Official Cert Guide
Advance your IT career with hands-on learning

CCNP and CCIE Security Core
SCOR 350-701

OMAR SANTOS
CCNP and CCIE Security Core
SCOR 350-701
Official Cert Guide

OMAR SANTOS

Cisco Press
221 River St.
Hoboken, NJ 07030 USA
Feedback Information

At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book is crafted with care and precision, undergoing rigorous development that involves the unique expertise of members from the professional technical community.

Readers' feedback is a natural continuation of this process. If you have any comments regarding how we could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your message.

We greatly appreciate your assistance.

Editor-in-Chief: Mark Taub
Alliances Manager, Cisco Press: Arezou Gol
Director, Product Manager: Brett Bartow
Managing Editor: Sandra Schroeder
Development Editor: Christopher A. Cleveland
Project Editor: Mandie Frank
Copy Editor: Bart Reed

Technical Editor: John Stuppi
Editorial Assistant: Cindy Teeters
Designer: Chuti Prasertsith
Composition: codeMantra
Indexer: Ken Johnson
Proofreader: Abigail Manheim
Credits

Figure 1-1 Screenshot of The Exploit Database (Exploit-DB) © OffSec Services Limited 2020
Figure 1-2 Screenshot of Using searchsploit © OffSec Services Limited 2020
Figure 1-4 Screenshot of Ghidra Software Reverse Engineering Framework, ghidra
Figure 1-6 Screenshot of SQL injection vulnerability © Webgoat SQL Injection
Figure 3-27 Screenshot of Installing the Python requests package using pip © Python Software Foundation
Figure 3-28 Screenshot of Using the Python requests package © Python Software Foundation
Figure 3-29 Screenshot of Using curl to obtain information from an API © GitHub, Inc.
Figure 3-30 Screenshot of Using curl to obtain additional information from the Deck of Cards API © GitHub, Inc.
Figure 9-11 Screenshot of AWS Lamda © 2020, Amazon Web Services, Inc
Figure 9-14 Screenshot of Docker © 2020 Docker Inc.
Figure 9-15 Screenshot of Docker © 2020 Docker Inc.
Figure 9-16 Screenshot of Docker © 2020 Docker Inc.
Figure 9-17 Deploying your first app on Kubernetes, Google Inc.
Figure 9-19 Screenshot of The Kubernetes Authors © Google Inc.
Figure 9-20 Screenshot of The Kubernetes Authors © Google Inc.
Figure 9-21 Screenshot of The Kubernetes Authors © Google Inc.
Figure 10-2 Screenshot of macOS © Apple 2019
The International Organization for Standardization (ISO), ISO/IEC 27001:2005(en)
The International Organization for Standardization (ISO)
The International Organization for Standardization (ISO)
NIST Special Publication 800-61
NIST Special Publication 800-61
NIST Special Publication 800-61
NIST Special Publication 800-61
US-CERT Description Document - RFC 2350
Cybersecurity and Infrastructure Security Agency (CISA), U.S. Department of Homeland Security
NIST Special Publication 800-63B
Contents at a Glance

Introduction xxv
Chapter 1 Cybersecurity Fundamentals 2
Chapter 2 Cryptography 78
Chapter 3 Software-Defined Networking Security and Network Programmability 106
Chapter 4 Authentication, Authorization, Accounting (AAA) and Identity Management 150
Chapter 5 Network Visibility and Segmentation 220
Chapter 6 Infrastructure Security 306
Chapter 7 Cisco Next-Generation Firewalls and Cisco Next-Generation Intrusion Prevention Systems 392
Chapter 8 Virtual Private Networks (VPNs) 464
Chapter 9 Securing the Cloud 548
Chapter 10 Content Security 600
Chapter 11 Endpoint Protection and Detection 634
Chapter 12 Final Preparation 658
 Glossary of Key Terms 660
Appendix A Answers to the “Do I Know This Already?” Quizzes and Q&A Sections 678
Appendix B CCNP Security Core SCOR (350-701) Exam Updates 686
Index 688
Contents

- **Introduction** xxv

Chapter 1 **Cybersecurity Fundamentals** 2

- “Do I Know This Already?” Quiz 3

Foundation Topics 6

- Introduction to Cybersecurity 6
- Cybersecurity vs. Information Security (InfoSec) 7
- The NIST Cybersecurity Framework 7
- Additional NIST Guidance and Documents 7
- The International Organization for Standardization (ISO) 8

Defining What Are Threats, Vulnerabilities, and Exploits 8

- What Is a Threat? 9
- What Is a Vulnerability? 9
- What Is an Exploit? 10
- Risk, Assets, Threats, and Vulnerabilities 12
- Defining Threat Actors 13
- Understanding What Threat Intelligence Is 14
- Viruses and Worms 16
- **Types and Transmission Methods** 16
- Malware Payloads 17
- Trojans 18
- Trojan Types 18
- Trojan Ports and Communication Methods 19
- Trojan Goals 20
- Trojan Infection Mechanisms 20
- Effects of Trojans 22
- Distributing Malware 22
- Ransomware 23
- Covert Communication 23
- Keyloggers 25
- Spyware 26
- Analyzing Malware 27
- Static Analysis 27
- Dynamic Analysis 28
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Software and Hardware Vulnerabilities</td>
<td>30</td>
</tr>
<tr>
<td>Injection Vulnerabilities</td>
<td>30</td>
</tr>
<tr>
<td>SQL Injection</td>
<td>30</td>
</tr>
<tr>
<td>HTML Injection</td>
<td>32</td>
</tr>
<tr>
<td>Command Injection</td>
<td>32</td>
</tr>
<tr>
<td>Authentication-based Vulnerabilities</td>
<td>32</td>
</tr>
<tr>
<td>Credential Brute Force Attacks and Password Cracking</td>
<td>33</td>
</tr>
<tr>
<td>Session Hijacking</td>
<td>34</td>
</tr>
<tr>
<td>Default Credentials</td>
<td>34</td>
</tr>
<tr>
<td>Insecure Direct Object Reference Vulnerabilities</td>
<td>35</td>
</tr>
<tr>
<td>Cross-site Scripting (XSS)</td>
<td>35</td>
</tr>
<tr>
<td>Cross-site Request Forgery</td>
<td>37</td>
</tr>
<tr>
<td>Cookie Manipulation Attacks</td>
<td>37</td>
</tr>
<tr>
<td>Race Conditions</td>
<td>38</td>
</tr>
<tr>
<td>Unprotected APIs</td>
<td>38</td>
</tr>
<tr>
<td>Return-to-LibC Attacks and Buffer Overflows</td>
<td>39</td>
</tr>
<tr>
<td>OWASP Top 10</td>
<td>40</td>
</tr>
<tr>
<td>Security Vulnerabilities in Open Source Software</td>
<td>40</td>
</tr>
<tr>
<td>Confidentiality, Integrity, and Availability</td>
<td>40</td>
</tr>
<tr>
<td>What Is Confidentiality?</td>
<td>40</td>
</tr>
<tr>
<td>What Is Integrity?</td>
<td>42</td>
</tr>
<tr>
<td>What Is Availability?</td>
<td>43</td>
</tr>
<tr>
<td>Talking About Availability, What Is a Denial-of-Service (DoS) Attack</td>
<td>44</td>
</tr>
<tr>
<td>Access Control Management</td>
<td>45</td>
</tr>
<tr>
<td>Cloud Security Threats</td>
<td>47</td>
</tr>
<tr>
<td>Cloud Computing Issues and Concerns</td>
<td>48</td>
</tr>
<tr>
<td>Cloud Computing Attacks</td>
<td>50</td>
</tr>
<tr>
<td>Cloud Computing Security</td>
<td>51</td>
</tr>
<tr>
<td>IoT Security Threats</td>
<td>51</td>
</tr>
<tr>
<td>IoT Protocols</td>
<td>53</td>
</tr>
<tr>
<td>Hacking IoT Implementations</td>
<td>54</td>
</tr>
<tr>
<td>An Introduction to Digital Forensics and Incident Response</td>
<td>55</td>
</tr>
<tr>
<td>ISO/IEC 27002:2013 and NIST Incident Response Guidance</td>
<td>55</td>
</tr>
<tr>
<td>What Is an Incident?</td>
<td>56</td>
</tr>
<tr>
<td>False Positives, False Negatives, True Positives, and True Negatives</td>
<td>57</td>
</tr>
<tr>
<td>Incident Severity Levels</td>
<td>58</td>
</tr>
<tr>
<td>How Are Incidents Reported?</td>
<td>58</td>
</tr>
</tbody>
</table>
What Is an Incident Response Program? 60
The Incident Response Plan 60
The Incident Response Process 61
Tabletop Exercises and Playbooks 63
Information Sharing and Coordination 64
Computer Security Incident Response Teams 64
Product Security Incident Response Teams (PSIRTs) 66
The Common Vulnerability Scoring System (CVSS) 67
National CSIRTs and Computer Emergency Response Teams (CERTs) 71
Coordination Centers 72
Incident Response Providers and Managed Security Service Providers (MSSPs) 73
Key Incident Management Personnel 73
Summary 74
Exam Preparation Tasks 74
Review All Key Topics 74
Define Key Terms 76
Review Questions 76

Chapter 2 Cryptography 78
“Do I Know This Already?” Quiz 78
Foundation Topics 80
Introduction to Cryptography 80
Ciphers 80
Keys 81
Block and Stream Ciphers 82
Symmetric and Asymmetric Algorithms 82
Hashes 84
Hashed Message Authentication Code 86
Digital Signatures 86
Key Management 89
Next-Generation Encryption Protocols 89
IPsec 90
SSL and TLS 91
Fundamentals of PKI 93
Public and Private Key Pairs 93
More About Keys and Digital Certificates 93
Certificate Authorities 94
Root Certificates 95
Identity Certificates 96
X.500 and X.509v3 97
Authenticating and Enrolling with the CA 98
Public Key Cryptography Standards 99
Simple Certificate Enrollment Protocol 99
Revoking Digital Certificates 99
Digital Certificates in Practice 100
PKI Topologies 101
Single Root CA 101
Hierarchical CA with Subordinate CAs 101
Cross-Certifying CAs 102
Exam Preparation Tasks 102
Review All Key Topics 102
Define Key Terms 103
Review Questions 103

Chapter 3 Software-Defined Networking

Security and Network Programmability 106

“Do I Know This Already?” Quiz 106

Foundation Topics 108
Introduction to Software-Defined Networking 108
Traditional Networking Planes 109
So What’s Different with SDN? 110
Introduction to the Cisco ACI Solution 110
VXLAN and Network Overlays 112
Micro-Segmentation 115
Open Source Initiatives 117
More About Network Function Virtualization 118
NFV MANO 119
Contiv 120
Cisco Digital Network Architecture (DNA) 121
Cisco DNA Policies 123
Cisco DNA Group-Based Access Control Policy 124
Cisco DNA IP-Based Access Control Policy 126
Cisco DNA Application Policies 126
Cisco DNA Traffic Copy Policy 127
Cisco DNA Center Assurance Solution 128
Cisco DNA Center APIs 130
Cisco DNA Security Solution 132
Cisco DNA Multivendor Support 132
Introduction to Network Programmability 132
Modern Programming Languages and Tools 133
DevNet 136
Getting Started with APIs 136
REST APIs 137
Using Network Device APIs 139
YANG Models 139
NETCONF 141
RESTCONF 143
OpenConfig and gNMI 145
Exam Preparation Tasks 146
Review All Key Topics 146
Define Key Terms 147
Review Questions 147

Chapter 4 Authentication, Authorization, Accounting (AAA) and Identity Management 150
“Do I Know This Already?” Quiz 151
Foundation Topics 154
Introduction to Authentication, Authorization, and Accounting 154
The Principle of Least Privilege and Separation of Duties 155
Authentication 155
Authentication by Knowledge 156
Authentication by Ownership or Possession 157
Authentication by Characteristic 158
Multifactor Authentication 159
Duo Security 159
Zero Trust and BeyondCorp 161
Single Sign-On 164
Authorization 167
Mandatory Access Control (MAC) 168
Discretionary Access Control (DAC) 168
Role-Based Access Control (RBAC) 168
Rule-Based Access Control 169
Attribute-Based Access Control 169
Accounting 169
Infrastructure Access Controls 170
Access Control Mechanisms 170
AAA Protocols 172
 RADIUS 173
 TACACS+ 174
 Diameter 176
 802.1X 178
 Network Access Control List and Firewalls 180
 VLAN ACLs 181
 Security Group–Based ACL 181
 Downloadable ACL 181

Cisco Identity Services Engine (ISE) 181
 Cisco Platform Exchange Grid (pxGrid) 182
 Cisco ISE Context and Identity Services 184
 Cisco ISE Profiling Services 184
 Cisco ISE Identity Services 187
 Cisco ISE Authorization Rules 188
 Cisco TrustSec 190
 Posture Assessment 192
 Change of Authorization (CoA) 193

Configuring TACACS+ Access 196
Configuring RADIUS Authentication 202
 Configuring 802.1X Authentication 205

Additional Cisco ISE Design Tips 211
 Advice on Sizing a Cisco ISE Distributed Deployment 214

Exam Preparation Tasks 214
Review All Key Topics 214
Define Key Terms 216
Review Questions 216

Chapter 5 Network Visibility and Segmentation 220
“Do I Know This Already?” Quiz 221

Foundation Topics 224
Introduction to Network Visibility 224

NetFlow 225
 The Network as a Sensor and as an Enforcer 226
 What Is a Flow? 227
 NetFlow for Network Security and Visibility 229
 NetFlow for Anomaly Detection and DDoS Attack Mitigation 229
 Data Leak Detection and Prevention 231
Incident Response, Threat Hunting, and Network Security Forensics 231
Traffic Engineering and Network Planning 236
NetFlow Versions 237
IP Flow Information Export (IPFIX) 237
 IPFIX Architecture 238
Understanding IPFIX Mediators 239
IPFIX Templates 239
Option Templates 241
Understanding the Stream Control Transmission Protocol (SCTP) 241
Exploring Application Visibility and Control and NetFlow 241
 Application Recognition 241
 Metrics Collection and Exporting 242
NetFlow Deployment Scenarios 242
 NetFlow Deployment Scenario: User Access Layer 243
NetFlow Deployment Scenario: Wireless LAN 244
NetFlow Deployment Scenario: Internet Edge 245
NetFlow Deployment Scenario: Data Center 246
NetFlow Deployment Scenario: NetFlow in Site-to-Site
 and Remote VPNs 248
Cisco Stealthwatch 250
 Stealthwatch Cloud 251
 On-Premises Monitoring with Cisco Stealthwatch Cloud 256
 Cisco Stealthwatch Cloud Integration with Meraki and Cisco
 Umbrella 256
 Exploring the Cisco Stealthwatch On-Premises Appliances 256
 Threat Hunting with Cisco Stealthwatch 258
Cisco Cognitive Threat Analytics (CTA) and Encrypted Traffic
 Analytics (ETA) 262
 What Is Cisco ETA? 262
 What Is Cisco Cognitive Threat Analytics? 262
NetFlow Collection Considerations and Best Practices 268
 Determining the Flows per Second and Scalability 269
Configuring NetFlow in Cisco IOS and Cisco IOS-XE 269
 Simultaneous Application Tracking 270
 Flexible NetFlow Records 271
 Flexible NetFlow Key Fields 271
 Flexible NetFlow Non-Key Fields 273
 NetFlow Predefined Records 274
Contents

