80
THE PRENTICE HALL SERYICE-ORIENTED COMPUTING SERIES FROM THOMAS ERL é.é

eIl EEEEE

------ i. |-‘ - ---—-

—

— — — Ims obvigatory almanac of SOA design patterns

- will become the foundation upon which many
e e (A28 iORS Wil DU SUCCESSTUT SOA SONutions.”
- —Stephen Bennett, Divector,
Technology Business Unit, Oracle

Design Pafterns

Thomas Erl
Foreword by Grady Booch

1. Mark Litthe. David Orchard,
Dennis Wisnosky. and others

‘i PRENTICE
HALL

With contributions by David Choppell. Jason Hogg. Anish Korm
Thomas Rischbeck, Satadru Roy. Arnaud Simon. Clemens Utsct

FREE SAMPLE CHAPTER
SHARE WITH OTHERS

S0 888

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780136135166
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780136135166
https://plusone.google.com/share?url=http://www.informit.com/title/9780136135166
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780136135166
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780136135166/Free-Sample-Chapter

ice .‘
4N\ © U Q/

service service service services service service
inventory composition (labeled) layer (chorded circle notation)

~—
l—
Ay
component malicious decoupled service firewall Web service with component with
or program component service agent service contract service contract

or program contract

g f

o4
Y/*//’/ N | message

\ 4 Y

WSDL XML Schema WS-Policy general machine human business process security element
definition definition definition processable readable logic or locked resource
document document
message repository actively state data service with state data repository with grid service
queue or registry processing in memory (stateful service) state data
LG
———1
J | E—
——
. T8 —
zone or conflict transition human client user mobile product
region symbol arrow workstation interface device or system

symbols used in conceptual general physical service inventory service
relationship diagrams boundary boundary boundary

Agnostic Capability (324) How can multi-
purpose service logic be made effectively
consumable and composable?

Agnostic Context (312) How can multi-
purpose service logic be positioned as an
effective enterprise resource?

Agnostic Sub-Controller (607) How can
agnostic, cross-entity composition logic be
separated, reused, and governed independently?

Asynchronous Queuing (582) How cana
service and its consumers accommodate
isolated failures and avoid unnecessarily locking
resources?

Atomic Service Transaction (623) How can
a transaction with rollback capability be
propagated across messaging-based services?

Brokered Authentication (661) How can a
service efficiently verify consumer credentials if
the consumer and service do not trust each
other or if the consumer requires access to
multiple services?

Canonical Expression (275) How can
service contracts be consistently understood
and interpreted?

Canonical Protocol (150) How can services
be designed to avoid protcol bridging?

Canonical Resources (237) How can

unnecessary infrastructure resource disparity
be avoided?

Canonical Schema (158) How can
services be designed to avoid data model
transformation?

Canonical Schema Bus (709)

Canonical Versioning (286) How can service
contracts within the same service inventory be
versioned with minimal impact?

Capability Composition (521) How cana
service capability solve a problem that requires
logic outside of the service boundary?

Capability Recomposition (526)
How can the same capability be used to help
solve multiple problems?

o°

I (I

&

[e]e)

A A
Eg

Hgid

s

A

N
™
N
one>

O

Compatible Change (465)
How can a service contract be modified
without impacting consumers?

Compensating Service Transaction (631)
How can composition runtime exceptions be
consistently accommodated without requiring
services to lock resources?

Composition Autonomy (616) How can
compositions be implemented to minimize loss
of autonomy?

Concurrent Contracts (421) How cana
service facilitate multi-consumer coupling
requirements and abstraction concerns at the
same time?

Contract Centralization (409) How can
direct consumer-to-implementation coupling
be avoided?

Contract Denormalization (414) How cana
service contract facilitate consumer programs
with differing data exchange requirements?

Cross-Domain Utility Layer (267) How can

) redundant utility logic be avoided across

domain service inventories?

Data Confidentiality (641) How can data
within a message be protected so that it is not
disclosed to unintended recipients while in
transit?

Data Format Transformation (681)
How can services interact with programs that
communicate with different data formats?

Data Model Transformation (671) How can
services interoperate when using different data
models for the same type of data?

Data Origin Authentication (649) How can
a service verify that a message originates from a
known sender and that the message has not
been tampered with in transit?

Decomposed Capability (504) How cana
service be designed to minimize the chances of
capability logic deconstruction?

Decoupled Contract (401) How can a service
express its capabilities independently of its
implementation?

(pattern list continued on inside back cover)

Praise for this Book

“With the continued explosion of services and the increased rate of adoption of SOA through
the market, there is a critical need for comprehensive, actionable guidance that provides the
fastest possible time to results. Microsoft is honored to contribute to the SOA Design Patterns
book, and to continue working with the community to realize the value of Real World SOA.”

- Steven Martin, Senior Director, Developer Platform Product Management, Microsoft

“SOA Design Patterns provides the proper guidance with the right level of abstraction to be
adapted to each organization’s needs, and Oracle is pleased to have contributed to the patterns
contained in this book.”

- Dr. Mohamad Afshar, Director of Product Management, Oracle Fusion Middleware, Oracle

“Red Hat is pleased to be involved in the SOA Design Patterns book and contribute important
SOA design patterns to the community that we and our customers have used within our own
SOA platforms. I am sure this will be a great resource for future SOA practitioners.”

- Pierre Fricke Director, Product Line Management, JBoss SOA Platform, Red Hat

“Awealth of proven, reusable SOA design patterns, clearly explained and illustrated with exam-
ples. An invaluable resource for all those involved in the design of service-oriented solutions.”

- Phil Thomas, Consulting IT Specialist, IBM Software Group

“This obligatory almanac of SOA design patterns will become the foundation on which many
organizations will build their successful SOA solutions. It will allow organizations to build their
own focused SOA design patterns catalog in an expedited fashion knowing that it contains the
wealth and expertise of proven SOA best practices.”

- Stephen Bennett, Director, Technology Business Unit, Oracle Corporation

“The technical differences between service orientation and object orientation are subtle
enough to confuse even the most advanced developers. Thomas Erl’s book provides a great
service by clearly articulating SOA design patterns and differentiating them from similar OO
design patterns.”

- Anne Thomas Manes, VP & Research Director, Burton Group

“SOA Design Patterns does an excellent job of laying out and discussing the areas of SOA design
that a competent SOA practitioner should understand and employ.”

- Robert Laird, SOA Architect, IBM

“As always, Thomas delivers again. In a well-structured and easy-to-understand way, this book
provides a wonderful collection of patterns each addressing a typical set of SOA design prob-
lems with well articulated solutions. The plain language and hundreds of diagrams included in
the book help make the complicated subjects of SOA design comprehensible even to those
who are new to the SOA design world. It’s a must-have reference book for all SOA practition-
ers, especially for enterprise architects, solution architects, developers, managers, and business
process experts.”

- Canyang Kevin Liu, Solution Architecture Manager, SAP

“The concept of service oriented architecture has long promised visions of agile organizations
being able to swap out interfaces and applications as business needs change. SOA also prom-
ises incredible developer and IT productivity, with the idea that key services would be candi-
dates for cross-enterprise sharing or reuse. But many organizations’ efforts to move to SOA
have been mired—Dby organizational issues, by conflicting vendor messages, and by architec-
tures that may amount to little more than Just a Bunch of Web Services. There’s been a lot of
confusion in the SOA marketplace about exactly what SOA is, what it’s supposed to accom-
plish, and how an enterprise goes about in making it work.

SOA Design Patterns is a definitive work that offers clarity on the purpose and functioning of
service oriented architecture. SOA Design Patterns not only helps the IT practitioner lay the
groundwork for a well-functioning SOA effort across the enterprise, but also connects the dots
between SOA and the business requirements in a very concrete way. Plus, this book is com-
pletely technology agnostic—SOA Design Patterns rightly focuses on infrastructure and archi-
tecture, and it doesn’t matter whether you're using components of one kind or another, or Java,
or .NET, or Web services, or REST-style interfaces.

While no two SOA implementations are alike, Thomas Erl and his team of contributors have
effectively identified the similarities in composition services need to have at a sub-atomic level
in order to interact with each other as we hope they will. The book identifies 85 SOA design
patterns which have been developed and thoroughly vetted to ensure that a service-oriented
architecture does achieve the flexibility and loose coupling promised. The book is also com-
pelling in that it is a living document, if you will, inviting participation in an open process to
identify and formulate new patterns to this growing body of knowledge.”

- Joe McKendrick, Independent Analyst, Author of ZDNet's SOA Blog

“If you want to truly educate yourself on SOA, read this book.”
- Sona Srinivasan, Global Client Services & Operations, CISCO

“An impressive decomposition of the process and architectural elements that support service-
oriented analysis, design, and delivery. Right-sized and terminologically consistent.

Opverall, the book represents a patient separation of concerns in respect of the process and
architectural parts that underpin any serious SOA undertaking. Two things stand out. First, the
pattern relationship diagrams provide rich views into the systemic relationships that structure
a service-oriented architecture: these patterns are not discrete, isolated templates to be applied

mechanically to the problem space; rather, they form a network of forces and constraints that
guide the practitioner to consider the task at hand in the context of its inter-dependencies. Sec-
ond, the pattern sequence diagrams and accompanying notes provide a useful framework for
planning and executing the many activities that comprise an SOA engagement.”

- Ian Robinson, Principal Technology Consultant, ThoughtWorks

“Successful implementation of SOA principles requires a shift in focus from software system
means, or the way capabilities are developed, to the desired end results, or real-world effects
required to satisfy organizational business processes. In SOA Design Patterns, Thomas Erl pro-
vides service architects with a broad palette of reusable service patterns that describe service
capabilities that can cut across many SOA applications. Service architects taking advantage of
these patterns will save a great deal of time describing and assembling services to deliver the real
world effects they need to meet their organization’s specific business objectives.”

- Chuck Georgo, Public Safety and National Security Architect

“InIT, we have increasingly come to see the value of having catalogs of good solution patterns
in programming and systems design. With this book, Thomas Erl brings a comprehensive set
of patterns to bear on the world of SOA. These patterns enable easily communicated, reusable,
and effective solutions, allowing us to more rapidly design and build out the large, complicated
and interoperable enterprise SOAs into which our IT environments are evolving.”

- Al Gough, Business Systems Solutions CTO, CACI International Inc.

“This book provides a comprehensive and pragmatic review of design issues in service-centric
design, development, and evolution. The Web site related to this book [SOAPatterns.org] is a
wonderful platform and gives the opportunity for the software community to maintain this cat-
alogue....”

- Veronica Gacitua Decar, Dublin City University

“Erl’s SOA Design Patterns is for the IT decision maker determined to make smart architecture
design choices, smart investments, and long term enterprise impact. For those I'T professionals
committed to service-orientation as a value-added design and implementation option, Patterns
offers a credible, repeatable approach to engineering an adaptable business enterprise. This is
amust read for all IT architect professionals.”

- Larry Gloss, VP and General Manager, Information Manufacturing, LLC

“These SOA patterns define, encompass, and comprise a complete repertoire of best practices
for developing a world-class IT SOA portfolio for the enterprise and its organizational units
through to service and schema analysis and design. After many years as an architect on many
SOA projects, I strongly recommend this book be on the shelf of every analyst and technical
member of any SOA effort, right next to the SOA standards and guidelines it outlines and
elucidates the need for. Our SOA governance standards draw heavily from this work and oth-
ers from this series.”

- Robert John Hathaway III, Enterprise Software Architect, SOA Object Systems

“A wise man once told me that wisdom isn’t all about knowledge and intelligence, it is just as
much about asking questions. Asking questions is the true mark of wisdom and during the writ-
ing of the SOA Design Patterns book Thomas Erl has shown his real qualities. The community
effort behind this book is huge meaning that Thomas has had access to the knowledge and
experience of a large group of accomplished practitioners. The result speaks for itself. This
book is packed with proven solutions to recurring problems, and the documented pros and
cons of each solution have been verified by persons with true experience. This book could give
SOA initiatives of any scale a real boost.”

- Herbjorn Wilhelmsen, Architect and Senior Consultant, Objectware

“This book is an absolute milestone in SOA literature. For the first time we are provided with a
practical guide on how the principle centric description of service orientation from a vendor-
agnostic viewpoint is actually made to work in a language based on patterns. This book makes
you talk SOA! There are very few who understand SOA like Thomas Erl does, he actually put’s
it all together!”

- Brian Lokhorst, Solution Architect, Dutch Tax Office

“Service oriented architecture is all about best practices we have learned since IT’s existence.
This book takes all those best practices and bundles them into a nice pattern catalogue. [It pro-
vides] a really excellent approach as patterns are not just documented but are provided with
application scenarios through case studies [which] fills the gap between theory and practice.”

- Shakti Sharma, Senior Enterprise Architect, Sysco Corp

“An excellent and important book on solving problems in SOA [with a] solid structure. Has the
potential of being among the major influential books.”

- Peter Chang, Lawrence Technical University

“SOA Design Patterns presents a vast amount of knowledge about how to successfully imple-
ment SOA within an organization. The information is clear, concise, and most importantly,
legitimate.”

- Peter B. Woodhull, President and Principal Architect, Modus21

“SOA Design Patterns offers real insights into everyday problems that one will encounter when
investing in services oriented architecture. [It] provides a number of problem descriptions and
offers strategies for dealing with these problems. SOA design patterns highlights more than just
the technical problems and solutions. Common organizational issues that can hinder progress
towards achieving SOA migration are explained along with potential approaches for dealing
with these real world challenges. Once again Thomas Erl provides in-depth coverage of SOA
terminology and helps the reader better understand and appreciate the complexities of migrat-
ing to an SOA environment.”

- David Michalowicz, Air and Space Operations Center Modernization Team Lead,
MITRE Corporation

“This is along overdue, serious, comprehensive, and well-presented catalog of SOA design pat-
terns. This will be required reading and reference for all our SOA engineers and architects. The
best of the series so far!

[The book] works in two ways: as a primer in SOA design and architecture it can easily be read
front-to-back to get an overview of most of the key design issues you will encounter, and as a
reference catalog of design techniques that can be referred to again and again...”

- Wendell Ocasio, Architecture Consultant, DoD Military Health Systems, Agilex Technologies

“Thomas has once again provided the SOA practitioner with a phenomenal collection of
knowledge. This is a reference that I will come back to time and time again as I move forward
in SOA design efforts.

What Iliked most about this book is its vendor agnostic approach to SOA design patterns. This
approach really presents the reader with an understanding of why or why not to implement a
pattern, group patterns, or use compound patterns rather than giving them a marketing spiel on
why one implementation of a pattern is better than another (for example, why one ESB is bet-
ter than another). I think as SOA adoption continues to advance, the ability for architects to
understand when and why to apply specific patterns will be a driving factor in the overall suc-
cess and evolution of SOA. Additionally, I believe that this book provides the consumer with
the understanding required to chose which vendor’s SOA products are right for their specific
needs.”

- Bryan Brew, SOA Consultant, Booz Allen Hamilton

“A must have for every SOA practitioner.”

- Richard Van Schelven, Principal Engineer, Ericsson

“This book is a long-expected successor to the books on object-oriented design patterns and
integration patterns. It is a great reference book that clearly and thoroughly describes design
patterns for SOA. A great read for architects who are facing the challenge of transforming their
enterprise into a service-oriented enterprise.”

- Linda Terlouw, Solution Architect, Ordina

“The maturation of Service-Orientation has given the industry time to absorb the best practices
of service development. Thomas Erl has amassed this collective wisdom in SOA Design Pat-
terns, an absolutely indispensible addition to any Service Oriented bookshelf.”

- Kevin P. Davis, Ph.D

“The problem with most texts on SOA is one of specificity. Architects responsible for SOA
implementation in most organizations have little time for abstract theories on the subject, but
are hungry for concrete details that they can relate to the real problems they face in their envi-
ronment. SOA Design Patterns is critical reading for anyone with service design responsibilities.
Not only does the text provide the normal pattern templates, but each pattern is applied in

detail against a background case study to provide exceptionally meaningful context to the infor-
mation. The graphic visualizations of the problems and pattern solutions are excellent supple-
mentary companions to the explanatory text. This book will greatly stretch the knowledge of
the reader as much for raising and addressing issues that may have never occurred to the reader
as it does in treating those problems that are in more common occurrence. The real beauty of
this book is in its plain English prose. Unlike so many technical reference books, one does not
find themselves re-reading sections multiple times trying to discern the intent of the author.
This is also not a reference that will sit gathering dust on a shelf after one or two perusings. Prac-
titioners will find themselves returning over and over to utilize the knowledge in their projects.
This is as close as you'll come to having a service design expert sitting over your shoulder.”

- James Kinneavy, Principal Software Architect, University of California

“As the industry converges on SOA patterns, Erl provides an outstanding reference guide to
composition and integration—and yet another distinctive contribution to the SOA practice.”

- Steve Birkel, Chief IT Technical Architect, Intel Corp.

“With SOA Design Patterns, Thomas Erl adds an indispensable SOA reference volume to the
technologist’s library. Replete with to-the-point examples, it will be a helpful aid to any IT
organization.”

- Ed Dodds, Strategist, Systems Architect, Conmergence

“Again, Thomas Erl has written an indispensable guide to SOA. Building on his prior successes,
his patterns go into even more detail. Therefore, this book is not only helpful to the SOA begin-
ner, but also provides new insight and ideas to professionals.”

- Philipp Offermann, Research Scientist, Technische Universitdt Berlin, Germany

“SOA Design Patterns is an extraordinary contribution to SOA best practices! Once again,
Thomas has created an indispensable resource for any person or organization interested in or
actively engaged in the practice of Service Oriented Architecture. Using case studies based on
three very different business models, Thomas guides the reader through the process of select-
ing appropriate implementation patterns to ensure a flexible, well-performing, and secure SOA
ecosystem.”

- Victor Brown, Managing Partner and Principal Consultant,
Cypress Management Group Corporation

SOA Design Patterns

The Prentice Hall Service-Oriented Computing Series
from Thomas Erl aims to provide the IT industry with
a consistent level of unbiased, practical, and
comprehensive guidance and instruction in the areas
of service-oriented architecture, service-orientation,
and the expanding landscape that is shaping
the real-world service-oriented computing platform.

