Contents at a glance

Introduction ix
Important: How to use this book to study for the exam xiii

<table>
<thead>
<tr>
<th>CHAPTER 1</th>
<th>Understand cloud concepts</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 2</td>
<td>Understand core Microsoft 365 services and concepts</td>
<td>21</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>Understand security, compliance, privacy, and trust in Microsoft 365</td>
<td>101</td>
</tr>
<tr>
<td>CHAPTER 4</td>
<td>Understand Microsoft 365 pricing and support</td>
<td>167</td>
</tr>
</tbody>
</table>

Index 215
This page intentionally left blank
Skill 2.2: Compare core services in Microsoft 365 with corresponding on-premises services .. 35
 Deployment .. 35
 Updates .. 35
 Cost .. 35
 Administration .. 36
 Security .. 38
 Service comparisons .. 38
Skill 2.3: Understand the concept of modern management 42
 Transitioning to modern management .. 43
 Windows as a Service .. 44
 Using the Microsoft 365 portals .. 46
 Understanding the Microsoft deployment and release model 49
Skill 2.4: Understand Office 365 ProPlus .. 59
 Comparing Office 365 ProPlus with on-premises Office 61
 Deploying Office .. 63
Skill 2.5: Understand collaboration and mobility with Microsoft 365 66
 Microsoft 365 collaboration tools .. 67
 Collaborating in Microsoft 365 .. 78
 Enterprise mobility .. 84
Skill 2.6: Describe analytics capabilities in Microsoft 365 87
 Microsoft Advanced Threat Analytics .. 88
 Microsoft 365 Usage Analytics .. 92
 MyAnalytics .. 94
 Workplace Analytics .. 96
Summary ... 99
Thought experiment ... 99
Thought experiment answer ... 100

Chapter 3 Understand security, compliance, privacy, and trust in Microsoft 365 101
Skill 3.1: Understand security and compliance concepts with Microsoft 365 .. 101
 Risk management .. 103
 Key security pillars .. 112
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skill 4.4: Understand the service lifecycle in Microsoft 365</td>
<td>208</td>
</tr>
<tr>
<td>Summary</td>
<td>212</td>
</tr>
<tr>
<td>Thought experiment</td>
<td>212</td>
</tr>
<tr>
<td>Thought experiment answer</td>
<td>213</td>
</tr>
</tbody>
</table>

Index

215
Introduction

The Microsoft 365 Certified Fundamentals certification is the initial entry point into a hierarchy of Microsoft 365 certifications. The MS-900 Microsoft 365 Fundamentals exam tests the candidate's knowledge of the components and capabilities of the Microsoft 365 products without delving into specific administrative procedures. With the Fundamentals certification in place, IT pros can then move up to Associate level certifications that concentrate on specific areas of Microsoft 365 administration, such as messaging, security, desktop, and teamwork. The ultimate pinnacle in the hierarchy is the Enterprise Administrator Expert certification, achievable by passing the MS-100 and MS-101 exams.

This book covers all the skills measured by the MS-900 exam, with each of the four main areas covered in a separate chapter. Each chapter is broken down into individual skill sections, which cover all the suggested topics for each skill. It is recommended that you access a trial version of Microsoft 365 as you work your way through this book. Nothing can replace actual hands-on experience, and Microsoft provides a fully functional evaluation platform of Microsoft 365 Enterprise—all the components of which are accessible in the cloud and require no hardware other than a computer with Internet access. Microsoft also provides a wealth of documentation for all the Microsoft 365 components at docs.microsoft.com. With these tools, as well as some time and dedication, you can prepare yourself for the MS-900 exam and the first step toward your Microsoft 365 career.
Microsoft certifications

Microsoft certifications distinguish you by proving your command of a broad set of skills and experience with current Microsoft products and technologies. The exams and corresponding certifications are developed to validate your mastery of critical competencies as you design and develop, or implement and support, solutions with Microsoft products and technologies both on-premises and in the cloud. Certification brings a variety of benefits to the individual and to employers and organizations.
Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion content. You can access updates to this book—in the form of a list of submitted errata and their related corrections—at:
This page intentionally left blank
Important: How to use this book to study for the exam

Certification exams validate your on-the-job experience and product knowledge. To gauge your readiness to take an exam, use this Exam Ref to help you check your understanding of the skills tested by the exam. Determine the topics you know well and the areas in which you need more experience. To help you refresh your skills in specific areas, we have also provided “Need more review?” pointers, which direct you to more in-depth information outside the book.

The Exam Ref is not a substitute for hands-on experience. This book is not designed to teach you new skills.
This page intentionally left blank
About the Author

Craig Zacker is the author or coauthor of dozens of books, manuals, articles, and websites on computer and networking topics. He has also been an English professor, a technical and copy editor, a network administrator, a webmaster, a corporate trainer, a technical support engineer, a minicomputer operator, a literature and philosophy student, a library clerk, a photographic darkroom technician, a shipping clerk, and a newspaper boy. He lives in a little house with his beautiful wife and a neurotic cat.
This page intentionally left blank
CHAPTER 1

Understand cloud concepts

The cloud is one of the biggest buzzwords ever to emerge from the IT industry, but it is a term that is difficult to define in any but the most general terms. For a simple definition, you can say that the cloud is an Internet-based resource that provides subscribers with various types of IT services on demand. For users, the cloud enables them to run applications, stream video, download music, read email, and perform any number of other tasks, all without having to worry about where the servers are located, what resources they utilize, how much data is involved, and—in most cases—whether the service is operational. Like the electricity or the water in your house, you turn it on, and it is there—most of the time. For IT professionals, however, defining the cloud can be more difficult.

Skills in this chapter:

- Detail and understand the benefits and considerations of using cloud services
- Understand the different types of cloud services available

Skill 1.1: Detail and understand the benefits and considerations of using cloud services

System administrators, software developers, database administrators, and user-support personnel all see the cloud in a different light and use it for different purposes. Cloud providers, such as Microsoft, Google, and Amazon, typically offer a wide variety of resources and services. They can provide virtualized hardware, such as servers, storage, and networks; software in the form of back-end server and user applications; as well as tools for messaging, content management, collaboration, identity management, analytics, and others. Services are provided on an à la carte basis, with the subscribers only paying for what they use.

This section covers how to:

- Understand cloud services
- Understand the advantages of cloud computing
Understanding cloud services

Different types of IT professionals understand the cloud in different ways. For a system administrator, the cloud can provide virtual machines that function as servers, in place of or alongside physical servers in the organization’s data center. For software developers, the cloud can provide a variety of preconfigured platforms and development environments for application deployment and testing. For a database administrator, the cloud can provide complex storage architectures and preconfigured database management solutions. Cloud services can then organize the data and use artificial intelligence to develop new uses for it. For user support technicians, the cloud can provide productivity applications and other software, such as Office 365, that are more easily deployed than standalone applications, automatically updated on a regular basis, and accessible on any device platform.

In each of these specializations, cloud services can eliminate the tedious set-up processes that administrators often have to perform before they can get down to work. For example, the process of adding a new physical server to a data center can require many separate tasks, including assessing the hardware needs, selecting a vendor, waiting for delivery, assembling the hardware, and installing and configuring the operating system and applications. These tasks can result in days or weeks wasted before the server is even ready for use. With a cloud provider, the process of adding a new virtual server takes only a matter of minutes. A remote management interface, such as the Windows Azure portal shown in Figure 1-1, enables the subscriber to select the desired virtual hardware resources for the server, and within a few minutes, the new server is running and ready for use.

FIGURE 1-1 The Create a Virtual Machine interface in the Windows Azure Portal
Advantages of cloud computing

When an organization is building a new IT infrastructure or expanding an existing one, the question of whether to use on-premises resources or subscriber-based cloud services is a critical decision to make these days. Cloud-based services might not be preferable for every computing scenario, but they can provide many advantages over on-premises data centers. When designing an IT strategy, a business should consider both the practical needs of the organization, including data security and other business factors, as well as the relative costs of the required services.

Some of the advantages that cloud computing can provide are discussed in the following sections.

Economy

Cloud services incur regular charges, but the charges are usually based solely on the subscribers’ needs and what they use at a particular time. The monetary savings that result from using cloud services can be significant. Some of the expenses that can be reduced or eliminated by using cloud services include the following:

- **Hardware** The high-end server hardware used by a large enterprise, aside from the standard computer components, can include elaborate storage arrays and other hardware that is an expensive initial outlay before any actual work starts. The fees for equivalent virtualized hardware in the cloud are amortized over the life of the project for which it is used.

- **Upgrades** In a large enterprise, servers and other hardware components have a documented life expectancy, after which they must be replaced. Cloud hardware is virtual, so the subscriber is isolated from the maintenance costs of the provider’s physical hardware. Those costs are, of course, factored into the price of the service, but they eliminate another substantial hardware outlay for the subscriber.

