
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780136624356
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780136624356
https://plusone.google.com/share?url=http://www.informit.com/title/9780136624356
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780136624356
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780136624356/Free-Sample-Chapter

Foundational
Python for Data

Science

9780136624356_print.indb 1 30/07/21 4:16 PM

This page intentionally left blank

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Foundational
Python for Data

Science

Kennedy R. Behrman

T he Pearson Addison-Wesley Data & Analytics Series provides readers with
practical knowledge for solving problems and answering questions with data.
Titles in this series primarily focus on three areas:

1. Infrastructure: how to store, move, and manage data

2. Algorithms: how to mine intelligence or make predictions based on data

3. Visualizations: how to represent data and insights in a meaningful and
compelling way

The series aims to tie all three of these areas together to help the reader build
end-to-end systems for fighting spam; making recommendations; building
personalization; detecting trends, patterns, or problems; and gaining insight
from the data exhaust of systems and user interactions.

Visit informit.com/awdataseries for a complete list of available publications.

Make sure to connect with us!
informit.com/socialconnect

The Pearson Addison-Wesley
Data & Analytics Series

9780136624356_print.indb 3 30/07/21 4:16 PM

Editor-in-Chief
Mark Taub

Acquisitions Editor
Malobika
Chakraborty

Development Editor
Mark Renfrow

Managing Editor
Sandra Schroeder

Senior Project
Editor
Lori Lyons

Copy Editor
Kitty Wilson

Production
Manager
Aswini Kumar/
codeMantra

Indexer
Timothy Wright

Proofreader
Abigail Manheim

Compositor
codeMantra

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw.

Library of Congress Control Number: 2021940284

Copyright © 2022 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, request forms and the
appropriate contacts within the Pearson Education Global Rights & Permissions Department,
please visit www.pearson.com/permissions/.

ISBN-13: 978-0-13-662435-6
ISBN-10: 0-13-662435-9

ScoutAutomatedPrintCode

9780136624356_print.indb 4 30/07/21 4:16 PM

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions/

❖

This book is dedicated to Tatiana, Itta, and Maple,
who is probably still under the bed.

