fabrikan Fiber Case Study, 36
PBIs (Product Backlog Items), 31–32, 34
and Product Owner, 35
three C’s, 33

Sprint Backlog, 36, 38, 192
collaboration, 38
Definition of Done, 37
developer interactions, 36–37
Fabrikan Fiber Case Study, 38
Nexus framework, 377–378

assessing progress, 326
toward a Product Goal, 326–327
toward a Sprint Goal, 327–331

ATDD (acceptance test-driven development),
233–234, 244–245, 245–246. See also TDD
(test-driven development)

automated, 247–252
naming convention, 249

and BDD (behavior-driven development), 245
Fabrikan Fiber Case Study, 246

automated acceptance testing, 247–252
naming convention, 249

availability, 191
Azure DevOps, 5–6, 51, 52–53, 54, 55

access levels, 66–67
Fabrikan Fiber Case Study, 67

ActionableAgile Analytics extension, 303, 310
analytics widgets, 309

Burndown, 328
Burnup, 329

Azure Artifacts, 60–61
Azure Boards, 56, 71, 110, 139, 192

adding PBIs, 143, 144–146
Bug work items, 79–81
bulk-modifying work items, 153–154
burndown chart, 222–225
Capacity tool, 200–201

Hundhausen_9780136789239.indb 389 13/01/21 2:57 PM

390 Index

Azure DevOps

OData queries, 309–310
Open in Excel extension, 153
projects

adding members, 123–125
configurations, 128–130
creating, 119–121
determining number needed, 121–123
teams, 125–128
wikis, 133–134

providing access to your organization, 112–114
services, 54
software delivery, 53–54
SpecMap extension, 183–185
stakeholder access, 67
tracking ownership, 275–277
Visual Studio, 63, 64

Fabrikan Fiber Case Study, 64
subscriptions, 65

Azure DevOps Services, 112
project collection, 111

B
BDD (behavior-driven development), 245
billing

Azure DevOps, 113–114
multi-organization, 114

blocked tasks, 219–221, 315–316
branching, 289

and collaboration, 290
Fabrikan Fiber Case Study, 288
pull requests, 290
trunk-based software development, 287–288

Bug work item type, 79–80, 81, 97
Fabrikan Fiber Case Study, 81
fields, 80–81

bugs, 161, 177
reactivations, 163
reporting, 155–158

proven practices, 159
sources of, 159–160
in-Sprint vs. out-of-Sprint, 160–163
tracing, 160
triage, 156

bulk-modifying work items, 153–154
burndown charts, 31, 222–225

assessing progress toward a Sprint Goal, 327–331
business value, 165

categories, 73
choosing a process, 71–72
creating a Product Backlog, 140–142
creating the plan, 203–206
customizing the Taskboard, 221
Epic work items, 82–85
Feature work items, 85–88
forecasting PBIs, 193–195
Forecasting tool, 198–199
handling undone work, 336–338
hidden work item types, 74–75
Impediment work items, 91–94
importing PBIs, 150–151
ordering the Product Backlog, 178–179
PBI (Product Backlog Item) work item, 76–78
process customization, 99–100
removing PBIs from forecast, 194
Scrum process, 75
Task work items, 89–91
Taskboard, 207, 211–214, 215–216, 217–221
Velocity chart, 197–198
work item queries, 94–97
work items, 72–73, 97–98
workflow states, 74

Azure DevOps Server, 61, 62
migrating to Azure DevOps Services, 62–63

Azure DevOps Services, licenses, 66
Azure Pipelines, 58–59
Azure Repos, 57–58
Azure Test Plans, 59–60, 234

creating test cases, 238–240
deleting test artifacts, 241
inspecting progress, 241–244
organizing tests, 234–235

billing, 113–114
continuous delivery of value, 52–53
creating an organization, 111–112
and GitHub, 67–68
information radiators, 130

dashboards, 130–133
Summary page, 130

keyboard shortcuts, 142–143
licenses, 113
Marketplace extensions, 115–116

for Professional Scrum, 117–119
Nexus support

configuring additional teams, 380–382
configuring areas, 382–384
configuring iterations, 384–385

