
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780136502142
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780136502142
https://plusone.google.com/share?url=http://www.informit.com/title/9780136502142
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780136502142
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780136502142/Free-Sample-Chapter

Modern JavaScript
for the Impatient

This page intentionally left blank

Modern JavaScript
for the Impatient

Cay S. Horstmann

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been
printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for
errors or omissions. No liability is assumed for incidental or consequential damages
in connection with or arising out of the use of the information or programs contained
herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

Library of Congress Control Number: 2020934310

Copyright © 2020 Pearson Education, Inc.

Cover illustration: Morphart Creation / Shutterstock

All rights reserved. This publication is protected by copyright, and permission must
be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request
forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearson.com/permissions/.

ISBN-13: 978-0-13-650214-2
ISBN-10: 0-13-650214-8

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
http://www.pearson.com/permissions/

To Chi—the most patient person in my life.

This page intentionally left blank

Preface xv

About the Author xxi

VALUES AND VARIABLES 11
Running JavaScript 11.1
Types and the typeof Operator 51.2
Comments 51.3
Variable Declarations 61.4
Identifiers 71.5
Numbers 81.6
Arithmetic Operators 91.7
Boolean Values 121.8
null and undefined 121.9
String Literals 131.10
Template Literals 151.11
Objects 161.12
Object Literal Syntax 171.13
Arrays 181.14

vii

Contents

JSON 201.15
Destructuring 211.16
Advanced Destructuring 231.17

More about Object Destructuring 231.17.1
Rest Declarations 231.17.2
Defaults 241.17.3

Exercises 24

CONTROL STRUCTURES 272
Expressions and Statements 272.1
Semicolon Insertion 292.2
Branches 312.3
Boolishness 342.4
Comparison and Equality Testing 342.5
Mixed Comparisons 362.6
Boolean Operators 372.7
The switch Statement 392.8
while and do Loops 402.9
for Loops 412.10

The Classic for Loop 412.10.1
The for of Loop 422.10.2
The for in Loop 432.10.3

Breaking and Continuing 442.11
Catching Exceptions 462.12

Exercises 47

FUNCTIONS AND FUNCTIONAL
PROGRAMMING 51

3

Declaring Functions 513.1
Higher-Order Functions 533.2
Function Literals 543.3
Arrow Functions 543.4
Functional Array Processing 563.5
Closures 573.6

Contentsviii

Hard Objects 593.7
Strict Mode 613.8
Testing Argument Types 623.9
Supplying More or Fewer Arguments 633.10
Default Arguments 643.11
Rest Parameters and the Spread Operator 643.12
Simulating Named Arguments with Destructuring 663.13
Hoisting 673.14
Throwing Exceptions 693.15
Catching Exceptions 703.16
The finally Clause 723.17

Exercises 73

OBJECT-ORIENTED PROGRAMMING 774
Methods 774.1
Prototypes 784.2
Constructors 814.3
The Class Syntax 834.4
Getters and Setters 854.5
Instance Fields and Private Methods 854.6
Static Methods and Fields 864.7
Subclasses 874.8
Overriding Methods 894.9
Subclass Construction 904.10
Class Expressions 914.11
The this Reference 924.12

Exercises 95

NUMBERS AND DATES 995
Number Literals 995.1
Number Formatting 1005.2
Number Parsing 1015.3
Number Functions and Constants 1025.4
Mathematical Functions and Constants 1035.5

ixContents

Big Integers 1055.6
Constructing Dates 1055.7
Date Functions and Methods 1095.8
Date Formatting 1105.9

Exercises 110

STRINGS AND REGULAR EXPRESSIONS 1156
Converting between Strings and Code Point
Sequences 115

6.1

Substrings 1166.2
Other String Methods 1186.3
Tagged Template Literals 1216.4
Raw Template Literals 1226.5
Regular Expressions 1236.6
Regular Expression Literals 1276.7
Flags 1276.8
Regular Expressions and Unicode 1296.9
The Methods of the RegExp Class 1306.10
Groups 1316.11
String Methods with Regular Expressions 1336.12
More about Regex Replace 1356.13
Exotic Features 1366.14

Exercises 137

ARRAYS AND COLLECTIONS 1417
Constructing Arrays 1417.1
The length Property and Index Properties 1437.2
Deleting and Adding Elements 1447.3
Other Array Mutators 1457.4
Producing Elements 1487.5
Finding Elements 1497.6
Visiting All Elements 1507.7
Sparse Arrays 1527.8
Reduction 1537.9

Contentsx

Maps 1567.10
Sets 1587.11
Weak Maps and Sets 1597.12
Typed Arrays 1607.13
Array Buffers 1637.14

Exercises 164

INTERNATIONALIZATION 1678
The Locale Concept 1678.1
Specifying a Locale 1688.2
Formatting Numbers 1718.3
Localizing Dates and Times 1728.4

Formatting Date Objects 1738.4.1
Ranges 1748.4.2
Relative Time 1758.4.3
Formatting to Parts 1758.4.4

Collation 1768.5
Other Locale-Sensitive String Methods 1778.6
Plural Rules and Lists 1788.7
Miscellaneous Locale Features 1808.8

Exercises 181

ASYNCHRONOUS PROGRAMMING 1859
Concurrent Tasks in JavaScript 1859.1
Making Promises 1889.2
Immediately Settled Promises 1919.3
Obtaining Promise Results 1919.4
Promise Chaining 1929.5
Rejection Handling 1949.6
Executing Multiple Promises 1969.7
Racing Multiple Promises 1979.8
Async Functions 1979.9
Async Return Values 1999.10
Concurrent Await 2019.11

xiContents

Exceptions in Async Functions 2029.12
Exercises 203

MODULES 20910
The Module Concept 20910.1
ECMAScript Modules 21010.2
Default Imports 21110.3
Named Imports 21210.4
Dynamic Imports 21310.5
Exports 21310.6

Named Exports 21310.6.1
The Default Export 21410.6.2
Exports Are Variables 21510.6.3
Reexporting 21610.6.4

Packaging Modules 21710.7
Exercises 218

METAPROGRAMMING 22111
Symbols 22111.1
Customization with Symbol Properties 22311.2

Customizing toString 22311.2.1
Controlling Type Conversion 22411.2.2
Species 22511.2.3

Property Attributes 22511.3
Enumerating Properties 22811.4
Testing a Single Property 22911.5
Protecting Objects 23011.6
Creating or Updating Objects 23111.7
Accessing and Updating the Prototype 23111.8
Cloning Objects 23211.9
Function Properties 23511.10
Binding Arguments and Invoking Methods 23611.11
Proxies 23711.12
The Reflect Class 24011.13

Contentsxii

Proxy Invariants 24211.14
Exercises 244

ITERATORS AND GENERATORS 24912
Iterable Values 24912.1
Implementing an Iterable 25012.2
Closeable Iterators 25212.3
Generators 25412.4
Nested Yield 25512.5
Generators as Consumers 25712.6
Generators and Asynchronous Processing 25912.7
Async Generators and Iterators 26112.8

Exercises 263

AN INTRODUCTION TO TYPESCRIPT 26913
Type Annotations 27013.1
Running TypeScript 27113.2
Type Terminology 27313.3
Primitive Types 27413.4
Composite Types 27513.5
Type Inference 27713.6
Subtypes 28013.7

The Substitution Rule 28013.7.1
Optional and Excess Properties 28113.7.2
Array and Object Type Variance 28213.7.3

Classes 28413.8
Declaring Classes 28413.8.1
The Instance Type of a Class 28513.8.2
The Static Type of a Class 28613.8.3

Structural Typing 28713.9
Interfaces 28813.10
Indexed Properties 29013.11
Complex Function Parameters 29113.12

Optional, Default, and Rest Parameters 29113.12.1

xiiiContents

Destructuring Parameters 29213.12.2
Function Type Variance 29313.12.3
Overloads 29513.12.4

Generic Programming 29713.13
Generic Classes and Types 29813.13.1
Generic Functions 29813.13.2
Type Bounds 29913.13.3
Erasure 30013.13.4
Generic Type Variance 30213.13.5
Conditional Types 30313.13.6
Mapped Types 30313.13.7

Exercises 305

Index 309

Contentsxiv

Experienced programmers familiar with languages such as Java, C#, C, and
C++ often find themselves in a position where they need to work with
JavaScript. User interfaces are increasingly web-based, and JavaScript is the
lingua franca of the web browser. The Electron framework extends this capa-
bility to rich client applications, and there are multiple solutions for producing
mobile JavaScript apps. Increasingly, JavaScript is used on the server side.

Many years ago, JavaScript was conceived as a language for “programming
in the small,” with a feature set that can be confusing and error-prone for
larger programs. However, current standardization efforts and tool offerings
go far beyond those humble beginnings.

Unfortunately, it is difficult to learn modern JavaScript without getting bogged
down with obsolete JavaScript. Most books, courses, and blog posts are fo-
cused on transitioning from older JavaScript versions, which is not helpful
for migrants from other languages.

That is the issue that this book addresses. I assume that you, the reader, are
a competent programmer who understands branches and loops, functions,
data structures, and the basics of object-oriented programming. I explain how
to be productive with modern JavaScript, with only parenthetical remarks
about obsolete features. You will learn how to put modern JavaScript to use,
while avoiding pitfalls from the past.

xv

Preface

JavaScript may not be perfect, but it has shown itself to be well-suited for
user interface programming and many server-side tasks. As Jeff Atwood said
presciently: “Any application that can be written in JavaScript, will eventually
be written in JavaScript.”

Work through this book, and learn how to produce the next version of your
application in modern JavaScript!

Five Golden Rules

If you avoid a small number of “classic” features of JavaScript, you can
greatly reduce the mental load of learning and using the language. These
rules probably won’t make sense to you right now, but I list them here for
your future reference, and to reassure you that they are few in number.

1. Declare variables with let or const, not var.

2. Use strict mode.

3. Know your types and avoid automatic type conversion.

4. Understand prototypes, but use modern syntax for classes, constructors,
and methods.

5. Don’t use this outside constructors or methods.

And a meta-rule: Avoid the Wat—those snippets of confusing JavaScript code
followed by a sarcastic “Wat?!” Some people find delight in demonstrating
the supposed awfulness of JavaScript by dissecting obscure code. I have
never learned anything useful from going down that rabbit hole. For example,
what is the benefit of knowing that 2 * ['21'] is 42 but 2 + ['40'] is not, if the
golden rule #3 tells you not to mess with type conversions? In general, when
I run into a confusing situation, I ask myself how to avoid it, not how to ex-
plain its gory but useless details.

The Learning Paths

When I wrote the book, I was trying to put information where you can find
it when you need it. But that’s not necessarily the right place when you read
the book for the first time. To help you customize your learning path, I tag
each chapter with an icon that indicates its basic level. Sections that are more
advanced than the chapter default get their own icons. You should absolutely
skip those sections until you are ready for them.

Prefacexvi

Here are the icons:

The impatient rabbit denotes a basic topic that even the most
impatient reader should not skip.

Alice indicates an intermediate topic that most programmers want
to understand, but perhaps not on first reading.