❖

9780136624356_print.indb 5 30/07/21 4:16 PM

Contents at a Glance

Preface xiii

I: Learning Python in a Notebook Environment 1

 1 Introduction to Notebooks 3

 2 Fundamentals of Python 13

 3 Sequences 25

 4 Other Data Structures 37

 5 Execution Control 55

 6 Functions 67

II: Data Science Libraries 83

 7 NumPy 85

 8 SciPy 103

 9 Pandas 113

 10 Visualization Libraries 135

 11 Machine Learning Libraries 153

 12 Natural Language Toolkit 159

III: Intermediate Python 171

 13 Functional Programming 173

 14 Object-Oriented Programming 187

 15 Other Topics 201

 A Answers to End-of-Chapter Questions 215

 Index 221

9780136624356_print.indb 6 30/07/21 4:16 PM

Table of Contents

Preface xiii

I: Learning Python in a Notebook Environment 1

 1 Introduction to Notebooks 3

Running Python Statements 4

Jupyter Notebooks 4

Google Colab 5

Colab Text Cells 6

Colab Code Cells 9

Colab Files 9

Managing Colab Documents 10

Colab Code Snippets 11

Existing Collections 11

System Aliases 11

Magic Functions 12

Summary 12

Questions 12

 2 Fundamentals of Python 13

Basic Types in Python 14

High-Level Versus Low-Level Languages 15

Statements 15

Performing Basic Math Operations 21

Using Classes and Objects with Dot Notation 22

Summary 22

Questions 23

 3 Sequences 25

Shared Operations 25

Testing Membership 26

Indexing 26

Slicing 27

Interrogation 27

Math Operations 28

Lists and Tuples 29

9780136624356_print.indb 7 30/07/21 4:16 PM

viii Contents

Creating Lists and Tuples 29

Adding and Removing List Items 30

Unpacking 31

Sorting Lists 32

Strings 32

Ranges 34

Summary 35

Questions 35

 4 Other Data Structures 37

Dictionaries 37

Creating Dictionaries 38

Accessing, Adding, and Updating by Using Keys 38

Removing Items from Dictionaries 39

Dictionary Views 40

Checking to See If a Dictionary Has a Key 43

The get Method 43

Valid Key Types 44

The hash Method 45

Sets 46

Set Operations 48

Frozensets 53

Summary 53

Questions 53

 5 Execution Control 55

Compound Statements 55

Compound Statement Structure 56

Evaluating to True or False 56

if Statements 59

while Loops 62

for Loops 63

break and continue Statements 64

Summary 65

Questions 65

 6 Functions 67

Defining Functions 67

Control Statement 68

A01_Behrman_FM_pi-xvi.indd 8 31/07/21 6:22 PM

ixContents

Docstrings 68

Parameters 69

Return Statements 75

Scope in Functions 75

Decorators 76

Anonymous Functions 80

Summary 81

Questions 81

II: Data Science Libraries 83

 7 NumPy 85

Installing and Importing NumPy 86

Creating Arrays 86

Indexing and Slicing 89

Element-by-Element Operations 91

Filtering Values 92

Views Versus Copies 94

Some Array Methods 95

Broadcasting 98

NumPy Math 100

Summary 102

Questions 102

 8 SciPy 103

SciPy Overview 103

The scipy.misc Submodule 104

The scipy.special Submodule 105

The scipy.stats Submodule 105

Discrete Distributions 105

Continuous Distributions 108

Summary 111

Questions 111

 9 Pandas 113

About DataFrames 113

Creating DataFrames 114

Creating a DataFrame from a Dictionary 114

9780136624356_print.indb 9 30/07/21 4:16 PM

x Contents

Creating a DataFrame from a List of Lists 115

Creating a DataFrame from a File 116

Interacting with DataFrame Data 117

Heads and Tails 117

Descriptive Statistics 118

Accessing Data 120

Bracket Syntax 121

Optimized Access by Label 123

Optimized Access by Index 124

Masking and Filtering 125

Pandas Boolean Operators 126

Manipulating DataFrames 127

Manipulating Data 129

The replace Method 131

Interactive Display 133

Summary 133

Questions 133

 10 Visualization Libraries 135

matplotlib 135

Styling Plots 137

Labeled Data 140

Plotting Multiple Sets of Data 141

Object-Oriented Style 143

Seaborn 144

Seaborn Themes 145

Plotly 148

Bokeh 149

Other Visualization Libraries 151

Summary 151

Questions 151

 11 Machine Learning Libraries 153

Popular Machine Learning Libraries 153

How Machine Learning Works 154

Transformations 154

Splitting Test and Training Data 155

Training and Testing 156

9780136624356_print.indb 10 30/07/21 4:16 PM

xiContents

Learning More About Scikit-learn 157

Summary 157

Questions 157

 12 Natural Language Toolkit 159

NLTK Sample Texts 159

Frequency Distributions 161

Text Objects 165

Classifying Text 166

Summary 169

Exercises 169

III: Intermediate Python 171

 13 Functional Programming 173

Introduction to Functional Programming 173

Scope and State 174

Depending on Global State 174

Changing State 175

Changing Mutable Data 176

Functional Programming Functions 177

List Comprehensions 179

List Comprehension Basic Syntax 179

Replacing map and filter 180

Multiple Variables 181

Dictionary Comprehensions 181

Generators 182

Generator Expressions 182

Generator Functions 183

Summary 184

Questions 185

 14 Object-Oriented Programming 187

Grouping State and Function 187

Classes and Instances 188

Private Methods and Variables 190

Class Variables 190

Special Methods 191

Representation Methods 192

9780136624356_print.indb 11 30/07/21 4:16 PM

xii Contents

Rich Comparison Methods 192

Math Operator Methods 195

Inheritance 196

Summary 199

Questions 199

 15 Other Topics 201

Sorting 201

Lists 201

Reading and Writing Files 204

Context Managers 205

datetime Objects 206

Regular Expressions 207

Character Sets 208

Character Classes 209

Groups 209

Named Groups 210

Find All 210

Find Iterator 211

Substitution 211

Substitution Using Named Groups 211

Compiling Regular Expressions 211

Summary 212

Questions 212

 A Answers to End-of-Chapter Questions 215

 Index 221

9780136624356_print.indb 12 30/07/21 4:16 PM

Preface
The Python language has been around for a long time and worn many hats. Its original
implementation was started by Guido van Rossum in 1989 as a tool for system administration
as an alternative to Bash scripts and C programs.1 Since its public release in 1991, it has evolved
for use in a myriad of industries. These include everything from web-development, film,
government, science, and business.2

I was first introduced to Python working in the film industry, where we used it to automate
data management across departments and locations. In the last decade, Python has become a
dominant tool in Data Science.

This dominance evolved due to two developments: the Jupyter notebook, and powerful third-
party libraries. In 2001 Fernando Perez began the IPython project, an interactive Python
environment inspired by Maple and Mathematica notebooks.3 By 2014, the notebook-specific
part of the project was split off as the Jupyter project. These notebooks have excelled for
scientific and statistical work environments. In parallel with this development, third-party
libraries for scientific and statistical computing were developed for Python. With so many
applications, the functionality available to a Python programmer has grown immensely. With
specialized packages for everything from opening web sockets to processing natural language
text, there is more available than a beginning developer needs.

This project was the brainchild of Noah Gift.4 In his work as an educator, he found that
students of Data Science did not have a resource to learn just the parts of Python they needed.
There were many general Python books and books about Data Science, but not resources for
learning just the Python needed to get started in Data Science. That is what we have attempted
to provide here. This book will not teach the Python needed to set up a web page or perform
system administration. It is also not intended to teach you Data Science, but rather the Python
needed to learn Data Science.

I hope you will find this guide a good companion in your quest to grow your Data Science
knowledge.

Example Code
Most of the code shown in examples in this book can be found on GitHub at:
https://github.com/kbehrman/foundational-python-for-data-science.

1 https://docs.python.org/3/faq/general.html#why-was-python-created-in-the-first-place

2 https://www.python.org/success-stories/

3 http://blog.fperez.org/2012/01/ipython-notebook-historical.html

4 https://noahgift.com

A01_Behrman_FM_pi-xvi.indd 13 04/08/21 7:35 PM

https://github.com/kbehrman/foundational-python-for-data-science
https://docs.python.org/3/faq/general.html#why-was-python-created-in-the-first-place
https://www.python.org/success-stories/3
http://blog.fperez.org/2012/01/ipython-notebook-historical.html
https://noahgift.com

Figure Credits
Figure Credit Attribution

Cover Boris Znaev/Shutterstock

Cover Mark.G/Shutterstock

Figure 1-01 Screenshot of Colab Dialogue © 2021 Google

Figure 1-02 Screenshot of Renaming Notebook © 2021 Google

Figure 1-03 Screenshot of Google Drive © 2021 Google

Figure 1-04 Screenshot of Editing Text Cells © 2021 Google

Figure 1-05 Screenshot of Formatting Text © 2021 Google

Figure 1-06 Screenshot of Lists © 2021 Google

Figure 1-07 Screenshot of Headings © 2021 Google

Figure 1-08 Screenshot of Table of Contents © 2021 Google

Figure 1-09 Screenshot of Hiding Cells © 2021 Google

Figure 1-10 Screenshot of LaTeX Example © 2021 Google

Figure 1-11 Screenshot of A Files © 2021 Google

Figure 1-12 Screenshot of Upload Files © 2021 Google

Figure 1-13 Screenshot of Mount Google Drive © 2021 Google

Figure 1-14 Screenshot of Code Snippets © 2021 Google

A01_Behrman_FM_pi-xvi.indd 14 30/07/21 5:34 PM

Register Your Book
Register your copy of Foundational Python for Data Science on the InformIT site for convenient
access to updates and/or corrections as they become available. To start the registration
process, go to informit.com/register and log in or create an account. Enter the product ISBN
9780136624356 and click Submit. Look on the Registered Products tab for an Access Bonus
Content link next to this product, and follow that link to access any available bonus materials.
If you would like to be notified of exclusive offers on new editions and updates, please check
the box to receive email from us.

