
SECTION 8

Ajax Components

return “97402”.equals(zip) ? “Eugene,Oregon” : “NO DATA,NO DATA”;

}

}

Ajax Components
Ajax is cool, but implementing—and especially reimplementing and debugging—low-level Ajax code
is not cool. To rid ourselves of that burden entirely, we now turn to JSF custom components, which
happen to be an excellent vehicle for encapsulating Ajax code. Once our custom components are
encapsulated, we can use them via JSP tags to create compelling user experiences.

Hybrid Components
It should be fairly obvious that the road to Ajax bliss can be paved by implementing custom
renderers that emit JavaScript code.

Even more interesting, however, are JSF components that wrap existing JavaScript components.
After all, why would you want to implement components such as accordions (à la Flash) or drag
and drop, from scratch, when you have a wide variety of existing components to choose from,
such as Prototype, Scriptaculous, Dojo, and Rico? Wrapping those components with JSF
components so that you can use them in your JSF applications is a straightforward task.

The Rico Accordion
Rico is a one of a number of frameworks based on Prototype. Rico provides amenities such as drag
and drop and a handful of useful components. One of those components is an accordion, in the
Flash tradition, shown in Figure 7.

28 AJAX and JavaServer™ Faces
by David Geary and Cay Horstmann

© 2007 Sun Microsystems, Inc. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

SECTION 8

Ajax Components

The Rico Accordion component is similar to a tabbed pane with fancy transitions—when you
click on the header of an accordion panel, the header animates either up or down to reveal its
associated panel. Here’s how you implement the accordion, shown in Figure 7, using HTML:

29 AJAX and JavaServer™ Faces
by David Geary and Cay Horstmann

© 2007 Sun Microsystems, Inc. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

FIGURE 7
The Rico Accordion

SECTION 8

Ajax Components

<html>

<head>

<link href=”styles.css” rel=”stylesheet” type=”text/css”/>

<script type=’text/javascript’ src=’prototype.js’></script>

<script type=’text/javascript’ src=’rico-1.1.2.js’></script>

<script type=’text/javascript’>

function createAccordion() {

new Rico.Accordion($(“theDiv”));

}

</script>

</head>

<body onload=”createAccordion();”>

<div id=”theDiv” class=”accordion”>

<div class=”accordionPanel”>

<div class=”accordionPanelHeader”>

Fruits

</div>

<div class=”accordionPanelContent”>

Oranges

Apples

Watermelon

Kiwi

30 AJAX and JavaServer™ Faces
by David Geary and Cay Horstmann

© 2007 Sun Microsystems, Inc. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

SECTION 8

Ajax Components

</div>

</div>

<div class=”accordionPanel”>

<div class=”accordionPanelHeader”>

Vegetables

</div>

<div class=”accordionPanelContent”>

Radishes

Carrots

Spinach

Celery

</div>

</div>

</div>

</body>

</html>

When the preceding page loads, Rico creates an instance of Rico.Accordion, which adds behaviors
to the DIV that it’s passed. In this case, Rico endows the DIV with JavaScript event handlers that
react to mouse clicks in the header of each panel.

In the next section, we’ll see how to wrap the Rico Accordion in a JSF component.

31 AJAX and JavaServer™ Faces
by David Geary and Cay Horstmann

© 2007 Sun Microsystems, Inc. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

SECTION 8

Ajax Components

The JSF-Rico Accordion Hybrid
The application shown in Figure 8 is a hybrid component, meaning a JSF component that wraps a
JavaScript component—in this case, the Rico Accordion component.

32 AJAX and JavaServer™ Faces
by David Geary and Cay Horstmann

© 2007 Sun Microsystems, Inc. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

FIGURE 8
A JSF component
that wraps a
Rico Accordion
component

SECTION 8

Ajax Components

The Rico component automatically adds a scroll bar if the content of a panel overflows the size of
the panel, so we get that functionality for free. As Figure 9 illustrates, you can put anything you
want in an accordion panel, including forms.

33 AJAX and JavaServer™ Faces
by David Geary and Cay Horstmann

© 2007 Sun Microsystems, Inc. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

FIGURE 9
You can put forms
inside accordion
panels

SECTION 8

Ajax Components

Using the accordion component is simple:

<html>

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>

<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f"%>

<%@ taglib uri="http://corejsf/rico" prefix="rico"%>

<f:view>

...

