
http://www.facebook.com/share.php?u=http://www.informIT.com/title/ 9780136677642
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/ 9780136677642
https://plusone.google.com/share?url=http://www.informit.com/title/ 9780136677642
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/ 9780136677642
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/ 9780136677642

Discovering Modern C++

Second Edition

http://informit.com/series/indepth

Discovering Modern C++

An Intensive Course for Scientists, Engineers,
and Programmers

Second Edition

Peter Gottschling

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inci-
dental or consequential damages in connection with or arising out of the use of the information or programs
contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may in-
clude electronic versions; custom cover designs; and content particular to your business, training goals, mar-
keting focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.
com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2021944389

Copyright © 2022 Pearson Education, Inc.

Cover image: Dmitriy Rybin/Shutterstock

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearson.com/permissions/.

ISBN-13: 978-0-13-667764-2

ISBN-10: 0-13-667764-9

ScoutAutomatedPrintCode

mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions/

To my wonderful children, Vincent, Daniel, Yanis, and Anissa

This page intentionally left blank

Contents

Preface xix

Reasons to Learn C++ xix

Reasons to Read This Book xx

The Beauty and the Beast xx

Languages in Science and Engineering xxi

Typographical Conventions xxii

Acknowledgments xxv

About the Author xxvii

Chapter 1 C++ Basics 1

1.1 Our First Program 1

1.2 Variables 4

1.2.1 Intrinsic Types 4

1.2.2 Characters and Strings 5

1.2.3 Declaring Variables 6

1.2.4 Constants 6

1.2.5 Literals 7

1.2.6 Non-narrowing Initialization 9

1.2.7 Scopes 10

1.3 Operators 12

1.3.1 Arithmetic Operators 13

1.3.2 Boolean Operators 15

1.3.3 Bitwise Operators 16

1.3.4 Assignment 17

1.3.5 Program Flow 17

1.3.6 Memory Handling 18

vii

viii Contents

1.3.7 Access Operators 18

1.3.8 Type Handling 19

1.3.9 Error Handling 19

1.3.10 Overloading 19

1.3.11 Operator Precedence 20

1.3.12 Avoid Side Effects! 20

1.4 Expressions and Statements 22

1.4.1 Expressions 22

1.4.2 Statements 23

1.4.3 Branching 23

1.4.4 Loops 26

1.4.5 goto 29

1.5 Functions 30

1.5.1 Arguments 30

1.5.2 Returning Results 32

1.5.3 Inlining 33

1.5.4 Overloading 33

1.5.5 main Function 35

1.6 Error Handling 35

1.6.1 Assertions 36

1.6.2 Exceptions 37

1.6.3 Static Assertions 41

1.7 I/O 41

1.7.1 Standard Output 41

1.7.2 Standard Input 42

1.7.3 Input/Output with Files 43

1.7.4 Generic Stream Concept 43

1.7.5 Formatting 44

1.7.6 New Formatting 46

1.7.7 Dealing with I/O Errors 49

1.7.8 Filesystem 51

1.8 Arrays, Pointers, and References 52

1.8.1 Arrays 52

1.8.2 Pointers 54

1.8.3 Smart Pointers 57

1.8.4 References 60

1.8.5 Comparison between Pointers and References 60

Contents ix

1.8.6 Do Not Refer to Outdated Data! 61

1.8.7 Containers for Arrays 62

1.9 Structuring Software Projects 64

1.9.1 Comments 64

1.9.2 Preprocessor Directives 65

1.10 Exercises 69

1.10.1 Narrowing 69

1.10.2 Literals 70

1.10.3 Operators 70

1.10.4 Branching 70

1.10.5 Loops 70

1.10.6 I/O 70

1.10.7 Arrays and Pointers 70

1.10.8 Functions 70

Chapter 2 Classes 71

2.1 Program for Universal Meaning, Not Technical Details 71

2.2 Members 73

2.2.1 Member Variables 73

2.2.2 Accessibility 74

2.2.3 Access Operators 76

2.2.4 The Static Declarator for Classes 77

2.2.5 Member Functions 77

2.3 Setting Values: Constructors and Assignments 78

2.3.1 Constructors 78

2.3.2 Assignment 88

2.3.3 Initializer Lists 89

2.3.4 Uniform Initialization 90

2.3.5 Move Semantics 93

2.3.6 Construct Objects from Literals 103

2.4 Destructors 105

2.4.1 Implementation Rules 105

2.4.2 Dealing with Resources Properly 105

2.5 Method Generation Summary 111

2.6 Accessing Member Variables 112

2.6.1 Access Functions 112

2.6.2 Subscript Operator 114

2.6.3 Constant Member Functions 114

2.6.4 Reference-Qualified Members 116

x Contents

2.7 Operator Overloading Design 117

2.7.1 Be Consistent! 117

2.7.2 Respect the Priority 118

2.7.3 Member or Free Function 118

2.7.4 Overloading Equality 121

2.7.5 Overloading a Spaceship 122

2.7.6 Explore the Type System in Overloading 125

2.8 Exercises 126

2.8.1 Polynomial 126

2.8.2 Rational 126

2.8.3 Move Assignment 127

2.8.4 Initializer List 127

2.8.5 Resource Rescue 127

Chapter 3 Generic Programming 129

3.1 Function Templates 129

3.1.1 Instantiation 130

3.1.2 Parameter Type Deduction 131

3.1.3 Dealing with Errors in Templates 135

3.1.4 Mixing Types 136

3.1.5 Uniform Initialization 137

3.1.6 Automatic Return Type 137

3.1.7 Terse Template Parameters 138

3.2 Namespaces and Function Lookup 138

3.2.1 Namespaces 138

3.2.2 Argument-Dependent Lookup 141

3.2.3 Namespace Qualification or ADL 145

3.3 Class Templates 147

3.3.1 A Container Example 147

3.3.2 Designing Uniform Class and Function Interfaces 149

3.4 Type Deduction and Definition 154

3.4.1 Automatic Variable Type 155

3.4.2 Type of an Expression 155

3.4.3 decltype(auto) 156

3.4.4 Deduced Class Template Parameters 157

3.4.5 Deducing Multiple Types 159

3.4.6 Defining Types 160

Contents xi

3.5 Template Specialization 162

3.5.1 Specializing a Class for One Type 162

3.5.2 Specializing and Overloading Functions 164

3.5.3 Partial Specialization of Classes 166

3.5.4 Partially Specializing Functions 167

3.5.5 Structured Bindings with User Types 169

3.5.6 User-Defined Formatting 172

3.6 Non-Type Parameters for Templates 174

3.6.1 Fixed-Size Containers 174

3.6.2 Deducing Non-Type Parameters 176

3.7 Functors 177

3.7.1 Function-Like Parameters 179

3.7.2 Composing Functors 180

3.7.3 Recursion 181

3.7.4 Generic Reduction 184

3.8 Lambda 185

3.8.1 Capture 186

3.8.2 Generic Lambdas 189

3.9 Variable Templates 190

3.10 Programming with Concept(s) 192

3.10.1 Defining Concepts 194

3.10.2 Dispatching by Concepts 197

3.10.3 Concepts in Classes 198

3.10.4 Concept Design 200

3.11 Variadic Templates 200

3.11.1 Recursive Functions 200

3.11.2 Direct Expansion 202

3.11.3 Index Sequences 203

3.11.4 Folding 204

3.11.5 Type Generators 205

3.11.6 Growing Tests 206

3.12 Exercises 208

3.12.1 String Representation 208

3.12.2 String Representation of Tuples 208

3.12.3 Generic Stack 208

3.12.4 Rationals with Type Parameter 208

3.12.5 Iterator of a Vector 209

3.12.6 Odd Iterator 209

xii Contents

3.12.7 Odd Range 209

3.12.8 Stack of bool 209

3.12.9 Stack with Custom Size 209

3.12.10Trapezoid Rule 210

3.12.11Partial Specialization with a static Function 210

3.12.12Functor 210

3.12.13Lambda 210

3.12.14 Implement make_unique 210

Chapter 4 Libraries 211

4.1 Standard Template Library 211

4.1.1 Introductory Example 212

4.1.2 Iterators 212

4.1.3 Containers 218

4.1.4 Algorithms 226

4.1.5 Ranges 231

4.1.6 Parallel Computation 237

4.2 Numerics 239

4.2.1 Complex Numbers 239

4.2.2 Random Number Generators 242

4.2.3 Mathematical Special Functions 250

4.2.4 Mathematical Constants 251

4.3 Meta-programming 252

4.3.1 Limits 253

4.3.2 Type Traits 254

4.4 Utilities 256

4.4.1 optional 256

4.4.2 tuple 257

4.4.3 variant 259

4.4.4 any 261

4.4.5 string_view 262

4.4.6 span 263

4.4.7 function 263

4.4.8 Reference Wrapper 266

4.5 The Time Is Now 267

4.6 Concurrency 270

4.6.1 Terminology 270

4.6.2 Overview 270

4.6.3 thread 270

Contents xiii

4.6.4 Talking Back to the Caller 272

4.6.5 Asynchronous Calls 273

4.6.6 Asynchronous Solver 275

4.6.7 Variadic Mutex Lock 279

4.6.8 Coroutines 280

4.6.9 Other New Concurrency Features 282

4.7 Scientific Libraries Beyond the Standard 282

4.7.1 Alternative Arithmetic 283

4.7.2 Interval Arithmetic 283

4.7.3 Linear Algebra 284

4.7.4 Ordinary Differential Equations 284

4.7.5 Partial Differential Equations 284

4.7.6 Graph Algorithms 285

4.8 Exercises 285

4.8.1 Sorting by Magnitude 285

4.8.2 Finding with a Lambda as Predicate 285

4.8.3 STL Container 285

4.8.4 Complex Numbers 286

4.8.5 Parallel Vector Addition 287

4.8.6 Refactor Parallel Addition 287

Chapter 5 Meta-Programming 289

5.1 Let the Compiler Compute 289

5.1.1 Compile-Time Functions 289

5.1.2 Extended Compile-Time Functions 292

5.1.3 Primeness 293

5.1.4 How Constant Are Our Constants? 295

5.1.5 Compile-Time Lambdas 296

5.2 Providing and Using Type Information 297

5.2.1 Type Traits 298

5.2.2 Conditional Exception Handling 301

5.2.3 A const-Clean View Example 301

5.2.4 Parameterized Rational Numbers 309

5.2.5 Domain-Specific Type Properties 310

5.2.6 enable_if 312

5.2.7 Variadic Templates Revised 315

5.3 Expression Templates 318

5.3.1 Simple Operator Implementation 318

5.3.2 An Expression Template Class 322

xiv Contents

5.3.3 Generic Expression Templates 324

5.3.4 Copy Before It’s Stale 326

5.4 Meta-Tuning: Write Your Own Compiler Optimization 328

5.4.1 Classical Fixed-Size Unrolling 330

5.4.2 Nested Unrolling 332

5.4.3 Dynamic Unrolling: Warm-up 337

5.4.4 Unrolling Vector Expressions 338

5.4.5 Tuning an Expression Template 340

5.4.6 Tuning Reduction Operations 342

5.4.7 Tuning Nested Loops 349

5.4.8 Tuning Summary 353

5.5 Optimizing with Semantic Concepts 354

5.5.1 Semantic Tuning Requirements 354

5.5.2 Semantic Concept Hierarchy 357

5.6 Turing Completeness 359

5.7 Exercises 362

5.7.1 Type Traits 362

5.7.2 Fibonacci Sequence 362

5.7.3 Meta-Program for Greatest Common Divisor 362

5.7.4 Rational Numbers with Mixed Types 363

5.7.5 Vector Expression Template 363

5.7.6 Meta-List 364

Chapter 6 Object-Oriented Programming 365

6.1 Basic Principles 365

6.1.1 Base and Derived Classes 366

6.1.2 Inheriting Constructors 369

6.1.3 Virtual Functions and Polymorphic Classes 370

6.1.4 Functors via Inheritance 376

6.1.5 Derived Exception Classes 378

6.2 Removing Redundancy 379

6.3 Multiple Inheritance 380

6.3.1 Multiple Parents 380

6.3.2 Common Grandparents 381

6.4 Dynamic Selection by Sub-typing 387

6.5 Conversion 389

6.5.1 Casting between Base and Derived Classes 390

6.5.2 Const-Cast 393

6.5.3 Reinterpretation Cast 394

Contents xv

6.5.4 Function-Style Conversion 394

6.5.5 Implicit Conversions 396

6.6 Advanced Techniques 397

6.6.1 CRTP 397

6.6.2 Type Traits with Overloading 401

6.7 Exercises 405

6.7.1 Non-redundant Diamond Shape 405

6.7.2 Inheritance Vector Class 405

6.7.3 Refactor Exceptions in Vector 405

6.7.4 Test for Thrown Exception 405

6.7.5 Clone Function 405

Chapter 7 Scientific Projects 407

7.1 Implementation of ODE Solvers 407

7.1.1 Ordinary Differential Equations 407

7.1.2 Runge-Kutta Algorithms 409

7.1.3 Generic Implementation 411

7.1.4 Outlook 417

7.2 Creating Projects 418

7.2.1 Build Process 419

7.2.2 Build Tools 423

7.2.3 Separate Compilation 427

7.3 Modules 430

7.4 Some Final Words 434

Appendix A Clumsy Stuff 435

A.1 More Good and Bad Scientific Software 435

A.2 Basics in Detail 441

A.2.1 static Variables 441

A.2.2 More about if 442

A.2.3 Duff’s Device 443

A.2.4 Program Calls 444

A.2.5 Assertion or Exception? 445

A.2.6 Binary I/O 446

A.2.7 C-Style I/O 447

A.2.8 Garbarge Collection 447

A.2.9 Trouble with Macros 448

A.3 Real-World Example: Matrix Inversion 449

xvi Contents

A.4 Class Details 458

A.4.1 Pointer to Member 458

A.4.2 More Initialization Examples 459

A.4.3 Accessing Multi-Dimensional Data Structures 460

A.5 Method Generation 462

A.5.1 Automatic Generation 463

A.5.2 Controlling the Generation 465

A.5.3 Generation Rules 466

A.5.4 Pitfalls and Design Guides 470

A.6 Template Details 474

A.6.1 Uniform Initialization 474

A.6.2 Which Function Is Called? 474

A.6.3 Specializing for Specific Hardware 477

A.6.4 Variadic Binary I/O 478

A.7 More on Libraries 479

A.7.1 Using std::vector in C++03 479

A.7.2 variant 480

A.8 Dynamic Selection in Old Style 480

A.9 More about Meta-Programming 481

A.9.1 First Meta-Program in History 481

A.9.2 Meta-Functions 483

A.9.3 Backward-Compatible Static Assertion 485

A.9.4 Anonymous Type Parameters 485

A.10 Linking to C Code 489

Appendix B Programming Tools 491

B.1 g++ 491

B.2 Debugging 492

B.2.1 Text-Based Debugger 492

B.2.2 Debugging with Graphical Interface: DDD 494

B.3 Memory Analysis 496

B.4 gnuplot 498

B.5 Unix, Linux, and Mac OS 498

Appendix C Language Definitions 501

C.1 Value Categories 501

C.2 Operator Overview 502

Contents xvii

C.3 Conversion Rules 504

C.3.1 Promotion 504

C.3.2 Other Conversions 505

C.3.3 Usual Arithmetic Conversions 505

C.3.4 Narrowing 506

Bibliography 507

Subject Index 513

This page intentionally left blank

Preface

“The world is built on C++ (and its C subset).”

—Herb Sutter

The infrastructures at Google, Amazon, and Facebook are built using components and ser-
vices designed and implemented in the C++ programming language. A considerable portion
of the technology stack of operating systems, networking equipment, and storage systems is
implemented in C++. In telecommunication systems, almost all landline and cellular phone
connections are orchestrated by C++ software. And key components in industrial and trans-
portation systems, including automated toll collection systems, and autonomous cars, trucks,
and autobuses depend on C++.

In science and engineering, most high-quality software packages today are implemented
in C++. The strength of the language is evidenced when projects exceed a certain size and
data structures and algorithms become non-trivial. It is no wonder that many—if not most—
simulation software programs in computational science are realized today in C++; these
include FLUENT, Abaqus, deal.II, FEniCS, OpenFOAM, and G+Smo. Even embedded
systems are increasingly realized in C++ thanks to more powerful embedded processors and
improved compilers. And the new application domains of the Internet of Things (IoT) and
embedded edge intelligence are all driven by C++ platforms such as TensorFlow, Caffe2, and
CNTK.

Core services you use every day are based on C++: your cell phone, your car, communica-
tion and industrial infrastructure, and key elements in media and entertainment services all
contain C++ components. C++ services and applications are omnipresent in modern society.
The reason is simple. The C++ language has progressed with its demands, and in many ways
leads the innovations in programming productivity and execution efficiency. Both attributes
make it the language of choice for applications that need to run at scale.

Reasons to Learn C++

Like no other language, C++ masters the full spectrum from programming sufficiently close
to the hardware on one end to abstract high-level programming on the other. The lower-level
programming—like user-definable memory management—empowers you as a programmer
to understand what really happens during execution, which in turn helps you understand the
behavior of programs in other languages. In C++ you can write extremely efficient programs
that can only be slightly outperformed by code written in machine language with ridiculous
effort. However, you should wait a little with the hardcore performance tuning and focus
first on clear and expressive software.

xix

xx Preface

This is where the high-level features of C++ come into play. The language supports a
wide variety of programming paradigms directly: object-oriented programming (Chapter 6),
generic programming (Chapter 3), meta-programming (Chapter 5), concurrent programming
(§4.6), and procedural programming (§1.5), among others.

Several programming techniques—like RAII (§2.4.2.1) and expression templates (§5.3)—
were invented in and for C++. As the language is so expressive, it was often possible to
establish these new techniques without changing the language. And who knows, maybe one
day you will invent a new technique.

Reasons to Read This Book

The material in the book has been tested on real humans. The author taught his class,
“C++ for Scientists,” over three years (i.e., three times two semesters). The students, mostly
from the mathematics department, plus some from the physics and engineering departments,
often did not know C++ before the class and were able to implement advanced techniques
like expression templates (§5.3) by the end of the course. You can read this book at your
own pace: straight to the point by following the main path or more thoroughly by reading
additional examples and background information in Appendix A.

The Beauty and the Beast

C++ programs can be written in so many ways. In this book, we will lead you smoothly
to the more sophisticated styles. This requires the use of advanced features that might be
intimidating at first but will become less so once you get used to them. Actually, high-level
programming is not only more widely applicable but is usually equally or more efficient and
readable.

We will give you a first impression with a simple example: gradient descent with constant
step size. The principle is extremely simple: we compute the steepest descent of f(x) with its
gradient, say g(x), and follow this direction with fixed-size steps to the next local minimum.
Even the algorithmic pseudo-code is as simple as this description:

Algorithm 1: Gradient descent algorithm
Input: Start value x, step size s, termination criterion ε, function f , gradient g
Output: Local minimum x
do1

x = x − s · g(x)2

while |Δf(x)| � ε ;3

For this simple algorithm, we wrote two quite different implementations. Please have a
look and let it sink in without trying to understand the technical details.

Preface xxi

void gradient_descent(double* x,
double* y, double s, double eps,
double (*f)(double, double),
double (*gx)(double, double),
double (*gy)(double, double))

{
double val= f(*x, *y), delta;
do {

*x-= s * gx(*x, *y);
*y-= s * gy(*x, *y);
double new_val= f(*x, *y);
delta= abs(new_val - val);
val= new_val;

} while (delta > eps);
}

template <typename Value , typename P1,
typename P2, typename F,
typename G>

Value gradient_descent(Value x, P1 s,
P2 eps, F f, G g)

{
auto val= f(x), delta= val;
do {

x-= s * g(x);
auto new_val= f(x);
delta= abs(new_val - val);
val= new_val;

} while (delta > eps);
return x;

}

At first glance, they look pretty similar, and we will tell you soon which one we like more.
The first version is in principle pure C, i.e., compilable with a C compiler too. The benefit is
that what is optimized is directly visible: a 2D function with double values (indicated by the
highlighted function parameters). We prefer the second version as it is more widely usable:
two functions of arbitrary dimension with arbitrary value types (visible by the marked type
and function parameters). Surprisingly, the versatile implementation is not less efficient. To
the contrary, the functions given for F and G may be inlined (see §1.5.3) so that the function
call overhead is saved, whereas the explicit use of (ugly) function pointers in the first version
makes this code acceleration difficult for the compiler.

A longer example comparing old and new styles is found in Appendix A (§A.1) for the
really patient reader. There, the benefit of modern programming is much more evident than
in the toy example here. But we do not want to hold you back too long with preliminary
skirmishing.

Languages in Science and Engineering

“It would be nice if every kind of numeric software could be written in C++ without loss
of efficiency, but unless something can be found that achieves this without

compromising the C++-type system it may be preferable to rely on Fortran, assembler
or architecture-specific extensions.”

—Bjarne Stroustrup

Scientific and engineering software is written in different languages, and which one is the
most appropriate depends on the goals and available resources:

• Math tools like MATLAB, Mathematica, or R are excellent when we can use their
existing algorithms. When we implement our own algorithms with fine-grained (e.g.,
scalar) operations, we will experience a significant decrease in performance. This might
not be an issue when the problems are small or the user is infinitely patient; otherwise
we should consider alternative languages.

xxii Preface

• Python is excellent for rapid software development and already contains scientific
libraries like “scipy” and “numpy,” and applications based on these libraries (often
implemented in C and C++) are reasonably efficient. Again, user-defined algorithms
from fine-grained operations pay a performance penalty. Python is an excellent way to
implement small and medium-sized tasks efficiently. When projects grow sufficiently
large, it becomes increasingly important that the compiler is stricter (e.g., assignments
are rejected when the argument types do not match).

• Fortran is also great when we can rely on existing, well-tuned operations like dense
matrix operations. It is well suited to accomplishing old professors’ homework (because
they only ask for what is easy in Fortran). Introducing new data structures is, in the
author’s experience, quite cumbersome, and writing a large simulation program in
Fortran is quite a challenge—today only done voluntarily by a shrinking minority.

• C allows for good performance, and a large amount of software is written in C. The
core language is relatively small and easy to learn. The challenge is to write large and
bug-free software with the simple and dangerous language features, especially pointers
(§1.8.2) and macros (§1.9.2.1). The last standard was released in 2017 and thus is
named C17. Most C features—but not all—were sooner or later introduced into C++.

• Languages like Java, C#, and PHP are probably good choices when the main com-
ponent of the application is a web or graphic interface and not too many calculations
are performed.

• C++ shines particularly when we develop large, high-quality software with good per-
formance. Nonetheless, the development process does not need to be slow and painful.
With the right abstractions at hand, we can write C++ programs quite rapidly. We
are optimistic that in future C++ standards, more scientific libraries will be included.

Evidently, the more languages we know, the more choice we have. Moreover, the better we
know those languages, the more educated our choice will be. In addition, large projects often
contain components in different languages, whereas in most cases at least the performance-
critical kernels are realized in C or C++. All this said, learning C++ is an intriguing journey,
and having a deep understanding of it will make you a great programmer in any case.

Typographical Conventions

New terms are set in clear blue and italic. C++ sources are printed blue and monospace.
Important details are marked in boldface. Classes, functions, variables, and constants are
lowercase, optionally containing underscores. An exception is matrices, which are usually
named with a single capital letter. Template parameters and concepts start with a capital
letter and may contain further capitals (CamelCase). Program output and commands are
in light blue typewriter font.

Preface xxiii

Programs requiring C++11, C++14, C++17, or C++20 features are marked with corre-
sponding margin boxes. Several programs making light use of a C++11 feature that is easily
substituted by a C++03 expression are not explicitly marked.

Except for very short code illustrations, all programming examples in this book were
tested on at least one compiler and in most cases on three compilers: g++, clang++, and
Visual Studio. All examples are kept as short as possible for easier understanding. To this
end, we don’t incorporate all features that would have been used in comparable production
code. Obviously, we minimize the usage of features not introduced yet. It is probably a
good idea to review the examples after finishing reading the book and ask yourself what you
would code differently based on all the new knowledge you acquired.

For the C++20 examples, we recommend that you try them to see whether they work on
your system. Most of the new features weren’t fully supported by all compilers at the time
of this writing. Even the existing compiler support might not have been 100 percent correct
at that time. For some new libraries, we used prototype implementations when no standard
version was available on any compiler (e.g., format library).

⇒ directory/source_code.cpp

The location of the program example relevant to the discussed topic is indicated by an
arrow and the paths of the complete programs at the beginning of the paragraph or sec-
tion. All programs are available on GitHub in the public repository https://github.com/
petergottschling/dmc3 and can thus be cloned by:

git clone https :// github.com/petergottschling/dmc3.git

On Windows, it might be more convenient to use TortoiseGit; see tortoisegit.org.

Register your copy of Discovering Modern C++, Second Edition, on the InformIT site
for convenient access to updates and/or corrections as they become available. To start
the registration process, go to informit.com/register and log in or create an account.
Enter the product ISBN (9780136677642) and click Submit. Look on the Registered
Products tab for an Access Bonus Content link next to this product, and follow that
link to access any available bonus materials. If you would like to be notified of exclusive
offers on new editions and updates, please check the box to receive email from us.

https://github.com/petergottschling/dmc3
https://github.com/petergottschling/dmc3
https://github.com/petergottschling/dmc3.git
http://tortoisegit.org
http://informit.com/register

Pearson’s Commitment to Diversity, Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all learners.
We embrace the many dimensions of diversity, including but not limited to race, ethnic-
ity, gender, socioeconomic status, ability, age, sexual orientation, and religious or political
beliefs.