For more information, visit www.soabooks.com.

www.soabooks.com

SOA Design Patterns

Thomas Erl

(with additional contributors)

[X] PRENTICE HALL
:: UPPER SADDLE RIVER, NJ e BOSTON ¢ INDIANAPOLIS « SAN FRANCISCO

PRENTICE NEW YORK * TORONTO MONTREAL « LONDON « MUNICH * PARIS * MADRID

HALL
CAPETOWN ¢ SYDNEY ¢ TOKYO ¢ SINGAPORE « MEXICO CITY

Many of the designations used by manufacturers and sellers to distinguish their . .
products are claimed as trademarks. Where those designations appear in this book, Editor-in-Chief
and the publisher was aware of a trademark claim, the designations have been Mark L. Taub
printed with initial capital letters or in all capitals. Managing Editor

The author and publisher have taken care in the preparation of this book, but make Kristy Hart

no expressed or implied warranty of any kind and assume no responsibility for Copy Editor
errors or omissions. No liability is assumed for incidental or consequential damages Language Logistics
in connection with or arising out of the use of the information or programs con-
tained herein. Indexer
The publisher offers excellent discounts on this book when ordered in quantity for Gl Langes
bulk purchases or special sales, which may include electronic versions and/or cus- Proofreader
tom covers and content particular to your business, training goals, marketing focus, Williams Woods
and branding interests. For more information, please contact: Publishing
U.S. Corporate and Government Sales Composition
(800) 382-3419 Jake McFarland
corpsales@pearsontechgroup.com Bumpy Design
For sales outside the United States please contact: G ;
raphics
International Sales Zuzana Cappova
international@pearson.com Tami Young
Library of Congress Cataloging-in-Publication Data: Spencer Fruhling
Erl, Thomas. Photos
SOA design patterns / Thomas Erl. — Isted. Thomas Erl
p-cm. Cover Design
Thomas Erl

ISBN 0-13-613516-1 (hardback : alk. paper) 1. Web services.
2. Computer architecture. 3. Software patterns. 4. System design. I. Title.

TKS105.88813.E735 2008
006.7—dc22
2008040488
Copyright © 2009 SOA Systems Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc

Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116

Fax (617) 671 3447

ISBN-13:978-0-13-613516-6

ISBN-10: 0-13-613516-1

Text printed in the United States on recycled paper at RR. Donnelley in Crawfordsville, Indiana.

Fifth Printing: April 2013

The following patterns: Exception Shielding, Threat Screening, Trusted Subsystem, Service Perimeter Guard, Data
Confidentiality, Data Origin Authentication, Direct Authentication, Brokered Authentication are courtesy of the
Microsoft Patterns & Practices team. For more information please visit http://msdn.microsoft.com/practices.

These patterns were originally developed by Jason Hogg, Frederick Chong, Dwayne Taylor, Lonnie Wall, Paul Slater,
Tom Hollander, Wojtek Kozaczynski, Don Smith, Larry Brader, Sajjad Nasir Imran, Pablo Cibraro, Nelly Delgado and
Ward Cunningham

http://msdn.microsoft.com/practices

To the SOA pioneers that blazed the trail we now so freely base our roadmaps on, and to the SOA
community that helped me refine the wisdom of the pioneers into this catalog of patterns.

- Thomas Erl

This page intentionally left blank

Contents

Foreword:.:ceocoueunnnnnnnnnnnnnnnnssss XXXVI

CHAPTER 1:Introduction s s s s i e s e e s nnne=x1

1.1 Objectives of thisBook 4
1.2WhothisBookisFor.........., 4
1.3 What this Book Does Not Cover 4
Topics Covered by Other Books 4
Web Service and REST Service Design Patterns 5
SOA Standardization Efforts oo 5
1.4 Recommended Reading. 6
1.5 How this Book is Organized 7
Partl: Fundamentals. 8
Part II: Service Inventory Design Patterns 8
Part Ill: Service Design Patterns, 8
Part IV: Service Composition Design Patterns 9
Part V: Supplemental. 10
Part VI: Appendices 10
1.6 Symbols, Figures, Style Conventions 11
Symbollegend. 11
How ColorisUsed i, 11
Data Flow and Directionality Conventions. 11
Pattern Documentation Conventions. 11
1.7 Additional Information. 11
Updates, Errata, and Resources (www.soabooks.com). 11

Visio Stencil (www.soabooks.com) 12

www.soabooks.com
www.soabooks.com

Xiv Contents

Community Patterns Site (www.soapatterns.org) 12
Master Glossary (www.soaglossary.com). 12
Supplementary Posters (www.soaposters.com). 12
The SOA Magazine (www.soamag.Com) 12
Referenced Specifications (www.soaspecs.com). 12
Notification Service 13
Contactthe Author 13

CHAPTER 2: Case Study Background c s 222 15

2.1 Case #1 Background: Cutit Saws Ltd. 17
HiStory . . 18
Technical Infrastructure and Automation Environment 18
Business Goals and Obstacles. 18

2.2 Case #2 Background: Alleywood Lumber Company 19
History . .o 19
Technical Infrastructure and Automation Environment 20
Business Goals and Obstacles. 20

2.3 Case #3 Background: Forestry Regulatory

Commission (FRC) 21
History . .o 21
Technical Infrastructure and Automation Environment 21
Business Goals and Obstacles. 22

PART I: FUNDAMENTALS

CHAPTER 3: Basic Terms and Concepts.....:.:::::...25

Purpose of this Introductory Chapter 26
3.1 Architecture Fundamentals. 26
A Classic Analogy for Architecture and Infrastructure 27
Technology Architecture, 27
Technology Infrastructure 30
Software Program 32

Relationship to Design Framework 33

www.soapatterns.org
www.soaglossary.com
www.soaposters.com
www.soamag.com
www.soaspecs.com

Contents XV

3.2 Service-Oriented Computing Fundamentals. 35
Service-Oriented Computing oo 35
Service-Orientation 36
Service-Oriented Architecture (SOA) 37
ServiCe ... 37
Service Capability 38
Service CONSUME!.ot 38
Service Composition 40
Service Inventory. 42
Service-Oriented Analysis. 43
Service Candidate. 44

3.3 Service Implementation Mediums. 44
Servicesas Components 45
ServicesasWeb Services 45
REST Services. 46

CHAPTER 4: The Architecture of Service-Orientation .. 47

Purpose of this Introductory Chapter 48

4.1 The Method of Service-Orientation 48
Principles of Service-Orientation. 48
Strategic Goals of Service-Oriented Computing. 51

4.2 The Four Characteristics of SOA. 52
Business-Driven 53
Vendor-Neutral 54
Enterprise-Centric 58
Composition-Centric 59

4.3 The Four Common Types of SOA 61
Service Architecture 62
Information Hiding 64

Design Standards. 64
Service Contracts 65
Service AQents 67
Service Capabilities 68
Service Composition Architecture 68
Nested COmposSItionS 72

Task Services and Alternative Compositions 73

Compositions and Infrastructure. 74

XVi Contents

Service Inventory Architecture L. 74
Service-Oriented Enterprise Architecture 76
Architecture Typesand Scope 77
Architecture Types and Inheritance 77
Other Forms of Service-Oriented Architecture 78
Inter-Business Service Architecture 78
Service-Oriented Community Architecture 78

4.4 The End Result of Service-Orientation 79

CHAPTER 5: Understanding SOA Design Patterns 85

Purpose of this Introductory Chapter 86

5.1 Fundamental Terminology. 86
What's a Design Pattern? o 86
What's a Compound Pattern? 88
What's a Design Pattern Language?. 88
What's a Design Pattern Catalog?. 89

5.2 Historical Influences 89
Alexander’'s Pattern Language 90
Object-Oriented Patterns 91
Software Architecture Patterns oL 92
Enterprise Application Architecture Patterns 93
EAIPatterns 93
SOAPatterns 94

5.3 Pattern Notation 95
Pattern Symbols 95
Pattern Figures 96
Pattern Application Sequence Figures. 96

Pattern Relationship Figures. 96
Compound Pattern Hierarchy Figures 99
Capitalization. 100
Page Number References. 100

54 Pattern Profiles 100
Requirement 101
[CON . 101
SUMMATY o 102
Problem 102

SolUtioN . .. 102

Contents

Application 103
IMpacts 103
Relationships. 103
Case Study Example. 103
5.5 Patterns with Common Characteristics. 104
Canonical Patterns 104
Centralization Patterns 105
5.6 Key Design Considerations. 106
“Enterprise” vs. “Enterprise-wide”.o oo 106
Design Patterns and Design Principles 106
Design Patterns and Design Granularity. 107
Measures of Design Pattern Application. 108

PART II: SERVICE INVENTORY DESIGN PATTERNS

CHAPTER 6: Foundational Inventory Patterns 111

How Inventory Design Patterns Relate to SOA Design

Characteristics 113
How Foundational Inventory and Service Patterns Relate 114
How Case Studies are Used in this Chapter. 114
6.1 Inventory Boundary Patterns. 114
Enterpriselnventoryt 116
Problem 116
Solution 117
Application. e 118
Impacts 120
Relationships. 121
Case Study Example. i 122
Domaininventoryciiiiiinnnnnnannnnrnns 123
Problem 123
Solution 124
Application. 125
Impacts 126
Relationships. 127

Case Study Example. i 128

XViii

Contents
6.2 Inventory Structure Patterns L. 130
Service Normalization.ot 131
Problem 131
Solution 132
Application. 132
Impacts 133
Relationships. 133
Case Study Example. 135
Logic Centralization i, 136
Problem 136
Solution 137
Application. 137
Impacts 139
Relationships. 140
Case Study Example. i 142
ServiceLayers. ittt i 143
Problem 143
Solution 144
Application. 145
Impacts 147
Relationships. 147
Case Study Example. 148
6.3 Inventory Standardization Patterns. 149
Canonical Protocolccoiiiiiiiiannns. 150
Problem 151
Solution 152
Application. e 153
Impacts 155
Relationships. 155
Case Study Example.o 157
CanonicalSchemacciiiiiiiiiinannnn. 158
Problem 158
Solution 159
Application. e 159
Impacts 159
Relationships. 160

Case Study Example.o 161

Contents Xix

CHAPTER 7: Logical Inventory Layer Patterns....... 163

Combining Layers. ... 164
Business Logic and Utility Logic. 166
Agnostic Logic and Non-Agnostic Logic 166
Service Layersand Logic Types. oo 167
Utility Abstraction.............. ..o, 168
Problem 168
Solution 169
Application. 170
Impacts 171
Relationships. 171
Case Study Example. 173
Entity Abstraction.............. ... o i, 175
Problem 175
Solution 176
Application. 176
Impacts 178
Relationships. 178
Case Study Example. 180
Process Abstraction...............c.coiiiiiiiinnn. 182
Problem 182
Solution 183
Application. 184
Impacts 185
Relationships. 185
Case Study Example. 187

CHAPTER 8: Inventory Centralization Patterns 191

Process Centralization...................., 193
Problem 193
Solution 194
Application. e 195
Impacts 196
Relationships. 197

Case Study Example. i 198

XX

Contents
Schema Centralization 200
Problem 200
Solution 201
Application. e 202
Impacts 202
Relationships. 203
Case Study Example. i 203
Policy Centralization., 207
Problems 207
Solution 208
Application. e 209
Impacts 210
Relationships. 211
Case Study Example.t 213
Rules Centralizationo, 216
Problem . .. 216
Solution 217
Application. e 217
Impacts 218
Relationships. 219
Case Study Example.o 222

CHAPTER 9: Inventory Implementation Patterns 225

DualProtocols.ccciiiiiii it i e e 227
Problem 228
Solution 228
Application. e 228
Impacts 233
Relationships. 234
Case Study Example. i 235

Canonical Resourcesccouiiinnnrnnnnnnnnns 237
Problem 238
Solution 238
Application. e 239

Impacts 239

Contents

Relationships. 239
Case Study Example. 241
State Repository e 242
Problem 242
SOIUtION . . .o 243
Application. 244
Impacts 244
Relationships. 244
Case Study Example. 246
Stateful Services 248
Problem 248
SOIUtION . . .o 248
Application. 250
Impacts 250
Relationships. 250
Case Study Example. 251
Service Grid.t e e 254
Problem 254
SOIUtION . . .o 255
Application. 256
Impacts 257
Relationships. 258
Case Study Example. 259
Inventory Endpoint i, 260
Problem 260
SOIUtION . . .o 261
Application. 262
Impacts 263
Relationships. 263
Case Study Example. 265
Cross-Domain Utility Layer 267
Problem 267
SOIUtION . . .o 268
Application. 269
Impacts 269
Relationships. 270

Case Study Example. 270

XXii Contents

CHAPTER 10: Inventory Governance Patterns 273

Canonical Expression.coiiiiiiiiinnnanennn 275
Problem 275
SOIUtION . . .o 275
Application. 276
Impacts 277
Relationships. 278
Case Study Example. 279

Metadata Centralization 280
Problem 280
SOIUtION . . .o 281
Application. 282
Impacts 283
Relationships. 283
Case Study Example. 284

CanonicalVersioningc.ciiiiiinnnnnenn. 286
Problem 286
SOIUtION . . .o 287
Application. 287
Impacts 288
Relationships. 288
Case Study Example. 290

PART I1I: SERVICE DESIGN PATTERNS

CHAPTER 11: Foundational Service Patterns........ 295

Case Study Background. 297
11.1 Service |dentification Patterns 299
Functional Decomposition.......................... 300
Problem...... 300
Solution 301
Application. 302
Impacts 302
Relationships. 303

Case Study Example. i 303

Contents

Service Encapsulation oo 305
Problem 305
Solution 306
Application. 307
Impacts 309
Relationships. 309
Case Study Example. 310

11.2 Service Definition Patterns 311

AgnosticContext. 312
Problem 313
Solution 314
Application. 315
Impacts 315
Relationships. 316
Case Study Example. 317

Non-AgnosticContexto iiiinnnnn. 319
Problem 319
Solution 320
Application. 321
Impacts 322
Relationships. 322
Case Study Example. 323

Agnostic Capability.ciiiiian... 324
Problem 324
Solution 325
Application. 326
Impacts 327
Relationships. 327
Case Study Example. i 328

CHAPTER 12: Service Implementation Patterns. 331

ServiceFacadeciiiiiiiiii i 333
Problem 333
Solutiono 334

Application. 335

XXiv

Contents
Impacts 341
Relationships. 342
Case Study Example. 343
Redundant Implementation 345
Problem 345
Solution 346
Application. 346
Impacts e 347
Relationships. 348
Case Study Example. 349
Service Data Replication 350
Problem 350
Solution 352
Application. 353
Impacts 353
Relationships. 353
Case Study Example. 354
Partial State Deferral.t 356
Problem 356
Solution 357
Application. 358
Impacts 359
Relationships. 359
Case Study Example. 360
Partial Validation 362
Problem 362
Solution 363
Application. 364
Impacts 364
Relationships. 364
Case Study Example. 365
UlMediator.t e e i e e 366
Problem 366
Solution 367

Contents

Impacts 369
Relationships. 370
Case Study Example. 370

CHAPTER 13: Service Security Patterns373

Case Study background 374
Exception Shielding it 376
Problem 376
Solution 377
Application. 378
Impacts 379
Relationships. 379
Case Study Example. i 380
Message Screening.cvvviiirnnnnernnnnnennnns 381
Problem 381
Solution 382
Application e 382
Impacts 384
Relationships. 385
Case Study Example. 385
Trusted Subsystem i, 387
Problem 387
Solution 388
Application. 388
Impacts 391
Relationships. 391
Case Study Example. i 392
Service PerimeterGuard.o, 394
Problem 394
Solution 395
Application e 395
Impacts 396
Relationships. 396

Case Study Example. i 397

XXVi Contents

CHAPTER 14: Service Contract Design Patterns 399

DecoupledContractc.iiiiiiinnnnnnn 401
Problem 401
SOIUtION . . .o 402
Application. 403
Impacts 405
Relationships. 405
Case Study Example. 407

Contract Centralization.o, 409
Problem 409
SOIUtION . . .o 410
Application. 410
Impacts 411
Relationships. 411
Case Study Example. 413

Contract Denormalization. 414
Problem 414
SOIUtION . . .o 415
Application. 416
Impacts 417
Relationships. 417
Case Study Example. 418

ConcurrentContracts.coiiiiiinnnnnn. 421
Problem 421
SOlUtION . . .o 422
Application. 423
Impacts 425
Relationships. 425
Case Study Example. 426

Validation Abstraction o, 429
Problem 429
SOIUtION . . .o 430
Application. 431
Impacts 432
Relationships. 432

Case Study Example. i 433

Contents XXVii

Chapter 15: Legacy Encapsulation Patterns 439

Legacy Wrapper. oviie e e et iiaa e snnnannnnns 441
Problem 441
SOIUtION . . .o 442
Application. 443
Impacts 444
Relationships. 444
Case Study Example. 446

Multi-Channel Endpointcoatn. 451
Problem 451
SOIULION . . .o 452
Application. 453
Impacts 454
Relationships. 454
Case Study Example. 456

FileGatewaycoiiiiiiiiiii it iiia s 457
Problem 457
SOIULION . . .o 458
Application. 458
Impacts 459
Relationships. 460
Case Study Example. 461

CHAPTER 16: Service Governance Patterns......... 463

CompatibleChange.ccoiiiiiiinnannnn. 465
Problem 465
Solution e 466
Application. 466
Impacts 469
Relationships. 469
Case Study Example. 470

Version Identification 472
Problem 472
Solution e 473

XXViii

Contents
Impacts 474
Relationships. 474
Case Study Example. 475
Termination Notification............................ 478
Problem 478
Solution 479
Application. 480
Impacts e 480
Relationships. 481
Case Study Example. 481
Service Refactoring.coiiiii i 484
Problem 484
Solution 485
Application. 485
Impacts 486
Relationships. 486
Case Study Example. 488
Service Decomposition. 489
Problem 489
Solution 491
Application. 492
Impacts 492
Relationships. 494
Case Study Example. 495
Proxy Capability it 497
Problem 497
Solution 498
Application. 498
Impacts 500
Relationships. 500
Case Study Example. 501
Decomposed Capability 504
Problem 504
Solution 506
Application. 507

Impacts 507

Contents

Relationships. 508
Case Study Example. 508
Distributed Capability it 510
Problem 510
SOIUtION . . .o 511
Application. 512
Impacts 513
Relationships. 513
Case Study Example. 514

PART 1V: SERVICE COMPOSITION DESIGN PATTERNS

CHAPTER 17: Capability Composition Patterns 519

Capability Composition 521
Problem 521
Solution 521
Application. 523
Impacts 523
Relationships. 523
Case Study Example. 524