Hundhausen_9780136789239.indb 390 13/01/21 2:57 PM

 Index 391

estimating

handling impediments, 207–209
Nexus framework, 374–375
parking lot, 11, 24

dashboards, 130–133
Day, B., 217
decomposing tasks, 209–210
Definition of Done, 7, 37, 40–41, 134, 191, 195–196,
342–343

and acceptance tests, 252–253
Integrated Increments, 379–380
undone work, 41–42

definition of ready, 174–177
implementing, 175–177

Developers, 8–10, 18, 37, 262. See also software
development; Sprint Planning

10x, 262
activities, 9
bug tracing, 160
challenges, 346–348
code reviews, 284–285
creating the plan, 203–206
Daily Scrum, 23–24
Fabrikan Fiber Case Study, 10
feedback, 273
git stash command, 283–284
handling interruptions, 283
interaction with Sprint Backlog, 36–37
interactions with Product Owner, 11–12
interactions with stakeholders, 15
measuring performance, 349
pairing, 282
Professional Scrum, 44–45
and Scrum values, 43
services provided by Scrum Master, 14
Sprint Planning, 19–23
Sprint Review, 25
taking ownership of tasks, 216–219
velocity, 196

DevOps, 50, 52

E
editing, work items, 153
empiricism, 3, 5, 344–345
Epic work items, 82–83, 84–85, 98

fields, 83–84
PBIs, 146–150
Professional Scrum, 102

estimating
actual hours, 325–326

C
capturing the Sprint Goal, 201–202
categories, parent-child links, 149
CI (continuous integration) builds, 249–250, 288–289
CMMI (Capability Maturity Model Integration)
process, 71, 73
code reviews, 284–285, 286
collaboration, 11, 17, 23, 37, 261, 263

active listening, 269
being T-shaped, 271
and branching, 290
branching, 286–287
collective code ownership, 274–277

associating Git commits to work items,
279–280
commenting in code, 277–278
tracking ownership in Azure DevOps, 275–277

collocation, 263–266
development practices, 274
feedback, 272

Developer, 273
Product Owner, 273–274

handling interruptions, 283
meeting effectively, 267–269
mobbing, 281–283
pairing, 281–283
productive, 270–271
setting up a team room, 266–267
software development, 262
Sprint Backlog, 38
swarming, 281–283

collective code ownership, 274–275
associating Git commits to work items, 279–280
code reviews, 284–285, 286
commenting in code, 277–278
tracking ownership in Azure DevOps, 275–277

commitment, 43, 191. See also values
continuous delivery (CD), 52
continuous improvement, 321

impediments, 322–323
courage, 43. See also values
CSV files, importing, 150–151
customization, Taskboard, 221

D
Daily Scrum, 16, 23–24, 189, 207, 217

Fabrikan Fiber Case Study, 24
flow-based, 314–315

Hundhausen_9780136789239.indb 391 13/01/21 2:57 PM

392 Index

estimating

ATDD (acceptance test-driven development), 246
branching, 288
Bug work item, 81
CI (continuous integration) builds, 289
code reviews, 286
commenting in code, 279
Daily Scrum, 24
Developers, 10
epic PBIs, 150
Forecasting tool, 199
Product Backlog, 30, 36
Product Owner, 12
productive collaboration, 271
Professional Scrum process, 104
scope creep, 168
Scrum Master, 14
setting up a team room, 267
Sprint Backlog, 38
Sprint Planning, 23
Sprint Retrospective, 29
Sprint Review, 26
stakeholders, 16
Taskboard, 213, 219
TDD (test-driven development), 247
tracking ownership in Azure DevOps, 277
Visual Studio, 64
Visual Studio licenses, 67

FBI Sentinel Project, 321
feature flags, 335–336
Feature work items, 85, 87, 88, 98

fields, 85–87
Professional Scrum, 102
refining, 87

feedback, 272
Developer, 273
Product Owner, 273

Feedback Manager, 49–50
FFDD (feature flag-driven development), 336
fields

bug reports, 158
Bug work items, 80–81
Epic work items, 83–84
Feature work items, 85–87
Impediment work items, 92–93
PBI (Product Backlog Item) work item, 76–77,
98–99
Task work items, 89–91, 212
Test Case work items, 239–240

fixed-price contracts, 339–341
flaccid Scrum, 343–345

size of PBIs, 168–169, 323–324
poker planning sessions, 170–171
wall estimation, 171–172