- **Software** Software licenses are a significant expense, especially for server-based products. In addition to operating systems and applications, utility software for firewalls, antivirus protection, and backups adds to the expenditure. As with hardware, software furnished on a subscription basis by a cloud provider requires little or no initial outlay. Typically, cloud-based software also includes updates applied by the provider on a regular basis.

- **Environment** Outfitting a large data center often involves much more expenditure than the cost of the computer hardware alone. In addition to the cost of the square footage, a data center typically needs air conditioning and other environmental controls, electricity and power regulation equipment, racks and other mounting hardware, network connectivity equipment, and a physical security infrastructure. Depending on the needs of the organization, these costs can range from significant to astronomical. None of these expenses are required for cloud-based services, although their costs are certainly factored into the fees paid by the subscriber.

- **Network** A data center requires an Internet connection and may also require cross-connections between locations within the data center. The size and functionality of the data center determine how much throughput is required and what technology
can best supply it. More speed costs more money, of course. Cloud-based resources eliminate this expense because connectivity is part of the service. Internet access is still required to administer the cloud resources, but the amount of data transferred is relatively small.

Redundancy

Depending on the needs of the organization, fault tolerance can take the form of backup power supplies, redundant servers, or even redundant data centers in different cities, which can cause the operational costs to grow exponentially. Typically, cloud providers can provide these various types of fault tolerance at a substantial savings. A contract with a cloud provider can include a service level agreement (SLA) with an uptime availability percentage that insulates the subscriber from the actual fault tolerance mechanisms employed and simply guarantees that the contracted services will suffer no more than a specified amount of downtime. For example, a contract specifying 99 percent uptime (colloquially called a _two nines contract_) allows for 3.65 days of downtime per year. A 99.9 percent (or _three nines_) contract allows for 8.76 hours of downtime per year. Contract stipulations go up from there, with the cost rising as the allowed downtime goes down. A 99.9999 percent (or _six nines_) contract allows only 31.5 seconds of downtime per year. Typically, if the provider fails to meet the uptime percentage specified in the SLA, the contract calls for a credit toward part of the monthly fee.

Personnel

A data center requires trained people to install, configure, and maintain all the equipment. While cloud-based service equivalents do require configuration and maintenance performed through a remote interface, the elimination of the need for hardware maintenance greatly reduces the manpower requirements.

The costs of cloud-based services are not insignificant, but the nature of the financial investment is such that many organizations find them to be more practical than building and maintaining a physical data center. The initial outlay of cloud services is minimal, and the ongoing costs are easily predictable.

Consolidation

Originally, IT departments provided services to users by building and maintaining data centers that contained servers and other equipment. One of the problems with this model was that the servers often were underutilized. To accommodate the increased workload of the “busy season,” servers were often built with resources that far exceeded their everyday needs. Those expensive resources therefore remained idle most of the time. Virtual machines (VMs), such as those administrators can create using products like Microsoft Hyper-V and VMware ESX, are a solution to this problem. Virtual machines make it possible to consolidate multiple servers into one physical computer. Administrators can scale virtual machines by adding or subtracting virtualized resources, such as memory and storage, or they can move the virtual machines from one physical computer to another, as needed.

Cloud providers use this same consolidation technique to provide subscribers with virtual machines. For example, when a subscriber to Microsoft Azure creates a new server, what actually happens is that the Azure interface creates a new virtual machine on one of Microsoft’s physical servers. The subscriber has no access to the underlying physical computer hosting the VM, nor
does the subscriber even know where the computer is physically located. The virtual machines on the physical server are completely isolated from each other, so if even the fiercest competitors were to have VMs running on the same host computer, they would never know it. The provider can—and probably does—move VMs from one host computer to another when necessary, but this process is completely invisible to the subscribers.

The end result of this consolidation model is that each VM receives exactly the virtual hardware resources it needs at any particular time. Subscribers pay only for the virtualized resources they are using. Nothing goes to waste.

Scalability

Business requirements change. They might increase or decrease over a course of years, and they might also experience regular cycles of activity that are seasonal, monthly, weekly, or even daily. A physical data center must be designed to support the peak activity level for the regular business cycles and also anticipate an expected degree of growth over several years. As mentioned earlier, this can mean purchasing more equipment than the business needs for most of its operational time, leaving that excess capacity often underused.

Cloud-based services avoid these periods of underutilization by being easily scalable. Because the hardware in a virtual machine is itself virtualized, an administrator can modify its resources through a simple configuration change. An on-premises (that is, noncloud) virtual machine is obviously limited by the physical hardware in the computer hosting it and the resources used by other VMs on the same host. In a cloud-based VM, however, these limitations do not apply. The physical hardware resources are invisible to the cloud subscriber, so if the resources the subscriber desires for a VM are not available on its current host computer, the provider can invisibly move the VM to another host that does have sufficient resources.

A cloud-based service is scalable in two ways:

- **Vertical scaling** Also known as *scaling up*, vertical scaling is the addition or subtraction of virtual hardware resources in a VM, such as memory, storage, or CPUs. The scaling process is a simple matter of adjusting the VM’s parameters in a remote interface; it can even be automated to accommodate regular business cycles. Therefore, the subscriber pays only for the resources that the VMs are actually using at any given time.

- **Horizontal scaling** Also known as *scaling out*, horizontal scaling is the addition or subtraction of virtual machines to a cluster of servers running a particular application. For example, in the case of a cloud-based web server farm, incoming user requests can be shared among multiple VMs. If the web traffic should increase or decrease, the administrators can add or subtract VMs from the cluster, as needed.

Reliability

In an on-premises data center, data backup, disaster recovery, and fault tolerance are all expensive services that require additional hardware, deployment time, and administration. A small business might require only a backup storage medium and software. However, for businesses with highly critical IT requirements, these services can call for anything up to duplicate data centers in different cities with high-speed data connections linking them.
In the case of a large-scale cloud provider, however, this is exactly what their infrastructure entails. Therefore, cloud providers are in an excellent position to provide these elaborate services without the need for infrastructure upgrades, and they often can do it for fees that are much less than would be required for businesses to provide them themselves.

For example, Microsoft Azure provides the following reliability mechanisms for its cloud-based services:

- Azure maintains three redundant copies of all data, with one of those copies located in a separate data center.
- Azure provides automatic failover to a backup server to minimize downtime in the event of an outage.
- Azure hosts all applications on two separate server instances to minimize downtime caused by hardware failure.

Manageability

Because subscribers do not have physical access to the servers hosting their cloud services, they must access them remotely. This is common for organizations with on-premises servers as well, particularly those with large data centers. It is often far more convenient for administrators to access servers from their desks than travel to a data center that might be on another floor, in another building, or even in another city. Today’s remote management typically provides comprehensive and reliable access to all server functions.

There are various remote management tools available for both cloud and on-premises resources, but the large third-party cloud providers typically provide a secured web-based portal that enables administrators to access all their subscription services using one interface, such as the one for Microsoft Azure shown in Figure 1-2.

![The management interface in the Windows Azure Portal](image)

FIGURE 1-2 The management interface in the Windows Azure Portal
A web-based portal enables administrators to access their services from any location, including from home or while traveling.

Security
Security is a major issue for any data center, which administrators typically address by concerning themselves with issues such as data loss and unauthorized access. These are important concerns whether the data center is local or virtual. However, in the case of an on-premises data center, there is another potential attack vector: the physical. Servers and other equipment can be stolen outright, damaged by fire or other disasters or physically accessed by intruders. Therefore, there are additional security measures that might be required, such as door locks, surveillance equipment, access credentials, or even manned security checkpoints.

Cloud-based services eliminate the need for physical security, which is furnished by the provider. There is still the issue of software-based security, however, and cloud providers nearly always provide an array of controls and services that enable you to harden the security of your servers and applications to accommodate your business needs.

NOTE YOU ARE ALWAYS RESPONSIBLE FOR YOUR DATA
Organizations using cloud resources to implement their servers must be conscious of the fact that they are still responsible for the security and privacy of their data. For example, if an organization stores patient medical records on a cloud-based file server, the organization remains responsible for any data breaches that occur. Therefore, contracts with cloud providers should stipulate the security policies they must maintain.

Infrastructure
In an on-premises data center, the administrators are responsible for all aspects of the servers and other equipment, including hardware installation and maintenance, operating system configuration and updates, and application deployment and management. Cloud-based services enable subscribers to specify which elements of the infrastructure they are responsible for maintaining.

For example, a subscriber can contract with a provider for a virtual machine running a server operating system, so that the subscriber is responsible for the entire operation and maintenance of the server. The subscriber does not have direct access to the physical hardware of the host system, of course, but he or she does have control over the virtual hardware on which the server runs, as well as all the software running on the server, including the operating system. In some situations, this is desirable, or even essential.