Education is a powerful force for equity and change in our world. It has the potential
to deliver opportunities that improve lives and enable economic mobility. As we work with
authors to create content for every product and service, we acknowledge our responsibility
to demonstrate inclusivity and incorporate diverse scholarship so that everyone can achieve
their potential through learning. As the world’s leading learning company, we have a duty
to help drive change and live up to our purpose to help more people create a better life for
themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

• Everyone has an equitable and lifelong opportunity to succeed through learning.

• Our educational products and services are inclusive and represent the rich diversity of
learners.

• Our educational content accurately reflects the histories and experiences of the learners
we serve.

• Our educational content prompts deeper discussions with learners and motivates them
to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any
concerns or needs with this Pearson product so that we can investigate and address them.

• Please contact us with concerns about any potential bias at https://www.pearson
.com/report-bias.html.

https://www.pearson.com/report-bias.html
https://www.pearson.com/report-bias.html

Acknowledgments

Starting chronologically, the author would like to thank Karl Meerbergen and his colleagues
for the initial 80-page text used as a block lecture at KU Leuven taught by Karl and me
in 2008. Over time, most passages have been rewritten, but the original document provided
the initial momentum that was essential for the entire writing process. I truly owe Mario
Mulansky a great debt for contributing Section 7.1, Implementation of ODE Solvers.

I am tremendously grateful to Jan Christiaan van Winkel and Fabio Fracassi, who back-
checked every tiny detail of the manuscript’s first edition and gave many suggestions toward
standard compliance and comprehensibility. I am equally indebted to the proofreaders of the
second edition: Chuck Allison, Sean Parent, and especially Marc Gregoire, who thoroughly
checked each and every detail of the book. In addition, Jan Christiaan van Winkel pro-
vided invaluable assistance during the final production of this edition and deserves special
recognition.

I would especially like to thank Bjarne Stroustrup for giving strategic tips to shape the
book, establishing contact with Addison-Wesley, generously allowing me to reuse his well-
prepared material, and (lest we forget) for creating C++. All of these people pushed me hard
to update my ideas with the latest language features as much as possible.

In addition, I thank Karsten Ahnert for his recommendations as well as Markus Abel
and Theodore Omtzigt for helping me eliminate verbosity in the Preface.

When I was looking for an interesting random number application for Section 4.2.2.6,
Jan Rudl suggested the share price evolution he used in his class [60].

I am obliged to Technische Universität Dresden, which let me teach C++ in the math-
ematics department for three years, and I appreciate the constructive feedback I received
from all the students in this course. Likewise, I am grateful to those who attended my C++

trainings.
I am deeply indebted to my editor, Greg Doench, for accepting my half-serious, half-

casual writing style in this book, for enduring long-lasting discussions about strategic de-
cisions until we were both satisfied, and for providing professional support, without which
this book would never have reached publication.

Last but not least, I wholeheartedly thank my children, Yanis, Anissa, Vincent, and
Daniel, for sacrificing so much of our time together so I could work on the book instead.

xxv

This page intentionally left blank

About the Author

Peter Gottschling’s professional passion is writing leading-edge scientific software, and he
hopes to infect many readers with this virus. This vocation resulted in writing the Matrix
Template Library 4 and 5 as well as coauthoring other libraries including the Boost Graph
Library. These programming experiences were shared in several C++ courses at universities
and in professional training sessions—finally leading to this book.

He is a member of the ISO C++ standards committee, chair of Germany’s programming
language standards committee, and founder of the C++ User Group in Dresden. In his young
and wild years at TU Dresden, he studied computer science and mathematics in parallel, the
latter up to a bachelor’s-like degree while finishing the former with a PhD. After an odyssey
through academic institutions, he founded his own company, SimuNova, and settled with
the younger two of his four children in his hometown of Leipzig.

xxvii

This page intentionally left blank

Chapter 1

C++ Basics

“To my children:
Never make fun of having to help me with computer stuff.

I taught you how to use a spoon.”

—Sue Fitzmaurice

In this first chapter, we will guide you through the fundamental features of C++.
As for the entire book, we will look at them from different angles but we will not try
to expose every possible detail—which is not feasible anyway. For more detailed questions
on specific features, we recommend the online reference at http://en.cppreference.com.

1.1 Our First Program

As an introduction to the C++ language, let us look at the following example:

#include <iostream >

int main ()
{

std::cout � "The answer to the Ultimate Question of Life ,\n"
� "the Universe , and Everything is:"
� std::endl � 6 * 7 � std::endl;

return 0;
}

which yields

The answer to the Ultimate Question of Life ,
the Universe , and Everything is:
42

according to Douglas Adams [2]. This short example already illustrates several features
of C++:

• Input and output are not part of the core language but are provided by the library.
They must be included explicitly; otherwise we cannot read or write.

• The standard I/O has a stream model and is therefore named <iostream>. To enable
its functionality, we #include <iostream> in the first line.

1

http://en.cppreference.com

2 Chapter 1 C++ Basics

• Every C++ program starts by calling the function main. It does return an integer value
where 0 represents a successful termination.

• Braces {} denote a block/group of code (also called a compound statement).

• std::cout and std::endl are defined in <iostream>. The former is an output stream
that allows to print text on the screen. std::endl terminates a line. We can also go to
a new line with the special character \n.

• The operator � can be used to pass objects to an output stream such as std::cout

for performing an output operation. Please note that the operator is denoted as two
less-than signs (<<) in programs. For a more elegant print image we use a single French
guillemet instead in our listings.

• std:: denotes that the type or function is used from the standard Namespace.
Namespaces help us organize our names and deal with naming conflicts.

• Many examples in this book use types from the std namespace without the qualifying
prefix std::. To compile such examples, it is assumed that after including the header
files the program contains the declaration:

using namespace std;

The details of namespaces will be discussed in Section 3.2.1.

• String constants (more precisely, literals) are enclosed in double quotes.

• The expression 6 * 7 is evaluated and passed as an integer to std::cout. In C++, every
expression has a type. Sometimes we as programmers have to declare the type explicitly
and other times the compiler can deduce it for us. 6 and 7 are literal constants of type
int and accordingly their product is int as well.

Before you continue reading, we strongly recommend that you compile and run this little
program on your computer. Once it compiles and runs, you can play with it a little bit, for
example, adding more operations and output (and looking at some error messages). Finally,
the only way to really learn a language is to use it. If you already know how to use a compiler
or even a C++ IDE, you can skip the remainder of this section.

Linux: Every distribution provides at least the GNU C++ compiler—usually already
installed (see the short intro in Section B.1). Say we call our program hello42.cpp; it is
easily compiled with the command

g++ hello42.cpp

Following a last-century tradition, the resulting binary is called a.out by default. One
day we might have more than one program, and then we can use more meaningful names
with the output flag:

g++ hello42.cpp -o hello42

1.1 Our First Program 3

We can also use the build tool make (see §7.2.2.1 for an overview) that provides default rules
for building binaries. Thus, we could call

make hello42

and make will look in the current directory for a similarly named program source. It will find
hello42.cpp, and as .cpp is a standard file suffix for C++ sources, it will call the system’s
default C++ compiler. Once we have compiled our program, we can call it on the command
line as

./ hello42

Our binary can be executed without needing any other software, and we can copy it to
another compatible Linux system1 and run it there.

Windows: If you are running MinGW, you can compile in the same manner as under Linux.
If you use Visual Studio, you will need to create a project first. To begin, the easiest way is to
use the project template for a console application, as described, for instance, at http://www
.cplusplus.com/doc/tutorial/introduction/visualstudio. When you run the program,
you might only have a few milliseconds to read the output before the console closes.2 To ex-
tend the reading phase to one second, simply insert the non-portable command Sleep(1000);

and include <windows.h>. With C++11 or higher, the waiting phase can be implemented
portably:

std:: this_thread :: sleep_for(std:: chrono :: seconds (1));

after including <chrono> and <thread>. Microsoft offers free versions of Visual Studio called
“Community,” which provide the support for the standard language like their professional
counterparts. The difference is that the professional editions come with more developer li-
braries. Since those are not used in this book, you can use the Community version to try our
examples.

IDE: Short programs like the examples in this book can be easily handled with an ordinary
editor. In larger projects it is advisable to use an Integrated Development Environment
to see where a function is defined or used, show the in-code documentation, search or
replace names project-wide, et cetera. KDevelop is a free IDE from the KDE community
written in C++. It is probably the most efficient IDE on Linux and integrates well with
git, subversion, and CMake. Eclipse is developed in Java and perceivably slower. However, a
lot of effort was recently put into it for improving the C++ support, and many developers
are quite productive with it. Visual Studio is a very solid IDE allowing for productive
development under Windows and in newer versions also supports an integration of CMake

projects.
To find the most productive environment takes some time and experimentation and is

of course subject to personal and collaborative taste. As such, it will also evolve over time.

1. Often the standard library is linked dynamically (cf. §7.2.1.4) and then its presence in the same version
on the other system is part of the compatibility requirements.

2. Since VS 2019 the console will automatically pause.

http://www.cplusplus.com/doc/tutorial/introduction/visualstudio
http://www.cplusplus.com/doc/tutorial/introduction/visualstudio

4 Chapter 1 C++ Basics

1.2 Variables

C++ is a strongly typed language (in contrast to many scripting languages). This means that
every variable has a type and this type never changes. A variable is declared by a statement
beginning with a type followed by a variable name with optional initialization—or a list
thereof:

int i1= 2; // Alignment for readability only
int i2, i3= 5; // Note: i2 is not initialized
float pi= 3.14159;
double x= -1.5e6; // -1500000
double y= -1.5e-6; // -0.0000015
char c1= 'a', c2= 35;
bool cmp= i1 < pi , // -> true

happy= true;

The two slashes // here start a single-line comment; i.e., everything from the double slashes
to the end of the line is ignored. In principle, this is all that really matters about comments.
So as not to leave you with the feeling that something important on the topic is still missing,
we will discuss it a little more in Section 1.9.1.

1.2.1 Intrinsic Types

The most fundamental types in C++ are the Intrinsic Types listed in Table 1–1. They are
part of the core language and always available.

The first five types are integer numbers of nondecreasing length. For instance, int is at
least as long as short; i.e., it is usually but not necessarily longer. The exact length of each
type is implementation-dependent; e.g., int could be 16, 32, or 64 bits. All these types can
be qualified as signed or unsigned. The former has no effect on integer numbers (except char)
since they are signed by default.

When we declare an integer type as unsigned, we will have no negative values but twice
as many positive ones (plus one when we consider zero as neither positive nor negative).

Table 1–1: Intrinsic Types

Name Semantics
char letter and very short integer number
short rather short integer number
int regular integer number
long long integer number
long long very long integer number
unsigned unsigned versions of all the former
signed signed versions of all the former
float single-precision f loating-point number
double double-precision f loating-point number
long double long f loating-point number
bool boolean

1.2 Variables 5

signed and unsigned can be considered adjectives for the noun int with int as the default
noun when only the adjective is declared. The same applies for the adjectives short, long,
and long long.

The type char can be used in two ways: for letters and rather short numbers. Except
for really exotic architectures, it almost always has a length of 8 bits. Thus, we can either
represent values from -128 to 127 (signed) or from 0 to 255 (unsigned) and perform all
numeric operations on them that are available for integers. When neither signed nor unsigned
is declared, it depends on the implementation of the compiler which one is used. Using char

or unsigned char for small numbers, however, can be useful when there are large containers
of them.

Logic values are best represented as bool. A boolean variable can store true and false.
The non-decreasing length property applies in the same manner to f loating-point num-

bers: float is shorter than or equally as long as double, which in turn is shorter than or
equally as long as long double. Typical sizes are 32 bits for float, 64 bits for double, and
128 bits for long double.

1.2.2 Characters and Strings

As mentioned before, the type char can be used to store characters:

char c= 'f';

We can also represent any letter whose code fits into 8 bits. It can even be mixed with
numbers; e.g., 'a' + 7 usually leads to 'h' depending on the underlying coding of the letters.
We strongly recommend not playing with this since the potential confusion will likely lead
to a perceivable waste of time.

From C we inherited the opportunity to represent strings as arrays of char.

char name [8]= "Herbert";

These old C strings all end with a binary 0 as a char value. If the 0 is missing, algorithms
keep going until the next memory location with a 0-byte is found. Another big danger
is appending to strings: name has no extra space and the additional characters overwrite
some other data. Getting all string operations right—without corrupting memory or cutting
off longer strings—is everything but trivial with these old strings. We therefore strongly
recommend not using them except for literal values.

The C++ compiler distinguishes between single and double quotes: 'a' is the character
“a” (it has type char) and "a" is an array with a binary 0 as termination (i.e., its type is
const char[2]).

The much more convenient fashion to deal with string is by using the class string (which
requires that we include <string>):

#include <string >

int main()
{

std:: string name= "Herbert";
}

6 Chapter 1 C++ Basics

C++ strings use dynamic memory and manage it themselves. So if we append more text to
a string, we don’t need to worry about memory corruption or cutting off strings:

name= name + ", our cool anti-hero"; // more on this later

Many current implementations also use optimization for short strings (e.g., to 16 bytes) that
are not stored in dynamic memory, but directly in the string object itself. This optimization
can significantly reduce the expensive memory allocation and release.

Since text in double quotes is interpreted as a char array, we need to be able to denote thatC++14
the text should be considered a string. This is done with the suffix s, e.g., "Herbert"s.3 Unfor-
tunately, it took us until C++14 to enable this. An explicit conversion like string("Herbert")

was always possible. A lightweight constant view on strings was added in C++17 that we
will show in Section 4.4.5.

1.2.3 Declaring Variables

Advice

Declare variables as late as possible, usually right before using them the first time and whenever possible,

but not before you can initialize them.

This makes programs more readable when they grow long. It also allows the compiler to use
the memory more efficiently with nested scopes.

C++11 can deduce the type of a variable for us, e.g.:C++11

auto i4= i3 + 7;

The type of i4 is the same as that of i3 + 7, which is int. Although the type is automatically
determined, it remains the same, and whatever is assigned to i4 afterward will be converted
to int. We will see later how useful auto is in advanced programming. For simple variable
declarations like those in this section, it is usually better to declare the type explicitly. auto
will be discussed thoroughly in Section 3.4.

1.2.4 Constants

Syntactically, constants are like special variables in C++ with the additional attribute of
constancy:

const int ci1= 2;
const int ci3; // Error: no value
const float pi= 3.14159;
const char cc= 'a';
const bool cmp= ci1 < pi;

As they cannot be changed, it is mandatory to set their values in the declaration. The second
constant declaration violates this rule, and the compiler will not tolerate such misbehavior.

3. As in many other examples, we assume here that the program contains using namespace std. It is also
possible to import the suffixes only or just specific suffixes. We recommend, however, that you import the
entire standard namespace while learning the language.

1.2 Variables 7

Constants can be used wherever variables are allowed—as long as they are not
modified, of course. On the other hand, constants like those above are already known during
compilation. This enables many kinds of optimizations, and the constants can even be used
as arguments of types (we will come back to this later in §5.1.4).

1.2.5 Literals

Literals like 2 or 3.14 are typed as well. Simply put, integral numbers are treated as int,
long, or unsigned long depending on the magnitude of the number. Every number with a
dot or an exponent (e.g., 3e12 ≡ 3 · 1012) is considered a double.

Literals of other types can be written by adding a suffix from the following table:

Literal Type
2 int
2u unsigned
2l long
2ul unsigned long
2.0 double
2.0f float
2.0l long double

In most cases, it is not necessary to declare the type of literals explicitly since the implicit
conversion (a.k.a. Coercion) between built-in numeric types usually sets the values at the
programmer’s expectation.

There are, however, four major reasons why we should pay attention to the types of
literals.

Availability: The standard library provides a type for complex numbers where the type for
the real and imaginary parts can be parameterized by the user:

std:: complex <float > z(1.3, 2.4), z2;

Unfortunately, operations are only provided between the type itself and the underlying real
type (and arguments are not converted here).4 As a consequence, we cannot multiply z with
an int or double but with float:

z2= 2 * z; // Error: no int * complex <float >
z2= 2.0 * z; // Error: no double * complex <float >
z2= 2.0f * z; // Okay: float * complex <float >

Ambiguity: When a function is overloaded for different argument types (§1.5.4), an argu-
ment like 0 might be ambiguous whereas a unique match may exist for a qualified argument
like 0u.

Accuracy: The accuracy issue comes up when we work with long double. Since the non-
qualified literal is a double, we might lose digits before we assign it to a long double variable:

long double third1= 0.3333333333333333333; // may lose digits
long double third2= 0.3333333333333333333 l; // accurate

4. Mixed arithmetic is implementable, however, as demonstrated at [19].

8 Chapter 1 C++ Basics

Nondecimal Numbers: Integer literals starting with a zero are interpreted as octal num-
bers, e.g.:

int o1= 042; // int o1= 34;
int o2= 084; // Error! No 8 or 9 in octals!

Hexadecimal literals can be written by prefixing them with 0x or 0X:

int h1= 0x42; // int h1= 66;
int h2= 0xfa; // int h2= 250;

C++14 introduces binary literals, which are prefixed with 0b or 0B:C++14

int b1= 0b11111010; // int b1= 250;

To improve readability of long literals, C++14 allows us to separate the digits with apostro-
phes:C++14

long d= 6'546'687'616'861'129l;
unsigned long ulx= 0x139'ae3b'2ab0'94f3;
int b= 0b101'1001'0011'1010'1101'1010'0001;
const long double pi= 3.141'592'653'589'793'238'462l;

Since C++17, we can even write hexadecimal floating-point literals:C++17

float f1= 0x10.1p0f; // 16.0625
double d2= 0x1ffp10; // 523264

For these, introduced with the p character. The exponent is mandatory—thus we needed p0

in the first example. Due to the suffix f, f1 is a float storing the value 161 +16−1 = 16.0625.
These literals involve three bases: the pseudo-mantissa is a hexadecimal scaled with powers
of 2 whereby the exponent is given as a decimal number. Thus, d2 is 511 × 210 = 523264.
Hexadecimal literals seem, admittedly, a little nerdy at the beginning but they allow us to
declare binary floating-point values without rounding errors.

String literals are typed as arrays of char:

char s1[]= "Old C style"; // better not

However, these arrays are everything but convenient, and we are better off with the true
string type from the library <string>. It can be created directly from a string literal:

#include <string >
std:: string s2= "In C++ better like this";

Very long text can be split into multiple sub-strings:

std:: string s3= "This is a very long and clumsy text "
"that is too long for one line.";

Although s2 and s3 have type string, they are still initialized with literals of type const char[].C++14
This is not a problem here but might be in other situations where the type is deduced by
the compiler. Since C++14, we can directly create literals of type string by appending an s:

f("I'm not a string"); // literal of type const char[]
f("I'm really a string"s); // literal of type string

1.2 Variables 9

As before, we assume that the namespace std is used. To not import the entire standard
namespace, we can use sub-spaces thereof, i.e. writing at least one of the following lines:

using namespace std:: literals;
using namespace std:: string_literals ;
using namespace std:: literals:: string_literals ;

For more details on literals, see for instance [62, §6.2]. We will show how to define your own
literals in Section 2.3.6.

1.2.6 Non-narrowing Initialization C++11

Say we initialize a long variable with a long number:

long l2= 1234567890123;

This compiles just fine and works correctly—when long takes 64 bits as on most 64-bit
platforms. When long is only 32 bits long (we can emulate this by compiling with flags like
-m32), the value above is too long. However, the program will still compile (maybe with a
warning) and runs with another value, e.g., where the leading bits are cut off.

C++11 introduces an initialization that ascertains that no data is lost or, in other words,
that the values are not Narrowed. This is achieved with the Uniform Initialization or Braced
Initialization that we only touch upon here and expand on in Section 2.3.4. Values in braces
cannot be narrowed:

long l= {1234567890123};

Now the compiler will check whether the variable l can hold the value on the target archi-
tecture. When using the braces, we can omit the equals sign:

long l{1234567890123};

The compiler’s narrowing protection allows us to verify that values do not lose precision in
initializations. Whereas an ordinary initialization of an int by a floating-point number is
allowed due to implicit conversion:

int i1= 3.14; // compiles despite narrowing (our risk)
int i1n= {3.14}; // Narrowing ERROR: fractional part lost

The new initialization form in the second line forbids this because it cuts off the fractional
part of the f loating-point number. Likewise, assigning negative values to unsigned variables
or constants is tolerated with traditional initialization but denounced in the new form:

unsigned u2= -3; // Compiles despite narrowing (our risk)
unsigned u2n= {-3}; // Narrowing ERROR: no negative values

In the previous examples, we used literal values in the initializations and the compiler
checks whether a specific value is representable with that type:

float f1= {3.14}; // okay

Well, the value 3.14 cannot be represented with absolute accuracy in any binary floating-
point format, but the compiler can set f1 to the value closest to 3.14. When a float is

10 Chapter 1 C++ Basics

initialized from a double variable (not a literal), we have to consider all possible double

values and whether they are all convertible to float in a loss-free manner.

double d;
...
float f2= {d}; // narrowing ERROR

Note that the narrowing can be mutual between two types:

unsigned u3= {3};
int i2= {2};

unsigned u4= {i2}; // narrowing ERROR: no negative values
int i3= {u3}; // narrowing ERROR: not all large values

The types signed int and unsigned int have the same size, but not all values of each type
are representable in the other.

1.2.7 Scopes

Scopes determine the lifetime and visibility of (nonstatic) variables and constants and con-
tribute to establishing a structure in our programs.

1.2.7.1 Global Definition

Every variable that we intend to use in a program must have been declared with its type
specifier at an earlier point in the code. A variable can be located in either the global or local
scope. A global variable is declared outside all functions. After their declaration, global vari-
ables can be referred to from anywhere in the code, even inside functions. This sounds very
handy at first because it makes the variables easily available, but when your software grows,
it becomes more difficult and painful to keep track of the global variables’ modifications. At
some point, every code change bears the potential of triggering an avalanche of errors.

Advice

Do not use global variables.

If you do use them, sooner or later you will regret it because they can be accessed from the
entire program and it is therefore extremely tedious to keep track of where global variables
are changed—and when and how.

Global constants like

const double pi= 3.14159265358979323846264338327950288419716939;

are fine because they cannot cause side effects.

1.2.7.2 Local Definition

A local variable is declared within the body of a function. Its visibility/availability is limited
to the { }-enclosed block of its declaration. More precisely, the scope of a variable starts
with its declaration and ends with the closing brace of the declaration block.

1.2 Variables 11

If we define π in the function main:

int main ()
{

const double pi= 3.14159265358979323846264338327950288419716939;
std::cout � "pi is " � pi � ".\n";

}

the variable pi only exists in the main function. We can define blocks within functions and
within other blocks:

int main ()
{

{
const double pi= 3.14159265358979323846264338327950288419716939;

}
std::cout � "pi is " � pi � ".\n"; // ERROR: pi is out of scope

}

In this example, the definition of pi is limited to the block within the function, and an
output in the remainder of the function is therefore an error:

�pi� is not defined in this scope.

because π is Out of Scope.

1.2.7.3 Hiding

When a variable with the same name exists in nested scopes, only one variable is visible.
The variable in the inner scope hides the homonymous variables in the outer scopes (causing
a warning in many compilers). For instance:

int main ()
{

int a= 5; // define a#1
{

a= 3; // assign a#1, a#2 is not defined yet
int a; // define a#2
a= 8; // assign a#2, a#1 is hidden
{

a= 7; // assign a#2
}

} // end of a#2's scope
a= 11; // assign to a#1 (a#2 out of scope)

return 0;
}

Due to hiding, we must distinguish the lifetime and the visibility of variables. For instance,
a#1 lives from its declaration until the end of the main function. However, it is only visible
from its declaration until the declaration of a#2 and again after closing the block containing
a#2. In fact, the visibility is the lifetime minus the time when it is hidden. Defining the same
variable name twice in one scope is an error.

12 Chapter 1 C++ Basics

The advantage of scopes is that we do not need to worry about whether a variable is
already defined somewhere outside the scope. It is just hidden but does not create a conflict.5

Unfortunately, the hiding makes the homonymous variables in the outer scope inaccessible.
We can cope with this to some extent with clever renaming. A better solution, however, to
manage nesting and accessibility is namespaces; see Section 3.2.1.

static variables are the exception that confirms the rule: they live until the end of the
execution but are only visible in the scope. We are afraid that their detailed introduc-
tion is more distracting than helpful at this stage and have postponed the discussion to
Section A.2.1.

1.3 Operators

C++ is rich in built-in operators. There are different kinds of operators:

• Computational:

– Arithmetic: ++, +, *, %, . . .

– Boolean:

∗ Comparison: <=, !=, . . .
∗ Logic: && and ||

– Bitwise: ∼, � and �, &, ^, and |

• Assignment: =, +=, . . .

• Program flow: function call, ?:, and ,

• Memory handling: new and delete

• Access: ., ->, [], *, . . .

• Type handling: dynamic_cast, typeid, sizeof, alignof, . . .

