SECOND EDITION

100 THINGS EVERY DESIGNER NEEDS TO KNOW ABOUT PEOPLE

SUSAN M. WEINSCHENK, Ph.D.

FREE SAMPLE CHAPTER
SHARE WITH OTHERS
ACKNOWLEDGMENTS

I am grateful to Jeff Riley, my developmental editor, who helped me with the first and second editions of this book and many other books in between. Thank you to the Pearson team for their support and great work on cover design, graphics, layout, publishing, and distributing.
DEDICATION

Dedicated to the memory of Miles and Jeanette Schwartz. Wish you were here to share the book with.
CONTENTS

HOW PEOPLE SEE

1. **WHAT YOU SEE ISN'T WHAT YOUR BRAIN GETS**
2. **PERIPHERAL VISION IS USED MORE THAN CENTRAL VISION TO GET THE GIST OF WHAT YOU SEE**
3. **PEOPLE IDENTIFY OBJECTS BY RECOGNIZING PATTERNS**
4. **THERE'S A SPECIAL PART OF THE BRAIN JUST FOR RECOGNIZING FACES**
5. **THERE'S A SPECIAL PART OF THE BRAIN FOR PROCESSING SIMPLE VISUAL FEATURES**
6. **PEOPLE SCAN SCREENS BASED ON PAST EXPERIENCE AND EXPECTATIONS**
7. **PEOPLE SEE CUES THAT TELL THEM WHAT TO DO WITH AN OBJECT**
8. **PEOPLE CAN MISS CHANGES IN THEIR VISUAL FIELDS**
9. **PEOPLE BELIEVE THAT THINGS THAT ARE CLOSE TOGETHER BELONG TOGETHER**
10. **RED AND BLUE TOGETHER ARE HARD ON THE EYES**
11. **NINE PERCENT OF MEN AND ONE-HALF PERCENT OF WOMEN ARE COLOR-BLIND**
12. **COLORS MEAN DIFFERENT THINGS TO DIFFERENT CULTURES**

HOW PEOPLE READ

13. **IT'S A MYTH THAT WORDS IN ALL CAPS ARE INHERENTLY HARD TO READ**
14. **READING AND COMPREHENDING ARE TWO DIFFERENT THINGS**
15 PATTERN RECOGNITION HELPS PEOPLE IDENTIFY LETTERS IN
 DIFFERENT FONTS
16 FONT SIZE MATTERS
17 READING A SCREEN IS HARDER THAN READING PAPER
18 PEOPLE READ FASTER WITH A LONGER LINE LENGTH,
 BUT THEY PREFER A SHORTER LINE LENGTH

HOW PEOPLE REMEMBER
19 SHORT-TERM MEMORY IS LIMITED
20 PEOPLE REMEMBER ONLY FOUR ITEMS AT ONCE
21 PEOPLE HAVE TO USE INFORMATION TO MAKE IT STICK
22 IT’S EASIER TO RECOGNIZE INFORMATION THAN RECALL IT
23 MEMORY TAKES A LOT OF MENTAL RESOURCES
24 PEOPLE RECONSTRUCT MEMORIES EACH TIME THEY REMEMBER THEM
25 IT’S A GOOD THING THAT PEOPLE FORGET
26 THE MOST VIVID MEMORIES ARE WRONG