The Cheshire cat points to an advanced topic that puts a smile
on the face of a framework developer. Most application program-
mers can safely ignore these.

Finally, the mad hatter labels a complex and maddening topic,
intended only for those with morbid curiosity.

A Tour of the Book

In Chapter 1, we get going with the basic concepts of JavaScript: values and
their types, variables, and most importantly, object literals. Chapter 2 covers
control flow. You can probably skim over it quickly if you are familiar with
Java, C#, or C++. In Chapter 3, you will learn about functions and functional
programming, which is very important in JavaScript. JavaScript has an object
model that is very different from class-based programming languages.
Chapter 4 goes into detail, with a focus on modern syntax. Chapters 5 and 6
cover the library classes that you will most often use for working with num-
bers, dates, strings, and regular expressions. These chapters are largely at the
basic level, with a sprinkling of more advanced sections.

The next four chapters cover intermediate level topics. In Chapter 7, you will
see how to work with arrays and the other collections that the standard
JavaScript library offers. If your programs interact with users from around the
world, you will want to pay special attention to the coverage of internation-
alization in Chapter 8. Chapter 9 on asynchronous programming is very
important for all programmers. Asynchronous programming used to be quite
complex in JavaScript, but it has become much simpler with the introduction
of promises and the async and await keywords. JavaScript now has a standard
module system that is the topic of Chapter 10. You will see how to use
modules that other programmers have written, and to produce your own.

xviiPreface

Chapter 11 covers metaprogramming at an advanced level. You will want to
read this chapter if you need to create tools that analyze and transform arbi-
trary JavaScript objects. Chapter 12 completes the coverage of JavaScript
with another advanced topic: iterators and generators, which are powerful
mechanisms for visiting and producing arbitrary sequences of values.

Finally, there is a bonus chapter, Chapter 13, on TypeScript. TypeScript is a
superset of JavaScript that adds compile-time typing. It is not a part of standard
JavaScript, but it is very popular. Read this chapter to decide whether you
want to stick with plain JavaScript or use compile-time types.

The purpose of this book is to give you a firm grounding of the JavaScript
language so that you can use it with confidence. However, you will need to
turn elsewhere for the ever-changing landscape of tools and frameworks.

Why I Wrote This Book

JavaScript is one of the most used programming languages on the planet.
Like so many programmers, I knew a bit of pidgin JavaScript, and one day, I
had to learn serious JavaScript in a hurry. But how?

There are any number of books that teach a little bit of JavaScript for casual
web developers, but I already knew that much JavaScript. Flanagan’s Rhino
book1 was great in 1996, but now it burdens readers with too many accidents
from the past. Crockford’s JavaScript: The Good Parts2 was a wake-up call in
2008, but much of its message has been internalized in subsequent changes
to the language. There are many books that bring old-style JavaScript program-
mers into the world of modern standards, but they assume an amount of
“classic” JavaScript that was out of my comfort zone.

Of course, the web is awash in JavaScript-themed blogs of varying quali-
ty—some accurate but many with a tenuous grasp of the facts. I did not find
it effective to scour the web for blogs and gauge their levels of truthfulness.

Oddly enough, I could not find a book for the millions of programmers who
know Java or a similar language and who want to learn JavaScript as it exists
today, without the historical baggage.

So I had to write it.

1. David Flanagan, JavaScript: The Definitive Guide, Sixth Edition (O’Reilly Media, 2011).
2. Published by O’Reilly Media, 2008.

Prefacexviii

Acknowledgments

I would like to once again thank my editor Greg Doench for supporting this
project, as well as Dmitry Kirsanov and Alina Kirsanova for copyediting and
typesetting the book. My special gratitude goes to the reviewers Gail Anderson,
Tom Austin, Scott Davis, Scott Good, Kito Mann, Bob Nicholson, Ron Mak,
and Henri Tremblay, for diligently spotting errors and providing thoughtful
suggestions for improvements.

Cay Horstmann
Berlin
March 2020

xixPreface

This page intentionally left blank

Cay S. Horstmann is principal author of Core Java™, Volumes I & II, Eleventh
Edition (Pearson, 2018), Scala for the Impatient, Second Edition (Addison-Wesley,
2016), and Core Java SE 9 for the Impatient (Addison-Wesley, 2017). Cay is a
professor emeritus of computer science at San Jose State University, a Java
Champion, and a frequent speaker at computer industry conferences.

xxi

About the Author

Topics in This Chapter

3.1 Declaring Functions — 51

3.2 Higher-Order Functions — 53

3.3 Function Literals — 54

3.4 Arrow Functions — 54

3.5 Functional Array Processing — 56

3.6 Closures — 57

3.7 Hard Objects — 59

3.8 Strict Mode — 61

3.9 Testing Argument Types — 62

3.10 Supplying More or Fewer Arguments — 63

3.11 Default Arguments — 64

3.12 Rest Parameters and the Spread Operator — 64

3.13 Simulating Named Arguments with Destructuring — 66

3.14 Hoisting — 67

3.15 Throwing Exceptions — 69

3.16 Catching Exceptions — 70

3.17 The finally Clause — 72

Exercises — 73

Functions and
Functional

Programming

In this chapter, you will learn how to write functions in JavaScript. JavaScript
is a “functional” programming language. Functions are “first-class” values, just
like numbers or strings. Functions can consume and produce other functions.
Mastering a functional programming style is essential for working with modern
JavaScript.

This chapter also covers the JavaScript parameter passing and scope rules, as
well as the details of throwing and catching exceptions.

3.1 Declaring Functions

In JavaScript, you declare a function by providing

1. The name of the function

2. The names of the parameters

3. The body of the function, which computes and returns the function result

You do not specify the types of the function parameters or result. Here is an
example:

function average(x, y) {
 return (x + y) / 2
}

51

3Chapter

The return statement yields the value that the function returns.

To call this function, simply pass the desired arguments:
let result = average(6, 7) // result is set to 6.5

What if you pass something other than a number? Whatever happens,
happens. For example:

result = average('6', '7') // result is set to 33.5

When you pass strings, the + in the function body concatenates them. The
resulting string '67' is converted to a number before the division by 2.

That looks rather casual to a Java, C#, or C++ programmer who is used to
compile-time type checking. Indeed, if you mess up argument types, you only
find out when something strange happens at runtime. On the flip side, you
can write functions that work with arguments of multiple types, which can
be convenient.

The return statement returns immediately, abandoning the remainder of the
function. Consider this example—an indexOf function that computes the index
of a value in an array:

function indexOf(arr, value) {
 for (let i in arr) {
 if (arr[i] === value) return i
 }

return -1
}

As soon as a match is found, the index is returned and the function terminates.

A function may choose not to specify a return value. If the function body
exits without a return statement, or a return keyword isn’t followed by an ex-
pression, the function returns the undefined value. This usually happens when
a function is solely called for a side effect.

TIP: If a function sometimes returns a result, and sometimes you don’t
want to return anything, be explicit:

return undefined

Chapter 3 Functions and Functional Programming52

NOTE: As mentioned in Chapter 2, a return statement must always have
at least one token before the end of the line, to avoid automatic
semicolon insertion. For example, if a function returns an object, put at
least the opening brace on the same line:

return {
 average: (x + y) / 2,
 max: Math.max(x, y),
 . . .
}

3.2 Higher-Order Functions

JavaScript is a functional programming language. Functions are values that
you can store in variables, pass as arguments, or return as function results.

For example, we can store the average function in a variable:
let f = average

Then you can call the function:
let result = f(6, 7)

When the expression f(6, 7) is executed, the contents of f is found to be a
function. That function is called with arguments 6 and 7.

We can later put another function into the variable f:
f = Math.max

Now when you compute f(6, 7), the answer becomes 7, the result of calling
Math.max with the provided arguments.

Here is an example of passing a function as an argument. If arr is an array,
the method call

arr.map(someFunction)

applies the provided function to all elements, and returns an array of the
collected results (without modifying the original array). For example,

result = [0, 1, 2, 4].map(Math.sqrt)

sets result to
[0, 1, 1.4142135623730951, 2]

The map method is sometimes called a higher-order function: a function that
consumes another function.

533.2 Higher-Order Functions

3.3 Function Literals

Let us continue the example of the preceding section. Suppose we want to
multiply all array elements by 10. Of course, we can write a function

function multiplyBy10(x) { return x * 10 }

Now we can call:
result = [0, 1, 2, 4].map(multiplyBy10)

But it seems a waste to declare a new function just to use it once.

It is better to use a function literal. JavaScript has two syntactical variants. Here
is the first one:

result = [0, 1, 2, 4].map(function (x) { return 10 * x })

The syntax is straightforward. You use the same function syntax as before, but
now you omit the name. The function literal is a value that denotes the
function with the specified action. That value is passed to the map method.

By itself, the function literal doesn’t have a name, just like the array literal
[0, 1, 2, 4] doesn’t have a name. If you want to give the function a name, do
what you always do when you want to give something a name—store it in
a variable:

const average = function (x, y) { return (x + y) / 2 }

TIP: Think of anonymous function literals as the “normal” case. A named
function is a shorthand for declaring a function literal and then giving it
a name.

3.4 Arrow Functions

In the preceding section, you saw how to declare function literals with the
function keyword. There is a second, more concise form that uses the =>
operator, usually called “arrow”:

const average = (x, y) => (x + y) / 2

You provide the parameter variables to the left of the arrow and the return
value to the right.

If there is a single parameter, you don’t need to enclose it in parentheses:
const multiplyBy10 = x => x * 10

Chapter 3 Functions and Functional Programming54

If the function has no parameters, use an empty set of parentheses:
const dieToss = () => Math.trunc(Math.random() * 6) + 1

Note that dieToss is a function, not a number. Each time you call dieToss(), you
get a random integer between 1 and 6.

If an arrow function is more complex, place its body inside a block statement.
Use the return keyword to return a value out of the block:

const indexOf = (arr, value) => {
 for (let i in arr) {
 if (arr[i] === value) return i
 }

return -1
}

TIP: The => token must be on the same line as the parameters:

const average = (x, y) => // OK
 (x + y) / 2
const distance = (x, y) // Error

=> Math.abs(x - y)

If you write an arrow function on more than one line, it is clearer to use
braces:

const average = (x, y) => {
 return (x + y) / 2
}

CAUTION: If an arrow function does nothing but returns an object literal,
then you must enclose the object in parentheses:

const stats = (x, y) => ({
 average: (x + y) / 2,
 distance: Math.abs(x - y)
 })

Otherwise, the braces would be parsed as a block.

TIP: As you will see in Chapter 4, arrow functions have more regular
behavior than functions declared with the function keyword. Many
JavaScript programmers prefer to use the arrow syntax for anonymous
and nested functions. Some programmers use the arrow syntax for all
functions, while others prefer to declare top-level functions with function.
This is purely a matter of taste.

553.4 Arrow Functions

3.5 Functional Array Processing

Instead of iterating over an array with a for of or for in loop, you can use the
forEach method. Pass a function that processes the elements and index values:

arr.forEach((element, index) => { console.log(`${index}: ${element}`) })

The function is called for each array element, in increasing index order.