• Error handling: throw

This section will give you an overview of the operators. Some operators are better de-
scribed elsewhere in the context of the appropriate language feature; e.g., scope resolution
is best explained together with namespaces. Most operators can be overloaded for user types;
i.e., we can decide which calculations are performed when arguments of our types appear in
expressions.

At the end of this section (Table 1–8), you will find a concise table of operator precedence.
It might be a good idea to print or copy this page and pin it next to your monitor; many
people do so and almost nobody knows the entire priority list by heart. Neither should you
hesitate to put parentheses around sub-expressions if you are uncertain about the priorities

5. As opposed to macros, an obsolete and reckless legacy feature from C that should be avoided at any
price because it undermines all structure and reliability of the language.

1.3 Operators 13

or if you believe it will be more understandable for other programmers working with your
sources. If you ask your compiler to be pedantic, it often takes this job too seriously and
prompts you to add surplus parentheses assuming you are overwhelmed by the precedence
rules. In Section C.2, we will give you a complete list of all operators with brief descriptions
and references.

1.3.1 Arithmetic Operators

Table 1–2 lists the arithmetic operators available in C++. We have sorted them by their
priorities, but let us look at them one by one.

Table 1–2: Arithmetic Operators

Operation Expression
Post-increment x++

Post-decrement x--

Pre-increment ++x

Pre-decrement --x

Unary plus +x

Unary minus -x

Multiplication x * y

Division x / y

Modulo x % y

Addition x + y

Subtraction x - y

The first kinds of operations are increment and decrement. These operations can be used
to increase or decrease a number by 1. As they change the value of the number, they only
make sense for variables and not for temporary results, for instance:

int i= 3;
i++; // i is now 4
const int j= 5;
j++; // Error: j is constant
(3 + 5)++; // Error: 3 + 5 is only a temporary

In short, the increment and decrement operations need something that is modifiable and
addressable. The technical term for an addressable data item is lvalue (more formally ex-
pressed in Definition C–1 in Appendix C). In our code snippet above, this is true for i only.
In contrast to it, j is constant and 3 + 5 is not addressable.

Both notations—prefix and postfix—have the effect on a variable that they add or sub-
tract 1 from it. The value of an increment and decrement expression is different for prefix
and postfix operators: the prefix operators return the modified value and postfix the old one,
e.g.:

int i= 3, j= 3;
int k= ++i + 4; // i is 4, k is 8
int l= j++ + 4; // j is 4, l is 7

14 Chapter 1 C++ Basics

At the end, both i and j are 4. However in the calculation of l, the old value of j was used
while the first addition used the already incremented value of i.

In general, it is better to refrain from using increment and decrement in mathemat-
ical expressions and to replace it with j+1 and the like or to perform the in/decrement
separately. It is easier for human readers to understand and for the compiler to opti-
mize when mathematical expressions have no Side Effects. We will see quite soon why
(§1.3.12).

The unary minus negates the value of a number:
int i= 3;
int j= -i; // j is -3

The unary plus has no arithmetic effect on standard types. For user types, we can define
the behavior of both unary plus and minus. As shown in Table 1–2, these unary operators
have the same priority as pre-increment and pre-decrement.

The operations * and / are naturally multiplication and division, and both are defined
on all numeric types. When both arguments in a division are integers, the fractional part of
the result is truncated (rounding toward zero). The operator % yields the remainder of the
integer division. Thus, both arguments should have an integral type.

Last but not least, the operators + and - between two variables or expressions symbolize
addition and subtraction.

The semantic details of the operations—how results are rounded or how overflow is
handled—are not specified in the language. For performance reasons, C++ leaves this typi-
cally to the underlying hardware.

In general, unary operators have higher priority than binary. On the rare occasions that
both postfix and prefix unary notations have been applied, postfix notations are prioritized
over prefix notations.

Among the binary operators, we have the same behavior that we know from math:
multiplication and division precede addition and subtraction and the operations are left
associative, i.e.:

x - y + z

is always interpreted as
(x - y) + z

Something really important to remember: the order of evaluation of the arguments is not
defined. For instance:

int i= 3, j= 7, k;
k= f(++i) + g(++i) + j;

In this example, associativity guarantees that the first addition is performed before the second.
But whether the expression f(++i) or g(++i) is computed first depends on the compiler imple-
mentation. Thus, kmight be either f(4) + g(5) + 7 or f(5) + g(4) + 7 (or even f(5) + g(5) + 7

when both increments are executed before the function call). Furthermore, we cannot assume
that the result is the same on a different platform. In general, it is dangerous to modify val-
ues within expressions. It works under some conditions, but we always have to test it and pay

1.3 Operators 15

enormous attention to it. Altogether, our time is better spent by typing some extra letters and
doing the modifications separately. More about this topic in Section 1.3.12.

⇒ c++03/num_1.cpp

With these operators, we can write our first (complete) numeric program:

#include <iostream >

int main ()
{

const float r1= 3.5, r2 = 7.3, pi = 3.14159;

float area1 = pi * r1*r1;
std::cout � "A circle of radius " � r1 � " has area "

� area1 � "." � std::endl;

std::cout � "The average of " � r1 � " and " � r2 � " is "
� (r1 + r2) / 2 � "." � std::endl;

}

When the arguments of a binary operation have different types, one or both arguments are
automatically converted (coerced) to a common type according to the rules in §C.3.

The conversion may lead to a loss of precision. Floating-point numbers are preferred over
integer numbers, and evidently the conversion of a 64-bit long to a 32-bit float yields an
accuracy loss; even a 32-bit int cannot always be represented correctly as a 32-bit float since
some bits are needed for the exponent. There are also cases where the target variable could
hold the correct result but the accuracy was already lost in the intermediate calculations.
To illustrate this conversion behavior, let us look at the following example:

long l= 1234567890123;
long l2= l + 1.0f - 1.0; // imprecise
long l3= l + (1.0f - 1.0); // correct

This leads on the author’s platform to

l2 = 1234567954431
l3 = 1234567890123

In the case of l2 we lose accuracy due to the intermediate conversions, whereas l3 was
computed correctly. This is admittedly an artificial example, but you should be aware of
the risk of imprecise intermediate results. Especially with large calculations the numerical
algorithms must be carefully chosen to prevent the errors from building up. The issue of
inaccuracy will fortunately not bother us in the next section.

1.3.2 Boolean Operators

Boolean operators are logical and relational operators. Both return bool values as the name
suggests. These operators and their meaning are listed in Table 1–3, grouped by precedence.

Binary relational and logical operators are preceded by all arithmetic operators. This
means that an expression like 4 >= 1 + 7 is evaluated as if it were written 4 >= (1 + 7).
Conversely, the unary operator ! for logic negation is prioritized over all binary operators.

16 Chapter 1 C++ Basics

Table 1–3: Boolean Operators

Operation Expression
Not !b

Three-way comparison (C++20) x <=> y

Greater than x > y
Greater than or equal to x >= y
Less than x < y
Less than or equal to x <= y

Equal to x == y
Not equal to x != y

Logical AND b && c

Logical OR b || c

The boolean operators also have keywords, like not, and, or, and xor. There are even
keywords for assignments, like or_eq for |=. We usually don’t use them for their paleolithic
look but there is one exception: not can make expressions far more readable. When negating
something that starts with “i” or “l”, the exclamation point is easily overseen. A space
already helps, but the keyword makes the negation even more visible:

big= !little; // You knew before there's an !
big= not little; // Much easier to spot , though

Although these keywords have been available from the beginning of standard C++, Visual
Studio still doesn’t support them unless you compile with /permissive- or /Za.

In old (or old-fashioned) code, you might see logical operations performed on int values.
Please refrain from this: it is less readable and subject to unexpected behavior.

Advice

Always use bool for logical expressions.

Please note that comparisons cannot be chained like this:

bool in_bound= min <= x <= y <= max; // Syntax error

Instead we need the more verbose logical reduction:

bool in_bound= min <= x && x <= y && y <= max;

In the following section, we will see similar operators.

1.3.3 Bitwise Operators

These operators allow us to test or manipulate single bits of integral types. They are
important for system programming but less so for modern application development.
Table 1–4 lists these operators by precedence.

The operation x � y shifts the bits of x to the left by y positions. Conversely, x � y

moves x’s bits y times to the right.6 In most cases, 0s are moved (except for negative signed

values) to the right where they are implementation defined.

6. Again we compress the double less-than and larger-than symbols to French guillemets for nicer printing.

1.3 Operators 17

Table 1–4: Bitwise Operators

Operation Expression
One’s complement ∼x

Left shift x � y
Right shift x � y

Bitwise AND x & y

Bitwise exclusive OR x ^ y

Bitwise inclusive OR x | y

The bitwise AND can be used to test a specific bit of a value. Bitwise inclusive OR can
set a bit and exclusive OR flips it. Although these operations are less important in scientific
applications, we will use them in Section 3.5.1 for algorithmic entertainment.

1.3.4 Assignment

The value of an object (modifiable lvalue) can be set by an assignment:

object= expr;

When the types do not match, expr is converted to the type of object if possible. The
assignment is right-associative so that a value can be successively assigned to multiple
objects in one expression:

o3= o2= o1= expr;

Speaking of assignments, the author will now explain why he left-justifies the symbol. Most
binary operators are symmetric in the sense that both arguments are values. In contrast, an
assignment must have a modifiable variable on the left-hand side whereby the right-hand
side can be an arbitrary expression (with an appropriate value). While other languages use
asymmetric symbols (e.g., := in Pascal), the author uses an asymmetric spacing in C++.

The compound assignment operators apply an arithmetic or bitwise operation to the
object on the left side with the argument on the right side; for instance, the following two
operations are equivalent:

a+= b; // corresponds to
a= a + b;

All assignment operators have a lower precedence than every arithmetic or bitwise operation
so the right-hand side expression is always evaluated before the compound assignment:

a*= b + c; // corresponds to
a= a * (b + c);

The assignment operators are listed in Table 1–5. They are all right-associative and of the
same priority.

1.3.5 Program Flow

There are three operators to control the program flow. First, a function call in C++ is handled
like an operator. For a detailed description of functions and their calls, see Section 1.5.

18 Chapter 1 C++ Basics

Table 1–5: Assignment Operators

Operation Expression
Simple assignment x= y
Multiply and assign x*= y
Divide and assign x/= y
Modulo and assign x%= y
Add and assign x+= y
Subtract and assign x-= y
Shift left and assign x�= y
Shift right and assign x�= y
AND and assign x&= y
Inclusive OR and assign x|= y
Exclusive OR and assign x^= y

The conditional operator c ? x : y evaluates the condition c, and when it is true the
expression has the value of x, otherwise y. It can be used as an alternative to branches with
if, especially in places where only an expression is allowed and not a statement; see
Section 1.4.3.1.

A very special operator in C++ is the Comma Operator that provides a sequential eval-
uation. The meaning is simply evaluating first the subexpression to the left of the comma
and then that to the right of it. The value of the whole expression is that of the right
subexpression:

3 + 4, 7 * 9.3

The result of the expression is 65.1 and the computation of the first subexpression is entirely
irrelevant in this case. The subexpressions can contain the comma operator as well so that
arbitrarily long sequences can be defined. With the help of the comma operator, one can
evaluate multiple expressions in program locations where only one expression is allowed.
A typical example is the increment of multiple indices in a for-loop (§1.4.4.2):

++i, ++j

When used as a function argument, the comma expression needs surrounding parentheses;
otherwise the comma is interpreted as separation of function arguments.

1.3.6 Memory Handling

The operators new and delete allocate and deallocate memory, respectively. We postpone
their description to Section 1.8.2 since discussing these operators before talking about point-
ers makes no sense.

1.3.7 Access Operators

C++ provides several operators for accessing substructures, for referring—i.e., taking the
address of a variable—and dereferencing—i.e., accessing the memory referred to by an
address. They are listed in Table 1–6. We will demonstrate in Section 2.2.3 how to use
them, after we introduce pointers and classes.

1.3 Operators 19

Table 1–6: Access Operators

Operation Expression Reference
Member selection x.m §2.2.3
Dereferred member selection p->m §2.2.3
Subscripting x[i] §1.8.1

Dereference *x §1.8.2
Address-of &x §1.8.2

Member dereference x.*q §2.2.3
Dereferred member dereference p->*q §2.2.3

1.3.8 Type Handling

The operators for dealing with types will be presented in Chapter 5 when we will write
compile-time programs that work on types. Right now we only list them in Table 1–7.

Table 1–7: Type-Handling Operators

Operation Expression
Run-time type identification typeid(x)
Identification of a type typeid(t)

Size of object sizeof(x) or sizeof x
Size of type sizeof(t)
Number of arguments sizeof...(p)
Number of type arguments sizeof...(P)
Alignment of object (C++11) alignof(x)
Alignment of type (C++11) alignof(t)

Note that the sizeof operator when used on an expression is the only one that is
applicable without parentheses. alignof was introduced in C++11; all others have existed
since C++98 (at least).

1.3.9 Error Handling

The throw operator is used to indicate an exception in the execution (e.g., insufficient
memory); see Section 1.6.2.

1.3.10 Overloading

A very powerful aspect of C++ is that the programmer can define operators for new types.
This will be explained in Section 2.7. Operators of built-in types cannot be changed. How-
ever, we can define how built-in types interact with new types; i.e., we can overload mixed
operations like double times matrix. Most operators can be overloaded. Exceptions are:

:: Scope resolution;
. Member selection;
.* Member selection through pointer;
?: Conditional;
sizeof Size of a type or object;
sizeof... Number of arguments;
alignof Memory alignment of a type or object; and
typeid Type identifier.

20 Chapter 1 C++ Basics

The operator overloading in C++ gives us a lot of freedom and we have to use this freedom
wisely. We come back to this topic in the next chapter when we actually overload operators
(in Section 2.7).

1.3.11 Operator Precedence

Table 1–8 gives a concise overview of the operator priorities. For compactness, we combined
notations for types and expressions (e.g., typeid) and fused the different notations for new

and delete. The symbol @= represents all computational assignments like +=, -=, and so on.
A more detailed summary of operators with semantics is given in Appendix C, Table C–1.

Table 1–8: Operator Precedence

Operator Precedence
class::member nspace::member ::name ::qualified-name

object.member pointer->member expr[expr] expr(expr list)
type(expr list) lvalue++ lvalue-- typeid(type/expr)
*_cast<type>(expr)

sizeof expr sizeof(type) sizeof...(pack) alignof(type/expr)
++lvalue --lvalue ∼expr !expr
-expr +expr &lvalue *expr
new . . . type. . . delete []opt pointer (type) expr co_await expr

object.*member ptr pointer->*member ptr

expr * expr expr / expr expr % expr

expr + expr expr - expr

expr � expr expr � expr

expr <=> expr

expr < expr expr <= expr expr > expr expr >= expr

expr == expr expr != expr

expr & expr

expr ^ expr

expr | expr

expr && expr

expr || expr

expr ? expr: expr

lvalue = expr lvalue @= expr throw expr co_yield expr

expr , expr

1.3.12 Avoid Side Effects!

“Insanity: doing the same thing over and over again and expecting different results.”

—Unknown7

In applications with side effects it is not insane to expect a different result for the same input.
On the contrary, it is very difficult to predict the behavior of a program whose components

7. Misattributed to Albert Einstein, Benjamin Franklin, and Mark Twain. It is cited in Sudden Death by
Rita Mae Brown but the original source seems to be unknown. Maybe the quote itself is beset with some
insanity.

1.3 Operators 21

interfere massively. Moreover, it is probably better to have a deterministic program with
the wrong result than one that occasionally yields the right result since the latter is usually
much harder to fix.

An example where the side effects are incorporated correctly is the string copy function
strcpy from the C standard library. The function takes pointers to the first char of the
source and the target and copies the subsequent letters until it finds a zero. This can be
implemented with one single loop that even has an empty body and performs the copy and
the increments as side effects of the continuation test:

while (*tgt++= *src ++);

Looks scary? Well, it somehow is. Nonetheless, this is absolutely legal C++ code, although
some compilers might grumble in pedantic mode. It is a good mental exercise to spend some
time thinking about operator priorities, types of subexpressions, and evaluation order.

Let us think about something simpler: we assign the value i to the i-th entry of an array
and increment the value i for the next iteration:

v[i]= i++; // Undefined behavior before C++17

Looks like no problem. Before C++17 it was: the behavior of this expression was undefined.
Why? The post-increment of i guarantees that we assign the old value of i and increment
i afterward. However, this increment can still be performed before the expression v[i] is
evaluated so that we possibly assign i to v[i+1]. Well, this was fixed in C++17 by requiring
that the entire expression to the right of the assignment must be finished before the left-
hand side is evaluated. This doesn’t mean that all undefined behavior disappeared in the
meantime. The following—admittedly nasty—expression is still undefined:

i = ++i + i++;

The last examples should give you an impression that side effects are not always evident at
first glance. Some quite tricky stuff might work but much simpler things might not. Even
worse, something might work for a while until somebody compiles it on a different compiler
or the new release of your compiler changes some implementation details.

The first snippet is an example of excellent programming skills and evidence that the
operator precedence makes sense—no parentheses were needed. Nonetheless, such program-
ming style is not appropriate for modern C++. The eagerness to shorten code as much as
possible dates back to the times of early C when typing was more demanding, with type-
writers that were more mechanical than electrical, and card punchers, all without a monitor.
With today’s technology, it should not be an issue to type some extra letters.

Another unfavorable aspect of the terse copy implementation is the mingling of different
concerns: testing, modification, and traversal. An important concept in software design is
Separation of Concerns. It contributes to increasing flexibility and decreasing complexity. In
this case, we want to decrease the complexity of the mental processes needed to understand
the implementation. Applying the principle to the infamous copy one-liner could yield:

for (; *src; tgt++, src++)
*tgt= *src;

*tgt= *src; // copy the final 0

22 Chapter 1 C++ Basics

Now, we can clearly distinguish the three concerns:

1. Testing: *src

2. Modification: *tgt= *src;

3. Traversal: tgt++, src++

It is also more apparent that the incrementing is performed on the pointers and the testing
and assignment on their referred content. The implementation is not as compact as before,
but it is much easier to check the correctness. It is also advisable to make the nonzero test
more obvious (*src != 0).

There is a class of programming languages that are called Functional Languages. Values
in these languages cannot be changed once they are set. C++ is obviously not that way.
But we do ourselves a big favor when we program as much as is reasonable in a functional
style. For instance, when we write an assignment, the only thing that should change is the
variable to the left of the assignment symbol. To this end, we have to replace mutating
with a constant expression: for instance, ++i with i+1. A right-hand side expression without
side effects helps us understand the program behavior and makes it easier for the compiler
to optimize the code. As a rule of thumb: more comprehensible programs have a better
potential for optimization. Speaking of which, const declarations not only protect us against
accidental modifications, they are also an easy way to enable more optimizations.

1.4 Expressions and Statements

C++ distinguishes between expressions and statements. Very casually, we could say that
every expression becomes a statement if a semicolon is appended. However, we would like
to discuss this topic a bit more.

1.4.1 Expressions

Let us build this recursively from the bottom up. Any variable name (x, y, z, . . .), constant,
or literal is an expression. One or more expressions combined by an operator constitute an
expression, e.g., x + y or x * y + z. In several languages, such as Pascal, the assignment is a
statement. In C++, it is an expression, e.g., x= y + z. As a consequence, it can be used within
another assignment: x2= x= y + z. Assignments are evaluated from right to left. Input and
output operations such as

std::cout � "x is " � x � "\n"

are also expressions.
A functioncallwithexpressionsasarguments is anexpression, e.g.,abs(x)orabs(x * y + z).

Therefore, function calls can be nested: pow(abs(x), y). Note that nesting would not be
possible if function calls were statements.

Since an assignment is an expression, it can be used as an argument of a function:
abs(x= y). Or I/O operations such as those above, e.g.:

print(std::cout � "x is " � x � "\n", "I am such a nerd!");

1.4 Expressions and Statements 23

Needless to say, this is not particularly readable and it would cause more confusion than
doing something useful. An expression surrounded by parentheses is an expression as well,
e.g., (x + y). As this grouping by parentheses precedes all operators, we can change the
order of evaluation to suit our needs: x * (y + z) computes the addition first.

1.4.2 Statements

Any of the expressions above followed by a semicolon is a statement, e.g.:

x= y + z;
y= f(x + z) * 3.5;

A statement like

y + z;

is allowed despite having no effect (usually). During program execution, the sum of y and z is
computed and then thrown away. Recent compilers optimize out such useless computations.
However, it is not guaranteed that this statement can always be omitted. If y or z is an
object of a user type, then the addition is also user defined and might change y or z or
something else. This is obviously bad programming style (hidden side effect) but legitimate
in C++.

A single semicolon is an empty statement, and we can thus put as many semicolons
after an expression as we want. Some statements do not end with a semicolon, e.g., func-
tion definitions. If a semicolon is appended to such a statement, it is not an error but just
an extra empty statement. Nonetheless, some compilers print a warning in pedantic mode.
Any sequence of statements surrounded by curly braces is a statement—called a Compound
Statement.

The variable and constant declarations we have seen before are also statements. As the
initial value of a variable or constant, we can use any expression (except another assignment
or comma operator). Other statements—to be discussed later—are function and class def-
initions, as well as control statements that we will introduce in the next sections.

With the exception of the conditional operator, program flow is controlled by statements.
Here we will distinguish between branches and loops.

1.4.3 Branching

In this section, we will present the different features that allow us to select a branch in the
program execution.

1.4.3.1 if-Statement

This is the simplest form of control and its meaning is intuitively clear, for instance in:

if (weight > 100.0)
cout � "This is quite heavy .\n";

else
cout � "I can carry this.\n";

24 Chapter 1 C++ Basics

Often, the else branch is not needed and can be omitted. Say we have some value in variable
x and compute something on its magnitude:

if (x < 0.0)
x= -x;

// Now we know that x >= 0.0 (post-condition)

The branches of the if-statement are scopes, rendering the following statements erroneous:

if (x < 0.0)
double absx= -x;

else
double absx= x;

cout � "|x| is " � absx � "\n"; // Error: absx out of scope

Above, we introduced two new variables, both named absx. They are not in conflict because
they reside in different scopes. Neither of them exists after the if-statement, and accessing
absx in the last line is an error. In fact, variables declared in a branch can only be used
within this branch.

Each branch of if consists of one single statement. To perform multiple operations, we
can use braces, as in the following example realizing Cardano’s method:

double D= q*q/4.0 + p*p*p/27.0;
if (D > 0.0) {

double z1= ...;
complex <double > z2= ..., z3= ...;
...

} else if (D == 0.0) {
double z1= ..., z2= ..., z3= ...;
...

} else { // D < 0.0
complex <double > z1= ..., z2= ..., z3= ...;
...

}

In the beginning, it is helpful to always write the braces. Many style guides also enforce curly
braces on single statements whereas the author prefers them without braces. Irrespective of
this, it is highly advisable to indent the branches for better readability.

if-statements can be nested whereas each else is associated with the last open if. If you
are interested in examples, have a look at Section A.2.2. Finally, we give you the following:

Advice

Although spaces do not affect compilation in C++, the indentation should reflect the structure of the

program. Editors that understand C++ (like Visual Studio’s IDE or emacs in C++ mode) and indent

automatically are a great help with structured programming. Whenever a line within a language-aware

tool is not indented as expected, something is most likely not nested as intended.

⇒ c++17/if_init.cpp

The if-statement was extended in C++17 with the possibility to initialize a variable whoseC++17
scope is limited to the if-statement. This helps control the lifetime of variables; for instance,

1.4 Expressions and Statements 25

the result of an insertion into a map (see Section 4.1.3.5) is a kind of reference to the new
entry and a bool if the insertion was successful:

map <string , double > constants= {{"e", 2.7}, {"pi", 3.14}};
if (auto res= constants.insert ({"h", 6.6e-34}); res.second)

cout � "inserted " � res.first->first � " mapping to "
� res.first->second � endl;

else
cout � "entry for " � res.first->first � " already exists .\n";

We could have declared res before the if-statement and it would then exist until the end of
the surrounding block—unless we put extra braces around the variable declaration and the
if-statement.

1.4.3.2 Conditional Expression

Although this section describes statements, we like to talk about the conditional expression
here because of its proximity to the if-statement. The result of

condition ? result_for_true : result_for_false

is the second subexpression (i.e., result_for_true) when condition evaluates to true and
result_for_false otherwise. For instance,

min= x <= y ? x : y;

corresponds to the following if-statement:

if (x <= y)
min= x;

else
min= y;

For a beginner, the second version might be more readable while experienced programmers
often prefer the first form for its brevity.

?: is an expression and can therefore be used to initialize variables:

int x= f(a),
y= x < 0 ? -x : 2 * x;

Calling functions with several selected arguments is easy with the operator:

f(a, (x < 0 ? b : c), (y < 0 ? d : e));

but quite clumsy with an if-statement. If you do not believe us, try it.
In most cases it is not important whether an if or a conditional expression is used. So

use what feels most convenient to you.

Anecdote: An example where the choice between if and ?: makes a difference is the
replace_copy operation in the Standard Template Library (STL), §4.1. It used to be imple-
mented with the conditional operator whereas if would be slightly more general. This “bug”

26 Chapter 1 C++ Basics

remained undiscovered for approximately 10 years and was only detected by an automatic
analysis in Jeremy Siek’s Ph.D. thesis [57].