HOW PEOPLE THINK
27 PEOPLE PROCESS INFORMATION BETTER IN BITE-SIZED CHUNKS
28 SOME TYPES OF MENTAL PROCESSING ARE MORE CHALLENGING
 THAN OTHERS
29 MINDS WANDER 30 PERCENT OF THE TIME
30 THE MORE UNCERTAIN PEOPLE ARE, THE MORE THEY
 DEFEND THEIR IDEAS
31 PEOPLE CREATE MENTAL MODELS
32 PEOPLE INTERACT WITH CONCEPTUAL MODELS
33 PEOPLE PROCESS INFORMATION BEST IN STORY FORM
34 PEOPLE LEARN BEST FROM EXAMPLES
35 PEOPLE ARE DRIVEN TO CREATE CATEGORIES
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>TIME IS RELATIVE</td>
<td>89</td>
</tr>
<tr>
<td>37</td>
<td>PEOPLE SCREEN OUT INFORMATION THAT DOESN’T FIT THEIR BELIEFS</td>
<td>91</td>
</tr>
<tr>
<td>38</td>
<td>PEOPLE CAN BE IN A FLOW STATE</td>
<td>93</td>
</tr>
<tr>
<td>39</td>
<td>CULTURE AFFECTS HOW PEOPLE THINK</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>HOW PEOPLE FOCUS THEIR ATTENTION</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>ATTENTION IS SELECTIVE</td>
<td>98</td>
</tr>
<tr>
<td>41</td>
<td>PEOPLE HABITUATE TO INFORMATION</td>
<td>100</td>
</tr>
<tr>
<td>42</td>
<td>WELL-PRACTICED SKILLS DON’T REQUIRE CONSCIOUS ATTENTION</td>
<td>101</td>
</tr>
<tr>
<td>43</td>
<td>EXPECTATIONS OF FREQUENCY AFFECT ATTENTION</td>
<td>103</td>
</tr>
<tr>
<td>44</td>
<td>SUSTAINED ATTENTION LASTS ABOUT 10 MINUTES</td>
<td>105</td>
</tr>
<tr>
<td>45</td>
<td>PEOPLE PAY ATTENTION ONLY TO SALIENT CUES</td>
<td>106</td>
</tr>
<tr>
<td>46</td>
<td>PEOPLE ARE WORSE AT MULTITASKING THAN THEY THINK</td>
<td>107</td>
</tr>
<tr>
<td>47</td>
<td>DANGER, FOOD, SEX, MOVEMENT, FACES, AND STORIES GET THE MOST ATTENTION</td>
<td>110</td>
</tr>
<tr>
<td>48</td>
<td>LOUD NOISES STARTLE AND GET ATTENTION</td>
<td>112</td>
</tr>
<tr>
<td>49</td>
<td>FOR PEOPLE TO PAY ATTENTION TO SOMETHING, THEY MUST FIRST PERCEIVE IT</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>WHAT MOTIVATES PEOPLE</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>PEOPLE ARE MORE MOTIVATED AS THEY GET CLOSER TO A GOAL</td>
<td>118</td>
</tr>
<tr>
<td>51</td>
<td>VARIABLE REWARDS ARE POWERFUL</td>
<td>120</td>
</tr>
<tr>
<td>52</td>
<td>DOPAMINE STIMULATES THE SEEKING OF INFORMATION</td>
<td>123</td>
</tr>
<tr>
<td>53</td>
<td>UNPREDICTABILITY KEEPS PEOPLE SEARCHING</td>
<td>125</td>
</tr>
<tr>
<td>54</td>
<td>PEOPLE ARE MORE MOTIVATED BY INTRINSIC REWARDS THAN BY EXTRINSIC REWARDS</td>
<td>127</td>
</tr>
<tr>
<td>55</td>
<td>PEOPLE ARE MOTIVATED BY PROGRESS, MASTERY, AND CONTROL</td>
<td>129</td>
</tr>
<tr>
<td>56</td>
<td>PEOPLE ARE MOTIVATED BY SOCIAL NORMS</td>
<td>131</td>
</tr>
<tr>
<td>Page</td>
<td>Chapter</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>57</td>
<td>Chapter 5</td>
<td>People Are Inherently Lazy</td>
</tr>
<tr>
<td>58</td>
<td>Chapter 6</td>
<td>People Will Look for Shortcuts Only If the Shortcuts Are Easy</td>
</tr>
<tr>
<td>59</td>
<td>Chapter 7</td>
<td>People Assume It’s You, Not the Situation</td>
</tr>
<tr>
<td>60</td>
<td>Chapter 8</td>
<td>Forming or Changing a Habit Is Easier Than You Think</td>
</tr>
<tr>
<td>61</td>
<td>Chapter 9</td>
<td>People Are More Motivated to Compete When There Are Fewer Competitors</td>
</tr>
<tr>
<td>62</td>
<td>Chapter 10</td>
<td>People Are Motivated by Autonomy</td>
</tr>
<tr>
<td>63</td>
<td>Chapter 11</td>
<td>People Are Social Animals</td>
</tr>
<tr>
<td>64</td>
<td>Chapter 12</td>
<td>The “Strong Tie” Group Size Limit Is 150 People</td>
</tr>
<tr>
<td>65</td>
<td>Chapter 13</td>
<td>People Are Hard Wired for Imitation and Empathy</td>
</tr>
<tr>
<td>66</td>
<td>Chapter 14</td>
<td>Doing Things Together Bonds People Together</td>
</tr>
<tr>
<td>67</td>
<td>Chapter 15</td>
<td>People Expect Online Interactions to Follow Social Rules</td>
</tr>
<tr>
<td>68</td>
<td>Chapter 16</td>
<td>People Lie to Differing Degrees Depending on the Medium</td>
</tr>
<tr>
<td>69</td>
<td>Chapter 17</td>
<td>Speakers’ Brains and Listeners’ Brains Sync Up During Communication</td>
</tr>
<tr>
<td>70</td>
<td>Chapter 18</td>
<td>The Brain Responds Uniquely to People You Know Personally</td>
</tr>
<tr>
<td>71</td>
<td>Chapter 19</td>
<td>Laughter Bonds People Together</td>
</tr>
<tr>
<td>72</td>
<td>Chapter 20</td>
<td>People Can Tell When a Smile Is Real or Fake More Accurately with Video</td>
</tr>
<tr>
<td>73</td>
<td>Chapter 21</td>
<td>Some Emotions May Be Universal</td>
</tr>
<tr>
<td>74</td>
<td>Chapter 22</td>
<td>Positive Feelings About a Group Can Lead to Groupthink</td>
</tr>
<tr>
<td>75</td>
<td>Chapter 23</td>
<td>Stories and Anecdotes Persuade More Than Data Alone</td>
</tr>
<tr>
<td>76</td>
<td>Chapter 24</td>
<td>If People Can’t Feel, Then They Can’t Decide</td>
</tr>
<tr>
<td>77</td>
<td>Chapter 25</td>
<td>People Are Programmed to Enjoy Surprises</td>
</tr>
<tr>
<td>78</td>
<td>Chapter 26</td>
<td>People Are Happier When They’re Busy</td>
</tr>
</tbody>
</table>

People Are Social Animals

<table>
<thead>
<tr>
<th>Page</th>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>Chapter 11</td>
<td>The “Strong Tie” Group Size Limit Is 150 People</td>
</tr>
<tr>
<td>64</td>
<td>Chapter 12</td>
<td>People Are Hard Wired for Imitation and Empathy</td>
</tr>
<tr>
<td>65</td>
<td>Chapter 13</td>
<td>Doing Things Together Bonds People Together</td>
</tr>
<tr>
<td>66</td>
<td>Chapter 14</td>
<td>People Expect Online Interactions to Follow Social Rules</td>
</tr>
<tr>
<td>67</td>
<td>Chapter 15</td>
<td>People Lie to Differing Degrees Depending on the Medium</td>
</tr>
<tr>
<td>68</td>
<td>Chapter 16</td>
<td>Speakers’ Brains and Listeners’ Brains Sync Up During Communication</td>
</tr>
<tr>
<td>69</td>
<td>Chapter 17</td>
<td>The Brain Responds Uniquely to People You Know Personally</td>
</tr>
<tr>
<td>70</td>
<td>Chapter 18</td>
<td>Laughter Bonds People Together</td>
</tr>
<tr>
<td>71</td>
<td>Chapter 19</td>
<td>People Can Tell When a Smile Is Real or Fake More Accurately with Video</td>
</tr>
</tbody>
</table>