If you only care about the elements, you can pass a function with one
parameter:

arr.forEach(element => { console.log(`${element}`) })

The forEach method will call this function with both the element and the index,
but in this example, the index is ignored.

The forEach method doesn’t produce a result. Instead, the function that you
pass to it must have some side effect—printing a value or making an assign-
ment. It is even better if you can avoid side effects altogether and use methods
such as map and filter that transform arrays into their desired form.

In Section 3.2, “Higher-Order Functions” (page 53), you saw the map method
that transforms an array, applying a function to each element. Here is a
practical example. Suppose you want to build an HTML list of items in an
array. You can first enclose each of the items in a li element:

const enclose = (tag, contents) => `<${tag}>${contents}</${tag}>`
const listItems = items.map(i => enclose('li', i))

Actually, it is safer to first escape & and < characters in the items. Let’s suppose
we have an htmlEscape function for this purpose. (You will find an implemen-
tation in the book’s companion code.) Then we can first transform the items
to make them safe, and then enclose them:

const listItems = items
 .map(htmlEscape)
 .map(i => enclose('li', i))

Now the result is an array of li elements. Next, we concatenate all strings
with the Array.join method (see Chapter 7), and enclose the resulting string
in a ul element:

const list = enclose('ul',
 items
 .map(htmlEscape)
 .map(i => enclose('li', i))
 .join(''))

Another useful array method is filter. It receives a predicate function—a function
that returns a Boolean (or Boolish) value. The result is an array of all elements

Chapter 3 Functions and Functional Programming56

that fulfill the predicate. Continuing the preceding example, we don’t want
to include empty strings in the list. We can remove them like this:

const list = enclose('ul',
 items

.filter(i => i.trim() !== '')
 .map(htmlEscape)
 .map(i => enclose('li', i))
 .join(''))

This processing pipeline is a good example of a high-level “what, not how”
style of programming. What do we want? Throw away empty strings, escape
HTML, enclose items in li elements, and join them. How is this done? Ulti-
mately, by a sequence of loops and branches, but that is an implementation
detail.

3.6 Closures

The setTimeout function takes two arguments: a function to execute later, when
a timeout has elapsed, and the duration of the timeout in milliseconds. For
example, this call says “Goodbye” in ten seconds:

setTimeout(() => console.log('Goodbye'), 10000)

Let’s make this more flexible:
const sayLater = (text, when) => {
 let task = () => console.log(text)
 setTimeout(task, when)
}

Now we can call:
sayLater('Hello', 1000)
sayLater('Goodbye', 10000)

Look at the variable text inside the arrow function () => console.log(text). If you
think about it, something nonobvious is going on. The code of the arrow
function runs long after the call to sayLater has returned. How does the text
variable stay around? And how can it be first 'Hello' and then 'Goodbye'?

To understand what is happening, we need to refine our understanding of a
function. A function has three ingredients:

1. A block of code

2. Parameters

3. The free variables—that is, the variables that are used in the code but are
not declared as parameters or local variables

573.6 Closures

A function with free variables is called a closure.

In our example, text is a free variable of the arrow function. The data structure
representing the closure stores a reference to the variable when the function
is created. We say that the variable is captured. That way, its value is available
when the function is later called.

In fact, the arrow function () => console.log(text) also captures a second variable,
namely console.

But how does text get to have two different values? Let’s do this in slow
motion. The first call to sayLater creates a closure that captures the text
parameter variable holding the value 'Hello'. When the sayLater method exits,
that variable does not go away because it is still used by the closure. When
sayLater is called again, a second closure is created that captures a different
text parameter variable, this time holding 'Goodbye'.

In JavaScript, a captured variable is a reference to another variable, not its
current value. If you change the contents of the captured variable, the change
is visible in the closure. Consider this case:

let text = 'Goodbye'
setTimeout(() => console.log(text), 10000)
text = 'Hello'

In ten seconds, the string 'Hello' is printed, even though text contained 'Goodbye'
when the closure was created.

NOTE: The lambda expressions and inner classes in Java can also
capture variables from enclosing scopes. But in Java, a captured local
variable must be effectively final—that is, its value can never change.

Capturing mutable variables complicates the implementation of closures
in JavaScript. A JavaScript closure remembers not just the initial value
but the location of the captured variable. And the captured variable is
kept alive for as long as the closure exists—even if it is a local variable
of a terminated method.

The fundamental idea of a closure is very simple: A free variable inside a
function means exactly what it means outside. However, the consequences
are profound. It is very useful to capture variables and have them accessible
indefinitely. The next section provides a dramatic illustration, by implementing
objects and methods entirely with closures.

Chapter 3 Functions and Functional Programming58

3.7 Hard Objects

Let’s say we want to implement bank account objects. Each bank account
has a balance. We can deposit and withdraw money.

We want to keep the object state private, so that nobody can modify it except
through methods that we provide. Here is an outline of a factory function:

const createAccount = () => {
 . . .
 return {
 deposit: amount => { . . . },
 withdraw: amount => { . . . },
 getBalance: () => . . .
 }
}

Then we can construct as many accounts as we like:
const harrysAccount = createAccount()
const sallysAccount = createAccount()
sallysAccount.deposit(500)

Note that an account object contains only methods, not data. After all, if we
added the balance to the account object, anyone could modify it. There are
no “private” properties in JavaScript.

Where do we store the data? It’s simple—as local variables in the factory
function:

const createAccount = () => {
 let balance = 0
 return {
 . . .
 }
}

We capture the local data in the methods:
const createAccount = () => {
 . . .
 return {
 deposit: amount => {

balance += amount
 },
 withdraw: amount => {
 if (balance >= amount)

balance -= amount
 },
 getBalance: () => balance
 }
}

593.7 Hard Objects

Each account has its own captured balance variable, namely the one that was
created when the factory function was called.

You can provide parameters in the factory function:
const createAccount = (initialBalance) => {
 let balance = initialBalance + 10 // Bonus for opening the account
 return {
 . . .
 }
}

You can even capture the parameter variable instead of a local variable:
const createAccount = (balance) => {
 balance += 10 // Bonus for opening the account
 return {
 deposit: amount => {

balance += amount
 },
 . . .
 }
}

At first glance, this looks like an odd way of producing objects. But these
objects have two significant advantages. The state, consisting solely of captured
local variables of the factory function, is automatically encapsulated. And
you avoid the this parameter, which, as you will see in Chapter 4, is not
straightforward in JavaScript.

This technique is sometimes called the “closure pattern” or “factory class
pattern,” but I like the term that Douglas Crockford uses in his book How
JavaScript Works. He calls them “hard objects.”

NOTE: To further harden the object, you can use the Object.freeze method
that yields an object whose properties cannot be modified or removed,
and to which no new properties can be added.

const createAccount = (balance) => {
 return Object.freeze({
 deposit: amount => {

balance += amount
 },
 . . .
 })
}

Chapter 3 Functions and Functional Programming60

3.8 Strict Mode

As you have seen, JavaScript has its share of unusual features, some of which
have proven to be poorly suited for large-scale software development. Strict
mode outlaws some of these features. You should always use strict mode.

To enable strict mode, place the line
'use strict'

as the first non-comment line in your file. (Double quotes instead of single
quotes are OK, as is a semicolon.)

If you want to force strict mode in the Node.js REPL, start it with
node --use-strict

NOTE: In a browser console, you need to prefix each line that you want
to execute in strict mode with 'use strict'; or 'use strict' followed by
Shift+Enter. That is not very convenient.

You can apply strict mode to individual functions:
function strictInASeaOfSloppy() {
 'use strict'
 . . .
}

There is no good reason to use per-function strict mode with modern code.
Apply strict mode to the entire file.

Finally, strict mode is enabled inside classes (see Chapter 4) and ECMAScript
modules (see Chapter 10).

For the record, here are the key features of strict mode:

• Assigning a value to a previously undeclared variable is an error and does
not create a global variable. You must use let, const, or var for all variable
declarations.

• You cannot assign a new value to a read-only global property such as NaN
or undefined. (Sadly, you can still declare local variables that shadow them.)

• Functions can only be declared at the top level of a script or function,
not in a nested block.

• The delete operator cannot be applied to “unqualified identifiers.” For ex-
ample, delete parseInt is a syntax error. Trying to delete a property that is
not “configurable” (such as delete 'Hello'.length) causes a runtime error.

613.8 Strict Mode

• You cannot have duplicate function parameters (function average(x, x)).
Of course, you never wanted those, but they are legal in the “sloppy”
(non-strict) mode.

• You cannot use octal literals with a 0 prefix: 010 is a syntax error, not an
octal 10 (which is 8 in decimal). If you want octal, use 0o10.

• The with statement (which is not discussed in this book) is prohibited.

NOTE: In strict mode, reading the value of an undeclared variable throws
a ReferenceError. If you need to find out whether a variable has been
declared (and initialized), you can’t check

possiblyUndefinedVariable !== undefined

Instead, use the condition

typeof possiblyUndefinedVariable !== 'undefined'

3.9 Testing Argument Types

In JavaScript, you do not specify the types of function arguments. Therefore,
you can allow callers to supply an argument of one type or another, and
handle that argument according to its actual type.

As a somewhat contrived example, the average function may accept either
numbers or arrays.

const average = (x, y) => {
 let sum = 0
 let n = 0
 if (Array.isArray(x)) {
 for (const value of x) { sum += value; n++ }
 } else {
 sum = x; n = 1
 }
 if (Array.isArray(y)) {
 for (const value of y) { sum += value }
 } else {
 sum += y; n++
 }
 return n === 0 ? 0 : sum / n
}

Now you can call:
result = average(1, 2)
result = average([1, 2, 3], 4)
result = average(1, [2, 3, 4])
result = average([1, 2], [3, 4, 5])

Chapter 3 Functions and Functional Programming62

Table 3-1 shows how to test whether an argument x conforms to a given type.

Table 3-1 Type Tests

NotesTestType

x might be constructed as
new String(. . .)

typeof x === 'string' ||
 x instanceof String

String

x instanceof RegExpRegular expression

x might be constructed as
new Number(. . .)

typeof x === 'number' ||
 x instanceof Number

Number

Obtain the numeric value
as +x

typeof +x === 'number'Anything that can be
converted to a number

Array.isArray(x)Array

typeof x === 'function'Function

NOTE: Some programmers write functions that turn any argument values
into numbers, such as

const average = (x, y) => {
 return (+x + +y) / 2
}

Then one can call

average('3', [4])

Is that degree of flexibility useful, harmless, or a harbinger of trouble? I
don’t recommend it.

3.10 Supplying More or Fewer Arguments

Suppose a function is declared with a particular number of parameters, for
example:

const average = (x, y) => (x + y) / 2

It appears as if you must supply two arguments when you call the function.
However, that is not the JavaScript way. You can call the function with more
arguments—they are silently ignored:

let result = average(3, 4, 5) // 3.5—the last argument is ignored

633.10 Supplying More or Fewer Arguments

Conversely, if you supply fewer arguments, then the missing ones are set
to undefined. For example, average(3) is (3 + undefined) / 2, or NaN. If you want to
support that call with a meaningful result, you can:

const average = (x, y) => y === undefined ? x : (x + y) / 2

3.11 Default Arguments

In the preceding section, you saw how to implement a function that is called
with fewer arguments than parameters. Instead of manually checking for
undefined argument values, you can provide default arguments in the function
declaration. After the parameter, put an = and an expression for the
default—that is, the value that should be used if no argument was passed.