1.4.3.3 switch Statement

A switch is like a special kind of if. It provides a concise notation when different computa-
tions for different cases of an integral value are performed:

switch(op_code) {
case 0: z= x + y; break;
case 1: z= x - y; cout � "compute diff\n"; break;
case 2:
case 3: z= x * y; break;
default: z= x / y;

}

A somewhat surprising behavior is that the code of the following cases is also performed
unless we terminate it with break. Thus, the same operations are performed in our example
for cases 2 and 3. A compiler warning for (nonempty) cases without break is generated with
-Wimplicit-fallthrough in g++ and clang++.

To avoid such warnings and to communicate to co-developers that the fall-through isC++17
intended, C++17 introduces the attribute [[fallthrough]]:

switch(op_code) {
case 0: z= x + y; break;
case 1: z= x - y; cout � "compute diff\n"; break;
case 2: x= y; [[fallthrough]];
case 3: z= x * y; break;
default: z= x / y;

}

Also added in C++17 is the ability to initialize a variable in the switch-statement in theC++17
same way as in if.

An advanced use of switch is found in Appendix A.2.3.

1.4.4 Loops

1.4.4.1 while- and do-while-Loops

As the name suggests, a while-loop is repeated as long as the given condition holds. Let us
implement as an example the Collatz series that is defined by

Algorithm 1–1: Collatz series
Input: x0

while xi �= 1 do1

xi =
{

3xi−1 + 1 if xi−1 is odd
xi−1/2 if xi−1 is even2

1.4 Expressions and Statements 27

If we do not worry about overflow, this is easily implemented with a while-loop:

int x= 19;
while (x != 1) {

cout � x � '\n';
if (x % 2 == 1) // odd

x= 3 * x + 1;
else // even

x= x / 2;
}

Like the if-statement, the loop can be written without braces in case of a single statement.
C++ also offers a do-while-loop. There the condition for continuation is tested at the end:

double eps= 0.001;
do {

cout � "eps= " � eps � '\n';
eps/= 2.0;

} while (eps > 0.0001);

The loop is performed at least once regardless of the condition.

1.4.4.2 for-Loop

The most common loop in C++ is the for-loop. As a simple example, we add two vectors8

and print the result afterward:

double v[3], w[]= {2., 4., 6.}, x[]= {6., 5., 4};
for (int i= 0; i < 3; ++i)

v[i]= w[i] + x[i];

for (int i= 0; i < 3; ++i)
cout � "v[" � i � "]= " � v[i] � '\n';

The loop head consists of three components:

1. The initialization

2. A Continuation criterion

3. A step operation

The example above is a typical for-loop. In the initialization, we usually declare a new vari-
able and initialize it with 0—this is the start index of most indexed data structures. The
condition typically tests whether the loop index is smaller than a certain size while the last
operation usually increments the loop index. In the example, we pre-incremented the loop
variable i. For intrinsic types like int, it does not matter whether we write ++i or i++. How-
ever, it does for user types where the post-increment causes an unnecessary copy; cf. §3.3.2.5.
To be consistent in this book, we always use a pre-increment for loop indices.

It is a very popular beginners’ mistake to write conditions like i <= size(..). Since
indices are zero based in C++, the index i == size(..) is already out of range. People with

8. Later we will introduce real vector classes. For the moment we take simple arrays.

28 Chapter 1 C++ Basics

experience in Fortran or MATLAB need some time to get used to zero-based indexing. One-
based indexing seems more natural to many and is also used in mathematical literature.
However, calculations on indices and addresses are almost always simpler with zero-based
indexing.

As another example, we like to compute the Taylor series of the exponential function:

ex =
∞∑

n=0

xn

n!

up to the tenth term:

double x= 2.0, xn= 1.0, exp_x= 1.0;
unsigned long fac= 1;
for (unsigned long n= 1; n <= 10; ++n) {

xn*= x;
fac*= n;
exp_x += xn / fac;
cout � "e^x is " � exp_x � '\n';

}

Here it was simpler to compute term 0 separately and start the loop with term 1. We also
used less than or equal to ensure that the term x10/10! is considered.

The for-loop in C++ is very flexible. The initialization part can be any expression, a
variable declaration, or empty. It is possible to introduce multiple new variables of the same
type. This can be used to avoid repeating the same operation in the condition, e.g.:

for (int i= begin(xyz), e= end(xyz); i < e; ++i) ...

Variables declared in the initialization are only visible within the loop and hide variables of
the same names from outside the loop.

The condition can be any expression that is convertible to a bool. An empty condition
is always true and the loop is repeated infinitely. It can still be terminated inside the body,
as we will discuss in Section 1.4.4.4. We already mentioned that a loop index is typically
incremented in the third subexpression of for. In principle, we can modify it within the loop
body as well. However, programs are much clearer if it is done in the loop head. On the
other hand, there is no limitation that only one variable is increased by 1. We can modify
as many variables as we want using the comma operator (§1.3.5) and by any modification
desired, such as

for (int i= 0, j= 0, p= 1; ...; ++i, j+= 4, p*= 2) ...

This is of course more complex than having just one loop index, but it is still more readable
than declaring/modifying indices before the loop or inside the loop body.

1.4.4.3 Range-Based for-LoopC++11

A very compact notation is provided by the feature called Range-Based for-Loop. We will
tell you more about its background once we come to the iterator concept (§4.1.2).

1.4 Expressions and Statements 29

For now, we will consider it as a concise form to iterate over all entries of an array or
other containers:

int primes []= {2, 3, 5, 7, 11, 13, 17, 19};
for (int i : primes)

std::cout � i � " ";

This will print the primes from the array separated by spaces. In C++20 we can initialize
prime in the range-based loop: C++20

for (int primes []= {2, 3, 5, 7, 11, 13, 17, 19}; int i : primes)
std::cout � i � " ";

1.4.4.4 Loop Control

There are two statements to deviate from the regular loop evaluation:

1. break

2. continue

A break terminates the loop entirely, and continue ends only the current iteration and con-
tinues the loop with the next iteration, for instance:

for (...; ...; ...) {
...
if (dx == 0.0)

continue;
x+= dx;
...
if (r < eps)

break;
...

}

In the example above, we assumed that the remainder of the iteration is not needed when
dx == 0.0. In some iterative computations, it might be clear in the middle of an iteration
(here when r < eps) that all work is already done.

1.4.5 goto

All branches and loops are internally realized by jumps. C++ provides explicit jumps called
goto. However:

Advice

Do not use goto! Never! Ever!

The applicability of goto is more restrictive in C++ than in C (e.g., we cannot jump over
initializations); it still has the power to ruin the structure of our program.

Writing software without goto is called Structured Programming. However, the term is
rarely used nowadays since this is taken for granted in high-quality software.

30 Chapter 1 C++ Basics

1.5 Functions

Functions are important building blocks of C++ programs. The first example we have seen
is the main function in the hello-world program. We will say a little more about main in
Section 1.5.5.

1.5.1 Arguments

C++ distinguishes two forms of passing arguments: by value and by reference.

1.5.1.1 Call by Value

When we pass an argument to a function, it creates a copy by default. For instance, the
following function increments x but not visibly to the outside world:

void increment(int x)
{

x++;
}

int main()
{

int i= 4;
increment(i); // Does not increment i
cout � "i is " � i � '\n';

}

The output is 4. The operation x++ only increments a local copy of i within the increment

function but not i itself. This kind of argument transfer is referred to as Call by Value or
Pass by Value.

1.5.1.2 Call by Reference

To modify function parameters, we have to Pass the argument by Reference:

void increment(int& x)
{

x++;
}

Now, the variable itself is incremented and the output will be 5 as expected. We will discuss
references in more detail in §1.8.4.

Temporary variables—like the result of an operation—cannot be passed by reference:

increment(i + 9); // Error: temporary not referable

In order to pass the expression to this function, we must store it to a variable up front and
pass that variable. Obviously, modifying functions on temporary variables makes no sense
anyway since we never see the impact of the modification.

1.5 Functions 31

Larger data structures like vectors and matrices are almost always passed by reference
to avoid expensive copy operations:

double two_norm(vector& v) { ... }

An operation like a norm should not change its argument. But passing the vector by reference
bears the risk of accidentally overwriting it. To make sure our vector is not changed (and
not copied either), we pass it as a constant reference:

double two_norm(const vector& v) { ... }

If we tried to change v in this function the compiler would emit an error.
Both call-by-value and constant references ascertain that the argument is not altered

but by different means:

• Arguments that are passed by value can be changed in the function since the function
works with a copy.9

• With const references we work directly on the passed argument, but all operations that
might change the argument are forbidden. In particular, const-reference arguments
cannot appear on the left-hand side (LHS) of an assignment or be passed as non-const
references to other functions; in fact, the LHS argument of an assignment is also a
non-const reference.

In contrast to mutable10 references, constant ones allow for passing temporaries:

alpha= two_norm(v + w);

This is admittedly not entirely consequential on the language design side, but it makes the
life of programmers much easier.

1.5.1.3 Default Arguments

If an argument usually has the same value, we can declare it with a default value. Say we
implement a function that computes the n-th root and mostly the square root, then we can
write:

double root(double x, int degree= 2) { ... }

This function can be called with one or two arguments:

x= root (3.5, 3);
y= root (7.0); // like root (7.0, 2)

We can declare multiple defaults but only at the end of the parameter list. In other words,
after an argument with a default value we cannot have one without.

9. Assuming the argument is properly copied. User types with broken copy implementations can undermine
the integrity of the passed-in data.
10. Note that we use the word mutable for linguistic reasons as a synonym for non-const in this book. In
C++, we also have the keyword mutable (§2.6.3), which we do not use very often.

32 Chapter 1 C++ Basics

Default values are also helpful when extra parameters are added. Let us assume that we
have a function that draws circles:

draw_circle(int x, int y, float radius);

These circles are all black. Later, we add a color:

draw_circle(int x, int y, float radius , color c= black);

Thanks to the default argument, we do not need to refactor our application since the calls
of draw_circle with three arguments still work.

1.5.2 Returning Results

In the earlier examples, we only returned double or int. These are well-behaved return types.
Now we will look at the extremes: large or no data.

1.5.2.1 Returning Large Data Structures

Functions that compute new values of large data structures are more difficult. For the
details, we will put you off until later and only mention the options here. The good news
is that compilers are smart enough to elide the copy of the return value in many cases; see
Section 2.3.5.3. In addition, the move semantics (Section 2.3.5) where data of temporaries
is stolen avoids copies when the aforementioned elision does not apply. Advanced libraries
avoid returning large data structures altogether with a technique called expression templates
and delay the computation until it is known where to store the result (Section 5.3.2). In any
case, we must not return references to local function variables (Section 1.8.6).

1.5.2.2 Returning Nothing

Syntactically, each function must return something even if there is nothing to return. This
dilemma is solved by the void type named void. For instance, a function that just prints x

has no result:

void print_x(int x)
{

std::cout � "The value x is " � x � '\n';
}

void is not a real type but more of a placeholder that enables us to omit returning a value.
We cannot define void objects:

void nothing; // Error: no void objects

A void function can be terminated earlier:

void heavy_compute(const vector& x, double eps , vector& y)
{

for (...) {
...
if (two_norm(y) < eps)

return;
}

}

1.5 Functions 33

with a no-argument return. Returning something in a void function would be an error. The
only thing that can appear in its return statement is the call of another void function (as a
shortcut of the call plus an empty return).

1.5.3 Inlining

Calling a function is relatively expensive: registers must be stored, arguments copied on
the stack, and so on. To avoid this overhead, the compiler can inline function calls. In this
case, the function call is substituted with the operations contained in the function. The
programmer can ask the compiler to do so with the appropriate keyword:

inline double square(double x) { return x*x; }

However, the compiler is not obliged to inline. Conversely, it can inline functions without
the keyword if this seems promising for performance. The inline declaration still has its use:
for including a function in multiple compile units, which we will discuss in Section 7.2.3.2.

1.5.4 Overloading

In C++, functions can share the same name as long as their parameter declarations are
sufficiently different. This is called Function Overloading. Let us first look at an example:

#include <iostream >
#include <cmath >

int divide(int a, int b) {
return a / b ;

}

float divide(float a, float b) {
return std:: floor(a / b) ;

}

int main() {
int x= 5, y= 2;
float n= 5.0, m= 2.0;
std::cout � divide(x, y) � std::endl;
std::cout � divide(n, m) � std::endl;
std::cout � divide(x, m) � std::endl; // Error: ambiguous

}

Here we defined the function divide twice: with int and float parameters. When we call
divide, the compiler performs an Overload Resolution:

1. Is there an overload that matches the argument type(s) exactly? Take it; otherwise:

2. Are there overloads that match after conversion? How many?

• 0: Error: No matching function found.

• 1: Take it.

• > 1: Error: ambiguous call.

34 Chapter 1 C++ Basics

How does this apply to our example? The calls divide(x, y) and divide(n, m) are exact
matches. For divide(x, m), no overload matches exactly and both by Implicit Conversion so
that it’s ambiguous.

The term implicit conversion requires some explanation. We have already seen that the
language’s numeric types can be converted one to another. These are implicit conversions
as demonstrated in the example. When we later define our own types, we can implement a
conversion from another type to it or conversely from our new type to an existing one.

⇒ c++11/overload_testing.cpp

More formally phrased, function overloads must differ in their Signature. In C++, the sig-
nature consists of

• The function name;

• The number of arguments, called Arity; and

• The types of the arguments (in their respective order).

In contrast, overloads varying only in the return type or the argument names have the same
signature and are considered as (forbidden) redefinitions:

void f(int x) {}
void f(int y) {} // Redefinition: only argument name different
long f(int x) {} // Redefinition: only return type different

That functions with different names or arity are distinct goes without saying. The presence
of a reference symbol turns the argument type into another argument type (thus, f(int)

and f(int&) can coexist). The following three overloads have different signatures:

void f(int x) {} // #1
void f(int& x) {} // #2
void f(const int& x) {} // #3

This code snippet compiles. Problems will arise, however, when we call f:

int i= 3;
const int ci= 4;

f(i);
f(ci);
f(3);

All three function calls are ambiguous: for the first call #1 and #2 are equal matches, and
for the other calls #1 and #3. Mixing overloads of reference and value arguments almost
always fails. Thus, when one overload has a reference qualified argument, the corresponding
argument of the other overloads should be reference qualified as well. We can achieve this in
our toy example by omitting the value-argument overload. Then f(3) and f(ci) will resolve
to the overload with the constant reference and f(i) to that with the mutable one.

1.6 Error Handling 35

1.5.5 main Function

The main function is not fundamentally different from any other function. There are two
signatures allowed in the standard:

int main()

or:
int main(int argc , char* argv[])

The latter is equivalent to:
int main(int argc , char** argv)

The parameter argv contains the list of arguments and argc its length. The first argument
(argv[0]) is on most systems the name of the called executable (which may be different from
the source code name). To play with the arguments, we can write a short program called
argc_argv_test:

int main (int argc, char* argv [])
{

for (int i= 0; i < argc; ++i)
cout � argv[i] � '\n';

return 0;
}

Calling this program with the following options:
argc_argv_test first second third fourth

yields:
argc_argv_test
first
second
third
fourth

As you can see, each space in the command splits the arguments. The main function returns
an integer as exit code that states whether the program finished correctly or not. Returning
0 (or the macro EXIT_SUCCESS from <cstdlib>) represents success and every other value a
failure. It is standards compliant to omit the return statement in the main function. In this
case, return 0; is automatically inserted. Some extra details are found in Section A.2.4.

1.6 Error Handling

“An error doesn’t become a mistake until you refuse to correct it.”

—Orlando Aloysius Battista

The two principal ways to deal with unexpected behavior in C++ are assertions and excep-
tions. The former is intended for detecting programming errors and the latter for exceptional
situations that prevent proper continuation of the program. To be honest, the distinction is
not always obvious.

36 Chapter 1 C++ Basics

1.6.1 Assertions

The macro assert from header <cassert> is inherited from C but still useful. It evaluates an
expression, and when the result is false the program is terminated immediately. It should
be used to detect programming errors. Say we implement a cool algorithm computing a
square root of a non-negative real number. Then we know from mathematics that the result
is non-negative. Otherwise something is wrong in our calculation:

#include <cassert >

double square_root(double x)
{

check_somehow(x >= 0);
...
assert(result >= 0.0);
return result;

}

How to implement the initial check is left open for the moment. When our result is negative,
the program execution will print an error like this:

assert_test: assert_test.cpp :10: double square_root(double):
Assertion ' result >= 0.0 ' failed.

The assertion requires that our result must be greater than or equal to zero; otherwise our
implementation contains a bug and we must fix it before we use this function for serious
applications.

After we fixed the bug we might be tempted to remove the assertion(s). We should not
do so. Maybe one day we will change the implementation; then we still have all our sanity
tests working. Actually, assertions on post-conditions are somehow like mini-unit tests.

A great advantage of assert is that we can let it disappear entirely by a simple macro
declaration. Before including <cassert> we can define NDEBUG:

#define NDEBUG
#include <cassert >

and all assertions are disabled; i.e., they do not cause any operation in the executable.
Instead of changing our program sources each time we switch between debug and release
mode, it is better and cleaner to declare NDEBUG in the compiler flags (usually -D on Linux
and /D on Windows):

g++ my_app.cpp -o my_app -O3 -DNDEBUG

Software with assertions in critical kernels can be slowed down by a factor of two or more
when the assertions are not disabled in the release mode. Good build systems like CMake

activate -DNDEBUG automatically in the release mode’s compile flags.
Since assertions can be disabled so easily, we should follow this advice:

Defensive Programming

Test as many properties as you can.

1.6 Error Handling 37

Even if you are sure that a property obviously holds for your implementation, write an
assertion. Sometimes the system does not behave precisely as we assumed, or the compiler
might be buggy (extremely rare but not impossible), or we did something slightly different
from what we intended originally. No matter how much we reason and how carefully we
implement, sooner or later one assertion may be raised. If there are so many properties to
check that the actual functionality is no longer clearly visible in the code, the tests can be
outsourced to another function.

Responsible programmers implement large sets of tests. Nonetheless, this is no guarantee
that the program works under all circumstances. An application can run for years like a
charm and one day it crashes. In this situation, we can run the application in debug mode
with all the assertions enabled, and in most cases they will be a great help to find the reason
for the crash. However, this requires that the crashing situation is reproducible and that the
program in slower debug mode reaches the critical section in reasonable time.

1.6.2 Exceptions

In the preceding section, we looked at how assertions help us detect programming errors.
However, there are many critical situations that we cannot prevent even with the smartest
programming, like files that we need to read but which are deleted. Or our program needs
more memory than is available on the actual machine. Other problems are preventable in
theory but the practical effort is disproportionally high, e.g., to check whether a matrix is
regular is feasible but might be as much or even more work than the actual task. In such
cases, it is usually more efficient trying to accomplish the task and checking for Exceptions
along the way.

1.6.2.1 Motivation

Before illustrating the old-style error handling, we introduce our anti-hero Herbert11 who is
an ingenious mathematician and considers programming a necessary evil for demonstrating
how magnificently his algorithms work. He is immune to the newfangled nonsense of modern
programming.

His favorite approach to deal with computational problems is to return an error code
(like the main function does). Say we want to read a matrix from a file and check whether
the file is really there. If not, we return an error code of 1:

int read_matrix_file(const char* fname , matrix& A)
{

fstream f(fname);
if (!f.is_open ())

return 1;
...

return 0;
}

So, he checked for everything that can go wrong and informed the caller with the appropriate
error code. This is fine when the caller evaluated the error and reacted appropriately. But

11. To all readers named Herbert: Please accept our honest apology for having picked your name.

38 Chapter 1 C++ Basics

what happens when the caller simply ignores his return code? Nothing! The program keeps
going and might crash later on absurd data, or even worse might produce nonsensical results
that careless people might use to build cars or planes. Of course, car and plane builders are
not that careless, but in more realistic software even careful people cannot have an eye on
each tiny detail.

Nonetheless, bringing this reasoning across to programming dinosaurs like Herbert might
not convince them: “Not only are you dumb enough to pass in a nonexisting file to my per-
fectly implemented function, then you do not even check the return code. You do everything
wrong, not me.”

We get a little bit more security with C++17. It introduces the attribute [[nodiscard]]C++17
to state that the return value should not be discarded:

[[nodiscard]] int read_matrix_file(const char* fname , matrix& A)

As a consequence, each call that ignores the return value will cause a warning, and with
an additional compiler flag we can turn each warning into an error. Conversely, we can also
suppress this warning with another compiler flag. Thus, the attribute doesn’t guarantee us
that the return code is used. Furthermore, merely storing the return value into a variable
already counts as usage, regardless of whether we touch this variable ever again.

Another disadvantage of the error codes is that we cannot return our computational
results and have to pass them as reference arguments. This prevents us from building
expressions with the result. The other way around is to return the result and pass the
error code as a (referred) function argument, which is not much less cumbersome. So much
for messing around with error codes. Let us now see how exceptions work.

1.6.2.2 Throwing

The better approach to deal with problems is to throw an exception:
matrix read_matrix_file(const std:: string& fname)
{

fstream f(fname);
if (!f.is_open ())

throw "Cannot open file.";
...

}

C++ allows us to throw everything as an exception: strings, numbers, user types, et cetera.
However, for dealing with the exceptions properly it is better to define exception types or
to use those from the standard library:

struct cannot_open_file {};

matrix read_matrix_file(const std:: string& fname)
{

fstream f(fname);
if (!f.is_open ())

throw cannot_open_file {};
matrix A;
// populate A with data (possibly throw exception)
return A;

}

1.6 Error Handling 39

Here, we introduced our own exception type. In Chapter 2, we will explain in detail how
classes can be defined. In the preceding example, we defined an empty class that only
requires opening and closing braces followed by a semicolon. Larger projects usually es-
tablish an entire hierarchy of exception types that are usually derived (Chapter 6) from
std::exception.

1.6.2.3 Catching

To react to an exception, we have to catch it. This is done in a try-catch-block. In our
example we threw an exception for a file we were unable to open, which we can catch now:

try {
A= read_matrix_file("does_not_exist.dat");

} catch (const cannot_open_file& e) {
// Here we can deal with it , hopefully.

}

We can write multiple catch clauses in the block to deal with different exception types in
one location. Discussing this in detail makes much more sense after introducing classes and
inheritance. Therefore we postpone it to Section 6.1.5.

1.6.2.4 Handling Exceptions

The easiest handling is delegating it to the caller. This is achieved by doing nothing (i.e.,
no try-catch-block).

We can also catch the exception, provide an informative error message, and terminate
the program:

try {
A= read_matrix_file("does_not_exist.dat");

} catch (const cannot_open_file& e) {
cerr � "Hey guys , your file does not exist! I'm out.\n";
exit(EXIT_FAILURE);

}

Once the exception is caught, the problem is considered to be solved and the execution
continues after the catch-block(s). To terminate the execution, we used exit from the header
<cstdlib>. The function exit ends the execution even when we are not in the main function.
It should only be used when further execution is too dangerous and there is no hope that
the calling functions have any cure for the exception either.

Alternatively, we can continue after the complaint or a partial rescue action by rethrowing
the exception, which might be dealt with later:

try {
A= read_matrix_file("does_not_exist.dat");

} catch (const cannot_open_file& e) {
cerr � "O my gosh , the file is not there! Please caller help me.\n";
throw;

}

40 Chapter 1 C++ Basics

In our case, we are already in the main function and there is no other function on the call
stack to catch our exception. Ignoring an exception is easily implemented by an empty block:

} catch (cannot_open_file &) {} // File is rubbish , don't care

So far, our exception handling did not really solve our problem of missing a file. If the
filename is provided by a user, we can pester him/her until we get one that makes us happy:

bool keep_trying= true;
do {

std:: string fname;
cout � "Please enter the filename: ";
cin � fname;
try {

A= read_matrix_file(fname);
...
keep_trying= false;

} catch (const cannot_open_file& e) {
cout � "Could not open the file. Try another one!\n";

}
} while (keep_trying);

When we reach the end of the try-block, we know that no exception was thrown and we can
call it a day. Otherwise we land in one of the catch-blocks and keep_trying remains true.

1.6.2.5 Advantages of Exceptions

Error handling is necessary when our program runs into a problem that cannot be solved
where it is detected (otherwise we’d do so, obviously). Thus, we must communicate this to
the calling function with the hope that the detected problem can be solved or at least treated
in a manner that is acceptable to the user. It is possible that the direct caller of the problem-
detecting function is not able to handle the either, and the issue must be communicated
further up the call stack over several functions, possibly up to the main function. By taking
this into consideration, exceptions have the following advantages over error codes:

• Function interfaces are clearer.

• Returning results instead of error codes allows for nesting function calls.

• Untreated errors immediately abandon the application instead of silently continuing
with corrupt data.

• Exceptions are automatically propagated up the call stack.

• The explicit communication of error codes obfuscates the program structure.

An example from the author’s practice concerned an LU factorization. It cannot be computed
for a singular matrix. There is nothing we can do about it. However, in the case that the
factorization was part of an iterative computation, we were able to continue the iteration
somehow without that factorization. Although this would be possible with traditional error
handling as well, exceptions allow us to implement it much more readably and elegantly.