User-Defined Records 275
Flow Monitors 275
Flow Exporters 275
Flow Samplers 275
Flexible NetFlow Configuration 275
Configure a Flow Record 276
Configure a Flow Monitor for IPv4 or IPv6 278
Configure a Flow Exporter for the Flow Monitor 280
Apply a Flow Monitor to an Interface 282
Flexible NetFlow IPFIX Export Format 283
Configuring NetFlow in NX-OS 283
Introduction to Network Segmentation 285
 Data-Driven Segmentation 286
 Application-Based Segmentation 288
Micro-Segmentation with Cisco ACI 289
Segmentation with Cisco ISE 290
 The Scalable Group Tag Exchange Protocol (SXP) 292
 SGT Assignment and Deployment 294
 Initially Deploying 802.1X and/or TrustSec in Monitor Mode 294
 Active Policy Enforcement 295
 Cisco ISE TrustSec and Cisco ACI Integration 298
Exam Preparation Tasks 301
Review All Key Topics 301
Define Key Terms 302
Review Questions 302

Chapter 6 Infrastructure Security 306
“Do I Know This Already?” Quiz 307
Foundation Topics 310
Securing Layer 2 Technologies 310
 VLAN and Trunking Fundamentals 310
 What Is a VLAN? 311
 Trunking with 802.1Q 313
Let's Follow the Frame, Step by Step 315
What Is the Native VLAN on a Trunk? 315
So, What Do You Want to Be? (Asks the Port) 316
Understanding Inter-VLAN Routing 316
What Is the Challenge of Only Using Physical Interfaces? 316
Using Virtual “Sub” Interfaces 316
Spanning Tree Fundamentals 317
The Solution to the Layer 2 Loop 318
STP Is Wary of New Ports 321
Improving the Time Until Forwarding 321
Common Layer 2 Threats and How to Mitigate Them 322
Do Not Allow Negotiations 323
Layer 2 Security Toolkit 324
BPDU Guard 324
Root Guard 325
Port Security 325
CDP and LLDP 327
DHCP Snooping 328
Dynamic ARP Inspection 330
Network Foundation Protection 332
The Importance of the Network Infrastructure 332
The Network Foundation Protection Framework 333
Interdependence 333
Implementing NFP 333
Understanding and Securing the Management Plane 334
Best Practices for Securing the Management Plane 334
Understanding the Control Plane 336
Best Practices for Securing the Control Plane 336
Understanding and Securing the Data Plane 337
Best Practices for Protecting the Data Plane 337
Additional Data Plane Protection Mechanisms 338
Securing Management Traffic 338
Beyond the Console Cable 339
Management Plane Best Practices 339
Password Recommendations 341
Using AAA to Verify Users 342
Router Access Authentication 342
The AAA Method List 343
Role-Based Access Control 344
Custom Privilege Levels 344
Limiting the Administrator by Assigning a View 344
Contents

- Encrypted Management Protocols 344
- Using Logging Files 345
- Understanding NTP 346
- Protecting Cisco IOS, Cisco IOS-XE, Cisco IOS-XR, and Cisco NX-OS Files 346
- Implementing Security Measures to Protect the Management Plane 347
- Implementing Strong Passwords 347
- User Authentication with AAA 349
- Using the CLI to Troubleshoot AAA for Cisco Routers 353
- RBAC Privilege Level/Parser View 356
- Implementing Parser Views 358
- SSH and HTTPS 360
- Implementing Logging Features 362
 - Configuring Syslog Support 363
- Configuring NTP 363
- Securing the Network Infrastructure Device Image and Configuration Files 364
- Securing the Data Plane in IPv6 365
 - Understanding and Configuring IPv6 365
 - The Format of an IPv6 Address 367
 - Understanding the Shortcuts 367
 - Did We Get an Extra Address? 367
 - IPv6 Address Types 368
 - Configuring IPv6 Routing 370
 - Moving to IPv6 372
 - Developing a Security Plan for IPv6 372
 - Best Practices Common to Both IPv4 and IPv6 372
 - Threats Common to Both IPv4 and IPv6 373
 - The Focus on IPv6 Security 374
 - New Potential Risks with IPv6 375
 - IPv6 Best Practices 376
 - IPv6 Access Control Lists 377
- Securing Routing Protocols and the Control Plane 379
 - Minimizing the Impact of Control Plane Traffic on the CPU 379
 - Details about CoPP 380
 - Details about CPPr 383
- Securing Routing Protocols 383
Implementing Routing Update Authentication on OSPF 383
Implementing Routing Update Authentication on EIGRP 384
Implementing Routing Update Authentication on RIP 385
Implementing Routing Update Authentication on BGP 386

Exam Preparation Tasks 387
Review All Key Topics 387
Define Key Terms 389
Review Questions 389

Chapter 7Cisco Next-Generation Firewalls and Cisco Next-Generation Intrusion Prevention Systems 392
“Do I Know This Already?” Quiz 392

Foundation Topics 395
Introduction to Cisco Next-Generation Firewalls (NGFW) and Next-Generation Intrusion Prevention Systems (NGIPS) 395
Cisco Firewall History and Legacy 396
Introducing the Cisco ASA 396
The Cisco ASA FirePOWER Module 397
Cisco Firepower Threat Defense (FTD) 397
Cisco Firepower 1000 Series 397
Cisco Firepower 2100 Series 397
Cisco Firepower 4100 Series 398
Cisco Firepower 9300 Series 399
Cisco FTD for Cisco Integrated Services Routers (ISRs) 399
Introduction to Cisco’s NGIPS 399
Surveying the Cisco Firepower Management Center (FMC) 401
Exploring the Cisco Firepower Device Manager (FDM) 404
Cisco Defense Orchestrator 408
Comparing Network Security Solutions That Provide Firewall Capabilities 411

Deployment Modes of Network Security Solutions and Architectures That Provide Firewall Capabilities 412
Routed vs. Transparent Firewalls 413
Security Contexts 414
Single-Mode Transparent Firewalls 414
Surveying the Cisco FTD Deployment Modes 416
Cisco FTD Interface Modes 417
Inline Pair 420
Inline Pair with Tap 420
Chapter 8 Virtual Private Networks (VPNs) 464

“Do I Know This Already?” Quiz 464

Foundation Topics 467

Virtual Private Network (VPN) Fundamentals 467

An Overview of IPsec 470
IKEv1 Phase 1 470
IKEv1 Phase 2 472
NAT Traversal (NAT-T) 474
<table>
<thead>
<tr>
<th>Chapter 9</th>
<th>Securing the Cloud</th>
<th>548</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Do I Know This Already?” Quiz</td>
<td>549</td>
<td></td>
</tr>
<tr>
<td>Foundation Topics</td>
<td>551</td>
<td></td>
</tr>
<tr>
<td>What Is Cloud and What Are the Cloud Service Models?</td>
<td>551</td>
<td></td>
</tr>
<tr>
<td>DevOps, Continuous Integration (CI), Continuous Delivery (CD), and DevSecOps</td>
<td>552</td>
<td></td>
</tr>
<tr>
<td>The Waterfall Development Methodology</td>
<td>552</td>
<td></td>
</tr>
<tr>
<td>The Agile Methodology</td>
<td>553</td>
<td></td>
</tr>
<tr>
<td>DevOps</td>
<td>556</td>
<td></td>
</tr>
<tr>
<td>CI/CD Pipelines</td>
<td>558</td>
<td></td>
</tr>
<tr>
<td>The Serverless Buzzword</td>
<td>559</td>
<td></td>
</tr>
<tr>
<td>Container Orchestration</td>
<td>559</td>
<td></td>
</tr>
<tr>
<td>A Quick Introduction to Containers and Docker</td>
<td>561</td>
<td></td>
</tr>
<tr>
<td>Kubernetes</td>
<td>565</td>
<td></td>
</tr>
<tr>
<td>Microservices and Micro-Segmentation</td>
<td>570</td>
<td></td>
</tr>
<tr>
<td>DevSecOps</td>
<td>571</td>
<td></td>
</tr>
<tr>
<td>Describing the Customer vs. Provider Security Responsibility for the Different Cloud Service Models</td>
<td>573</td>
<td></td>
</tr>
<tr>
<td>Patch Management in the Cloud</td>
<td>575</td>
<td></td>
</tr>
<tr>
<td>Security Assessment in the Cloud and Questions to Ask Your Cloud Service Provider</td>
<td>575</td>
<td></td>
</tr>
<tr>
<td>Cisco Umbrella</td>
<td>577</td>
<td></td>
</tr>
<tr>
<td>The Cisco Umbrella Architecture</td>
<td>577</td>
<td></td>
</tr>
<tr>
<td>Secure Internet Gateway</td>
<td>578</td>
<td></td>
</tr>
<tr>
<td>Cisco Umbrella Investigate</td>
<td>580</td>
<td></td>
</tr>
</tbody>
</table>
Cisco Email Security in the Cloud 582
 Forged Email Detection 583
 Sender Policy Framework 583
 Email Encryption 583
 Cisco Email Security for Office 365 583
Cisco Cloudlock 584
Stealthwatch Cloud 590
AppDynamics Cloud Monitoring 590
Cisco Tetration 593
 Tetration Agents 593
 Application Dependency Mapping 594
 Tetration Forensics Feature 594
 Tetration Security Dashboard 594
Exam Preparation Tasks 596
Review All Key Topics 596
Define Key Terms 597
Review Questions 598

Chapter 10 Content Security 600
“Do I Know This Already?” Quiz 600
Foundation Topics 603
 Content Security Fundamentals 603
 Cisco Async Operating System (AsyncOS) 604
Cisco WSA 604
 The Cisco WSA Proxy 605
 Cisco WSA in Explicit Forward Mode 606
 Cisco WSA in Transparent Mode 608
 Configuring WCCP in a Cisco ASA to Redirect Web Traffic to a Cisco WSA 609
 Configuring WCCP on a Cisco Switch 610
 Configuring the Cisco WSA to Accept WCCP Redirection 612
 Traffic Redirection with Policy-Based Routing 612
Cisco WSA Security Services 613
 Deploying Web Proxy IP Spoofing 614
 Configuring Policies in the Cisco WSA 615
Cisco WSA Reports 617
Cisco ESA 619
 Reviewing a Few Email Concepts 619
Cisco ESA Deployment 620
Cisco ESA Listeners 621
SenderBase 622
The Recipient Access Table (RAT) 622
Cisco ESA Data Loss Prevention 622
SMTP Authentication and Encryption 623
Domain Keys Identified Mail (DKIM) 623
Cisco Content Security Management Appliance (SMA) 624
Exam Preparation Tasks 629
Review All Key Topics 629
Define Key Terms 630
Review Questions 630

Chapter 11 Endpoint Protection and Detection 634
“Do I Know This Already?” Quiz 634
Foundation Topics 636
Introduction to Endpoint Protection and Detection 636
Endpoint Threat Detection and Response (ETDR) and Endpoint Detection and Response (EDR) 637
Cisco AMP for Endpoints 638
Outbreak Control 639
IP Blacklists and Whitelists 643
AMP for Endpoints Application Control 644
Exclusion Sets 645
AMP for Endpoints Connectors 648
AMP for Endpoints Policies 648
AnyConnect AMP Enabler 650
AMP for Endpoints Engines 650
AMP for Endpoints Reporting 651
Cisco Threat Response 654
Exam Preparation Tasks 655
Review All Key Topics 655
Define Key Terms 655
Review Questions 656

Chapter 12 Final Preparation 658
Hands-on Activities 658
Suggested Plan for Final Review and Study 658
Summary 659
Glossary of Key Terms 660

Appendix A Answers to the “Do I Know This Already?” Quizzes and Q&A Sections 678

Appendix B CCNP Security Core SCOR (350-701) Exam Updates 686

Index 688
About the Author

Omar Santos is an active member of the security community, where he leads several industry-wide initiatives and standard bodies. His active role helps businesses, academic institutions, state and local law enforcement agencies, and other participants dedicated to increasing the security of the critical infrastructure.

Omar is the author of more than 20 books and video courses as well as numerous white papers, articles, and security configuration guidelines and best practices. Omar is a Principal Engineer of the Cisco Product Security Incident Response Team (PSIRT), where he mentors and leads engineers and incident managers during the investigation and resolution of security vulnerabilities.

Omar has been quoted by numerous media outlets, such as TheRegister, Wired, ZDNet, ThreatPost, CyberScoop, TechCrunch, Fortune Magazine, Ars Technica, and more. You can follow Omar on Twitter @santosomar.

About the Technical Reviewer

John Stuppi, CCIE No. 11154, is a Technical Leader in the Customer Experience Security Programs (CXSP) organization at Cisco where he consults with Cisco customers on protecting their networks against existing and emerging cyber security threats, risks, and vulnerabilities. Current projects include working with newly acquired entities to integrate them into the Cisco PSIRT Vulnerability Management processes. John has presented multiple times on various network security topics at Cisco Live, Black Hat, as well as other customer-facing cyber security conferences. John is also the co-author of the Official Certification Guide for CCNA Security 210-260 published by Cisco Press. Additionally, John has contributed to the Cisco Security Portal through the publication of white papers, Security Blog posts, and Cyber Risk Report articles. Prior to joining Cisco, John worked as a network engineer for JPMorgan, and then as a network security engineer at Time, Inc., with both positions based in New York City. John is also a CISSP (No. 25525) and holds AWS Cloud Practitioner and Information Systems Security (INFOSEC) Professional Certifications. In addition, John has a BSEE from Lehigh University and an MBA from Rutgers University. John lives in Ocean Township, New Jersey (down on the “Jersey Shore”) with his wife, two kids, and his dog.
Dedication

I would like to dedicate this book to my lovely wife, Jeannette, and my two beautiful children, Hannah and Derek, who have inspired and supported me throughout the development of this book.

Acknowledgments

I would like to thank the technical editor and my good friend, John Stuppi, for his time and technical expertise.

I would like to thank the Cisco Press team, especially James Manly and Christopher Cleveland, for their patience, guidance, and consideration.

Finally, I would like to thank Cisco and the Cisco Product Security Incident Response Team (PSIRT), Security Research, and Operations for enabling me to constantly learn and achieve many goals throughout all these years.
Introduction

The Implementing and Operating Cisco Security Core Technologies (SCOR 350-701) exam is the required “core” exam for the CCNP Security and CCIE Security certifications. If you pass the SCOR 350-701 exam, you also obtain the Cisco Certified Specialist – Security Core Certification. This exam covers core security technologies, including cybersecurity fundamentals, network security, cloud security, identity management, secure network access, endpoint protection and detection, and visibility and enforcement.

The Implementing and Operating Cisco Security Core Technologies (SCOR 350-701) is a 120-minute exam.

TIP You can review the exam blueprint from Cisco’s website at https://learningnetwork.cisco.com/community/certifications/ccnp-security/scor/exam-topics.

This book gives you the foundation and covers the topics necessary to start your CCNP Security or CCIE Security journey.

The CCNP Security Certification

The CCNP Security certification is one of the industry’s most respected certifications. In order for you to earn the CCNP Security certification, you must pass two exams: the SCOR exam covered in this book (which covers core security technologies) and one security concentration exam of your choice, so you can customize your certification to your technical area of focus.