Here is another way of making the average function work with one argument:
const average = (x, y = x) => (x + y) / 2

If you call average(3), then y is set to x—that is, 3—and the correct return value
is computed.

You can provide multiple default values:
const average = (x = 0, y = x) => (x + y) / 2

Now average() returns zero.

You can even provide a default for the first parameter and not the others:
const average = (x = 0, y) => y === undefined ? x : (x + y) / 2

If no argument (or an explicit undefined) is supplied, the parameter is set to
the default or, if none is provided, to undefined:

average(3) // average(3, undefined)
average() // average(0, undefined)
average(undefined, 3) // average(0, 3)

3.12 Rest Parameters and the Spread Operator

As you have seen, you can call a JavaScript function with any number of ar-
guments. To process them all, declare the last parameter of the function as
a “rest” parameter by prefixing it with the ... token:

const average = (first = 0, ...following) => {
 let sum = first
 for (const value of following) { sum += value }
 return sum / (1 + following.length)
}

Chapter 3 Functions and Functional Programming64

When the function is called, the following parameter is an array that holds all
arguments that have not been used to initialize the preceding parameters.
For example, consider the call:

average(1, 7, 2, 9)

Then first is 1 and following is the array [7, 2, 9].

Many functions and methods accept variable arguments. For example, the
Math.max method yields the largest of its arguments, no matter how many:

let result = Math.max(3, 1, 4, 1, 5, 9, 2, 6) // Sets result to 9

What if the values are already in an array?
let numbers = [1, 7, 2, 9]
result = Math.max(numbers) // Yields NaN

That doesn’t work. The Math.max method receives an array with one element—
the array [1, 7, 2, 9].

Instead, use the “spread” operator—the ... token placed before an array
argument:

result = Math.max(...numbers) // Yields 9

The spread operator spreads out the elements as if they had been provided
separately in the call.

NOTE: Even though the spread operator and rest declaration look the
same, their actions are the exact opposites of each other.

First, note that the spread operator is used with an argument, and the
rest syntax applies to a variable declaration.

Math.max(...numbers) // Spread operator—argument in function call
const max = (...values) => { /* body */}
 // Rest declaration of parameter variable

The spread operator turns an array (or, in fact, any iterable) into a
sequence of values. The rest declaration causes a sequence of values
to be placed into an array.

Note that you can use the spread operator even if the function that you call
doesn’t have any rest parameters. For example, consider the average function
of the preceding section that has two parameters. If you call

result = average(...numbers)

then all elements of numbers are passed as arguments to the function. The
function uses the first two arguments and ignores the others.

653.12 Rest Parameters and the Spread Operator

NOTE: You can also use the spread operator in an array initializer:

let moreNumbers = [1, 2, 3, ...numbers] // Spread operator

Don’t confuse this with the rest declaration used with destructuring. The
rest declaration applies to a variable:

let [first, ...following] = numbers // Rest declaration

TIP: Since strings are iterable, you can use the spread operator with a
string:

let greeting = 'Hello '
let characters = [...greeting]

The characters array contains the strings 'H', 'e', 'l', 'l', 'o', ' ',
and ' '.

The syntax for default arguments and rest parameters are equally applicable
to the function syntax:

function average(first = 0, ...following) { . . . }

3.13 Simulating Named Arguments with Destructuring

JavaScript has no “named argument” feature where you provide the parameter
names in the call. But you can easily simulate named arguments by passing
an object literal:

const result = mkString(values, { leftDelimiter: '(', rightDelimiter: ')' })

That is easy enough for the caller of the function. Now, let’s turn to the
function implementation. You can look up the object properties and supply
defaults for missing values.

const mkString = (array, config) => {
 let separator = config.separator === undefined ? ',' : config.separator
 . . .
}

However, that is tedious. It is easier to use destructured parameters with
defaults. (See Chapter 1 for the destructuring syntax.)

Chapter 3 Functions and Functional Programming66

const mkString = (array, {
 separator = ',',
 leftDelimiter = '[',
 rightDelimiter = ']'
 }) => {
 . . .
}

The destructuring syntax { separator = ',', leftDelimiter = '[', rightDelimiter = ']' }
declares three parameter variables separator, leftDelimiter, and rightDelimiter that
are initialized from the properties with the same names. The defaults are
used if the properties are absent or have undefined values.

It is a good idea to provide a default {} for the configuration object:
const mkString = (array, {
 separator = ',',
 leftDelimiter = '[',
 rightDelimiter = ']'
 } = {}) => {
 . . .
}

Now the function can be called without any configuration object:
const result = mkString(values) // The second argument defaults to {}

3.14 Hoisting

In this “mad hatter” section, we take up another complex subject that you
can easily avoid by following three simple rules. They are:

• Don’t use var

• Use strict mode

• Declare variables and functions before using them

If you want to understand what happens when you don’t follow these rules,
read on.

JavaScript has an unusual mechanism for determining the scope of a vari-
able—that is, is the region of a program where the variable can be accessed.
Consider a local variable, declared inside a function. In programming languages
such as Java, C#, or C++, the scope extends from the point where the variable
is declared until the end of the enclosing block. In JavaScript, a local variable
declared with let appears to have the same behavior:

673.14 Hoisting

function doStuff() { // Start of block
 . . . // Attempting to access someVariable throws a ReferenceError
 let someVariable // Scope starts here
 . . . // Can access someVariable, value is undefined
 someVariable = 42
 . . . // Can access someVariable, value is 42
} // End of block, scope ends here

However, it is not quite so simple. You can access local variables in functions
whose declarations precede the variable declaration:

function doStuff() {
 function localWork() {
 console.log(someVariable) // OK to access variable
 . . .
 }
 let someVariable = 42

 localWork() // Prints 42
}

In JavaScript, every declaration is hoisted to the top of its scope. That is, the
variable or function is known to exist even before its declaration, and space
is reserved to hold its value.

Inside a nested function, you can reference hoisted variables or functions.
Consider the localWork function in the preceding example. The function knows
the location of someVariable because it is hoisted to the top of the body of
doStuff, even though that variable is declared after the function.

Of course, it can then happen that you access a variable before executing the
statement that declares it. With let and const declarations, accessing a variable
before it is declared throws a ReferenceError. The variable is in the “temporal
dead zone” until its declaration is executed.

However, if a variable is declared with the archaic var keyword, then its value
is simply undefined until the variable is initialized.

TIP: Do not use var. It declares variables whose scope is the entire
function, not the enclosing block. That is too broad:

function someFunction(arr) {
 // i, element already in scope but undefined
 for (var i = 0; i < arr.length; i++) {
 var element = arr[i]
 . . .
 }
 // i, element still in scope
}

Moreover, var doesn’t play well with closures—see Exercise 10.

Chapter 3 Functions and Functional Programming68

Since functions are hoisted, you can call a function before it is declared. In
particularly, you can declare mutually recursive functions:

function isEven(n) { return n === 0 ? true : isOdd(n -1) }
function isOdd(n) { return n === 0 ? false : isEven(n -1) }

NOTE: In strict mode, named functions can only be declared at the top
level of a script or function, not inside a nested block. In non-strict
mode, nested named functions are hoisted to the top of their enclosing
function. Exercise 12 shows why this is a bad idea.

As long as you use strict mode and avoid var declarations, the hoisting behav-
ior is unlikely to result in programming errors. However, it is a good idea to
structure your code so that you declare variables and functions before they
are used.

NOTE: In ancient times, JavaScript programmers used “immediately
invoked functions” to limit the scope of var declarations and functions:

(function () {
 var someVariable = 42
 function someFunction(. . .) { . . . }
 . . .
})() // Function is called here—note the ()
// someVariable, someFunction no longer in scope

After the anonymous function is called, it is never used again. The sole
purpose is to encapsulate the declarations.

This device is no longer necessary. Simply use:

{
 let someVariable = 42
 const someFunction = (. . .) => { . . . }
 . . .
}

The declarations are confined to the block.

3.15 Throwing Exceptions

If a function is unable to compute a result, it can throw an exception. Depend-
ing on the kind of failure, this can be a better strategy than returning an error
value such as NaN or undefined.

693.15 Throwing Exceptions

Use a throw statement to throw an exception:
throw value

The exception value can be a value of any type, but it is conventional to
throw an error object. The Error function produces such an object with a
given string describing the reason.

let reason = `Element ${elem} not found`
throw Error(reason)

When the throw statement executes, the function is terminated immediately.
No return value is produced, not even undefined. Execution does not continue
in the function call but instead in the nearest catch or finally clause, as
described in the following sections.

TIP: Exception handling is a good mechanism for unpredictable situations
that the caller might not be able to handle. It is not so suitable for
situations where failure is expected. Consider parsing user input. It is
exceedingly likely that some users provide unsuitable input. In JavaScript,
it is easy to return a “bottom” value such as undefined, null, or NaN
(provided, of course, those could not be valid inputs). Or you can return
an object that describes success or failure. For example, in Chapter 9,
you will see a method that yields objects of the form { status: 'fulfilled',
value: result } or { status: 'rejected', reason: exception }.

3.16 Catching Exceptions

To catch an exception, use a try statement. In Chapter 2, you saw how to
catch an exception if you are not interested in the exception value. If you
want to examine the exception value, add a variable to the catch clause:

try {
 // Do work
 . . .
} catch (e) {
 // Handle exceptions
 . . .
}

Chapter 3 Functions and Functional Programming70

The variable in the catch clause (here, e) contains the exception value. As you
saw in the preceding section, an exception value is conventionally an error
object. Such an object has two properties: name and message. For example, if
you call

JSON.parse('{ age: 42 }')

an exception is thrown with the name 'SyntaxError' and message 'Unexpected
token a in JSON at position 2'. (The string in this example is invalid JSON because
the age key is not enclosed in double quotes.)

The name of an object produced with the Error function is 'Error'. The
JavaScript virtual machine throws errors with names 'SyntaxError', 'TypeError',
'RangeError', 'ReferenceError', 'URIError', or 'InternalError'.

In the handler, you can record that information in a suitable place. However,
in JavaScript it is not usually productive to analyze the error object in detail,
as you might in languages such as Java or C++.

When you log an error object on the console, JavaScript execution environ-
ments typically display the stack trace—the function and method calls between
the throw and catch points. Unfortunately, there is no standard way of
accessing the stack trace for logging it elsewhere.

NOTE: In Java and C++, you can catch exceptions by their type. Then
you can handle errors of certain types at a low level and others at a
higher level. Such strategies are not easily implemented in JavaScript.
A catch clause catches all exceptions, and the exception objects carry
limited information. In JavaScript, exception handlers typically carry out
generic recovery or cleanup, without trying to analyze the cause of failure.