Capability Recomposition 526
Problem 526
Solution 527
Application. 527
Impacts 527
Relationships. 529
Case Study Example. 530

CHAPTER 18: Service Messaging Patterns.......... 531

Service Messagingccvviiiiirinernnrrnnnnns 533
Problem 533
Solution 533
Application. 534

Impacts 534

XXX

Contents

Relationships. 535
Case Study Example. i 536
Messaging Metadatacciininnn, 538
Problem 538
SOlUtION . . .o 538
Application. 539
Impacts 540
Relationships. 541
Case Study Example. i 542
Service Agent i e 543
Problem 543
SOlUtION . . .o 544
Application. 544
Impacts 546
Relationships. 546
Case Study Example. i 548
Intermediate Routing oo i, 549
Problem 549
SOIUtION . . .o 551
Application. e 552
Impacts 553
Relationships. 553
Case Study Example. i 556
State Messagingcoviiiiiirinirnnrrnnnnnns 557
Problem 557
SOIUtION . . .o 558
Application. 560
Impacts 561
Relationships. 561
Case Study Example. i 562
ServiceCallbacko, 566
Problem 566
SOlUtION . . .o 568
Application. 568

Impacts 570

Contents

Relationships. 570
Case Study Example. 571
Service InstanceRouting 574
Problem 574
Solution 576
Application. 576
Impacts 578
Relationships. 578
Case Study Example. 579
Asynchronous QUEUINGc.uviriinnnernnrrnnnnns 582
Problem 582
Solution 584
Application. 584
Impacts 587
Relationships. 588
Case Study Example. 589
Reliable Messaging.coviiiiiinnnnnncnnnns 592
Problem 592
Solution 593
Application. 593
Impacts 594
Relationships. 595
Case Study Example. 596
Event-Driven Messaging.o oviiiiininnnrnnnnn 599
Problem 599
Solution 600
Application. 602
Impacts 602
Relationships. 602
Case Study Example. 604

CHAPTER 19: Composition Implementation Patterns. . 605

Agnostic Sub-Controller.ccooiiannn. 607
Problem. e 607
SolUtioN 608

XXXii Contents

Application. e 610
Impacts 610
Relationships. 610
Case Study Example.t 612
Composition Autonomy ...t 616
Problem 616
Solution 618
Application. e 619
Impacts 619
Relationships. 620
Case Study Example.o i 620
Atomic ServiceTransaction 623
Problem 623
Solution 624
Application. e 626
Impacts 626
Relationships. 628
Case Study Example.t 629
Compensating Service Transaction................... 631
Problem 631
Solution 633
Application. e 633
Impacts 635
Relationships. 635
Case Study Example.t 636

CHAPTER 20: Service Interaction Security Patterns .. 639

Data Confidentiality.o i, 641
Problem 641
SOlUtION . . .o 643
Application. 643
Impacts 644
Relationships. 645

Case Study Example. i 646

Contents xxxiii

Data Origin Authentication.......................... 649
Problem 649
Solution 650
Application. 651
Impacts 652
Relationships. 653
Case Study Example. i 653

Direct Authentication it 656
Problem 656
Solution 657
Application. 657
Impacts 658
Relationships. 659
Case Study Example. i 660

Brokered Authentication................... 661
Problem 661
Solution 662
Application. 663
Impacts 665
Relationships. 665
Case Study Example. i 666

CHAPTER 21: Transformation Patterns669

Data Model Transformation 671
Problem 671
SOIUtION . . .o 672
Application. 673
Impacts 674
Relationships. 674
Case Study Example. 677

Data Format Transformation. 681
Problem....... 681
SOIUtION . . .o 681

Application. 683

XXXiV

Contents
Impacts 683
Relationships. 683
Case Study Example. 685
Protocol Bridgingc.oiiiiiiiiiiiina i innnn 687
Problem 687
Solution 688
Application. e 688
Impacts e 690
Relationships. 690
Case Study Example. 692

PART V: SUPPLEMENTAL

CHAPTER 22: Common Compound Design Patterns ... 697

“Compound” vs. “Composite”. 698
Compound Patterns and Pattern Relationships 698
Joint Application vs. Coexistent Application. 699
Compound Patterns and Pattern Granularity 700
Orchestration. i 701
Enterprise Service Bus. oo 704
Service Broker. e 707
Canonical SchemaBus., 709
Official Endpoint i 711
Federated EndpointLayerccocviunn. 713
Three-LayerInventory.ccciiiiiiiinnnnnn. 715

CHAPTER 23: Strategic Architecture Considerations. . 717

Increased Federation L. 718
Increased Intrinsic Interoperability 721
Increased Vendor Diversification Options. 723

Contents XXXV
Increased Business and Technology Alignment. 725
Increased ROI. 727
Increased Organizational Agility. 728
Reduced ITBurden. 729
CHAPTER 24: Principles and Patterns at the
U.S. Department of Defense c sttt v nnnnn s 731
The Business Operating Environment (BOE) 733
Principles, Patterns, andthe BOE 734
Incorporation of Information Assurance (IA). 736
Adherenceto Standards. 736
Data Visibility, Accessibility, and Understandability to
Support Decision Makers 736
Loosely Coupled Services 736
Authoritative Sources of Trusted Data. 737
Metadata-Driven Framework for Separation from
Technical Details 737
Support Use of Open Source Software. 738
Emphasize Use of Service-Enabled Commercial
Off-the-Shelf (COTS) Software 738
Participation in the DoD Enterprise. 738
Support Mobility — Users & Devices 738
The Future of SOAandtheDoD 739
SOADOD.OFG . e 739
PART VIi: APPENDICES
APPENDIX A: Case Study Conclusion........c0c:. 743
CutitSaws Ltd. 744
Alleywood Lumber Company 744

Forestry Regulatory Commission (FRC) 745

XXXVi Contents

AprPENDIX B: Candidate Patterns:c:: 747
AprPENDIX C: Principles of Service-Orientation 749
Standardized Service Contract. 751
Service Loose Coupling 753
Service Abstraction. 755
Service Reusability 756
Service AUTONOMY oo 758
Service Statelessness. 760
Service Discoverability 762
Service Composability 764

AprpPENDIX D: Patterns and Principles
Cross-Reference:icteccesssnnnnnnnnnns 767

AprpPENDIX E: Patterns and Architecture Types
Cross-Reference:.:cteccesesnnnnnnnnsns 775

Aboutthe Authorttt s s nsnnnnnnans 783

About the Contributors. . . s c c sttt s s s s s unsnsnsas 784

Indexofpatternsllllllllllllllllllllllllllll791

Foreword

The entire history of software engineering can be characterized as one of rising levels of
abstraction. We see this in our languages, our tools, our platforms, and our methods.
Indeed, abstraction is the primary way that we as humans attend to complexity—and soft-
ware-intensive systems are among the most complex artifacts ever created.

I'would also observe that one of the most important advances in software engineering over
the past two decades has been the practice of patterns. Patterns are yet another example of
this rise in abstraction: A pattern specifies a common solution to a common problem in the
form of a society of components that collaborate with one another. Influenced by the writ-
ings of Christopher Alexander, Kent Beck and Ward Cunningham began to codify various
design patterns from their experience with Smalltalk. Growing slowly but steadily, these
concepts began to gain traction among other developers. The publication of the seminal
book Design Patterns by Erich Gamma, John Vlissides, Ralph Johnson, and Richard Helm
marked the introduction of these ideas to the mainstream. The subsequent activities of the
Hillside Group provided a forum for this growing community, yielding a very vibrant liter-
ature and practice. Now the practice of patterns is very much mainstream: Every well-
structured software-intensive system tends to be full of patterns (whether their architects
name them intentionally or not).

The emerging dominant architectural style for many enterprise systems is that of a service-
oriented architecture, a style that at its core is essentially a message passing architecture.
However, therein are many patterns that work (and anti-patterns that should be avoided).

Thomas’ work is therefore the right book at the right time. He really groks the nature of
SOA systems: There are many hard design decisions to be made, ranging from data-
orientation to the problems of legacy integration and even security. Thomas offers wise
counsel on each of these issues and many more, all in the language of design patterns. There
are many things I like about this work. It’s comprehensive. It’s written in a very accessible

XXXVili Foreword

pattern language. It offers patterns that play well with one another. Finally, Thomas covers
not just the technical details, but also sets these patterns in the context of economic and
other considerations.

SOA Design Patterns is an important contribution to the literature and practice of building
and delivering quality software-intensive systems.

—Grady Booch, IBM Fellow
September, 2008

Acknowledgments

This book was in development for over three years, a good portion of which was dedicated to external
reviews. Patterns were subjected to three review cycles that spanned a period of over twelve months and
involved over 200 IT professionals. Pre-release galleys of my first and second manuscript drafts were
printed and shipped to SOA experts and patterns experts around the world. Additionally, I had the full
manuscript published at SOAPatterns.org for an open industry review. Even though these review phases
added much time and effort to the development of this book, they ultimately elevated the quality of this

work by a significant margin.

Special thanks to Prentice Hall for their patience and support throughout the book development
process. Specifically, I'd like to thank Kristy Hart and Jake McFarland for their tremendous production
efforts and tireless commitment to achieving printed perfection, Mark Taub who stood by this book
project through a whirlwind of changes, reviews, more changes, extensions, and delays, Stephane
Nakib and Heather Fox for their on-going guidance, and Eric Miller for his assistance with publishing the
online review version of the first manuscript draft. I am fortunate to be working with the best publishing

team in the industry.

Special thanks also to Herbjorn Wilhelmsen, Martin Fowler, Ralph Johnson, Bobby Woolf, Grady
Booch, Gregor Hohpe, Baptist Eggen, Dragos Manolescu, Frank Buschmann, Wendell Ocasio, and

Kevin Davis for their guidance and uninhibited feedback throughout the review cycles.

My thanks and gratitude to the following reviewers that participated in one or more of the manuscript

reviews (in alphabetical order by last name):

Mohamad Afshar, Oracle
Sanjay Agara, Wipro
Stephen Bennett, Oracle
Steve Birkel, Intel

Brandon Bohling, Intel

x|

Grady Booch, IBM

Bryan Brew, Booz Allen Hamilton

Victor Brown, CMGC

Frank Buschmann, Siemens

Enrique G. Castro-Leon, Intel

Peter Chang, Lawrence Technical University
Jason “AJ” Comfort, Booz Allen Hamilton

John Crupi, JackBe

Veronica Gacitua Decar, Dublin City University
Ed Dodds, Conmergence

Kevin P. Davis, PhD

Dominic Duggan, Stevens Institute of Technology
Baptist Eggen, Dutch Department of Defense
Steve Elston, Microsoft

Dale Ferrario, Sun Microsystems

Martin Fowler, ThoughtWorks

Pierre Fricke, Red Hat

Chuck Georgo, Public Safety and National Security
Larry Gloss, Information Manufacturing

Al Gough, CACI International Inc.

Daniel Gross, University of Toronto

Robert John Hathaway III, SOA Object Systems
William M. Hegarty, ThoughtWorks

Gregor Hohpe, Google

Ralph Johnson, UIUC

James Kinneavy, University of California

Robert Laird, IBM

Doug Lea, Oswego State University of New York
Canyang Kevin Liu, SAP

Terry Lottes, Northrop Grumman Mission Systems
Chris Madrid, Microsoft

Anne Thomas Manes, Burton Group

Acknowledgments

Acknowledgments xli

Dragos Manolescu, Microsoft

Steven Martin, Microsoft

Joe McKendrick

J.D. Meier, Microsoft

David Michalowicz, MITRE Corporation
Per Vonge Nielsen, Microsoft

Wendell Ocasio, DoD Military Health Systems, Agilex Technologies
Philipp Offermann, University of Berlin
Dmitri Ossipov, Microsoft

Prasen Palvakar, Oracle

Parviz Peiravi, Intel

Nishit Rao, Oracle

Ian Robinson, ThoughtWorks

Richard Van Schelven, Ericsson

Shakti Sharma, Sysco Corp

Don Smith, Microsoft

Michael Sor, Booz Allen Hamilton
John Sparks, Western Southern Life
Sona Srinivasan, CISCO

Linda Terlouw, Ordina

Phil Thomas, IBM

Steve Vinoski, IEEE

Herbjorn Wilhelmsen, Objectware
Peter B. Woodhull, Modus21

Bobby Woolf, IBM

Farzin Yashar, IBM

Markus Zirn, Oracle

Olaf Zimmermann, IBM

There were many more individuals who directly or indirectly supported this effort. Amidst the flurry of
correspondence over the past three years, I was unable to keep track of all participants. If you were part
of the SOA design patterns project and you don’t see your name on this list, then do contact me via

www.thomaserl.com.

www.thomaserl.com

In alphabetical order by last name:

Larry Brader

David Chappell, Oracle
Frederick Chong

Pablo Cibraro, Lagash Systems SA
Ward Cunningham

Nelly Delgado, Microsoft

Florent Georges

Charles Stacy Harris, Microsoft
Kelvin Henney, Curbralan

Jason Hogg, Microsoft

Tom Hollander

Anish Karmarkar, Oracle

Sajjad Nasir Imran, WinWire
Berthold Maier, Oracle

Hajo Normann, EDS

Wojtek Kozaczynski

Mark Little, Red Hat

Brian Lokhorst, Dutch Tax Office
Brian Loesgen, Neudesic

Matt Long, Microsoft

Contributors

Contributors

David Orchard, Oracle
Thomas Rischbeck, IPT

Chris Riley, SOA Systems
Satadru Roy, Sun Microsystems
Arnaud Simon, Red Hat

Paul Slater, Wadeware

Don Smith

Sharon Smith, Microsoft
Dwayne Taylor

Tina Tech

Bernd Trops, SOPERA GmbH

Clemens Utschig-Utschig, Oracle

Lonnie Wall, RDA Corporation
Torsten Winterberg, Oracle

Dennis Wisnosky, U.S. Department of Defense

xliii

This page intentionally left blank

Chapter 16

Service Governance Patterns

Compatible Change
Version Identification
Termination Notification
Service Refactoring
Service Decomposition
Proxy Capability
Decomposed Capability
Distributed Capability

The governance patterns in this chapter focus only on design-related
governance issues that pertain to service architecture. The upcoming
book SOA Governance as part of this book series will provide a collection
of broader technical and organizational best practices and patterns.

espite best efforts during analysis and modeling phases to deliver services with a

broad range of capabilities, they will still be subjected to new situations and require-
ments that can challenge the scope of their original design. For this reason, several patterns
have emerged to help evolve a service without compromising its responsibilities as an
active member of a service inventory.

Compatible Change (465) and Version Identification (472) are focused on the versioning
of service contracts. Similarly, Termination Notification (478) addresses the retirement of
services or service contracts.

The most fundamental pattern in this chapter is Service Refactoring (484), which lever-
ages a loosely (and ideally decoupled) contract to allow the underlying logic and imple-
mentation to be upgraded and improved.

The trio of Service Decomposition (489), Decomposed Capability (504), and Proxy
Capability (497) establish techniques that allow coarser-grained services to be physically
partitioned into multiple fine-grained services that can help further improve composition
performance. Distributed Capability (510) also provides a specialized, refactoring-related
design solution to help increase service scalability via internally distributed processing
deferral.

Compatible Change

By David Orchard, Chris Riley

How can a service contract be modified without impacting
consumers?

Problem Changing an already-published service contract can impact and
invalidate existing consumer programs.

Solution Some changes to the service contract can be backwards-
compatible, thereby avoiding negative consumer impacts.

Application Service contract changes can be accommodated via extension or
by the loosening of existing constraints or by applying
Concurrent Contracts (421).

Impacts Compatible changes still introduce versioning governance effort,
and the technique of loosening constraints can lead to vague
contract designs.

Principles Standardized Service Contract, Service Loose Coupling
Architecture Service
Tahle 16.1

Profile summary for the Compatible Change pattern.

Problem

After a service is initially deployed as part of an active service inventory, it will make its
capabilities available as an enterprise resource. Consumers will be designed to invoke and
interact with the service via its contractin order to leverage its capabilities for their own use.
As a result, dependencies will naturally be formed between the service contract and those
consumer programs. If the contract needs to be changed thereafter, that change can risk
impacting existing consumers that were designed in accordance with the original,
unchanged contract (Figure 16.1).

466 Chapter 16: Service Governance Patterns

Invoice (v1)
O Get
O GetDetail
O Update
Consumer A
(v1)
Invoice (v2)
Consumer A

O Get ﬁ (v1)

O GetLineltem

O Update L

Consumer B
(v1)

Figure 16.1

The name of a service capability is modified after version 1 of a service con-
tract is already in use. As a result, version 2 of the contract is incompatible
with Consumer A.

Solution

Wherever possible, changes to established service contracts can be made to preserve the
contract’s backwards compatibility with existing consumers. This allows the service con-
tract to evolve as required, while avoiding negative impact on dependent compositions and
consumer programs (Figure 16.2).

Application

There are a variety of techniques by which this pattern can be applied, depending on the
nature of the required change to the contract. The fundamental purpose of this pattern is
to avoid having to impose incompatible changes upon a service contract that do not

Compatible Change 467

Invoice (v2)
O Get Consumer A
O GetDetail (1)
O GetLineltem
O Update
Consumer B
(v1)
Figure 16.2

The existing capability is not renamed. Instead, a new capability with a
new name is added alongside the original capability, thereby preserving
compatibility with both Consumers A and B.

preserve backwards compatibility and therefore risk breaking and invalidating existing
service-consumer relationships.

Here is a collection of common changes for Web service contracts, along with descriptions
of how (or to what extent) these changes can be applied in a backwards-compatible
manner:

* Adding a New Operation to a WSDL Definition — The operation can simply be
appended to the existing definition, thereby acting as an extension of the contract
without impacting any established contract content.

* Renaming an Existing Operation — As explained in the previous diagrams, an operation
can be renamed by adding a new operation with the new name alongside of the exist-
ing operation with the old name. This approach can be further supplemented with
Termination Notification (478), if there is a requirement to eventually retire the
original operation while allowing consumers dependent on that operation a grace
period to be updated in support of the renamed operation.

* Removing an Existing Operation — If an operation needs to be permanently deleted
from the WSDL definition, there are no options for accomplishing this change in a
compatible manner. Termination Notification (478) is highly reccommended in this
case in order to give consumer designers sufficient opportunity to transition their
programs so that they are no longer using the to-be-terminated operation. Also, the
technique of turning removed operations into functional stubs that respond with
descriptive error data can also be employed to minimize impact on consumers that
could not be transitioned.