<rico:accordion name=”bookAccordion”

panelHeight=”175”

styleClass=”accordion”

panelClass=”accordionPanel”

headerClass=”accordionPanelHeader”

contentClass=”accordionPanelContent”>

<rico:accordionPanel heading=”#{msgs.whatIsAHybrid}”>

<jsp:include page=”/whatIsAHybrid.jsp”/>

</rico:accordionPanel>

<rico:accordionPanel heading=”#{msgs.aboutThisComponent}”>

<jsp:include page=”/aboutTheAccordion.jsp”/>

</rico:accordionPanel>

<rico:accordionPanel heading=”#{msgs.aboutRico}”>

<jsp:include page=”/aboutRico.jsp”/>

</rico:accordionPanel>

34 AJAX and JavaServer™ Faces
by David Geary and Cay Horstmann

© 2007 Sun Microsystems, Inc. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

SECTION 8

Ajax Components

<rico:accordionPanel heading=”#{msgs.lookWhatYouCanDo}”>

<jsp:include page=”/lookWhatYouCanDo.jsp”/>

</rico:accordionPanel>

</rico:accordion>

...

</f:view>

</html>

The rico:accordion and rico:accordionPanel tags represent custom renderers that we pair with
UICommand components. Those renderers generate the Rico-aware JavaScript that creates the Rico
Accordion.

The Rico-aware renderers do two things you may find useful if you decide to implement JSF
components with Ajax capabilities of your own: They keep their JavaScript separate from their
renderers, and they transmit JSP tag attributes to that JavaScript code.

Keeping JavaScript Out of Renderers
One thing quickly becomes apparent if you start implementing Ajax-enabled custom components:
You don’t want to generate JavaScript with PrintWriter.write statements. It’s much easier to main-
tain JavaScript if it’s in a file of its own. Finally, it’s convenient to co-locate JavaScript files with the
Java classes that use them. Let’s see how we can do those things.

The AccordionRenderer class generates a script element whose src attribute’s value is
rico-script.jsf:

public class AccordionRenderer extends Renderer {

public void encodeBegin(FacesContext fc, UIComponent component)

35 AJAX and JavaServer™ Faces
by David Geary and Cay Horstmann

© 2007 Sun Microsystems, Inc. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

SECTION 8

Ajax Components

throws IOException {

ResponseWriter writer = fc.getResponseWriter();

// write the script for loading the Rico JS file

writer.write(“<script type=’text/javascript’”

+ “src=’rico-script.jsf’>”

+ “</script>”);

...

}

}

That src attribute—rico-script.jsf—results in a call to the server with the URL rico-script.jsf.
That URL is handled by a phase listener:

public class AjaxPhaseListener implements PhaseListener {

private static final String RICO_SCRIPT_REQUEST = “rico-script”;

private static final String PROTOTYPE_SCRIPT_FILE = “prototype.js”;

private static final String SCRIPTACULOUS_SCRIPT_FILE = “scriptaculous.js”;

private static final String RICO_SCRIPT_FILE = “rico-1.1.2.js”;

public PhaseId getPhaseId() { // We need access to the view state

return PhaseId.RESTORE_VIEW; // in afterPhase()

}

public void beforePhase(PhaseEvent phaseEvent) { // not interested

}

public void afterPhase(PhaseEvent phaseEvent) { // After the RESTORE VIEW phase

FacesContext fc = FacesContext.getCurrentInstance();

if(((HttpServletRequest)fc.getExternalContext()

.getRequest()).getRequestURI()

36 AJAX and JavaServer™ Faces
by David Geary and Cay Horstmann

© 2007 Sun Microsystems, Inc. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

SECTION 8

Ajax Components

.contains(RICO_SCRIPT_REQUEST)) {

try {

readAndWriteFiles(fc, phaseEvent, new String[] {

PROTOTYPE_SCRIPT_FILE,

SCRIPTACULOUS_SCRIPT_FILE,

RICO_SCRIPT_FILE

});

}

catch(java.io.IOException ex) {

ex.printStackTrace();

}

phaseEvent.getFacesContext().responseComplete();

}

}

private void readAndWriteFiles(FacesContext fc, PhaseEvent pe, STring[] files) {

// Read files and write them to the response

}

}

If the request URI contains the string rico-script, the phase listener reads three files and writes
them to the response: prototype.js, scriptaculous.js, and rico-1.1.2.js.