9780136624356_print.indb 15 30/07/21 4:16 PM

http://informit.com/register

Acknowledgments
The idea for this book first came from Noah Gift. It is he who really identified the need for a
specialized introduction to Python targeted at students of Data Science. Thank you for that,
Noah. And thank you to Colin Erdman who, acting as technical editor, brought an attention to
detail that was much appreciated and needed. I also want to thank the Pearson team, including
Malobika Chakraborty, who guided me through the whole process, Mark Renfrow, who came in
and helped get the project done, and Laura Lewin, who helped get it going.

9780136624356_print.indb 16 30/07/21 4:16 PM

About the Author
Kennedy Behrman is a veteran software engineer. He began using Python to manage
digital assets in the visual effects industry and has used it extensively since. He has
authored various books and training programs around Python education. He currently
works as a senior data engineer at Envestnet.

9780136624356_print.indb 17 30/07/21 4:16 PM

This page intentionally left blank

3
Sequences

Errors using inadequate data are much less than those using no data at all.

Charles Babbage

In This Chapter
QQ Shared sequence operations

QQ Lists and tuples

QQ Strings and string methods

QQ Ranges

In Chapter 2, “Fundamentals of Python,” you learned about collections of types. This chapter
introduces the group of built-in types called sequences. A sequence is an ordered, finite collection.
You might think of a sequence as a shelf in a library, where each book on the shelf has a location
and can be accessed easily if you know its place. The books are ordered, with each book (except
those at the ends) having books before and after it. You can add books to the shelf, and you
can remove them, and it is possible for the shelf to be empty. The built-in types that comprise a
sequence are lists, tuples, strings, binary strings, and ranges. This chapter covers the shared
characteristics and specifics of these types.

Shared Operations
The sequences family shares quite a bit of functionality. Specifically, there are ways of using
sequences that are applicable to most of the group members. There are operations that relate to
sequences having a finite length, for accessing the items in a sequence, and for creating a new
sequence based a sequence’s content.

M03_Behrman_C03_p025-036.indd 25 31/07/21 6:21 PM

26 Chapter 3 Sequences

Testing Membership
You can test whether an item is a member of a sequence by using the in operation. This
operation returns True if the sequence contains an item that evaluates as equal to the item in
question, and it returns False otherwise. The following are examples of using in with differ-
ent sequence types:

'first' in ['first', 'second', 'third']
True

23 in (23,)
True

'b' in 'cat'
False

b'a' in b'ieojjza'
True

You can use the keyword not in conjunction with in to check whether something is absent from
a sequence:

'b' not in 'cat'
True

The two places you are most likely to use in and not in are in an interactive session to explore
data and as part of an if statement (see Chapter 5, “Execution Control”).

Indexing
Because a sequence is an ordered series of items, you can access an item in a sequence by using
its position, or index. Indexes start at zero and go up to one less than the number of items. In an
eight-item sequence, for example, the first item has an index of zero, and the last item an index of
seven.

To access an item by using its index, you use square brackets around the index number. The
following example defines a string and accesses its first and last substrings using their index
numbers:

name = "Ignatius"
name[0]
'I'

name[4]
't'

You can also index counting back from the end of a sequence by using negative index numbers:

name[-1]
's'

name[-2]
'u'

M03_Behrman_C03_p025-036.indd 26 31/07/21 6:21 PM

27Shared Operations

Slicing
You can use indexes to create new sequences that represent subsequences of the original. In
square brackets, supply the beginning and ending index numbers of the subsequence separated
by a colon, and a new sequence is returned:

name = "Ignatius"
name[2:5]
'nat'

The subsequence that is returned contains items starting from the first index and up to, but not
including, the ending index. If you leave out the beginning index, the subsequence starts at the
beginning of the parent sequence; if you leave out the end index, the subsequence goes to the end
of the sequence:

name[:5]
'Ignat'

name[4:]
'tius'

You can use negative index numbers to create slices counting from the end of a sequence. This
example shows how to grab the last three letters of a string:

name[-3:]
'ius'

If you want a slice to skip items, you can provide a third argument that indicates what to count
by. So, if you have a list sequence of integers, as shown earlier, you can create a slice just by using
the starting and ending index numbers:

scores = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
scores[3:15]
[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

But you can also indicate the step to take, such as counting by threes:

scores[3:15:3]
[3, 6, 9, 12]

To count backward, you use a negative step:

scores[18:0:-4]
[18, 14, 10, 6, 2]

Interrogation
You can perform shared operations on sequences to glean information about them. Because a
sequence is finite, it has a length, which you can find by using the len function:

name = "Ignatius"
len(name)
8

M03_Behrman_C03_p025-036.indd 27 31/07/21 6:21 PM

28 Chapter 3 Sequences

You can use the min and max functions to find the minimum and maximum items, respectively:

scores = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
min(scores)
0

max(name)
'u'

These methods assume that the contents of a sequence can be compared in a way that implies
an ordering. For sequence types that allow for mixed item types, an error occurs if the contents
cannot be compared:

max(['Free', 2, 'b'])