TIP The SCOR core exam is also the qualifying exam for the CCIE Security certification. Passing this exam is the first step toward earning both of these certifications.

The following are the CCNP Security concentration exams:

- Securing Networks with Cisco Firepower (SNCF 300-710)
- Implementing and Configuring Cisco Identity Services Engine (SISE 300-715)
- Securing Email with Cisco Email Security Appliance (SESA 300-720)
- Securing the Web with Cisco Web Security Appliance (SWSA 300-725)
- Implementing Secure Solutions with Virtual Private Networks (SVPN 300-730)
- Automating Cisco Security Solutions (SAUTO 300-735)
TIP CCNP Security now includes automation and programmability to help you scale your security infrastructure. If you pass the Developing Applications Using Cisco Core Platforms and APIs v1.0 (DEVCOR 350-901) exam, the SCOR exam, and the Automating Cisco Security Solutions (SAUTO 300-735) exam, you will achieve the CCNP Security and DevNet Professional certifications with only three exams. Every exam earns an individual Specialist certification, allowing you to get recognized for each of your accomplishments, instead of waiting until you pass all the exams.

There are no formal prerequisites for CCNP Security. In other words, you do not have to pass the CCNA Security or any other certifications in order to take CCNP-level exams. The same goes for the CCIE exams. On the other hand, CCNP candidates often have three to five years of experience in IT and cybersecurity.

Cisco considers ideal candidates to be those that possess the following:

■ Knowledge of implementing and operating core security technologies
■ Understanding of cloud security
■ Hands-on experience with next-generation firewalls, intrusion prevention systems (IPSs), and other network infrastructure devices
■ Understanding of content security, endpoint protection and detection, and secure network access, visibility, and enforcement
■ Understanding of cybersecurity concepts with hands-on experience in implementing security controls

The CCIE Security Certification

The CCIE Security certification is one of the most admired and elite certifications in the industry. The CCIE Security program prepares you to be a recognized technical leader. In order to earn the CCIE Security certification, you must pass the SCOR 350-701 exam and an 8-hour, hands-on lab exam. The lab exam covers very complex network security scenarios. These scenarios range from designing through deploying, operating, and optimizing security solutions.

Cisco considers ideal candidates to be those who possess the following:

■ Extensive hands-on experience with Cisco’s security portfolio
■ Experience deploying Cisco’s next-generation firewalls and next-generation IPS devices
■ Deep understanding of secure connectivity and segmentation solutions
■ Hands-on experience with infrastructure device hardening and infrastructure security
■ Configuring and troubleshooting identity management, information exchange, and access control
■ Deep understanding of advanced threat protection and content security
The Exam Objectives (Domains)

The Implementing and Operating Cisco Security Core Technologies (SCOR 350-701) exam is broken down into six major domains. The contents of this book cover each of the domains and the subtopics included in them, as illustrated in the following descriptions.

The following table breaks down each of the domains represented in the exam.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Percentage of Representation in Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Security Concepts</td>
<td>25%</td>
</tr>
<tr>
<td>2: Network Security</td>
<td>20%</td>
</tr>
<tr>
<td>3: Securing the Cloud</td>
<td>15%</td>
</tr>
<tr>
<td>4: Content Security</td>
<td>15%</td>
</tr>
<tr>
<td>5: Endpoint Protection and Detection</td>
<td>10%</td>
</tr>
<tr>
<td>6: Secure Network Access, Visibility, and Enforcement</td>
<td>15%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

Here are the details of each domain:

Domain 1: Monitoring and Reporting: This domain is covered in Chapters 1, 2, 3, and 8.

1. Explain common threats against on-premises and cloud environments
 1.1 a On-premises: viruses, trojans, DoS/DDoS attacks, phishing, rootkits, man-in-the-middle attacks, SQL injection, cross-site scripting, malware
 1.1 b Cloud: data breaches, insecure APIs, DoS/DDoS, compromised credentials

2. Compare common security vulnerabilities such as software bugs, weak and/or hardcoded passwords, SQL injection, missing encryption, buffer overflow, path traversal, cross-site scripting/forgery

3. Describe functions of the cryptography components such as hashing, encryption, PKI, SSL, IPsec, NAT-T IPv4 for IPsec, pre-shared key, and certificate-based authorization

4. Compare site-to-site VPN and remote access VPN deployment types such as sVTI, IPsec, Cryptomap, DMVPN, FLEXVPN, including high availability considerations, and AnyConnect

5. Describe security intelligence authoring, sharing, and consumption

6. Explain the role of the endpoint in protecting humans from phishing and social engineering attacks

7. Explain northbound and southbound APIs in the SDN architecture

8. Explain DNAC APIs for network provisioning, optimization, monitoring, and troubleshooting

9. Interpret basic Python scripts used to call Cisco Security appliances APIs
Domain 2: Network Security: This domain is covered primarily in Chapters 5, 6, and 7.

2.1 Compare network security solutions that provide intrusion prevention and firewall capabilities

2.2 Describe deployment models of network security solutions and architectures that provide intrusion prevention and firewall capabilities

2.3 Describe the components, capabilities, and benefits of NetFlow and Flexible NetFlow records

2.4 Configure and verify network infrastructure security methods (router, switch, wireless)
 2.4.a Layer 2 methods (network segmentation using VLANs and VRF-lite; Layer 2 and port security; DHCP snooping; dynamic ARP inspection; storm control; PVLANs to segregate network traffic; and defenses against MAC, ARP, VLAN hopping, STP, and DHCP rogue attacks)
 2.4.b Device hardening of network infrastructure security devices (control plane, data plane, management plane, and routing protocol security)

2.5 Implement segmentation, access control policies, AVC, URL filtering, and malware protection

2.6 Implement management options for network security solutions such as intrusion prevention and perimeter security (single vs. multidevice manager, in-band vs. out-of-band, CDP, DNS, SCP, SFTP, and DHCP security and risks)

2.7 Configure AAA for device and network access (authentication and authorization, TACACS+, RADIUS and RADIUS flows, accounting, and dACL)

2.8 Configure secure network management of perimeter security and infrastructure devices (secure device management, SNMPv3, views, groups, users, authentication, encryption, secure logging, and NTP with authentication)

2.9 Configure and verify site-to-site VPN and remote access VPN
 2.9.a Site-to-site VPN utilizing Cisco routers and IOS
 2.9.b Remote access VPN using Cisco AnyConnect Secure Mobility client
 2.9.c Debug commands to view IPsec tunnel establishment and troubleshooting

Domain 3: Securing the Cloud: This domain is covered primarily in Chapter 9.

3.1 Identify security solutions for cloud environments
 3.1.a Public, private, hybrid, and community clouds
 3.1.b Cloud service models: SaaS, PaaS, and IaaS (NIST 800-145)

3.2 Compare the customer vs. provider security responsibility for the different cloud service models
 3.2.a Patch management in the cloud
 3.2.b Security assessment in the cloud
3.2.c Cloud-delivered security solutions such as firewall, management, proxy, security intelligence, and CASB

3.3 Describe the concept of DevSecOps (CI/CD pipeline, container orchestration, and security)

3.4 Implement application and data security in cloud environments

3.5 Identify security capabilities, deployment models, and policy management to secure the cloud

3.6 Configure cloud logging and monitoring methodologies

3.7 Describe application and workload security concepts

Domain 4: Content Security: This domain is covered primarily in Chapter 10.

4.1 Implement traffic redirection and capture methods

4.2 Describe web proxy identity and authentication, including transparent user identification

4.3 Compare the components, capabilities, and benefits of local and cloud-based email and web solutions (ESA, CES, WSA)

4.4 Configure and verify web and email security deployment methods to protect on-premises and remote users (inbound and outbound controls and policy management)

4.5 Configure and verify email security features such as SPAM filtering, antimalware filtering, DLP, blacklisting, and email encryption

4.6 Configure and verify secure Internet gateway and web security features such as blacklisting, URL filtering, malware scanning, URL categorization, web application filtering, and TLS decryption

4.7 Describe the components, capabilities, and benefits of Cisco Umbrella

4.8 Configure and verify web security controls on Cisco Umbrella (identities, URL content settings, destination lists, and reporting)

Domain 5: Endpoint Protection and Detection: This domain is covered primarily in Chapter 11.

5.1 Compare Endpoint Protection Platforms (EPPs) and Endpoint Detection & Response (EDR) solutions

5.2 Explain antimalware, retrospective security, Indication of Compromise (IOC), antivirus, dynamic file analysis, and endpoint-sourced telemetry

5.3 Configure and verify outbreak control and quarantines to limit infection

5.4 Describe justifications for endpoint-based security

5.5 Describe the value of endpoint device management and asset inventory such as MDM
5.6 Describe the uses and importance of a multifactor authentication (MFA) strategy

5.7 Describe endpoint posture assessment solutions to ensure endpoint security

5.8 Explain the importance of an endpoint patching strategy

Domain 6: Secure Network Access, Visibility, and Enforcement: This domain is covered primarily in Chapters 4 and 5.

6.1 Describe identity management and secure network access concepts such as guest services, profiling, posture assessment, and BYOD

6.2 Configure and verify network access device functionality such as 802.1X, MAB, and WebAuth

6.3 Describe network access with CoA

6.4 Describe the benefits of device compliance and application control

6.5 Explain exfiltration techniques (DNS tunneling, HTTPS, email, FTP/SSH/SCP/SFTP, ICMP, Messenger, IRC, and NTP)

6.6 Describe the benefits of network telemetry

6.7 Describe the components, capabilities, and benefits of these security products and solutions:

6.7.a Cisco Stealthwatch

6.7.b Cisco Stealthwatch Cloud

6.7.c Cisco pxGrid

6.7.d Cisco Umbrella Investigate

6.7.e Cisco Cognitive Threat Analytics

6.7.f Cisco Encrypted Traffic Analytics

6.7.g Cisco AnyConnect Network Visibility Module (NVM)

Steps to Pass the SCOR Exam

There are no prerequisites for the SCOR exam. However, students must have an understanding of networking and cybersecurity concepts.

Signing Up for the Exam

The steps required to sign up for the SCOR exam as follows:

2. Complete the Examination Agreement, attesting to the truth of your assertions regarding professional experience and legally committing to the adherence of the testing policies.

3. Submit the examination fee.
Facts About the Exam

The exam is a computer-based test. The exam consists of multiple-choice questions only. You must bring a government-issued identification card. No other forms of ID will be accepted.

TIP Refer to the Cisco Certification site at https://cisco.com/go/certifications for more information regarding this, and other, Cisco certifications.

About the CCNP and CCIE Security Core SCOR 350-701 Official Cert Guide

This book maps directly to the topic areas of the SCOR exam and uses a number of features to help you understand the topics and prepare for the exam.

Objectives and Methods

This book uses several key methodologies to help you discover the exam topics that need more review, to help you fully understand and remember those details, and to help you prove to yourself that you have retained your knowledge of those topics. This book does not try to help you pass the exam only by memorization; it seeks to help you to truly learn and understand the topics. This book is designed to help you pass the Implementing and Operating Cisco Security Core Technologies (SCOR 350-701) exam by using the following methods:

- Helping you discover which exam topics you have not mastered
- Providing explanations and information to fill in your knowledge gaps
- Supplying exercises that enhance your ability to recall and deduce the answers to test questions
- Providing practice exercises on the topics and the testing process via test questions on the companion website

Book Features

To help you customize your study time using this book, the core chapters have several features that help you make the best use of your time:

- Foundation Topics: These are the core sections of each chapter. They explain the concepts for the topics in that chapter.

- Exam Preparation Tasks: After the “Foundation Topics” section of each chapter, the “Exam Preparation Tasks” section lists a series of study activities that you should do at the end of the chapter:

- Review All Key Topics: The Key Topic icon appears next to the most important items in the “Foundation Topics” section of the chapter. The Review All Key Topics activity lists the key topics from the chapter, along with their page numbers. Although the contents of the entire chapter could be on the exam, you should definitely know the information listed in each key topic, so you should review these.
Define Key Terms: Although the Implementing and Operating Cisco Security Core Technologies (SCOR 350-701) exam may be unlikely to ask a question such as “Define this term,” the exam does require that you learn and know a lot of cybersecurity terminology. This section lists the most important terms from the chapter, asking you to write a short definition and compare your answer to the glossary at the end of the book.

Review Questions: Confirm that you understand the content you just covered by answering these questions and reading the answer explanations.

Web-based practice exam: The companion website includes the Pearson Cert Practice Test engine, which allows you to take practice exam questions. Use it to prepare with a sample exam and to pinpoint topics where you need more study.

How This Book Is Organized
This book contains 11 core chapters—Chapters 1 through 11. Chapter 12 includes preparation tips and suggestions for how to approach the exam. Each core chapter covers a subset of the topics on the Implementing and Operating Cisco Security Core Technologies (SCOR 350-701) exam. The core chapters map to the SCOR topic areas and cover the concepts and technologies you will encounter on the exam.

The Companion Website for Online Content Review
All the electronic review elements, as well as other electronic components of the book, exist on this book’s companion website.

To access the companion website, which gives you access to the electronic content with this book, start by establishing a login at www.ciscopress.com and registering your book.

To do so, simply go to www.ciscopress.com/register and enter the ISBN of the print book: 9780135971970. After you have registered your book, go to your account page and click the Registered Products tab. From there, click the Access Bonus Content link to get access to the book’s companion website.

Note that if you buy the Premium Edition eBook and Practice Test version of this book from Cisco Press, your book will automatically be registered on your account page. Simply go to your account page, click the Registered Products tab, and select Access Bonus Content to access the book’s companion website.

Please note that many of our companion content files can be very large, especially image and video files.

If you are unable to locate the files for this title by following the steps at left, please visit www.pearsonITcertification.com/contact and select the Site Problems/Comments option. Our customer service representatives will assist you.
Customizing Your Exams

Once you are in the exam settings screen, you can choose to take exams in one of three modes:

- **Study mode**: Allows you to fully customize your exams and review answers as you are taking the exam. This is typically the mode you would use first to assess your knowledge and identify information gaps.

- **Practice Exam mode**: Locks certain customization options, as it is presenting a realistic exam experience. Use this mode when you are preparing to test your exam readiness.

- **Flash Card mode**: Strips out the answers and presents you with only the question stem. This mode is great for late-stage preparation when you really want to challenge yourself to provide answers without the benefit of seeing multiple-choice options. This mode does not provide the detailed score reports that the other two modes do, so you should not use it if you are trying to identify knowledge gaps.

In addition to these three modes, you will be able to select the source of your questions. You can choose to take exams that cover all of the chapters or you can narrow your selection to just a single chapter or the chapters that make up specific parts in the book. All chapters are selected by default. If you want to narrow your focus to individual chapters, simply deselect all the chapters and then select only those on which you wish to focus in the Objectives area.

You can also select the exam banks on which to focus. Each exam bank comes complete with a full exam of questions that cover topics in every chapter. The two exams printed in the book are available to you as well as two additional exams of unique questions. You can have the test engine serve up exams from all four banks or just from one individual bank by selecting the desired banks in the exam bank area.