When the catch clause is entered, the exception is deemed to be handled.
Processing resumes normally, executing the statements in the catch clause.
The catch clause can exit with a return or break statement, or it can be completed
by executing its last statement. In that case, execution moves to the next
statement after the catch clause.

If you log exceptions at one level of your code but deal with failure at a
higher level, then you want to rethrow the exception after logging it:

713.16 Catching Exceptions

try {
 // Do work
 . . .
} catch (e) {
 console.log(e)
 throw e // Rethrow to a handler that deals with the failure
}

3.17 The finally Clause

A try statement can optionally have a finally clause. The code in the finally
clause executes whether or not an exception occurred.

Let us first look at the simplest case: a try statement with a finally clause but
no catch clause:

try {
 // Acquire resources
 . . .
 // Do work
 . . .
} finally {
 // Relinquish resources
 . . .
}

The finally clause is executed in all of the following cases:

• If all statements in the try clause completed without throwing an exception

• If a return or break statement was executed in the try clause

• If an exception occurred in any of the statements of the try clause

You can also have a try statement with catch and finally clauses:
try {
 . . .
} catch (e) {
 . . .
} finally {
 . . .
}

Now there is an additional pathway. If an exception occurs in the try clause,
the catch clause is executed. No matter how the catch clause exits (normally
or through a return/break/throw), the finally clause is executed afterwards.

The purpose of the finally clause is to have a single location for relinquishing
resources (such as file handles or database connections) that were acquired
in the try clause, whether or not an exception occurred.

Chapter 3 Functions and Functional Programming72

CAUTION: It is legal, but confusing, to have return/break/throw statements
in the finally clause. These statements take precedence over any
statements in the try and catch clauses. For example:

try {
 // Do work
 . . .
 return true
} finally {
 . . .
 return false
}

If the try block is successful and return true is executed, the finally
clause follows. Its return false masks the prior return statement.

Exercises

1. What does the indexOf function of Section 3.1, “Declaring Functions”
(page 51), do when an object is passed instead of an array?

2. Rewrite the indexOf function of Section 3.1, “Declaring Functions” (page 51),
so that it has a single return at the end.

3. Write a function values(f, low, high) that yields an array of function values
[f(low), f(low + 1), . . ., f(high)].

4. The sort method for arrays can take an argument that is a comparison
function with two parameters—say, x and y. The function returns a negative
integer if x should come before y, zero if x and y are indistinguishable,
and a positive integer if x should come after y. Write calls, using arrow
functions, that sort:

• An array of positive integers by decreasing order

• An array of people by increasing age

• An array of strings by increasing length

5. Using the “hard objects” technique of Section 3.7, “Hard Objects” (page 59),
implement a constructCounter method that produces counter objects whose
count method increments a counter and yields the new value. The initial
value and an optional increment are passed as parameters. (The default
increment is 1.)

const myFirstCounter = constructCounter(0, 2)
console.log(myFirstCounter.count()) // 0
console.log(myFirstCounter.count()) // 2

73Exercises

6. A programmer thinks that “named parameters are almost implemented
in JavaScript, but order still has precedence,” offering the following
“evidence” in the browser console:

function f(a=1, b=2){ console.log(`a=${a}, b=${b}`) }
f() // a=1, b=2
f(a=5) // a=5, b=2
f(a=7, b=10) // a=7, b=10
f(b=10, a=7) // Order is required: a=10, b=7

What is actually going on? (Hint: It has nothing to do with named
parameters. Try it in strict mode.)

7. Write a function average that computes the average of an arbitrary sequence
of numbers, using a rest parameter.

8. What happens when you pass a string argument to a rest parameter ...str?
Come up with a useful example to take advantage of your observation.

9. Complete the mkString function of Section 3.13, “Simulating Named
Arguments with Destructuring” (page 66).

10. The archaic var keyword interacts poorly with closures. Consider this
example:

for (var i = 0; i < 10; i++) {
 setTimeout(() => console.log(i), 1000 * i)
}

What does this code snippet print? Why? (Hint: What is the scope of
the variable i?) What simple change can you make to the code to print the
numbers 0, 1, 2, . . . , 9 instead?

11. Consider this declaration of the factorial function:
const fac = n => n > 1 ? n * fac(n - 1) : 1

Explain why this only works because of variable hoisting.

12. In sloppy (non-strict) mode, functions can be declared inside a nested
block, and they are hoisted to the enclosing function or script. Try out
the following example a few times:

if (Math.random() < 0.5) {
 say('Hello')
 function say(greeting) { console.log(`${greeting}!`) }
}
say('Goodbye')

Depending on the result of Math.random, what is the outcome? What is the
scope of say? When is it initialized? What happens when you activate
strict mode?

Chapter 3 Functions and Functional Programming74

13. Implement an average function that throws an exception if any of its
arguments is not a number.

14. Some programmers are confused by statements that contain all three of
try/catch/finally because there are so many possible pathways of control.
Show how you can always rewrite such a statement using a try/catch
statement and a try/finally statement.

75Exercises

Symbols and Numbers
- (minus sign)

in regular expressions, 124
operator, 9

-- operator, 10, 31
with arrays, 144

_ (underscore)
in identifiers, 7
in number literals, 100–101

, (comma)
in let statements, 42
in URLs, 120
operator, in loops, 41
trailing, 17, 19

; (semicolon)
after statements, 28–31
in URLs, 120
terminating lines with, 6

: (colon), in URLs, 120
! operator, 34, 37–38
!= operator, 35–37
!== operator, 35
? (quotation mark)

in regular expressions,
123–127

in TypeScript, 291, 304
in URLs, 120

? : operator, 33–34
in TypeScript, 303

?: operator
in regular expressions, 126, 132
in TypeScript, 294

?! operator, 137
??, ?. operators, 38
?<=, ?= operators, 137
/ (slash)

in regular expressions, 127
in URLs, 120, 211
operator, 9, 105

. (period), in regular expressions, 123–125

./, ../, in relative URLs, 211

... (ellipsis)
in function parameters, 64
in rest declarations, 23–24
spread operator, 115
with arrays, 65–66

`. . .` (backticks), 15
^ (caret)

operator, 39
in regular expressions, 123–125, 127–128

~ (tilde), operator, 39
'. . .', ". . ." (single and double quotes)

for string literals, 13
matching for, 132–133

309

Index

'' (empty string)
as a Boolean, 34
converting to numbers/strings, 11

(. . .) (parentheses)
in arrow functions, 55
in conditional statements, 31
in object destructuring, 23
in regular expressions, 123–126, 131–133
starting statements with, 30

[. . .] (square brackets)
for arrays, 18, 141
for code units, 15
for symbol keys, 222
in regular expressions, 123–125, 131–133
starting statements with, 30

{. . .} (curly braces)
and object literals, 18
around single statements, 33
for configuration objects, 67, 292–293
in arrow functions, 55
in export statements, 214–215
in import statements, 212
in regular expressions, 123–126, 131–133

@ (at), in URLs, 120
$ (dollar sign)

in identifiers, 7
in regular expressions, 123–128
in String.replace method, 135
in URLs, 120

${. . .} expression, 15, 121, 225
* (asterisk)

in export statements, 216
in import statements, 212
in regular expressions, 123–127, 136
operator, 9
with generator functions, 254–257,

261
*? operator, 137
** operator, 10
\ (backslash)

in LATEX, 122
in regular expressions, 123–127
in string literals, 13
in template literals, 16
in URLs, 122

& (ampersand)
operator, 39
escaping, in HTML, 56
in URLs, 120

&& operator, 34, 37–38

(number sign)
in method names, 86
in URLs, 120

% (percent sign)
in URLs, 120
operator, 10, 25

+ (plus sign)
in regular expressions, 123–127, 136
in URLs, 120
operator, 9–11, 224

+? operator, 137
++ operator, 10, 31
+= operator, 10
< (left angle bracket)

escaping, in HTML, 56
operator, 34–36, 176

<< operator, 39
<= operator, 34–36, 176
<. . .> (angle brackets), for generic

parameters, 297
= (equal sign)

for default parameters, 64
in URLs, 120

== operator, 35–37, 225
=== operator, 35

for array elements, 149
for maps, 158

=> operator, 54, 176–177
>, >= operators, 34–36, 176
>>, >>> operators, 39
| (vertical bar)

operator, 39
for union type (TypeScript), 270, 273, 276,

279, 296
in regular expressions, 123–126

|| operator, 34, 37–38
0 (zero)

converting to Boolean, 12, 34
dividing by, 9
leading, in octal numbers, 62, 99
, 14–15, 42, 44, 66, 115–116, 129
, 116–118

Å, 178
π, mathematical constant, 104
ß (in German), 118, 177

A
abs function (Math), 104
acos, acosh functions (Math), 104
add method (Set), 158

Index310

AggregateError, 197
all method (Promise), 196, 201–202
AMD (Asynchronous Module Definition),

210
any method (Promise), 197
any type (TypeScript), 274–275
apply method

of Function, 237
of Reflect, 242

arithmetic operators, 9–12
Array class

concat method, 148, 223, 225
copyWithin method, 145–146
entries method, 150
every method, 147, 149, 151
fill method, 145–146
filter method, 56–57, 147, 150–152,

225
find, findIndex methods, 147, 149, 151
firstIndex, lastIndex methods, 147
flat method, 147–149, 152, 225
flatMap method, 147, 151–152, 225
forEach method, 56, 147, 150–152
from function, 142, 146, 151–152, 250
includes method, 147, 149, 271
index, input properties, 143
indexOf method, 149
isArray function, 279
join method, 56, 119, 147, 151–152
lastIndexOf method, 149
length property, 143
map method, 56, 147, 151, 153, 225
of function, 142, 164
pop, push methods, 144, 146
prototype property, 44, 232
reduce method, 153–156
reduceRight method, 153, 155
reverse method, 145–146
shift, unshift methods, 144, 146
slice method, 147–148, 225
some method, 147, 149–151
sort method, 145–147, 152, 176
splice method, 144–146, 225
subarray method, 225

array buffers, 163
ArrayBuffer class, 163
arrays, 18–20

building HTML lists from, 56
comparing to other types, 36
constructing, 65, 141–142

converting to:
numbers, 11
strings, 11, 19

destructuring, 21–22, 250
elements of:

adding, 144
computing values from, 153–156
deleting, 144
filtering, 150
iterating over, 42–43, 56–57, 150–151,

249–250, 255–257
missing, 143, 152
searching, 149

empty, 141, 154
flattening, 148–149, 256
functional processing, 56–57
initializing, 66
length of, 141, 143
multidimensional, 20, 148
sorting, 145–147, 152
sparse, 152
type tests for, 63
type variance of, 282–283
typed, 160–162
with spread operator, 65

arrow functions, 54–55
and this, 78, 93–95
vs. generators, 255
with async, 199

as keyword, 8
as default statement, 215
ASCII format, 129
asin, asinh, atan, atanh functions (Math), 104
asIntN, asUintN functions (BigInt), 105
assign function (Object), 226, 231
async/await statements, 8, 197, 197–202

concurrent, 201
throwing/catching exceptions in, 202
with generators, 261–263
with module imports, 213