events, 7, 17
Daily Scrum, 16, 23–24, 189, 207, 217

flow-based, 314–315
handling impediments, 207–209
Nexus framework, 374–375

flow-based, 310–311
inspection and adaptation, 346
Nexus framework, 373
Sprint Planning, 6, 16, 19, 189, 190–191

capturing the Sprint Goal, 201–202
creating the plan, 203–206
Definition of Done, 37
Fabrikan Fiber Case Study, 23
flow-based, 311, 312–313
inputs, 190–191
length of, 19
Nexus framework, 374
outputs, 191
Sprint Goal, 191
topics, 19–22, 190

Sprint Retrospective, 7, 17, 27, 345
Fabrikan Fiber Case Study, 29
flow-based, 318
improvements, 27–28
length of, 27
Nexus framework, 375–376
techniques, 28–29

Sprint Review, 17, 24–25, 26
flow-based, 317–318
length of, 25
Nexus framework, 375
offline, 375
outcomes, 25–26

execution activities, 109
extensions

ActionableAgile Analytics, 303, 310
Open in Excel, 153
for Professional Scrum, 117–119
SpecMap, 183–185
Sprint Goal, 202

F
Fabrikan Fiber Case Study, 18, 67, 125, 127, 144, 156,
157, 195, 203, 204, 222–225, 269

acceptance tests, 253
active listening, 269

Hundhausen_9780136789239.indb 392 13/01/21 2:57 PM

 Index 393

Live Updates

I
Impediment work items, 91–92, 93–94

fields, 92–93
impediments, 322–323

handling, 207–209
importing, PBIs (Product Backlog Items), 150–153
Improvement work item, 345
in-Sprint bugs, 161–162. See also bugs
Increments, 7, 17, 39, 191

Definition of Done, 342–343
Integrated, 379

information radiators, 130
dashboards, 130–133
Summary page, 130
wikis, 133–134

inheritance process model, 100
inputs, Sprint Planning, 190–191
inspection, 5
Integrated Increment, 379–380
INVEST mnemonic, 167, 175

J-K
Kanban, 50, 56, 175, 233, 236, 295. See also flow

flow-based Daily Scrum, 314–315
flow-based Scrum events, 310–311
flow-based Sprint Planning, 311–313
flow-based Sprint Retrospective, 318
flow-based Sprint Review, 317–318
Professional, 295
and the Sprint, 311

Kanban board, 297–298. See also PBIs (Product
Backlog Items)

blocked work, 315–316
columns, 299
inspecting and adapting workflow, 304–305
managing flow, 300, 301
pull systems, 302

keyboard shortcuts, Azure DevOps, 142–143

L
lean thinking, 3, 5
licenses

Azure DevOps, 113
Azure DevOps Services, 66–67
Basic + Test Plans, 235

Little’s law, 122
Live Updates, 213

flow, 261, 295
blocked work, 315–316
coaching, 301
and Daily Scrum, 314–315
inspecting and adapting, 304–305
limiting WIP, 301–302
managing, 299–300, 301
managing WIP, 302–304

SLE (service level expectation), 304
metrics, 10, 51, 306–307, 308

calculating, 308–309
Cycle Time, 307
Throughput, 307
Work Item Age, 307

and Sprint Planning, 311, 312–313
and Sprint Retrospective, 318
and Sprint Review, 317–318
visualizing, 296–297

focus, 43. See also values
forecasting, 21

Forecasting tool, 198–199
Monte Carlo simulations, 312
PBIs (Product Backlog Items), 193–195

based on past performance, 195–198
renegotiating scope, 331
using the Capacity tool, 200–201

Fowler, M., “Flaccid Scrum”, 343–344

G
Git, 50, 57, 63, 65. See also software development

associating commits to work items, 279–280
branching, 286–287, 289, 290

git stash command, 283–284
GitHub, 67–68, 111, 154
group development

forming stage, 261
norming stage, 261
performing stage, 261
storming stage, 261
swarming stage, 261

H
handling epic PBIs, 146–150
hidden work item types, 74–75, 236
Hinshelwood, M., 154
hoarding, 281
hogging, 281