There are several other customizations you can make to your exam from the exam settings screen, such as the time of the exam, the number of questions served up, whether to randomize questions and answers, whether to show the number of correct answers for multiple-answer questions, and whether to serve up only specific types of questions. You can also create custom test banks by selecting only questions that you have marked or questions on which you have added notes.

Updating Your Exams

If you are using the online version of the Pearson Test Prep software, you should always have access to the latest version of the software as well as the exam data. If you are using the Windows desktop version, every time you launch the software while connected to the Internet, it checks if there are any updates to your exam data and automatically downloads any changes that were made since the last time you used the software.
Sometimes, due to many factors, the exam data may not fully download when you activate your exam. If you find that figures or exhibits are missing, you may need to manually update your exams. To update a particular exam you have already activated and downloaded, simply click the Tools tab and click the Update Products button. Again, this is only an issue with the desktop Windows application.

If you wish to check for updates to the Pearson Test Prep exam engine software, Windows desktop version, simply click the Tools tab and click the Update Application button. This ensures that you are running the latest version of the software engine.
Software-Defined Networking Security and Network Programmability

This chapter covers the following topics:

Software-Defined Networking (SDN) and SDN Security
Network Programmability

This chapter starts with an introduction to SDN and different SDN security concepts, such as centralized policy management and micro-segmentation. This chapter also introduces SDN solutions such as Cisco ACI and modern networking environments such as Cisco DNA. You will also learn what are network overlays and what they are trying to solve.

The second part of this chapter provides an overview of network programmability and how networks are being managed using modern application programming interfaces (APIs) and other functions. This chapter also includes dozens of references that are available to enhance your learning.

The following SCOR 350-701 exam objectives are covered in this chapter:

- Domain 1: Security Concepts
 - 1.7 Explain northbound and southbound APIs in the SDN architecture
 - 1.8 Explain DNAC APIs for network provisioning, optimization, monitoring, and troubleshooting

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess whether you should read this entire chapter thoroughly or jump to the “Exam Preparation Tasks” section. If you are in doubt about your answers to these questions or your own assessment of your knowledge of the topics, read the entire chapter. Table 3-1 lists the major headings in this chapter and their corresponding “Do I Know This Already?” quiz questions. You can find the answers in Appendix A, “Answers to the ‘Do I Know This Already?’ Quizzes and Q&A Sections.”

<table>
<thead>
<tr>
<th>Table 3-1 “Do I Know This Already?” Section-to-Question Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foundation Topics Section</td>
</tr>
<tr>
<td>Software-Defined Networking (SDN) and SDN Security</td>
</tr>
<tr>
<td>Network Programmability</td>
</tr>
</tbody>
</table>
CAUTION The goal of self-assessment is to gauge your mastery of the topics in this chapter. If you do not know the answer to a question or are only partially sure of the answer, you should mark that question as wrong for purposes of the self-assessment. Giving yourself credit for an answer you incorrectly guess skews your self-assessment results and might provide you with a false sense of security.

1. Which of the following are the three different “planes” in traditional networking?
 a. The management, control, and data planes
 b. The authorization, authentication, and accountability planes
 c. The authentication, control, and data planes
 d. None of these answers is correct.

2. Which of the following is true about Cisco ACI?
 a. Spine nodes interconnect leaf devices, and they can also be used to establish connections from a Cisco ACI pod to an IP network or interconnect multiple Cisco ACI pods.
 b. Leaf switches provide the Virtual Extensible LAN (VXLAN) tunnel endpoint (VTEP) function.
 c. The APIC manages the distributed policy repository responsible for the definition and deployment of the policy-based configuration of the Cisco ACI infrastructure.
 d. All of these answers are correct.

3. Which of the following is used to create network overlays?
 a. SDN-Lane
 b. VXLAN
 c. VXWAN
 d. None of these answers is correct.

4. Which of the following is an identifier or a tag that represents a logical segment?
 a. VXLAN Network Identifier (VNID)
 b. VXLAN Segment Identifier (VSID)
 c. ACI Network Identifier (ANID)
 d. Application Policy Infrastructure Controller (APIC)

5. Which of the following is network traffic between servers (virtual servers or physical servers), containers, and so on?
 a. East-west traffic
 b. North-south traffic
 c. Micro-segmentation
 d. Network overlays
6. Which of the following is an HTTP status code message range related to successful HTTP transactions?
 a. Messages in the 100 range
 b. Messages in the 200 range
 c. Messages in the 400 range
 d. Messages in the 500 range

7. Which of the following is a Python package that can be used to interact with REST APIs?
 a. argparse
 b. requests
 c. rest_api_pkg
 d. None of these answers is correct.

8. Which of the following is a type of API that exclusively uses XML?
 a. APIC
 b. REST
 c. SOAP
 d. GraphQL

9. Which of the following is a modern framework of API documentation and is now the basis of the OpenAPI Specification (OAS)?
 a. SOAP
 b. REST
 c. Swagger
 d. WSDL

10. Which of the following can be used to retrieve a network device configuration?
 a. RESTCONF
 b. NETCONF
 c. SNMP
 d. All of these answers are correct.

Foundation Topics

Introduction to Software-Defined Networking

In the last decade there have been several shifts in networking technologies. Some of these changes are due to the demand of modern applications in very diverse environments and the cloud. This complexity introduces risks, including network configuration errors that can cause significant downtime and network security challenges.

Subsequently, networking functions such as routing, optimization, and security have also changed. The next generation of hardware and software components in enterprise networks must support both the rapid introduction and the rapid evolution of new technologies and solutions. Network infrastructure solutions must keep pace with the business environment and support modern capabilities that help drive simplification within the network.
These elements have fueled the creation of software-defined networking (SDN). SDN was originally created to decouple control from the forwarding functions in networking equipment. This is done to use software to centrally manage and “program” the hardware and virtual networking appliances to perform forwarding.

Key Topic

In traditional networking, there are three different “planes” or elements that allow network devices to operate: the management, control, and data planes. Figure 3-1 shows a high-level explanation of each of the planes in traditional networking.

<table>
<thead>
<tr>
<th>Management Plane</th>
<th>Control Plane</th>
<th>Data Plane</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Configuration and monitoring</td>
<td>• Layer 2 protocols and control</td>
<td>• Institutes how data is forwarded inside the hardware from interface to interface</td>
</tr>
<tr>
<td>• Typically done via the traditional CLI or GUI</td>
<td>• Layer 3 protocols (e.g., OSPF, RIP, BGP, etc.)</td>
<td></td>
</tr>
<tr>
<td>• Each vendor has its proprietary way to configure its devices</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3-1 The Management, Control, and Data Planes

The control plane has always been separated from the data plane. There was no central brain (or controller) that controlled the configuration and forwarding. Let’s take a look at the example shown in Figure 3-2. Routers, switches, and firewalls were managed by the command-line interface (CLI), graphical user interfaces (GUIs), and custom Tcl scripts. For instance, the firewalls were managed by the Adaptive Security Device Manager (ASDM), while the routers were managed by the CLI.

Figure 3-2 Traditional Network Management Solutions

Each device in Figure 3-2 has its “own brain” and does not really exchange any intelligent information with the rest of the devices.
So What’s Different with SDN?

SDN introduced the notion of a centralized controller. The SDN controller has a global view of the network, and it uses a common management protocol to configure the network infrastructure devices. The SDN controller can also calculate reachability information from many systems in the network and pushes a set of flows inside the switches. The flows are used by the hardware to do the forwarding. Here you can see a clear transition from a distributed “semi-intelligent brain” approach to a “central and intelligent brain” approach.

TIP An example of an open source implementation of SDN controllers is the Open vSwitch (OVS) project using the OVS Database (OVSDB) management protocol and the OpenFlow protocol. Another example is the Cisco Application Policy Infrastructure Controller (Cisco APIC). Cisco APIC is the main architectural component and the brain of the Cisco Application Centric Infrastructure (ACI) solution. A great example of this is Cisco ACI, which is discussed in the next section of the chapter.

SDN changed a few things in the management, control, and data planes. However, the big change was in the control and data planes in software-based switches and routers (including virtual switches inside of hypervisors). For instance, the Open vSwitch project started some of these changes across the industry.

SDN provides numerous benefits in the area of management plane. These benefits are in both physical switches and virtual switches. SDN is now widely adopted in data centers. A great example of this is Cisco ACI.

Introduction to the Cisco ACI Solution

Cisco ACI provides the ability to automate setting networking policies and configurations in a very flexible and scalable way. Figure 3-3 illustrates the concept of a centralized policy and configuration management in the Cisco ACI solution.

The Cisco ACI scenario shown in Figure 3-3 uses a leaf-and-spine topology. Each leaf switch is connected to every spine switch in the network with no interconnection between leaf switches or spine switches.

The leaf switches have ports connected to traditional Ethernet devices (for example, servers, firewalls, routers, and so on). Leaf switches are typically deployed at the edge of the fabric. These leaf switches provide the Virtual Extensible LAN (VXLAN) tunnel endpoint (VTEP) function. VXLAN is a network virtualization technology that leverages an encapsulation technique (similar to VLANs) to encapsulate Layer 2 Ethernet frames within UDP packets (over UDP port 4789, by default).

NOTE The section “VXLAN and Network Overlays,” later in the chapter, will discuss VXLAN and overlays in more detail.

In Cisco ACI, the IP address that represents the leaf VTEP is called the physical tunnel endpoint (PTEP). The leaf switches are responsible for routing or bridging tenant packets and for applying network policies.
Spine nodes interconnect leaf devices, and they can also be used to establish connections from a Cisco ACI pod to an IP network or to interconnect multiple Cisco ACI pods. Spine switches store all the endpoint-to-VTEP mapping entries. All leaf nodes connect to all spine nodes within a Cisco ACI pod. However, no direct connectivity is allowed between spine nodes or between leaf nodes.

NOTE All workloads in Cisco ACI connect to leaf switches. The leaf switches used in a Cisco ACI fabric are Top-of-the-Rack (ToR) switches. The acronym “ToR” here is not the same as “The Onion Router” (a solution used for anonymity and to access the “deep web”).

The APIC can be considered a policy and a topology manager. APIC manages the distributed policy repository responsible for the definition and deployment of the policy-based configuration of the Cisco ACI infrastructure. APIC also manages the topology and inventory information of all devices within the Cisco ACI pod.
The following are additional functions of the APIC:

- The APIC “observer” function monitors the health, state, and performance information of the Cisco ACI pod.
- The “boot director” function is in charge of the booting process and firmware updates of the spine switches, leaf switches, and the APIC components.
- The “appliance director” APIC function manages the formation and control of the APIC appliance cluster.
- The “virtual machine manager (VMM)” is an agent between the policy repository and a hypervisor. The VMM interacts with hypervisor management systems (for example, VMware vCenter).
- The “event manager” manages and stores all the events and faults initiated from the APIC and the Cisco ACI fabric nodes.
- The “appliance element” maintains the inventory and state of the local APIC appliance.

VXLAN and Network Overlays
Modern networks and data centers need to provide load balancing, better scalability, elasticity, and faster convergence. Many organizations use the overlay network model. Deploying an overlay network allows you to tunnel Layer 2 Ethernet packets with different encapsulations over a Layer 3 network. The overlay network uses “tunnels” to carry the traffic across the Layer 3 fabric. This solution also needs to allow the “underlay” to separate network flows between different “tenants” (administrative domains). The solution also needs to switch packets within the same Layer 2 broadcast domain, route traffic between Layer 3 broadcast domains, and provide IP separation, traditionally done via virtual routing and forwarding (VRF).

There have been multiple IP tunneling mechanisms introduced throughout the years. The following are a few examples of tunneling mechanisms:

- Virtual Extensible LAN (VXLAN)
- Network Virtualization using Generic Routing Encapsulation (NVGRE)
- Stateless Transport Tunneling (STT)
- Generic Network Virtualization Encapsulation (GENEVE)
All of the aforementioned tunneling protocols carry an Ethernet frame inside an IP frame. The main difference between them is in the type of the IP frame used. For instance, VXLAN uses UDP, and STT uses TCP.

The use of UDP in VXLAN enables routers to apply hashing algorithms on the outer UDP header to load balance network traffic. Network traffic that is riding the overlay network tunnels is load balanced over multiple links using equal-cost multi-path routing (ECMP). This introduces a better solution compared to traditional network designs. In traditional network designs, access switches connect to distribution switches. This causes redundant links to block due to spanning tree.

VXLAN uses an identifier or a tag that represents a logical segment that is called the VXLAN Network Identifier (VNID). The logical segment identified with the VNID is a Layer 2 broadcast domain that is tunneled over the VTEP tunnels.

Figure 3-4 shows an example of an overlay network that provides Layer 2 capabilities.

![Figure 3-4](overlay_network_2.png)

Figure 3-4 Overlay Network Providing Layer 2 Capabilities

Figure 3-5 shows an example of an overlay network that provides Layer 3 routing capabilities.

![Figure 3-5](overlay_network_3.png)

Figure 3-5 Overlay Network Providing Layer 3 Routing Capabilities

Figure 3-6 illustrates the VXLAN frame format for your reference.
MAC-in-IP Encapsulation

Underlay

Outer MAC Header

Outer IP Header

UDP Header

VXLAN Header

Original Layer-2 Frame

Overlay

50 (54) Bytes of Overhead

14 Bytes (4 Bytes Optional)

Ether Type 0x0800

VLAN ID Tag

Ether Type 0x8100

Src. MAC Address

Dest. MAC Address

Src VTEP MAC Address

Next-Hop MAC Address

16 16 16

16 16 16

16 16 16

16 16 16

16 16 16

16 16 16

16 16 16

16 16 16

16 16 16

16 16 16

8 Bytes

VXLAN Port

UDP Length

Checksum 0x0000

Reserved

VNI

Reserved

UDP 4789

IP Header Misc. Data

Protocol 0x11 (UDP)

Header Checksum

Source IP

Dest. IP

Src and Dst addresses of the VTEPs

20 Bytes

Hash of the inner L2/L3/L4 headers of the original frame. Enables entropy for ECMP load balancing in the network.

8 Bytes

VXLAN Flags BBBBBBBB

Reserved

VNI

Reserved

24 8

8

8

8

Figure 3-6 VXLAN Frame Format
Micro-Segmentation

For decades, servers were assigned subnets and VLANs. Sounds pretty simple, right? Well, this introduced a lot of complexities because application segmentation and policies were physically restricted to the boundaries of the VLAN within the same data center (or even in “the campus”). In virtual environments, the problem became harder. Nowadays applications can move around between servers to balance loads for performance or high availability upon failures. They also can move between different data centers and even different cloud environments.

Traditional segmentation based on VLANs constrains you to maintain the policies of which application needs to talk to which application (and who can access such applications) in centralized firewalls. This is ineffective because most traffic in data centers is now “East-West” traffic. A lot of that traffic does not even hit the traditional firewall. In virtual environments, a lot of the traffic does not even leave the physical server.

Let’s define what people refer to as “East-West” traffic and “North-South” traffic. “East-West” traffic is network traffic between servers (virtual servers or physical servers, containers, and so on).

“North-South” traffic is network traffic flowing in and outside the data center. Figure 3-7 illustrates the concepts of “East-West” and “North-South” traffic.

![Figure 3-7 “East-West” and “North-South” Traffic](image)

Many vendors have created solutions where policies applied to applications are independent from the location or the network tied to the application.