AsyncFunction class, 199
asynchronous programming, 185–202

using generators with, 259–260
asyncIterator field (Symbol), 223
average function, 62–65, 270

B
b, B, in binary literals, 99–100
\b, \B, in regular expressions, 127
bank account objects, 59–60

311Index

BCP 47 memo, 170
big integers, 105
big-endian ordering, 163
BigInt class, 105
binary data, 163
binary numbers, 99
bind method (Function), 236
bitwise operators, 39
block statements, 32
Boolean operators, 37–39
boolean type (TypeScript), 274–275
Boolean values, 12

converting to numbers/strings, 11
in conditions, 32, 34
returned by predicate functions, 57

Boolishness, 34
branches, 31–33
break statement, 7, 40, 44–46

labeled, 45
semicolon insertion in, 30

browsers
CORS restrictions in, 217
modules in, 211, 217
running JavaScript in, 1–2
safety checks in, 192
user preferences in, 180

C
\c, in regular expressions, 125
C# language

casts in, 279
classes in, 82
scope of variables in, 67
type variance in, 302

C++ language
abstract methods in, 89
catching exceptions in, 71
classes in, 82
concurrent programs in, 185
error objects in, 71
functions in, 9
hash/tree maps in, 158
hexadecimal floating-point literals in, 100
methods in, 9, 78
no-argument constructors in, 91
scope of variables in, 67
tree nodes in, 96

call method (Function), 236
callback functions, 186
callback hell, 188

captured variables, 58–60
case label, 7, 39
catch method (Promise), 195, 197
catch statement, 7, 46, 70–73

with promises, 190, 200
cbrt, ceil functions (Math), 104
character classes, 124–126
characters

combined, 178
encoding, 14
in regular expressions, 123–125

Chinese language, 168
circular references, 234
class statement, 7, 83–84, 91

using new operator with, 92
classes, 83–84

anonymous, 91
executed in strict mode, 84
generic, 297–298
private fields in, 86
static fields/methods in, 86–87
subclasses in, 87–89
vs. functions, 82–84
vs. modules, 210

clear method (Map), 157
clones, 232–234
closeable iterators, 252–253
closure pattern, 60
closures, 57–58

and var, 68, 74
simulating modules through, 210

code points, 14, 115
code units, 14, 116
collation, 176–177
comments, 5–6
Common.js module system, 210
comparisons, 34–37
compile-time typing, 269
concat method

of Array, 148, 223, 225
of String, 119

concurrent tasks, 185–188
conditional operator, 33
conditional statements, 31

arbitrary values in, 32, 34
configuration objects, 67, 292–293
console.log method, 28, 101
const statement, 6–7, 17

and scope of variables, 68
constants, mathematical, 104

Index312

constructor keyword, 83–84, 235
constructors, 81–83

setting object properties in, 85
subclass/superclass, 90–91

continue statement, 7, 46
labeled, 46
semicolon insertion in, 30

control flow statements, 30–33
copyWithin method (Array), 145–146
CORS (Cross-Origin Resource Sharing), 192,

217
cos, cosh functions (Math), 104
country codes, 168–170
create function (Object), 226, 231–232
Crockford, Douglas, 60
cross-origin errors, 192
currency, displaying, 172

D
\d, \D, in regular expressions, 124–125
data transfer, 186, 259
DataView class, 163
Date class, 106–108, 173

getXXX methods, 107, 109
mutability of, 110
now, parse functions, 109
setXXX methods, 109
toXXX methods, 107, 110
UTC function, 107, 109

dates
constructing, 106–109
current, 109
distance between, 108
formatting, 110, 173–174
localizing, 168, 173–174
parsing, 109
ranges of, 174

daylight savings time, 106
debugger statement, 7
decimal numbers, 99
default keyword, 7, 39
default values, 38
defineProperties function (Object), 226, 228
defineProperty function

of Object, 226–227, 239, 242
of Reflect, 242

delete method
of Map, 157
of Set, 158
of WeakMap/WeakSet, 160

delete statement, 7, 17
applied to unqualified identifiers, 61

deleteProperty method (Reflect), 239, 242
destructuring, 21–24, 66–67
development tools console

enabling strict mode in, 61
running JavaScript in, 2–3

do statement, 7, 40–41
Document.querySelectorAll method, 250
documentation comments, 6
DOM nodes, attaching properties to, 159
dotAll property (RegExp), 125, 128, 133
duck typing, 288

E
e, mathematical constant, 104
e, E, in number literals, 99–100
Eclipse development environment, 4
ECMAScript Internationalization API

(ECMA-402), 180
ECMAScript language

module system in, 209–211
specification of, 79

else statement, 7, 32
else if statement, 32
emojis

encoding, 116
in regular expressions, 130

empty string
as a Boolean, 34
converting to numbers/strings, 11

encodeURI function (String), 120
endianness, 163
endsWith method (String), 116, 119
English language

dates in, 168
plurals in, 178–179
string ordering in, 176

entries method
objects returned by, 250
of Array, 150
of Map, 158
of Object, 226, 229
of Set, 159

enum, 7
epoch, 106
equality testing, 35
Error function, 70–71
error objects, 71
escape sequences, 13

313Index

every method (Array), 147, 149, 151
exceptions

catching, 46–47, 70–73
throwing, 46, 69–72

exec method (RegExp), 130–131, 133–134
exp, expm1 functions (Math), 104
export statement, 7, 213–216
export default statement, 214–215
expression statements, 28
expressions, 27–29
extends, 7, 87–91

in TypeScript, 300, 303–304

F
\f, in regular expressions, 125
factory class pattern, 60
factory functions, 78

invoking, 81
local variables in, 59–60
parameters in, 60

failures, 69
false value, 7, 12, 34
fetch function (Promise), 192–193
Fetch API, 188, 193, 199
fields

private, 86
private static, 87
static, 86–87

File API, 163
file:// URLs, 211
fill method (Array), 145–146
filter method (Array), 56–57, 147, 150–152,

225
finally statement, 7, 72–73
find, findIndex methods (Array), 147, 149,

151
firstIndex method (Array), 147
flags property (RegExp), 128, 133
flat method (Array)

of Array, 147–149, 152, 225
of typed arrays, 162

flatMap method
of Array, 147, 151–152, 225
of typed arrays, 162

floating-point numbers, 8, 99–100
FloatXXXArray classes, 160–161
floor function (Math), 39, 104
Flow type checker, 270
for await of statement, 201, 261–263
for each loop (Java), 43

for in statement, 43–44
and legacy libraries, 44
for arrays, 150
iterating over a string, 44

for method (Symbol), 222
for of statement, 42, 249–251, 253, 255, 262

for arrays, 150
for sets, 159

for statement, 7, 41–42
forEach method

of Array, 56, 147, 150–152
of Map, 157
of Set, 159

format method
of Intl.DateTimeFormat, 173
of Intl.ListFormat, 179
of Intl.NumberFormat, 171–172
of Intl.RelativeTimeFormat, 175

formatRange method (Intl.DateTimeFormat), 174
formatToParts method

of Intl.DateTimeFormat, 175
of Intl.NumberFormat, 171
of Intl.RelativeTimeFormat, 175

free variables, 57–58
freeze function (Object), 60, 226, 230
from function (Array), 142, 146, 151–152, 250
from keyword, 8
fromCodePoint function (String), 115, 119
fromEntries function (Object), 226, 231
fround, ftrunc, ffloor, fceil functions (Math),

104
function statement, 7, 51, 54

and this, 78
comparing to arrow functions, 55
default parameters in, 66
for nested functions, 93
rest declarations in, 66
type annotations with, 271

Function class, 235
apply method, 237
bind method, 236
call method, 236

function literals, 54
functional array processing, 56–57
functional programming languages, 51
functions, 9

anonymous, 54–55, 69, 199
applying strict mode to, 61
arrow, 54–55, 78, 93–95, 199, 255
async, 199, 263

Index314

callback, 186
calling, 52

before declaring, 69
flexibly, 295

configuration objects for, 67,
292–293

declaring, 51–52, 61, 69
executing later, 57
factory, 59–60, 78, 81
generic, 297–299
higher-order, 53
immediately invoked, 69
mathematical, 104
named, 54, 199
nested, 55, 68–69, 93
parameterless, 55
parameters of:

always converted to numbers, 63
annotating, 270
default, 64, 66
destructuring, 292–293
duplicating, 62
named, 66
number of, 63–65
optional, 291
types of, 52, 62–63

predicate, 57
properties of, 235–236
return value of, 52–53
storing in variables, 53
terminating, 52
trap, 238–242
type tests for, 63
type variance of, 293–295
vs. classes in Java/C++, 82
with free variables, 57–58

G
g flag, in regular expressions, 128, 131
garbage collection, 160
generators, 254–255

as consumers, 257–259
asynchronous, 259–263

generic programming, 297–304
get keyword, 8, 85, 227–228

of proxies, 242
get method

of Map, 157
of WeakMap, 160

getCanonicalLocales method (Intl), 180

getIntXXX, getUIntXXX, getFloatXXX methods
(DataView), 163

getOwnPropertyXXX functions
of Object, 226, 228–230, 232, 239
of proxies, 242

getPrototypeOf function
of Object, 80, 226, 231–232, 239
of proxies, 242

getters, 85, 228
overriding, 90
static, 87

getUTCXXX, getXXX methods (Date), 107, 109
getYear method (Date), obsolete, 109
global property (RegExp), 128, 131, 133
Greek letters, 122
groups property (RegExp), 133
Gulliver’s Travels, 163

H
Hanafuda playing cards, 187
hard objects, 59–60
has method

of Map, 157
of proxies, 242
of WeakMap/WeakSet, 160

hasInstance field (Symbol), 223
hasOwnProperty method (Object), 226, 230
hexadecimal numbers, 99
higher-order functions, 53
hoisting, 67–69
HTML (HyperText Markup Language)

building lists from arrays in, 56
canvas images in, 161
escaping characters in, 56
hyperlinks in, 123

HTMLCollection collection, 141
hyperbolic functions, 104
hypot function (Math), 104

I
i flag, in regular expressions, 127–128
identifiers, 7–8

unqualified, 61
IEEE 754 standard, 99
if statement, 7, 31

vs. switch, 40
ignoreCase property (RegExp), 127–128, 133
images

in HTML canvas, 161
loading, 186–187, 201–202

315Index

immediately invoked functions, 69
implements keyword, 8, 288
import statement, 7, 211–213
import.meta object, 217
in statement, 7, 143, 229

in TypeScript, 279
includes method

of Array, 147, 149, 271
of String, 116, 119

index property (Array), 143
index signatures, 290–291
indexOf method

of Array, 149
of String, 116, 119, 136

infer keyword, 303
Infinity variable, 100, 102
inheritance, 87–89
input property (Array), 143
instance fields, 85–86
instanceof operator, 7, 89, 232

in TypeScript, 279, 301
integers, 99

big, 105
no explicit type for, 8
rounding numbers to, 9

interface keyword, 8
interfaces, 288–290
internal slots, 79
internationalization, 167–181
Internet Engineering Task Force, 170
Intl.Collator class, 177

resolvedOptions method, 181
supportedLocalesOf method, 180

Intl.DateTimeFormat class
format method, 173
formatRange method, 174
formatToParts method, 175
supportedLocalesOf method, 180