In other situations, cloud-based services can take the form of preinstalled server platforms or applications. In this case, the subscriber might have limited access to the server or no access at all. In the case of a subscriber contracting for Microsoft Exchange Online, the provider grants the subscriber with administrative access to the Exchange Server application, but it does not
grant subscriber access to the underlying operating system on which the server application is running. For an Office 365 subscriber, the provider grants access only to the Office applications themselves. The subscriber knows nothing about the servers on which the applications are running or their operating systems.

These options enable cloud service subscribers to exercise administrative responsibility over specific components only in situations in which their business requirements demand it. For the elements administered by the service provider, contracts typically stipulate hardware maintenance requirements and software update policies. The end result can be substantial savings in time and training for the subscriber’s in-house IT personnel.

Alleged Disadvantages of Cloud Computing

There are some IT professionals who persist in stating that cloud-based services are inferior to on-premises services. They might say that an on-premises data center is more secure, more reliable, provides greater access to equipment, or suffers less downtime. While one cannot say that the cloud is always a preferable solution, these arguments mostly date from a time when the cloud was a new and immature technology. They have now largely been debunked by years of proven performance.

There are still reasons why businesses can and should maintain on-premises data centers. For example, they might have special security requirements, or they might have already made a large investment in facilities and equipment. However, each year sees a greater percentage of servers deployed in the cloud and clients accessing cloud-based services. Microsoft 365 is the next step in bringing the cloud to the desktop productivity environment.

Skill 1.2: Understand the different types of cloud services available

Flexibility is an important aspect of cloud computing, and Microsoft 365 can accommodate a wide variety of IT environments. While some organizations might be building a Microsoft 365 deployment from scratch, others might have existing infrastructure that they want to incorporate into a Microsoft 365 solution. Before it is possible to explore how this can be done, it is important to understand the various types of cloud architectures and service models.

This section covers how to:
- Position Microsoft 365 in a SaaS, IaaS, PaaS, Public, Private, and Hybrid scenario

Cloud architectures

Organizations today use cloud resources in different ways and for various reasons. A new business or division of a business might decide to build an entirely new IT infrastructure using
only cloud-based resources. Meanwhile, a business that has already invested in a traditional IT infrastructure might use the cloud for expansions or for the addition of selected services. Organizations planning their infrastructures can use any of the three cloud architecture permutations described in the following sections.

Public cloud

A public cloud is a network of servers owned by a third-party service provider at a remote location, which provides subscribers with access to virtual machines or services through the Internet, often for a fee. Prices are based on the resources or services you use. Microsoft Azure, Amazon Web Services, and Google Cloud are all examples of public cloud service providers that organizations use to host their virtual machines and access other services.

NOTE PUBLIC DOES NOT MEAN UNPROTECTED

The term public cloud is something of a misnomer; it does not mean that the virtual machines an organization creates in a provider’s cloud are public—that is, open to access by anyone. It means only that the provider furnishes services to the public by subscription, which are accessible from any location at any time via the Internet.

These major players in the public cloud industry maintain thousands of servers in data centers located around the world. They can accommodate large enterprise clients by providing services on a global scale. There are other, smaller cloud providers offering the same services, which might not be able to function on such a massive scale, but these can have their advantages as well. Because the cloud service providers are responsible for managing and maintaining the physical servers, the subscribers save a great deal of time, expense, and human resources.

There are two basic types of public cloud deployment that organizations can use, as follows:

- **Shared public cloud** Subscribers access services that a third-party provider implements on hardware that might be used by other subscribers at the same time. For example, a physical host server at a provider site can run virtual machines belonging to different subscribers simultaneously, as shown in Figure 1-3. The VMs are secured individually and functionally isolated from each other. This is what is typically meant by a public cloud.

- **Dedicated public cloud** Subscribers contract with a third-party provider for a hardware infrastructure that is dedicated to their exclusive use. (See Figure 1-4.) The services provided are the same as those in a shared public cloud; the only difference is the hardware the provider uses to furnish the services. Obviously, this arrangement is more expensive than a shared public cloud, but some organizations need the additional security and fault tolerance provided by having hardware dedicated to their own use.
CHAPTER 1
Understand cloud concepts

FIGURE 1-3 Virtual servers running in a shared public cloud

FIGURE 1-4 Virtual servers running in a dedicated public cloud
Therefore, the term *public cloud* can refer to a provider that enables businesses to build their IT networks virtually instead of physically. Microsoft 365 subscribers can make use of these services to implement all or part of their productivity infrastructure. However, this is not the only function of the public cloud. When people stream movies to their televisions, use web-based banking services, access their email online, or use the Office 365 productivity applications, they are using public cloud providers. The difference in these cases is that the provider is furnishing specific services instead of an IT infrastructure.

Private cloud

A *private cloud* is a network of servers owned and operated by a business solely for its own use. While the services can be the same and appear identical to their end users, the primary difference is that the organization has control over the physical hardware as well.

In a public cloud deployment of an IT infrastructure, either the subscriber creates virtual machines on the provider’s servers and uses them to install and run specific applications or contracts with the provider for access to services running on the provider’s own virtual machines. A private cloud deployment usually works in much the same way. The organization still creates and utilizes virtual machines to run its applications in most cases, but it creates those virtual machines on physical host servers that it owns.

Another variation on the private cloud is the *hosted private cloud*, in which hardware that is owned or leased by an organization is housed and managed by a third-party provider. The organization has exclusive use of the hardware and avoids the expenses of building and managing a data center. They do have to pay ongoing fees to the provider, and this arrangement might not satisfy all data storage stipulations, but the overall cost is likely to be less than an on-premises private cloud.

NOTE PRIVACY CLOUDS AND INTERNET TRAFFIC

The term *private cloud* can be something of an oxymoron. Typically, the definition of the cloud includes access to services over the Internet. In a public cloud, both administrative and user access to the cloud resources are through the Internet. While a private cloud can provide users and administrators with access to services via the Internet, it typically does not use the Internet when the administrators and users are located at the same site as the data center housing the cloud.

When a large enterprise maintains facilities at multiple locations, users at all those facilities can access a private cloud using the Internet. However, a small- or medium-sized organization running Microsoft 365 Business at a single location can conceivably run what is technically called a private cloud without the need for user and administrator traffic to ever leave the facility.

The private cloud architecture can provide a level of security and privacy that a public cloud provider might not be able to meet. An organization might have government contract
stipulations or legal requirements that compel them to maintain their own hardware and store
sensitive data on site rather than use third-party hardware that is not subject to the same
stipulations or requirements. For example, the Health Insurance Portability and Accountability
Act (HIPAA) dictates how medical data must be secured and protected in the United States.
Whether a third-party cloud provider is involved, a company is legally responsible for all the
data stored on its servers. An organization might also need to run a legacy application that
requires a specific hardware or software configuration that a third-party provider cannot
supply.

A private cloud also provides a greater degree of customization than public cloud resources.
Public cloud providers are successful because of the scale of their businesses; their services
are configurable using the options that are most desired by most of their clients. They are not
likely to provide access to obscure software options that only a few of their clients will need. In
the case of a private cloud, an organization has access to any and all the customization options
provided by the software they choose to install.

EXAM TIP
The difference between a private cloud and a dedicated public cloud is who owns and
operates the hardware. Exam candidates should be aware that some documentation uses
the term private cloud, instead of dedicated public cloud, to describe hardware owned and
operated by a third-party provider for the exclusive use of one subscriber.

The advantages of a private cloud are its disadvantages as well. The owner of the hardware
is responsible for purchasing, housing, deploying, and maintaining that hardware, which can
add greatly to the overall expense, as described earlier in this chapter. There are no ongoing
subscriber fees for a private cloud, as there are with a public cloud provider, but there are
ongoing fees for operating a data center, including floor space, power, insurance, and
personnel.

The organization is also responsible for purchasing and maintaining licenses for all the
software products needed to provide the necessary services. This can include operating system
licenses, application server licenses, and user licenses, as well as the cost of additional software
utilities. Typically, the overall costs of a private cloud infrastructure are higher than that of a
public cloud and can be enormously higher. It is up to the organization to determine whether
the advantages of the private cloud are worth the additional expense.

Hybrid cloud
A hybrid cloud combines the functionality of a public and a private cloud, enabling an
organization to enjoy the best of both architectures. There are a variety of scenarios in which
an organization might prefer to implement a hybrid cloud architecture.

If an organization has existing services implemented on its own physical hardware, it might
want to maintain those services while adding others from a public cloud provider. For example,
the organization might have reached the physical capacity of its own data center and does not
want to invest in a major facility expansion.
An organization might also use public cloud resources to extend the capacity of its private cloud or its in-house network during temporary periods of greater need, such as seasonal business increases. This technique, called cloud bursting, eliminates the need for the organization to pay for hardware and other resources that are only required for brief periods of time. Because it is possible to connect the public and private services, the resources can interact in any way that is necessary. For example, a business with an e-commerce website implemented in a private cloud can add public cloud-based servers to its web server farm to accommodate the increase in traffic during its Christmas busy season.