For example, let’s suppose that you have different applications running in separate VMs and those applications also need to talk to a database (as shown in Figure 3-8).
You need to apply policies to restrict if application A needs or does not need to talk to application B, or which application should be able to talk to the database. These policies should not be bound by which VLAN or IP subnet the application belongs to and whether it is in the same rack or even in the same data center. Network traffic should not make multiple trips back and forth between the applications and centralized firewalls to enforce policies between VMs.

Containers make this a little harder because they move and change more often. Figure 3-9 illustrates a high-level representation of applications running inside of containers (for example, Docker containers).

The ability to enforce network segmentation in those environments is what’s called “micro-segmentation.” Micro-segmentation is at the VM level or between containers regardless of a VLAN or a subnet. Micro-segmentation segmentation solutions need to be “application aware.” This means that the segmentation process starts and ends with the application itself.

Most micro-segmentation environments apply a “zero-trust model.” This model dictates that users cannot talk to applications, and applications cannot talk to other applications unless a defined set of policies permits them to do so.
Open Source Initiatives

There are several open source projects that are trying to provide micro-segmentation and other modern networking benefits. Examples include the following:

- Neutron from OpenStack
- Open vSwitch (OVS)
- Open Virtual Network (OVN)
- OpenDaylight (ODL)
- Open Platform for Network Function Virtualization (OPNFV)
- Contiv

The concept of SDN is very broad, and every open source provider and commercial vendor takes it in a different direction. The networking component of OpenStack is called Neutron. Neutron is designed to provide “networking as a service” in private, public, and hybrid cloud environments. Other OpenStack components, such as Horizon (Web UI) and Nova (compute service), interact with Neutron using a set of APIs to configure the networking services. Neutron uses plug-ins to deliver advanced networking capabilities and allow third-party vendor integration. Neutron has two main components: the neutron server and a database that handles persistent storage and plug-ins to provide additional services. Additional information about Neutron and OpenStack can be found at https://docs.openstack.org/neutron/latest.

OVN was originally created by the folks behind Open vSwitch (OVS) for the purpose of bringing an open source solution for virtual network environments and SDN. Open vSwitch is an open source implementation of a multilayer virtual switch inside the hypervisor.

NOTE You can download Open vSwitch and access its documentation at https://www.openvswitch.org.

OVN is often used in OpenStack implementations with the use of OVS. You can also use OVN with the OpenFlow protocol. OpenStack Neutron uses OVS as the default “control plane.”

NOTE You can access different tutorials about OVN and OVS at http://docs.openvswitch.org/en/latest/tutorials/.

OpenDaylight (ODL) is another popular open source project that is focused on the enhancement of SDN controllers to provide network services across multiple vendors. OpenDaylight participants also interact with the OpenStack Neutron project and attempt to solve the existing inefficiencies.

OpenDaylight interacts with Neutron via a northbound interface and manages multiple interfaces southbound, including the Open vSwitch Database Management Protocol (OVSDB) and OpenFlow.
You can find more information about OpenDaylight at https://www.opendaylight.org. Cisco has several tutorials and additional information about OpenDaylight in DevNet at https://developer.cisco.com/site/opendaylight/.

So, what is a northbound and southbound API? In an SDN architecture, southbound APIs are used to communicate between the SDN controller and the switches and routers within the infrastructure. These APIs can be open or proprietary.

Cisco provides detailed information about the APIs supported in all platforms in DevNet (developer.cisco.com). DevNet will be discussed in detail later in this chapter.

Southbound APIs enable SDN controllers to dynamically make changes based on real-time demands and scalability needs. OpenFlow and Cisco OpFlex provide southbound API capabilities.

Northbound APIs (SDN northbound APIs) are typically RESTful APIs that are used to communicate between the SDN controller and the services and applications running over the network. Such northbound APIs can be used for the orchestration and automation of the network components to align with the needs of different applications via SDN network programmability. In short, northbound APIs are basically the link between the applications and the SDN controller. In modern environments, applications can tell the network devices (physical or virtual) what type of resources they need and, in turn, the SDN solution can provide the necessary resources to the application.

Cisco has the concept of intent-based networking. On different occasions, you may see northbound APIs referred to as “intent-based APIs.”

Network virtualization is used for logical groupings of nodes on a network. The nodes are abstracted from their physical locations so that VMs and any other assets can be managed as if they are all on the same physical segment of the network. This is not a new technology. However, it is still one that is key in virtual environments where systems are created and moved despite their physical location.

Network Functions Virtualization (NFV) is a technology that addresses the virtualization of Layer 4 through Layer 7 services. These include load balancing and security capabilities such as firewall-related features. In short, with NFV, you convert certain types of network appliances into VMs. NFV was created to address the inefficiencies that were introduced by virtualization.

NFV allows you to create a virtual instance of a virtual node such as a firewall that can be deployed where it is needed, in a flexible way that’s similar to how you do with a traditional VM.

Open Platform for Network Function Virtualization (OPNFV) is an open source solution for NFV services. It aims to be the base infrastructure layer for running virtual network functions. You can find detailed information about OPNFV at opnfv.org.
NFV nodes such as virtual routers and firewalls need an underlying infrastructure:

- A hypervisor to separate the virtual routers, switches, and firewalls from the underlying physical hardware. The hypervisor is the underlying virtualization platform that allows the physical server (system) to operate multiple VMs (including traditional VMs and network-based VMs).
- A virtual forwarder to connect individual instances.
- A network controller to control all of the virtual forwarders in the physical network.
- A VM manager to manage the different network-based VMs.

Figure 3-10 demonstrates the high-level components of the NFV architecture.

Several NFV infrastructure components have been created in open community efforts. On the other hand, traditionally, the actual integration has so far remained a “private” task. You’ve either had to do it yourself, outsource it, or buy a pre-integrated system from some vendor, keeping in mind that the systems integration undertaken is not a one-time task. OPNFV was created to change the NFV ongoing integration task from a private solution into an open community solution.

NFV MANO

NFV changes the way networks are managed. NFV management and network orchestration (MANO) is a framework and working group within the European Telecommunications Standards Institute (ETSI) Industry Specification Group for NFV (ETSI ISG NFV). NFV MANO is designed to provide flexible on-boarding of network components. NFV MANO is divided into the three functional components listed in Figure 3-11.
On-boards (orchestrates) new network services (NS) and virtual network function (VNF) packages.

The NFV Orchestrator is also responsible for the lifecycle management; global resource management; validation and authorization of network functions virtualization infrastructure (NFVI) resource requests.

Oversees lifecycle management of VNF instances.

Coordinates configuration and event reporting between NFV infrastructure (NFVI) and Element/Network Management Systems.

Controls and manages the NFVI compute, storage, and network resources.

Figure 3-11 NFV MANO Functional Components

The NFV MANO architecture is integrated with open application program interfaces (APIs) in the existing systems. The MANO layer works with templates for standard VNFs. It allows implementers to pick and choose from existing NFV resources to deploy their platform or element.

Contiv

Contiv is an open source project that allows you to deploy micro-segmentation policy-based services in container environments. It offers a higher level of networking abstraction for microservices by providing a policy framework. Contiv has built-in service discovery and service routing functions to allow you to scale out services.

You can download Contiv and access its documentation at https://contiv.io.

With Contiv you can assign an IP address to each container. This feature eliminates the need for host-based port NAT. Contiv can operate in different network environments such as traditional Layer 2 and Layer 3 networks, as well as overlay networks.

Contiv can be deployed with all major container orchestration platforms (or schedulers) such as Kubernetes and Docker Swarm. For instance, Kubernetes can provide compute resources to containers and then Contiv provides networking capabilities.

Contiv supports Layer 2, Layer 3 (BGP), VXLAN for overlay networks, and Cisco ACI mode. It also provides built-in east-west service load balancing and traffic isolation.

The Netmaster and Netplugin (Contiv host agent) are the two major components in Contiv. Figure 3-12 illustrates how the Netmaster and the Netplugin interact with all the underlying components of the Contiv solution.

Cisco Digital Network Architecture (DNA)

Cisco DNA is a solution created by Cisco that is often referred to as the “intent-based networking” solution. Cisco DNA provides automation and assurance services across campus networks, wide area networks (WANs), and branch networks. Cisco DNA is based on an open and extensible platform and provides the policy, automation, and analytics capabilities, as illustrated in Figure 3-13.

The heart of the Cisco DNA solution is Cisco DNA Center (DNAC). DNAC is a command-and-control element that provides centralized management via dashboards and APIs. Figure 3-14 shows one of the many dashboards of Cisco DNA Center (the Network Hierarchy dashboard).

Cisco DNA Center can be integrated with external network and security services such as the Cisco Identity Services Engine (ISE). Figure 3-15 shows how the Cisco ISE is configured as an authentication, authorization, and accounting (AAA) server in the Cisco DNA Center Network Settings screen.
Figure 3-14 Cisco DNA Center Network Hierarchy Dashboard

Figure 3-15 Cisco DNA Center Integration with Cisco ISE for AAA Services
Cisco DNA Policies

The following are the policies you can create in the Cisco DNA Center:

- Group-based access control policies
- IP-based access control policies
- Application access control policies
- Traffic copy policies

Figure 3-16 shows the Cisco DNA Center Policy Dashboard. There you can see the number of virtual networks, group-based access control policies, IP-based access control policies, traffic copy policies, scalable groups, and IP network groups that have been created. The Policy Dashboard will also show any policies that have failed to deploy.

![Cisco DNA Center Policy Dashboard](image)

Figure 3-16 Cisco DNA Center Policy Dashboard

The Policy Dashboard window also provides a list of policies and the following information about each policy:

- **Policy Name**: The name of the policy.
- **Policy Type**: The type of policy.
- **Policy Version**: The version number is incremented by one version each time you change a policy.
• **Modified By:** The user who created or modified the policy.

• **Description:** The policy description.

• **Policy Scope:** The policy scope defines the users and device groups or applications that a policy affects.

• **Timestamp:** The date and time when a particular version of a policy was saved.

Cisco DNA Group-Based Access Control Policy

When you configure group-based access control policies, you need to integrate the Cisco ISE with Cisco DNA Center, as you learned previously in this chapter. In Cisco ISE, you configure the work process setting as “Single Matrix” so that there is only one policy matrix for all devices in the TrustSec network. You will learn more about Cisco TrustSec and Cisco ISE in Chapter 4, “Authentication, Authorization, Accounting (AAA) and Identity Management.”

Depending on your organization’s environment and access requirements, you can segregate your groups into different virtual networks to provide further segmentation.

After Cisco ISE is integrated in Cisco DNA Center, the scalable groups that exist in Cisco ISE are propagated to Cisco DNA Center. If a scalable group that you need does not exist, you can create it in Cisco ISE.

NOTE You can access Cisco ISE through the Cisco DNA Center interface to create scalable groups. After you have added a scalable group in Cisco ISE, it is synchronized with the Cisco DNA Center database so that you can use it in an access control policy. You cannot edit or delete scalable groups from Cisco DNA Center; you need to perform these tasks from Cisco ISE.

Cisco DNA Center has the concept of access control contracts. A contract specifies a set of rules that allow or deny network traffic based on such traffic matching particular protocols or ports. Figure 3-17 shows a new contract being created in Cisco DNA Center to allow SSH access (TCP port 22).

To create a contract, navigate to **Policy > Group-Based Access Control > Access Contract** and click **Add Contract**. The dialog box shown in Figure 3-17 will be displayed.

Figure 3-18 shows an example of how to create a group-based access control policy.

In Figure 3-18, an access control policy named **omar_policy_1** is configured to **deny** traffic from all users and related devices in the group called **Guests** to any user or device in the **Finance** group.
Figure 3-17 Adding a Cisco DNA Center Contract

Figure 3-18 Adding a Cisco DNA Center Group-Based Access Control Policy
Cisco DNA IP-Based Access Control Policy

You can also create IP-based access control policies in Cisco DNA Center. To create IP-based access control policies, navigate to Policy > IP Based Access Control > IP Based Access Control Policies, as shown in Figure 3-19.

![Figure 3-19 Adding a Cisco DNA Center IP-Based Access Control Policy](image)

In the example shown in Figure 3-19, a policy is configured to permit Omar’s PC to communicate with h4cker.org.

NOTE
An IP network group named h4cker_website is already configured. To configure IP network groups, navigate to Policy > IP Based Access Control > IP Network Groups. These IP network groups can also be automatically populated from Cisco ISE.

You can also associate these policies to specific wireless SSIDs. The corp-net SSID is associated to the policy entry in Figure 3-19.

Cisco DNA Application Policies

Application policies can be configured in Cisco DNA Center to provide Quality of Service (QoS) capabilities. The following are the Application Policy components you can configure in Cisco DNA Center:

- Applications
- Application sets
Applications in Cisco DNA Center are the software programs or network signaling protocols that are being used in your network.

NOTE Cisco DNA Center supports all of the applications in the Cisco Next Generation Network-Based Application Recognition (NBAR2) library.

Applications can be grouped into logical groups called *application sets*. These application sets can be assigned a business relevance within a policy.

You can also map applications to industry standard-based traffic classes, as defined in RFC 4594.

Cisco DNA Traffic Copy Policy

You can also use an Encapsulated Remote Switched Port Analyzer (ERSPAN) configuration in Cisco DNA Center so that the IP traffic flow between two entities is copied to a given destination for monitoring or troubleshooting. In order for you to configure ERSPAN using Cisco DNA Center, you need to create a traffic copy policy that defines the source and destination of the traffic flow you want to copy. To configure a traffic copy policy, navigate to **Policy > Traffic Copy > Traffic Copy Policies**, as shown in Figure 3-20.

![Figure 3-20 Adding a Traffic Copy Policy](image)

You can also define a traffic copy contract that specifies the device and interface where the copy of the traffic is sent.
Cisco DNA Center Assurance Solution

The Cisco DNA Center Assurance solution allows you to get contextual visibility into network functions with historical, real-time, and predictive insights across users, devices, applications, and the network. The goal is to provide automation capabilities to reduce the time spent on network troubleshooting.

Figure 3-21 shows the Cisco DNA Center Assurance Overall Health dashboard.

![The Cisco DNA Center Assurance Overall Health Dashboard](image)

Figure 3-21 The Cisco DNA Center Assurance Overall Health Dashboard

The Cisco DNA Center Assurance solution allows you to investigate different networkwide (global) issues, as shown in Figure 3-22.

The Cisco DNA Center Assurance solution also allows you to configure sensors to test the health of wireless networks. A wireless network includes access point (AP) radios, WLAN configurations, and wireless network services. Sensors can be dedicated or on-demand sensors. A dedicated sensor is when an AP is converted into a sensor, and it stays in sensor mode (is not used by wireless clients) unless it is manually converted back into AP mode. An on-demand sensor is when an AP is temporarily converted into a sensor to run tests. After the tests are complete, the sensor goes back to AP mode. Figure 3-23 shows the Wireless Sensor dashboard in Cisco DNA Center.
Figure 3-22 The Cisco DNA Center Assurance Global Issues Dashboard

Figure 3-23 The Cisco DNA Center Assurance Wireless Sensor Dashboard
Cisco DNA Center APIs

Cisco DNA Center APIs

One of the key benefits of the Cisco DNA Center is the comprehensive available APIs (aka Intent APIs). The Intent APIs are northbound REST APIs that expose specific capabilities of the Cisco DNA Center platform. These APIs provide policy-based abstraction of business intent, allowing you to focus on an outcome to achieve instead of struggling with the mechanisms that implement that outcome. The APIs conform to the REST API architectural style and are simple, extensible, and secure to use.