Intl.DisplayNames class, 180
Intl.getCanonicalLocales method, 180
Intl.ListFormat class, 179

select method, 179
supportedLocalesOf method, 180

Intl.NumberFormat class
format method, 171–172
formatToParts method, 171
supportedLocalesOf method, 180

Intl.PluralRules class, 178–179
select method, 178
supportedLocalesOf method, 180

Intl.RelativeTimeFormat class, 175
format, formatToParts methods, 175
supportedLocalesOf method, 180

IntXXXArray classes, 160–161
is function (Object), 35
isArray function (Array), 279
isConcatSpreadable field (Symbol), 149, 223
isExtensible function (Object), 226, 230,

239
isFinite function

global, 102
of Number, 102–103

isFrozen function (Object), 226, 230
isInteger function (Number), 102
isNaN function

global, 102
of Number, 35, 102–103

ISO 8601 format, 106
isPrototypeOf method (Object), 226, 232
isSafeInteger function (Number), 102–103
isSealed function (Object), 226, 230
iterables, 42, 141, 249–250

async, 261
implementing, 250–252

iterator field (Symbol), 222–223, 250–253
iterators, 252–253

J
Japanese imperial calendar, 169
Java language

abstract methods in, 89
captured variables in, 58
casts in, 279
catching exceptions in, 71
classes in, 82
concurrent programs in, 185
Date class in, 106
error objects in, 71
extends keyword in, 89
for each loop in, 43
hash/tree maps in, 158
hexadecimal floating-point literals in,

100
methods in, 9, 78
modules in, 210–211
no-argument constructors in, 91
packages in, 210
scope of variables in, 67
tree nodes in, 96
type variance in, 302

Index316

JavaScript language
functional, 51
running, 1–4
stage 3 proposal, 38, 86–87, 100, 134, 171,

173, 180–181, 197, 217, 284
stage 4 proposal, 213

join method (Array), 56, 119, 147, 151–152
.js extension, 217
JSDoc tool, 6
JSON (JavaScript Object Notation), 20–21

asynchronous processing of, 199
parse method, 20, 47
stringify method, 20–21

jump tables, 40

K
key/value pairs, 156
keys method

objects returned by, 250
of Map, 158
of Object, 226, 229, 239, 243–244
of Set, 159

keywords, 7–8
Komodo development environment, 4

L
labeled breaks, 45
language codes, 168–170
lastIndex method (Array), 147
lastIndex property (RegExp), 131
lastIndexOf method

of Array, 149
of String, 116, 119

LATEX language, 122
lazy evaluations, 37
leap seconds, 105
length property (Array), 143
let statement, 6–8

and scope of variables, 67–68
letters

in regular expressions, 130
lowercase/uppercase, 118, 120

light-server http server, 187
LinkedHashMap (Java), 157
little-endian ordering, 163
loadImage function (Promise), 192
local time zone, 107–108
localeCompare method (String), 147, 176–178
locales, 167–168

dates in, 107, 110, 168, 172

displaying, 180
numbers in, 167–168, 171–172
plurals in, 178–179
specifying, 168–170
strings in, 177–178

sorting, 147, 176–177
tags for, 180
time in, 172

log, log2, log10, log1p functions (Math), 104
logging, 21, 215
lookahead/lookbehind operators, 137
loops, 40–44

condition values for, 34
exiting, 44–46

loose equality, 35–37
lowercase letters

converting to, 118, 120
in regular expressions, 130

lvalues, 22

M
m flag, in regular expressions, 128
map method (Array), 56, 147, 151, 153, 225
Map class, 156

generic, 298
methods of, 157–158
size property of, 157

mapped types, 303–304
maps, 156–158

adding/removing entries of, 157
constructing, 157, 250
empty, 157
iterating over, 250
keys of, 157
traversing, 157
weak, 160

match, matchAll fields (Symbol), 223
match, matchAll methods (String), 120, 131,

134
Math class, 103–104

constants of, 104
functions of, 104

floor, 39, 104
max, 33, 42, 65, 103–104
min, 103–104
pow, 104, 276
random, 104
round, 104
sqrt, 104, 276
trunc, 9, 104

317Index

Maven artifacts, 211
methods, 9, 77–78

default values for, 38
intersepting invocations of, 237
invoked:

with invalid arguments, 46
without an object, 92

overriding, 89–90
private, 86
private static, 87
setting object properties in, 85
static, 86–87
with async, 199

Microsoft, 269
.mjs extension, 217
modules, 209–217

circular dependencies between, 215–216
default feature of, 211
exported vs. private features of, 209
exporting, 213–216
importing, 211–213
loading asynchronously, 210
named features in, 212
packaging, 217
processing, 217
URLs for, 211
vs. classes/closures, 210

multiline property (RegExp), 128, 133

N
n, in big integers, 105
\n, in regular expressions, 125
name conflicts, 210
named arguments, 66
NaN (Not A Number), 9, 12–13

arithmetic operations with, 10–11
assigning new values to, 61
checking for, 102
comparing to, 35–36
converting to Boolean, 12, 34
global variable for, 100, 102

navigator.languages property, 180
never type (TypeScript), 274–275
new operator, 7, 81–82, 84, 231

missing in a constructor function, 92
with Array, 142
with maps, 157

next method (iterators), 250, 261
Node.js

enabling strict mode in, 61

modules in, 210, 217
rejected promises in, 202
running JavaScript in, 3–4

NodeList collection, 141
non-strict mode, 62, 69, 74
normalize method (String), 178
Norwegian language, 169
now function (Date), 109
npm package manager, 272
null type (TypeScript), 274–275
null value, 5, 7

arithmetic operations with, 11
checking values for, 38
comparing to, 35, 37
converting to numbers/strings, 11

Number class, 92, 103
constants of, 102–103
isFinite function, 102–103
isInteger function, 102
isNaN function, 35, 102–103
isSafeInteger function, 102–103
parseFloat, parseInt functions, 8–9, 46,

101–102
toExponential, toFixed, toPrecision methods,

100, 103
toLocaleString method, 171–172
toString function, 9, 82, 100, 103

number type (TypeScript), 273–275
number[] type (TypeScript), 273
numbers, 8–9, 99–100

comparing, 34
to other types, 36–37

converting:
from strings, 8, 36, 92, 101
to strings, 9, 11, 100

dividing by zero, 9
finding largest/smallest of, 103
formatting, 100, 167–168,

171–172
in regular expressions, 130
parsing, 101–102
random, 104, 259–260
removing fractional part of, 39
rounding, 8–9, 104
type tests for, 63

Nynorsk standard, 169

O
o, O, in octal literals, 99–100
obj.__proto__ notation, 80

Index318

Object class, 77
assign function, 226, 231
create function, 226, 231–232
defineProperties function, 226, 228
defineProperty function, 226–227, 239, 242
entries method, 226, 229
freeze function, 60, 226, 230
fromEntries function, 226, 231
getOwnPropertyXXX functions, 226, 228–230,

232, 239
getPrototypeOf function, 80, 226, 231–232,

239
hasOwnProperty method, 226, 230
is function, 35
isExtensible function, 226, 230, 239
isFrozen function, 226, 230
isPrototypeOf method, 226, 232
isSealed function, 226, 230
keys method, 226, 229, 239, 243–244
preventExtensions function, 226, 230, 239
propertyIsEnumerable method, 226, 230
prototype property, 44, 82
seal function, 226, 230
setPrototypeOf function, 80, 226, 231, 239
toLocaleString method, 170
toString method, 223–224
values method, 226, 229

object literals, 17
object-oriented programming languages,

77
inheritance in, 87

objects, 16–17, 77
array-like, 142
as map keys, 158
attaching properties to, 222
cloning, 232–234
comparing, 35
converting to numbers/strings, 11
creating, 231
destructuring, 22–24
hard, 59–60
immutable, 230
internal slots of. See prototypes
iterable, 42, 141
keys of, 221
nested, 23
properties of. See properties
protecting, 230
type variance of, 282–283
wrapper, 5

octal numbers, 62, 99
regular expressions for, 132

of function
of Array, 142, 164
of typed arrays, 161

of keyword, 8
offending tokens, 29
One True Brace Style (1TBS), 32
operators

arithmetic, 9–12
bitwise, 39
Boolean, 37–39
greedy, 136
shift, 39

ORM (object-relational mapper), 237

P
\p, \P, in regular expressions, 125
package statement, 8
package.json file, 217
padStart, padEnd methods (String), 118–119
parse function (Date), 109
parse method (JSON), 20, 47
parseFloat, parseInt functions (Number), 8,

101–102
invalid parameters for, 9, 46

pipelines, 193, 197
plurals, 178–179
polymorphism, 90
pop method (Array), 144, 146
pow function (Math), 104, 276
predefined character classes, 124–126
predicate functions, 57
preventExtensions function (Object), 226, 230,

239
primitive types, 5

controlling conversion on, 224–225
printf function (C), 101
private keyword, 8
private properties, 59
programming

asynchronous, 185–202, 259–260
functional, 51
generic, 297–304
object-oriented, 77

Promise class, 188–190
all method, 196, 201–202
any method, 197
catch method, 195, 197
fetch function, 192–193

319Index

loadImage function, 192
race method, 197
reject method, 189–191
resolve method, 189–191, 193–195
then method, 192–197

promises, 185, 188–202
making, 188–191
multiple:

chaining, 192–194
executing, 196
racing, 197

obtaining results of, 191–192
rejected, 190–191, 194–197, 202
settled, 190

immediately, 191
properties (of objects)

attributes of, 225–228
common to multiple objects, 79
descriptors of, 227
dynamic, 227, 244
enumerating, 228–229
iterating over, 43
testing, 229–230
writing to, 81

propertyIsEnumerable method (Object), 226, 230
protected keyword, 8
prototype property, 82, 235
prototype chain, 81, 88, 229, 231
[[Prototype]] internal slot, 82
prototypes, 78–81

accessing, 231
lookup mechanism of, 80–81
setting, 80
updating, 231

proxies, 237–239
checking return values of, 242
invariants for, 242–244

Proxy.revocable function, 239
public keyword, 8
punctuation, in regular expressions, 130
push method (Array), 144, 146