Another possibility is that an organization might be subject to the type of data storage or other security requirements described in the previous section, but they do not want to build out their entire infrastructure in a private cloud. In this scenario, the organization could conceivably deploy a database containing the sensitive data in a private cloud and use a public cloud provider for a website implementation that is linked to the database. This way, the network can comply with the storage requirements without having to go to the expense of deploying web servers and other services in the private cloud. The same is true for a variety of other services; organizations can keep their sensitive data and services in the private cloud and use the public cloud for the nonsensitive services. Organizations can also use private cloud resources to run legacy equipment or applications, while all the other services run on a less expensive public cloud.

Some cloud providers supply tools that enable administrators to manage their public and private cloud resources through a single interface. Microsoft Azure provides Azure Active directory, for example, which enables a subscriber to use the same directory service for public and private cloud resources, so that administrators can access both with a single sign-on. Azure also provides management and security interfaces, both of which have built-in support for hybrid cloud architectures.

Cloud service models

The offerings of cloud service providers are typically broken down into service models, which specify what elements of the cloud infrastructure are included with each product. There are three primary cloud service models, called Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS).

A cloud infrastructure can be broken down into layers forming a stack, as shown in Figure 1-5. The functions of the layers are as follows:

- **People** The users working with the application
- **Data** The information that the application creates or utilizes
- **Application** The top-level software program running on virtual machine
- **Runtime** An intermediate software layer, such as .NET or Java, that provides the environment in which applications run
- **Middleware** A software component that provides intermediate services between an operating system and applications
- **Operating system** The software that provides the basic functions of a virtual machine
- **Virtual network** The logical connections between virtual machines running on servers
- **Hypervisor** The software component on the physical servers that enables virtual machines to share the server’s physical resources
- **Servers** The physical computers that host the virtual machines that provide cloud services
- **Storage** The hard drives and other physical components that make up the subsystem providing data storage for the physical servers
- **Physical network** The cables, routers, and other equipment that physically connect the servers to each other and to the Internet

![FIGURE 1-5](image)

In an organization that uses its own on-premises servers for everything, there is no cloud involved, and the organization is obviously responsible for managing all the layers of the stack. However, when an organization uses cloud-based services, the cloud service provider manages some layers of the stack, and the organization manages the rest. This is called a **shared responsibility model**. Which layers are managed by the organization and which are managed by the provider depends on the service model used to furnish the cloud product. The three basic cloud service models are described in the following sections.

IaaS

Infrastructure as a Service (IaaS) is a cloud computing model in which a cloud service provider furnishes the client with the physical computing elements: the network, the storage subsystem, the physical servers, and the hypervisor running on the servers. This provides subscribers with everything they need to create their own virtual machines and manage them by themselves.
Therefore, all the cloud infrastructure layers above the hypervisor are the responsibility of the subscriber, as shown in Figure 1-6.

For example, when a subscriber uses Microsoft Azure to create a virtual machine, the provider is furnishing access to a physical server with hypervisor software—presumably Microsoft Hyper-V—running on it. The server has a physical storage subsystem and is connected to a physical network that provides it with access to the provider’s other servers and to the Internet. Using the management tools that Azure provides, the subscriber can create a virtual machine containing a specific amount of memory and storage, and a number of CPUs, all of which are realized virtually.

NEED MORE REVIEW? CLOUD COMPUTING WITH MICROSOFT AZURE

For more information on cloud computing as realized in Microsoft Azure, see https://azure.microsoft.com/en-ca/overview/what-is-cloud-computing.

The end result is a virtual machine that the subscriber can install, configure, and use to run applications just like a VM running on an on-premises server. The difference is that the subscriber does not have to outfit a data center, build a network, procure a physical computer, and install the hypervisor. Instead, the subscriber pays a regular fee for the actual resources that the VM uses. The subscriber can add memory, storage, and CPUs to the VM or remove them, as needed, and the subscriber can configure many other settings through a remote management interface. Additional resources incur additional fees, but the process of building a new server takes a matter of minutes instead of days or weeks.
With the IaaS model, the provider is responsible for the physical servers and the physical network, but the subscriber is responsible for managing and maintaining its virtual machines and the virtual network on which they run, as shown earlier in Figure 1-6. Therefore, the provider installs operating system updates on the physical servers, but the subscriber must install any operating system and application updates needed on the virtual machines. Any other VM software, maintenance, and management issues that arise also are the subscriber’s responsibility.

NOTE VM UPDATE MANAGEMENT

For an additional fee, Microsoft Azure can provide an Update Management solution that automates the installation of updates and patches on a subscriber’s virtual machines.

Of all the cloud service models, IaaS places the greatest amount of responsibility on the subscriber, and in many instances, this is how administrators want it. By creating and configuring their own virtual machines, administrators can duplicate the environment of their on-premises servers, creating a hybrid cloud bursting infrastructure that can handle overflow traffic during a busy season.

Organizations with high traffic websites often use a dedicated web hosting service provider to run their sites. However, building the site using virtual machines furnished by a cloud service provider using the IaaS model often can be a far less expensive proposition.

Subscribers can also use IaaS to create a testing and development environment for applications. Rapid deployment and modification of VMs makes it possible for administrators to create multiple temporary evaluation and testing platforms and take them down just as easily.

IaaS can also provide subscribers with VMs containing massive amounts of virtual hardware resources that would be impractical to implement in on-premises servers. Large data sets and high-performance computing can require huge amounts of memory and processing power to perform the tasks required for applications, such as weather patterning, data mining, and financial modeling. The resources of a high-end cloud service provider make it far less expensive to equip VMs with the necessary virtual hardware than to build equivalent physical servers.

PaaS

In what is sometimes referred to as a tiered cloud service model infrastructure, Platform as a Service (PaaS) is the second tier, in that it builds on the provider’s responsibilities from the first (IaaS) tier. PaaS is designed to provide subscribers with a ready-made developmental platform that enables them to avoid spending time repeatedly building out the hardware and software infrastructure for a test system before they can run a new application.

Because the platform is accessible through the Internet like all cloud services, an organization with multiple developers working on the same project can provide them all with access to the test environment, even if they are located at different sites.
The PaaS model expands the responsibility of the cloud service provider over the IaaS model by adding the virtual network, operating system, middleware, and runtime layers, as shown in Figure 1-7. The greater the responsibility of the provider, the less that of the subscriber.

Unlike virtual machines on the IaaS model, the cloud provider is entirely responsible for the VM operating system, applying updates and patches and performing maintenance as needed. The platform can also include (for an extra fee) additional components specified by the subscriber, such as development tools, middleware, and database management systems. The object of the PaaS model is to eliminate the need for software developers to do anything but actually develop, build, customize, test, and deploy their applications.

Serverless

The fees for PaaS and IaaS virtual machines are typically based on the resources they are configured to use and the time they are running. However, there is another cloud service model for application development, related to PaaS, called **serverless computing**. In serverless computing (sometimes known as *Function as a Service*, or FaaS), the cloud provider takes on even more of the server management responsibility by dynamically allocating virtual machine resources in response to application requests or events.

Pricing is based on the VM resources as they are actually used. Therefore, this model can be less expensive than a PaaS VM that is incurring charges all the time it is running. The term **serverless**, in this instance, does not mean that there is no server involved; the name derives from the fact that the cloud subscriber does not have to provision a virtual machine on which the developer’s code will run.
SaaS

Software as a Service (SaaS) is the third tier of the cloud service model infrastructure, and in this model, the cloud provider is responsible for nearly all the layers. Only the people and data layers are left to the subscriber, as shown in Figure 1-8. This means that the provider is responsible for the applications, as well as all the layers beneath.

The SaaS model enables end users to access cloud-based applications using a web or other thin-client interface, without the need to install the applications first. Office 365 is an example of an SaaS product, as are Microsoft Teams and other Microsoft 365 components. While Office 365 makes it possible to install its productivity applications on a client computer, it is not necessary for the user to do so. The applications are accessible directly through a web browser, with everything but the user’s own data files provided through the cloud.

EXAM TIP

The MS-900 exam requires you to understand the role of the public, private, and hybrid architectures, as well as the IaaS, PaaS, and SaaS service models, in cloud computing. However, be sure also to understand how these elements fit in with the Microsoft 365 product.
Summary

- Cloud computing can provide organizations with many benefits, including economy, scalability, reliability, manageability, and security.
- There are three basic cloud architectures:
 - **Public** Cloud resources are furnished by a third-party provider on the Internet.
 - **Private** An organization provides its own cloud resources.
 - **Hybrid** The public and private architectures are combined.
- There are three cloud service models—IaaS, PaaS, and SaaS, which specify how much of the resource management is the responsibility of the cloud provider and how much is the responsibility of the subscriber.

Thought experiment

In this thought experiment, demonstrate your skills and knowledge of the topics covered in this chapter. You can find answer to this thought experiment in the next section.