How People Feel

<table>
<thead>
<tr>
<th>Page</th>
<th>Chapter</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>Chapter 21</td>
<td>Some Emotions May Be Universal</td>
</tr>
<tr>
<td>73</td>
<td>Chapter 22</td>
<td>Positive Feelings About a Group Can Lead to Groupthink</td>
</tr>
<tr>
<td>74</td>
<td>Chapter 23</td>
<td>Stories and Anecdotes Persuade More Than Data Alone</td>
</tr>
<tr>
<td>75</td>
<td>Chapter 24</td>
<td>If People Can’t Feel, Then They Can’t Decide</td>
</tr>
<tr>
<td>76</td>
<td>Chapter 25</td>
<td>People Are Programmed to Enjoy Surprises</td>
</tr>
<tr>
<td>77</td>
<td>Chapter 26</td>
<td>People Are Happier When They’re Busy</td>
</tr>
</tbody>
</table>
78 PASTORAL SCENES MAKE PEOPLE HAPPY
79 PEOPLE USE “LOOK AND FEEL” AS THEIR FIRST INDICATOR OF TRUST
80 LISTENING TO MUSIC RELEASES DOPAMINE IN THE BRAIN
81 THE MORE DIFFICULT SOMETHING IS TO ACHIEVE, THE MORE PEOPLE LIKE IT
82 PEOPLE OVERESTIMATE REACTIONS TO FUTURE EVENTS
83 PEOPLE FEEL MORE POSITIVE BEFORE AND AFTER AN EVENT THAN DURING IT
84 PEOPLE WANT WHAT IS FAMILIAR WHEN THEY’RE SAD OR SCARED

PEOPLE MAKE MISTAKES
85 PEOPLE WILL ALWAYS MAKE MISTAKES; THERE IS NO FAIL-SAFE PRODUCT
86 PEOPLE MAKE ERRORS WHEN THEY ARE UNDER STRESS
87 NOT ALL MISTAKES ARE BAD
88 PEOPLE MAKE PREDICTABLE TYPES OF ERRORS
89 PEOPLE USE DIFFERENT ERROR STRATEGIES

HOW PEOPLE DECIDE
90 PEOPLE MAKE MOST DECISIONS UNCONSCIOUSLY
91 THE UNCONSCIOUS KNOWS FIRST
92 PEOPLE WANT MORE CHOICES AND INFORMATION THAN THEY CAN PROCESS
93 PEOPLE THINK CHOICE EQUALS CONTROL
94 PEOPLE MAY CARE ABOUT TIME MORE THAN THEY CARE ABOUT MONEY
95 MOOD INFLUENCES THE DECISION- MAKING PROCESS
96 YOU CAN ENGINEER BETTER GROUP DECISIONS
97 PEOPLE MAKE HABIT-BASED DECISIONS OR VALUE-BASED DECISIONS, BUT NOT BOTH AT THE SAME TIME
98 WHEN PEOPLE ARE UNCERTAIN, THEY LET OTHERS DECIDE WHAT TO DO 220

99 PEOPLE THINK OTHERS ARE MORE EASILY INFLUENCED THAN THEY ARE THEMSELVES 222

100 PEOPLE VALUE A PRODUCT MORE HIGHLY WHEN IT'S PHYSICALLY IN FRONT OF THEM 224

REFERENCES 227

INDEX 237
THE PSYCHOLOGY OF DESIGN

Whether you’re designing a website, an app, software, or a medical device, the more you know about people, the better experience you will be able to design for your audience.

Your audience’s experience is profoundly impacted by what you know—or don’t know—about them.

How do they think? How do they decide? What motivates them to click or purchase or whatever it is you want them to do?

You’ll learn these things in this book.

You’ll also learn what grabs attention, what errors people make and why, and other things that will help you design.

And you’ll design better because I’ve already done most of the heavy lifting for you. I’m one of those strange people who like to read research. Lots and lots of research. So I read—or in some cases, re-read—dozens of books and hundreds of research articles. I picked my favorite theories, concepts, and research studies and combined them with the experience I’ve gained throughout the many years I’ve been designing technology interfaces.

And you’re holding the result: 100 things I think you need to know about people.

Note about the second edition: When I wrote the first edition of this book, I hoped, of course, that it would be a popular, widely read book. But I didn’t know if people would respond to it or not. It’s been a surprise and a heart warming experience to have the reaction to the book be so positive. The first edition has been translated into several languages and used as a textbook in many universities, and people often show me their well-used book with marks and sticky notes and highlights.

It’s been several years since I wrote the first edition, and most of the material has stood the test of time. There is some new research, however, so I decided it was time to do a second edition. I’ve done updates, and tweaked explanations, wordings, and images, to make sure the book stays current.

A big thank-you to all my readers for your support.

Susan Weinschenk, Ph.D.

Edgar, WI

June 2020
Vision trumps all the senses. Half of the brain’s resources are dedicated to seeing and interpreting what we see. What our eyes physically perceive is only one part of the story. The images coming in to our brains are changed and interpreted. It’s really our brains that are “seeing.”
WHAT YOU SEE ISN’T WHAT YOUR BRAIN GETS

You think that as you’re walking around looking at the world, your eyes are sending information to your brain, which processes it and gives you a realistic experience of “what’s out there.” But the truth is that what your brain comes up with isn’t exactly what your eyes are seeing. Your brain is constantly interpreting everything you see. Take a look at Figure 1.1, for example.

What do you see? At first you probably see a triangle with a black border in the background and an upside-down white triangle on top of it. Of course, that’s not really what’s there, is it? In reality there are merely lines and partial circles. Your brain creates the shape of an upside-down triangle out of empty space, because that’s what it expects to see. This particular illusion is called a Kanizsa triangle, named for the Italian psychologist Gaetano Kanizsa, who developed it in 1955. Now look at Figure 1.2, which creates a similar illusion with a rectangle.

THE BRAIN CREATES SHORTCUTS

Your brain creates these shortcuts in order to quickly make sense out of the world around you. Your brain receives millions of sensory inputs every second (the estimate is 40 million), and it’s trying to make sense of all of that input. It uses rules of thumb, based
on past experience, to make guesses about what you see. Most of the time that works, but sometimes it causes errors.

You can influence what people see, or think they see, by the use of shapes and colors. Figure 1.3 shows how color can draw attention to one message over another.