Hundhausen_9780136789239.indb 393 13/01/21 2:57 PM

394 Index

managing

parking lot, 11, 24
PBIs (Product Backlog Items), 6, 7, 18, 20,
21–22, 25, 31–32, 49, 76, 77–78, 139, 141, 144

acceptance criteria, 166
adding in Azure Boards, 143, 144–146
aging, 300
blocked tasks, 315–316
definition of ready, 174–177
Effort field, 169
epic, 146–150
fields, 76–77, 98–99
forecasting, 193–195, 198–199

based on past performance, 195–198
Forecasting tool, 198–199
using the Capacity tool, 200–201

importing, 150–153
Increments, 7
INVEST, 34
poker planning sessions, 170–171
Professional Scrum, 101–102
pull systems, 302
push systems, 302
removing, 154–155
removing from forecast, 194
sizing, 168–169, 323–324
splitting, 173–174
story mapping, 182–183

SpecMap extension, 183–185
velocity, 10
wall estimation, 171–172
workflow states, 99

permission groups, 124
permissions, 66
planning a release, 179–181
Planning Poker, 170–171

anchoring, 171
poker planning sessions, 170–171

anchoring, 171
pre-game, 109, 110

activities, 109
adding members to projects, 123–125
checklist, 135–136
creating a project, 119–121
creating an Azure DevOps organization, 111–112
determining number of projects needed, 121–123
providing access to the organization, 112–114
setting up project development, 119
setting up the development environment, 110

administrative and configuration activities,
114–115

teams, 125–128

M
managing

flow, 299–300, 301
WIP (work in progress), 302–304

SLE (service level expectation), 303, 304
meetings, 267–269. See also collaboration; Scrum
Team

organizing, 268
Microsoft Excel, importing PBIs, 151–153
Microsoft Test Manager, 49, 50
migrating, to Azure DevOps Services, 62–63
mobbing, 281–283
Monte Carlo simulations, 312
multi-organization billing, 114

N
Nexus framework, 55, 370–371

artifacts, 377
configuring additional teams, 380–382
configuring areas, 382–384
Daily Scrum, 374–375
elements, 371
events, 373
Integrated Increment, 379–380
Integration Team, 379
managing the Product Backlog, 385–386
process flow, 371–372
refinement, 373–374
Sprint Backlog, 377–378
Sprint Goal, 378
Sprint Planning, 374
Sprint Retrospective, 375–376

Nexus Integration Team, 372–373

O
observer effect, 226
Open in Excel extension, 153
openness, 43. See also values
open-plan offices, 267
ordering the Product Backlog, 178–179
out-of-Sprint bugs, 162–163. See also bugs
outputs, Sprint Planning, 191

P
pairing, 281–283
parent-child links, 149

Hundhausen_9780136789239.indb 394 13/01/21 2:57 PM

 Index 395

refinement

productive collaboration, 270–271
Professional Kanban, 295
Professional Scrum, 5–6, 44, 54, 56, 97, 360–361.
See also Nexus framework; process(es); Scrum Team;
software development; Sprints

creating a system process, 100–104
Developers, 44–45
high-performance teams, 366–367
Improvement work item, 345
Marketplace extensions, 117–119
Nexus framework, 370–371

elements, 371
events, 373
process flow, 371–372
refinement, 373–374

Nexus Integration Team, 372–373
scaling, 369

project collection, 111
project managers, 13
projects. See also Scrum Team

adding members, 123–125
configurations, 128–130
creating, 119–121
determining number needed, 121–123
information radiators, 130

dashboards, 130–133
Summary page, 130

permission groups, 124
teams, 125–128
wikis, 133–134

promiscuous pairing, 282
proven practices

bug reporting, 159
creating Product Backlog, 155

PSD (Professional Scrum Developer) program, 344,
364–365
pull policy, 303
pull requests, 290
pull systems, 302
push systems, 302

Q-R
queries, 94–97

OData, 309–310
reactivations, 163
refinement, 7, 30

Feature work items, 87
Nexus framework, 373–374
Product Backlog, 164–166, 168

process(es), 72
Little’s law, 122
Professional Scrum, 100–101, 102–104

Fabrikan Fiber Case Study, 104
updating Product Backlog Item work item
type, 101
workflow states, 102