Q
QED text editor, 124
querySelectorAll method (Document), 250

R
\r, in regular expressions, 125
race method (Promise), 197
random function (Math), 104

random numbers, 104, 259–260
RangeError, 162
raw property (String), 122
readonly property (TypeScript), 285, 303
reduce method (Array), 153–156
reduceRight method (Array), 153, 155
reduction, 153–156
ReferenceError, 62, 68
Reflect class, 240–242

functions of, 239, 242
RegExp class, 127, 130–131

exec method, 130–131, 133–134
flags property, 133
groups property, 133
lastIndex property, 131
test method, 130, 133

regular expression literals, 127
regular expressions, 123–127

and Unicode, 129–130
character classes in, 124–126
flags in, 127–128
for numbers, 101
groups in, 131–133
lookahead/lookbehind operators in, 137
reserved characters in, 123–125

reject method (Promise), 189–191
repeat method (String), 118–119
REPL (“read-eval-print” loop), 28
replace method

of String, 120, 134–136
of Symbol, 223

resolve method (Promise), 189–191, 193–195
resolvedOptions method (Intl.Collator), 181
rest declarations, 23–24, 64–66
return method (iterators), 252–253, 258
return statement, 7

in arrow functions, 55
in function declarations, 52–53
semicolon insertion in, 30, 53

reverse method (Array), 145–146
revocable method (Proxy), 239
round function (Math), 104
roundoff errors, 8
run-time errors, 6
Russian language, 178–179

S
s flag, in regular expressions, 128
\s, \S, in regular expressions, 124, 126
script element (HTML), 217

Index320

seal function (Object), 226, 230
search method

of String, 120, 134, 136
of Symbol, 223

select method (Intl.PluralRules), 178
semicolon insertion, 28–31, 53
Set class, 158–159

add method, 158
delete method, 158
entries method, 159
forEach method, 159
generic, 298
keys method, 159
size property, 158
values method, 159

set keyword, 8, 85, 227–228
set method

of Map, 157
of typed arrays, 162
of WeakMap/WeakSet, 160

setIntXXX, setUIntXXX, setFloatXXX methods
(DataView), 163

setPrototypeOf function (Object), 80, 226, 231,
239

sets, 158–159
constructing, 158, 250
iterating over, 250
order of entries in, 159
weak, 160

setters, 85, 228
overriding, 90
static, 87

setTimeout function, 57
shift method (Array), 144, 146
shift operators, 39
sign function (Math), 104
sin, sinh functions (Math), 104
size property

of Map, 157
of Set, 158

slice method
of Array, 147–148, 225
of String, 117, 119

sloppy mode, 62, 69, 74
some method (Array), 147, 149–151
sort method (Array), 145–147, 152, 176
species field (Symbol), 222–223, 225
splice method (Array), 144–146, 225
split method

of String, 117, 120, 135

of Symbol, 223
spread operator, 65–66, 115, 231, 250

for cloning, 232
sqrt function (Math), 104, 276
stack trace, 71
startsWith method (String), 116, 119
statements, 27–29

block, 32
conditional, 31
control flow, 30–33
expression, 28
terminated with semicolons, 29–31

static keyword, 8, 86–87
sticky property (RegExp), 128, 131, 133
strict equality, 35
strict mode, 61–62, 67–69

creating variables in, 7
enabling, 61
for classes, 84
for modules, 217
forbidden keywords in, 8
missing new operator in, 92
octal numbers in, 99, 132
property attributes in, 227

String class
concat method, 119
endsWith method, 116, 119
fromCodePoint function, 115, 119
includes method, 116, 119
indexOf method, 116, 119, 136
lastIndexOf method, 116, 119
localeCompare method, 147, 176–178
match, matchAll methods, 120, 131, 134
normalize method, 178
padStart, padEnd methods, 118–119
raw property, 122
repeat method, 118–119
replace method, 120, 134–136
search method, 120, 134, 136
slice method, 117, 119
split method, 117, 120, 135
startsWith method, 116, 119
substring method, 116
toLocaleXXXCase methods, 177
toLowerCase, toUpperCase methods, 118,

120
trim, trimStart, trimEnd methods, 118–119

string literals, 13–15
string type (TypeScript), 274–275
stringify method (JSON), 20

321Index

strings
comparing, 35, 176
concatenating, 10–11, 119, 270
converting:

from arrays, 11, 19, 151
from numbers, 9, 100
from/to code points, 115
to numbers, 8, 11, 36, 92, 101

extracting substrings from, 9
iterating over, 42, 44, 250
length of, 118–119
numeric, 177
patterns for. See regular expressions
replacing, 120
sorting, 176–177
type tests for, 63
with embedded expressions. See template

literals
working with locales, 177–178

strong element (HTML), 121
subarray method

of Array, 225
of typed arrays, 162

subclasses, 87–89
overriding methods in, 89–90

substring method (String), 116–117
substrings, 116–117
super keyword, 7, 90–91
superclasses, 87

constructors of, 237
overriding methods of, 89–90

supportedLocalesOf method (Intl.XXX), 180
switch statement, 7, 39–40
Symbol class, 221

asyncIterator field, 223
for method, 222
hasInstance field, 223
isConcatSpreadable field, 223
iterator field, 222–223, 250–253
match, matchAll fields, 223
replace field, 223
search field, 223
species field, 222–223, 225
split field, 223
toPrimitive field, 223–225
toStringTag field, 223

symbol type (TypeScript), 274–275
symbols, 221–222

creating, 221
global, 222

in regular expressions, 130
properties of, 223
uniqueness of, 222

T
T, in dates, 106
\t, in regular expressions, 125
tag functions, 121
tan, tanh functions (Math), 104
target keyword, 8
template literals, 12, 15–16

raw, 122–123
tagged, 16, 121–122

test method (RegExp), 130, 133
Thai numerals, 168–169
then method (Promise), 192–197
this reference, 7, 78, 92–95

and calls to super, 90
binding, 236
for object properties, 85
in constructor functions, 81–83
in TypeScript, 286
vs. captured variables, 60
with arrays, 151

threads, 185
throw method (iterators), 258–259
throw statement, 7, 70

semicolon insertion in, 30
time

current, 107–109
daylight savings, 106
formatting, 175
local, 107–109
localizing, 172, 175
measuring, 105
representing in computer, 106

time-consuming operations, 186
timeout, 57
™ (trademark symbol), 178
toExponential, toFixed, toPrecision methods

(Number), 100, 103
toLocaleString method

of Number, 171–172
of Object, 170

toLocaleXXXCase methods (String), 177
toLowerCase, toUpperCase methods (String), 118,

120
toPrimitive field (Symbol), 223–225
toString method

of Date, 110

Index322

of Number, 9, 82, 100, 103
of Object, 223–224

toStringTag field (Symbol), 223
toXXXString methods (Date), 107, 110
trailing comma

in arrays, 19
in object literals, 17

trap functions, 238–242
trigonometric functions, 104
trim, trimStart, trimEnd methods (String),

118–119
true value, 7, 12, 34
trunc function (Math), 9, 104
try statement, 7, 46–47, 70–73

with promises, 190, 200
tsconfig.json file, 272–273
type annotations, 270–271
type parameters, 297
type variance, 282–283

generic, 302
of functions, 293–295

typeof operator, 5, 7, 105
in TypeScript, 274, 279
with arrays, 19
with regular expressions, 127
with symbols, 222

types, 5
comparing, 36–37
controlling conversion on, 224–225
generic, 297–298
inference of, 277–280
of function parameters, 52, 62–63
testing, 63

TypeScript, 269–304
classes in, 284–287

declaring, 284–285
instances of, 285–286
static types of, 286–287

composite types in, 273, 275–277
number[], 273, 275
string[], 275
union, 270, 273, 276, 279, 296

conditional types in, 303
covariance in, 283
enumerated types in, 275
functions in, 276

destructuring parameters of, 292–293
overloading, 296–297
type guard, 279
type variance of, 293–295

in statement in, 279
index signatures in, 290–291
instanceof operator in, 279, 301
interfaces in, 288–290
intersection types in, 276
mapped types in, 303–304
object types in, 276
optional parameters in, 291–292
optional/excess properties in, 281–282
primitive types in, 273–275
private/protected modifiers in, 285
running, 271–273
substitution rule in, 280–281
tuple types in, 275
type aliases in, 273
type assertion in, 279
type bounds in, 299–300
type erasures in, 300–301
type inference in, 277
type parameters in, 297–304
type variance in, 302
typeof operator in, 274, 279

U
u flag, in regular expressions, 128–129
\u{. . .} notation, of code points, 14

in regular expressions, 125, 129
UintXXXArray classes, 160–161
undefined type (TypeScript), 274–275
undefined value, 6, 9, 12–13

arithmetic operations with, 11
as function return value, 52
assigning new values to, 61
checking values for, 38
comparing to, 35
converting to:

Boolean, 12, 34
numbers/strings, 11

for function parameters, 64
undefined variable, 13
unicode property (RegExp), 128–129, 133
Unicode, 14

combined characters in, 178
in regular expressions, 128–130
normalization forms in, 178

union type (TypeScript), 270, 273, 276, 279,
296

unknown type (TypeScript), 274–275
unqualified identifiers, 61
unshift method (Array), 144, 146

323Index

uppercase letters
converting to, 118, 120
in regular expressions, 130

URLs
\ (backslashes) in, 122
for modules, 211
safe characters for, 120

UTC (Coordinated Universal Time), 106,
109

UTC function (Date), 107, 109
UTF-16 encoding, 116

in regular expressions, 129–130

V
\v, in regular expressions, 125
values

default, 38
finding type of, 5
iterable, 141, 249–250

values method
objects returned by, 250
of Map, 158
of Object, 226, 229
of Set, 159

var statement (obsolete), 7
and scope of variables, 67–69
with closures, 68, 74

variable declarations, 6–7, 27
variables

captured, 58–60
default values of, 24
free, in functions, 57–58
initializing, 6, 12
local, 59, 67–69
naming, 7–8
never chaining, 6
scope of, 67–69
storing functions in, 53
undeclared, 61–62
untyped, 6

Visual Studio Code development
environment, 4, 272

void keyword, 7
void type (TypeScript), 274–275

W
\w, \W, in regular expressions, 124,

126
weak equality, 35–37
WeakMap class, 160

generic, 298
WeakSet class, 160
web servers, local, 187
WebSocket API, 163
WebStorm development environment,

4
while statement, 7, 40–41
whitespace

in regular expressions, 130
leading/trailing, 118–119

with statement, 7, 62
wrapper objects, 5

X
x, X, in hexadecimal literals, 99–100
\x, in regular expressions, 125
XMLHttpRequest class, 186, 259

yielding array buffers, 163

Y
y flag, in regular expressions, 128, 131
yield statement, 8, 250, 254

nested, 255–257
semicolon insertion in, 30
shallowness of, 255
with consumers, 257–259

Z
Zawinski, Jamie, 137
zero. See 0

Index324

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Contents
	Preface
	About the Author
	3 FUNCTIONS AND FUNCTIONAL PROGRAMMING
	3.1 Declaring Functions
	3.2 Higher-Order Functions
	3.3 Function Literals
	3.4 Arrow Functions
	3.5 Functional Array Processing
	3.6 Closures
	3.7 Hard Objects
	3.8 Strict Mode
	3.9 Testing Argument Types
	3.10 Supplying More or Fewer Arguments
	3.11 Default Arguments
	3.12 Rest Parameters and the Spread Operator
	3.13 Simulating Named Arguments with Destructuring
	3.14 Hoisting
	3.15 Throwing Exceptions
	3.16 Catching Exceptions
	3.17 The finally Clause
	Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