![Figure 1.3](image)

FIGURE 1.3 Color and shapes can influence what people see

If you need to see in the dark, don’t look straight ahead

The eye has 7 million cones that are sensitive to bright light and 125 million rods that are sensitive to low light. The cones are in the fovea (central area of vision), and the rods are less central. So if you’re in low light, you’ll see better if you don’t look right at the area you’re trying to see.

Optical illusions show us the errors

Optical illusions are examples of how the brain misinterprets what the eyes see. For example, in Figure 1.4 the line on the left looks longer than the line on the right, but they’re actually the same length. Named for Franz Müller-Lyer, who created it in 1889, this is one of the oldest optical illusions.

![Figure 1.4](image)

FIGURE 1.4 These lines are actually the same length
We see in 2D, not 3D

Light rays enter the eye through the cornea and lens. The lens focuses an image on the retina. On the retina it is always a two-dimensional representation, even if it is a three-dimensional object. This image is sent to the visual cortex in the brain, and that’s where recognition of patterns takes place—for example, “Oh, I recognize that as a door.” The visual cortex turns the 2D image into a 3D representation.

Takeaways

⭐ What you think people are going to see when you design a product may or may not be what they actually see. What people see might depend on their background, knowledge, familiarity with what they are looking at, and expectations.

⭐ You might be able to persuade people to see things in a certain way, depending on how you present information and visual elements. You can use shading or colors to make it look like some things go together and others don’t.
You have two types of vision: central and peripheral. Central vision is what you use to look at things directly and to see details. Peripheral vision encompasses the rest of the visual field—areas that are visible but that you’re not looking at directly. Being able to see things out of the corner of your eye is certainly useful, but research from Kansas State University shows that peripheral vision is more important in understanding the world around us than most people realize. It seems that we get information on what type of scene we’re looking at from our peripheral vision.

Adam Larson and Lester Loschky (2009) conducted research on central and peripheral vision in 2009, and Loschky conducted even more research in 2019. In the research they showed people photographs of common scenes, such as a kitchen or a living room, or outdoor scenes of cities and mountains. In some of the photographs the outside of the image was obscured, and in others the central part of the image was obscured (Figure 2.1). Then they asked the research participants to identify what they were looking at. Loschky found that if the central part of the photo was missing, people could still identify what they were looking at. But when the peripheral part of the image was missing, they had a much harder time identifying what they were looking at. Loschky concluded that central vision is critical for specific object recognition, but peripheral vision is used for getting the gist of a scene.
If someone is looking at a desktop screen, you can assume that they are using both peripheral and central vision. The same is true if they are looking at a laptop screen or a large tablet. With mobile screens, depending on the size of the device, it is possible that there is no peripheral vision available on the screen.

Peripheral vision kept our ancestors alive on the savannah

The theory, from an evolutionary standpoint, is that early humans who were sharpening their flint or looking up at the clouds and yet still noticed that a lion was coming at them in their peripheral vision survived to pass on their genes. Those with poor peripheral vision didn’t survive to pass on genes.

Additional research confirms this idea. Dimitri Bayle (2009) placed pictures of fearful objects in subjects’ peripheral vision or central vision. Then he measured how long it took for the amygdala (the emotional part of the brain that responds to fearful images) to react. When the fearful object was shown in the central vision, it took from 140 to 190 milliseconds for the amygdala to react. But when objects were shown in peripheral vision, it took only 80 milliseconds for the amygdala to react.
Takeaways

- If you are designing for a desktop or laptop screen, you should assume that people are using both peripheral and central vision.

- Although the middle of the screen is important for central vision, don’t ignore what is in viewers’ peripheral vision. Make sure the information in the periphery communicates clearly the purpose of the page or information they are viewing.

- If you have images of an emotional nature, put them in the periphery instead of in the middle.

- If you want users to concentrate on a certain part of the screen, don’t put animation or blinking elements in their peripheral vision.
Recognizing patterns helps you make quick sense of the sensory input that comes to you every second. Your eyes and brain want to create patterns, even if there are no real patterns there. In Figure 3.1, you probably see four sets of two dots each rather than eight individual dots. You interpret the white space, or lack of it, as a pattern.

![Figure 3.1](image)

FIGURE 3.1 Your brain wants to see patterns

THE GEON THEORY OF OBJECT RECOGNITION

There have been many theories over the years about how we see and recognize objects. An early theory was that the brain has a memory bank that stores millions of objects, and when you see an object, you compare it with all the items in your memory bank until you find the one that matches. But research now suggests that you recognize basic shapes in what you are looking at, and use these basic shapes, called geometric icons (or geons), to identify objects. Irving Biederman came up with the idea of geons in 1987 (Figure 3.2). It’s thought that there are 24 basic shapes that we recognize; they form the building blocks of all the objects we see and identify.

If you want people to quickly recognize what an object is, you should make use of simple shapes. This makes it easier to recognize the basic geons that make up the shape. The smaller the object to recognize (for example, a small icon of a printer or a document), the more important it is to use simple geons without a lot of embellishment.
Takeaways

Use patterns as much as possible, since people will automatically be looking for them. Use grouping and white space to create patterns.

If you want people to recognize an object (for example, an icon), use a simple geometric drawing of the object. This will make it easier to recognize the underlying geons and thus make the object easier and faster to recognize.

FIGURE 3.2 Some samples of Biederman’s geons
Imagine that you’re walking down a busy street in a large city when you suddenly see the face of a family member. Even if you were not expecting to see this person and even if there are dozens or even hundreds of people in your visual field, you will immediately recognize him or her as your relative. You’ll also have an accompanying emotional response, be it love, hate, fear, or otherwise.

Although the visual cortex is huge and takes up significant brain resources, there is a special part of the brain outside the visual cortex whose sole purpose is to recognize faces. Identified by Nancy Kanwisher (1997), the fusiform face area (FFA) allows faces to bypass the brain’s usual interpretive channels and helps us identify them more quickly than objects. The FFA is also near the amygdala, the brain’s emotional center.

This means that faces grab our attention and also evoke an emotional response. If you show faces in your design, on a page or screen, it will grab attention immediately and convey emotional information.

If you want to use faces to grab attention and evoke an emotional response, make sure that the face is facing forward (not in profile), large enough to be easily seen, and showing the emotion you want to convey.