468 Chapter 16: Service Governance Patterns

* Changing the MEP of an Existing Operation — To alter an operation’s message
exchange pattern requires that its input and output message definitions (and possibly
its fault definition) be modified, which is normally an incompatible change. To still
proceed with this change while preserving backwards compatibility requires that a
new operation with the modified MEP be appended to the WSDL definition together
with the original operation. As when renaming an operation in this manner,
Termination Notification (478) can be used to assist an eventual transition.

* Adding a Fault Message to an Existing Operation — The addition of a fault message
(when considered separately from a change to the MEP) may often appear as a com-
patible change because the option of issuing a fault message does not affect the core
functionality of an operation. However, because this addition augments the service
behavior, it should be considered a change that can only be compatible when adding
the fault message as part of a new operation altogether.

* Adding a New Port Type — Because WSDL definitions allow for the existence of multi-
ple port type definitions, the service contract can be extended by adding a new port
type alongside an existing one. Although this represents a form of compatible change,
it may be more desirable to simply issue a new version of the entire Web service
contract.

* Adding a New Message Schema Element or Attribute — New elements or attributes can
be added to an existing message schema as a compatible change as long as they are
optional. This way, their presence will not affect established service consumers that
were designed prior to their existence.

* Removing an Existing Message Schema Element or Attribute — Regardless of whether
they are optional or required, if already established message schema elements or
attributes need to be removed from the service contract, it will result in an incompati-
ble change. Therefore, this pattern cannot be applied in this case.

* Modifying the Constraint of an Existing Message Schema — The validation logic behind
any given part of a message schema can be modified as part of Compatible Change,
as long as the constraint granularity becomes coarser. In other words, if the restric-
tions are loosened, then message exchanges with existing consumers should remain
unaffected.

* Adding a New Policy — One or more WS-Policy statements can be added via
Compatible Change by simply adding policy alternatives to the existing policy
attachment point.

Compatible Change 469

* Adding Policy Assertions — A policy assertion can be added as per Compatible Change
(465) to an existing policy as long as it is optional or added as part of a separate pol-
icy as a policy alternative.

* Adding Ignorable Policy Assertions — Because ignorable policy assertions are often used
to express behavioral characteristics of a service, this type of change is generally not
considered compatible.

This list of changes corresponds to a series of sections within Chapters
21, 22, and 23 in the book Web Service Contract Design and Versioning
for SOA, which explores compatible and incompatible change scenarios
with code examples.

Impacts

Each time an already published service contract is changed, versioning and governance
effort is required to ensure that the change is represented as a new version of the contract
and properly expressed and communicated to existing and new consumers. As explained in
the upcoming Relationships section, this leads to a reliance upon Canonical Versioning
(286) and Version Identification (472).

When applying Compatible Change in such a manner that it introduces redundancy or
duplication into a contract (as explained in several of the scenarios from the Application
section), this pattern can eventually result in bloated contracts that are more difficult to
maintain. Furthermore, these techniques often lead to the need for Termination Notifica-
tion (478), which can add to both the contract content and governance effort for service
and consumer owners.

Finally, when the result of applying this pattern is a loosening of established contract con-
straints (as described in the Modifying the Constraint of an Existing Message Schema scenario
from the Application section earlier), it can produce vague and overly coarse-grained con-
tract content.

Relationships

To apply this pattern consistently across multiple services requires the presence of a
formal versioning system, which is ideally standardized as per Canonical Versioning (286).
Furthermore, this pattern is dependent upon Version Identification (472) to ensure that
changes are properly expressed and may also require Termination Notification (478) to
transition contract content and consumers from old to new versions.

470 Chapter 16: Service Governance Patterns

’ establishes
relies a formal approach
upon

/ for
may require

Version the application of Canonical

Identification \ Versioning

Concurrent Termination
Contracts Abstractlon Notification

Figure 16.3

Compatible Change relates to several other service governance patterns but also may depend on some contract
design patterns.

CASE STUDY EXAMPLE

As described in the case study example for Contract Denormalization (414), the Offi-
cer service contract was recently extended by FRC architects to include a new
UpdateLog operation.

Before the architects can release this contract into the production environment, it must
go through a testing process and be approved by the quality assurance team. The first
concern raised by this team is the fact that a change has been made to the technical
interface of the service and that regression testing must be carried out to ensure that
existing consumers are not negatively impacted.

The architects plead with the QA manager that these additional testing cycles are not
necessary. They explain that the contract content was only appended by the addition of
the UpdateLog operation, and none of the previously existing contract code was
affected, as shown in the highlighted parts of this example:
<definitions name="Officer"
targetNamespace="http://frc/officer/wsdl/"
xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:off="http://frc/officer/schema/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

Compatible Change 471

xmlns:tns="http://frc/officer/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema ">
<types>
<xsd:schema targetNamespace="http://frc/officer/">
<xsd:import namespace="http://frc/officer/schema/"
schemalLocation="0fficer.xsd" />
</xsd:schema>
</types>
<message name="UpdateOfficer">
<part name="RequestA" element="off:0fficerDoc"/>
</message>
<message name="UpdateOfficerConfirm">
<part name="ResponseA" element="off:ReturnCodeA"/>
</message>
<message name="UpdateOfficerLog">
<part name="RequestB" element="off:0fficerLog"/>
</message>
<message name="UpdateOfficerLogConfirm">
<part name="ResponseB" element="off:ReturnCodeB"/>
</message>
<portType name="OffInt">
<operation name="Update">
<input message="tns:UpdateOfficer"/>
<output message="tns:UpdateOfficerConfirm"/>
</operation>
<operation name="UpdateLog">
<input message="tns:UpdateOfficerLog"/>
<output message="tns:UpdateOfficerLogConfirm"/>
</operation>
</portType>

</definitions>

Example 16.1

The WSDL definition from Example 14.1 is revisited to show how the change made during the application of
Contract Denormalization (414) was backwards-compatible.

Because existing content was not changed and only new content was added, they claim
that the contract is fully backwards-compatible. The QA manager agrees that this indi-
cates a reduced risk but insists that the revised service be subjected to some testing to
ensure that the addition of the new operation logic did not affect its overall behavior.

Version Ildentification
By David Orchard, Chris Riley

How can consumers be made aware of service contract version
information?

Problem When an already-published service contract is changed, unaware
consumers will miss the opportunity to leverage the change or
may be negatively impacted by the change.

Solution Versioning information pertaining to compatible and
incompatible changes can be expressed as part of the service
contract, both for communication and enforcement purposes.

Application With Web service contracts, version numbers can be
incorporated into namespace values and as annotations.

Impacts This pattern may require that version information be expressed
with a proprietary vocabulary that needs to be understood by
consumer designers in advance.

Principles Standardized Service Contract

Architecture Service
Table 16.2
Profile summary for the Version Identification pattern. é
Problem contract A
Whether a contract is subject to compatible or
incompatible changes, any modification to its ?
published content will typically warrant a new é
contract version. Without a means of associating revised
contract versions with changes, the compatibility =~ contactA Consumer A
between a service and its current and new con-
sumers is constantly at risk, and the service also é
becomes less discoverable to consumer designers -
(Figure 164) revised

contract A

Furthermore, the service itself also becomes Figure 16.4
more burdensome to govern and evolve. As a service contract is required to change, a

service consumer is left in the dark as to whether
it is still compatible.

Version Identification 473

Solution
The service contract can be designed to ﬁ

express version identifiers that allow the con-
sumer to confidently determine whether it is Contract A
compatible with the service. The use of version
identifiers further supports Concurrent Con-

tracts (421) for versioning purposes, thereby ﬁ

allowing a consumer to choose the correct

contract based on its expressed version, as revised Consumer A
. . Contract A (compatible with

shown in Figure 16.5. version 3 of

Contract A)

Application ﬁ

Versions are typically identified using numeric o
revise

values that are incorporated into the service ContractA
contract either as human-readable annotations Figure 16.5

or as actual extensions of the technical contract ~ Because the service contracts express versioning
information, Consumer A can proceed to invoke

]) o version 3 of the service contract because it was
format is a decimal where the first digit repre- designed to be compatible with that specific version.

content. The most common version number

sents the major version number, and digits fol-
lowing the decimal point represent minor
version numbers.

What the version numbers actually mean depends on the conventions established by an
overarching versioning strategy. Two common approaches are described here:

e Amount of Work — Major and minor version numbers are used to indicate the amount
of effort that went into each change. An increment of a major version number repre-
sents a significant amount of work, whereas increases in the minor version numbers
represent minor upgrades.

o Compatibility Guarantee — Major and minor version numbers are used to express
compatibility. The most common system is based on the rule that an increase in a
major version number will result in a contract that is not backwards-compatible,
whereas increases in minor version numbers are backwards-compatible. As a result,
minor version increments are not expected to affect existing consumers.

Note that these two identification systems can be combined so that version number
increases continue to indicate compatible or incompatible changes, while also representing
the amount of work that went into the changes.

474 Chapter 16: Service Governance Patterns

With Web service contracts specifically, a common means of ensuring that existing con-
sumers cannot accidentally bind to contracts that have been subject to non-backwards-
compatible changes is to incorporate the version numbers into new namespace values that
are issued with each new major version increase.

Whereas version numbers are often incorporated into the target name-
spaces for WSDL definitions, date values are commonly appended to tar-
get namespaces for XML Schema definitions. See Chapters 20, 21, and
22 in the Web Service Contract Design and Versioning for SOA book for
code examples and more details.

Impacts

Version identification systems and conventions are typically specific to a given service
inventory and usually part of a standardized versioning strategy, as per Canonical Version-
ing (286). As a result, they are not standardized on an industry level and therefore, when
expressed as part of the technical contract, impose the constant requirement that service
consumers be designed to understand the meaning of version identifiers and programmat-
ically consume them, as required.

When services are exposed to new or external consumers, these same requirements apply,
but the necessary enforcement of standards may be more difficult to achieve.

Relationships

This pattern is commonly applied together with (or as a result of) the application of
Canonical Versioning (286) and is further an essential part of carrying out Compatible

Change (465).

\ /

\ /

establishes can affect the
a formal approach application of

for
Figure 16.6

Version Identification relates primarily to other contract versioning patterns.

Version Identification 475

Version Identification is comparable to Format Indicator (Hohpe, Woolf)
when applied to express a version number as part of a message. Format
Indicator differs in that it is message-centric and also enables the expres-
sion of other meta information, such as foreign keys and document formats.

CASE STUDY EXAMPLE

As explained in the example for Compatible Change (465) example, the quality assur-
ance team performs some further testing on the Officer service with its extended serv-
ice contract. Subsequent to carrying out these tests they clear the new service for release
into production, subject to one condition: The service contract must express a version
number to indicate that it has been changed.

This version number follows existing versioning conventions whereby a backwards-
compatible change increments the minor version number (the digit following the
decimal point). The FRC architects agree that this is a good idea and are quick to
add a human-readable comment to the Officer WSDL definition by using the
documentation element as follows:

<definitions name="Officer"
targetNamespace="http://frc/officer/wsdl/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:off="http://frc/officer/schema/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://frc/officer/wsdl/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema ">
<documentation>Version 1.1l</documentation>

</definitions>

Example 16.2
The WSDL definition from Example 16.1 is annotated with a version number.

Several months after version 1.1 of the Officer service was deployed, two new projects
get started, each pertaining to the HR system that is currently in place. One of the FRC
enterprise architects is involved with both project teams to ensure compliance with
design standards. After reviewing each design specification, she notices some common-
ality. The first solution requires event logging functionality, and the other solution has
arequirement for error logging. She soon realizes that there is a need for the FRC to cre-
ate a separate utility Logging service.

476 Chapter 16: Service Governance Patterns

After proposing her recommendation, the Logging service is built in support of both
solutions. Weeks later during a review of the service inventory blueprint, an analyst
points out that the UpdateLog operation that was added to the Officer service contract
should, in fact, be located within the new Logging service.

The FRC architecture team agrees to make this change, though it isn’t considered an
immediate priority. Several weeks thereafter, the Officer service is revisited, and the
logic behind the UpdateLog operation is removed. As a result, the UpdateLog opera-
tion itself is deleted from the contract.

Following the versioning conventions set out by the quality assurance team, this type of
change is classified as “incompatible,” meaning that it imposes a non-backwards-
compatible change that will impact consumer programs that have already formed
dependencies on the Officer service’s UpdateLog operation. Consequently, they are
required to increment the major version number (the digit before the decimal) and fur-
ther append the Officer WSDL definition’s target namespace with the new version
number, as follows:

<definitions name="Officer"
targetNamespace="http://frc/officer/wsdl/v2"
xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:off="http://frc/officer/schema/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://frc/officer/wsdl/v2"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" >
<documentation>Version 2.0</documentation>
<types>
<xsd:schema targetNamespace="http://frc/officer/">
<xsd:import namespace="http://frc/officer/schema/"
schemal.ocation="0Officer.xsd" />
</xsd:schema>
</types>
<message name="UpdateOfficer">
<part name="RequestA" element="off:0fficerDoc"/>
</message>
<message name="UpdateOfficerConfirm">
<part name="ResponseA" element="off:ReturnCodeA"/>
</message>
<portType name="OffInt">
<operation name="Update">
<input message="tns:UpdateOfficer"/>
<output message="tns:UpdateOfficerConfirm"/>
</operation>

Version Identification 477

</portType>

</definitions>

Example 16.3
The UpdateLog operation is removed from the revised Officer WSDL definition, resulting in an incompatible change
that requires a new target namespace value.

Termination Notification

By David Orchard, Chris Riley

How can the scheduled expiry of a service contract be
communicated to consumer programs?

Problem Consumer programs may be unaware of when a service or a
service contract version is scheduled for retirement, thereby
risking runtime failure.

Solution Service contracts can be designed to express termination
information for programmatic and human consumption.

Application Service contracts can be extended with ignorable policy
assertions or supplemented with human-readable annotations.

Impacts The syntax and conventions used to express termination
information must be understood by service consumers in order
for this information to be effectively used.

Principles Standardized Service Contract

Architecture Composition, Service

Table 16.3

Profile summary for the Termination Notification pattern.

Problem

As services evolve over time, various conditions and circumstances can lead to the need to

retire a service contract, a portion of a service contract, or the entire service itself.

Examples include:

e the service contract is subjected to a non-backwards-compatible change

* acompatible change is applied to a service contract but strict versioning policies

require the issuance of an entirely new version of the service contract

e aservice’s original functional scope is no longer applicable in relation to how the

business has changed

* aservice is decomposed into more granular services or combined together with

another service

Termination Notification 479

Inlarger IT enterprises and especially when making services accessible to external partner
organizations, it can be challenging to communicate to consumer owners the pending ter-
mination of a service or any part of its contract in a timely manner.

Failure to recognize a scheduled retirement will inevitably lead to runtime failure scenar-
ios, where unaware consumer programs that attempt to invoke the service are rejected

(Figure 16.7).

tomorrow

>< v

Figure 16.7

The consumer program (right) invokes a service via its
contract as usual today, but when the contract is terminated
on the next day, the attempted invocation fails.

Solution

Service contracts are equipped with termination details, thereby allowing consumers to
become aware of the contract retirement in advance (Figure 16.8).

By the way, I'm being
terminated tomorrow.

tomorrow

X

Figure 16.8

The service contract includes a standardized statement that
communicates when it is scheduled for termination. As a
result, the consumer does not attempt to invoke it after the
contract has been terminated.

480 Chapter 16: Service Governance Patterns

Application

This pattern is most commonly applied by supplementing technical contract content with
human-readable annotations that simply provide the termination date. However, with
Web service contracts, there is also the option of leveraging the WS-Policy language to
express termination notifications via ignorable policy assertions. This enables consumer
programs to be designed to programmatically check for termination information.

It is also worth noting that in addition to expressing service contract termination, there are
other purposes for which Termination Notification can be applied, such as:

e Indicating the retirement of a specific capability or operation — This is especially relevant
when choosing one of the transition techniques described in Compatible Change
(465) where an original operation is preserved and a similar, but changed, operation

is added.

* Indicating the retirement of an entire service — This same approach can be used to com-
municate that an entire service program itself is scheduled for retirement.

e Indicating the retirement of a message schema — Although policy assertions may not be
suitable for this purpose, regular annotations can be added to schemas to explain
when the schema version will be terminated and/or replaced.

Note also that governance standards can be put in place as part of an overarching Canoni-
cal Versioning (286) strategy to express termination notification information via stan-
dardized annotations or non-ignorable policy assertions. In the latter case, this can require
that all Web service contracts contain termination assertions, regardless of whether they
are due for termination. For those contracts that are not being terminated, a pre-defined
value indicating this is placed in the assertion instead of a date (or the assertion is left

empty).

Impacts

All of the techniques explained in this pattern description require the use of non-standard-
ized extension content for service contracts. This is because there is no industry standard
for expressing termination information. Termination Notification relies on the existence
and successful enforcement of governance standards and therefore has a direct depend-
ency on Canonical Versioning (286).

Termination Notification 481

Relationships

As just mentioned, how this pattern is applied is often governed by Canonical Versioning
(286). Both Compatible Change (465) and Proxy Capability (497) can lead to the need
for Termination Notification.

Compatible

Change

Versioning

establishes a may rgqu.ire oy
formal approach for the application of Capability

is commonly
applied together with

Termination /
Notification
Figure 16.9

Termination Notification relates primarily to other versioning patterns but also can support
Proxy Capability (497).

Termination Notification is similar in concept to Message Expiration
(Hohpe, Woolf), a pattern that advocates adding a timestamp to a mes-
sage to indicate when the message itself is no longer considered valid.

CASE STUDY EXAMPLE

In the example for Version Identification (472) example the FRC team removed the
UpdateLog operation from the Officer WSDL definition, resulting in a non-backwards-
compatible change. After a meeting with some of the custodians of the consumer pro-
grams affected by this incompatible change, FRC architects begin to realize that the
change will result in significant effort on the part of consumer owners and that it could
take several months before all of the consumer programs are updated to work with the
new utility Logging service. Furthermore, several of the individuals responsible for own-
ing consumers were not available and will need to be informed of the pending change at
a later point.

482 Chapter 16: Service Governance Patterns

As aresult of these circumstances, the FRC team decides to postpone the change, allow-
ing the Officer service to maintain its UpdateLog operation for the next six months
while the Logging service is also available. They work with the quality assurance team
on a plan to accommodate this transition, as follows:

1. Establish a new design standard that disallows any new consumer programs from
accessing the Officer service’s UpdateLog operation.