1.7 I/O 41

We can program the factorization for the regular case and when we detect the singularity,
we throw an exception. Then it is up to the caller how to deal with the singularity in the
respective context—if possible.

1.6.2.6 Who Throws? C++11

C++03 allowed specifying which types of exceptions can be thrown from a function. Without
going into details, these specifications turned out not to be very useful and were deprecated
since C++11 and removed since C++17.

C++11 added a new qualification for specifying that no exceptions must be thrown out
of the function, e.g.:

double square_root(double x) noexcept { ... }

The benefit of this qualification is that the calling code never needs to check for thrown
exceptions after square_root. If an exception is thrown despite the qualification, the program
is terminated.

In templated functions, it can depend on the argument type(s) whether an exception
is thrown. To handle this properly, noexcept can depend on a compile-time condition; see
Section 5.2.2.

Whether an assertion or an exception is preferable is not an easy question and we have
no short answer to it. The question will probably not bother you now. We therefore postpone
the discussion to Section A.2.5 and leave it to you when you read it.

1.6.3 Static Assertions C++11

Program errors that can already be detected during compilation can raise a static_assert.
In this case, an error message is emitted and the compilation stopped.

static_assert(sizeof(int) >= 4,
"int is too small on this platform for 70000");

const int capacity= 70000;

In this example, we store the literal value 70000 to an int. Before we do this, we verify that
the size of int is large enough on the platform this code snippet is compiled for to hold the
value correctly. The complete power of static_assert is unleashed with meta-programming
(Chapter 5) and we will show more examples there.

1.7 I/O

C++ uses a convenient abstraction called streams to perform I/O operations in sequential
media such as screens or keyboards. A stream is an object where a program can either insert
characters or extract them. The standard C++ library contains the header <iostream> where
the standard input and output stream objects are declared.

1.7.1 Standard Output

By default, the standard output of a program is written to the screen, and we can access it
with the C++ stream named cout. It is used with the insertion operator, which is denoted by

42 Chapter 1 C++ Basics

� (like left shift). We have already seen that it may be used more than once within a single
statement. This is especially useful when we want to print a combination of text, variables,
and constants, e.g.:

cout ��� "The square root of " ��� x ��� " is " ��� sqrt(x) ��� endl;

with an output like

The square root of 5 is 2.23607

endl produces a newline character. An alternative representation of endl is the character \n.
For the sake of efficiency, the output may be buffered. In this regard, endl and \n differ:
the former flushes the buffer while the latter does not. Flushing can help us when we are
debugging (without a debugger) to find out between which outputs the program crashes. In
contrast, when a large amount of text is written to files, flushing after every line slows down
I/O considerably.

Fortunately, the insertion operator has a relatively low priority so that arithmetic oper-
ations can be written directly:

std::cout � "11 * 19 = " � 11 * 19 � std::endl;

All comparisons and logical and bitwise operations must be grouped by surrounding paren-
theses. Likewise the conditional operator:

std::cout � (age > 65 ? "I'm a wise guy\n" : "I am still half-baked .\n");

When we forget the parentheses, the compiler will remind us (offering us an enigmatic
message to decipher).

1.7.2 Standard Input

Handling the standard input in C++ is done by applying the overloaded operator of extrac-
tion �. The standard input device is usually the keyboard as stream name cin:

int age;
std::cin ��� age;

This command reads characters from the input device and interprets them as a value of the
variable type (here int) it is stored to (here age). The input from the keyboard is processed
once the RETURN key has been pressed. We can also use cin to request more than one
data input from the user:

std::cin ��� width ��� length;

which is equivalent to

std::cin ��� width;
std::cin ��� length;

In both cases the user must provide two values: one for width and another for length. They
can be separated by any valid blank separator: a space, a tab character, or a newline.

1.7 I/O 43

1.7.3 Input/Output with Files

C++ provides the following classes to perform input and output of characters from/to files:

ofstream write to files
ifstream read from files
fstream both read and write from/to files

We can use file streams in the same fashion as cin and cout, with the only difference that
we have to associate these streams with physical files. Here is an example:

#include <fstream >

int main ()
{

std:: ofstream square_file;
square_file.open("squares.txt");
for (int i= 0; i < 10; ++i)

square_file ��� i ��� "^2 = " ��� i*i ��� '\n';
square_file.close ();

}

This code creates a file named squares.txt (or overwrites it if it already exists) and writes
some lines to it—like we write to cout. C++ establishes a general stream concept that is
satisfied by an output file and by std::cout. This means we can write everything to a file
that we can write to std::cout and vice versa. When we define operator� for a new type,
we do this once for ostream (Section 2.7.3) and it will work with the console, with files, and
with any other output stream.

Alternatively, we can pass the filename as an argument to the constructor of the stream
to open the file implicitly. The file is also implicitly closed when square_file goes out of scope,12

in this case at the end of the main function. The short version of the preceding program is:

#include <fstream >

int main ()
{

std:: ofstream square_file {" squares.txt"};
for (int i= 0; i < 10; ++i)

square_file � i � "^2 = " � i*i � '\n';
}

We prefer the short form (as usual). The explicit form is only necessary when the file is first
declared and opened later for some reason. Likewise, the explicit close is only needed when
the file should be closed before it goes out of scope.

1.7.4 Generic Stream Concept

Streams are not limited to screens, keyboards, and files; every class can be used as a stream
when it is derived13 from istream, ostream, or iostream and provides implementations for the

12. Thanks to the powerful technique named RAII, which we will discuss in Section 2.4.2.1.
13. How classes are derived is shown in Chapter 6. Let us here just take notice that being an output stream
is technically realized by deriving it from std::ostream.

44 Chapter 1 C++ Basics

functions of those classes. For instance, Boost.Asio offers streams for TCP/IP and Boost.
IOStream provides alternatives to the I/O above. The standard library contains a
stringstream that can be used to create a string from any kind of printable type.
stringstream’s method str() returns the stream’s internal string.

We can write output functions that accept every kind of output stream by using a
mutable reference to ostream as an argument:

#include <iostream >
#include <fstream >
#include <sstream >

void write_something (std:: ostream& os)
{

os � "Hi stream , did you know that 3 * 3 = " � 3 * 3 � '\n';
}

int main (int argc , char* argv [])
{

std:: ofstream myfile{"example.txt"};
std:: stringstream mysstream;

write_something (std::cout);
write_something (myfile);
write_something (mysstream);

std::cout � "mysstream is: " � mysstream.str (); // newline contained
}

Likewise, generic input can be implemented with istream and read/write I/O with iostream.

1.7.5 Formatting
⇒ c++03/formatting.cpp

I/O streams are formatted by so-called I/O manipulators which are found in the header
file <iomanip>. By default, C++ only prints a few digits of f loating-point numbers. Thus, we
increase the precision:

double pi= M_PI;
cout � "pi is " � pi � '\n';
cout � "pi is " � setprecision (16) � pi � '\n';

and yield a more accurate number:

pi is 3.14159
pi is 3.141592653589793

C++20
In Section 4.3.1, we will show how the precision can be adjusted to the type’s representable
number of digits. Instead of the macro M_PI or a literal value, in C++20 we can use the double

constant std::number::pi from <numbers>.

1.7 I/O 45

When we write a table, vector, or matrix, we need to align values for readability. There-
fore, we next set the width of the output:

cout � "pi is " � setw (30) � pi � '\n';

This results in

pi is 3.141592653589793

setw changes only the next output while setprecision affects all following (numerical) out-
puts, like the other manipulators. The provided width is understood as a minimum, and if
the printed value needs more space, our tables will get ugly.

We can further request that the values be left aligned, and the empty space be filled
with a character of our choice, say, -:

cout � "pi is " � setfill('-') � left
� setw (30) � pi � '\n';

yielding

pi is 3.141592653589793-------------

Another way of formatting is setting the flags directly. Furthermore, we force the “scientific”
notation in the normalized exponential representation:

cout.setf(ios_base :: showpos);
cout � "pi is " � scientific � pi � '\n';

resulting in:

pi is +3.1415926535897931e+00

Integer numbers can be represented in octal and hexadecimal base by:

cout � "63 octal is " � oct � 63 � ".\n";
cout � "63 hexadecimal is " � hex � 63 � ".\n";
cout � "63 decimal is " � dec � 63 � ".\n";

with the expected output:

63 octal is 77.
63 hexadecimal is 3f.
63 decimal is 63.

Boolean values are by default printed as integers 0 and 1. On demand, we can present them
as true and false:

cout � "pi < 3 is " � (pi < 3) � '\n';
cout � "pi < 3 is " � boolalpha � (pi < 3) � '\n';

Finally, we can reset all the format options that we changed:

int old_precision= cout.precision ();
cout � setprecision (16)
...
cout.unsetf(ios_base :: adjustfield | ios_base :: basefield

| ios_base :: floatfield | ios_base :: showpos | ios_base :: boolalpha);
cout.precision(old_precision);

46 Chapter 1 C++ Basics

Each option is represented by a bit in a status variable. To enable multiple options, we can
combine their bit patterns with a binary OR.

1.7.6 New FormattingC++20

⇒ c++20/fmt_example.cpp

As we have seen in the preceding section, traditional stream formatting requires a fair
amount of typing. Alternatively, we can use the output from C with the printf function and
format strings. This allows us to declare with few symbols what we’ve written with multiple
I/O manipulators before.

Nonetheless, we advise against using printf, for two reasons: it can’t be used with user
types and it is not type safe. The format string is parsed at run time and the following
arguments are treated with an obscure macro mechanism. If the arguments don’t match
the format string, the behavior is undefined and can cause program crashes. For instance,
a string is passed as a pointer, and from the pointed address on, the bytes are read and
printed as char until a binary 0 is found in memory. If we accidentally try printing an int as
a string, the int value is misinterpreted as an address from which a sequence of char shall be
printed. This will result in either absolute nonsensical output or (more likely) in a memory
error if the address is inaccessible. We have to admit that recent compilers parse format
strings (when known at compile time) and warn about argument mismatches.

The new <format> library in C++20 combines the expressibility of the format string with
the type safety and the user extensibility of stream I/O and adds the opportunity to reorder
the arguments in the output. Unfortunately, not even the latest compilers by the time of
writing (GCC 12.0, Clang 13, and Visual Studio 16.9.614) support the <format> library.
Therefore, we used the prototype library <fmt> and refrained from wild-guessing how this
would translate to the final standard interface. We strongly encourage you to migrate these
examples yourself to <format> as soon as it’s available to you. The syntax is different but
the principles are the same.

Instead of a formal specification, we port some printf examples from cppreference.com
to the new format:

print("Decimal :\t{} {} {:06} {} {:0} {:+} {:d}\n",
1, 2, 3, 0, 0, 4, -1);

print("Hexadecimal :\t{:x} {:x} {:X} {:#x}\n", 5, 10, 10, 6);
print("Octal :\t\t{:o} {:#o} {:#o}\n", 10, 10, 4);
print("Binary :\t\t{:b} {:#b} {:#b}\n", 10, 10, 4);

This snippet prints:

Decimal: 1 2 000003 0 0 +4 -1
Hexadecimal: 5 a A 0x6
Octal: 12 012 04
Binary: 1010 0b1010 0b100

The first two numbers were just printed without giving any format information. The same
output is generated when we ask for a decimal number with the format specifier "{:d}". The

14. We read, however, the announcement that VS 16.10 will be library complete.

http://cppreference.com

1.7 I/O 47

third number will be printed (minimally) 6 characters wide and filled with leading 0s. The
specifier + allows us to force printing the sign for all numbers. printf allows for specifying
unsigned output of numbers. That leads to incorrect large numbers when the value to print
is negative. The <format> library refrains from user declarations of unsigned output since this
information is already contained in the type of the according argument. If somebody feels
the urge to print a negative value as a large positive one, they must convert it explicitly.

The second line demonstrates that we can print values hexadecimally—both with lower-
and uppercase for the digits larger than 9. The specifier "#" generates the prefix "0x" used
in hexadecimal literals. Likewise, we can print the values as octals and binaries, optionally
with the according literal prefix.

With floating-point numbers we have more formatting options:

print("Default :\t{} {:g} {:g}\n", 1.5, 1.5, 1e20);
print("Rounding :\t{:f} {:.0f} {:.22f}\n", 1.5, 1.5, 1.3);
print("Padding :\t{:05.2f} {:.2f} {:5.2f}\n", 1.5, 1.5, 1.5);
print("Scientific :\t{:E} {:e}\n", 1.5, 1.5);
print("Hexadecimal :\t{:a} {:A}\n\n", 1.5, 1.3);

Then we get:

Default: 1.5 1.5 1e+20
Rounding: 1.500000 2 1.3000000000000000444089
Padding: 01.50 1.50 1.50
Scientific: 1.500000E+00 1.500000e+00
Hexadecimal: 0x1.8p+0 0X1.4 CCCCCCCCCCCDP +0

With empty braces or only containing a colon, we get the default output. This corresponds to
the format specifier "{:g}" and yields the same output as streams without the manipulators.
The number of fractional digits can be given between a dot and the format specifier "f".
Then the value is rounded to that precision. If the requested number is larger than what
is representable by the value’s type, the last digits aren’t very meaningful. A digit in front
of the dot specifies the (minimal) width of the output. As with integers, we can request
leading 0s. Floating-point numbers can be printed in the scientific notation with either an
upper- or lowercase "e" to start the exponential part. The hexadecimal output can be used
to initialize a variable in another program with precisely the same bits.

The output can be redirected to any other std::ostream:15

print(std::cerr , "System error code = {}\n", 7);

ofstream error_file("error_file.txt");
print(error_file , "System error code = {}\n", 7);

In contrast to printf, arguments can now be reordered:

print("I'd rather be {1} than {0}.\n", "right", "happy");

In addition to referring the arguments by their positions, we can give them names:

print("Hello , {name}! The answer is {number }. Goodbye , {name }.\n",
arg("name", name), arg("number", number));

15. Requires including ostream.h with the <fmt> library.

48 Chapter 1 C++ Basics

Or more concisely:

print("Hello , {name}! The answer is {number }. Goodbye , {name }.\n",
"name"_a=name , "number"_a=number);

The example also demonstrates that we can print an argument multiple times.
Reordering arguments is very important in multilingual software to provide a natural

phrasing. In Section 1.3.1 we printed the average of two values, and now we want to extend
this example to five languages:

void print_average(float v1 , float v2 , int language)
{

using namespace fmt;
string formats []= {

"The average of {v1} and {v2} is {result }.\n",
"{result :.6f} ist der Durchschnitt von {v1} und {v2}.\n",
"La moyenne de {v1} et {v2} est {result }.\n",
"El promedio de {v1} y {v2} es {result }.\n",
"{result} corrisponde alla media di {v1} e {v2}.\n"};

print (formats[language], "v1"_a= v1 , "v2"_a= v2 ,
"result"_a= (v1+v2)/2.0f);

}

Of course, the German version is the most pedantic one, requesting six decimal digits no
matter what:

The average of 3.5 and 7.3 is 5.4.
5.400000 ist der Durchschnitt von 3.5 und 7.3.
La moyenne de 3.5 et 7.3 est 5.4.
El promedio de 3.5 y 7.3 es 5.4.
5.4 corrisponde alla media di 3.5 e 7.3.

Admittedly, this example would have worked without reordering the arguments but it nicely
demonstrates the important possibility to separate the text and the formatting from the val-
ues. To store formatted text in a string we don’t need a stringstream any longer but can do
it directly with the function format.

Altogether, the new formatting is:

• Compact, as demonstrated in the examples above

• Adaptable to various output orders

• Type-safe, as an exception is thrown when an argument doesn’t match

• Extensible, which we will see in Section 3.5.6

For those reasons, it is superior to the preceding techniques, and we therefore strongly advise
using it as soon as sufficient compiler support is available.

1.7 I/O 49

1.7.7 Dealing with I/O Errors

To make one thing clear from the beginning: I/O in C++ is not fail-safe. Errors can be
reported in different ways and our error handling must comply to them. Let us try the
following example program:

int main ()
{

std:: ifstream infile("some_missing_file.xyz");

int i;
double d;
infile � i � d;

std::cout � "i is " � i � ", d is " � d � '\n';
infile.close ();

}

Although the file does not exist, the opening operation does not fail. We can even read from
the nonexisting file and the program goes on. It is needless to say that the values in i and
d are nonsense:

i is 1, d is 2.3452e-310

By default, the streams do not throw exceptions. The reason is historical: they are older
than the exceptions, and later the behavior was kept to not break software written in the
meantime. Another argument is that failing I/O is nothing exceptional but quite common,
and checking errors (after each operation) would be natural.

To be sure that everything went well, we have to check error flags, in principle, after
each I/O operation. The following program asks the user for new filenames until a file can
be opened. After reading its content, we check again for success:

int main ()
{

std:: ifstream infile;
std:: string filename{"some_missing_file.xyz"};
bool opened= false;
while (! opened) {

infile.open(filename);
if (infile.good()) {

opened= true;
} else {

std::cout � "The file '" � filename
� "' doesn't exist (or can't be opened),"
� "please give a new filename: ";

std::cin � filename;
}

}
int i;
double d;
infile � i � d;

50 Chapter 1 C++ Basics

if (infile.good())
std::cout � "i is " � i � ", d is " � d � '\n';

else
std::cout � "Could not correctly read the content .\n";

infile.close ();
}

You can see from this simple example that writing robust applications with file I/O can
create some work. If we want to use exceptions, we have to enable them during run time for
each stream:

cin.exceptions(ios_base :: badbit | ios_base :: failbit);
cout.exceptions(ios_base :: badbit | ios_base :: failbit);

std:: ifstream infile("f.txt");
infile.exceptions(ios_base :: badbit | ios_base :: failbit);

The streams throw an exception every time an operation fails or when they are in a “bad”
state. Exceptions could be thrown at (unexpected) file end as well. However, the end of file
is more conveniently handled by testing (e.g., while (!f.eof())).

In the preceding example, the exceptions for infile are only enabled after opening the file
(or the attempt thereof). For checking the opening operation, we have to create the stream
first, then turn on the exceptions, and finally open the file explicitly. Enabling the exceptions
gives us at least the guarantee that all I/O operations went well when the program terminates
properly. We can make our program more robust by catching possible exceptions.

The exceptions in file I/O only protect us partially from making errors. For instance,
the following small program is obviously wrong (types don’t match and numbers aren’t
separated):

void with_io_exceptions (ios& io)
{ io.exceptions(ios_base :: badbit | ios_base :: failbit); }

int main ()
{

std:: ofstream outfile;
with_io_exceptions (outfile);
outfile.open("f.txt");

double o1= 5.2, o2= 6.2;
outfile � o1 � o2 � std::endl; // no separation
outfile.close ();

std:: ifstream infile;
with_io_exceptions (infile);
infile.open("f.txt");

int i1, i2;
char c;
infile � i1 � c � i2; // mismatching types
std::cout � "i1 = " � i1 � ", i2 = " � i2 � "\n";

}

1.7 I/O 51

Nonetheless, it does not throw exceptions and fabricates the following output:

i1 = 5, i2 = 26

As we all know, testing does not prove the correctness of a program. This is even more
obvious when I/O is involved. Stream input reads the incoming characters and passes them
as values of the corresponding variable type, e.g., int when setting i1. It stops at the first
character that cannot be part of the value, first at the dot for the int value i1. If we read
another int afterward, it would fail because an empty string cannot be interpreted as an
int value. But we do not; instead we read a char next to which the dot is assigned. When
parsing the input for i2 we find first the fractional part from o1 and then the integer part
from o2 before we get a character that cannot belong to an int value.

Unfortunately, not every violation of the grammatical rules causes an exception in prac-
tice: .3 parsed as an int yields zero (while the next input probably fails); -5 parsed as
an unsigned results in 4294967291 (when unsigned is 32 bits long). The narrowing princi-
ple apparently has not found its way into I/O streams yet (if it ever will for backward
compatibility’s sake).

At any rate, the I/O part of an application needs close attention. Numbers must be
separated properly (e.g., by spaces) and read with the same type as they were written.
Floating-point values can also vary in their local representation and it is therefore recom-
mended to store and read them without internationalization (i.e., with neutral C locale)
when the program will run on different systems. Another challenge can be branches in the
output so that the file format can vary. The input code is considerably more complicated
and might even be ambiguous.

There are two other forms of I/O we want to mention: binary and C-style I/O. The
interested reader will find them in Sections A.2.6 and A.2.7, respectively. You can also read
this later when you need it.

1.7.8 Filesystem C++17

⇒ c++17/filesystem_example.cpp

A library that was overdue in C++ is <filesystem>. Now we can list all files in a directory
and ask for their type, for instance:16

namespace fs = std:: filesystems;
for (auto & p : fs:: directory_iterator ("."))

if (is_regular_file (p))
cout � p � " is a regular file.\n"; // Error in Visual Studio

else if(is_directory(p))
cout � p � " is a directory .\n";

else
cout � p � " is neither regular file nor directory .\n";

printed out for a directory containing one executable and a subdirectory:

.\\ cpp17_vector_any.exe is a regular file.

.\\sub is a directory.

16. The example doesn’t compile with Visual Studio at the moment since the output operator for
directory_entry isn’t found.

52 Chapter 1 C++ Basics

The filesystem library also allows us to copy files, create symbolic and hard links, and rename
files directly within a C++ program in a portable manner. Boost.Filesystem is a reasonable
alternative if your compiler is not handling file operations properly or you are obliged to
hold back to older standards.

1.8 Arrays, Pointers, and References

1.8.1 Arrays

The intrinsic array support of C++ has certain limitations and some strange behaviors.
Nonetheless, we feel that every C++ programmer should know it and be aware of its problems.
An array is declared as follows:

int x[10];

The variable x is an array with 10 int entries. In standard C++, the size of the array must
be constant and known at compile time. Some compilers (e.g., g++) support run-time sizes.

Arrays are accessed by square brackets: x[i] is a reference to the i-th element of x. The
first element is x[0]; the last one is x[9]. Arrays can be initialized at the definition:

float v[]= {1.0, 2.0, 3.0}, w[]= {7.0, 8.0, 9.0};

In this case, the array size is deduced.
The list initialization in C++11 forbids the narrowing of the values. This will rarely make

a difference in practice. For instance, the following:C++11

int v[]= {1.0, 2.0, 3.0}; // Error in C++11: narrowing

was legal in C++03 but not in C++11 since the conversion from a floating-point literal to
int potentially loses precision. However, we would not write such ugly code anyway.

Operations on arrays are typically performed in loops; e.g., to compute x = v − 3w as a
vector operation is realized by

float x[3];
for (int i= 0; i < 3; ++i)

x[i]= v[i] - 3.0 * w[i];

We can also define arrays of higher dimensions:

float A[7][9]; // a 7 by 9 matrix
int q[3][2][3]; // a 3 by 2 by 3 array

The language does not provide linear algebra operations upon the arrays. Implementations
based on arrays are inelegant and error prone. For instance, a function for a vector addition
would look like this:

void vector_add(unsigned size, const double v1[], const double v2[],
double s[])

{
for (unsigned i= 0; i < size; ++i)

s[i]= v1[i] + v2[i];
}

1.8 Arrays, Pointers, and References 53

Note that we passed the size of the arrays as the first function parameter whereas array
parameters don’t contain size information.17 In this case, the function’s caller is responsible
for passing the correct size of the arrays:

int main ()
{

double x[]= {2, 3, 4}, y[]= {4, 2, 0}, sum [3];
vector_add(3, x, y, sum);
...

}

Since the array size is known during compilation, we can compute it by dividing the byte
size of the array by that of a single entry:

vector_add(sizeof x / sizeof x[0], x, y, sum);

With this old-fashioned interface, we are also unable to test whether our arrays match in size.
Sadly enough, C and Fortran libraries with such interfaces where size information is passed
as function arguments are still realized today. They crash at the slightest user mistake, and
it can take enormous effort to trace back the reasons for crashing. For that reason, we will
show in this book how we can realize our own math software that is easier to use and less
prone to errors. Hopefully, future C++ standards will come with more higher mathematics,
especially a linear-algebra library.

Arrays have the following two disadvantages:

1. Indices are not checked before accessing an array, and we can find ourselves outside the
array when the program crashes with segmentation fault/violation. This is not even
the worst case; at least we see that something goes wrong. The false access can also
mess up our data; the program keeps running and produces entirely wrong results with
whatever consequence you can imagine. We could even overwrite the program code.
Then our data is interpreted as machine operations leading to any possible nonsense.

2. The size of the array must be known at compile time.18 This is a serious problem when
we fill an array with data from a file:

ifstream ifs("some_array.dat");
ifs � size;
float v[size]; // Error: size not known at compile time

This does not work when the number of entries in the file varies.

The first problem can only be solved with new array types and the second one with dynamic
allocation. This leads us to pointers.

17. When passing arrays of higher dimensions, only the first dimension can be open while the others must
be known during compilation. However, such programs can easily get nasty and we have better techniques
for it in C++.
18. Some compilers support run-time values as array sizes. Since this is not guaranteed with other compilers,
one should avoid this in portable software. This feature was considered for C++14, but its inclusion was
postponed (maybe forever) as not all subtle issues could be solved on each and every platform.