Wingtip Toys has a website on which they sell their products to customers worldwide; it is the company’s primary source of sales. The website is hosted on a server farm in the company’s data center, which is a small room in the building’s basement. The incoming traffic is distributed among the servers by a load-balancing switch. Richard, the administrator of the site, regularly monitors the website traffic and, as the holiday season approaches, he sees the traffic level rise almost to the point at which the servers are overwhelmed.

There is no budget for the purchase of additional web server computers, and there is also no room for more servers in the data center. Reading about cloud options, Richard thinks that there might be a solution there. How can Richard expand the web server farm to handle the increased traffic for the least expense by using the cloud?

Thought experiment answer

For a minimal expenditure, Richard can create additional web servers using cloud-based virtual machines and add them to his web server farm, forming a hybrid cloud architecture. The cloud-based servers can help to handle the busy season web traffic, and when the traffic levels go down, Richard can remove the VMs from the server farm until they are needed again.
A

A1/A3/A5 subscriptions. See Microsoft 365 Education
Abnormal Behavior Machine Learning, 89
access control lists (ACLs), 116–117
Access from anywhere chart (Usage Analytics), 94
ACLs (access control lists), 116–117
activating applications, 178
Active Directory. See AD DS (Active Directory Domain Services); AD FS (Active Directory Federation Services); Azure AD (Active Directory)
AD DS (Active Directory Domain Services)
Active Directory Users and Computers, 125
compared to on-premises services, 40–41
features and capabilities of, 114–116, 146–148
password policies, 133–134
on-premises identities, 124–125
structure and hierarchy of, 146–148
user accounts, creating, 114–116
AD FS (Active Directory Federation Services), 52, 131
Add-on USL (user subscription license), 186
Admin Center
Billing menu, 185, 194–195
Exchange Online settings, 26–27
features and capabilities of, 46–47
Health menu, 204–208
Licenses page, 185
New Group interface, 71
Purchase Services page, 185–186
Service Health page, 204–208
Support menu, 200–205
Try The New Admin Center option, 209
Admin Centers menu (Admin Center), 47
administration, 36
Adoption chart (Usage Analytics), 94
Advanced Threat Analytics (ATA), 33–34, 85, 88–91, 143
Advanced Threat Protection (ATP), 22, 35, 143, 182
advisories, 205
alerts, 154
analytics
Microsoft 365 Usage Analytics, 92–94
Microsoft ATA (Advanced Threat Analytics), 33–34, 85, 88–91, 143
MyAnalytics, 94–96
Workplace Analytics, 96–99
anomalous logins, 89
anticipation of threats, 111
Application Proxy, 129
Application Proxy Connector, 129
application scans, 112
Application Virtualization (App-V), 24, 64
applications, defined, 13. See also individual applications
App-V (Application Virtualization), 24, 64
architecture, cloud, 8
architecture, cloud services, 9–11
hybrid cloud, 12–13
private cloud, 11–12
Assess phase (compliance), 184
asset inventory, 104–106
ATA (Advanced Threat Analytics), 33–34, 85, 88–91, 143
ATP (Advanced Threat Protection), 22, 35, 143, 182
audit reports, 156
authentication
with Azure AD (Active Directory), 130–132
federated authentication, 131
pass-through authentication, 130
password authentication, 128
definition of, 113–114
multifactor
biometric scans, 134
cell phone-based, 134
definition of, 134
overview of, 132
password
Azure AD (Active Directory), 128
password changes, 153
password hash synchronization, 129
password policies, 133–134
SSPR (Self Service Password Reset), 52–53, 153
authorization, 113–114
automatic feature updates, 61
Automatically Register New Windows 10 Domain Joined Devices
With Azure Active Directory Client setting, 150
Autopilot, 24
availability
definition of, 105
high, 108
Azure. See also Azure AD (Active Directory); cloud services
ATP (Advanced Threat Protection), 22, 35, 143, 182
management interface, 6
regions, 162
Azure, continued

Azure. See also Azure AD (Active Directory); cloud services, continued
 reliability mechanisms, 6
 Rights Management (RMS), 33
 RMS (Rights Management), 33
 Update Management, 16
Azure AD (Active Directory)
 Azure AD Connect, 142
 Azure Information Protection, 145
cloud identities, 126–127
features and capabilities of, 13, 32, 85, 143–145
features and services of, 144–145
hybrid identities
 Application Proxy, 129
 authentication, 130–132
definition of, 127
 first synchronization, 128
 SSO (single sign-on), 129
 synchronization, 128–129
Identity Protection, 136–139, 182
licenses, 143
MFA (multifactor authentication) in, 135–136
on-premises services versus, 40–41
Premium plans, 142, 144–145
user accounts, creating, 114–116

B

barriers to cloud adoption, overcoming
cost factors, 160–161
data security concerns, 161
data storage locations, 162
overview of, 158–159
performance latency, 159
personnel requirements, 163
sample scenario for, 165–166
service provider selection, 159–160
transition process, 163
vendor lock-in, 160
vendor robustness, 160
big switch transitions, 43
Billing Accounts option (Billing menu), 194
billing and bill management, 194–196
Billing menu (Admin Center), 47, 185, 194–195
Billing Notifications option (Billing menu), 194
Bills & Payments option (Billing menu), 194
biometric scans, 134
BranchCache, 45
Bring Your Own Device. See BYOD (Bring Your Own Device)
brute force attacks, 89
business subscriptions. See Microsoft 365 Business
BYOD (Bring Your Own Device), 57, 102, 120, 141

C

calendars, Exchange Online, 25, 68, 69
CapEx (capital expenditures), 188–190
CASB (cloud access security broker), 34
CBA (cost-benefit analysis), 188–190, 212–213
cell phone-based authentication, 134
CJIS (Criminal Justice Information Services) Policy, 173
classification of users, 109–111
classification tools, 155
Click-to-Run, 64–66
client health monitoring, 150
Client Management Tools (CMTs), 140
cloud access security broker (CASB), 34
Cloud AppSecurity, 34, 121–122, 143, 182
cloud identities, 126–127
cloud services. See also Azure
adoption barriers, overcoming
 Contoso Corp. case study, 165–166
cost factors, 160–161
data security concerns, 161
data storage locations, 162
overview of, 158–159
performance latency, 159
personnel requirements, 163
service provider selection, 159–160
transition process, 163
vendor lock-in, 160
vendor robustness, 160
advantages of, 3
 administration, 36
 consolidation, 4–5
costs and monetary savings, 3–4, 35–36
deployment, 35
infrastructure, 7–8
manageability, 6
reliability, 5–6
sample scenario for, 19
scalability, 5
security, 7, 38
updates, 35
architecture of, 8
 hybrid cloud, 12–13
 private cloud, 11–12
 public cloud, 9–11
concept of, 1–2
disadvantages of, 8
online resources, 15
service models
 FaaS (Function as a Service), 17
 IaaS (Infrastructure as a Service), 14–16
 infrastructure layers, 13–14
 PaaS (Platform as a Service), 16–17
 SaaS (Software as a Service), 18
transitioning to, 163
Wingtip Toys case study, 19
Cloud Solution Provider (CSP) program, 190–193, 204

cmdlets
 Enable-App, 24
 New-ADUser, 125
 Set-MsolPasswordPolicy, 133
 Set-MsolUser, 133
CMTs (Client Management Tools), 140
Collaboration chart (Usage Analytics), 94
Collaboration pane (MyAnalytics), 95
collaboration tools. See also EMS (Enterprise Mobility + Security) analytics for
MyAnalytics, 95
Usage Analytics, 94
Workplace Analytics, 97
Exchange Online
Admin Center settings, 26–27
collaboration tools, 67–68
compared to Exchange Server, 39–40
features and capabilities of, 67–68
services, 25–26
subscription plans, 26
Microsoft Graph, 81–82
Microsoft Planner, 72, 76
Microsoft Stream, 75
Microsoft Teams, 29–31, 77, 180
Microsoft Yammer, 72
Office 365 groups, 69–73
Office 365 ProPlus, 62
OneDrive for Business, 62, 75, 180
overview of, 66–67, 179–181
Planner, 180
selection of, 78–80
SharePoint Online
features and capabilities of, 27–29, 73–74, 180
SharePoint Server compared to, 40
Skype for Business Online, 31, 77
Stream, 75, 180
Yammer, 74–75, 175, 180
Co-management Configuration Wizard, 150–151
co-management model, 44, 148–152
Communication chart (Usage Analytics), 94
core services. See also EMS (Enterprise Mobility + Security) advantages of
administration, 36
costs, 35–36
deployment, 35
security, 38
updates, 35
Exchange Online
Admin Center settings, 26–27
collaboration tools, 67–68
compared to Exchange Server, 39–40
EOP (Exchange Online Protection), 25
features and capabilities of, 180
services, 25–26
subscription plans, 26
Microsoft Teams, 29–31, 180
Office 365 ProPlus
deployment of, 54–56, 63–66
deployment, continued

deployment, continued
customization options, 64–65
Office 2016 and 2019 deployments, 66
sample scenario for, 99–100
self-deployment, 50
Desktop Analytics, 23
device enrollment manager (DEM), 58
Device Health (Desktop Analytics), 23
device protection, 178
BYOD (Bring Your Own Device), 57, 102, 120, 141
with Cloud App Security, 121–122
with MAM (Mobile Application Management), 121
with MDM (Mobile Device Management), 121
with Microsoft Intune, 119–120
overview of, 118–119
security usage scenarios, 152–153
Devices menu (Admin Center), 46
DFARS (Defense Federal Acquisition Regulation Supplement), 174
digital estate, 102
directory services. See AD DS (Active Directory Domain Services); Azure AD (Active Directory)
disaster recovery, 108
distribution lists, 67
DLP (Data Loss Prevention), 26, 59, 117–118, 139–140
document protection
ACLs (access control lists)
 AIP (Azure Information Protection), 117–118
definition of, 116–117
 DLP (Data Loss Prevention), 117–118
 AIP (Azure Information Protection), 33, 105–106, 117–118, 139–140, 143
DLP (Data Loss Prevention), 26, 59, 117–118, 139–140
overview of, 116–118
Documents & Resources (Service Trust Portal), 157
Domain Services. See AD DS (Active Directory Domain Services)
downtime, 198–199
Driving Value phase of onboarding, 163
dynamic distribution lists, 67