2. Notify all team leads via e-mail of the date on which the UpdateLog operation will
be removed.

3. Incorporate this termination date into the Officer WSDL definition by means of a
non-ignorable policy assertion.

Step 3 is implemented as follows:

<definitions name="Officer" ... >

<binding name="bdPO" type="tns:0ffInt">
<operation name="Update">
<soapbind:operation
soapAction="http://frc/update/request"
soapActionRequired="true" required="true"/>
<input>
<soapbind:body use="literal"/>
</input>
<output>
<soapbind:body use="literal"/>
</output>
</operation>
<operation name="UpdateLog">
<wsp:Policy>
<pol:termination wsp:Ignorable="true">
Mar-01-2009
</pol:termination>
</wsp:Policy>
<soapbind:operation
soapAction="http://frc/updatelLog/request"
soapActionRequired="true" required="true"/>
<input>
<soapbind:body use="literal"/>
</input>
<output>
<soapbind:body use="literal"/>

Termination Notification 483

</output>
</operation>

</binding>

</definitions>

Example 16.4
The operation element within the Officer WSDL definition’s binding construct is modified to include a
custom ignorable WS-Policy assertion that expresses the scheduled termination date of the UpdateLog operation.

For more examples of Termination Notification see Chapter 23 of Web
Service Contract Design and Versioning for SOA.

Service Refactoring

How can a service be evolved without impacting existing

consumers?

Problem

The logic or implementation technology of a service may
become outdated or inadequate over time, but the service has
become too entrenched to be replaced.

Solution

The service contract is preserved to maintain existing consumer
dependencies, but the underlying service logic and/or
implementation are refactored.

Application

Service logic and implementation technology are gradually
improved or upgraded but must undergo additional testing.

Impacts

This pattern introduces governance effort as well as risk
associated with potentially negative side-effects introduced by
new logic or technology.

Principles

Standardized Service Contract, Service Loose Coupling,
Service Abstraction

Architecture

Service

Table 16.4

Profile summary for the Service Refactoring pattern.

Problem

Subsequent to its initial delivery, unforeseen performance and business requirements may

demand more from a service than it is capable of providing (Figure 16.10). Replacing the

service entirely may be undesirable, especially when several consumer programs have

already formed dependencies upon its established service contract.

Service Refactoring 485

version 1 version 1 version 1 version 1
["perform
T) faster”
D core rar
service - & increase
logic / availability”
—_—
‘ -« // “improve
J functional service
execution” consumers
Figure 16.10

Consumers of an existing service demand new requirements for which the service was not originally designed.
The red symbols indicate the different parts of this service architecture that could be independently versioned.

Solution

Software refactoring is an accepted software engineering practice whereby existing soft-
ware programs can be gradually improved without affecting the manner in which they
behave. When applied to service design, this approach provides more opportunity for serv-
ices to evolve within an organization without disrupting their existing consumers. As
shown in Figure 16.11, with the application of this pattern the underlying logic and imple-
mentation of a service can be regularly optimized, improved, or even upgraded while pre-
serving the service contract.

version 2 version 2 version 2 version 1
D core
service

logic

—_—
service
consumers
Figure 16.11

All parts of a service architecture abstracted by its contract can potentially be refactored without compromising
existing consumer relationships. The service contract and the remaining, externally facing message processing
agents (red) are not affected by the refactoring effort.

Application

Software refactoring practices allow programs to be improved through a series of small
upgrades that continue to preserve their interfaces and overall behavior. By limiting the
scope of these upgrades, the risk associated with negatively impacting consumers is mini-
mized. The emphasis of software refactoring techniques is on the cumulative result of these
individual refactoring steps.

486 Chapter 16: Service Governance Patterns

This pattern can be more successfully applied when the service has already been subjected
to the application of Decoupled Contract (401) and the Service Loose Coupling design
principle. The separation of service logic from a fully decoupled contract provides
increased freedom as to how refactoring can be carried out, while minimizing potential dis-
ruption to existing service consumers.

NOTE

Several books covering refactoring techniques and specialized patterns
are available. Two well-known titles are Refactoring: Improving the
Design of Existing Code (Fowler, Beck, Brant, Opdyke, Roberts) and
Refactoring to Patterns (Kerievsky), both by Addison-Wesley. The site
www.refactoring.com provides additional resources as well as a catalog
of proven “refactorings.”

Impacts

The refactoring of existing service logic or technology introduces the need for the service
to undergo redesign, redevelopment, and retesting cycles so as to ensure that the existing
guarantees expressed in the service contract (which includes its SOA) can continue to be

fulfilled as expected (or better).

Because already established and proven logic and technology is modified or replaced as a
result of applying this pattern, there is still always a risk that the behavior and reliability of
a refactored capability or service may still somehow negatively affect existing consumers.
The degree to which this risk is alleviated is proportional to the maturity, suitability, and
scope of the newly added logic and technology and the extent to which quality assurance
and testing are applied to the refactored service.

Relationships

The extent to which Service Refactoring can be applied depends on how the service itself
was first designed. This is why there is a direct relationship between this pattern and Ser-
vice Normalization (131), Contract Centralization (409), and Decoupled Contract (401).
The abstraction and independence gained by the successful application of those patterns
allows services to be individually governed and evolved with minimal impact to consumer
programs.

www.refactoring.com

Service Refactoring 487

Furthermore, depending on the nature of the refactoring requirements, Service Decompo-
sition (489), Concurrent Contracts (421), or Service Facade (333) may need to be applied
to accommodate how the service is being improved.

Service Contract

Service

Decoupled
on d

Normalization Centralization

Facade

establishes service supports
boundaries in support of

Concurrent

becomes possible
with the application of Contracts

/

can be supported by
(when facilitating
multiple consumers)

Service

Refactoring

sometimes results
in the need for

(is supported by

Proxy

Capability may lead to
the need for

Validation
Abstraction

Distributed Service
Capability Decomposition

Figure 16.12

Service Refactoring relies on several key contract-related patterns to ensure that refactoring-related changes do
not disrupt existing service consumers.

488 Chapter 16: Service Governance Patterns

CASE STUDY EXAMPLE

The Alleywood Employee service was implemented some time ago. It originally estab-
lished a standardized service contract that acted as an endpoint into the HR module of
alarge ERP system. Since the McPherson buyout, various products have been upgraded
or replaced to contemporize the overall IT enterprise. As part of this initiative, this ERP
system was re-evaluated.

The ERP vendor had been bought out by a competing software manufacturer, and the
ERP platform was simply made part of a larger product line that offered an alternative
ERP. The McPherson group believed that the original Alleywood ERP environment
would soon be retired by its new owner in order to give their ERP product a greater mar-
ket share.

As aresult, it was decided to completely replace this product. This, of course, affected
many services, including the Employee service. However, because its contract was
decoupled and had been fully standardized, it was in no way dependent on any part of
the underlying ERP environment.

Anew HR product and a custom-developed employee reporting application were intro-
duced, allowing developers to refactor some of the core service logic so that the con-
current usage thresholds of the more popular service capabilities could be increased
while the service contract and the service’s overall expected behavior are preserved.

This limited the impact of the HR product to the service only. Besides a brief period of
unavailability, all Employee service consumers were shielded from this impact and con-
tinued to use the Employee service as normal.

Service Decomposition

How can the granularity of a service be increased subsequent to its
implementation?

Problem Overly coarse-grained services can inhibit optimal composition
design.
Solution An already implemented coarse-grained service can be

decomposed into two or more fine-grained services.

Application The underlying service logic is restructured, and new service
contracts are established. This pattern will likely require Proxy
Capability (497) to preserve the integrity of the original coarse-

grained service contract.

Impacts An increase in fine-grained services naturally leads to larger,
more complex service composition designs.

Principles Service Loose Coupling, Service Composability
Architecture Service
Tahle 16.5

Profile summary for the Service Decomposition pattern.

Problem

When modeling services during the initial analysis phases it is common to take practical
considerations into account. For example, what may ideally be represented by a set of fine-
grained business service candidates is later combined into a smaller number of coarse-
grained services primarily due to performance and other infrastructure-related concerns
motivated by the need to keep service composition sizes under control.

After a service inventory architecture matures and more powerful and sophisticated tech-
nology and runtime products are incorporated, larger, more complex service compositions
become a reality. When designing such compositions, it is generally preferable to keep the
footprints of individual services as small as possible because only select service capabilities
are required to automate a given parent business task. However, when forced to work with
overly coarse-grained services, composition performance can be negatively affected, and
the overall composition designs can be less than optimal (Figure 16.13).

490

| A A

Chapter 16: Service Governance Patterns

%

__HI

LENE

capability
specific
functions

-~

Figure 16.13

Get
Report
Validate
Delete
Add

O O ONGNIE

An Invoice service with a functional context originally derived from three separate business entities ends up
existing as a large software program with a correspondingly large footprint, regardless of which capability a

composition may need to compose.

Service Decomposition 491

NOTE

Another circumstance under which this problem condition can occur is
when services are being produced via a meet-in-the-middle delivery
process, where a top-down analysis is only partially completed prior to
service development. In this delivery approach, the top-down process
continues concurrently with service delivery projects. There is a commit-
ment to revising implemented service designs after the top-down analysis
progresses to a point where necessary changes to the original service
inventory are identified. For more details regarding SOA project delivery
strategies, see Chapter 10 in Service-Oriented Architecture: Concepts,
Technology, and Design.

Solution

The coarse-grained service is decomposed into a set of fine-grained services that collec-
tively represent the functional context of the original service but establish distinct func-
tional contexts of their own (Figure 16.14).

Invoice

— O Get
\ O Add
Invoice \
o
Record \Delete
Invoice
Invoice
| Go ’ History
Report O Report

Validate V | O Delete
Delete \
Invoice \
History N\ fd —

Invoice Invoice
Policy Policy

O Validate
O Add

O O O O O

\
\

Figure 16.14

The original, coarse-grained Invoice service is decomposed into three separate services, one of which remains
associated with general invoice processing but only encapsulates a subset of the original capabilities.

492 Chapter 16: Service Governance Patterns

Application

Carrying out this pattern essentially requires that the existing, coarse-grained service be
broken apart and its logic reorganized into new, finer-grained functional boundaries.

Therefore, the first step is usually to revisit the service inventory blueprint and decide how
the service can be re-modeled into multiple service candidates. As part of this process, new
capability candidates will also need to be defined, especially if Decomposed Capability
(504) was not taken into account during the service’s original design. After the modeling is
completed, the new services are subject to the standard lifecycle phases, beginning with
contract design (based on the modeled service candidates) and all the way through to final
testing and quality assurance phases (Figure 16.15).

Unless it is decided to also retrofit previous consumer programs that formed dependencies
on the original service, Proxy Capability (497) will likely need to be applied to preserve the
original service contract for backwards compatibility.

NOTE

The concepts behind this pattern can also be applied in reverse, where
two or more fine-grained services are combined into one coarse-grained
service. The use of Proxy Capability (497) would still apply for preserving
the original service contracts. This is the basis of a pattern called Service
Consolidation which, at the time of this writing, was classified as a candi-
date pattern that is available for review at SOAPatterns.org.

Impacts

The extent to which Service Decomposition can impact a service inventory depends on
how established a service is and how many consumer programs have formed relationships
on it. The more consumers involved, the more complicated and disruptive this pattern
can be.

Because this pattern is commonly applied after an inventory architecture has matured, its
application needs to be carefully planned together with the repeated application of Proxy
Capability (497).

The preventative use of Decomposed Capability (504) can ease the impact of Service
Decomposition and will also result in a cleaner separation of functional service contexts.

Service Decomposition 493

O Add O Add O Delete
O Delete

Figure 16.15
The new, fine-grained services each provide fewer capabilities and therefore also impose smaller program sizes.

494 Chapter 16: Service Governance Patterns

Relationships

Service Decomposition has a series of relationships with other service-level patterns, most
notably Service Refactoring (484). When a service is upgraded as a result of a refactoring
effort, the application of Service Decomposition may very well be the means by which this
is carried out.

As explained in the pattern description for Proxy Capability (497), Service Decomposition
relies on that pattern to implement the actual partitioning via the redevelopment effort
required to turn one or more regular capabilities into proxies. As a result, this pattern shares
several of the same patterns as Proxy Capability (497).

Service Decomposition is most frequently applied to agnostic services, therefore tying it to
Entity Abstraction (175) and Utility Abstraction (168). However, the result of this pattern
can introduce a measure of service redundancy due to the need for Proxy Capability (497)
to violate Service Normalization (131) to some extent.

Service
Normalization

Entity

Abstraction

5 Service
Utility Refactoring
Abstraction
R can augment

the application
of

is most commonly
applied to services
produced by \

may lead
to the need for

Decoupled
Contract

results in the

preparation for need to apply

/ can augment \
Decomposed supports the application of Proxy
Capablllty / \ Capability

Service Service
Facade Normalization
Figure 16.16

Service Decomposition is a refactoring-related approach to splitting up service logic that ties into numerous
patterns that shape service logic and contracts.

is applied in

Service Decomposition 495

CASE STUDY EXAMPLE

The case study example for Service Refactoring (484) explained how the Employee
service was reengineered for a number of reasons. One of the results of this effort is that
the service is now more scalable and can handle increased usage loads. The primary rea-
son scalability was addressed is in preparation for new, upcoming service compositions
that will require access to employee data and functionality. Those compositions were in
the planning stages at that time and are now in production.

Some preliminary statistics show that despite the increase in usage thresholds, the
Employee service is still excessively strained, and there have already been complaints
about latency and memory overhead associated with the service’s invocation and par-
ticipation as part of the overall composition.

At first the team responsible for the Employee service considers Redundant Implemen-
tation (345) to help alleviate this situation. While this would address some of the
latency issues, it would not solve the memory overhead issue.

The team then explores the option of splitting the functionality in the Employee service
into two separate services. From a back-end perspective, there is an opportunity to do
this in a relatively clean-cut manner. Currently, the service encapsulates functionality
from an HR ERP system and a custom-developed reporting application. However, as a
member of the entity service layer, the architects and business analysts involved would
like to preserve the business entity-based functional context in each of the two services
it would be split into. Therefore, they don’t want to make the decision based on the cur-
rent service implementation architecture alone.

They turn to the information architecture group responsible for maintaining the master
entity relationship diagram to look for suitable employee-related entities that might
form the basis of separate services. They locate an Employee Records entity that has a
relationship with the parent Employee entity. Employee Records represents historical
employee information, such as overtime, sick days, complaints, promotions, injuries,
etc.

The team reviews the current entity service functionality and additional capabilities
that may need to be added (such as those modeled as part of the service inventory blue-
print but not yet implemented). They also look into the back-end systems being encap-
sulated. The custom-developed reporting application does not provide all of the
required features to support a service dedicated to Employee Records processing. The
team would need for this service to continue accessing the HR ERP system, plus

496 Chapter 16: Service Governance Patterns

eventually upcoming Employee Records capabilities will need to further access the cen-
tral data warehouse.

On the bright side, their original usage statistics indicate that some of the latency issues
resulted from the Employee service being tied up executing long-running reporting
queries. If this type of functionality were to exist in a separate service, the primary
Employee capabilities would be more scalable and reliable, and the Employee service
would be “lighter” and a more effective composition participant.

After taking all these factors into consideration, the team feels that it makes sense to
break off historical reporting functionality into a separate service appropriately called
“Employee Records.” The first challenge they face is that the existing Employee service
contract is already being used by many consumer programs. If they move capabilities
from this service to another, they will introduce significant disruption. For this situa-

tion, they apply Proxy Capability (497), as explained in the next case study example.

NOTE

The preceding scenario describes one possible option as to how a serv-
ice can be decomposed. Another design option is to split the one entity
service into an entity and utility service in order to accommodate more
practical concerns. Either way, how a service is decomposed is ultimately
best determined by a thorough analysis to ensure that your business
requirements are fully met.

Proxy Capability

How can a service subject to decomposition continue to
support consumers affected by the decomposition?

Problem If an established service needs to be decomposed into multiple
services, its contract and its existing consumers can be impacted.

Solution The original service contract is preserved, even if underlying
capability logic is separated, by turning the established capability

definition into a proxy.

Application Fagade logic needs to be introduced to relay requests and
responses between the proxy and newly located capabilities.

Impacts The practical solution provided by this pattern results in a
measure of service denormalization.

Principles Service Loose Coupling
Architecture Service
Tahle 16.6

Profile summary for the Proxy Capability pattern.

Problem

As per Service Decomposition (489), it is sometimes deemed necessary to further decom-
pose a service’s functional boundary into two or more functional boundaries, essentially
establishing new services within the overall inventory. This can clearly impact existing serv-
ice consumers who have already formed dependencies on the established service contract

(Figure 16.17).

498 Chapter 16: Service Governance Patterns

Invoice

Reporting Invoice

O Get

\ o add

moved

\ O Consolidate
—~ GG

&

existing service
consumers

N

Figure 16.17

Moving a service capability that is part of an established service contract will predictably
impact existing service consumers.

Solution

Capabilities affected by the decomposition are preserved, while those same capabilities are
still allowed to become part of new services. Although the service’s original functional con-
text is changed and its official functional boundary is reduced, it continues to provide capa-
bilities that no longer belong within its context or boundary. These are proxy capabilities
that are preserved (often for a limited period of time) to reduce the impact of the decom-
position on the service inventory (Figure 16.18).

This does not prevent the capabilities in the new services from being independently
accessed. In fact, access to the capability logic via its new service contract is encouraged so
as to minimize the eventual effort for proxy capabilities to be phased out.

Application

Proxy Capability relies on the application of Service Fagade (333) in that a fagade is estab-
lished to preserve affected service capabilities. The only difference is that instead of calling
capability logic that is still part of the same service, the fagade calls capabilities that are now
part of new services (Figure 16.19).

Proxy Capability

Invoice X
Reporting Invoice
O Report O Get
{ | O Add
O Consolidate
O Report
\\\ "~
new service existing service
consumers consumers

Figure 16.18
By preserving the existing capability and allowing it to act as a proxy for the relocated capability
logic, existing consumers will be less impacted.

Invoice Service

core service

- fagade for o
logic Report
capability ‘

previously existing
service consumer

24

core
service -~ Pa—
logic

Invoice Reporting Service

Figure 16.19

When an existing consumer requests an Invoice service operation that has been moved due to the
decomposition of the service (1), a newly added facade component relays the request to the capability’s
new location (2), in this case the Invoice Reporting service.