54 Chapter 1 C++ Basics

1.8.2 Pointers

A pointer is a variable that contains a memory address. This address can be that of another
variable provided by the address operator (e.g., &x) or dynamically allocated memory. Let’s
start with the latter as we were looking for arrays of dynamic size.

int* y= new int [10];

This allocates an array of 10 int. The size can now be chosen at run time. We can also
implement the vector-reading example from the preceding section:

ifstream ifs("some_array.dat");
int size;
ifs � size;
float* v= new float[size];
for (int i= 0; i < size; ++i)

ifs � v[i];

Pointers bear the same danger as arrays: accessing data out of range, which can cause
program crashes or silent data invalidation. When dealing with dynamically allocated arrays,
it is the programmer’s responsibility to store the array size.

Furthermore, the programmer is responsible for releasing the memory when it is not
needed anymore. This is done by:

delete [] v;

Since arrays as function parameters are compatible with pointers, the vector_add function
from Section 1.8.1 works with pointers as well:

int main (int argc , char* argv [])
{

const int size= 3;
double *x= new double[size], *y= new double[size],

*sum= new double [3];
for (unsigned i= 0; i < size; ++i)

x[i]= i+2, y[i]= 4-2*i;
vector_add(size , x, y, sum);
...

}

With pointers, we cannot use the sizeof trick; it would only give us the byte size of the
pointer itself, which is of course independent of the number of entries. Other than that,
pointers and arrays are interchangeable in most situations: a pointer can be passed as an
array argument (as in the preceding listing) and an array as a pointer argument. The only
place where they are really different is the definition: whereas defining an array of size n

reserves space for n entries, defining a pointer only reserves the space to hold an address.
Since we started with arrays, we took the second step before the first one regarding

pointer usage. The simple use of pointers is allocating one single data item:

int* ip= new int;

1.8 Arrays, Pointers, and References 55

Releasing this memory is performed by:

delete ip;

Note the duality of allocation and release: the single-object allocation requires a single-
object release and the array allocation demands an array release. Otherwise the run-time
system might handle the deallocation incorrectly and crash at this point or corrupt some
data. Pointers can also refer to other variables:

int i= 3;
int* ip2= &i;

The operator & takes an object and returns its address. The opposite operator is * which
takes an address and returns an object:

int j= *ip2;

This is called Dereferencing. Given the operator priorities and the grammar rules, the mean-
ing of the symbol * as dereference or multiplication cannot be confused—at least not by the
compiler.

Pointers that are not initialized contain a random value (whatever bits are set in the
corresponding memory). Using uninitialized pointers can cause any kind of error. To say
explicitly that a pointer is not pointing to something, we should set it to C++11

int* ip3= nullptr; // >= C++11
int* ip4{}; // ditto

or in old compilers:

int* ip3= 0; // better not in C++11 and later
int* ip4= NULL; // ditto

The address 0 is guaranteed never to be used for applications, so it is safe to indicate this C++11
way that the pointer is empty (not referring to something). Nonetheless, the literal 0 does
not clearly convey its intention and can cause ambiguities in function overloading. The
macro NULL is not better: it just evaluates to 0. C++11 introduces nullptr as a keyword for a
pointer literal. It can be assigned to or compared with all pointer types. As nullptr cannot
be confused with types that aren’t pointers and it is self-explanatory, this is the preferred
notation. The initialization with an empty braced list also sets a nullptr.

Very frequent errors with pointers are Memory Leaks. For instance, our array y became
too small and we want to assign a new array:

int* y= new int [10];
// some stuff
y= new int [15];

Initially we allocated space for 10 int values. Later we needed more and allocated 15 int

locations. But what happened to the memory that we allocated before? It is still there but
we have no access to it anymore. We cannot even release it because this requires the address
of that memory block. This memory is lost for the rest of our program execution. Only when

56 Chapter 1 C++ Basics

the program is finished will the operating system be able to free it. In our example, we only
lost 40 bytes out of several gigabytes that we might have. But if this happens in an iterative
process, the unused memory grows continuously until at some point the whole (virtual)
memory is exhausted.

Even if the wasted memory is not critical for the application at hand, when we write
high-quality scientific software, memory leaks are unacceptable. When many people are
using our software, sooner or later somebody will criticize us for it and eventually discourage
other people from using it. Fortunately, tools are available to help us find memory leaks, as
demonstrated in Section B.3.

The demonstrated issues with pointers are not intended to be “fun killers.”. And we do
not discourage the use of pointers. Many things can only be achieved with pointers: lists,
queues, trees, graphs, et cetera. But pointers must be used with care to avoid all the really
severe problems mentioned above. There are three strategies to minimize pointer-related
errors:

1. Use standard containers from the standard library or other validated libraries. std::vector
from the standard library provides us all the functionality of dynamic arrays, including
resizing and range check, and the memory is released automatically.

2. Encapsulate dynamic memory management in classes. Then we have to deal with it
only once per class.19 When all memory allocated by an object is released when the
object is destroyed, it does not matter how often we allocate memory. If we have
738 objects with dynamic memory, then it will be released 738 times. The memory
should be allocated in the object construction and deallocated in its destruction. This
principle is called Resource Acquisition Is Initialization (RAII). In contrast, if we called
new 738 times, partly in loops and branches, can we be sure that we have called delete

exactly 738 times? We know that there are tools for this, but these are errors that are
better prevented than fixed.20 Of course, the encapsulation idea is not idiot-proof, but
it is much less work to get it right than sprinkling (raw) pointers all over our program.
We will discuss RAII in more detail in Section 2.4.2.1.

3. Use smart pointers, which we will introduce in the next section (§1.8.3).

Pointers serve two purposes:

1. Referring to objects

2. Managing dynamic memory

The problem with so-called Raw Pointers is that we have no notion whether a pointer is
only referring to data or also in charge of releasing the memory when it is not needed any
longer. To make this distinction explicit at the type level, we can use Smart Pointers.

19. It is safe to assume that there are many more objects than classes; otherwise there is something wrong
with the entire program design.
20. In addition, a tool only shows that the current run had no errors, but this might be different with other
input.

1.8 Arrays, Pointers, and References 57

1.8.3 Smart Pointers C++11

Three new smart-pointer types are introduced in C++11: unique_ptr, shared_ptr, and weak_ptr.
The already-existing smart pointer from C++03 named auto_ptr is generally considered as
a failed attempt on the way to unique_ptr since the language was not ready at the time.
It was therefore removed in C++17. All smart pointers are defined in the header <memory>.
If you cannot use C++11 features on your platform (e.g., in embedded programming), the
smart pointers in Boost are a decent replacement.

1.8.3.1 Unique Pointer C++11

This pointer’s name indicates Unique Ownership of the referred data. It can be used
essentially like an ordinary pointer:

#include <memory >

int main ()
{

unique_ptr <double > dp{new double };
*dp= 7;
...
cout � "The value of *dp is " � *dp � endl;

}

The main difference from a raw pointer is that the memory is automatically released when
the pointer expires. Therefore, it is a bug to assign addresses that are not allocated dynam-
ically:

double d= 7.2;
unique_ptr <double > dd{&d}; // Error: causes illegal deletion

The destructor of pointer dd will try to delete d. To guarantee the uniqueness of the memory
ownership, a unique_ptr cannot be copied:

unique_ptr <double > dp2{dp}; // Error: no copy allowed
dp2= dp; // ditto

However, we can transfer the memory location to another unique_ptr:

unique_ptr <double > dp2{move(dp)}, dp3;
dp3= move(dp2);

using move. The details of move semantics will be discussed in Section 2.3.5. In our example,
the ownership of the referred memory is first passed from dp to dp2 and then to dp3. dp and
dp2 are nullptr afterward, and the destructor of dp3 will release the memory. In the same
manner, the memory’s ownership is passed when a unique_ptr is returned from a function.
In the following example, dp3 takes over the memory allocated in f():

std:: unique_ptr <double > f()
{ return std:: unique_ptr <double >{new double }; }

int main ()
{

58 Chapter 1 C++ Basics

unique_ptr <double > dp3;
dp3= f();

}

In this case, move() is not needed since the function result is a temporary that will be moved
(again, details in §2.3.5).

Unique pointer has a special implementation21 for arrays. This is necessary for properly
releasing the memory (with delete[]). In addition, the specialization provides array-like
access to the elements:

unique_ptr <double []> da{new double [3]};
for (unsigned i= 0; i < 3; ++i)

da[i]= i+2;

In return, the operator* is not available for arrays.
An important benefit of unique_ptr is that it has absolutely no overhead over raw pointers:

neither in time nor in memory.

Further reading: An advanced feature of unique pointers is to provide its own Deleter;
for details see [40, §5.2.5f], [62, §34.3.1], or an online reference (e.g., cppreference.com).

1.8.3.2 Shared PointerC++11

As its name indicates, a shared_ptr manages memory that is shared between multiple parties
(each holding a pointer to it). The memory is automatically released as soon as no shared_ptr

is referring the data any longer. This can simplify a program considerably, especially with
complicated data structures. An extremely important application area is concurrency: the
memory is automatically freed when all threads have terminated their access to it. In contrast
to a unique_ptr, a shared_ptr can be copied as often as desired, e.g.:

shared_ptr <double > f()
{

shared_ptr <double > p1{new double };
shared_ptr <double > p2{new double}, p3= p1;
cout � "p3.use_count () = " � p3.use_count () � endl;
return p3;

}

int main ()
{

shared_ptr <double > p= f();
cout � "p.use_count () = " � p.use_count () � endl;

}

In this example, we allocated memory for two double values: in p1 and in p2. The pointer p1

is copied into p3 so that both point to the same memory, as illustrated in Figure 1–1.

21. Specialization will be discussed in §3.5.1 and §3.5.3.

http://cppreference.com

1.8 Arrays, Pointers, and References 59

counter ...
manager

data

p1

p3

Figure 1–1: Shared pointer in memory

We can see this from the output of use_count:

p3.use_count () = 2
p.use_count () = 1

When f returns, the pointers are destroyed and the memory referred to by p2 is released
(without ever being used). The second allocated memory block still exists since p from the
main function is still referring to it.

If possible, a shared_ptr should be created with make_shared:

shared_ptr <double > p1= make_shared <double >();

Then the internal and the user data are stored together in memory—as shown in Figure 1–2—
and the memory caching is more efficient. make_shared also provides better exception safety
because we have only one memory allocation. As it is obvious that make_shared returns a
shared pointer, we can use automatic type detection (§3.4.1) for simplicity:

auto p1= make_shared <double >();

We have to admit that a shared_ptr has some overhead in memory and run time. On the
other hand, the simplification of our programs thanks to shared_ptr is in most cases worth
some small overhead.

Further reading: For deleters and other details of shared_ptr see the library reference [40,
§5.2], [62, §34.3.2], or an online reference.

counter ...

manager
data

p1 p3

Figure 1–2: Shared pointer in memory after make_shared

60 Chapter 1 C++ Basics

1.8.3.3 Weak PointerC++11

A problem that can occur with shared pointers is Cyclic References that impede the memory
to be released. Such cycles can be broken by weak_ptrs. They do not claim ownership of the
memory, not even a shared one. At this point, we only mention them for completeness and
suggest that you read appropriate references when their need is established: [40, §5.2.2], [62,
§34.3.3], or cppreference.com.

For managing memory dynamically, there is no alternative to pointers. To only refer
to other objects, we can use another language feature called Reference (surprise, surprise),
which we introduce in the next section.

1.8.4 References

The following code introduces a reference:

int i= 5;
int& j= i;
j= 4;
std::cout � "i = " � i � '\n';

The variable j is referring to i. Changing j will also alter i and vice versa, as in the example.
i and j will always have the same value. One can think of a reference as an alias: it introduces
a new name for an existing object or subobject. Whenever we define a reference, we must
directly declare what it refers to (other than pointers). It is not possible to refer to another
variable later.

References are even more useful for function arguments (§1.5), for referring to parts of
other objects (e.g., the seventh entry of a vector), and for building views (e.g., §5.2.3).

As a compromise between pointers and references, C++11 offers a reference_wrapper class
which behaves similarly to references but avoids some of their limitations. For instance, it
can be used within containers; see §4.4.8.C++11

1.8.5 Comparison between Pointers and References

The main advantage of pointers over references is the ability of dynamic memory manage-
ment and address calculation. On the other hand, references are forced to refer to existing
locations.22 Thus, they do not leave memory leaks (unless you play really evil tricks), and
they have the same notation in usage as the referred object. Unfortunately, it is almost
impossible to construct containers of references (use reference_wrapper instead).

In short, references are not fail-safe but are much less error-prone than pointers. Pointers
should only be used when dealing with dynamic memory, for instance, when we create data
structures like lists or trees dynamically. Even then we should do this via well-tested types
or encapsulate the pointer(s) within a class whenever possible. Smart pointers take care
of memory allocation and should be preferred over raw pointers, even within classes. The
pointer–reference comparison is summarized in Table 1-9.

22. References can also refer to arbitrary addresses but you must work harder to achieve this. For your own
safety, we will not show you how to make references behave as badly as pointers.

http://cppreference.com

1.8 Arrays, Pointers, and References 61

Table 1–9: Comparison between Pointers and References

Feature Pointers References
Referring to defined location �
Mandatory initialization �
Avoidance of memory leaks �
Object-like notation �
Memory management �
Address calculation �
Build containers thereof �

1.8.6 Do Not Refer to Outdated Data!

Function-local variables are only valid within the function’s scope, for instance:

double& square_ref(double d) // Error: returns stale reference
{

double s= d * d;
return s; // Error: s will be out of scope

}

Here, our function result refers the local variable s which does not exist after the function
end. The memory where it was stored is still there and we might be lucky (mistakenly)
that it is not overwritten yet. But this is nothing we can count on. Finally, such situation-
dependent errors are worse than permanent ones: on the one hand, they are harder to debug,
and on the other, they can go unnoticed despite extensive testing and cause greater damage
later in real usage.

References to variables that no longer exist are called Stale References. Sadly enough,
we have seen such examples even in some web tutorials.

The same applies to pointers:

double* square_ptr(double d) // Error: returns dangling pointer
{

double s= d * d;
return &s; // Error: s will be out of scope

}

This pointer holds the address of a local variable that has already gone out of scope. This
is called a Dangling Pointer.

Returning references or pointers can be correct in member functions when referring to
member data (see Section 2.6) or to static variables.

Advice

Only return pointers, references, and objects with reference semantic that point to dynamically allocated

data, to data that existed before the function was called, or to static data.

By “objects with reference semantic” we mean objects that don’t contain all their data
but refer to external data that is not replicated when the object is copied; in other words,
objects that have, at least partially, the behavior of a pointer and thus the risk of referring

62 Chapter 1 C++ Basics

to something that doesn’t exist anymore. In Section 4.1.2 we will introduce iterators, which
are classes from the standard library or from users with a pointer-like behavior, and the
danger of referring to already destroyed objects.

Compilers are fortunately getting better and better at detecting such errors, and all
current compilers should warn us of obviously stale references or dangling pointers as in the
examples above. But the situation is not always so obvious, especially when we have a user
class with reference semantics.

1.8.7 Containers for Arrays

As alternatives to the traditional C arrays, we want to introduce two container types that
can be used in similar ways but cause fewer problems.

1.8.7.1 Standard Vector

Arrays and pointers are part of the C++ core language. In contrast, std::vector belongs to
the standard library and is implemented as a class template. Nonetheless, it can be used
very similarly to arrays. For instance, the example from Section 1.8.1 of setting up two
arrays v and w looks for vectors as follows:

#include <vector >

int main ()
{

std::vector <float > v(3), w(3);
v[0]= 1; v[1]= 2; v[2]= 3;
w[0]= 7; w[1]= 8; w[2]= 9;

}

The size of the vector does not need to be known at compile time. Vectors can even be
resized during their lifetime, as will be shown in Section 4.1.3.1.

The element-wise setting is not particularly concise. C++11 allows the initialization withC++11
initializer lists:

std::vector <float > v= {1, 2, 3}, w= {7, 8, 9};

In this case, the size of the vector is implied by the length of the list. The vector addition
shown before can be implemented more reliably:

void vector_add(const vector <float >& v1 , const vector <float >& v2 ,
vector <float >& s)

{
assert(v1.size() == v2.size());
assert(v1.size() == s.size());
for (unsigned i= 0; i < v1.size (); ++i)

s[i]= v1[i] + v2[i];
}

In contrast to C arrays and pointers, the vector arguments know their sizes and we can now
check whether they match. Note that the array size can be deduced with templates, which
we’ll show later in Section 3.3.2.1.

1.8 Arrays, Pointers, and References 63

Vectors are copyable and can be returned by functions. This allows us to use a more
natural notation:

vector <float> add(const vector <float >& v1, const vector <float >& v2)
{

assert(v1.size() == v2.size ());
vector <float > s(v1.size ());
for (unsigned i= 0; i < v1.size (); ++i)

s[i]= v1[i] + v2[i];
return s;

}

int main ()
{

std::vector <float > v= {1, 2, 3}, w= {7, 8, 9}, s= add(v, w);
}

This implementation is potentially more expensive than the preceding one where the target
vector is passed in as a reference. We will later discuss the possibilities of optimization: on
both the compiler and user sides. In our experience, it is more important to start with a
productive interface and deal with performance later. It is easier to make a correct pro-
gram fast than to make a fast program correct. Thus, aim first for a good program design.
In almost all cases, the favorable interface can be realized with sufficient performance.

The container std::vector is not a vector in the mathematical sense. There are no arith-
metic operations. Nonetheless, the container proved very useful in scientific applications to
handle nonscalar intermediate results.

1.8.7.2 valarray

A valarray is a one-dimensional array with element-wise operations; even the multiplication
is performed element-wise. Operations with a scalar value are performed respectively with
each element of the valarray. Thus, the valarray of a f loating-point number is a vector space.

The following example demonstrates some operations:

#include <iostream >
#include <valarray >

int main ()
{

std::valarray <float > v= {1, 2, 3}, w= {7, 8, 9},
s= v + 2.0f * w;

v= sin(s);
for (float x : v)

std::cout � x � ' ';
std::cout � '\n';

}

Note that a valarray<float> can only operate with itself or float. For instance, 2 * w would
fail since it is an unsupported multiplication of int with valarray<float>.

A strength of valarray is the ability to access slices of it. This allows us to Emulate
matrices and higher-order tensors, including their respective operations. Nonetheless, due

64 Chapter 1 C++ Basics

to the lack of direct support of most linear-algebra operations, valarray is not widely used
in the numeric community. We also recommend using established C++ libraries for linear
algebra. Hopefully, future standards will contain one.

To complete the topic of dynamic memory management, we refer to Section A.2.8 where
Garbage Collection is briefly described. The bottom line is that a C++ programmer can
pretty well live without it and no compiler supports it (yet?) anyway.

1.9 Structuring Software Projects

A big problem of large projects is name conflicts. For this reason, we will discuss how
macros aggravate this problem. On the other hand, we will show later in Section 3.2.1 how
namespaces help us master name conflicts.

In order to understand how the files in a C++ software project interact, it is necessary to
understand the build process, i.e., how an executable is generated from the sources. This will
be the subject of our second subsection. In this light, we will present the macro mechanism
and other language features.

First, we will briefly discuss a feature that contributes to structuring a program: com-
ments.

1.9.1 Comments

The primary purpose of a comment is evidently to describe in plain language what is not
obvious to everybody from the program sources, like this:

// Transmogrification of the anti-binoxe in O(n log n)
while (cryptographic(trans_thingy) < end_of(whatever)) {

....

Often, the comment is a clarifying pseudo-code of an obfuscated implementation:

// A= B * C
for (...) {

int x78zy97= yo6954fq , y89haf= q6843 , ...
for (...) {

y89haf += ab6899(fa69f) + omygosh(fdab); ...
for (...) {

A(dyoa929 , oa9978)+= ...

In such a case, we should ask ourselves whether we can restructure our software so that such
obscure implementations are realized once, in a dark corner of a library, and everywhere else
we write clear and simple statements such as:

A= B * C;

as program and not as pseudo-code. This is one of the main goals of this book: to show
you how to write the short expression you want while the implementation under the hood
squeezes out the maximal performance.

1.9 Structuring Software Projects 65

Another frequent usage of comments is to remove snippets of code temporarily to exper-
iment with alternative implementations, e.g.:

for (...) {
// int x= a + b + c
int x = a + d + e;
for (...) {

...

Like C, C++ provides a form of block comments, surrounded by /* and */. They can be used
to render an arbitrary part of a code line or multiple lines into a comment. Unfortunately,
they cannot be nested: no matter how many levels of comments are opened with /*, the first
*/ ends all block comments. Many programmers run into this trap sometimes: they want to
comment out a longer fraction of code that already contains a block comment so that the
comment ends earlier than intended, for instance:

for (...) {
/* int x78zy97= yo6954fq; // start new comment
int x78zy98= yo6953fq;
/* int x78zy99= yo6952fq; // start old comment
int x78zy9a= yo6951fq; */ // end old comment
int x78zy9b= yo6950fq; */ // end new comment (presumably)
int x78zy9c= yo6949fq;
for (...) {

Here, the line for setting x78zy9b should have been disabled, but the preceeding ∗/ terminated
the comment prematurely.

Nested comments can be realized (correctly) with the preprocessor directive #if as we
will illustrate in Section 1.9.2.4. Another way to deactivate multiple lines conveniently is
by using the appropriate function of IDEs and language-aware editors. At any rate, com-
menting out code fractions should only be a temporary solution during development when
we investigate various approaches. Once we settle for a certain option, we can delete all the
unused code and rely on our version control system that it will remain available for possible
later modifications.

1.9.2 Preprocessor Directives

In this section, we will present the commands (directives) that can be used in preprocessing.
As they are mostly language independent, we recommend limiting their usage to an absolute
minimum, especially macros.

1.9.2.1 Macros

“Almost every macro demonstrates a flaw in the programming language, in the
program, or the programmer.”

—Bjarne Stroustrup

This is an old technique of code reuse by expanding macro names to their text definition,
potentially with arguments. The use of macros gives a lot of possibilities to empower your

66 Chapter 1 C++ Basics

program but much more for ruining it. Macros are resistant against namespaces, scopes, or
any other language feature because they are reckless text substitution without any notion
of types. Unfortunately, some libraries define macros with common names like major. We
uncompromisingly undefine such macros, e.g., #undef major, without mercy for people who
might want to use those macros. With Visual Studio we have—even today!!!—min and max as
macros, and we strongly advise you to disable this by compiling with /DNOMINMAX.23 Almost
all macros can be replaced by other techniques (constants, templates, inline functions). But
if you really do not find another way of implementing something:

Macro Names

Use LONG_AND_UGLY_NAMES_IN_CAPITALS for macros!

Macros can create weird problems in almost every thinkable and unthinkable way.
To give you a general idea, we look at a few examples in Appendix A.2.9 and give some tips
for how to deal with them. Feel free to postpone the reading until you run into an issue.

Macro Use

Replace every macro with another language feature whenever possible and use macros only when nothing

else works.

As you will see throughout this book, C++ provides better alternatives like constants, inline
functions, templates, and constexpr.

1.9.2.2 Inclusion

To keep the C language simple, many features such as I/O were excluded from the core
language and realized by the library instead. C++ follows this design and realizes new features
whenever possible by the standard library, and yet nobody would call C++ a simple language.

As a consequence, almost every program needs to include one or more headers. The most
frequent one is that for I/O, as seen before:

#include <iostream >

The preprocessor searches that file in standard include directories like /usr/include,
and /usr/local/include on Unix-like systems. We can add more directories to this search
path with a compiler flag—usually -I in the Unix/Linux/Mac OS world and /I in Windows.

When we write the filename within double quotes, e.g.:

#include "herberts_math_functions .hpp"

the compiler usually searches first in the current directory and then in the standard paths.24

This is equivalent to quoting with angle brackets and adding the current directory to the

23. Technically, the macros come from Windows.h and not from Visual Studio itself, but this difference
matters only a little once we run into trouble with it, and this is not so rare as this header is frequently
used.
24. However, which directories are searched with double-quoted filenames is implementation dependent and
not stipulated by the standard.

1.9 Structuring Software Projects 67

search path. Some people argue that angle brackets should only be used for system headers
and user headers should use double quotes (but we do not agree with them).

To avoid name clashes, often the include’s parent directory is added to the search path
and a relative path is used in the directive:

#include "herberts_includes/math_functions.hpp"
#include <another_project /math_functions.h>

The slashes are portable and also work under Windows (where both regular slashes and
backslashes can be used for subdirectories).

Include guards: Frequently used header files may be included multiple times in one source
file due to indirect inclusion. To avoid forbidden repetitions and to limit the text expansion,
so-called Include Guards ensure that only the first inclusion is performed. These guards are
ordinary macros that state the inclusion of a certain file. A typical include file looks like
this:

// Author: me
// License: Pay me $100 every time you read this

#ifndef HERBERTS_MATH_FUNCTIONS_INCLUDE
#define HERBERTS_MATH_FUNCTIONS_INCLUDE

#include <cmath >

double sine(double x);
...

#endif // HERBERTS_MATH_FUNCTIONS_INCLUDE

Thus, the content of the file is only included when the guard is not yet defined. Within the
content, we define the guard to suppress further inclusions.

As with all macros, we have to pay close attention that the name is unique, not only in
our project but also within all other headers that we include directly or indirectly. Ideally the
name should represent the project and filename. It can also contain project-relative paths
or namespaces (§3.2.1). It is a common practice to terminate it with _INCLUDE or _HEADER.