Realize that we could avoid this roundabout way of reading JavaScript files by simply specifying
the files themselves in the script element generated by the AccordionRenderer; however, that would
require us to hardcode the location of that file. Because we’ve used a phase listener to load the
JavaScript files, we can co-locate those JavaScript files with the phase listener, without having to
explicitly specify the JavaScript file locations in the JSP pages.

37 AJAX and JavaServer™ Faces
by David Geary and Cay Horstmann

© 2007 Sun Microsystems, Inc. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

SECTION 8

Ajax Components

Transmitting JSP Tag Attributes to JavaScript Code
If you implement Ajax-enabled JSF components, you will most likely need to transfer tag attributes,
specified in a JSP page, to JavaScript that’s stored in a file of its own, as described in the preceding
section of this short cut. Let’s see how that’s done with the accordion component. First, the accordion
tag class provides setters and getters, which are called by JSP, for accessing the tag’s attribute values.

After JSP transmits tag attribute values to tag properties, JSF calls the tag’s setProperties method,
which passes those attribute values through to the component:

public class AccordionTag extends UIComponentELTag {

private ValueExpression name = null;

...

public void setName(ValueExpression name) { // Called by JSP

this.name = name;

}

...

protected void setProperties(UIComponent component) { // Called by JSF

...

component.setValueExpression(“name”, name);

...

}

}

When the component is rendered, the accordion renderer obtains the tag values from the compo-
nent and generates a small snippet of JavaScript that passes the component values through to the
JavaScript; in this case, we’re passing the name of the DIV that Rico will endow with accordion
functionality. That DIV was originally specified as the name attribute of the rico:accordion tag:

38 AJAX and JavaServer™ Faces
by David Geary and Cay Horstmann

© 2007 Sun Microsystems, Inc. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

SECTION 8

Ajax Components

public class AccordionRenderer extends Renderer {

...

public void encodeEnd(FacesContext fc,

UIComponent component)

throws IOException {

ResponseWriter writer = fc.getResponseWriter();

// Finish enclosing DIV started in encodeBegin()

writer.write(“</div>”);

// Write the JS that creates the Rico Accordion component

Map accordionAttributes = component.getAttributes();

String div = (String)accordionAttributes.get(“name”);

writer.write(“<script type=’text/javascript’>”);

writer.write(“new Rico.Accordion($(’” + div + “’), “);

writeAccordionAttributes(writer, accordionAttributes);

writer.write(“);”);

writer.write(“</script>”);

}

public boolean getRendersChildren() {

return false;

}

private void writeAccordionAttributes(ResponseWriter writer,

Map attrs) {

try {

// Add the rest of the accordion’s properties here.

39 AJAX and JavaServer™ Faces
by David Geary and Cay Horstmann

© 2007 Sun Microsystems, Inc. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

SECTION 9

Ajax4jsf

// See rico-1.1.2.js, line 179.

writer.write(“ { “);

writer.write(“ panelHeight: “ + attrs.get(“panelHeight”));

writer.write(“ } “);

} catch (IOException e) {

e.printStackTrace();

}

}

}

Ajax4jsf
Now that we’ve discussed the particulars of both implementing and encapsulating Ajax with JSF, let’s
turn our attention to a framework that takes care of a great deal of those details for you: Ajax4jsf.

Ajax4jsf is a java.net project, whose home page—https://ajax4jsf.dev.java.net/ajax/ajax-jsf—
is shown in Figure 10. Ajax4jsf provides 18 handy JSP tags that you can use to seamlessly integrate
Ajax into your JSF applications. You can find a list of all the tags and their corresponding descriptions
at the Ajax4jsf home page. In our brief exploration of Ajax4jsf, we will discuss two of those tags:
a4j:support, which lets you attach Ajax functionality to a component, typically an input component,
and a4j:status, which renders JSF components at the start and end of each Ajax4jsf Ajax call.

To illustrate both the power and the pitfalls of using Ajax4jsf, let’s revisit the form completion and
real-time validation examples from earlier in this short cut.

40 AJAX and JavaServer™ Faces
by David Geary and Cay Horstmann

© 2007 Sun Microsystems, Inc. All rights reserved.
This publication is protected by copyright. Please see page 2 for more details.