TypeError Traceback (most recent call last)
<ipython-input-15-d8babe38f9d9> in <module>()
----> 1 max(['Free', 2, 'b'])
TypeError: '>' not supported between instances of 'int' and 'str'

You can find out how many times an item appears in a sequence by using the count method:

name.count('a')
1

You can get the index of an item in a sequence by using the index method:

name.index('s')
7

You can use the result of the index method to create a slice up to an item, such as a letter in a
string:

name[:name.index('u')]
'Ignati'

Math Operations
You can perform addition and multiplication with sequences of the same type. When you do, you
conduct these operations on the sequence, not on its contents. So, for example, adding the list [1]
to the list [2] will produce the list [1,2], not [3]. Here is an example of using the plus (+) operator
to create a new string from three separate strings:

"prefix" + "-" + "postfix"
'prefix-postfix'

The multiplication (*) operator works by performing multiple additions on the whole sequence,
not on its contents:

[0,2] * 4
[0, 2, 0, 2, 0, 2, 0, 2]

M03_Behrman_C03_p025-036.indd 28 31/07/21 6:21 PM

29Lists and Tuples

This is a useful way of setting up a sequence with default values. For example, say that you want
to track scores for a set number of participants in a list. You can initialize that list so that it has an
initial score for each participant by using multiplication:

num_participants = 10
scores = [0] * num_participants
scores
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Lists and Tuples
Lists and tuples are sequences that can hold objects of any type. Their contents can be of mixed
types, so you can have strings, integers, instances, floats, and anything else in the same list.
The items in lists and tuples are separated by commas. The items in a list are enclosed in square
brackets, and the items in a tuple are enclosed in parentheses. The main difference between lists
and tuples is that lists are mutable, and tuples are immutable. This means that you can change
the contents of a list, but once a tuple is created, it cannot be changed. If you want to change the
contents of a tuple, you need to make a new one based on the content of the current one. Because
of the mutability difference, lists have more functionality than tuples—and they also use more
memory.

Creating Lists and Tuples
You create a list by using the list constructor, list(), or by just using the square bracket syntax.
To create a list with initial values, for example, simply supply the values in brackets:

some_list = [1,2,3]
some_list
[1, 2, 3]

You can create tuples by using the tuple constructor, tuple(), or using parentheses. If you want
to create a tuple with a single item, you must follow that item with a comma, or Python will
interpret the parentheses not as indicating a tuple but as indicating a logical grouping. You can
also create a tuple without parentheses by just putting a comma after an item. Listing 3.1 provides
examples of tuple creation.

Listing 3.1 Creating Tuples

tup = (1,2)
tup
(1,2)

tup = (1,)
tup
(1,)

tup = 1,2,
tup
(1,2)

M03_Behrman_C03_p025-036.indd 29 31/07/21 6:21 PM

30 Chapter 3 Sequences

Warning
A common but subtle bug occurs when you leave a trailing comma behind an argument to
a function. It turns the argument into a tuple containing the original argument. So the second
argument to the function my_function(1, 2,) will be (2,) and not 2.

You can also use the list or tuple constructors with a sequence as an argument. The following
example uses a string and creates a list of the items the string contains:

name = "Ignatius"
letters = list(name)
letters
['I', 'g', 'n', 'a', 't', 'i', 'u', 's']

Adding and Removing List Items
You can add items to a list and remove items from a list. To conceptualize how it works, think of a
list as a stack of books. The most efficient way to add items to a list is to use the append method,
which adds an item to the end of the list, much as you could easily add a book to the top of a
stack. To add an item to a different position in the list, you can use the insert method, with the
index number where you wish to position the new item as an argument. This is less efficient than
using the append method as the other items in the list may need to move to make room for the
new item; however, this is typically an issue only in very large lists. Listing 3.2 shows examples of
appending and inserting.

Listing 3.2 Appending and Inserting List Items

flavours = ['Chocolate', 'Vanilla']
flavours
['Chocolate', 'Vanilla']

flavours.append('SuperFudgeNutPretzelTwist')
flavours
['Chocolate', 'Vanilla', 'SuperFudgeNutPretzelTwist']

flavours.insert(0,"sourMash")
flavours
['sourMash', 'Chocolate', 'Vanilla', 'SuperFudgeNutPretzelTwist']

To remove an item from a list, you use the pop method. With no argument, this method removes
the last item. By using an optional index argument, you can specify a specific item. In either case,
the item is removed from the list and returned.

The following example pops the last item off the list and then pops off the item at index 0. You can see
that both items are returned when they are popped and that they are then gone from the list:

flavours.pop()
'SuperFudgeNutPretzelTwist'

M03_Behrman_C03_p025-036.indd 30 31/07/21 6:21 PM

31Lists and Tuples

flavours.pop(0)
'sourMash'

flavours
 ['Chocolate', 'Vanilla']

To add the contents of one list to another, you use the extend method:

deserts = ['Cookies', 'Water Melon']
desserts
['Cookies', 'Water Melon']

desserts.extend(flavours)
desserts
['Cookies', 'Water Melon', 'Chocolate', 'Vanilla']

This method modifies the first list so that it now has the contents of the second list appended to
its contents.