Cisco DNA Center also has several integration APIs. These integration capabilities are part of westbound interfaces. Cisco DNA Center also allows administrators to manage their non-Cisco devices. Multivendor support comes to Cisco DNA Center through the use of an SDK that can be used to create device packages for third-party devices. A device package enables Cisco DNA Center to communicate with third-party devices by mapping Cisco DNA Center features to their southbound protocols.

TIP Cisco has very comprehensive documentation and tutorials about the Cisco DNA Center APIs at DevNet (https://developer.cisco.com/dnacenter).

Cisco DNA Center also has several events and notifications services that allow you to capture and forward Cisco DNA Assurance and Automation (SWIM) events to third-party applications via a webhook URL.

All Cisco DNA Center APIs conform to the REST API architectural styles.

NOTE A REST endpoint accepts and returns HTTPS messages that contain JavaScript Object Notation (JSON) documents. You can use any programming language to generate the messages and the JSON documents that contain the API methods. These APIs are governed by the Cisco DNA Center Role-Based Access Control (RBAC) rules and as a security measure require the user to authenticate successfully prior to using the API.

You can view information about all the Cisco DNA Center APIs by clicking the Platform tab and navigating to Developer Toolkit > APIs, as shown in Figure 3-24.

Figure 3-25 shows an example of the detailed API documentation within Cisco DNA Center.

TIP All REST requests in Cisco DNA Center require authentication. The Authentication API generates a security token that encapsulates the privileges of an authenticated REST caller. All requested operations are authorized by Cisco DNA Center according to the access privileges associated with the security token that is sent in the request.

Cisco is always expanding the capabilities of the Cisco DNA Center APIs. Please study and refer to the following API documentation and tutorials for the most up-to-date capabilities: https://developer.cisco.com/docs/dna-center and https://developer.cisco.com/site/dna-center-rest-api.
Chapter 3: Software-Defined Networking Security and Network Programmability

Figure 3-24 The Cisco DNA Center APIs and Developer Toolkit

Figure 3-25 API Developer Toolkit Documentation
Cisco DNA Security Solution

The Cisco DNA Security solution supports several other security products and operations that allow you to detect and contain cybersecurity threats. One of the components of the Cisco DNA Security solution is the Encrypted Traffic Analytics (ETA) solution. Cisco ETA allows you to detect security threats in encrypted traffic without decrypting the packets. It is able to do this by using machine learning and other capabilities. To use Encrypted Traffic Analytics, you need one of the following network devices along with Cisco Stealthwatch Enterprise:

- Catalyst 9000 switches
- ASR 1000 Series routers
- ISR 4000 Series routers
- CSR 1000V Series virtual routers
- ISR 1000 Series routers
- Catalyst 9800 Series wireless controllers

Cisco Stealthwatch provides network visibility and security analytics to rapidly detect and contain threats. You will learn more about the Cisco Stealthwatch solution in Chapter 5, “Network Visibility and Segmentation.”

As you learned in previous sections of this chapter, the Cisco TrustSec solution and Cisco ISE enable you to control networkwide access, enforce security policies, and help meet compliance requirements.

Cisco DNA Multivendor Support

Cisco DNA Center now allows customers to manage their non-Cisco devices. Multivendor support comes to Cisco DNA Center through the use of an SDK that can be used to create device packages for third-party devices. A device package enables Cisco DNA Center to communicate with third-party devices by mapping Cisco DNA Center features to their southbound protocols. Multivendor support capabilities are based on southbound interfaces. These interfaces interact directly with network devices by means of CLI, SNMP, or NETCONF.

NOTE Southbound interfaces are not exposed to the consumer. Instead, the consumer uses Intent APIs, which abstract the underlying complexity of the traditional network. The user of Intent APIs need not be concerned with the particular protocols that the southbound interfaces use to implement network intent on devices that Cisco DNA Center supports.

Introduction to Network Programmability

As you were able to see in previous sections of this chapter, learning to code and work with programmable infrastructures is very important in today’s environment. You saw the value of using APIs. Whether you have configured large networks in the past or are just getting started, you know that this probably involved a lot of clicking, typing, copying-and-pasting, and many repetitive tasks. Nowadays, modern APIs enable you to complete powerful tasks, reduce all the repetitive work, and save time.
Using APIs, you can make requests like the ones shown in Figure 3-26 in a very simple way.

| Get the status for interface X |
| Get the last-change time for interface X |
| Shutdown interface X |

Figure 3-26 Using Network Infrastructure Device APIs

Modern Programming Languages and Tools

Modern programming languages like JavaScript, Python, Go, Swift, and others are more flexible and easier to learn than their predecessors. You might wonder what programming language you should learn first. Python is one of the programming languages recommended to learn first—not only for network programmability, but for many other scenarios.

TIP Many different sites allow you to get started with Python. The following are several great resources to learn Python:

- Learn Python dot org: https://www.learnpython.org
- W3 Schools Python tutorials: https://www.w3schools.com/python/
- The Python Tutorial: https://docs.python.org/3/tutorial/

Combining programming capabilities with developer tools like Git (GitHub or GitLab repositories), package management systems, virtual environments, and integrated development environments (IDEs) allows you to create your own set of powerful tools and workflows.

Another amazing thing is the power of code reuse and online communities. In the past, when you wanted to create some program, you often had to start “from scratch.” For example, if you wanted to just make an HTTPS web request, you had to create code to open a TCP connection over port 443, perform the TLS negotiation, exchange and validate certificates, and format and interpret HTTP requests and responses.

Nowadays, you can just use open source software in GitHub or simply use packages such as the Python requests package, as shown in Figure 3-27.

In Figure 3-27, the Python package called `requests` is installed using the package manager for Python called `pip` (https://pypi.org/project/pip). The requests library allows you to make HTTP/HTTPS requests in Python very easily.

Now that you have the requests package installed, you can start making HTTP requests, as shown in Figure 3-28.
Figure 3-27 *Installing the Python Requests Package Using pip*

Figure 3-28 *Using the Python Requests Package*

In Figure 3-28, the interactive Python shell (interpreter) is used to use (import) the requests package and send an HTTP GET request to the website at https://h4cker.org. The HTTP GET request is successful and the 200 message/response is shown.
Additional information about the Python interpreter can be found at https://docs.python.org/3/tutorial/interpreter.html and https://www.python-course.eu/python3_interactive.php.

TIP The W3 schools website has a very good explanation of the HTTP status code messages at https://www.w3schools.com/tags/ref_httpmessages.asp.

The HTTP status code messages can be in the following ranges:

- Messages in the 100 range are informational.
- Messages in the 200 range are related to successful transactions.
- Messages in the 300 range are related to HTTP redirections.
- Messages in the 400 range are related to client errors.
- Messages in the 500 range are related to server errors.

When HTTP servers and browsers communicate with each other, they perform interactions based on headers as well as body content. The HTTP Request has the following structure:

1. The METHOD, which in this example is an HTTP GET. However, the HTTP methods can be the following:
 - GET: Retrieves information from the server.
 - HEAD: Basically, this is the same as a GET, but it returns only HTTP headers and no document body.
 - POST: Sends data to the server (typically using HTML forms, API requests, and the like).
 - TRACE: Does a message loopback test along the path to the target resource.
 - PUT: Uploads a representation of the specified URI.
 - DELETE: Deletes the specified resource.
 - OPTIONS: Returns the HTTP methods that the server supports.
 - CONNECT: Converts the request connection to a transparent TCP/IP tunnel.
2. The URI and the path-to-resource field represent the path portion of the requested URL.
3. The request version-number field specifies the version of HTTP used by the client.
4. The user agent is Chrome in this example, and it was used to access the website. In the packet capture, you see the following:
   ```
   User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_4)
   AppleWebKit/537.36 (KHTML, like Gecko) Chrome/66.0.3359.181
   Safari/537.36\r\n.
   ```
5. Next, you see several other fields like accept, accept-language, accept encoding, and others.
6. The server, after receiving this request, generates a response.
7. The server response has a three-digit status code and a brief human-readable explanation of the status code. Then below you see the text data (which is the HTML code coming back from the server and displaying the website contents).
The requests Python package is used often to interact with APIs. You can obtain more information about the requests Python package at https://realpython.com/python-requests and https://developer.cisco.com/learning/lab/intro-python-part1/step/1.

DevNet

DevNet is a platform created by Cisco that has numerous resources for network and application developers. DevNet is an amazing resource that includes many tutorials, free video courses, sandboxes, learning paths, and sample code to interact with many APIs. You can access DevNet at developer.cisco.com.

If you are new to programming and network programmability, you can take advantage of the following DevNet tutorials and learning paths:

- Introduction to Coding and APIs: https://developer.cisco.com/startnow
- DevNet GitHub Repositories: https://github.com/CiscoDevNet
- DevNet Developer Videos: https://developer.cisco.com/video
- DevNet Git Tutorials: https://developer.cisco.com/learning/lab/git-intro/step/1
- DevNet ACI Programmability: https://developer.cisco.com/learning/tracks/aci-programmability
- Build Applications with Cisco: https://developer.cisco.com/learning/tracks/app-dev

Getting Started with APIs

APIs are used everywhere these days. A large number of modern applications use some type of APIs because they make access available to other systems to interact with the application. There are few methods or technologies behind modern APIs:

- **Simple Object Access Protocol (SOAP):** SOAP is a standards-based web services access protocol that was originally developed by Microsoft and has been used by numerous legacy applications for many years. SOAP exclusively uses XML to provide API services. XML-based specifications are governed by XML Schema Definition (XSD) documents. SOAP was originally created to replace older solutions such as the Distributed Component Object Model (DCOM) and Common Object Request Broker Architecture (CORBA). You can find the latest SOAP specifications at https://www.w3.org/TR/soap.
Representational State Transfer (REST): REST is an API standard that is easier to use than SOAP. It uses JSON instead of XML, and it uses standards like Swagger and the OpenAPI Specification (https://www.openapis.org) for ease of documentation and to help with adoption.

GraphQL and queryable APIs: This is another query language for APIs that provides many developer tools. GraphQL is now used for many mobile applications and online dashboards. Many languages support GraphQL. You can learn more about GraphQL at https://graphql.org/code.

NOTE SOAP and REST share similarities over the HTTP protocol. SOAP limits itself to a stricter set of API messaging patterns than REST.

APIs often provide a roadmap describing the underlying implementation of an application. API documentation can provide a great level of detail that can be very valuable to security professional. These types of documentation include the following:

- **Swagger (OpenAPI):** Swagger is a modern framework of API documentation and is now the basis of the OpenAPI Specification (OAS). Additional information about Swagger can be obtained at https://swagger.io. The OAS specification is available at https://github.com/OAI/OpenAPI-Specification.

- **Web Services Description Language (WSDL) documents:** WSDL is an XML-based language that is used to document the functionality of a web service. The WSDL specification can be accessed at https://www.w3.org/TR/wsdl20-primer.

- **Web Application Description Language (WADL) documents:** WADL is also an XML-based language for describing web applications. The WADL specification can be obtained from https://www.w3.org/Submission/wadl.

NOTE Most Cisco products and services use RESTful (REST) APIs.

REST APIs

Let's take a look at a quick example of a REST API. There is a sample API you can use to perform several tests at https://deckofcardsapi.com. In Figure 3-29, the Linux `curl` utility is used to retrieve a “new deck of cards” from the Deck of Cards API. The API “shuffles” a deck of cards for you. The deck ID (deck_id) is wkc12q20frlh in this example.

NOTE The `python -m json.tool` command is used to invoke the json.tool Python module to “pretty print” the JSON output. You can obtain more information about the json.tool Python module at https://docs.python.org/3/library/json.html#module-json.tool.

Suppose that you want to draw a random card from the deck. Since you have the deck ID, you can easily use the command shown in Figure 3-30 to draw a random card.
Figure 3-29 Using curl to Obtain Information from an API

Figure 3-30 Using curl to Obtain Additional Information from the Deck of Cards API
You can see the response (in JSON), including the remaining number of cards and the card that was retrieved (the 9 of spades). Other information, such as the code, suit, value, and images of the card, is also included in the JSON output.

NOTE The DevNet tutorial at the following link shows how to interact with this sample API using Postman: https://developer.cisco.com/learning/lab/hands-on-postman/step/1.

Using Network Device APIs

Earlier in this chapter you learned that there are several API resources available in many Cisco solutions such as the Cisco DNA Center. The following are a few basic available API resources on the Cisco DNA Center Platform (10.1.1.1 is the IP address of the Cisco DNA Center):

- https://10.1.1.1/api/system/v1/auth/token: Used to get and encapsulate user identity and role information as a single value.
- https://10.1.1.1/api/v1/network-device: Used to get the list of first 500 network devices sorted lexicographically based on host name.
- https://10.1.1.1/api/v1/interface: Used to get information about every interface on every network device.
- https://10.1.1.1/api/v1/host: Used to get the name of a host, the ID of the VLAN that the host uses, the IP address of the host, the MAC address of the host, the IP address of the network device to which the host is connected, and more.
- https://10.1.1.1/api/v1/flow-analysis: Used to trace a path between two IP addresses. The function will wait for analysis to complete, and return the results.

There are a dozen (or dozens?) more APIs that you can use and interact with Cisco DNA Center at https://developer.cisco.com/dnacenter. Many other Cisco products include APIs that can be used for integrating third-party applications, obtain information similar to the preceding examples, as well as change the configuration of the device, apply policies, and more. Many of those APIs are also documented in DevNet (developer.cisco.com).

Modern networking devices support programmable capabilities such as NETCONF, RESTCONF, and YANG models. The following sections provide details about these technologies.

YANG Models

YANG is an API contract language used in many networking devices. In other words, you can use YANG to write a specification for what the interface between a client and networking device (server) should be on a particular topic. YANG was originally defined in RFC 6020 (https://tools.ietf.org/html/rfc6020).

TIP A specification written in YANG is referred to as a “YANG module.” A collection (or set) of YANG modules are often called a “YANG model.”

A YANG model typically concentrates on the data that a client processes using standardized operations.
NOTE Keep in mind that in NETCONF and RESTCONF implementations, the YANG controller is the client and the network elements are the server. You will learn more about NETCONF and RESTCONF later in this chapter.

Figure 3-31 shows an example of a network management application (client) interacting with a router (server) using YANG as the API contract.

![Figure 3-31 A Basic YANG Example](image)

A YANG-based server (as shown in Figure 3-31) publishes a set of YANG modules, which taken together form the system's YANG model. The YANG modules specify what a client can do. The following are a few examples of what a client can do using different YANG models:

- **Configure**: For example, enabling a routing protocol or a particular interface.
- **Receive notifications**: An example of notifications can be repeated login failures, interface failures, and so on.
- **Monitor status**: For example, retrieving information about CPU and memory utilization, packet counters, and so on.
- **Invoke actions**: For instance, resetting packet counters, rebooting the system, and so on.

NOTE The YANG model of a device is often called a “schema” defining the structure and content of messages exchanged between the application and the device.