People with autism don’t view faces with the FFA

Research by Karen Pierce (2001) showed that people with autism don’t use the FFA when looking at faces. Instead, they use other, regular pathways in the brain and visual cortex that are normally used to recognize and interpret objects but not faces.
We look where the face looks

Eye-tracking research shows that if a face in a picture looks away from us and toward a product on a web page (Figure 4.1), we tend to also look at the product.

But remember, just because people look at something, it doesn’t mean they’re paying attention. You’ll have to decide whether you want to establish an emotional connection (the face looking right at the viewer) or to direct attention (the face looking directly at a product).

People are born with a preference for faces

Research by Catherine Mondloch et al. (1999) shows that newborns less than an hour old prefer looking at something that has facial features. The FFA’s sensitivity to faces appears to be something we are born with.

The eyes have it: people decide who and what is alive by looking at the eyes

Christine Looser and T. Wheatley (2010) took pictures of people and then morphed them in stages into inanimate mannequin faces. In the research, subjects are shown the stages and asked to decide when the picture is no longer a human and alive. Figure 4.2 shows examples of the pictures. Their research found that subjects say the pictures no longer show someone who is alive at about the 75 percent mark. They also found that people primarily use the eyes to decide whether a picture shows someone who is human and alive.
<table>
<thead>
<tr>
<th>INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D vs. 3D vision, 4</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>Aaker, Jennifer, 212</td>
</tr>
<tr>
<td>Aarts, Henk, 127</td>
</tr>
<tr>
<td>academic success, 51</td>
</tr>
<tr>
<td>action possibilities, 17</td>
</tr>
<tr>
<td>affordance cues, 17–20</td>
</tr>
<tr>
<td>algorithmic work, 128</td>
</tr>
<tr>
<td>Alloway, Tracy, 51</td>
</tr>
<tr>
<td>animal laughter, 160</td>
</tr>
<tr>
<td>anticipation, 124, 181, 185</td>
</tr>
<tr>
<td>ARCS model, 70</td>
</tr>
<tr>
<td>Aristotle, 82</td>
</tr>
<tr>
<td>Aronson, Elliot, 182</td>
</tr>
<tr>
<td>arousal</td>
</tr>
<tr>
<td>levels of emotional, 167</td>
</tr>
<tr>
<td>performance related to, 192–193</td>
</tr>
<tr>
<td>Art Instinct, The (Dutton), 177</td>
</tr>
<tr>
<td>Art of Choosing, The (Iyengar), 208, 210</td>
</tr>
<tr>
<td>attention, 97–115</td>
</tr>
<tr>
<td>flow state and, 93</td>
</tr>
<tr>
<td>frequency expectations and, 103–104</td>
</tr>
<tr>
<td>information habituation and, 100</td>
</tr>
<tr>
<td>items getting the most, 110–111</td>
</tr>
<tr>
<td>multitasking and, 107–109</td>
</tr>
<tr>
<td>salient cues and, 106</td>
</tr>
<tr>
<td>selective, 98–99</td>
</tr>
<tr>
<td>signal detection theory and, 114–115</td>
</tr>
<tr>
<td>sounds for getting, 112–113</td>
</tr>
<tr>
<td>sustained span of, 105</td>
</tr>
<tr>
<td>well-practiced skills and, 101</td>
</tr>
<tr>
<td>working memory and, 50</td>
</tr>
<tr>
<td>attention restoration therapy, 178</td>
</tr>
<tr>
<td>attitudes vs. emotions, 166</td>
</tr>
<tr>
<td>auditory stimuli, 112–113</td>
</tr>
<tr>
<td>autism, 10</td>
</tr>
<tr>
<td>autonomy, 142</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>Baddeley, Alan, 52</td>
</tr>
<tr>
<td>Bahrami, Bahador, 217</td>
</tr>
<tr>
<td>Bandura, Albert, 154</td>
</tr>
<tr>
<td>Bargh, John, 148</td>
</tr>
<tr>
<td>basal ganglia, 90, 94</td>
</tr>
<tr>
<td>Batson, C., 89</td>
</tr>
<tr>
<td>Bayle, Dimitri, 6</td>
</tr>
<tr>
<td>Bechara, Antoine, 171, 206</td>
</tr>
<tr>
<td>Begley, Sharon, 96</td>
</tr>
<tr>
<td>beliefs</td>
</tr>
<tr>
<td>cognitive dissonance and, 76–77</td>
</tr>
<tr>
<td>confirmation bias and, 91–92</td>
</tr>
<tr>
<td>Bellenkes, Andrew, 103</td>
</tr>
<tr>
<td>Belova, Marina, 173</td>
</tr>
<tr>
<td>Berman, Mark, 178</td>
</tr>
<tr>
<td>Berns, Gregory, 173</td>
</tr>
<tr>
<td>Berridge, Kent, 123</td>
</tr>
<tr>
<td>Biederman, Irving, 8</td>
</tr>
<tr>
<td>body language, 148</td>
</tr>
<tr>
<td>bonding</td>
</tr>
<tr>
<td>laughter and social, 159–161</td>
</tr>
<tr>
<td>synchronous activity and, 149–150</td>
</tr>
<tr>
<td>Boyd, John, 89</td>
</tr>
<tr>
<td>brain</td>
</tr>
<tr>
<td>emotional mirroring and, 172</td>
</tr>
<tr>
<td>facial recognition and, 10–12</td>
</tr>
<tr>
<td>memory and, 50, 55</td>
</tr>
<tr>
<td>mental processing and, 68</td>
</tr>
<tr>
<td>mirror neurons in, 147, 148, 156</td>
</tr>
<tr>
<td>response to friends/relatives, 157–158</td>
</tr>
<tr>
<td>synced during communication, 156</td>
</tr>
<tr>
<td>three parts of, 110</td>
</tr>
<tr>
<td>time perception and, 90</td>
</tr>
<tr>
<td>visual processing and, 2–4, 13–14</td>
</tr>
<tr>
<td>wandering mind and, 74</td>
</tr>
<tr>
<td>word processing and, 38</td>
</tr>
<tr>
<td>brain scans</td>
</tr>
<tr>
<td>cultural differences and, 96</td>
</tr>
<tr>
<td>time perception and, 90</td>
</tr>
<tr>
<td>wandering minds and, 74</td>
</tr>
<tr>
<td>working memory and, 50, 51</td>
</tr>
<tr>
<td>Broadbent, Donald, 53</td>
</tr>
<tr>
<td>Bushong, Ben, 224</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>camouflage, 28</td>
</tr>
<tr>
<td>Canessa, Nicola, 172</td>
</tr>
<tr>
<td>card-sorting exercise, 87</td>
</tr>
<tr>
<td>Carlsson, Arvid, 123</td>
</tr>
<tr>
<td>categorizing, 87–88</td>
</tr>
</tbody>
</table>
Cattell, James, 32
cellphones
 multitasking and use of, 107–108
 See also phone conversations
central vision, 5–7
Chabris, Christopher, 21, 83
change blindness, 21
Chartrand, Tanya, 148
Chen, Yi-Fen, 221
chimpanzee memory study, 54
choices
 control related to, 210–211
 study on making, 208–209
chromostereopsis, 24
Chua, Hannah, 95
chunking information, 52, 54
classical conditioning, 139
cognitive dissonance, 76–77, 182
cognitive illusion, 91
cognitive load, 71, 73
color-blindness, 25–28
colors
 chromostereopsis and, 24
 cultural meaning of, 29, 30
 deficiencies in seeing, 25–28
 influence of shapes and, 3, 13–14
 moods affected by, 30
commission errors, 197
competition, 140–141
conceptual models, 80–81
confirmation bias, 91–92
contingent rewards, 127
continuous reinforcement schedules, 122
control
 autonomy and, 142
 choice related to, 210–211
 flow state and, 93
Cowan, Nelson, 52
Craik, Kenneth, 78
creativity, mind wandering and, 75
Csikszentmihalyi, Mihaly, 93
 cues
 affordance, 17–20
 salient, 106
culture
 color meaning and, 29, 30
 emotional expression and, 166
 thinking related to, 95–96
Custers, Ruud, 127
Davis, Joshua, 171
daydreaming, 74
De Vries, Marieke, 187, 214
decision-making, 203–226
 choice related to, 208–211
 emotions and, 171–172
 group process and, 216–217
 habit-based vs. value-based, 218–219
 mood as influence on, 214–215
 product display and, 224–226
 social validation and, 220–223
 third-person effect and, 222
 time vs. money in, 212–213
 unconscious, 204–207
decorative fonts, 41
defaults and shortcuts, 135
Design of Everyday Things, The (Norman), 17
disasters, natural vs. man-made, 137
Dodson, John, 192
Don’t Make Me Think (Krug), 70, 132
dopamine system, 123–124
 breaking dopamine loops, 126
 monetary rewards and, 128
 music listening and, 181
 unpredictability and, 125–126
dreaming, memory and, 60
Drive (Pink), 128, 130
dropdown menus, 64
Duchenne smiles, 162–163
Duchenne, Guillaume, 162
Dunbar, Robin, 144, 146
Dunbar’s number, 144–145
Dutton, Denis, 177
Dyson, Mary, 46
E
Ebbinghaus, Hermann, 63
Ekman, Paul, 166–167
email
 determining lying in, 154
 dopamine system and, 123, 125
Emerson, Lauren, 108
emotions, 165–188
 arousal levels for, 167
 before and after events, 185–186
 brain mirroring of, 172
 busyness and, 175–176
 decision-making and, 171–172
 difficult achievements and, 182–183
 familiarity and, 187–188
 groupthink and positive, 169
 happiness and, 175–178, 179–180
 moods distinguished from, 166
 music listening and, 181
 pastoral scenes and, 177–178
predictions of future, 184
real vs. fake smiles and, 163
stories and anecdotes to evoke, 170
surprises and, 173–174
trust related to, 179–180
universality of, 166–167
vivid memories and, 65
Emotions Revealed (Ekman), 166
empathy, 147
effects, 189–201
automatic steps leading to, 101
computer messages indicating, 190–191
considering the consequences of, 196
fundamental attribution, 136–137
HFACS classification of, 199
inevitability of, 190
memory-related, 57, 65
performance and motor-control, 197–198
strategies in correcting, 200–201
stress and the making of, 192–195
Swiss cheese model of, 198
Eternal Sunshine of the Spotless Mind (film), 62
evolutionary perspectives, 6, 110, 123, 132, 177
examples, providing, 85–86
exclusivity and scarcity, 182
expectations, time-related, 90
eyes, life indicated through, 11
See also vision
eye-tracking research, 11, 21–22
eyewitness testimonies, 61–62