Nested List Initialization
There is a tricky bug that bites beginning Python developers. It involves combining list mutabil-
ity with the nature of multiplying sequences. If you want to initialize a list containing four sub-
lists, you might try multiplying a single list in a list like this:

lists = [[]] * 4

lists

[[], [], [], []]

This appears to have worked, until you modify one of the sublists:

lists[-1].append(4)

lists

[[4], [4], [4], [4]]

All of the sublists are modified! This is because the multiplication only initializes one list and
references it four times. The references look independent until you try modifying one. The
solution to this is to use a list comprehension (discussed further in Chapter 13, “Functional
Programming”):

lists = [[] for _ in range(4)]

lists[-1].append(4)

lists

 [[], [], [], [4]]

Unpacking
You can assign values to multiple variables from a list or tuple in one line:

a, b, c = (1,3,4)
a
1

M03_Behrman_C03_p025-036.indd 31 31/07/21 6:21 PM

32 Chapter 3 Sequences

b
3

c
4

Or, if you want to assign multiple values to one variable while assigning single ones to the others,
you can use a * next to the variable that will take multiple values. Then that variable will absorb
all the items not assigned to other variables:

*first, middle, last = ['horse', 'carrot', 'swan', 'burrito', 'fly']
first
['horse', 'carrot', 'swan']

last
'fly'

middle
'burrito'

Sorting Lists
For lists you can use built-in sort and reverse methods that can change the order of the
contents. Much like the sequence min and max functions, these methods work only if the
contents are comparable, as shown in these examples:

name = "Ignatius"
letters = list(name)
letters
['I', 'g', 'n', 'a', 't', 'i', 'u', 's']

letters.sort()
letters
['I', 'a', 'g', 'i', 'n', 's', 't', 'u']

letters.reverse()
letters
['u', 't', 's', 'n', 'i', 'g', 'a', 'I']

Strings
A string is a sequence of characters. In Python, strings are Unicode by default, and any Unicode
character can be part of a string. Strings are represented as characters surrounded by quotation
marks. Single or double quotations both work, and strings made with them are equal:

'Here is a string'
'Here is a string'

"Here is a string" == 'Here is a string'
True

M03_Behrman_C03_p025-036.indd 32 31/07/21 6:21 PM

33Strings

If you want to include quotation marks around a word or words within a string, you need to use
one type of quotation marks—single or double—to enclose that word or words and use the other
type of quotation marks to enclose the whole string. The following example shows the word is
enclosed in double quotation marks and the whole string enclosed in single quotation marks:

'Here "is" a string'
'Here "is" a string'

You enclose multiple-line strings in three sets of double quotation marks as shown in the follow-
ing example:

a_very_large_phrase = """
Wikipedia is hosted by the Wikimedia Foundation,
a non-profit organization that also hosts a range of other projects.
"""

With Python strings you can use special characters, each preceded by a backslash. The special
characters include \t for tab, \r for carriage return, and \n for newline. These characters are
interpreted with special meaning during printing. While these characters are generally useful,
they can be inconvenient if you are representing a Windows path:

windows_path = "c:\row\the\boat\now"
print(windows_path)

ow heoat
 ow

For such situations, you can use Python’s raw string type, which interprets all characters literally.
You signify the raw string type by prefixing the string with an r:

windows_path = r"c:\row\the\boat\now"
print(windows_path)
c:\row\the\boat\now

As demonstrated in Listing 3.3, there are a number of string helper functions that enable you to
deal with different capitalizations.

Listing 3.3 String Helper Functions

captain = "Patrick Tayluer"
captain
'Patrick Tayluer'

captain.capitalize()
'Patrick tayluer'

captain.lower()
'patrick tayluer'

captain.upper()
'PATRICK TAYLUER'

M03_Behrman_C03_p025-036.indd 33 31/07/21 6:21 PM

34 Chapter 3 Sequences

captain.swapcase()
'pATRICK tAYLUER'

captain = 'patrick tayluer'
captain.title()
'Patrick Tayluer'

Python 3.6 introduced format strings, or f-strings. You can insert values into f-strings at runtime
by using replacement fields, which are delimited by curly braces. You can insert any expression,
including variables, into the replacement field. An f-string is prefixed with either an F or an f, as
shown in this example:

strings_count = 5
frets_count = 24
f"Noam Pikelny's banjo has {strings_count} strings and {frets_count} frets"
'Noam Pikelny's banjo has 5 strings and 24 frets'

This example shows how to insert a mathematic expression into the replacement field:

a = 12
b = 32
f"{a} times {b} equals {a*b}"
'12 times 32 equals 384'

This example shows how to insert items from a list into the replacement field:

players = ["Tony Trischka", "Bill Evans", "Alan Munde"]
f"Performances will be held by {players[1]}, {players[0]}, and {players[2]}"
'Performances will be held by Bill Evans, Tony Trischka, and Alan Munde'

Ranges
Using range objects is an efficient way to represent a series of numbers, ordered by value. They are
largely used for specifying the number of times a loop should run. Chapter 5 introduces loops.
Range objects can take start (optional), end, and step (optional) arguments. Much as with slicing,
the start is included in the range, and the end is not. Also as with slicing, you can use negative
steps to count down. Ranges calculate numbers as you request them, and so they don’t need
to store more memory for large ranges. Listing 3.4 demonstrates how to create ranges with and
without the optional arguments. This listing makes lists from the ranges so that you can see the
full contents that the range would supply.

Listing 3.4 Creating Ranges

range(10)
range(0, 10)

list(range(1, 10))
[1, 2, 3, 4, 5, 6, 7, 8, 9]

M03_Behrman_C03_p025-036.indd 34 31/07/21 6:21 PM

35Questions

list(range(0,10,2))
[0, 2, 4, 6, 8]

list(range(10, 0, -2))
[10, 8, 6, 4, 2]

Summary
This chapter covers the import group of types known as sequences. A sequence is an ordered,
finite collection of items. Lists and tuples can contain mixed types. Lists can be modified after
creation, but tuples cannot. Strings are sequences of text. Range objects are used to describe ranges
of numbers. Lists, strings, and ranges are among the most commonly used types in Python.

Questions
1. How would you test whether a is in the list my_list?