499

500 Chapter 16: Service Governance Patterns

Termination Notification (478) is also commonly applied together with
Proxy Capability in order to communicate the scheduled expiry of proxy
capabilities.

Impacts

Although the application of this pattern extends the longevity of service contracts while
allowing for the creative decomposition of service logic, it does introduce a measure of
service denormalization that runs contrary to the goals of Service Normalization (131).

Proxy capabilities need to be clearly tagged with metadata communicating the fact that
they no longer represent the official endpoint for their respective logic to avoid having con-
sumers inadvertently bind to them.

Furthermore, this pattern alone does not guarantee that a proxy capability will continue to
provide the same behavior and reliability of the original capability it replaced.

Relationships

Whereas Distributed Capability (510) prepares a service for the eventual application of
Service Decomposition (489), Proxy Capability actually implements the decomposition
while preserving the original service contract.

This is supported by Decoupled Contract (401), which allows the contracts of both the
original and the decomposed services to be individually customized in support of the proxy
capability. Service Fagade (333) also plays an integral role in that it can be used to relay
requests (act as the proxy) to and from the newly decomposed service.

And as previously mentioned, this pattern does end up going against the goals of Service
Normalization (131). From an endpoint perspective especially, this pattern introduces the
appearance of redundant functionality, a trade-off that is accepted in support of service
evolution.

Proxy Capability 501

Service
Decomposition

Contract

Denormalization Capability

can be the results in the
byproduct of need to apply
establishes capabilities
that may eventually require
Decoupled
Contract
supports
Service pre
Facade Capability
is sometimes can be considered a sometimes results intentionally
applied together with specialized application of in the need for violates

Termination Distributed ervice Service

Notification Capability Refactoring Normalization

Figure 16.20

Proxy Capability alters the structure of a service in support of the creation of a new service and therefore touches
several patterns related to service logic structure and the service decomposition process.

SE STUDY EXAMPLE

In the case study example for Service Decomposition (489) we explained how the
Alleywood team came to the decision to split their existing Employee service into sepa-
rate Employee and Employee Record services.

To see this through, they need to find a way to achieve the following:
1. Establish a new Employee Record service.

2. Move the corresponding functionality from the Employee service to the new
Employee Record service.

502 Chapter 16: Service Governance Patterns

3. Complete Steps 1 and 2 without changing the

original Employee service contract so as to not
g 2_ng g Employee Record
impact existing service consumers.

To complete Step 1 they model the new Employee Add

Record service, as shown in Figure 16.21. GetRecordReport

GetHoursReport

O ONONE

To accomplish Steps 2 and 3 they employ Proxy
Capability for each of the capabilities in the
Employee service that needs to be moved to the
Employee Record service. Figure 16.22 illustrates

GetEvalReport

Figure 16.21

]] After some analysis, the new Employee
ties map to four of the Employee Record service Record service candidate is modeled with

capabilities. four capability candidates.

how two of the original Employee service capabili-

Employee Record
Employee

O Add

O UpdateProfile
O GetStatus

O GetProfile

Figure 16.22

The Employee service’s AddRecord and GetHistory capabilities are positioned as
proxies for the Employee Record’s Add, GetRecordReport, GetHoursReport, and
GetEvalReport capabilities.

The Employee Record service is eventually designed and delivered as a fully functional,
standalone service. However, the Employee service contract remains unchanged, plus
additional logicis added in the form of a fagade component. This functionality responds
to requests for the original AddRecord and GetHistory capabilities and then relays
those requests over to the Employee Record. The eventual responses are then received
and passed back to the Employee service consumer.

Proxy Capability 503

However, one issue remains. In order for the GetHistory operation to work, it must
make three calls to the Employee Record service (one to each of the three GetReport
operations).

The team considers whether to add a corresponding GetHistory operation to the
Employee Record service just for the proxy work that the Employee service must per-
form. But, they are concerned that the additional operation will be confusing to other
consumers. They decide instead to try to accelerate the retirement of the Employee
GetHistory operation.

Decomposed Capability 4

How can a service be designed to minimize the chances of cD
capability logic deconstruction?

D

Problem The decomposition of a service subsequent to its
implementation can require the deconstruction of logic within
capabilities, which can be disruptive and make the preservation
of a service contract problematic.

Solution Services prone to future decomposition can be equipped with a
series of granular capabilities that more easily facilitate
decomposition.

Application Additional service modeling is carried out to define granular,

more easily distributed capabilities.

Impacts Until the service is eventually decomposed, it may be
represented by a bloated contract that stays with it as long as
proxy capabilities are supported.

Principles Standardized Service Contract, Service Abstraction
Architecture Service
Table 16.7

Profile summary for the Decomposed Capability pattern.

Problem

Some types of services are more prone to being split after they have been developed and
deployed. For example, entity services derive their functional context from corresponding
business entities that are documented as part of common information architecture specifi-
cations. Often, an entity service context will initially be based around a larger, more signif-
icant business entity or even a group of related entities.

This can be adequate for immediate purposes but can eventually result in a number of chal-
lenges (Figure 16.23), including the following:

* As the service is extended, many additional capabilities are added because they are all
associated with its functional context, leading to a bulky functional boundary that is
difficult to govern.

* The service, due to increased popularity as a result of added capabilities or high reuse
of individual capabilities, becomes a processing bottleneck.

Decomposed Capability 505

Despite a foreknowledge of these challenges, it may still not be possible to create a larger
group of more granular services because of infrastructure constraints that restrict the size
of potential service compositions. Sometimes an organization needs to wait until its infra-
structure is upgraded or its vendor runtime platform matures to the point that it can sup-
port complex compositions with numerous participating services. In the meantime,
however, the organization cannot afford to postpone the delivery of its services.

Invoice
O Get
O Validate
Invoice
Record
Invoice
Invoice
O Get History
| 4 |
— & |
#
O Validate
&
Invoice /
History

o,

Invoice Invoi
. nvoice
Policy Policy

— O Validate

Figure 16.23

An Invoice entity service (middle) derived from a group of Invoice-related business entities (left) exposes coarse-
grained capabilities that are difficult to decompose when service decomposition requirements present themselves.
Each of the affected Invoice service capabilities needs to be split up in order to accommodate the new services

(right).

506 Chapter 16: Service Governance Patterns

Solution

Services can be initially designed with future decomposition requirements in mind, which
generally translates into the creation of more granular capabilities. With an entity service,
for example, granular capabilities can be aligned better with individual business entities.
This way, if the service needs to be decomposed in the future into a collection of services
that represent individual business entities, the transition is facilitated by reducing the need
to deconstruct capabilities (Figure 16.24).

Invoice

O Get

O Report Current

O Validate

O Delete Current

O Add

Invoice
Record Invoice

O Get

O Report Current Invoice History

O Validate

V O Delete Current V ——

Invoice
History O Add l

=
\ﬂ_

Policy

Invoice Policy

O Validate

Figure 16.24

The Invoice service (middle) derived from the same business entities (left) introduced in Figure 16.23 now exposes a
series of more granular capabilities, several of which correspond directly to specific business entities. This increases the
gase at which subsequent service decomposition can be accomplished. The decomposed services (right) are no longer
in conflict because the capabilities affected by the decomposition are clearly mapped to the new services. Those same
capabilities also remain in the Invoice service contract (top right) as per Proxy Capability (497).

Decomposed Capability 507

Application

This pattern introduces more up-front service modeling effort in order to determine the
appropriate service capability definitions. Specifically, the following considerations need to
be taken into account:

e how the current functional scope can potentially be divided into two or more
functional contexts

* how capabilities can be defined for these new functional contexts

This modeling effort follows a process whereby a collection of service candidates are
defined in association with the scope of the service in question. These service candidates
represent future services that can result from a decomposition of the current service
and therefore provide a basis for capability candidates to be defined in support of the
decomposition.

NOTE

This pattern differs from Contract Denormalization (414) in that the latter
introduces redundant, granular capabilities for the purpose of supporting
consumer requirements. Decomposed Capability allows for targeted
granular capabilities (which may or may not be redundant) in order to
facilitate the long-term evolutionary requirements of the service and the
service inventory as a whole.

Impacts

The initial service contract that results from applying this pattern can be large and difficult
to use. The increased capability granularity can impose performance overhead on service
consumers that may be required to invoke the service multiple times to carry out a series of
granular functions that could have been grouped together in a coarse-grained capability.
This may lead to the need to apply Contract Denormalization (414), which will result in
even more capabilities.

Even after the service has been decomposed, the existing consumers of the initial service
may still need to be accommodated via proxy capabilities as per Proxy Capability (497),
requiring the original service contract to remain for an indefinite period of time.

Also, it is sometimes difficult to predict how a service will be decomposed when initially
defining it. There is the constant risk that the service will be populated with fine-grained
capabilities that will never end up in other services and may have unnecessarily imposed
performance burden upon consumers in the meantime.

508 Chapter 16: Service Governance Patterns

Relationships

The key relationship illustrated in Figure 16.25 is between Decomposed Capability and
Service Decomposition (489) because this pattern is applied in advance with the fore-
knowledge that a service will likely need to be decomposed in the future. It can therefore
also be viewed as a governance pattern in that its purpose is to minimize the impact of a ser-
vice’s evolution. For this same reason, it relates to Proxy Capability (497) that will usually
end up being applied to one or more of the capabilities decomposed by this pattern.

As already mentioned, the more fine-grained capabilities introduced by this pattern may
require that Contract Denormalization (414) also be applied.

Decomposed

Capabilit

is applied in
preparation for

establishes capabilities may lead to
that may eventually require the need for

Proxy ontract
Capability Denormalization
Figure 16.25

Decomposed Capability prepares a service contract for eventual decomposition, making it closely
related to patterns associated with Service Decomposition (489).

CASE STUDY EXAMPLE

The case study example for Proxy Capability (497) demonstrated how the decomposi-
tion of a service can lead to subsequent design issues, even when establishing capabilities
that act as proxies for existing consumers. If the capabilities for the newly derived service
don’t cleanly match the functional context and granularity of the capabilities of the orig-

inal service, then awkward and inefficient proxy mapping may result. Depending on how

Decomposed Capability 509

long the retirement of old capabilities can take, the decomposition of a service can actu-
ally increase some of the functional burden it was intended to improve.

Let’s focus again on the Employee and Employee Record services explained in the pre-
ceding example. If we step back in time when the Employee service was first modeled,
we can give the architects and analysts responsible for defining the original service can-
didate the opportunity to apply Decomposed Capability before proceeding with the
physical design and implementation of this service.

In the case of Alleywood, the service would have been based on the two already dis-
cussed business entities (Employee and Employee Record) plus a third existing
employee-related business entity called Employee Classification. These entities would
have determined the capability definition from the beginning in that the original
Employee entity service would essentially be viewed as three entity services bundled
into one.

Capabilities for this service would have been defined with future decomposition in
mind, and the result would have looked a lot like Figure 16.26.

Employee

O Add
Employee : - Employee
business — O UpdateClassification Classification

entity ® Coteis business entity Employee
O GetProfile | Record

business
entity

Figure 16.26

The original Employee service modeled to accommodate future decomposition by
containing capabilities directly associated with known employee-related business
entities. Note that not all of the capability names need to be the same as they will be
when the service is decomposed into derived services.

Distributed Capability O}

How can a service preserve its functional context while also D
fulfilling special capability processing requirements?

Problem A capability that belongs within a service may have unique
processing requirements that cannot be accommodated by the
default service implementation, but separating capability logic
from the service will compromise the integrity of the service
context.

Solution The underlying service logic is distributed, thereby allowing the
implementation logic for a capability with unique processing
requirements to be physically separated, while continuing to be
represented by the same service contract.

Application The logic is moved and intermediary processing is added to act
as a liaison between the moved logic and the main service logic.

Impacts The distribution of a capability’s logic leads to performance
overhead associated with remote communication and the need
for new intermediate processing.

Principles Standardized Service Contract, Service Autonomy
Architecture Service
Table 16.8

Profile summary for the Distributed Capability pattern.

Problem

Each capability within a service’s functional context represents a body of processing logic.
When a service exists in a physically implemented form, its surrounding environment may
not be able to fully support all of the processing requirements of all associated capabilities.

For example, there may be a capability with unique performance, security, availability, or
reliability requirements that can only be fulfilled through specific architectural extensions
and special infrastructure. Other times, it is the increased processing demands on a single
capability that can tax the overall service implementation to such an extent that it compro-
mises the performance and reliability of other service capabilities (Figure 16.27).

Distributed Capability 511

-« -—
core
service
logic

Invoice
O Get o high concurrent
& access volume
£
/ e varying response
O Report time periods
O Update
O Delete
O Validate

Figure 16.27

The Consolidate operation of the Invoice Web service is subject to high concurrent usage and long
response periods when it is required to perform complex consolidation calculations. These factors
regularly lock up server resources and therefore compromise the performance and reliability of
other service operations.

The logic supporting such a capability can be split off into its own service implementation.
However, this would result in the need to break the original functional context for which
the service was modeled.

Solution

Capability logic with special processing requirements is distributed to a physically remote
environment. Intermediate processing logic is added to interact with local and distributed
service logic on behalf of the single service contract (Figure 16.28).

512 Chapter 16: Service Governance Patterns

core <€ service =l . E—
service facade
. .
logic % logic — s>

Invoice
O Get e high concurrent
access volume
e varying response
O Report time periods
O Update
O Delete
O Validate

consolidation
| logic

Figure 16.28

The logic for the Consolidate operation is relocated to a separate physical environment. A service fagade component
interacts with the consolidation logic on behalf of the Invoice service contract.

Application

This pattern is commonly realized through the application of Service Facade (333) in
order to establish the intermediate logic that essentially acts as the controller of a “compo-
nent composition.” The component(s) representing the distributed capability logic inter-
act with the facade logic via remote access.

Performance requirements can be somewhat streamlined by embedding additional pro-
cessing logic within the fagade so that it does more than just relay request and response
message values. For example, the facade logic can contain routines that further parse and

Distributed Capability 513

extract data from an incoming request message so that only the information absolutely
required by the distributed capability logic is transmitted.

An alternative to using Service Fagade (333) is Service Agent (543). Event-driven agents
can be developed to intercept request messages for a specific service capability. These
agents can carry out the validation that exists within the corresponding contract (or per-
haps this validation is deferred to the capability logic itself) and then simply route the
request message directly to the capability. The same agents can process the outgoing
response messages from the capability as well.

Impacts

This pattern preserves the purity of a service’s functional context at the cost of imposing
performance overhead. The positioning of the contract as the sole access point for two or
more distributed implementations of service logic introduces an increased likelihood of
remote access whenever the service is invoked.

If the capability logic was separated to guarantee a certain response time during high vol-
ume usage, then this may be somewhat undermined by the remote access requirements.
On the other hand, overall service autonomy tends to be positively impacted as the auton-
omy level of the separated capability logic can be improved as a result of its separation.

Relationships

When structuring a service to support distributed capability processing, the service imple-
mentation itself exists like a mini-composition, whereby a facade component takes on the
role of both component controller and single access point for the distributed service logic.
This is why this pattern has such a strong reliance on Service Facade (333) and why it is
supported by Decoupled Contract (401) in particular.

Contract Centralization (409) is also an essential part of the service design because it
ensures that the contract will remain the sole access point, regardless of the extent the
underlying logic may need to be distributed.

When a distributed capability needs to share access to service-related data, Service Data
Replication (350) can be employed to help facilitate this access without the need to intro-
duce intra-service data sharing issues. Additionally, this pattern is often the result of apply-
ing Service Refactoring (484) and can therefore be considered a continuation of a
refactoring effort, especially when applied after the service’s initial deployment.

514 Chapter 16: Service Governance Patterns

Decoupled Proxy
Contract Capability

can be considered a
specialized application of

Service Service Data
Refactoring Replication

may lead to may introduce
the need for the need for

-

supports

Capability

relies upon
consistent

ervice Contract
Facade entralization
Figure 16.29

Distributed Capability supports the internal decomposition of service logic and therefore has relationships with both
service logic and contract-related patterns.

CASE STUDY EXAMPLE

The newly deployed Employee Record service that was defined as a result of applying
Service Decomposition (489) and Proxy Capability (497) (see the corresponding case
study examples) has become increasingly popular. It is currently being reused within
eight service compositions and a new development project is going to be requesting its
participation in yet another composition.

For this next composition, the project team is asking that new functionality be added to
allow the service to produce highly detailed reports that include various record details
and statistics relating to employee hours and ratings from past evaluations. To accom-
modate this requirement, a new capability is added, called GetMasterReport.

Distributed Capability 515

This capability is designed into the Web service contract as an operation that is able to
receive parameterized input messages and output large documents comprised of vari-
ous statistical information and record details.

Preliminary tests show that some of the “from” and “to” value ranges accepted by the
operation can take minutes to process because the underlying logic is required to access
several databases and then perform a series of calculations before it can produce the
required consolidated report.

There are concerns that this one capability will tie up the service too often so that its
overall scalability will decrease, thereby affecting its reliability. As a result, the team
decides to separate the logic for the GetMasterReport operation to a dedicated server.
The Employee Record service is equipped with a fagade component that relays requests
and responses to and from the separated MSTReportGenerator component.

No diagram is provided for this example because the service architecture
would be portrayed almost identically to the Invoice service example from
Figure 16.28.