F
facial expressions, 166–167
facial recognition, 10–12
familiarity, 187–188
fear of loss, 187
feedback, flow state and, 93, 94
feelings. See emotions
Festinger, Leon, 76, 182
Fishbach, Ayelet, 119
Fitts’s law, 72
fixation patterns, 32–33
fixed reinforcement schedules, 120–121
flashbulb memories, 65
Flesch-Kincaid formula, 35
flow state, 93–94
fMRI technology. See brain scans
focused attention, 50
fonts
decorative, 41
readability of, 40–42
serif vs. sans serif, 40
size of, 43–44
forgetting, 63–64
four-item rule, 52–54
free trials, 77
frequency expectations, 103–104
fundamental attribution errors, 136–137
fusiform face area (FFA), 10, 11
G
Gal, David, 77
gaming, 73
Garcia, Stephen, 140
generalizing research, 96
Gentner, Dedre, 78
Geography of Bliss, The (Weiner), 179
Geography of Thought, The (Nisbett), 95
geon theory, 8–9
Gibson, James, 17
Gilbert, Daniel, 184
goal-gradient effect, 118
Good Samaritan research, 89–90
gorilla video, 21
Greene, David, 127
group decision-making, 216–217
groupthink, 169, 216
H
habit formation/change, 138–139
habit-based decisions, 218–219
habituation, information, 100
Haidt, Jonathan, 150
Hancock, Jeff, 154
happiness, 175–178
busyness related to, 175–176
pastoral scenes and, 177–178
predictions of future, 184
trust as predictor of, 179–180
Havas, David, 171
headlines and titles, 37
Heath, Chip, 149
heuristic work, 128
Hillarp, Nils-Ake, 123
Hsee, Christopher, 175
Hubel, David, 13
Hull, Clark, 118
Human Error (Reason), 198
Hyman, Ira, 107
hyperlinks, 19–20, 75
I
imagination, 14
imitation, 147, 148
inattention blindness, 21
inclusion errors, 57
incorrect affordances, 17
information
chunking, 52, 54
habituation to, 100
InformationIsBeautiful.net, 29, 30
initiation effect, 182
interactions. See social interactions
interval reinforcement schedules, 120–121
Invisible Gorilla, The (Chabris and Simons), 21, 83
Iyengar, Sheena, 208, 210