Accidentally reusing a guard can produce a multitude of different error messages. In our
experience it can take an unpleasantly long time to discover the root of that evil. Advanced
developers generate them automatically from the aforementioned information or by using
random generators.

A convenient alternative is #pragma once. The preceding example simplifies to:

// Author: me
// License: Pay me $100 every time you read this

#pragma once

#include <cmath >

double sine(double x);
...

68 Chapter 1 C++ Basics

Pragmas are compiler-specific extensions, which is why we cannot count on them being
portable. #pragma once is, however, supported by all major compilers and certainly the
pragma with the highest portability. In addition to the shorter notation, we can also delegate
responsibility to avoid double inclusions to the compiler.

The advanced technology for organizing code in files is introduced in C++20 with mod-
ules. We will present them in Section 7.3.

1.9.2.3 Conditional Compilation

An important and necessary usage of preprocessor directives is the control of conditional
compilation. The preprocessor provides the directives #if, #else, #elif, and #endif for
branching. Conditions can be comparisons, checking for definitions, or logical expressions
thereof. The directives #ifdef and #ifndef are shortcuts for, respectively:

#if defined(MACRO_NAME)

#if !defined(MACRO_NAME)

The long form must be used when the definition check is combined with other conditions.
Likewise, #elif is a shortcut for #else and #if.

In a perfect world, we would only write portable standard-compliant C++ programs.
In reality, we sometimes have to use nonportable libraries. Say we have a library that is
only available on Windows, and more precisely only with Visual Studio (where the macro
_MSC_VER is predefined). For all other relevant compilers, we have an alternative library.
The simplest way for the platform-dependent implementation is to provide alternative code
fragments for different compilers:

#ifdef _MSC_VER
... Windows code

#else
... Linux/Unix code

#endif

Similarly, we need conditional compilation when we want to use a new language feature that
is not available on all target platforms, say, modules (§7.3):

#ifdef MY_LIBRARY_WITH_MODULES
... well-structured library as modules

#else
... portable library in old-fashioned way

#endif

Here we can use the feature when available and still keep the portability to compilers without
this feature. Of course, we need reliable tools that define the macro only when the feature
is really available.

Alternatively, we can rely on compiler developers’ opinions as to whether this feature isC++20
properly supported. To this end, C++20 introduced a macro for each feature introduced since
C++11—for instance, __cpp_modules for module support—so that our example now reads:

#ifdef __cpp_modules
... well-structured library as modules

1.10 Exercises 69

#else
... portable library in old-fashioned way

#endif

The value of this macro is the year and month when the feature was added to the standard
(draft). For evolving core language and library features, this allows us to find out which
version is actually supported. For instance, the <chrono> library (Section 4.5) grew over
time, and to check whether its C++20 functionality is available on our system, we can use
the value of __cpp_lib_chrono:

#if __cpp_lib_chrono >= 201907L

Conditional compilation is quite powerful but comes at a price: the maintenance of the
sources and the testing are more laborious and error-prone. These disadvantages can be
lessened by well-designed encapsulation so that the different implementations are used over
common interfaces.

1.9.2.4 Nestable Comments

The directive #if can be used to comment out code blocks:

#if 0
... Here we wrote pretty evil code! One day we will fix it. Seriously.

#endif

The advantage over /* ... */ is that it can be nested:

#if 0
... Here the nonsense begins.

#if 0
... Here we have nonsense within nonsense.

#endif
... The finale of our nonsense. (Fortunately ignored .)

#endif

Nonetheless, this technique should be used with moderation: if three-quarters of the program
are comments, we should consider a serious revision.

More Details: In Appendix A.3, we show a real-world example that recapitulates many
features of this first chapter. We haven’t included it in the main reading track to keep the
high pace for the impatient audience. For those not in such a rush we recommend taking
the time to read it and to see how nontrivial software evolves.

1.10 Exercises

1.10.1 Narrowing

Assign large values to different integer types with uniform initialization, i.e., using braces.
For instance,

const unsigned c1 {4000000000};

70 Chapter 1 C++ Basics

Does this compile on your machine? Try different values (including negative values) and
different types and see what compiles on your platform. If possible, try other platforms by
changing the machine or the compiler flags regarding the target platform.

1.10.2 Literals

Refactor your examples from Exercise 1.10.1 by using literal suffixes u and l as well as legal
combinations thereof. If you like, you can change the variable/constant types to auto.

1.10.3 Operators

Program expressions that calculate the volumes and surfaces of different solid figures. Try
to use as few parentheses as possible (in real life you may again apply as many as you
want). Attempt to reuse common partial expressions by storing their results in intermediate
variables.

1.10.4 Branching

Write a program that reads three numbers as double and prints the middle one. Optional:
try expressing the same with ?:.

1.10.5 Loops

Find the zero of f = sin(5x) + cos(x) between 0 and 1 by interval nesting. For a given
interval, split it in the middle and see on which side the sign of f is changing, then continue
with this interval. Stop the calculation when the interval is smaller than 10−12 (so, we need
double) and print the center of that interval with 11 digits as an approximated result. Hint:
The result should be approximately 0.785. C++11 introduces the function signbit that is
helpful here. Try different kinds of loops and think about which one feels most appropriate
in this context.

1.10.6 I/O

Refactor Exercise 1.10.3 by writing all input parameters used in the calculation and all
results to a file. Use a new line for a new set of values. Pay attention to leave a space
between two numbers. Write a second program that reads the values from the file and
compares it with the original ones.

1.10.7 Arrays and Pointers

Make a small program that creates arrays on the stack (fixed-size arrays) and arrays on the
heap (using allocation). Use valgrind (or some Visual Studio tool on Windows) to check
what happens when you do not delete them correctly or you use the wrong delete (array
vs. single entry).

1.10.8 Functions

Write functions that convert SI units like meter2km and/or convert between SI and old-
fashioned Anglo-American units like usgallon2liter. Test your implementations with assert.
Use an ε-environment to deal with floating-point rounding issues, i.e. that the magnitude
of the difference between computed and expected values is smaller than some predefined ε.

Subject Index

_MSC_VER, 68
__cpp_lib_chrono, 69
__cpp_modules, 68

Abrahams, David, 398
abs, 167

return type, 298
abs

in Mandelbrot set, 239
abs_view, 402
abstraction

penalty, 347
providing an, 72

access, 74–76
modifier, 74

Accumulatable, 196
accumulate, 231

abstraction penalty, 347
and concepts, 193
for summation, 154
from STL, 149
generic, 184
in STL, 212

accumulate, 354
accumulate_array, 152
Ada, 491
Adams, Douglas, 1
add, 355
address

0, 55
mapping, 422
space, 422

Adelstein, Bryce, 430
adjacent_difference, 231
ADL, 141–146

for selecting templates, 142
in specialization, 165
with operators, 142
with third-party libraries, 144

advance, 216
on vector iterator, 217

advance, 197
aggregate, 90

initialization, 90
Ahnert, Karsten, 284
Alexandrescu, Andrei, 75, 305
Algebra, 413
algebra, 355

linear, 52, 64
dense, 353
libraries, 284
package, 417

algorithm
block, 450
in STL, see STL, algorithm
numerical, 407

alias, 60
∼ing effect, 93

alignof, 19
all, 235
allocator

user-defined, 226
ambiguity

in specialization and overloading, 165
and, 16
anti-pattern, 366
any, 474

type, 262
<any>, 261
any, 261
any_cast, 261
application

scientific, 63
apply, 204
archive, 422, 428
argument

macro, 448
513

514 Subject Index

replication, 449
with explicit conversion, 137
with implicit conversion, 137
with uniform initialization, 89

argument-dependent lookup, see ADL
ARPREC, 283
array, 52–53

container, 62–64
declaration, 52
intrinsic support, 52
missing index check, 53
of higher dimensions, 52
operations, 52
size deduction, 53
two-dimensional, 461

array, 279, 413
as_const, 215
assembler, 477

output, 491
reading ∼ code, 175

assembly, 422
assert, 36, 445, 449

in debugger, 494
assert, 36
assignment, 17, 23, 88–89

as method only, 118
copy, 88

generation rule, 468–470
move, 94

generation rule, 470
self, 89
with initializer list, 90

assoc_laguerre, 251
assoc_legendre, 251
AST, 329
async, 273
async_executor, 278
asynchronous, 275
ATLAS, 353
atof, 444
atomic, 220, 277

assignment, 278
atomic, 282
atomic operation, 277
atomic_flag, 282
atomic_ref, 282

Austern, Matt, 212
auto, 155
auto_ptr, 57
AVX, 238, 334

back_insert_iterator, 233
bad_alloc, 93
bad_any_cast, 262
bad_cast, 393
bad_variant_access, 260
Baker, Lewis, 282
barrier, 282
Barton, John, 397
Barton-Nackman trick, 397
base_matrix, 380
basic_iteration, 275
Battista, Orlando Aloysius, 35
begin, 90, 153, 227, 315, 413
benchmarking, 353
beta, 251
bidirectional_iterator, 197
BidirectionalIterator, 217

in lists, 222
BidirectionalIterator, 213
binary, 8
BinaryFunction, 184
bind, 249
bit

masking, 163
bit-field, 501
Black, Fischer, 249
Black-Scholes model, 249
BLAS, 305, 353

Goto-, 354
HPR, see HPR, BLAS
in linker flags, 492

BLITZ++, 284
bool, 4, 162, 442
boolalpha, 45
Boost, 420

Asio, 44
Bindings, 305
Filesystem, 52
Function, 389
Graph Library (BGL), 285

Subject Index 515

Interval, 283
IOStream, 44
MPL, 307, 484
odeint, 284, 417
Operators, 398
Rational, 283
type traits, 254

BOOST_STATIC_ASSERT, 485
brace, 2, 90

elimination
in templates, 474

elision, 91
notation, 460

branching, 23
break, 26, 29
Brecht, Bertolt, 435
Brown, Rita Mae, 20
Brown, Walter, 243
Bruce, Craig, 491
buffer, 42
build, 419–427

process, 423
tools, 423–427

build_example.cpp, 420
Butcher tableau, 410
byte, 163

C
array initialization, 89
C code linked with C++ programs,

489
C code with C++ compiler, 489
casting, 390
emulated namespace, 139
impact on interfaces, 72
library, 107
naming, 489

block notation, 489
preprocessed, 420
struct, 75
type traits for ∼ compatibility, 255

C++

as superset of C, 489
managed, 448
project, 64–69, 407–434

C++03
array initialization, 52

C++11, 448
in MTL4, 451
narrowing in arrays, 52
smart pointers, 57

c++filt, 304
C99

not a subset of C++, 489
cache

coherency, 335
invalidation, 335, 350
L1, 321, 332
L2, 321

call
by reference, 30
by value, 30
stack, 40

caller, 204
Cantor dust, 286
capture, see lambda
<cassert>, 36
cast, 446

cross, 393
down, 391
reinterpret, 394
up, 390

ambiguous, 391
catch, 39
CCS, 206
chaotic

attractor, 409
dynamics, 409

Chapman, George, 365
char, 4, 446
chicken and egg, 149
<chrono>, 3, 267, 337
Church, Alonzo, 359
cin, 42
circular_area, 252
class, 39, 71–127

base, 79, 368
contained classes, 73
data member, see member variable

difficult types, 467

516 Subject Index

derived, 75, 368
for both C and C++, 255
high-level, 472
member, see member variable

direct setting, 90
initialization list, see constructor

member function, see method
member variable, 73

access, 112
default value, 88
private, 75, 113

template, 62
to establish abstractions, 73
type definition, 73

class

instead of typenameclass, 130
class

abstract, 375
clear, 233
clock, 267
clone, 301
closure, 186
CMake, 425–427
<cmath>, 239, 489
co_await, 282
co_return, 282
co_yield, 282
code

assembler, 421
complexity, 389
conditional, 421
explosion, 347
hexadecimal, 422
legacy, 91
object, 422

coercion, 7, 15
Collatz series, 26
color coding, 239
column-major, 206
comment, 64

single-line, 4
common, 235
common_type, 317
common_type_t, 317, 325
common_view, 357

Commutative, 358
commutative, 344
CommutativeMonoid, 358
comp_ellint_1, 251
comp_ellint_2, 251
comp_ellint_3, 251
compilation, 421

ambiguous term, 419
conditional, 68
phases, 422
separate, 427–434

compile
time, 52

if, see conditional

compiler
call, 419
flag, 36
optimization, 353, 452

on tag types, 217
support

for garbage collection, 448
<complex>, 239
complex, 73

comparing magnitudes, 298
in mixed arithmetic, 241
library, 239
missing operator, 135
sorting ∼, 230

complex_abs, 86
complexity, 453

constant, 225, 231
linear, 231
logarithmic, 223, 225, 231
O(n log n), 230, 231
quadratic, 230, 231

compressed, 206
compressed_matrix, 395
computability theory, 359
concept, 354, 192–354

dispatching, 197
for a simple matrix, 302
for tuning, 329
model, 193
ordering, 197
refinement, 193

Subject Index 517

requirement, 193
semantic, 344
stream, 43
subsumption, 193

concept, 194
concurrency, 270–282
conditional, 256

implementation, 306
conditional_t, 256
Conjugate Gradients, 435
const, 6

advantages of, 452
method, 114
variable, 295

const_cast, 393
for third-party libraries, 305

const_iterator, 214
constant, 6

as macro, 448
global, 10

consteval, 291
constexpr, 190, 289–297, 448

for loop unrolling, 332
function at run time, 291
function template, 290

constinit, 296
construction

assignment-like notation, 86
explicit, 86

constructor, 43, 78–88
argument names, 81
converting, 395
copy, 83

default implementation, 83
generation rule, 468–470
mandatory user implementation, 84
reasons for generation, 83
with mutable reference, 469
with value argument, 83

default, 82
and references, 82
call, 82
generation rule, 467
in late initialization, 82
needed for containers, 82

default argument, 81
delegating, 87
exception-free, 301
explicit, 86
for complex, 79
illegal call, 80
implicit, 86
initialization list

braced notation, 92
initilization list, 79
move, 93

generation rule, 470
special, 82
syntax, 79
with initializer list, 90

container
as class template, 147
as return value, 453
associative, 224
in STL, 218
of references, 266

container_algebra, 414
continue, 29
convergence

quadratic, 268
conversion, 15

explicit, 137
function-style, 394
implicit, 7, 86, 455

in templates, 136
of numeric types, 396

coordinate, 175
copy

-constructable, 474
constructor, see constructor, copy
deep, 93
elision, 32, 94
explicitly deep, 93
instead of move, 472
shallow, 93

copy, 90, 229, 474
copy, 256
coroutine, 280
correctness

independent of storage, 73

518 Subject Index

counted, 236
cout, 2, 41, 213

setf, 45
__cplusplus, 490
CppCoro, 282
creature, 375
cref, 266
CRS, 206
CRTP, 397–401
cryptography, 247
<cstdint>, 446
<cstdlib>, 39
ctime, 267
<ctime>, 267
CUDA, 255

in MTL4, 284
static code analysis, 353

curiously recurring template pattern, see
CRTP

cyl_bessel_i, 251
cyl_bessel_j, 251
cyl_bessel_k, 251
cyl_neumann, 251
Czarnecki, Krzysztof, 306, 483

D, 491
data

persistent, 93
transfer as bottle neck, 321

Davis, Sammy, Jr., 289
de Morgan’s law, 397
dead lock, 279
deallocation, 55

automatic, 56
double, 85

debugger
compiler flags for ∼, 492
text-based, 492
vs. logs in methods, 78

debugging, 492–496
dec, 45
declaration

in header, 427
variable, 23, 74

declare_no_pointers, 448

declare_reachable, 448
decltype, 155
declval, 171
declval, 403
decomposition, see also factorization
default, 111, 465
default-constructible, 80, 467
default_operations, 417
default_random_engine, 246
delete, 18, 55

declarator, 111, 117, 465
delete[], 54
deleter, 109
denominator, 75
dense_matrix

in conversion, 395
department, 100
<deque>, 221
deque, 221

emplace, 221
erase, 222
insert, 222

derivation, 43
from ostream, 121

derivative, 177, 408
higher-order, 181

derived, 367
design

domain-driven, 71
design guides

for method generation, 470
designated initialization, 91
destructor, 105–107

arguments, 105
generation rule, 467
main task, 105
virtual, 105

determinant, 450
development

test-driven, 450
diagonal

unit, 451
diamond shape, 381, 390
digit separator, 8
Dijkstra, Edsger W., 71

Subject Index 519

discard_block_engine, 247
discretization

equidistant, 409
temporal, 409

distance, 217
distance, 199
distribution

normal, 249
do while, 26
documentation

as text, 450
compilable, 450

domain
-specific embedded language, 117
expert, 71

dot, 87
double, 4
DSEL, see domain-specific embedded lan-

guage
Du Toit, Stefanus, 72
Duff’s device, 444
dummy, 202
duration, 267
dxdt, 411
dynamic binding, 371
dynamic_cast, 393
dynamic_extent, 263

-E (flag), 420
/E (flag), 420
Eclipse, 3, 426
Einstein, Albert, 20
Eisenecker, Ulrich, 306
Eisenecker, Ulrich, 483
#elif, 68
ellint_1, 251
ellint_2, 251
ellint_3, 251
ellipsis, 404

in parameter packs, 201
#else, 68
else, 23–24
empty, 236
enable_if, 256, 312

enable_if_t, 256
enable_matrix_t, 314
encapsulation, 69
end, 90, 153, 227, 413
#endif, 68
endl, 2, 42
entropy, 247
eof, 50
equal, 124
equivalent, 123
error

code, 37
compile-time ∼, 176
estimation, 275
flag, 49
handling, 35–41
in template programs, 135
message

from macros, 448
parsing, 130
pointer-related, 56
program, 36
run-time ∼, 176

Euler scheme, 410
euler_step, 411
event

hardware, 247
operating system, 247

exception, 37–41, 49
and resource release, 106
in destructor, 105

exception, 39, 378
what, 378

<exception>, 378
exclusive_scan, 238
executable

size, 137
execution, 238

par, 238
par_unseq, 238
seq, 238

exit, 39
exit code, 444
expint, 251

520 Subject Index

explicit, 86, 119
in C++03, 87
in C++11, 87

export, 431
expression, 22

in C++, 22
conditional, see conditional operator
logic, 442
template, 32, 318–354

first library with ∼, 284
extension

.C, 420

.a, 422

.asm, 422

.c++, 420

.cc, 420

.cpp, 420, 427

.cxx, 420

.dll, 422

.hpp, 427

.i, 420

.ii, 420

.lib, 422

.o, 422

.obj, 422

.s, 422

.so, 422
extern, 430

factorization
in-place, 451
LU, 40, 89, 257, 450, 488

factory, 388
[[fallthrough]], 26
false_type, 310
Fast Fourier Transformation, 441
Fatou dust, 286
featurism, 450
FEEL++, 285
FEM, 284
FEniCS, 284
Fertig, Andreas, 255
field, 73
FIFO, 221

file
close, 43
eof, 50
I/O, 43
in C++ project, 64
non-existing, 49
object, 428
open, 43
stream, 43, 106, 471

file_clock, 269
<filesystem>, 51
filter, 234
filter_view, 234
fin_diff, 177
final, 374
finance

quantitative, 249
find, 226
find_if, 229
find_if, 285
finite difference, 177
Fitzmaurice, Sue, 1
float, 4
floating_point, 252
<fmt>, 46, 172
for, 27

range-based, 215
for

range-based, 28
for_each, 414
for_each3, 415
for_each6, 415
for_each_n, 238
formal concept analysis, 129
<format>, 46, 172
formatter, 172
Forth, 457
Fortran, 439, 491

77, 72
forward, 134
forward_iterator, 199
forward_list, 150, 223
<forward_list>, 223
forward_range, 199
ForwardIterator, 209

http://.cc

Subject Index 521

ForwardIterator, 213
fprintf, 447
Fracassi, Fabio, 85
Franklin, Benjamin, 20
friend, 76, 113

inline, 103
fscanf, 447
fsize_mat_vec_mult, 333
fsize_mat_vec_mult_aux, 336
fsize_mat_vec_mult_reg, 336
fsize_matrix, 333
fsize_vector

compiler optimization, 330
fstream, 43
function, 30–35, 501

argument, 30–32
default, 31

constrained, 194
differentiable, 177
dispatching, 216

dynamic, 387
free, 113
generic, see template function
getter and setter, 75
header, 115
inline, 33, 429

address of ∼, 264
linear

piecewise, 210
local declaration, 429
main, 2, 35

missing in linkage, 428
no return value, 35
return value, 35
signatures of, 35
twice in linkage, 428

member vs. free, 118
nested call, 22
no match for, 136
nullary, 201
overloading, 33, 129

ambiguous, 165
parameter, 137
pointer, 411

vs. std::function, 265

redefinition, 429
result, 32–33
semantics, 450
signature, 453
template, see template, function

function, 161, 263, 273
function

in code selection, 389
<functional>, 249, 263, 266
functor, 177–185, 260, 411

argument, 210
exercise, 210
for loop unrolling, 331
short-hand, 185
via inheritance, 376

functor_base, 377
future, 272

wait, 274
<future>, 272
future_status

ready, 274

g++
constexpr, 291
implicit include, 135
register usage, 347

garbage collection, 447
interface, 448

Gauß circle problem, 108
Gauss-Jordan, 450
generator, 282
generic

reduction, 184
get, 273
GLAS, 493
GMP, 283
GNU, 2
Goethe, Johann Wolfgang von, 192
goto, 29
GPGPU, see GPU, 439
gps_clock, 269
GPU, 353, 441

and ODE, 409
graph, 56

522 Subject Index

Gregoire, Marc, 191
Grimm, Rainer, 282

Hamel, Lutz, 360
harmonic oscillator, 408
__has_include, 421
hash table, 225
Herbert

and ADL, 142
and CG, 436
and error handling, 37
and headers, 427
and his database, 108
and his hidden C sources, 489
offers header file, 489

hermite, 251
Hestenes, Magnus R., 435
hex, 45
hexadecimal, 8
hh_mm_ss, 269
hiding, see name, hiding
high_resolution_clock, 269
Hinnant, Howard, 98
hourglass API, 72
hours, 267
HPC, 283, 329
HPR, 284

BLAS, 284
Tensor, 284

-I (flag), 66
/I (flag), 66
I/O, 41–52

binary, 446
with variadic function, 478

C-style, 447
catching errors, 50
error, 49
format library, 46
formatting, 44

sufficient digits, 253
in expressions, 22
manipulator, 44
robust, 50
with exceptions, 50

with files, 43
without ADL, 142

iall, 456
IDE, 3

debugging, 496
identity

element, 253
identity, 358
identity element, 355
IEEE 754, 283
#if, 68
if, 23–24

constexpr, 170, 192
nested, 442
with initializer,

textbf24, 257
#ifdef, 68
#ifndef, 68
ifstream, 43
implementation

generic, 129, 412
modularized, 412

import
name, 140
namespace, 141

include
standard ∼ directories, 66

#include, 66, 420
guards, 67
slash in, 67
with angle brackets, 66
with quotes, 66

inclusion, 66
inclusive_scan, 238
independent_bits_engine, 247
index

zero-based, 27
index_sequence, 203, 280
inequality, 398
inheritance, 73, 365–405
inheriting, 310
initial value problem, see IVP
initialization

aggregate, 90
braced, see initialization, uniform

Subject Index 523

designated, 91
non-narrowing, 9
uniform, 9, 87, 90–92, 451

in templates, 474
of arguments, 89
of empty pointer, 55
of return values, 92

with =, 82
initializer list, 89

in assignment, 90
in constructor, 90
vs. constructor, initialization list, 89
with trailing comma, 459

initializer_list, 151
<initializer_list>, 89
initilization list

in constructor, see constructor
inline, 33, see function, inline, see vari-

able, inline
unrolled loop, 332

inner_product, 231
inorder, 281
input, 42
input_iterator, 195
InputIterator, 217
InputIterator, 213
insanity, 20
instantiation, 130–135

and executable size, 137
explicit, 131
implicit, 131

int, 4
int32_t, 446
integer_sequence, 203
integral, 356
integral_constant, 487
Integrated Development Environment, see

IDE
Intel i7-3820, 337
interface

concise, 72
inter-language, 107
intuitive, 72
productive, 63

interoperation
with C and Fortran, 72

interruptible_iteration, 275
interruption

point, 275
interval

arithmetic, 283
closed, 152
right-open, 152, 214

invariant, 75, 369
inverse, 452
<iomanip>, 44
ios::binary, 446
ios_base, 45
<iostream>, 41
iostream, 43
<iostream>, 1, 420
iota, 200, 231
iota, 234
irange, 125, 456
irange, 234
is_a_matrix, 403
is_const

implementation, 306
in standard library, 254

is_literal_type, 291
is_matrix, 310
is_nothrow_assignable, 254
is_nothrow_copy_constructible, 301
is_pod, 255
is_prime, 431
is_reference, 298
is_rvalue_reference, 135
is_standard_layout, 255
is_trivially_copyable, 256
istream, 43

read, 446
iterator, 28, 153, 212–217

as generalized pointer, 212
beyond, 231
category, 213
dispatching on ∼ categories, 216
operations, 216

<iterator>, 216
IVPs, 408

524 Subject Index

Järvi, Jaakko, 312
Java, 3

generic functions, 137
join, 236
Josuttis, Nicolai, 211
jthread, 275, 282
Julia set, 286