2. How would you find out how many times b appears in a string named my_string?

3. How would you add a to the end of the list my_list?

4. Are the strings 'superior' and "superior" equal?

5. How would you make a range going from 3 to 13?

M03_Behrman_C03_p025-036.indd 35 31/07/21 6:21 PM

Index

A
anonymous functions, 80

Anscombe, F., 135

apply() method, 132–133

arguments, 30

arrays

broadcasting, 98–99

expanding dimensions, 99–100

changing values in, 91

copies, changing values in, 95

creating, 86–88

one-dimensional, 87

two-dimensional, 88

using reshape method, 88–89

element-by-element operations, 91–92

filtering values, 92–94

indexing, 89–90

matrix operations, 96–97

methods, 95–96

one-dimensional, 87

sequences and, 91

setting type automatically, 97

setting type explicitly, 97–98

slicing, 89–90

two-dimensional, 88

indexing and slicing, 90

views, 94

changing values in, 94

assert statements, 16–17

assignment statements, 17

Z02_Behrman_Index_p221-000.indd 221 31/07/21 2:34 PM

222 attributes

attributes, 22

axes, 136, 143–144

B
binomial distribution, 105–107

Bokeh, 149–150

Boolean operators, 14, 58–59, 125

DataFrames and, 126–127

bracket syntax, 121–122

break statement, 64

break statements, 19

broadcasting, 98–99

expanding dimensions, 99–100

built-in types, 14

C
cells, 4–5

character classes, 209

character sets, 208–209

classes, 22, 188–189

datetime.date, 207

inheritance, 196–199

variables, 190–191

classifier classes, 166

code blocks, 56, 63–64

collocations() method, 165

columns

creating, 128

updating, 129

comparison operators, 57–58, 93–94

compiling regular expressions, 211–212

compound statements, 55

if, 59–62

structure, 56

concordance() method, 165

constructors

dict(), 38

list(), 29

tuple(), 29

context managers, 205

continue statements, 19

continuous distributions, 108

exponential distribution, 110

normal distribution, 108–110

uniform distribution, 110–111

control statements, 56, 68

copies, changing values in, 95

corpus readers, 160

loading text, 160–161

tokenizers, 161

corpuses, downloading, 166–167

creating

arrays, 86–88

one-dimensional, 87

two-dimensional, 88

using reshape method, 88–89

columns, 128

DataFrames, 114

from a dictionary, 114–115

from a file, 116

from a list of lists, 115–116

datetime object, 206

dictionaries, 38

lists, 29–30

tuples, 29–30

D
DataFrames, 113

accessing data, 120–121

apply() method, 132–133

Boolean operators, 126–127

bracket syntax, 121–122

columns

creating, 128

updating, 129

Z02_Behrman_Index_p221-000.indd 222 31/07/21 2:34 PM

223fileids() method

creating, 114

from a dictionary, 114–115

from a file, 116

from a list of lists, 115–116

data manipulation, 129–131

describe method, 118

exclude argument, 120

include keyword, 119–120

percentiles argument, 118–119

head method, 117

interacting with, 117

interactive display, 133

manipulating, 127–128, 129

masking and filtering, 125–126

methods, 128

optimized access

by index, 124

by label, 123–124

replace method, 131–132

sorting, 204

tail method, 118

datetime object, 207

creating, 206

setting the time zone, 207

translating strings to, 207

decorators, 76–77, 79

syntax, 79–80

del() function, 40

delete statements, 18

describe method, 118

exclude argument, 120

include keyword, 119–120

percentiles argument, 118–119

dict() constructor, 38

dict_key view, 41–42

dictionaries, 37–39

checking for keys, 43

creating, 38

creating DataFrames from, 114–115

get method, 43–44

hash() method, 45

key/value pairs

adding, 39

updating, 39

removing items, 39–40

valid key types, 44–45

dictionary comprehensions, 181

dictionary views, 40–42

dict_key, 41–42

key_item, 42

difference() method, 51

discrete distributions, 105

binomial distribution, 105–107

Poisson distribution, 107–108

disjoint sets, 48

dispersion_plot() method, 165–166

docstrings, 68–69

dot notation, 22

downloading, corpuses, 166–167

E
elif statement, 62

else statement, 61

equality operators, 56–57, 125

estimators, 156

exceptions, 18–19

exponential distribution, 110

expressions, 16

generator, 182–183

extend method, 31

F
figures, 136

fileids() method, 160

Z02_Behrman_Index_p221-000.indd 223 31/07/21 2:34 PM

224 files

files

creating DataFrames from, 116

Google Colab, 9–10

opening, 205

reading and writing, 204–205

filter() function, 179

replacing with a list comprehension, 180

filtering, DataFrames, 125–126

find iterator, 211

findall() method, 165

flattening nested lists, 167

for loops, 63–64

FreqDist class

built-in plot method, 164

methods, 164

frequency distributions, 161–162

filtering stopwords, 163–164

removing punctuation, 162–163

frozensets, 53

f-strings, 34

functional programming, 173, 174–175

changing mutable data, 176–177

dictionary comprehensions, 181

filter() function, 179

generator(s), 182

expressions, 182–183

functions, 183–184

lambda functions, 179

list comprehensions, 179

conditionals and, 181

multiple variables, 181

replacing map() and filter() with,
180

syntax, 179–180

map() function, 177–178

operator module, 179

reduce() function, 178, 179

scope, 173–174

inheriting, 174

outer, 175–176

state, 174

functions, 15, 67

anonymous, 80

control statement, 68

datetime.now(), 206

decorators, 76–77, 79

syntax, 79–80

del(), 40

docstring, 68–69