J
Jack, Rachel, 166
Ji, Daoyun, 60
Johnson-Laird, Philip, 78
joy laughter, 160

K
Kahn, Peter, 178
Kang, Neung Eun, 200, 201
Kanizsa, Gaetano, 2
Kanwisher, Nancy, 10
Kaplan, Stephen, 178
Kawai, Nobuyuki, 54
Keller, J. M., 70
Kivetz, Ran, 118
Knutson, Brian, 128
Koo, Minjung, 119
Krienen, Fenna, 157
Krug, Steve, 70, 132
Krumhuber, Eva, 163
Kurtzberg, Terri, 154

L
Larson, Adam, 5
Larson, Kevin, 34
Latane, Bibb, 220
laughter, 159–161
laziness, 132, 175
LeDoux, Joseph, 166
Lepper, Mark, 127, 208
Lerner, Jennifer, 169
Lim, Nangyeon, 167
loads, 71–73
Fitts’s law of, 72
mental resources used by, 71
reasons for increasing, 73
trade-offs related to, 71
Loftus, Elizabeth, 61
long-term memory
four-item rule and, 53
repetition and, 55
schemata and, 55–56
Looser, Christine, 11
Loschky, Lester, 5
low-light vision, 3
Lupien, Sonia, 193
lying, 153–155

M
Mandler, George, 53
Manstead, Antony, 163
mastery as motivator, 130
Matsuzawa, Tetsuro, 54
McCandless, David, 29
medial prefrontal cortex (MPFC), 158
memory, 49–66
brain processes and, 50–51, 55
emotions and, 65
errors of, 57, 65
flashbulb, 65
forgetting and, 63–64
four-item rule and, 52–54
inclusion errors, 57
interesting facts about, 59
long-term, 53, 55–56
phonological coding and, 60
reading viewpoint and, 38
recency and suffix effects, 59
recognition vs. recall tasks and, 57
reconstruction process, 61–62
repetition and, 55
schemata and, 55–56
sleep and, 60
working, 50–51, 52–53, 54
mental models, 78–79
conceptual models vs., 80–81
of frequency expectations, 103
of screen layout, 16
Mental Models (Gentner), 78
Mental Models (Johnson-Laird), 78
mental processing. See thinking
mid-brain, 110, 187
Miller, George A., 52
mind wandering, 74–75
mirror neurons, 147, 148, 156
mistakes. See errors
Mitchell, Terence, 185
models
conceptual, 80–81
mental, 16, 78–79
Mogilner, Cassie, 212
Mojzisch, Andreas, 216
Mondloch, Katherine, 11
monetary rewards, 128
moods
affected by color, 30
decision-making influenced by, 214–215
distinctions between, 166
research on changing, 187
moral disengagement theory, 154
Morrell taxonomy, 197
motivation, 117–142
 autonomy and, 142
 competition and, 140–141
 connecting with others as, 128
 disaster relief donations and, 137
 dopamine system and, 123–126
 fundamental attribution errors and, 136–137
 goal achievement and, 118–119
 habit formation/change and, 138–139
 intrinsic vs. extrinsic rewards and, 127–128
 progress and mastery in, 129–130
 satisficing principle and, 132–134
 shortcuts and defaults for, 135
 social norms related to, 131
 unconscious goal setting and, 127
 unpredictability and, 125–126
 variable rewards and, 120–122
motor load, 71, 72, 73
motor switching, 72
motor-control errors, 197–198
movement
 brain processing of, 13
 in peripheral vision, 5
Müller-Lyer, Franz, 3
multitasking, 107–109
 media use and, 108
 mind wandering and, 75
 video and test about, 109
music
 listening to, 181
 reading, 33

N
Naquin, Charles, 153, 154
Nass, Clifford, 108
Nature of Explanation, The (Craik), 78
Neisser, Ulric, 65
Neuro Web Design (Weinschenk), 76, 110, 187, 220
new brain, 110
Nisbett, Richard, 95, 127
Nolan, Jessica, 131
Norman, Don, 17