Scrum, 75
Bug work items, 79–81
customization, 99–100
Epic work items, 82–85
Feature work items, 85–88
Impediment work items, 91–94
PBI (Product Backlog Item) work item, 76–78
Task work items, 89–91
work item queries, 94–97
work item types, 97–98

selecting for Azure Boards, 71–72
workflow states, 74

Product Backlog, 6, 31, 32–33, 34–35, 139, 190.
See also PBIs (Product Backlog Items)

Backlog Priority field, 144–146
Basic access, 141
checklist, 185–186
creating, 139–140
creating in Azure Boards, 140–142
developer interactions, 32
Fabrikan Fiber Case Study, 30, 36
Nexus framework, 385–386
ordering, 178–179
PBIs (Product Backlog Items), 31–32, 34
proven practices for creating, 155
refinement, 7, 30, 164–166, 168
and release planning, 179–181
removing PBIs, 154–155
three C’s, 33

product development, 55–56. See also software
development

delivery, 53–54
setting up the development environment, 110
stakeholders, 5–6
waterfall approach, 55–56

Product Goal, 6
assessing progress, 326–327

Product Owner, 6, 8, 10, 11, 19, 35, 139, 160–161, 362
challenges of working with, 349–352
feedback, 273–274
interactions with Developer, 11–12
ordering the Product Backlog, 178–179
release planning, 179–181

Hundhausen_9780136789239.indb 395 13/01/21 2:57 PM

396 Index

regression tests

project configurations, 128–130
providing access to the organization, 112–114
setting up project development, 119
setting up the development environment, 110
teams, 125–128

Product Backlog, 6
refinement, 7

Product Goal, 6
Product Owner, 6

Fabrikan Fiber Case Study, 12
release models, 181
rules, 4, 5, 7, 358
scaling, 369
Sprints, 5, 6, 7, 10

Definition of Done, 7
transparency, 5, 363–364
values, 42–44
wall estimation, 171–172
waterfall development, 358–359
zombie, 344

Scrum Guide, 4–5, 10, 11, 12, 15, 20, 35, 44, 75, 97, 164,
169, 206, 233, 310, 341, 358

backlog levels, 98
forecasting, 21
PBI (Product Backlog Item) work item, 98–99
work item types, 97–98

Scrum Master, 8, 12–13, 14, 15
challenges of working with, 355–357
Fabrikan Fiber Case Study, 14
services provided to Developers, 14
skills, 14

Scrum Team, 5, 6, 110. See also collaboration;
Developers; events; Sprints; stakeholders

coaching, 361–362
collaboration, 38, 263

active listening, 269
being T-shaped, 271
collective code ownership, 274–277
collocation, 263–266
commenting in code, 277–278
development practices, 274
feedback, 272, 273–274
handling interruptions, 283
meeting effectively, 267–269
mobbing, 281–283
pairing, 281–283
productive, 270–271
setting up a team room, 266–267
swarming, 281–283

common dysfunctions, 341–342

regression tests, 254–256. See also acceptance tests;
software development
Reindl, S., 164
release planning, 179–181
removing PBIs, 154–155
renegotiating scope, 331
reporting bugs, 155–158

proven practices, 159
in-Sprint vs. out-of-Sprint, 160–163

respect, 43. See also values
reusing tests, 253–254
ROI (return on investment), 349
roles. See Scrum Team
rules, Scrum, 4

S
SAFe (Scaled Agile Framework), 97
Schollaart, K., 202
Schwaber, K., 4, 17, 44, 262, 370

Software in 30 Days, 321
science fair, 375
scope creep, 167
Scrum, 4, 49, 56. See also ALM (application lifecycle
management); events; Nexus framework; process(es);
Professional Scrum; software; Sprints

adaptation, 5
artifacts, 5, 30–31
events, 5
and fixed-price contracts, 339–341
flaccid, 343–344, 345
framework, 4–5
inspection, 5
Nexus framework, 370–371

elements, 371
events, 373
process flow, 371–372
refinement, 373–374

Nexus Integration Team, 372–373
pre-game, 109, 110, 124

activities, 109
adding members to projects, 123–125
administrative and configuration activities,
114–115
checklist, 135–136
creating a project, 119–121
creating an Azure DevOps organization,
111–112
determining number of projects needed,
121–123