generator, 183–184

helper, 33–34

lambda, 179

len, 27

max, 28

min, 28

nested, 77

nested wrapping, 78–79

open(), 204–205

as a parameter, 78

parameters, 69–70

default value, 71–72

keyword assignments, 70–71

keyword wildcard, 74–75

mutable defaults, 72–73

positional wildcard, 74

positional-only, 73

re.compile(), 211

re.findall(), 210

re.finditer(), 211

re.match(), 207–208

re.search(), 208

return statements, 75

reversed, 41

scope, 75–76

sorted(), 202–204

wrapping, 77–78

future statements, 20

Z02_Behrman_Index_p221-000.indd 224 31/07/21 2:34 PM

225list() constructor

G
generator(s), 182

expressions, 182–183

functions, 183–184

get method, 43–44

global statements, 20

Google Colab, 5–6

code cells, 9

Code Snippets, 11

existing collections and, 11

files, 9–10

headings, 7–8

LaTeX, 8–9

notebooks, managing, 10

shell commands, 11–12

system aliases, 11–12

text cells, 6–8

groups, 209–210

named, 210

H
hash() method, 45

head method, 117

helper functions, 33–34

high-level programming languages, 15

I
if statements, 59–62

immutable objects, 44–45

import statements, 19–20

index method, 28

indexing, 26

arrays, 89–90

DataFrames and, 124

inequality operators, 56–57

inheritance, 196–199

inheriting scope, 174

installing, NumPy, 86

instances, 188

interacting with DataFrame data, 117

interrogation, 27–28

intersections, 51

ints, 14

numerator attribute, 22

issuperset() method, 50

items() method, 40

J-K
JSON files, opening and reading, 205

Jupyter notebooks, 4–5

Keras, 153

key_item view, 42

keys() method, 40

key/value pairs, 37

adding, 39

updating, 39

L
labels, DataFrames access and, 123–124

lambda functions, 80, 179

LaTeX, 8–9

len function, 27

libraries. See also NumPy; SciPy

machine learning, 153–154

SciPy, 103

third-party, 85

visualization, matplotlib, 135–136

list comprehensions, 179

conditionals and, 181

multiple variables, 181

replacing map() and filter() with, 180

syntax, 179–180

list() constructor, 29

Z02_Behrman_Index_p221-000.indd 225 31/07/21 2:34 PM

226 lists

lists, 29

adding and removing items, 30–31

creating, 29–30

creating DataFrames from, 115–116

flattening, 167

nested, 31

sorting, 32, 201–204

unpacking, 31–32

loops

break statement, 64

for, 63–64

while, 62–63

low-level programming languages, 15

M
machine learning, 153. See also Scikit-

learn

overfitting, 155

splitting test and training data, 155–156

supervised versus unsupervised learning,
154

transformations, 154–155

magic functions, 12

manipulating DataFrames, 127–128, 129

map() function, 177–178

replacing with a list comprehension, 180

Markdown, 6

math operations, 21–22

math operator methods, 195–196

matplotlib, 135–136

colors, 139

creating multiple axes, 143–144

labeled data, 140–141

line styles, 138

marker types, 137–138

object-oriented style, 143

plotting multiple sets of data, 141–143

styling plots, 137, 139–140

matrix operations, 96–97

max function, 28

methods, 188–190

to_bytes(), 187–188

apply(), 132–133

arrays and, 95–96

collocations(), 165

concordance(), 165

count, 28

DataFrames, 128

describe, 118

exclude argument, 120

include keyword, 119–120

percentiles argument, 118–119

difference(), 51

disjoint(), 48

dispersion_plot(), 165–166

extend, 31

fileids(), 160

findall(), 165

get, 43–44

hash(), 45

head, 117

index, 28

inheritance, 196–199

intersection(), 51

issuperset(), 50

items(), 40

keys(), 40

math operator, 195–196

min(), 125

pop, 30

private, 190

public, 190

replace, 131–132

representation, 192

reverse, 32

rich comparison, 192–195

Z02_Behrman_Index_p221-000.indd 226 31/07/21 2:34 PM

227object-oriented programming

similar(), 165

sort, 32

sort(), 201–202

special, 191

subset(), 49

symmetric difference(), 51

tail, 118

union(), 50

values(), 40

min function, 28

min() method, 125

MinMaxScaler transformer, 154–155

multiple statements, 16

mutable objects, 44, 176–177

N
named groups, 210

substitution and, 211

natural language processing, 159

Natural Language Processing with Python,
169

nested functions, 77

nested lists, 31

nested wrapping functions, 78–79

NLTK (Natural Language Toolkit), 159

classifier classes, 166

defining features, 168

downloading corpuses, 166–167

flattening nested lists, 167

labeling data, 167

training and testing, 168–169

corpus readers, 160

loading text, 160–161

tokenizers, 161

fileids() method, 160

FreqDist class

built-in plot method, 164

methods, 164

frequency distributions, 161–162

filtering stopwords, 163–164

removing punctuation, 162–163

sample texts, 159–160

Text class, 165

collocations() method, 165

concordance() method, 165

dispersion_plot() method, 165–166

findall() method, 165

similar() method, 165

NoneType, 15

nonlocal statements, 20

normal distribution, 108–110

notebooks, 4–5

Google Colab, 5–6

Jupyter, 4–5

managing, 10

numerics, 14

NumPy. See also arrays; SciPy

creating arrays, 86–87

installing and importing, 86

polynomials, 100–101

O
object-oriented programming, 187

classes, 188–189

variables, 190–191

inheritance, 196–199

instances, 188

methods, 188–190

math operator, 195–196

representation, 192

rich comparison, 192–195

special, 191

objects, 187–188

private methods, 190

Z02_Behrman_Index_p221-000.indd 227 31/07/21 2:34 PM

228 objects

objects, 22, 187–188