O
object recognition, 8–9
old brain, 110, 142
omission errors, 197
online interactions
 community bonding and, 149
 need for laughter in, 160
 social rules in, 151–152
operant conditioning, 120–122
Ophir, Eyal, 108
opioid system, 123
optical illusions, 3
P
Paap, Kenneth, 32
Panksepp, Jaak, 160
parietal lobe, 90
pastoral scenes, 177–178
pattern recognition
 reading and, 40–42
 visual perception and, 8–9
Pavlov, Ivan, 125
Pavlovian response, 125, 226
perceived affordances, 17, 18–19
performance errors, 197
performance reviews, 154
peripheral vision
 central vision vs., 5–7
 reading and use of, 33
phone conversations
 lying in, 154
 multitasking during, 107–108
phonological coding, 60
Pierce, Karen, 10
Pink, Daniel, 128, 129, 130
pleasure, 123, 181
Pope, Alexander, 189
prefrontal cortex, 50–51, 94
progress as motivator, 129
progress indicators, 89, 90
progressive disclosure, 68–70
Provine, Robert, 159
proximity of items, 23
R
Ramachandran, Vilayanur, 148
ratings and reviews, 220–223
ratio reinforcement schedules, 120–121
Rayner, Keith, 32
reading, 31–48
 brain processes and, 38
 comprehending and, 35–39
 font considerations and, 40–44
 letter case and, 32, 33–34
 line length and, 46–48
 memory related to, 38
 pattern recognition in, 40–42
 peripheral vision used in, 33
 readability calculations and, 35–36
 saccade and fixation patterns in, 32–33
 text on screen vs. paper, 45
 titles and headlines, 37
 word shape and, 32
Reason, James, 198
recall tasks, 57
recency effect, 59
recognition
 facial, 10–12
 memory recall vs., 57
 pattern, 8–9
reconstructed memories, 61–62
reinforcement, schedules of, 120–122
repetition, memory and, 55
reviews and ratings, 220–223
rewards
 anticipating vs. getting, 124
 goal motivation related to, 118–119
 intrinsic vs. extrinsic, 127–128
 power of variable, 120–122
rhymes, memory of, 60
rigid explorations, 200
Rodriguez, Alex, 194
Rucker, Derek, 77
S
saccades, 32–33
salient cues, 106
Salimpoor, Valorie, 181
satisficing principle, 132–134
scarcity and exclusivity, 182
schemata, 55–56
Schooler, Jonathan, 74
Schwarz, Norbert, 42
screens
 people’s scanning of, 15–16
 perceived affordances on, 18–19
 reading on paper vs., 45
Seif, Farid, 103
selective attention, 98–99
sensory input
 sensitivity to, 114–115
 working memory vs., 51
serif vs. sans serif fonts, 40
Sesame Street video, 87
shapes, influence of, 3, 13–14
Shappell, Scott, 199
shortcuts and defaults, 135
short-term memory. See working memory
Shulz-Hardt, Stefan, 216
sight. See vision
signal detection theory, 114–115
signaling events, 104
Silence, Elizabeth, 179
Simon, Herbert, 132
Simons, Daniel, 21, 83
Skinner, B. F., 120
sleep, memory and, 60
small commitments, 77
smiles, real vs. fake, 162–163
Smith, Madeline, 154
social groups
 size limit for, 144–145
 strong vs. weak ties in, 145–146
social interactions, 143–163
 brain responses in, 156–158
 honesty and lying in, 153–155
 imitation and empathy in, 147–148
 laughter as bonding in, 159–161
 as motivating factor, 128
 real vs. fake smiles in, 162–163
 response to friends/relatives in, 157–158
 rules of online, 151–152
 social group size and, 144–146
 synchronous activity and, 149–150
 syncing of brains in, 156
social media connections, 145, 158
social norms, 131
social validation, 220–223
Solso, Robert, 98
Song, Hyunjin, 42
sounds, attention-getting, 112–113
St. Claire, Lindsay, 194
Stephens, Greg, 156
storytelling, 82–84
 appropriate use of, 84
 causation implied in, 83–84
 classic themes for, 83
 evoking emotions through, 170
 structure and format for, 82–83
stress
 errors made under, 192–195
 gender and reactions to, 194
 memory performance and, 51, 193
 reducing with sweets and sex, 194
strong-tie communities, 145, 146
Stumbling on Happiness (Gilbert), 184
suffix effect, 59
surprises, 173–174
sustained attention, 105
synchronous activity, 149–150
systematic explorations, 200
Szameitat, Diana, 160
T
task switching, 107
Telling Lies (Ekman), 166
testimonials and ratings, 220
text messages
 dopamine system and, 126
 rate of lying in, 154
thinking, 67–96
 categorizing and, 87–88
 cognitive dissonance and, 76–77
 conceptual models and, 80–81
confirmation bias and, 91–92

cultural differences in, 95–96

elements and, 85–86

flow state and, 93–94

loads related to, 71–73

mental models and, 78–79

mind wandering and, 74–75

progressive disclosure and, 68–70

storytelling and, 82–84

time perception and, 89–90

third-person effect, 222

tickle laughter, 160

Time Paradox, The (Zimbardo and Boyd), 89

time perception, 89–90, 94

titles and headlines, 37

Tor, Avishalom, 140

trial and error explorations, 200

trust, 179–180

tunnel action, 193

typefaces. See fonts

U

Ulrich, Roger, 178

Ulrich-Lai, Yvonne, 194

uncertainty, 77, 220

unconscious decision-making, 204–207

unconscious motivation, 127

unconscious selective attention, 98

universal emotions, 166–167

unpredictability, 125–126

uppercase letters, 32, 33–34

USS Vincennes incident, 100

V

value-based decisions, 218–219

van der Linden, Dimitri, 196

Van Veen, Vincent, 76

variable rewards, 120–122

video

examples provided through, 86

fake smiles detected on, 163

vision, 1–30

affordance cues and, 17–20

brain processes and, 2–4, 13–14

chromostereopsis and, 24

color blindness and, 25–28

color meaning and, 29, 30

eye-tracking research, 11, 21–22

facial recognition and, 10–12

inattention blindness and, 21

item proximity and, 23

low-light situations and, 3

object identification and, 8–9

pattern recognition and, 8–9

peripheral vs. central, 5–7

screen scanning and, 15–16

visual field changes and, 21–22

visual cortex

2D vs. 3D vision and, 4

imagination and activity in, 14

information processed in, 13

visual load, 71, 73

W

wandering mind, 74–75

weak-tie communities, 145, 146

websites

color-blindness check, 28

cultural color chart, 29, 30

on readability of text, 36, 41

using under stress, 192

Weiner, Eric, 179

Wheatley, T., 11

When Prophecy Fails (Festinger), 76

Wiegmann, Douglas, 199

Wiesel, Torsten, 13

Wilson, Matthew, 60

Wiltermuth, Scott, 149

words

brain processing of, 38

reading and the shape of, 32

working memory

academic success and, 51

brain processes and, 50–51

four-item rule and, 52–54

sensory input vs., 51

wrong-action errors, 197

X

x-height of fonts, 43

Y

Yarbus, Alfred, 22

Yerkes, Robert, 192

Yerkes-Dodson law, 192–193

Yoon, Wan Chul, 200, 201

Z

Zagefka, Hanna, 137

Zihui, Lu, 95

Zimbardo, Philip, 89