E

E3/ES subscriptions. See Microsoft 365 Enterprise
EA (Enterprise Agreement), 190
education subscriptions. See Microsoft 365 Education
e-mail hosting, 62
EMM (enterprise mobility management), 141
EMS (Enterprise Mobility + Security). See also Azure AD (Active Directory)
 ATA (Advanced Threat Analytics), 33–34, 143
 ATP (Advanced Threat Protection), 22, 35, 143, 182
 Cloud App Security, 34, 121–122, 143, 182
features and capabilities of, 31, 84–85, 142–143
Microsoft Intune
 co-management feature, 148–152
device compliance and configuration, 86–87

F

F1 subscriptions. See Microsoft 365 F1
FaaS (Function as a Service), 17
Facial recognition, 134
Fail-Over Rights, 191
Family Educational Rights and Privacy Act (FERPA), 183
FastTrack program, 49, 163, 203
FBI, Criminal Justice Information Services (CJIS) Policy, 173
Federal Information Security Modernization Act (FISMA), 182
Federal Risk and Authorization Management Program (FedRAMP), 156, 174
federated authentication, 131
FERPA (Family Educational Rights and Privacy Act), 183
fingerprint readers, 134
first line workers, 170
Fixed Lifecycle Policy, 209
Focus pane (MyAnalytics), 94
folders, public, 68
Forged PAC attacks, 88
From SA USL (user subscription license), 186
Full USL user subscription license, 186
Function as a Service (FaaS), 17
GA (General Availability) releases, 210
Gateway (ATA), 90
GDPR (General Data Protection Regulation), 156, 183
Geography button (Microsoft Graph), 81
Golden Ticket attacks, 88
government subscriptions. See Microsoft 365 Government
Grant (Microsoft), 81–82
groups
Group Policy, 133–134
group-by-group transition, 43
Group-to-group queries (Workplace Analytics), 98
modification of, 89
Office 365, 69–73
Groups menu (Admin Center), 46

Hardware inventory, 106–108
hardware requirements, 3
hashes, 128–129
Health Insurance Portability and Accountability Act (HIPAA), 11–12, 183
Health menu (Admin Center), 47, 204–208
High (Sev B) severity level, 203
high availability, 108
HIPAA (Health Insurance Portability and Accountability Act), 11–12, 183
horizontal scaling, 5
host scans, 112
Hunting tools, 155
Hybrid Azure AD, 149
hybrid cloud, 12–13
hybrid identities, 127–132
in Azure AD (Active Directory)
Application Proxy, 129
authentication, 130–132
passwords, 128
SSO (single sign-on), 129
definition of, 127
first synchronization, 128–129
hybrid service deployments, 40
hypercovers, 14

Identity phase (deployment), 51–53
Identity protection
in AD DS (Active Directory Domain Services)
hybrid identities, 127–132
on-premises identities, 124–125
user accounts, creating, 114–116

Information protection, 58–59, 170
infrastructure, cloud services, 7–8
infected devices, 153
information protection, 58–59, 170
infrastructure, cloud services, 7–8
Infrastructure as a Service (IaaS), 14–16
Insert Data button (Microsoft Graph), 82
Insert From File pane (Microsoft Graph), 81
installation. See deployment
integration, data, 105
Internal network metrics (Workplace Analytics), 97
International Organization for Standardization (ISO), 156
International Traffic in Arms Regulations (ITAR), 173–174

IaaS (Infrastructure as a Service), 14–16
Investigating indicator (Service Health), 206
Investigation Suspended indicator (Service Health), 206
IoT (Internet of Things), 141–142
Intune. See Microsoft Intune
inventory
assets, 104–106
hardware, 106–108
Investigating indicator (Service Health), 206
Investigation Suspended indicator (Service Health), 206
IoT (Internet of Things), 141–142
ISO (International Organization for Standardization), 156
ITAR (International Traffic in Arms Regulations), 173–174
ITAR (International Traffic in Arms Regulations)
authentication
definition of, 113–114
multifactor, 134–136
overview of, 132
password, 128–129, 133–134
authorization, 113–114
in Azure AD (Active Directory), 13, 114–116
Application Proxy, 129
authentication, 130–132
cloud identities, 126–127
hybrid identities, 127–132
Identity Protection, 136–139, 182
passwords, 128
SSO (single sign-on), 129
user accounts, creating, 114–116
cloud identities, 126–127
hybrid identities, 127–132
modern management processes, 43
overview of, 113–116, 123, 170
password authentication
in Azure AD (Active Directory), 128
password changes, 153
password hash synchronization, 129
password policies, 133–134
SSPR (Self Service Password Reset), 52–53, 153
on-premise identities, 124–125
risk levels, 136–139
Windows Hello for Business, 116
In Development release status, 210
incidents, 205
indirect providers, 193
indirect resellers, 193
Individual service usage chart (Usage Analytics), 94
Industries & Regions (Service Trust Portal), 157
infected devices, 153
information protection, 58–59, 170
infrastructure, cloud services, 7–8
Infrastructure as a Service (IaaS), 14–16
Insert Data button (Microsoft Graph), 82
Insert From File pane (Microsoft Graph), 81
installation. See deployment
integration, data, 105
Internal network metrics (Workplace Analytics), 97
International Organization for Standardization (ISO), 156
International Traffic in Arms Regulations (ITAR), 173–174
international users, 173
Internet of Things (IoT), 141–142
Intune. See Microsoft Intune
inventory
assets, 104–106
hardware, 106–108
Investigating indicator (Service Health), 206
Investigation Suspended indicator (Service Health), 206
IoT (Internet of Things), 141–142
ISO (International Organization for Standardization), 156
ITAR (International Traffic in Arms Regulations), 173–174

Investigation Suspended indicator (Service Health), 206
Investigation Suspended indicator (Service Health), 206
IoT (Internet of Things), 141–142
ISO (International Organization for Standardization), 156
ITAR (International Traffic in Arms Regulations), 173–174
Kerberos

J-K-L

Kerberos, 41, 125
KMS (Key Management Service), 66, 178
labels
 retention, 58
 sensitivity, 58–59
lateral movement, 89
Launched release status, 210
Licenses option (Billing menu), 194
Licenses page, 185
licensing options
 Azure AD (Active Directory), 143
 basic components, 167–168
 best practices, 187
 CBA (cost-benefit analysis) of, 188–190, 212–213
 feature comparison, 171–173
 Microsoft 365 Education, 174–177
 Microsoft 365 Enterprise, 169–173
 Microsoft 365 F1, 170–173
 Microsoft 365 Government, 173–174
 Office 365 ProPlus, 61
 USL (user subscription license), 185–186
volume licensing
 CSP (Cloud Solution Provider) program, 191–193
 licensing agreement types, 190
 Software Assurance, 190–191
 support, 203
lifecycle policies, 208–211
lists, distribution, 67
loss of devices, 152
LTSB (Long Term Servicing Branch), 24
LTSC (Long Term Servicing Channel), 24