Hundhausen_9780136789239.indb 396 13/01/21 2:57 PM

 Index 397

Sprint Retrospective

branching, 286–287, 290
CI (continuous integration) builds, 288–289
code reviews, 284–285, 286
collaboration, 262
common challenges, 322
Daily Scrum, 7
delivery, 53–54
feature flags, 335–336
git stash command, 283–284
Product Backlog, 6
Product Owner, 6
TDD (test-driven development), 233, 246–247,
247
trunk-based, 287–288
waterfall approach, 358–359

sources of bugs, 159–160
specializing, 281, 384
SpecMap extension, 183–185
splitting PBIs, 173–174
Sprint Backlog, 36, 38

collaboration, 38
creating, 192
Definition of Done, 37
Fabrikan Fiber Case Study, 38
Nexus framework, 377–378

Sprint Goal, 19–20, 343
assessing progress, 327–331
Nexus framework, 378

Sprint Planning, 16, 19, 189, 190–191, 233
activities, 206–207
checklist, 229–230
creating the plan, 203–206
Definition of Done, 37
Fabrikan Fiber Case Study, 23
flow-based, 311, 312–313
forecasting, 20–21, 312
inputs, 190–191
length of, 19
Nexus framework, 374
outputs, 191
Sprint Goal, 191, 216

capturing, 201–202
topics, 190

how will the chosen work get done?,
21–22
what can be done in this Sprint?, 20–21
why is this Sprint valuable?, 19–20

whiteboards, 22
Sprint Retrospective, 17, 27, 345

Definition of Done, 41

cross-functional, 362–363
Developers, 8–10, 18, 37

activities, 9
Fabrikan Fiber Case Study, 10
interaction with Sprint Backlog, 36–37

implementing a definition of ready, 175–177
information radiators, 130

dashboards, 130–133
Summary page, 130
wikis, 133–134

making changes to, 10
Nexus framework, 55
organizational gravity, 55–56
poker planning sessions, 170–171
Product Backlog refinement, 164–166
Product Owner, 10, 11, 19, 35, 362

interactions with Developer, 11–12
Professional, 360–361
roles, 8
Scrum Master, 12–13, 14, 15

challenges of working with, 355–357
Fabrikan Fiber Case Study, 14
services provided to Developers, 14
skills, 14

Scrum.org open assessments, 365–366
stakeholders, 15

challenges of working with, 353–355
Fabrikan Fiber Case Study, 16
interactions with Developer, 15

story mapping, 182–183
Team Administrator, 127
tracking members’ time, 37

ScrumButs, 360
Scrum.org open assessments, 365–366
SDLC (software development lifecycle), 49, 51
self-management, 214, 363
shuhari, 342
sizing PBIs, 168–169, 323–324
skills, building a cross-functional Scrum Team,
362–363
SLE (service level expectation), 303, 304
smells, 17, 41, 52, 63, 78, 91, 110, 114, 121, 140, 144, 147,
151, 156, 161, 163, 174, 178, 179, 196, 197, 199, 201, 202,
208, 210, 211, 213, 218, 219, 225, 226–227, 238, 245,
254, 272, 278, 280, 283, 284, 285–286, 300, 308, 318,
323, 324, 331, 335, 339, 343, 346, 353
software development, 3, 5–6, 18, 369

ATDD (acceptance test-driven development),
233–234, 244–245, 245–246
BDD (behavior-driven development), 245

Hundhausen_9780136789239.indb 397 13/01/21 2:57 PM

http://Scrum.org
http://Scrum.org

398 Index

Sprint Retrospective

assessing progress, 326
blocked, 219–221, 315–316
decomposing, 209–210
inspecting and updating progress, 222–225
taking ownership of, 216–219
tracking, 205
tracking actual hours, 325–326
undone work, 333–334
viewing by developer, 213–214

TDD (test-driven development), 233, 246–247
Fabrikan Fiber Case Study, 247

Team Administrator, 127
team administrator, 381
Team Foundation Server, 50, 263. See also Azure
DevOps Server
team work, 280–281
teams, 125–128. See also Scrum Team
Test Case work items, 237, 248. See also acceptance
tests

creating, 238–240
fields, 239–240
inspecting progress, 241–244
reusing, 253–254
states, 240–241
test points, 244

test plans, 235, 236. See also acceptance tests
test suites, 235, 237. See also acceptance tests

query-based, 255–256
testing, 233. See also acceptance tests; regression
tests

acceptance tests, 233
regression tests, 254–256
reuse, 253–254

TFVC (Team Foundation Version Control), 50, 63, 75
tracer bullets, 339
transparency, 5, 363–364