This page intentionally left blank

A

agility. See increased organizational
agility, strategic goal
agnostic, origin of the word, 166
Agnostic Capability design pattern,
140,295, 316, 725, 744
profile, 324-329
Agnostic Context design pattern, 140,
219, 321,727,728
profile, 312-317
agnostic logic, non-agnostic logic,
compared, 166-167
Agnostic Sub-Controller design
pattern, 606, 620
profile, 607-615
Alexander’s pattern language, 90-91
Alexander, Christopher, 89
Alleywood Lumber case study. See case
studies, Alleywood Lumber
analogies
architecture, 27
design patterns, 3, 87
infrastructure, 27
software programs, 28
application architecture, defined, 28

Index

application section in pattern profiles
described, 103
architecture
application architecture, 28
component architecture, 28
enterprise technology
architecture, 28
hardware versus software
architecture, 30
integration architecture, 28
service architecture. See service
architecture
service inventory architecture. See
service inventory architecture
service-oriented architecture.
See SOA
service-oriented enterprise
architecture. See service-oriented
enterprise architecture
software program. See software
program
technology architecture. See
technology architecture
technology infrastructure. See
technology infrastructure
asymmetric cryptography, 644

796

asymmetric signatures, 652
Asynchronous Queuing design pattern,
92,532,561, 602
profile, 582-591
Atomic Service Transaction design
pattern, 92, 587, 606, 635
profile, 623-630
Compensating Service Transaction,
606,701
profile, 631-638
authentication. See Brokered
Authentication design pattern; Direct
Authentication design pattern; Trusted
Subsystem design pattern
authenticity (of message senders), 651
author
about, 783
contact Web site, 13
other books by, 783

BEA (Business Enterprise
Architecture), 732
behavior correction in service facade
logic, 336
blueprints. See service inventory
blueprints
BMA (Business Mission Area), 732
BOE (Business Operating
Environment) compound pattern,
733-734
design principles and patterns in,
734-738
future of, 739
books, related to this book, 7, 90-94
Brokered Authentication design
pattern, 391, 640
profile, 661-667

Index

business agility. See increased
organizational agility, strategic goal

business and technology alignment. See
increased business and technology
alignment, strategic goal

business community, IT community’s
relationship with, 79-82, 730

business-driven, SOA characteristic,
52-§§,113

Business Enterprise Architecture
(BEA), 732

business entities, defined, 176. See also
entity services

business logic. See entity services;
task services

Business Mission Area (BMA), 732

Business Operating Environment
(BOE) compound pattern, 733-734

design principles and patterns in,
734-738
future of, 739

business rules. See Rules Centralization
design pattern; Validation Abstraction
design pattern

C

callback addresses. See Service Callback
design pattern

candidate patterns, 5, 12, 46, 492, 748.
See also Web sites, SOAPatterns.org

Canonical Data Model design pattern,
Canonical Schema pattern
compared, 158

canonical design patterns, list of, 104

Canonical Expression design pattern,
104,170, 274,289,727

profile, 275-279

Index

Canonical Protocol design pattern, 104,
161,227,229, 234,240, 535, 687,
690,736, 745

profile, 150-157

Canonical Resources design pattern,
77,104, 155,197,226, 244,251, 359,
546, 553, 595, 659, 690

profile, 237-241

Canonical Schema Bus compound

pattern, 699, 721
profile, 709-710

Canonical Schema design pattern, 94,
104,233, 400, 535, 671, 674, 709,
726,736,745

profile, 158-162

Canonical Versioning design pattern,

104, 469, 474, 480, 719
profile, 286-291

capabilities. See service capabilities

Capability Composition design pattern,
71,91,198, 322, 327

profile, 521-525

capability granularity, defined, 107

Capability Recomposition design
pattern, 71, 302, 534, 721,726,728

profile, 526-530

capitalization in design pattern
notation, 100

case studies

Alleywood Lumber, 16
Agnostic Sub-Controller design
pattern, 612-615
Atomic Service Transaction
design pattern, 629-630
background, 19-20, 114,
374-375

797

Canonical Protocol design
pattern, 157

Canonical Schema design
pattern, 161-162

Canonical Versioning design
pattern, 290-291

Composition Autonomy design
pattern, 620-622

conclusion, 744-745

Cross-Domain Utility Layer
design pattern, 270-271

Data Confidentiality design
pattern, 646-648

Non-Agnostic Context design
pattern, 323

Policy Centralization design
pattern, 213-214

Protocol Bridging design
pattern, 692-693

Schema Centralization design
pattern, 203-206

Service Instance Routing design
pattern, 579-581

Service Callback design pattern,
571-§73

Service Encapsulation design
pattern, 310

Service Layers design
pattern, 148

Utility Abstraction design
pattern, 173-174

Cutit Saws

Agnostic Capability design
pattern, 328

Agnostic Context design
pattern, 317

background, 17-19, 297-298

798

Canonical Expression design
pattern, 279

Capability Composition design
pattern, 524-525

Capability Recomposition
design pattern, S30

Compensating Service
Transaction design pattern,
636-638

conclusion, 744

Data Confidentiality design
pattern, 646-648

Data Origin Authentication
design pattern, 653-655

Functional Decomposition
design pattern, 303-304

Messaging Metadata design
pattern, 542

Non-Agnostic Context design
pattern, 323

Policy Centralization design
pattern, 213-214

Protocol Bridging design
pattern, 692-693

Schema Centralization design
pattern, 203-206

Service Instance Routing design
pattern, 579-581

Service Callback design pattern,
571-573

Service Encapsulation design
pattern, 310

Service Layers design
pattern, 148

Utility Abstraction design
pattern, 173-174

Index

Forestry Regulatory
Commission (FRC)

Asynchronous Queuing design
pattern, 589-591

background, 21-22

Brokered Authentication design
pattern, 666-667

Canonical Resources design
pattern, 241

Canonical Versioning design
pattern, 290-291

Compatible Change design
pattern, 470-471

conclusion, 745-746

Concurrent Contract design
pattern, 426-428

Contract Centralization design
pattern, 413

Contract Denormalization
design pattern, 418-420

Data Confidentiality design
pattern, 646-648

Data Format Transformation
design pattern, 685-686

Data Origin Authentication
design pattern, 653-655

Decoupled Contract design
pattern, 407-408

Direct Authentication design
pattern, 660

Dual Protocols design pattern,
235-236

Event-Driven Messaging design
pattern, 604

File Gateway design pattern,
461-462

Intermediate Routing design
pattern, S56

Index

Legacy Wrapper design pattern,
446-450
Multi-Channel Endpoint design
pattern, 456
Partial State Deferral design
pattern, 361
Partial Validation design
pattern, 365
Process Abstraction design
pattern, 187-189
Reliable Messaging design
pattern, 596-598
Rules Centralization design
pattern, 222
Service Data Replication design
pattern, 354-355
Service Facade design pattern, 91, 93,
263, 332,406,407,417,421, 425,
444, 446, 454, 487, 498, 500, 512,
513,610,724
profile, 333-344
Service Grid design pattern, 226, 244,
251, 359,724,727,728
profile, 254-259
Service Layers design pattern, 92, 164,
719,728
profile, 143-148
catalogs. See pattern catalogs
centralization design patterns,
listed, 105
Certificate Revocation Lists
(CRLs), 665
chapters, described, 7-10
characteristics. See design characteristics
chorded circle symbol, 37
ciphertext (encrypted data), 643
client. See service consumer

799

code examples

Application service, 427-428

atomic transactions, 630

backwards-compatibility, 471

Canonical Versioning design
pattern, 291

COBOL COPYBOOK message
fragments, 447

denormalized Officer WSDL
definition, 420

digitally signed message, 655

incompatible changes, 477

legacy details in SOAP headers, 450

message targeted to specific service
instance, 581

message with state data in reference
parameter, 565

Officer WSDL definition, 419

plaintext message, 647

Policy Centralization design
pattern, 214

purchase order document, 678, 679

purchase order XML Schema
definition, 677

reference parameter with service
instance identifier, S80

reliable messaging metadata
headers, 598

request message with callback
address, 572

response message with correlation
identifier, 573

response message with
wsa:ReferenceParameters
construct, 564

revised schema definition for
EformApplication service
contract, 437

800

Schema Centralization design
pattern, 206
schema definition for
EformApplication service
contract, 435
SOAP header block, 542
SOAP message with SAML
token, 667
SOAP message, first in series, 564
termination information, 483
undo operation, 638
version number annotations, 475
WS-BPEL routine for
transactions, 637
WS-Security metadata, 660
WSDL definition for Main-AST
legacy wrapper service, 449
XSLT stylesheet, 680
coexistent application (of compound
patterns), 699-700
color in figures, 11, 97
color tabs, 110
commercial off-the-shelf (COTS)
software, 738
communication protocols. See
Canonical Protocol design pattern;
Dual Protocols design pattern
Compatible Change design pattern,
288,290, 464, 469,475, 480, 481
profile, 465-471
Compensating Service Transaction
design pattern 606, 701,724, 744
profile, 631-638
component architecture, defined, 28.
See also architecture
components, as services, 45
composite patterns, compound
patterns versus, 698

Index

composition architecture. See service
composition architecture
Composition Autonomy design
pattern, 263, 348, 353, 360, 454, 605,
606, 628
profile, 616-622
composition-centric, SOA
characteristic, 53, 59-60, 113
composition controller, 42, 68, 322
composition controller capability,
42,765
composition initiator, 42, 322
composition member, 42, 68
composition member capability,
42,764
composition sub-controller, 42
compositions. See service compositions
compound pattern hierarchy figures,
explained, 99-100
compound patterns
Business Operating Environment,
733-734
Canonical Schema Bus. See
Canonical Schema Bus
compound pattern
coexistent application of, 699-700
composite patterns versus, 698
Enterprise Service Bus. See
Enterprise Service Bus
compound pattern
Federated Endpoint Layer. See
Federated Endpoint Layer
compound pattern
granularity and, 700
joint application of, 699-700
Official Endpoint. See Official
Endpoint compound pattern

Index

Orchestration. See Orchestration
compound pattern
Service Broker. See Service Broker
compound pattern
Three-Layer Inventory. See Three-
Layer Inventory compound pattern
concerns, defined, 301. See also
separation of concerns theory
Concurrent Contracts design pattern,
92,230,233,234, 263, 288, 336,
342, 346, 400, 406, 432, 433, 468,
473,487
profile, 421-428
conflict symbol, 11
constraint granularity, defined, 108
consumers. See service consumers
content-based routing, 552
Contract Centralization design pattern,
105, 133, 140, 203, 211, 230, 234,
278,283, 388, 391, 400, 406, 486,
513,610,709,711, 712,713,719,
721,736,737
profile, 409-413
Contract Denormalization design
pattern, 134, 342, 400, 406, 425, 470,
471,507,508, 634, 721
profile, 414-420
contract first approach, 752. See also
Standardized Service Contract design
principle
contract-specific requirements in
service facade logic, 336
contracts. See service contracts
contributors, about, 784-790. See also
Contributors page in front matter
core service logic
in components, 45

801

in Web Services, 45
service fagade logic versus, 335
COTS (commercial off-the-shelf)
software, 738
coupling. See Service Loose Coupling
design principle
CRLs (Certificate Revocation
Lists), 665
Cross-Domain Utility Layer design
pattern, 171, 226, 259, 289, 349,
721,745
profile, 267-271
CRUD convention, 276
cryptography, types of, 644
Cutit Saws case study. See case studies,
Cutit Saws

D

Data Confidentiality design pattern,
561, 639, 640, 651, 652, 653, 665,
724,736

profile, 641-648

Direct Authentication, 389, 391,

396, 640, 645, 661, 662, 663, 665,
666, 724
profile, 656-660

Data Format Transformation design
pattern, 263, 445, 454,457, 459, 460,
556, 670,707,724

profile, 681-686

data granularity, defined, 108

data integrity (of messages), 651

Data Model Transformation design
pattern, 94, 99, 127, 159, 160, 263,
445,454,457, 459, 460, 671-680,
683, 692,707,724,736

Data Origin Authentication design
pattern, 393, 561, 640, 644, 645, 659,
724,736

802

profile, 649-655
Decomposed Capability design pattern,
170, 464, 492
profile, 504-509
Decoupled Contract design pattern, 91,
93,278,342,400,411,412,417, 425,
486, 500, 513,709, 719, 721
profile, 401-408
design characteristics, defined, 33
design framework, technology
architecture and infrastructure in,
33-34
design granularity, types of, 107-108
design pattern catalog, defined, 89
design pattern language. See pattern
language
design patterns
candidates. See candidate patterns
cross-referenced with architecture
types, 776-781
cross-referenced with design
principles, 768-774
defined, 86-87
design granularity and, 107-108
design principles compared,
106-107
design principles compared,
106-107
historical influences, 89-95
index of patterns, 791
list of, 791. See also inside front and
back covers
measures of application, 108
notation, 95-100
profiles, explained, 101-103
Design Patterns: Elements of Reusable
Object-Oriented Software (Gamma,
etal), 6

Index

design principles
in Business Operating Environment
compound pattern, 734-738
defined, 34, 48-50
design pattern cross-reference for,
768-774
design patterns compared, 106-107
inter-relationships, S0
Service Abstraction, 49, 64, 69, 231,
425,737
defined, 755
Service Autonomy, 49, 64, 132, 348,
353,620,737
defined, 758-759
Service Composability, 41, 49, 59,
527,738
defined, 764-766
Service Discoverability, 49, 274,
282-283,736-738
defined, 762-763
Service Loose Coupling, 49, 231,
408, 486, 737
defined, 753-754
Service Reusability, 49, 146, 182,
319,736,738
defined, 756-757
Service Statelessness, 49, 64,
250,737
defined, 760-761
Standardized Service Contract, 49,
159, 229,231, 400, 40S, 736, 738
defined, 751-752
design standards
adherence to, 736
defined, 34
design patterns compared, 149
diagrams. See figures

Index

digital signatures. See signatures
Direct Authentication design pattern,
389, 391, 396, 640, 645, 661, 662,
663, 665, 666, 724
profile, 656-660
discovery process (services), 282
Distributed Capability design pattern,
336, 342, 353, 405, 464, 745
profile, 510-515
DMZ (demilitarized zone). See Service
Perimeter Guard design pattern
DoD (U.S. Department of Defense),
patterns at, 732-739
Domain Inventory design pattern, 42,
74,106, 113, 115, 120, 121, 147,
155,159, 160, 270, 674, 675, 718,
721,745
profile, 123-129

E

EAI patterns, 94

encapsulating legacy environments,
720. See also File Gateway design
pattern; Legacy Wrapper design
pattern; Multi-Channel Endpoint
design pattern

encryption. See Data Confidentiality
design pattern

endpoint references, 576

enterprise-centric, SOA characteristic,
53,58-59,113

Enterprise Integration Patterns (Hohpe
and Woolf), 6, 94

Enterprise Inventory design pattern,
74,113, 115, 127, 129, 147, 155, 159,
160,718,721

profile, 116-122

803

enterprise resources
defined, 58
enterprise-wide resources
compared, 106
Enterprise Service Bus compound
pattern, 10, 99,212,221, 264, 445,
461, 554, 555, 589, 596, 601, 603,
675,676, 685, 690, 692, 698, 699,
707,709, 724,728
profile, 704-706
enterprise technology architecture,
defined, 28
enterprise-wide resources, enterprise
resources compared, 106
Entity Abstraction design pattern, 120,
140, 146, 147,163, 164, 171, 184,
284,315,316, 318, 348,411,432,
444,494, 607,715,725,727
profile, 175-181
entity service layer, 177. See also Entity
Abstraction design pattern
entity service model, defined, 164. See
also Entity Abstraction design pattern
entity services, service context
definition, 177-178. See also Entity
Abstraction design pattern
ESB. See Enterprise Service Bus
compound pattern
ESB Architecture for SOA, 7,601, 700
Event-Driven Messaging design
pattern, 92, 460, 532, 571, 584, 629,
724,746
profile, 599-604
examples. See case studies; code examples
Exception Shielding design pattern,
374, 388,396, 398, 745
profile, 376-380

804

F

facades. See Service Facade
design pattern
Federated Endpoint Layer compound
pattern, 699,711,719
profile, 713-714
federation. See Federated Endpoint
Layer compound pattern; Increased
Federation strategic goal
figures.
color. See color, in figures
for design pattern notation, 96-100
poster. See poster Web site
symbols. See symbols
Visio Stencil. See Visio Stencil
File Gateway design pattern, 440, 444,
457-462,724
Flexible versioning strategy, 288
Forestry Regulatory Commission case
study. See case studies, Forestry
Regulatory Commission
functional context. See service contexts
Functional Decomposition design
pattern, 310, 725, 744
profile, 300-304

G—H

glossary Web site, 12, 26, 42
granularity. See design granularity
grid. See Service Grid design pattern

hardware accelerators, 761

hardware architecture, 30

hardware infrastructure, 30

HMAC (Hashed Message
Authentication Code), 651, 658

How to Solve It (Polya), 91

hybrid architectures, 79

Index

icons in pattern profiles, 101
impacts section in pattern profiles, 103
implementation mediums for
services, 44
components, 45
Web services, 45
REST services, 46
information assurance, 736
information hiding, 737
infrastructure. See architecture;
technology
increased business and technology
alignment, strategic goal
defined, 51
patterns related to, 725-726
increased federation
defined, 51
patterns related to, 718-720
increased intrinsic interoperability
defined, 51
patterns related to, 721-722
increased organizational agility
defined, 51
patterns related to, 728-729
increased ROI
defined, 51
patterns related to, 727-728
increased vendor diversification options
defined, 51
patterns related to, 723-725
infrastructure integration architecture,
defined, 28
inter-business service architecture,
defined, 78
Intermediate Routing design pattern,
94, 532,700,704, 724, 746
profile, 549-556

Index

interoperability. See increased intrinsic
interoperability, strategic goal

inventory architecture. See service
inventory architecture

inventory boundary patterns, 112,
114-11S. See Domain Inventory
design pattern; Enterprise Inventory
design pattern

Inventory Endpoint design pattern, 78,
92,121, 127, 226, 342, 348, 396, 455,
620, 675, 691

profile, 260-266

inventory governance patterns.
See Canonical Expression design
pattern; Canonical Versioning design
pattern; Metadata Centralization
design pattern

inventory standardization patterns,
112, 149. See also Canonical Protocol
design pattern; Canonical Schema
design pattern

inventory structure patterns, 112, 130.
See also Logic Centralization design
pattern; Service Layers design pattern;
Service Normalization design pattern

IPSec, 391

IT community, business community,
relationship with, 79-82, 729-730

J—K
Johnson, Ralph, 107

joint application (of compound
patterns), 699-700

KDC (Kerberos Key Distribution
Center), 665

Kerberos protocol, 665

Kerberos service accounts, 390

805

L

layers. See service layers; Service Layers
design pattern
legacy encapsulation. See File Gateway
design pattern; Legacy Wrapper design
pattern; Multi-Channel Endpoint
design pattern
Legacy Wrapper design pattern, 91,
179,219, 235, 344, 353, 407, 440,
453,454, 460, 675, 683, 684, 690,
691, 693,724,738, 746
profile, 441-450
logic
agnostic logic, non-agnostic logic,
compared, 166-167
business logic, utility logic,
compared, 166
service layers and, 167
Logic Centralization design pattern, 97,
105,113, 130, 133, 147, 178, 183,
234,280, 283, 284, 354, 412, 523,
711,712,713,719, 727,737
profile, 136-140
logic types in service facade
components, 336
logical inventory layer patterns. See
Entity Abstraction design pattern;
Process Abstraction design pattern;
Utility Abstraction design pattern
loose coupling. See Service Loose