The YANG language provides flexibility and extensibility capabilities that are not present in other model languages. When you create new YANG modules, you can leverage the data hierarchies defined in other modules. YANG also permits new statements to be defined, allowing the language itself to be expanded in a consistent way.

NETCONF

NETCONF is defined in RFCs 6241 and 6242. NETCONF was created to overcome the challenges in legacy Simple Network Management Protocol (SNMP) implementations.

A NETCONF client typically has the role of a network management application. The NETCONF server is a managed network device (router, switch, and so on). You can also have intermediate systems (often called “controllers”) that control a particular aspect or domain. Controllers can act as a server to its managers and as a client to its networking devices, as shown in Figure 3-32.

In Figure 3-32, a node called a “Manager” manages a NETCONF server (router) and two “Controllers,” which are both a server for the Manager and a client for the other network devices (routers).

NOTE NETCONF was created before YANG. Other languages were used for NETCONF operations. On the other hand, YANG is the only language widely used for NETCONF nowadays.

NETCONF sessions established from a NETCONF client to a NETCONF server consist of a sequence of messages. Both parties send a “hello” message when they initially connect. All message exchanges are initiated by the NETCONF client. The hello message includes which NETCONF protocol version(s) the devices support. The server states which optional capabilities it supports.

NETCONF messages are either a remote procedure call (RPC) or an “rpc-reply.” Each RPC is a request from the client to the server to execute a given operation. The NETCONF rpc-reply is sent by the server when it has completed or failed to complete the request. Some NETCONF rpc-replies are short answers to a simple query, or just an OK that the order
was executed. Some are long and may contain the entire device configuration or status. NETCONF rpc-replies to subscriptions consist of a message that technically never ends. Other information of the rpc-reply is generated by the server. A NETCONF rpc-reply may also be a NETCONF rpc-error, indicating that the requested operation failed.

NETCONF messages are encoded in an XML-based structure defined by the NETCONF standard. The NETCONF communication is done over Secure Shell (SSH), but using a default TCP port 830. This can be configured to a different port.

SSH supports a subsystem concept. NETCONF has its own subsystem: netconf. Figure 3-33 shows how you can connect to a networking device (in this case, a CSR-1000v router configured with the hostname `ios-xe-mgmt.cisco.com`). The username of the router is `root`. You are also asked to provide a password. The router is configured for NETCONF over TCP port 10000.

![Figure 3-33](image.png)

Figure 3-33 Using the NETCONF SSH Subsystem

TIP DevNet has several sandboxes where you can practice these concepts and more at https://devnetsandbox.cisco.com.

An open source Python library for NETCONF clients called ncclient is available on GitHub at https://github.com/ncclient/ncclient. You can install it using Python pip, as shown here:

```
pip install ncclient
```

There are several sample scripts at the DevNet GitHub repositories that can help you get started at https://github.com/CiscoDevNet/python_code_samples_network.

Figure 3-34 shows how to use a Python script that leverages ncclient to interact with the router (`ios-xe-mgmt.cisco.com`).
Chapter 3: Software-Defined Networking Security and Network Programmability

Figure 3-34 Using Python to Obtain the Entire Configuration of a Network Device

TIP You can obtain NC-get-config.py from https://github.com/CiscoDevNet/python_code_samples_network/tree/master/NC-get-config.

RESTCONF

You already learned that REST is a type of modern API. Many network administrators wanted to have the capabilities of NETCONF over “REST.” This is why a REST-based variant of NETCONF was created. RESTCONF is now supported in many networking devices in the industry.

RESTCONF is defined in RFC 8040 and it follows the REST principles. However, not all REST-based APIs are compatible or even comparable to RESTCONF.

The RESTCONF interface is built around a small number of standardized requests (GET, PUT, POST, PATCH, and DELETE). Several of the REST principles are similar to NETCONF:

- The client-server model
- The layered system principle
- The first two uniform interface principles

One of the differences between RESTCONF and NETCONF is the stateless server principle. NETCONF is based on clients establishing a session to the server (which is not stateless). NETCONF clients frequently connect and then manipulate the candidate datastore with a number of edit-config operations. The NETCONF clients may also send a validation call to NETCONF servers. This is different in RESTCONF.
RESTCONF requires the server to keep some client state. Any request the RESTCONF client sends is acted upon by the server immediately. You cannot send any transactions that span multiple RESTCONF messages. Subsequently, some of the key features of NETCONF (including networkwide transactions) are not possible in RESTCONF.

Let's take a look at a quick example of using RESTCONF. Example 3-1 shows a Python script that is used to obtain the details of all interfaces in a networking device using RESTCONF.

Example 3-1 Python Script to Retrieve Interface Details from a Networking Device Using RESTCONF

```python
#!/usr/bin/python
import requests
import sys

# disable warnings from SSL/TLS certificates
requests.packages.urllib3.disable_warnings()

# the IP address or hostname of the networking device
HOST = 'ios-xe-mgmt.cisco.com'

# use your user credentials to access the networking device
USER = 'root'
PASS = 'supersecretpassword'

# create a main() method
def main():
    """Main method that retrieves the interface details from a networking device via RESTCONF."""

    # RESTCONF url of the networking device
    url="https://{h}:9443/restconf/data/ietf-interfaces:interfaces".format(h=HOST)

    # RESTCONF media types for REST API headers
    headers = {'Content-Type': 'application/yang-data+json', 'Accept': 'application/yang-data+json'}

    # this statement performs a GET on the specified url
    response = requests.get(url, auth=(USER, PASS), headers=headers, verify=False)

    # print the json that is returned
    print(response.text)

if __name__ == '__main__':
    sys.exit(main())
```
Figure 3-35 shows the output of the Python script, including the information of all the interfaces in that networking device (ios-xe-mgmt.cisco.com).

![Figure 3-35](image)

Figure 3-35 Using Python to Obtain Information from a Network Device Using RESTCONF

OpenConfig and gNMI

The OpenConfig consortium (https://github.com/openconfig) is a collaborative effort to provide vendor-neutral data models (in YANG) for network devices. OpenConfig uses the gRPC Network Management Interface (gNMI). The following GitHub repository includes detailed information about gNMI, as well as sample code (https://github.com/openconfig/gnmi).

NOTE The gRPC specification (https://grpc.io) is a modern Remote Procedure Call (RPC) framework. RPC allows a client to invoke operations (also called “procedures”) on a server. RPC includes an interface description language (IDL) used to state what procedures the server supports (including the input and output data from them). RPC also uses client libraries to call upon those procedures (supported in different programming languages). RPC uses a serialization, marshalling, and transport mechanism for the messages (generally called an RPC protocol).
The gNMI protocol is similar to NETCONF and RESTCONF. gNMI uses YANG models, but it can be used with other interface description languages (IDLs). The OpenConfig consortium defined several standard YANG models to go with the protocols. These YANG models describe many essential networking features such as interface configuration, routing protocols, QoS, Wi-Fi configurations, and more.

Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the Introduction, you have a couple of choices for exam preparation: the exercises here, Chapter 12, “Final Preparation,” and the exam simulation questions in the Pearson Test Prep Software Online.

Review All Key Topics

Review the most important topics in this chapter, noted with the Key Topic icon in the outer margin of the page. Table 3-2 lists these key topics and the page numbers on which each is found.

Table 3-2 Key Topics for Chapter 3

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
<td>Traditional Networking Planes</td>
<td>109</td>
</tr>
<tr>
<td>Section</td>
<td>So What’s Different with SDN?</td>
<td>110</td>
</tr>
<tr>
<td>Section</td>
<td>Introduction to the Cisco ACI Solution</td>
<td>110</td>
</tr>
<tr>
<td>List</td>
<td>Understand the functions of the APIC</td>
<td>112</td>
</tr>
<tr>
<td>Section</td>
<td>VXLAN and Network Overlays</td>
<td>112</td>
</tr>
<tr>
<td>Paragraph</td>
<td>Understand what is micro-segmentation</td>
<td>115</td>
</tr>
<tr>
<td>Paragraph</td>
<td>Understand “east-west” traffic and “north-south” traffic</td>
<td>115</td>
</tr>
<tr>
<td>Section</td>
<td>Open Source Initiatives</td>
<td>117</td>
</tr>
<tr>
<td>Paragraph</td>
<td>Understand northbound and southbound APIs</td>
<td>118</td>
</tr>
<tr>
<td>Section</td>
<td>More About Network Function Virtualization</td>
<td>118</td>
</tr>
<tr>
<td>Section</td>
<td>Cisco DNA Center APIs</td>
<td>130</td>
</tr>
<tr>
<td>Tip</td>
<td>Cisco DNA Center APIs in DevNet</td>
<td>130</td>
</tr>
<tr>
<td>Section</td>
<td>Cisco DNA Security Solution</td>
<td>132</td>
</tr>
<tr>
<td>Section</td>
<td>Modern Programming Languages and Tools</td>
<td>133</td>
</tr>
<tr>
<td>Section</td>
<td>DevNet</td>
<td>136</td>
</tr>
<tr>
<td>Section</td>
<td>Getting Started with APIs</td>
<td>136</td>
</tr>
<tr>
<td>Section</td>
<td>REST APIs</td>
<td>137</td>
</tr>
<tr>
<td>Section</td>
<td>YANG Models</td>
<td>139</td>
</tr>
<tr>
<td>Section</td>
<td>NETCONF</td>
<td>141</td>
</tr>
<tr>
<td>Section</td>
<td>RESTCONF</td>
<td>143</td>
</tr>
</tbody>
</table>
Define Key Terms

Define the following key terms from this chapter and check your answers in the glossary:

Representational State Transfer (REST), Simple Object Access Protocol (SOAP), Contiv, Network Functions Virtualization (NFV), Neutron, Open vSwitch, OpenDaylight (ODL), YANG, NETCONF, RESTCONF

Review Questions

1. The RESTCONF interface is built around a small number of standardized requests. Which of the following are requests supported by RESTCONF?
 a. GET
 b. PUT
 c. PATCH
 d. All of these answers are correct.

2. NETCONF messages are encoded in a(n) ________ structure defined by the NETCONF standard.
 a. JSON
 b. XML
 c. OWASP
 d. RESTCONF

3. Which of the following is a Cisco resource where you can learn about network programmability and obtain sample code?
 a. APIC
 b. ACI
 c. DevNet
 d. NETCONF

4. A YANG-based server publishes a set of YANG modules, which taken together form the system's ________.
 a. YANG model
 b. NETCONF model
 c. RESTCONF model
 d. gRPC model

5. Which of the following HTTP methods sends data to the server typically used in HTML forms and API requests?
 a. POST
 b. GET
 c. TRACE
 d. PUT
6. Which of the following is a solution that allows you to detect security threats in encrypted traffic without decrypting the packets?
 a. ETA
 b. ESA
 c. WSA
 d. None of these answers is correct.

7. Which of the following is an open source project that allows you to deploy micro-segmentation policy-based services in container environments?
 a. OVS
 b. Contiv
 c. ODL
 d. All of the above

8. NFV nodes such as virtual routers and firewalls need which of the following components as an underlying infrastructure?
 a. A hypervisor
 b. A virtual forwarder to connect individual instances
 c. A network controller
 d. All of these answers are correct.

9. There have been multiple IP tunneling mechanisms introduced throughout the years. Which of the following are examples of IP tunneling mechanisms?
 a. VXLAN
 b. SST
 c. NVGRE
 d. All of these answers are correct.

10. Which of the following is true about SDN?
 a. SDN provides numerous benefits in the area of management plane. These benefits are in both physical switches and virtual switches.
 b. SDN changed a few things in the management, control, and data planes. However, the big change was in the control and data planes in software-based switches and routers (including virtual switches inside of hypervisors).
 c. SDN is now widely adopted in data centers.
 d. All of these answers are correct.
Numbers

- 1-to-1 signatures, 454
- 6LoWPAN (IPv6 over Wireless Personal Area Networks), 54
- 802.1D. See STP
- 802.1X, 178–180, 187, 324
 - active policy enforcement, 295–298
 - authentication
 - configurations, 205–211
 - failures, 203
- C3PL, 204–205
- monitor mode deployments, 294–295
- Multi-Auth mode, 203
- Open Authentication, 204
- port security, 203

A

- AAA (Authentication, Authorization, Accounting), 154–155
 - 802.1X, 178–180
 - aaa-new model command, 358
 - accounting, 169–170
 - ACL, 170–172
 - ACM, 171–172
 - authentication, 155–156, 158–159
 - by authentication, 157–158
 - BeyondCorp, 163
 - centralized (linked) identities, 165–166
- Duo Security, 159–163
- EAP, 179
- EAPoL, 179
- federated identities, 165–166
- Flex-Auth, 203
- guest access, 188
- ISE authorization rules, 187–188
- by knowledge, 155–156
- Multi-Auth mode (802.1X), 203
- multifactor authentication, 159, 160–161, 166
- Open Authentication, 204
- passwords, 156–157
- by possession, 157–158
- RADIUS, 173–176, 179, 187
- SAML, 159, 165
- single-factor authentication, 159
- web authentication, 187–188
- zero-trust, 161–167