Nexus framework, 379
trunk-based software development, 287–288
T-shaped individuals, 271, 363
Tuckman, B., 261, 324

U-V
undone work, 333–334, 336–338

Vacanti, D., 295
values, 42–44
velocity, 10, 307, 334–335, 349

and forecasting, 195–198
Visual Studio, 63, 64

Fabrikan Fiber Case Study, 29
flow-based, 318
improvements, 27–28
length of, 27
Nexus framework, 375–376
techniques, 28–29

Sprint Review, 17, 24–25, 26
Fabrikan Fiber Case Study, 26
flow-based, 317–318
length of, 25
offline, 375
outcomes, 25–26

Sprints, 5, 6, 7, 10, 17, 18, 18, 189. See also events
Backlog, 6
canceling, 229, 332–333
closing out, 227–228
Definition of Done, 7
duration, 17–18
events, 7, 17

Sprint Planning, 6, 190–191
Sprint Retrospective, 7

forecasting PBIs, 193–195
Goals, 6
inspecting and updating progress,
222–225
and Kanban, 311
Planning, 6
spikes, 338–339
tasks, 205–206
velocity, 10

stakeholders, 5–6, 15, 19, 67, 180
challenges of working with, 353–355
Fabrikan Fiber Case Study, 16
interactions with Developer, 15

stashing code changes, 283–284
story mapping, 182–183, 327

SpecMap extension, 183–185
subscriptions, Visual Studio, 65
Sutherland, J., 4

Software in 30 Days, 321
swarming, 281–283

T
taking ownership of tasks, 216–219
Task work items, 89, 91

fields, 89–91
tasks, 205–206. See also Daily Scrum; events; PBIs
(Product Backlog Items); Sprint Planning

adding to Taskboard, 215–216

Hundhausen_9780136789239.indb 398 13/01/21 2:57 PM

 Index 399

zombie Scrum

forecasting, 193–195
hidden, 74–75, 236
Impediment, 91–92, 93–94, 208, 322–323

fields, 92–93
Improvement, 345
parent-child links, 149
Product Backlog, 76

fields, 76–77, 98–99
states, 78
workflow states, 99

queries, 94–97
searching, 165
Task, 89, 91, 212–213

adding to Taskboard, 215–216
fields, 89–91, 212

Test Case, 237, 244, 248
creating, 238–240
fields, 239–240
inspecting progress, 241–244
reusing, 253–254
states, 240–241

tracking, 205
updating, 165–166

workflow, 304–305. See also flow, inspecting and
adapting

X-Y-Z
zombie Scrum, 344

Fabrikan Fiber Case Study, 64
subscriptions, 65

Visual Studio Online, 65
visualizing flow, 296–297

Kanban board, 297–298, 299
VSTS (Visual Studio Team System), 49

W
Wake, B., 175
wall estimation, 171–172
waterfall development, 358–359
Weber, E., 375
wikis, 133–134
WIP (work in progress)

limiting, 301–302
managing, 302–304

Wolper, S., Remote Agile Guide, 265
work items, 97–98

associating commits, 279–280
associating with Git commits, 279–280
Bug, 79–80

Fabrikan Fiber Case Study, 81
fields, 80–81

bulk-modifying, 153–154
editing, 153
Epic, 82–83, 84–85

fields, 83–84
Feature, 85, 87, 88

fields, 85–87
refining, 87

Hundhausen_9780136789239.indb 399 13/01/21 2:57 PM

	Cover
	Title Page
	Copyright Page
	Dedication
	Contents at a Glance
	Contents
	Foreword
	Introduction
	Chapter 3 Azure Boards
	Choosing a Process
	Work Item Types

	The Scrum Process
	Scrum Work Item Types
	Scrum Work Item Queries
	Scrum Guide Drift

	Process Customization
	Professional Scrum Process
	Other Customizations

	Chapter Retrospective

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U-V
	W
	X-Y-Z