Coupling design principle

M

MAC (Message Authentication
Code), 651

mediator services. See UI Mediator
design pattern

806

Message Screening design pattern, 374,
396, 398, 745
profile, 381-386
messaging, 531-604. See also Messaging
Metadata design pattern; Service
Messaging design pattern
Messaging Metadata design pattern,
155,251,258, 532, 535, 546, 553,
561,570, 578, 588, 595, 645, 744
profile, 538-542
Metadata Centralization design
pattern, 92, 105, 138, 140, 142, 274,
278,289,724,727,737,745
profile, 280-285
Minsky, Marvin, 91
mirrored accounts, 390
Multi-Channel Endpoint design
pattern, 440, 461, 738, 746
profile, 451-456

N

naming conventions, standardization
of, 275-276

net-centricity, 732

Non-Agnostic Context design pattern,
91, 183-184, 185, 309, 607, 725, 744

profile, 319-323

non-agnostic logic, agnostic logic,
compared, 166-167

non-repudiation, support for, 652

normalization, 90. See also Service
Normalization design pattern

notification service for this book
series, 13

O

object-orientation, service-orientation
compared, 36

Index

object-oriented design patterns, 91

OCSP (Online Certificate Status
Protocol), 665

Official Endpoint compound pattern,
412, 699,713,719, 737

profile, 711-712

Online Certificate Status Protocol
(OCSP), 665

open-ended pattern language,
defined, 88

operations, defined, 45

orchestrated task services, defined, 186

Orchestration compound pattern, 10,
100, 185, 186,187,196, 197, 198,
219,221, 245, 453, 629, 634, 636,
675,676,699, 724, 728

profile, 701-703

orchestration platform, requirements
for, 196

organizational agility. See increased
organizational agility, strategic goal

P

Partial State Deferral design pattern,
92,93, 198, 244,258, 332,724,773
profile, 356-361
Partial Validation design pattern
profile, 362-365
pattern application sequence figures, 96
pattern application sequences, 88-89
pattern catalogs. See design pattern
catalogs
pattern sequences, 88-89
pattern language, 88-89. See also
Alexander’s pattern language
pattern profile format, 10, 100-103, 110
pattern relationship figures, 96-98

Index

Pattern-Oriented Software Architecture,
Volumes 1-5 (Buschmann, et al), 6
Patterns of Enterprise Application
Architecture (Fowler), 6,93
patterns. See design patterns
physical inventory centralization design
patterns. See Policy Centralization
design pattern; Process Centralization
design pattern; Rules Centralization
design pattern; Schema Centralization
design pattern
PKI (Public Key Infrastructure), 652
plaintext (unencrypted data), 643
policies. See also Enterprise Service Bus
compound pattern; Policy
Centralization design pattern
collecting requirements for, 210
governance processes needed,
210-211
Policy Centralization design pattern,
105,133,192, 219, 220, 412, 432,
724,744
profile, 207-214
policy enforcement points, 209
policy expressions. See policies
Polya, George, 91
poster Web site, 12
Prentice Hall Service-Oriented
Computing Series from Thomas Erl,
11,13
principle profiles
Service Abstraction, 755
Service Autonomy, 759
Service Composability, 766
Service Discoverability, 763
Service Loose Coupling, 754
Service Reusability, 756-757

807

Service Statelessness, 761
Standardized Service Contract,
751-752
principles. See design principles
problem description in pattern
profiles, 102
Process Abstraction design pattern, 92,
120, 146, 147,164, 174,196, 197,
321,322, 607, 610, 628, 634, 701,
71S,72S,727
profile, 182-189
Process Centralization design pattern,
94, 105, 185, 192, 322, 359, 610,
701,724
profile, 193-199
profiles. See pattern profile format;
principle profiles
Protocol Bridging design pattern, 127,
151,227,233,234, 262,263, 445,
454, 460, 670, 684, 707,724,736
profile, 687-693
protocols, defined, 150
Proxy Capability design pattern, 134,
336, 342,353, 398, 405, 464, 481,
489,492,494, 496, 506, 507, 508,
514,745
profile, 497-503
public key cryptography, 644
Public Key Infrastructure (PKI), 652
public/private key pair, 652

Q—R
queues. See Asynchronous Queuing
design pattern

recommended reading, 7
reduced IT burden, strategic goal
defined, 51
patterns related to, 729-730

808

Redundant Implementation design
pattern, 140, 230, 233, 234, 259, 263,
332,353,365, 454,495, 619, 620,
665,727

profile, 345-349

references, endpoint, 576

relationships in compound
patterns, 698

relationships section in pattern
profiles, 103

relaying logic, 336

Reliable Messaging design pattern,
532,561, 570, 571, 584, 589, 602,
724,746

profile, 592-598

requirement statements in pattern
profiles, 101

resources, defined, 237. See also
Canonical Resources design pattern

REST-inspired design patterns, S,
233,748

reusability. See increased RO, strategic
goal; Logic Centralization design
pattern; Service Reusability design
principle

ROI (return on investment). See
increased ROI, strategic goal

routing, types of, 552. See also
Intermediate Routing design pattern;
Service Instance Routing design
pattern

Rules Centralization design pattern,
105,171, 192,432, 444, 551, 675

profile, 216-222

S

SAML, 640
schema, capitalization of the term, 206

Index

Schema Centralization design pattern,
105,133, 155,161, 192,213,233,
412,432,692,721, 726,737, 744

profile, 200-206

Security Token Services (STS), 665

security. See Brokered Authentication
design pattern; Data Confidentiality
design pattern; Data Origin
Authentication design pattern; Direct
Authentication design pattern;
Exception Shielding design pattern;
Message Screening design pattern;
Service Perimeter Guard design
pattern; Trusted Subsystem design
pattern

separation of concerns theory, 301

sequences. See pattern application
sequences

Service Abstraction design principle,
49, 64, 69, 231, 425, 737

defined, 755
design pattern cross-reference
for, 771
implementation requirements, 755
profile, 755

service activity, 41, 42, 242, 248, 250,
252,534,538, 550, 552, 592, 606,
623, 624, 662

Service Agent design pattern, 45, 67,
94,171, 364, 369, 370, 371, 379, 384,
432,460, 513, 532, 535, 552, 553,
571,578, 588, 595, 645, 724

profile, 543-546
service agents, defined, 67
service architecture
defined, 61-67
design pattern cross-reference for,
776-778

Index

Service Autonomy design principle, 49,
64,132, 348, 353, 620, 737
defined, 758
design pattern cross-reference
for, 772
profile, 758-759
Service Broker compound pattern, 92,
263, 336,454, 460, 675, 676, 683,
685,690, 692, 698, 699, 704, 706,
709,736,738
profile, 707-708
Service Callback design pattern, 460,
461, 532,583,744
profile, 566-573
service candidate, defined, 44
service capabilities, 38, 68
service catalog, service inventory
compared, 43
service client. See service consumer
Service Composability design principle,
41,49, 59,527,738
defined, 764
design pattern cross-reference for,
773-774
principle profile, 764-766
service composition architecture
defined, 61, 68-73
design pattern cross-reference for,
778-779
service composition design,
terminology, 42
service compositions, defined, 40-41
service consumer, defined, 38-40
service contexts. See also Service Layers
design pattern; service models
for entity services. See Agnostic
Context design pattern; Entity
Abstraction design pattern

809

for task services. See Non-Agnostic
Context design pattern; Process
Abstraction design pattern
for utility services. See Agnostic
Context design pattern; Utility
Abstraction design pattern
service contracts, 65-66, 764. See also
Service Abstraction design principle;
Service Loose Coupling design
principle; Standardized Service
Contract design principle
naming convention standardization,
275-276
patterns related to, 400-437
Service Data Replication design
pattern, 332, 348, 365, 371, 444, 513,
619, 620, 724,727,746
profile, 350-355
service definition patterns, 296, 311.
See also Agnostic Capability design
pattern; Agnostic Context design
pattern; Non-Agnostic Context
design pattern
Service Discoverability design
principle, 49, 274, 282-283,736-738
defined, 762
design pattern cross-reference
for, 773
implementation requirements, 763
principle profile, 762-763
service discovery process, 282
Service Encapsulation design pattern,
58,93, 184,303, 322,725,744
profile, 305-310
service facade components, logic types
in, 336

810

Service Facade design pattern, 91,
93,263,331, 332, 333, 364, 406,
407,417,421, 424, 425, 444, 446,
454,487,498, 500, 512, 513, 610,
683,724

profile, 333-344

service facade logic, core service logic
versus, 335

service governance patterns. See
governance patterns

service granularity, defined, 107

Service Grid design pattern, 226, 244,
251,359, 724,727,728

profile, 254-259

service identification patterns, 296,
299. See also Functional
Decomposition design pattern; Service
Encapsulation design pattern

Service Instance Routing design
pattern, 5§32, 561, 744

profile, 574-581
service inventory

defined, 42

origin of term, 43

service catalog compared, 43
service inventory architecture

defined, 61, 74-75

design pattern cross-reference for,

779-781

origin of term, 43

service inventory blueprints, 74

Service Layer design pattern, Service
Layers design pattern compared, 143

service layers. See also Cross-Domain
Utility Layer design pattern; Service
Layers design pattern

combinations of, 164-165
entity service layer, 177

Index

logic types and, 167
task service layer, 183-184
utility service layer, 169.
Service Layers design pattern, 92,113,
164,607,610, 71S, 719, 725, 728
profile, 143-148
Service Loose Coupling design
principle, 49, 231, 405, 486, 737
defined, 753
design pattern cross-reference for,
769-771
principle profile, 753-754
Service Messaging design pattern, 94,
155,251, 532, 541, 546, 561, 570,
588, 595, 602, 645
profile, 533-537
service models. See also Service Layers
design pattern
defined, 144, 164
inventory layer patterns,
correspondence with, 164
list of, 164
Service Normalization design pattern,
97,113, 130, 140, 142, 147, 203, 211,
263, 280, 280, 283, 284, 311, 412,
415,417,486, 494, 500, 523,713,
719,727
profile, 131-135
Service Perimeter Guard design
pattern, 171, 374, 379, 665, 666
profile, 394-398
service portfolio. See service inventory
service provider, defined, 39-40
Service Refactoring design pattern, 133,
342,406,411, 494, 495, 513, 724,
728,737
profile, 484-488

Index

service registries, 281. See also
Metadata Centralization design
pattern
service requester. See service consumer
Service Reusability design principle, 49,
146, 182, 319, 736, 738, 764
defined, 756
design pattern cross-reference for,
771-772
principle profile, 756-757
Service Statelessness design principle,
49, 64,250,737
defined, 760
design pattern cross-reference
for, 773
principle profile, 760-761
service-orientation
defined, 36
method of, 48-52
object-orientation compared, 36
result of, 79-82
service-orientation design principles,
48-50. See also design principles
service-oriented analysis, defined,
43-44
Service-Oriented Architecture: Concepts,
Technology, and Design, 542
service-oriented architecture. See SOA
service-oriented community
architecture, defined, 78
service-oriented computing
defined, 35
strategic goals of, 51-52, 80,
718-730
service-oriented enterprise architecture
defined, 61, 76-77
design pattern cross-reference
for, 781

811

services
as components, 45
as Web services, 45
as REST services
defined, 37-38
implementation mediums, 44-46
signatures, types of, 651
SOA
characteristics of. See SOA design
characteristics
defined, 37, 78
types of, 61-62
design pattern cross-reference
for, 776-781
inter-business service
architecture, 78
service architecture, 61, 62-67
service composition architecture,
61,68-73
service inventory architecture,
61, 74-75
service-oriented community
architecture, 78
service-oriented enterprise
architecture, 61, 76-77
SOA design characteristics
business-driven, 52-55, 113
composition-centric, 53, 59-60, 113
enterprise-centric, 53, 58-59, 113
inventory design patterns and, 113
vendor-neutral, 52, 54-57,113
SOA Governance, 7,123,282, 464
SOA Magazine, The Web site, 12
SOA Principles of Service Design, 4,7, 17,
32-33,50-51, 67,92, 206, 244, 283,
306, 359,619, 734,750
SOA with .NET, 7, 45, 46
SOA with Java, 7, 485, 46

812

SOA with REST, 7, 46, 748
SOABooks.com,7,11,13
SOADoD.org, 739
SOAGIlossary.com, 7, 12,26, 42, 359
SOAMag.com, 12
SOAMethodology.com, 43, 76,
120,321
SOAPatterns.org, 12, 102, 233,
256,748
SOAPosters.com, 12
SOAPrinciples.com, 7, 50, 76, 306,
750,768
SOASpecs.com, 12, 560, 626, 634, 640,
652
software architecture, 30. See also
architecture
software architecture patterns, 93
software program, defined, 26, 32-33
solution description in pattern
profiles, 102
Standardized Service Contract design
principle, 49, 159, 229, 231, 400,
405,736,738
defined, 751
design pattern cross-reference for,
768-769
principle profile, 751-752
standards. See design standards
state data. See Partial State Deferral
design pattern; Service Grid design
pattern; Service Statelessness design
principle; State Messaging design
pattern; State Repository design
pattern; Stateful Services design
pattern
state keys, defined, 256

Index

state management. See Partial State
Deferral design pattern; Service Grid
design pattern; Service Statelessness
design principle; State Messaging
design pattern; State Repository design
pattern; Stateful Services design
pattern
State Messaging design pattern, 244,
250, 358, 359, 532
profile, 557-565
State Repository design pattern, 93,
198,226,250, 254,255,257, 258,
289, 358, 359,701, 724,727
profile, 242-247
Stateful Services design pattern, 93,
171,226, 244, 254,255, 258, 259,
358,359,715,727,746
profile, 248-253
Steps toward Artificial Intelligence
(Minsky), 91
Strict versioning strategy, 288
structured pattern language
advantages of, 88
defined, 88
STS (Security Token Services), 665
style conventions, used in this book,
11,110
summary tables in pattern profiles, 102
symbols. See also figures
chorded circle, 37
colorin, 11
for components, 45
in design pattern notation, 96
legend, 11
Visio Stencil, 12
symmetric cryptography, 644

Index

T

tabs, used in this book, 110
task service layer, 183-184
task service model, defined, 164
technology and business alignment. See
increased business and technology
alignment, strategic goal
technology architecture. See also
architecture
analogy, 27
defined, 26-30
design framework and, 33-34
scope of, 28
technology coupling, 402
technology infrastructure
analogy, 27
defined, 26, 30-32
design framework and, 33-34
Termination Notification design
pattern, 288, 464, 467, 468, 469,
500, 746
profile, 478-483
Three-Layer Inventory compound
pattern, 147, 164, 699
profile, 715-716
transactions. See Atomic Service
Transaction design pattern;
Compensating Service Transaction
design pattern
transformation patterns. See Data
Format Transformation design
pattern; Data Model Transformation
design pattern; Protocol Bridging
design pattern
Trusted Subsystem design pattern, 374,
398,745
profile, 387-393

813

U

U.S. Department of Defense, patterns
at. See DoD
UI Mediator design pattern, 332, 374
profile, 366-371
Understanding SOA with Web Services
(Newcomer, Lomow), 455
undo capabilities, 634
Utility Abstraction design pattern, 140,
146, 147,164, 166, 184, 185,238,
250,270,284, 315, 316, 348, 370,
379,384,411, 444, 494, 715, 724,
727,736
profile, 168-174
utility logic
business logic, compared, 166
defined, 168
utility service layer, 169. See also Cross-
Domain Utility Layer design pattern;
Utility Abstraction design pattern
utility service model, defined, 164. See
also Utility Abstraction design pattern
utility services, service context
definition, 170

A\

Validation Abstraction design pattern,

179, 203,211, 219, 364, 400, 425
profile 429-437

validation logic. See Concurrent
Contracts design pattern; Partial
Validation design pattern; Service
Abstraction design principle;
Validation Abstraction design pattern

vendor diversification. See increased
vendor diversification options, strategic
goal; vendor-neutral, SOA
characteristic

814

version control systems, 757

Version Identification design pattern,
288,290, 464, 469, 481, 746

profile, 472-477

vendor-neutral, SOA characteristic, 52,
54-57,113

version numbers, Web services and,
474

versioning, strategies for, 288

Visio Stencil, 12

w

Web Service Contract Design and
Versioning for SOA, 542
Web services
Canonical Protocol design pattern
and, 153
in Decoupled Contract design
pattern, 403-405
defined, 45
version numbers and, 474
Web Services Choreography
Description Language
(WS-CDL), 78
Web service-inspired design patterns, 5
Web sites
SOABooks.com, 7,11, 13
SOADoD.org, 739
SOAGlossary.com, 7, 12, 26,
42,359
SOAMag.com, 12
SOAMethodology.com, 43, 76,
120, 321
SOAPatterns.org, 12, 102, 233,
256,748
SOAPosters.com, 12

Index

SOAPrinciples.com, 7, 50, 76, 306,
750,768
SOASpecs.com, 12, 560, 626, 634,
640, 652
WhatIsSOA.com, 7, 51
www.refactoring.com, 486
www.thomaserl.com, 13
WS-Addressing, 542, 560, 568
WS-AtomicTransaction, 252, 626
WS-CDL (Web Services Choreography
Description Language), 78
WS-Context, 560
WS-Coordination, 251, 626
‘WS-I Basic Profile, 153
WS-I Sample Application Security
Architecture document, 640
WS-Policy, 209, 480, 752
WS-PolicyAttachments
specification, 209
WS-Security, 640, 643, 651-652
WS-Trust, 665
WSDL
Canonical Expression design
pattern and, 276
language, 752

X—Z

X.509 PKI, 391, 664

XML parsers, 761

XML Schema language, 206, 752
XML Schema, spelling, 206
XML-Encryption, 640, 643
XML-Signature, 640, 652

XSLT, 674

	Contents
	Foreword
	CHAPTER 16: Service Governance Patterns
	Compatible Change
	Version Identification
	Termination Notification
	Service Refactoring
	Service Decomposition
	Proxy Capability
	Decomposed Capability
	Distributed Capability

	Index
	A
	B
	C
	D
	E
	F
	G–H
	I
	J–K
	L
	M
	N
	O
	P
	Q–R
	S
	T
	U
	V
	W
	X–Z