M

mailboxes, Exchange Online, 25, 68–69
mail-enabled security groups, 68
Mainstream Support, 209
MAKs (Multiple Activation Keys), 66, 178
malicious replications, 88
MAM (Mobile Application Management), 57, 121, 152
manageability, cloud-based services, 6
management
 modern. See also Admin Center
 concept of, 42–43
 configuration, 43
 deployment, 43
 identity, 43
 Microsoft deployment and release model, 49–59
 Office 365 portal, 47–49
 traditional management compared to, 42
 transitioning to, 43–44
 updates, 43
 WaAS (Windows as a Service), 44–45
 workloads and scenarios, 59
 traditional approach to, 42
 Windows 10 Enterprise, 24
Management and coaching metrics (Workplace Analytics), 97
MDM (Mobile Device Management), 56–58, 121, 140, 152
MDOP (Microsoft Desktop Optimization Pack), 191
Meeting queries (Workplace Analytics), 98
Meetings overview metrics (Workplace Analytics), 97
@mentions, 81
Message Center page, 207–208
messaging
 Exchange Online
 Admin Center settings, 26–27
 services, 25–26
 subscription plans, 26
 Microsoft Teams, 29–31, 180
MFA (multifactor authentication)
 Azure AD (Active Directory) and, 135–136
 biometric scans, 134
 cell phone-based, 134
 definition of, 134
 overview of, 52
 Microsoft 365 DoD, 174
 Microsoft 365 Education, 174–177
 Microsoft 365 Enterprise, 169–173
 Microsoft 365 F1, 170–173
 Microsoft 365 Government, 173–174
 Microsoft 365 Roadmap, 210–211
 Microsoft 365 U.S. Government Community (GCC), 174
 Microsoft 365 U.S. Government Community (GCC) High, 174
 Microsoft 365 Usage Analytics, 92–94
 Microsoft Application Virtualization (App-V), 24, 64
 Microsoft ATA (Advanced Threat Analytics). See ATA (Advanced Threat Analytics)
 Microsoft Azure. See Azure
 Microsoft CSEO (Core Services and Engineering Operations) group, 103
 Microsoft Cybersecurity Reference Architecture, 155
 Microsoft Defender Advanced Threat Protection (ATP), 22
 Microsoft Desktop Optimization Pack (MDOP), 191
 Microsoft FastTrack. See FastTrack program
 Microsoft Global Network, 108
 Microsoft Graph, 81–82
 Microsoft Intelligent Security Graph, 155
 Microsoft Intune
 co-management feature, 148–152
 device compliance and configuration, 86–87
 features and capabilities of, 32–33, 85, 107, 141–142, 182
 Intune for Education, 176
 service architecture, 119–120
 Mainstream Support, 209
 USL (user subscription license), 185–186
 support, 203
 Software Assurance, 190–191
 support, 203
lifecycle policies, 208–211
lists, distribution, 67
loss of devices, 152
LTSB (Long Term Servicing Branch), 24
LTSC (Long Term Servicing Channel), 24
Microsoft Office 365. See Office 365 ProPlus
Microsoft Office suite, 38–39, 61–63
Microsoft Planner, 72, 76, 180
Microsoft Products and Services Agreement (MPSA), 190
Microsoft Professional Support, 204
Microsoft Services Hub, 204–205
Microsoft Stream, 75, 180
Microsoft Teams, 29–31, 77, 180
Microsoft Threat Protection, 153–155
Microsoft Unified Support, 204
Microsoft User Experience Virtualization (UE-V), 24
Microsoft Volume Licensing Service Level Agreement for
Microsoft Online Services, 198–200
Microsoft Yammer. See Yammer
middleware, 13
Minecraft Education Edition with Code Builder, 175
Mobile Application Management (MAM), 57, 121, 152
mobile apps, 178
Mobile Device Management (MDM), 56–58, 121, 140, 152
mobile devices. See device protection
mobility. See EMS (Enterprise Mobility + Security)
Modern Lifecycle Policy, 209
modern management. See also Admin Center
concept of, 42–43
configuration, 43
deployment, 43
identity, 43
Microsoft deployment and release model, 49–59
deployment strategies, 49–50
documentation for, 50
identity, 51–53
information protection, 58–59
MAM (Mobile Application Management), 57, 121, 152
MDM (Mobile Device Management), 56–58, 121, 140, 152
networking, 51
Office 365 ProPlus, 54–56
Windows 10 Enterprise, 53–54
Office 365 portal, 47–49
transitioning to, 43–44
updates, 43
WaaS (Windows as a Service), 44–45
workloads and scenarios, 59
monitoring
client health, 150
service health, 204–208
Monthly Channel, 56
Monthly Channel (Targeted), 56
MPSA (Microsoft Products and Services Agreement), 190
multifactor authentication. See MFA (multifactor authentication)
Multiple Activation Keys (MAKs), 66, 176
multiple master replication, 124–125
My Library (Service Trust Portal), 157
MyAnalytics, 94–96

N
National Institute of Standards and Technology (NIST), 156
Need Help? pane, 201–202
Network pane (MyAnalytics), 95
Networking phase (deployment), 51
networks
requirements for, 3–4
scans of, 112
security model, 118–119
VPNs (virtual private networks), authentication over, 115
New Object - User dialog box, 125
New Version Rights, 191
New-ADUser cmdlet, 125
NIST (National Institute of Standards and Technology), 156
Non-critical (Sev C) severity level, 203
notebooks, OneNote, 70, 175
NT LAN Manager (NTLM), 41

O
OAuth (Open Authorization), 41, 127
ODT (Office Deployment Tool), 55, 63–65
Office 365 groups, 69–73
Office 365 portal, 47–49
Office 365 ProPlus
deployment of, 54–56, 63–66
applications to install, selecting, 63–64
Click-to-Run, 64–66
customization options, 64–65
Office 2016 and 2019 deployments, 66
features of, 59–61, 178–179
Microsoft Office suite compared to, 38–39, 61–63
Office activation chart (Usage Analytics), 94
Office Deployment Tool (ODT), 55, 63–65
Office Lens, 176
Onboarding phase of onboarding, 163
OneDrive for Business, 62, 75, 180
OneNote notebooks, 70, 175
one-time passwords (OTPs), 135–136
Open Authorization (OAuth), 41, 127
Operating System Upgrade Package option, 53
operating systems
defined, 14
support for, 61–62
OpEx (operational expenditures), 188–190
OTPs (one-time passwords), 135–136
Overpass-the-Hash attacks, 88

P
PaaS (Platform as a Service), 16–17
PAC (Privileged Attribute Certificate), 88
Pass-the-Hash (PTH) attacks, 88
Pass-the-Ticket (PtT) attacks, 88
pass-through authentication, 130
password authentication
Azure AD (Active Directory), 128
OTPs (one-time passwords), 135–136
password changes, 153
password hash synchronization, 129
password policies, 133–134
password sharing, 89
SSPR (Self Service Password Reset), 52–53, 153
Payment Methods option (Billing menu), 194
PBX (private branch exchange), 30
performance latency, 159
persistence (attacks), 89
Person queries (Workplace Analytics), 98
Personal Information Protection and Electronic Documents Act (PIPEDA)

- Personal Information Protection and Electronic Documents Act (PIPEDA), 183
- personnel requirements, 4, 163
- Person-to-group queries (Workplace Analytics), 98
- physical networks, 14
- physical security, 108
- PIPEDA (Personal Information Protection and Electronic Documents Act), 183
- Planner, 72, 76, 180
- Planning Services, 190
- Platform as a Service (PaaS), 16–17
- policies
 - Microsoft 365 security center, 155
 - password, 133–134
 - threat management, 59
- Post-Incident Report Published indicator (Service Health), 206
- Power BI. See Usage Analytics
- PowerShell cmdlets. See cmdlets
- pricing and support. See also subscriptions
 - basic components, 167–168
 - billing and bill management, 194–196
 - key selling points, 177–178
 - collaboration, 179–181
 - compliance, 182–184
 - productivity, 178–179
 - security, 181–182
- Office 365 ProPlus, 62
- service health, monitoring, 204–208
- service lifecycle policies, 208–211
- SLAs (service level agreements), 195–200
 - limitations of, 197
- Microsoft Volume Licensing Service Level Agreement for Microsoft Online Services, 198–200
- negotiating, 195–196
- support requests, creating, 200–205
- administrator and support team responsibilities, 200–201
- alternative support methods, 203–205
- Contact Support pane, 202
- Need Help? pane, 201–202
- support severity levels, 203
- support tickets, viewing, 203
- supported issues, 202–203
- USL (user subscription license), 185–186
- volume licensing
 - CSP (Cloud Solution Provider) program, 191–193
 - licensing agreement types, 190
 - Software Assurance, 190–191
- support, 203
- private branch exchange (PBX), 30
- private cloud, 11–12
- Private preview, 209
- Privileged Attribute Certificate (PAC), 88
- Product usage chart (Usage Analytics), 94
- productivity services, 178–179
- Products & Services option (Billing menu), 194
- Protect phase (compliance), 184
- PSTN (Public Switched Telephone Network), 30
- PTH (Pass-the-Hash) attacks, 88
- PtT (Pass-the-Ticket) attacks, 88
- public cloud, 9–11
- public folders, 68
- Public preview, 209
- Public Switched Telephone Network (PSTN), 30
- Purchase Services option (Billing menu), 194
- Purchase Services page, 185–186