Kalb, Jon, 107
KDE, 3
KDevelop, 3
kernel, 444
Kerr, Kenny, 282
key, 224
knuth_b, 247
Koenig, Andrew, 106
König, Tilmar, 407

label
in assembler, 422

laguerre, 251
lambda, 185–190

capture, 186
by reference, 187
by value, 186
init, 189
move, 189

constexpr, 296
exercise, 210
for sort, 230
in methods, 188
nested, 186
object, 411
return type, 186

language
core, 1, 62
feature

use new one, 68
functional, 22
machine, 421, 422

LAPACK, 305
latch, 282
late binding, 371
LATEX, 118
lazy evaluation, 274
left-adjusted, 45

legendre, 251
length, 103
less, 224
library, 211–287

for PDEs, 284–285
graph, 285
matrix template ∼ 4, see MTL4
scientific, 282–285
standard, 1, 38, 56, 62, 211–282

chrono, 267, 269
complex, 239–242
numerics, 239–252
random, 242–250
template, see STL
tutorial, 211
utilities, 256–269

with C interface, 53
LIFO, 221
<limits>, 245, 253, 298
linear_congruential_engine, 247
linearity, 73
linkage, 422, 428

block, 489
external, 429
internal, 429
order, 428
to C code, 489

linker
standard, 428

LINPACK, 329
Linux, 2, 498
Lipschitz-continuous, 409
Lisp interpreter, 483
list, 56
list, 150

erase, 222
in STL, 212, 222
performance, 222

<list>, 222
list_iterator, 153
literal, 7, 86

0, 55
binary, 8
hexadecimal, 8

Subject Index 525

octal, 8
user-defined, 103

local_t, 269
lock, 279
lock_guard, 276, 280
lock_shared, 277
long, 4

double, 4
long, 4

loop, 26–29
control, 29

overhead, 328
replaced by recursion, 332
size known at compile time, 330
unrolling, 328

automatic, 332
nested, 332
slowing down, 332

Lorenz system, 409, 417
lorenz, 418
lvalue, 13, 501

in tuple use, 259
in universal reference, 488

Mac OS, 498
macro, 12, 65, 421

as include guard, 67
definition, 65
enabling, 478
for constants, 448
function-like, 448
problems, 66

Magma, 357
Magnitude, 312
maintenance

with conditional compilation, 69
make, 423–424
make_index_sequence, 203
make_shared, 59
make_tuple, 258
Mandelbrot, Benôıt B., 239
<map>, 224
map, 25, 224

at, 225
emplace, 267

find, 225, 267
insert, 267
of references, 266

map-reduce, 238
map_view, 401
<math.h>, 489
Mathematica, 441
mathematical

special functions, 250
MATLAB, 441
matrix

column, 456
dense, 329, 452, 461

row-wise, 462
exponentiation, 118
fixed-size, 332
Hilbert, 189
identity, 451
lower triangular, 450
norm, 452
permutation, 450
regular, 37
singular, 40
sparse, 413
square, 453
symmetric positive-definite, 435
transposed, 302
upper triangular, 450

matrix, 460
Maurer, Jens, 125
max, 129
max, 135
max_square, 448
[[maybe_unused]], 203, 217
member_selector, 458
memcpy, 255
memmove, 255
memory

address, 54
allocation, 54, 412

as bottle neck, 321
automatic release, 447
dynamically allocated, 54
exhaustion, 56
hierarchy, 321, 322

526 Subject Index

leak, 55
management

encapsulation, 56
release, see deallocation
unused, 447

<memory>, 57
mersenne_twister_engine, 247
meta-function, 484
meta-programming, 156, 289–364

library support, 252
meta-tuning, 328–354
method, 73, 77–78

private, 75
public, 75
analytical, 407
Babylonian, 268
constant, 114
deletion

implicit vs. explicit, 472
generation, 111, 462

by base class, 466
by member, 466
design guides, 470
implicit, 466
of copy operations, 468–470
of default constructor, 467
of destructor, 467
of move operations, 470
suppression, 465

multi-step, 417
reference-qualified, 116
with default behavior, 111, 462

Meyers, Scott, 82, 133, 188, 473
Microsoft, 3
mile

nautical, 103
statute, 103

min_abs, 312
min_magnitude, 298
MinGW, 3
minimum, 317
minstd_rand, 247
minstd_rand0, 247
missing_exception, 405
MKL, 284, 354

mode
debug, 36
release, 36

modification
regarding private, 75

module, 430–434
interface, 431
std.core, 432

Monk, 477
Monoid, 358
monoid, 344
monoid_map, 358
Moore, Charles H., 456
move

assignment, 94
by copy, 472
constructor, 93
semantics, 32, 57, 93–96

move, 94, 95
abuse, 488
of tuple entries, 259

move-safe, 102
MPI, 412
mpi_algebra, 417
ms, 275
mt19937, 247
mt19937_64, 247
MTL4, 284, 449

abstraction penalty, 347
iteration control, 275
LU factorization, 451
nested unrolling, 350
terminology, 379
transposed view, 302

μ-recursive functions, 360
Mulansky, Mario, 284
mult_block, 351
multi_tmp, 345
multimap, 225

equal_range, 225
lower_bound, 225
upper_bound, 225

multiset, 223
contains, 223

Musser, David, 149, 212

Subject Index 527

mutable

in lambda, 187
mutable_copy, 469
mutex, 275

lock, 276
unlock, 276

Nackman, Lee, 397
Naipaul, V. S., 129
name

conflict, 64
demangler, 162, 304
hiding, 11, 474

in namespaces, 139
import, 140
in library, 139
in OS, 139
mangling, 422, 428

in RTTI, 304
incompatibility, 428

namespace, 12, 138–146
alias, 141
global, 139
import, 141
in generic programming, 138
qualification, 139
search in ∼, 139

NaN, 124
narrowing, 9, 397

in arrays, 52
in I/O, 51
in member initialization, 92

NDEBUG, 36
negate_view, 401, 403
.NET, 448
new, 18, 54
new[], 54
Newton’s equation, 408
next, 227
Niebler, Eric, 232
Niebuhr, Reinhold, 211
[[nodiscard]], 38
noexcept, 41, 105

conditional, 301
in move operations, 94

norm
L1, 142, 312, 343
Frobenius, 188

norm, 239
not, 16
now, 267
nth_derivative, 181
NULL, 55
nullopt, 257
nullopt_t, 257
nullptr, 55, 94
num_cols, 379
num_rows, 379
number

amicable, 108
congruent, 108
Fibonacci, 289, 483
floating-point, 5, 15
integer, 4, 15
of arbitrary precision, 283
prime, 289, 481
rational, 283

<numbers>, 44, 251
numerator, 75
numeric

instability, 318
optimization, 328

<numeric>, 230
numeric_limits, 253

epsilon, 254
lowest, 254
max, 254
min, 254

-o (flag), 420
object, 74, 422, 501

emptied, 98
expired, 96
file, 422

and instantiation, 131
OCI, 107
oct, 45
octal, 8
odd_iterator, 209
ODE, 284, 407–418

528 Subject Index

autonomous, 408
explicit, 408
first order, 408
implicit, 408
non-linear, 408
order of, 408
real-valued, 408

ofstream, 43
omp_algebra, 417
on_each_nonzero, 188
one_norm, 313, 343
one_norm_ftor, 343
OOP, 365–405
opencl_algebra, 417
OpenMP, 353, 412
Operation, 413
operation

independent ∼s, 330
operator, 12–22

access ∼, 76–77
+ (addition), 13, 118, 319
& (address of), 19, 55
alignof, see alignof

() (application), 80, 118, 302, 461
() (application), 178
arithmetic, 13
arity, 118
= (assign), 18, 94, 136, 323, 330,

88–330
binary, 119
& (bitwise and), 17, 164
&= (bitwise and by), 18, 486
ˆ (bitwise xor), 17, 118
ˆ= (bitwise xor by), 18
call, see operator, application
, (comma), 18, 23, 28, 203
∼x (complement), 17
?: (conditional), 18, 23, 25, 455
conversion, 164, 315, 395
-= (decrease by), 18
delete, see delete

->* (deref member deref), 19, 458
* (derefer), 19, 55, 153
-> (derefer member), 19, 77, 117, 118
*= (divide by), 18

/ (division), 13
== (equal), 16, 153

default, 398
generated, 121

� (extraction), 42
> (greater), 16, 135
>= (greater equal), 16
+= (increase by), 18
� (insertion), 42, 120, 142
� (left shift), 17
�= (left shift by), 18
< (less), 16
<= (less equal), 16
linear, 71
&& (logical and), 16
. (member), 19, 74, 76
.* (member deref), 19, 458
% (modulo), 13
%= (modulo by), 18
* (multiplication), 13
new, see new

! (not), 16
!= (not equal), 16, 153

generated, 121, 399
overloading, 19, 117–126

consistent, 117
exceptions, 19
priority, 118
return type, 118

-- (post-decrement), 13
++ (post-increment), 13
-- (pre-decrement), 13
-- (pre-decrement), 213
++ (pre-increment), 13, 153
++ (pre-increment), 213
precedence, 20, 456
� (right shift), 17
�= (right shift by), 18
*= (scale by), 18
semantics, 456
� (shift), 2
sizeof, see sizeof

sizeof..., see sizeof...

spaceship, see operator, 3-way com-
parison

Subject Index 529

[] (subscript), 19, 114, 118, 323, 333,
456

[] (subscript), 214
- (subtraction), 13
<=> (3-way comparison), 16, 122–125
throw, see throw

typeid, see typeid

- (unary minus), 13, 120
+ (unary plus), 13

optimization, see performance optimiza-
tion

optional, 256
or, 16
or_eq, 16
order

of accuracy, 410
ordering

strict weak, 224
ordinary differential equations, see ODE
ostream, 43, 44, 120, 203, 446

write, 446
ostream_iterator, 213, 229
out of range, 27
output, 41
overflow, 27
overhead

exponential, 485
in HPC software, 347
of virtual functions, 365

overload
in specialization, 165
resolution, 474

override, 373
overriding

explicit, 372

/P (flag), 420
packaged_task, 272
pair, 259

first, 259
second, 259

parallelism, 270
parameter pack, 201

packing, 201
unpacking, 201

Parent, Sean, 233
parse, 51

most vexing, 82
partial_ordering, 123
partial_sort, 230
partial_sum, 231, 238
Pascal

assignment, 17
pattern matching, 329
PDE, 284
performance

in generic programs, 222
of templates, 137
optimization, 483

concept-based, 329
tuning, 318–354, 478
variation, 73

permutation, 457, 487
row, 451

person, 366
all_info, 367

PETSc, 489
π, 11, 430
Picard-Lindelöf theorem, 409
Pike, Kenneth L., 501
pipe, 499
pipeline, 268
pitfalls

in method generation, 470
plain old data type

seePOD, 255
POD, 255
point, 397
pointer, 54–60

deleter, 58
initialization, 55
initialize as empty, 55
polymorphic, 388
raw, 56, 471
referring other variable, 55
smart, 57–60, 117
shared_ptr, see shared_ptr (top level)
unique_ptr, see unique_ptr (top level)
weak_ptr, see weak_ptr (top level)

530 Subject Index

stale, 61
to member, 77, 458

Poisson, 439
polymorphism

dynamic, 371
run-time, 365
static, 371

polynomial, 126
popcount, 292
posit (number system), 283
postorder, 281
practice, 407
#pragma once, 67
precision (method of I/O streams), 253
preconditioners

dynamic selection, 387
predicate, 229
preorder, 281
preprocessing, 420

directive, 65
flag, 420

print, 202
printf, 447
printf, 404
private, 74
probability, 246
processor

many-core, 353
multi-core, 270

processors
super-scalar, 334

product
scalar, 87

program
deterministic, 21
error

static, 41
flow, 17
reliability, 452
source, 419
structure of, 10

programming
defensive, 36
extreme, 450
generic, 129–210

meta-∼, see meta-programming
object-oriented, 75, see OOP

with getters and setters, 77
paradigm, 129
structured, 29
template, 129

promise
in coroutines, 282

promise, 272
promoted, 396
property

mathematical, 73
protected, 74
proxy, 163, 462
Prud’homme, Christophe, 285
ptask, 273
public, 74
Python

as API for C++, 284
dynamic types, 155
range operations, 456

quantum phenomena, 242
queue, 56

RAII, 56, 106, 107, 276, 448
and rule of zero, 471

rand, 242
<random>, 242
random number, 242–250

distribution, 246, 248–249
generator, 246
pseudo-∼ generator, 242
truly ∼, 247

random_access_iterator, 198, 356
random_device, 247
random_numbers, 246
RandomAccessIterator, 216
RandomAccessIterator, 214
range, 125, 152, 199, 231–237, 455

adaptor, 234
checking, 462

<ranges>, 421
ranlux24, 247
ranlux24_base, 247
ranlux48, 247

Subject Index 531

ranlux48_base, 247
ratio, 268
rational, 126
rational, 74
real, 112
record, 260
recursion

in variadic templates, 201
infinite, 182

reduce, 238
ref, 266
refactoring, 454
reference, 30, 60–62

constant, 31
counting, 93
cyclic, 60
forward, 133
mutable, 44
not out-dating, 113
of member data, 112
of temporaries, 113
stale, 61
to local data, 61
universal, 133, 488

reference_wrapper, 60, 266
get, 266

referring, 206
register, 33
register, 335
reinterpret_cast, 394
replication

code, 429
requires, 194
reserve, 233
residuum, 275
ResizableRange, 233
resize, 413
resource

acquisition, see also RAII, 106
managed, 106

by user, 107, 471
release, 105

after exception, 106
return, 2

type, 32

automatic, 137
declaration, 156
deduction, 137
of lambda, 186
of mixed-type templates, 136
trailing, 156

value optimization, 95
Returnable, 196
reusability, 457
reverse, 236
riemann_zeta, 251
ROSE, 329
rotation, 175
RTTI, 303, 393
Rudl, Jan, 249
rule

of five, 471
of five defaults, 473
of six, 473
of zero, 471
trapezoid, 210

run time, 137
run-time type information, see RTTI
Runge-Kutta, 408

algorithm, 408
method, 410, 418
scheme

explicit, 409
RK4, 410

runge_kutta4, 413
runge_kutta4, 416
runtime_error, 378
rvalue, 93, 501

accept only ∼ argument, 488
and raw-pointers, 94
in tuple use, 259
with deleted move operations, 472

scale_sum2, 415
scale_sum5, 415
scanf, 447
scheme

explicit, 417
implicit, 417
predictor-corrector, 417

532 Subject Index

Scholes, Myron, 249
science

computer, 71, 470
scope, 10–12, 24

global, 10
in constructor, 81
local, 10
nested, 11
out of, 11

scoped_lock, 280
scr1, 448
seed, 242
segmentation fault, see segmentation vio-

lation
segmentation violation

in array, 53
selection

run-time, 459
semantics, 450

inconsistent, 87
operator vs. function notation, 321

semaphore, 282
semicolon, 23
SemiGroup, 358
sentinel, 235
separation of concerns, 21
set

sub-, 368
super-, 368

<set>, 223
set, 223

contains, 223
count, 223
find, 223

setprecision, 44
setw, 45
SFINAE, 312
Shabalin, Alex, 191
share price, 249
shared_mutex, 277

lock_shared, 277
unlock_shared, 277

shared_pointer, 467

shared_ptr, 58, 107, 448, 471
for resource rescue, 109
use_count, 59

shared_ptr, 282
shared_timed_mutex, 277
short, 4
shuffle_order_engine, 247
side effect, 14, 20, 73

in constexpr functions, 290
in lambda, 188

Siek, Jeremy, 26, 285, 398
signature, 34

of overridden methods, 372
signed, 4
Simple DirectMedia Layer, 239
simulation

large-scale, 318
single, 236
single responsible principle, see SRP
singleton, 77
size

compile-time, 330
compile-time ∼, 52, 174
run-time ∼, 54
static, see compile-time size

size, 413
size, 233
sized_range, 233
sizeof, 19

on arrays, 53
sizeof..., 19, 202
Skarupke, Malte, 474
slicing, 372
software

break, 49
confidence, 117
developer, 71
development, 450
domain-specific, 71
engineering, 71
high-performance, 321
non-portable, 68
scientific, 71, 435
structure of, 64

Subject Index 533

solver
asynchronous, 275
direct, 450
dynamic selection, 387
iterative

interruptible, 275
triangular, 453

solver, 220
sort, 230

intro-∼, 230
quick, 230

sort, 135, 238
with user-defined iterator, 209

source
preprocessed, 421

span, 263
sparse, 206
specialization, 162

ambiguity, 165
for hardware, 477
for type traits, 299
full, 167
of functions, 165
partial, 166, 300

sph_bessel, 251
sph_legendre, 251
sph_neumann, 251
split, 236
sqrt

in Mandelbrotsqrt set, 239
square root, 254
srand, 242
SRP, 107, 111
SSE, 238, 334, 353, 477
stable_sort, 230
stack, 208, 428
stack

specialization for boolstack, 209
with custom size, 209

stackless, 281
state_type, 413
statement, 23

compound, 2, 23
empty, 23
in Pascal, 22

static

in constexprstatic, 292
member variable, 77
method, 77
random engine, 246
variable, 441

static_assert, 41, 311
replacement, 485

std::

‘name’, see ‘name’ at top level
user code in ∼, 142

steady_clock, 269
period, 268

Stepanov, Alex, 149, 212, 347
Stiefel, Eduard, 435
STL, 25, 211–239

algorithm, 226–231
containers, 218–226

stof, 444
strcpy, 21
string, 2

C, 447
format, 447

string, 5, 44
<string>, 5, 8
string_view, 262
stringstream, 44

str, 44
strong_ordering, 124
Stroustrup, Bjarne, 65, 96, 106, 211
struct, 75
structured bindings, 159
student, 367
sub_matrix, 125
substitution failure is not an error,

see SFINAE
subtract_with_carry_engine, 247
sufficient condition, 129
sum, 315
sum, 149

variadic, 200
Summable, 194
Sutter, Herb, 75, 100, 305
swap, 96, 145

534 Subject Index

switch, 26
in dynamic function dispatching, 387
with initializer, 26

symbol
found multiple times, 428
in object file, 422, 428
matching, 422, 428
not found, 428
weak, 429

symbol_counter, 260
system

linear, 417
system_clock, 269

to_time_t, 267

tag
dispatching, 217
type, 217

tai_clock, 269
take, 236
tangent, 183
Taylor series, 28, 182
TCP/IP, 44
template, 129–210

alias, 161
argument, 193

arbitrary number of ∼, 200
class, 147–185
function, 129–138

virtual, 389
library, 138
parameter, 192

non-type, 174
terse, 138

performance, 137
primary, 162
specialization, see specialization (top

level)
variable, 191, 306
variadic, 200, 315

associtivity, 318
with mixed types, 136

tensor, 284
tensor, 161

termination criterion
type-dependent, 254

test, 37
testing, 206

randomized, 244
text

substitution, 66, 421
theory, 407

relativity, 176
string, 176

this, 88, 398
thread, 271

detach, 273
join, 272, 279
killing, 275
storage, 292

<thread>, 3
thread, 270

hardware_concurrency, 287
threads, 270
throw, 19, 38

re∼, 39
Thrust, 284
tie, 258
time

run, 54
time_point, 267
time_t, 267
time_type, 413
timer, 267, 269
to_string, 208
to_tuple_string(x, y, z), 208
trajectory, 408

discrete, 410
trans, 303
transform, 234
transform_exclusive_scan, 238
transform_inclusive_scan, 238
transform_reduce, 238
translation

unit, 421
transposed_view, 302
traverse, 281
tree, 56

Subject Index 535

trigonometry
with intervals, 283

try, 39
-catch-block, 39
in constexprtry, 292

tuple
access by entry type, 258

tuple, 204, 206, 257
get, 258

<tuple>, 257
Turing

machine, 359
Turing

computable, 360
Turing

complete, 360
Turing completeness, 360
Turing, Alan, 359
Twain, Mark, 20
type

-dependent behavior, 149
deduction, 131–135, 154–160, 176

for class templates, 156
for variables, 155

definition, 160–162
erasure, 261
exception, 38
generator, 205
generic, 129
in binary I/O, 446
intrinsic, 4, 7
introspection, 304
meaning of bites, 389
parameter

anonymous, 485
parametric, 129
pattern, 167
polymorphic, 370, 393
property, 291
safe, 422, 447
strongly ∼d, 4, 155
sub-∼, 368
super-∼, 368

trait, 298
in advance, 217
in standard library, 254

<type_traits>, 254, 298, 313, 317
typedef, 160
typedef, 402
typeid, 19
<typeinfo>, 303
typename, 130

UDL, see literal, user-defined
uint32_t, 446
UnaryFunction, 179
uncopyable, 195
uncover_members, 172
#undef, 66
unexpected, 301
union, 259
unique, 229
unique_ptr, 57, 107, 448, 471

get, 90
universal number arithmetic, 283
Unix, 498
unmovable, 195
unordered, 123
Unruh, Erwin, 289, 481
unseq, 238
unsigned, 4
upper_trisolve, 453
user-declared, 466

purely, 466
user-implemented, 466
using, 160

declaration, 140, 368, 369
directive, 141

utc_clock, 269

v-shape, 380
valarray, 63

operations, 63
sliced access, 63
usage, 64

valid (interval arithmetic), 283
value_type, 413
Vandevoorde, Daveed, 322

536 Subject Index

variable, 4–12
accessibility, 10
constant, see constant
declaration, 4
global, 10
in multiple translation units, 430
independent, 408
inline, 429
life time, 11
local, 10
real-valued, 408
visibility, 10, 11

variadic, see template
variant, 259

get, 260
variation, 249
vector, 27

addition, 52, 62
column, 453
generic, 147
in linear algebra vs. STL, 147
space, 63, 71

changing dimension, 89
temporary, 93
unit, 455

<vector>, 218
vector, 56, 62, 89, 413

capacity, 218
emplace, 220
emplace_back, 220
in Magnitudevector type trait, 300
in STL, 212, 218
of any, 474
of bool, 162
push_back, 218
resize, 219
shrink_to_fit, 219

size, 62
slow addition, 319

vector_bool_proxy, 163
vector_sum, 323
Veldhuizen, Todd, 284, 322, 360
VexCL, 284
ViennaCL, 284
view, 301
views, 234
virtual, 365, 370

base class, 384, 391
function table, 371
method table, 371

virtual, 255
pure, 375

visibility, 10, 368
visit, 261, 480
Visual Studio, 3

macros, 66
preprocessing flag, 420
pretty printer in debugger, 496

void, 32
volatile, 393, 394
vtable, see virtual function table

weak_ordering, 124
weak_ptr, 60
weak_ptr, 282
while, 26
Wilcock, Jeremiah, 312, 486
Williams, Anthony, 282
Windows, 3
<windows.h>, 3

xor, 16
xvalue, 98

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Preface
	Reasons to Learn C ++
	Reasons to Read This Book
	The Beauty and the Beast
	Languages in Science and Engineering
	Typographical Conventions

	Acknowledgments
	About the Author
	Chapter 1 C++ Basics
	1.1 Our First Program
	1.2 Variables
	1.2.1 Intrinsic Types
	1.2.2 Characters and Strings
	1.2.3 Declaring Variables
	1.2.4 Constants
	1.2.5 Literals
	1.2.6 Non-narrowing Initialization
	1.2.7 Scopes

	1.3 Operators
	1.3.1 Arithmetic Operators
	1.3.2 Boolean Operators
	1.3.3 Bitwise Operators
	1.3.4 Assignment
	1.3.5 Program Flow
	1.3.6 Memory Handling
	1.3.7 Access Operators
	1.3.8 Type Handling
	1.3.9 Error Handling
	1.3.10 Overloading
	1.3.12 Avoid Side Effects!
	1.3.11 Operator Precedence

	1.4 Expressions and Statements
	1.4.1 Expressions
	1.4.2 Statements
	1.4.3 Branching
	1.4.4 Loops
	1.4.5 goto

	1.5 Functions
	1.5.1 Arguments
	1.5.2 Returning Results
	1.5.3 Inlining
	1.5.4 Overloading
	1.5.5 main Function

	1.6 Error Handling
	1.6.1 Assertions
	1.6.2 Exceptions
	1.6.3 Static Assertions

	1.7 I/O
	1.7.1 Standard Output
	1.7.2 Standard Input
	1.7.3 Input/Output with Files
	1.7.4 Generic Stream Concept
	1.7.5 Formatting
	1.7.6 New Formatting
	1.7.7 Dealing with I/O Errors
	1.7.8 Filesystem

	1.8 Arrays, Pointers, and References
	1.8.1 Arrays
	1.8.2 Pointers
	1.8.3 Smart Pointers
	1.8.4 References
	1.8.5 Comparison between Pointers and References
	1.8.6 Do Not Refer to Outdated Data!
	1.8.7 Containers for Arrays

	1.9 Structuring Software Projects
	1.9.1 Comments
	1.9.2 Preprocessor Directives

	1.10 Exercises
	1.10.1 Narrowing
	1.10.2 Literals
	1.10.3 Operators
	1.10.4 Branching
	1.10.5 Loops
	1.10.6 I/O
	1.10.7 Arrays and Pointers
	1.10.8 Functions

	Subject Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