datetime, creating, 206

evaluation, 59

immutable, 44–45

mutable, 44, 176–177

range, 34–35

one-dimensional arrays, 87

open() function, 204–205

in operator, 26, 40

or operator, 59

operators, 21–22

Boolean, 58–59

Boolean operators, 126–127

comparison, 57–58, 93–94

equality/inequality, 56–57, 125

in, 40

math, 28–29

or, 59

walrus, 60

overfitting, 155

P
packages, zoneinfo, 207

Pandas DataFrames. See DataFrames

parameters

default value, 71–72

functions as, 78

keyword assignments, 70–71

keyword wildcard, 74–75

mutable defaults, 72–73

positional wildcard, 74

positional-only, 73

parser, 14

pass statements, 18

Plotly, 148–149

Poisson distribution, 107–108

polynomials, 100–101

pop method, 30

print statements, 20–21

private methods, 190

procedural programming, 174

programming languages, high-level versus
low-level, 15

proper subsets, 49

public methods, 190

Punkt tokenizer, 161

Python, types, 14–15

PyTorch, 154

Q-R
quotation marks, strings and, 33

raise statements, 18–19

ranges, 34–35

raw strings, 33

reading files, 204–205

re.compile() function, 211

reduce() function, 178, 179

re.findall() function, 210

re.finditer() function, 211

regular expressions, 207–208

compiling, 211–212

groups, 209–210

named groups, 210

substitution, 211

using named groups, 211

re.match() function, 207–208

removing, items from dictionaries, 39–40

replace method, 131–132

representation methods, 192

re.search() function, 208

return statements, 18, 75

reverse method, 32

rich comparison methods, 192–195

running statements, 4

Z02_Behrman_Index_p221-000.indd 228 31/07/21 2:34 PM

229statements

S
Scikit-learn, 154

estimators, 156

MinMaxScaler transformer, 154–155

splitting test and training data, 155–156

training a model, 156

training and testing, 156

tutorials, 157

SciPy, 103

continuous distributions, 108

exponential distribution, 110

normal distribution, 108–110

uniform distribution, 110–111

discrete distributions, 105

binomial distribution, 105–107

Poisson distribution, 107–108

scipy.misc submodule, 104–105

scipy.special submodule, 105

scipy.stats submodule, 105

scope, 20, 75–76, 173–174

inheriting, 174

Seaborn, 144–145

plot types, 148

themes, 145–147

sequences, 14, 25

arrays and, 91

frozensets and, 53

indexing, 26

interrogation, 27–28

intersections, 51

lists, 29

adding and removing items, 30–31

nested, 31

sorting, 32

unpacking, 31–32

math operations, 28–29

slicing, 27

testing membership, 26

tuples, 29

unpacking, 31–32

sets, 46–48

difference between, 51

disjoint, 48

proper subsets, 49

subsets and, 49

supersets and, 50

symmetric difference, 51

union, 50

updating, 51–52

shared operations, 25

similar() method, 165

slicing, 27

arrays, 89–90

DataFrames, 122

sort() method, 201–202

sort method, 32

sorted() function, 202–204

sorting, lists, 32, 201–204

special characters, 33

statements, 15–16

assert, 16–17

assignment, 17

break, 19, 64

code blocks, 56, 63–64

continue, 19, 64–65

delete, 18

elif, 62

else, 61

expression, 16

future, 20

global, 20

if, 59–62

import, 19–20

multiple, 16

nonlocal, 20

Z02_Behrman_Index_p221-000.indd 229 31/07/21 2:34 PM

230 statements

pass, 18

print, 20–21

raise, 18–19

return, 18, 75

running, 4

yield, 18

stopwords, 163–164

strings, 14, 32–33

f-, 34

helper functions, 33–34

quotation marks and, 33

raw, 33

special characters, 33

translating to datetime object, 207

submodules

scipy.misc, 104–105

scipy.special, 105

scipy.stats, 105

subset() method, 49

substitution, 211

supersets, 50

symmetric difference() method, 51

syntax

bracket, 121–122

decorators, 79–80

list comprehensions, 179–180

T
tail method, 118

TensorFlow, 153

text cells, 6–8

Text class, 165

collocations() method, 165

concordance() method, 165

dispersion_plot() method, 165–166

findall() method, 165

similar() method, 165

third-party libraries, 85

time series data, 206

time zone, setting for datetime object, 207

to_bytes() method, 187–188

tokenizers, 161

transformations, 154–155

tuple() constructor, 29

tuples, 29

creating, 29–30

unpacking, 31–32

two-dimensional arrays, 88

indexing and slicing, 90

types, 14–15. See also sequences

U
uniform distribution, 110–111

union() method, 50

updating

columns, -129

sets, 51–52

V
values() method, 40

variables, 190–191

views, 94

changing values in, 94

visualization libraries, 151

Bokeh, 149–150

matplotlib, 135–136

colors, 139

creating multiple axes, 143–144

labeled data, 140–141

line styles, 138

marker types, 137–138

object-oriented style, 143

plotting multiple sets of data,
141–143

styling plots, 137, 139–140

Plotly, 148–149

Z02_Behrman_Index_p221-000.indd 230 31/07/21 2:34 PM

231zoneinfo package

Seaborn, 144–145

plot types, 148

themes, 145–147

W
walrus operator, 60

while loops, 62–63

wrapping functions, 77–78

writing file data, 204–205

X-Y-Z
yield statements, 18

zoneinfo package, 207

Z02_Behrman_Index_p221-238.indd 231 31/07/21 8:07 PM

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Contents at a Glance
	Table of Contents
	Preface
	3 Sequences
	Shared Operations
	Testing Membership
	Indexing
	Slicing
	Interrogation
	Math Operations

	Lists and Tuples
	Creating Lists and Tuples
	Adding and Removing List Items
	Unpacking
	Sorting Lists

	Strings
	Ranges
	Summary
	Questions

	Index