Q-R

- quarterly uptime percentages, 199–200
- Quick Analysis button (Microsoft Graph), 82
- reconnaissance, 89
- reduced functionality mode (Office 365 ProPlus), 62
- redundancy, 4
- regions, Microsoft Azure, 162
- release cycles, 209–211
- reliability of cloud-based services, 5–6
- remote actions, 149
- remote execution, 89
- reports
 - audit, 156
 - Microsoft 365 security center, 155
 - Reports menu (Admin Center), 47
- Resources
 - Admin Center, 47
 - Service Trust Portal, 157
- Respond phase (compliance), 184
- Restoring Service indicator (Service Health), 206
- retention labels, 58
- Rights Management (RMS), 33
- risk management
 - anticipation of threats, 111
 - asset inventory, 104–106
 - definition of, 103
 - hardware inventory, 106–108
 - identity protection risk levels, 136–139
 - ongoing nature of, 112
 - overview of, 103
 - user classification, 109–111
 - vulnerability assessments, 112
- RMS (Rights Management), 33
- Roadmap, 210–211
- Rolling Out release status, 210
- runtime, 13

S

- SaaS (Software as a Service), 18
- SAMI (Security Assertion Markup Language), 41
- scalability of cloud-based services, 5
- scans
 - application, 112
 - biometric, 134
 - database, 112
 - host, 112
 - network, 112
SCCM (System Center Configuration Manager)
- co-management feature, 148–152
- features and capabilities of, 23, 140, 142
- features of, 148–149
- in-place upgrade to Windows 10 Enterprise, 53–54
- Office 365 ProPlus deployment, 63
- Office 365 ProPlus installation, 54

SDS (School Data Sync), 175

secure score, 155

security, 22. See also identity protection
- ATA (Advanced Threat Analytics), 33–34, 85, 88–91, 143
- ATP (Advanced Threat Protection), 22, 35, 143, 182
- attack types, 88–89
- challenges of, 101–103
- Compliance Manager, 157–158
- device protection, 178
- BYOD (Bring Your Own Device), 57, 102, 120, 141
- with Cloud App Security, 121–122
- with MAM (Mobile Application Management), 121
- with MDM (Mobile Device Management), 121
- with Microsoft Intune, 119–120
- overview of, 118–122
- security usage scenarios, 152–153
- document protection
 - ACEs (access control entries), 116–117
 - ACLs (access control lists), 116–117
 - DLP (Data Loss Prevention), 117–118, 139–140
 - overview of, 116–118
- Microsoft 365 Business, 168–169
- network security model, 118–119
- overview of, 7, 38
- physical, 108
- risk management
 - anticipation of threats, 111
 - asset inventory, 104–106
 - definition of, 103
 - hardware inventory, 106–108
 - ongoing nature of, 112
 - overview of, 103
 - user classification, 109–111
- vulnerability assessments, 112
- SCCM (System Center Configuration Manager), 140, 142, 148–152
- security center, 154–155
- security principals, 113
- security services, 181–182
- STP (Service Trust Portal), 156–157
- UEM (unified endpoint management), 140–143
- usage scenarios, 152–153
- Security Assertion Markup Language (SAML), 41
- Self Service Password Reset (SSPR), 52–53, 153
- self-deployment, 50
- Semi-annual Channel
 - Office 365 ProPlus, 56
 - Windows 10, 44
- Semi-annual Channel (Targeted), 56
- Send button (Microsoft Graph), 81
- sensitivity labels, 58–59

Server Disaster Recovery Rights, 191
serverless computing, 17
service credits, 199
Service Degradation indicator (Service Health), 206
Service Health page, 204–208
Service Interruption indicator (Service Health), 206
service level agreements. See SLAs (service level agreements)
- service lifecycle policies, 208–211
- service models (cloud services)
 - FaaS (Function as a Service), 17
 - IaaS (Infrastructure as a Service), 14–16
 - infrastructure layers, 13–14
 - PaaS (Platform as a Service), 16–17
 - SaaS (Software as a Service), 18
- Service Organization Controls (SOC), 156
- service providers
 - robustness of, 160
 - selection of, 159–160
 - vendor lock-in, 160
- Service Restored indicator (Service Health), 206
- Service Trust Portal (STP), 156–157
- Set Up School PCs app, 175
- Set-MsolPasswordPolicy cmdlet, 133
- Set-MsolUser cmdlet, 133
- Settings menu (Admin Center), 47
- Setup menu (Admin Center), 47
- severity levels support, 203
- Shadow IT, 34
- shared mailboxes, 68–69
- shared public cloud, 9
- SharePoint Online
 - Admin Center, 72
 - features and capabilities of, 27–29, 73–74, 180
 - SharePoint Server compared to, 40
 - sign-in risk, 137
 - single master replication, 126–127
 - single sign-on (SSO), 129
 - six nines contract, 4
 - Sizing Tool (ATA), 90
 - Skype for Business Online, 31, 77
- SLAs (service level agreements), 159, 195–200
- limitations of, 197
- Microsoft Volume Licensing Service Level Agreement for Microsoft Online Services, 198–200
- negotiating, 195–196
- SOC (Service Organization Controls), 156
- Software as a Service (SaaS), 18
- Software Assurance, 190–191
- software licenses, 3
- spread payments, 191
- SSPR (Self Service Password Reset), 52–53, 153
- Status indicators (Service Health), 206
- Step-up USL (user subscription license), 186
- storage, 14, 178
- Storage use chart (Usage Analytics), 94
- STP (Service Trust Portal), 156–157
- Stream, 75, 180
- subscriptions, 168
- Azure AD (Active Directory), 145
- best practices for, 187
- CBA (cost-benefit analysis) of, 188–190, 212–213
subscriptions, continued

subscriptions, continued
Exchange Online, 26
feature comparison, 171–173
Microsoft 365 Education, 174–177
Microsoft 365 Enterprise, 169–173
Microsoft 365 F1, 170–173
Microsoft 365 Government, 173–174
volume licensing
 CSP (Cloud Solution Provider) program, 191–193
 licensing agreement types, 190
Software Assurance, 190–191
support, 203

support. See pricing and support
Support menu (Admin Center), 47, 200–205
synchronization
 Azure AD (Active Directory), 128–129
device data, 153
System Center Configuration Manager. See SCCM (System Center Configuration Manager)
Systems Management Server, 148

T

Take a Test app, 175
TAMs (technical account managers), 204
TCO (total cost of ownership)
 calculating, 188–190
cost models, comparison of, 160–161
 sample software licensing scenario, 212–213
Teams (Microsoft), 29–31, 77, 180
Teams collaboration metrics (Workplace Analytics), 97
technical account managers (TAMs), 204
threats. See security
two nines contract, 4
tiered cloud service model, 16–17
total cost of ownership. See TCO (total cost of ownership)
training vouchers, 191
transitioning to cloud, 163
Trust Center (Service Trust Portal), 157
Try The New Admin Center option, 209
two nines contract, 4

U

UEM (unified endpoint management), 140–143
UE-V (Microsoft User Experience Virtualization), 24
UM (Unified Messaging), 25
Upgrade Readiness (Desktop Analytics), 23
U.S. Government regions, 162
Upgrade Readiness (Desktop Analytics), 23
U.S. Government regions, 162
Usage Analytics, 92–94
usage scenarios, security, 152–153
user classification, 109–111
user risk, 137

user subscription license (USL), 185–186
Users menu (Admin Center), 46
USL (user subscription license), 185–186

V

VDA (Windows Virtual Desktop Access Rights), 191
vendors
 robustness of, 160
 selection of, 159–160
vendor lock-in, 160
vertical scaling, 5
View Service Requests option (Support menu), 203
VMs (virtual machines), 4–5
volume licensing
 CSP (Cloud Solution Provider) program, 191–193
 licensing agreement types, 190
Software Assurance, 190–191
support, 203
VPNs (virtual private networks), authentication over, 115
vulnerability assessments, 112

W-X-Y-Z

WaaS (Windows as a Service), 44–45
WDAC (Windows Defender Application Control), 22
Week in the life metrics (Workplace Analytics), 96
Wellbeing pane (MyAnalytics), 95
Windows 10 Business, 25
Windows 10 Enterprise
deployment of, 53–54
 features and capabilities of, 22
 security, 22
updates, 22–24
Windows as a Service (WaaS), 44–45
Windows Autopilot, 24, 150, 168
Windows Defender
 Application Guard, 22
 ATP (Advanced Threat Protection), 22
 WDAC, (Windows Defender Application Control), 22
Windows Hello for Business, 116, 134
Windows Information Protection (WIP), 59
Windows Insider Channel, 44
Windows Server Update Service (WSUS), 23
Windows Thin PC, 191
Windows to Go Use Rights, 191
Windows Update for Business, 23
Windows Virtual Desktop Access Rights (VDA), 191
WIP (Windows Information Protection), 59
wireless network scans, 112
wizard, Co-management Configuration, 150–151
Workplace Analytics, 96–99
WSUS (Windows Server Update Service), 23

Yammer, 72, 74–75, 175, 180