Authorization

- ABAC, 169
- ACL, 167
- CoA, 193–196
- DAC, 168
- implicit deny, 168
- MAB, 188, 203
- MAC, 168
- need to know, 168
- RBAC, 168–169
- rule-based access control, 169
- security labels, 167
capability tables, 171
CLI, troubleshooting AAA for Cisco routers, 353–356
content-dependent access control, 172
countext-dependent access control, 172
dACL, 181
Diameter, 176–179
digital certificates, 100
firewalls, 180
infrastructure access controls, 170
IPv4, 373
IPv6, 373
management plane (NFP), 335, 339
method lists, 343, 349–353
network ACL, 180
principle of least privilege, 155
RADIUS, 173–176, 179, 202–205
separation of duties, 155
SGACL, 181
TACACS+, 174–176
access configuration, 196–199, 200–202
debugging, 199–200
test aaa command, 356
user authentication, 342, 349–353
VLAN ACL, 181
ABAC (Attribute-Based Access Control), 169
access
cloud computing, 49
Duo Access Gateways, 160
group-based access control policy (DNA), 124
ip-based access control policy (DNA), 124
physical access, Trojans, 21
port-based access lists, IPv6, 377
router access authentication, 342–343
SOAP, 136, 137
traffic copy policy (DNA), 127
unauthorized access, IPv4/IPv6, 374
zone access, IPv4/IPv6, 373
access control management, 154, 427
ABAC, 169
access control mechanisms, 170–172
ACE, 427, 432, 435
ACL, 167, 170–172, 435–436
ASA and, 427–433
characteristics of, 429–430
EtherType ACL, 431
extended ACL, 430–431
global ACL, 429
HTTP traffic, 432–433
interface ACL, 429
network ACL, 180
object grouping, 435–436
SMTP traffic, 432–433
standard ACL, 430
time-based ACL, 436–437
types of, 424–431
Webtype ACL, 431, 523–524
ACM, 171–172
capability tables, 171
content-dependent access control, 172
countext-dependent access control, 172
DAC, 47, 168
dACL, 181
factors, 47
FTD and access control policies, 443–445
guest access, 188
infrastructure access controls, 170
MAC, 47, 168
network ACL, 180
privileges, 45–46
process of, 46
RADIUS, authentication configuration, 202–205
RBAC, 47, 168–169
rule-based access control, 169
SGACL, 181
TACACS+, 174–176

 access configuration, 196–199, 200–202
 debugging, 199–200
TrustSec, 190–192
 ACI integration, 298–301
 active policy enforcement, 295–298
 monitor mode deployments, 294–295
 SGT, 188
VLAN ACL, 181
access-group command, 435
access-list command, 436
accounting, 169–170
ACE (Access Control Entries), 427, 432, 435
ACI (Application Centric Infrastructure), 110–112
 micro-segmentation, 289–290
 TrustSec integration, 298–301
ACK packets, 25
AckCmd, 25
acknowledgements (TCP), 25
ACL (Access Control Lists), 167, 170–172, 181, 324, 435–436
ACE, 427, 432, 435
ASA and, 427–433
characteristics of, 429–430
CoPP, permitted ACL traffic, 381
dACL, 181
EtherType ACL, 431
extended ACL, 430–431
global ACL, 429
HTTP traffic, 432–433
interface ACL, 429
IPv6, 377–378
logging, 380
network ACL, 180
object grouping, 435–436
SGACL, 181
SMTP traffic, 432–433
standard ACL, 430
time-based ACL, 436–437
types of, 424–431
VLAN ACL, 181
Webtype ACL, 431, 523–524
ACM (Access Control Matrix), 171–172
address proxying, IPS/IDS, 58
address spoofing, IPS/IDS, 58
ADM (Application Dependency Mapping), 594
admin-context command, 415
administrator views, 344
advertising, spyware, 26
AFL (American Fuzzy Lop), 573
agile development methodology (cloud computing), 553–556, 559
algorithms. See also ciphers
asymmetric algorithms, 83–84
cryptographic algorithms, 470
symmetric encryption algorithms, 82–83
 thumbprint algorithms
digital certificates, 98
 root certificates, 96
all-nodes multicast addresses, IPv6, 368
all-routers multicast addresses, 368
AMP (Advanced Malware Protection), 452, 582
1-to-1 signatures, 454
AMP for Endpoints, 637, 638–639
 AnyConnect AMP Enabler, 650
Application Control, 644–645
 connectors, 648
Ethos, 650
exclusion sets, 645–647
IP blacklists/whitelists, 643–644
Outbreak Control, 639–643
 policies, 648–649
 reports, 651–654
Spero, 650
TETRA, 650
AMP for Networks, 452
AnyConnect AMP Enabler, 650
architecture of, 637
cloud computing, 452–454
Ethos, 454
features of, 452
hashes, 85
IOC, 454, 455
retrospection, 456–457
Spero, 454
Threat Grid, 452–453, 455–456
amplification attacks, availability
 (CIA triad), 45
annotations, STP, 318–320
anomaly detection, NetFlow, 229–231
antidetection routines, 18
anycast addresses, IPv6, 368–369
AnyConnect, 193
 AMP Enabler, 650
 posture assessments, 192–193
Secure Mobility, 478–479
 DTLS, 529
split tunneling, 528–529
VPN, 527–529
stealth AnyConnect, 193
Apache Mesos, 560
API (Application Programming Interface), 38
attacks, cloud computing, 51
DNAC API, 130, 132
documentation, 39
GraphQL, 38
IoT, 53
network programmability,
 132–133, 136
 GraphQL, 137
 network device API, 139
 REST, 137–139
 SOAP, 136, 137
 Swagger (OpenAPI), 137
 WADL documents, 137
 WSDL documents, 137
 YANG models, 139–140
northbound API, 118
OpenAPI, Swagger, 39
REST, 38
RESTful API, cloud computing, 53
SOAP, 38
southbound API, 118
Swagger, 39
WADL, 39
WSDL, 39
APIC (Application Policy Infrastructure Controller), 110–112
AppDynamics Cloud Monitoring,
 590–593
application layer
 attacks, IPv4/IPv6, 373–374
tunneling, 25
applications
 access, SSL VPN, 524–525
 ADM, 594
 application sets, 127
 ASA application inspection, 433–434
 assurance tools/methods, 572–573
 DAST, 572–573
 impersonated mobile apps, Trojans, 21
 mapping, RFC 4594, 127
 network segmentation, 288–289
 policies (DNA), 126–127
 recognition, AVC, 241–242
 SAST, 572–573
 tracking with NetFlow, 270–271
 vulnerabilities, 9
 APT (Advanced Persistent Threats), 20
 ARP (Address Resolution Protocol)
 cache poisoning, 330–331
 DAI, 330–332
 requests, IPv6, 380
 spoofing
 attacks, 330
 data plane (NFP), 338
 ASA (Adaptive Security Appliance), 396
 ACL, 427–433, 435–436
 object grouping, 435–436
 time-based ACL, 436–437
 application inspection, 433–434
 ASAv, 396
 assigning
 inside/outside networks, 412
 interface addresses, 412
 IP addresses, 412
 security levels, 412, 432
 CDO, 408–410
 DHCP and, 412
 failover (high-availability) mode, 423–425
 FirePOWER module, 396–397, 401–404
 firewalls, 187
 ICMP filtering, 437
 internal to global address translation, 438
 MMTF, 416
 MPF, 433
 NAT, 437–438, 443
 auto-NAT, 443
 dynamic NAT, 438, 441–442
 identity NAT, 442
 manual NAT, 443
 policy NAT, 442
 static NAT, 438, 441
 support, 396
 TCP Intercept, 443
 PAT, 440
 dynamic PAT, 442
 policy PAT, 442
 static PAT, 441
 port redirection, 441
 remote-access VPN configurations, 511–512
 attributes, 518
 client-based remote access SSL
 VPN, 524–526
 clientless remote access SSL
 VPN, 514–515
 design considerations, 515–516
 group policy, 513
 IP pools, 513
 IPsec, 512–514
 NAT exemptions, 514
 policy inheritance model, 518
 tunnel groups, 513–514
routed firewalls, 413
site-to-site VPN configurations, 502–503
 bypass NAT, 508–509
 crypto maps, 506–508
 fragmentation, 510–511
 IPsec policies, 505–506
 ISAKMP, 503–504
 management access, 510
 NAT-T, 510
 OSPF over IPsec, 509
 PFS, 509
 traffic-filtering, 503–508
 tunnel default gateways, 510
 tunnel groups, 504–505
SMFT, 414–416
TCP Intercept, 443
traffic-filtering, 396–397
 to-the-box traffic filtering, 434–435
 through-the-box traffic filtering, 431
transparent firewalls, 413–414
MMTF, 416
SMTF, 414–416
WCCP
 ASA configurations, 609–610, 612
 web traffic redirection to WSA, 609–610, 612
ASCII armoring, 39
ASDM, site-to-site VPN ASA firewall configurations, 505
ASLR (Address Space Layout Randomization), 39
assets, defined, 12
Assurance solution, DNAC, 128–129
asymmetric algorithms, 83–84
AsyncOS (Async Operating System), 604
attachments (email), Trojans, 21
auditing, cloud computing, 49
authentication, 155–156
 access control management, 47
 by authentication, 157–158
 authentication attacks, cloud computing, 51
BeyondCorp, 163
CA, 98–99
centralized (linked) identities, 165–166
 by characteristic, 158–159
Duo Security, 159–163
EAP, 179
EAPoL, 179
federated identities, 165–166
Flex-Auth, 203
guest access, 188
HMAC, 86
keychain authentication (BGP), 387
 by knowledge, 155–156
management plane (NFP), 339
MD5
 BGP, 386–387
 EIGRP authentication, 384–385
 OSPF authentication, 383–384
 RIP, 385–386
memory cards, 158
method lists, 343, 349–353
Multi-Auth mode (802.1X), 203
multifactor authentication, 15–161, 166, 341
multilayer authentication, 47
NTPv3 authentication keys, 363–364
Open Authentication, 204
OTP, 157–158
out-of-band authentication, 47, 158
passwords, 156–158
by possession, 157–158
RADIUS, 173–176, 179, 187, 196–199
router access authentication, 342–343
routing update authentication
 BGP, 386–387
 RIP, 385–386
SAML, 159, 165
single-factor authentication, 47, 159, 341
smartcards, 158
SMTP, ESA, 623
SSL VPN
 application access, 524–525
 enabling, 522–523
 user authentication, 520–522
 Webtype ACL, 523–524
TACACS+, 196–199, 200–202
user authentication, 342, 349–353
vulnerabilities, 32–33
 credential brute force attacks, 33–34
 cryptographic algorithms, 33
 default credentials, 34
 insecure direct object reference vulnerabilities, 35
 password cracking, 33–34
 rainbow tables, 33–34
 session hijacking, 34
 WEP, 34
web authentication, 187–188
zero-trust, 161–167
authorization
 ABAC, 169
 ACL, 167
 CoA, 193–196
 DAC, 168
 implicit deny, 168
 ISE authorization rules, 187–188
 MAB, 188, 203
 MAC, 168
 need to know, 168
 object capability, 167
 RBAC, 168–169
 rule-based access control, 169
 security labels, 167
auto secure command-line utility, NFP, 334
autoconfiguration, IPv6, 376
auto-NAT, 443
availability (CIA triad), 43–44
 amplification attacks, 45
 buffer overflows, 45
 DDoS attacks, 45
 direct DoS attacks, 44
 DoS attacks, 40–42
 reflected DoS attacks, 45
availability checks, management plane (NFP), 341
AVC (Application Visibility and Control), 241
 application recognition, 241–242
 metrics collection/exportation, 242
AWS (Amazon Web Services)
 CDO, 409–410
 Lambda, 559
backdoors, Trojans, 19
Bad Rabbit, 23
in-band SQL injection, 32
bandwidth
 low-bandwidth attacks, IPS/IDS, 58
 managing, data plane (NFP), 338
BCP (Business Continuity Plans), cloud computing, 50
BGP (Border Gateway Protocol)
keychain authentication, 387
MD5 authentication, 386–387
routing update authentication, 386–387
BinText, 27
biometric security, 158–159
BIOS infections, 16
black hat hackers, 14
blacklists/whitelists (IP), 643–644
BLE (Bluetooth Low Energy), IoT, 53
blind (inferential) SQL injection, 32
block ciphers, 82
Blueprints (exams), 658
Bluetooth
BLE, IoT, 53
Bluetooth Smart, IoT, 53
malware, 17
bogus IPv6 addresses, filtering, 376
bootsets (secure), creating, 364–365
bot hosts, 230
botnets, 45, 230
BPDU Guard, 324–325
breaches (data)
examples of, 156
IOC, 454, 455
browsers
extensions, 21
man-in-the-browser attacks, 34
Trojans, 21
vulnerabilities, 21
XSS testing, 37
brute force credential attacks, 33–34
buffer overflows, 39, 45
bugs in code, IPv6, 376
business continuity. See BCP
BVI (Bridge Virtual Interface) and FTD, 417–419
C
C3PL (Cisco Common Classification
Policy Language), 204–205
CA (Certificate Authority), 87–88
93–94
authentication, 98–99
commercial CA, 94
cross-certifying CA, 102
digital certificates, 94, 97–98
enrollment, 98–99
hierarchical CA, 101–102
identity certificates, 94, 96–97
root certificates, 95–96
single root CA, 101
subordinate CA, 101
system root CA certificates, 88–89
cables (console), management plane (NFP), 339
caches
NetFlow, 228–229
poisoning (ARP), 330–331
CAM overflow attacks, data plane (NFP), 338
capability tables, 171
CASB (Cloud Access Security Broker), 584
CASE (Context Adaptive Scanning Engine), 582
cat Linux command, 84
catastrophic damage, threats, 12
CD (Continuous Delivery), CI/CD pipelines, 558–559, 572
CDO (Cisco Defense Orchestrator), 408–410
CDP (Cisco Discovery Protocol)
disabling, 327–328
Layer 2 security, 327–328
CEF (Cisco Express Forwarding), 337
cellular connections, IoT, 54
centralized (linked) identities, 165–166
Centri Firewall, 396
CER (Crossover Error Rates), 159
CERT (Computer Emergency Response Teams), 66, 71–72
chain of custody, digital forensics, 59
characteristics, authorization by, 158–159
CI (Continuous Integration), CI/CD pipelines, 558–559, 572
CIA triad, 40
 availability, 43–44
 amplification attacks, 45
 buffer overflows, 45
 DDoS attacks, 45
 direct DoS attacks, 44
 DoS attacks, 40–42
 reflected DoS attacks, 45
 confidentiality, 40–43
 integrity, 42–43
ciphers. See also algorithms
 block ciphers, 82
ciphertext streams, 82
 defined, 80
digit streams, 82
 polyalphabetic method, 81
 stream ciphers, 82
 substitution method, 81
 transposition method, 81
classifying data, cloud computing, 49
CLI (Command-Line Interface),
 troubleshooting AAA for Cisco routers, 353–356
client-based remote access SSL VPN, 522–523
 configurations, 525
group policy, 525–526
tunnel policies, 525–526
clientless SSL VPN
 application access, 524–525
 enabling, 522–523
 remote access SSL VPN, 514–515
 user authentication, 520–522
 Webtype ACL, 523–524
closed-loop functioning, IoT, 51
cloud computing, 47–48, 50
 access, 49
 advantages of, 47
 agile development methodology, 553–556, 559
 AMP, 452–454
 Apache Mesos, 560
 API attacks, 51
 AppDynamics Cloud Monitoring, 590–593
 attacks, 50–51
 auditing, 49
 authentication attacks, 51
 AWS Lambda, 559
 BCP, 50
 CASB, 584
 characteristics of, 48, 551
 CI/CD pipelines, 558–559, 572
 Cloudlock, 584–589
 community clouds, 48, 552
containers, 561
 Apache Mesos, 560
 Docker Swarm, 561
images, 561–565
 Katacoda container deployments, 563
 Kubernetes, 559
 Nomad, 560
 OCI, 561
 orchestration, 559–561
 registries, 561
cloud computing

Contiv, 571
contracts, ending, 50
cryptographic attacks, 50
CSP
 customer/provider cloud security responsibilities, 573–575
 penetration testing, 575–577
 questions to ask, 575–577
customer/provider security responsibilities, 573–575
data classification systems, 49
data separation, 49
DDoS attacks, 50
deployment models, 48
DevOps, 552, 556–557
DevSecOps, 571
 assurance tools/methods, 572–573
 CI/CD pipelines, 572
 OWASP Proactive Controls, 571–572
 tutorials, 571
DNS attacks, 50
Docker
 container images, 562–565
docker images command, 562, 565
docker ps command, 562–563
docker run mypython command, 565
docker search command, 563
Dockerfiles, 564–565
documentation, 565
images, 564–565
legacy rules, 566
Docker Swarm, 561
DR, 50
Duo Security, 167

email security
 AMP, 582
 CASE, 582
 encryption, 583
 ESA, 582
 FED, 583
 Office 365, 583–584
 SPF, 583
 Talos, 582
 WSA, 582
employee training, 49
encryption, 49
hybrid clouds, 48, 552
IaaS, 48, 552
IoT, 53
issues/concerns, 48–50
Kubernetes, 559
 application deployments, 568
 clusters, 565–566, 568–570
 components of, 566
 deployments, 566–567
 displaying nodes, 567
 DNS servers, 570
 GKE, 568
 GUI, 570
 kubectl, 567
 kubectl get nodes command, 567, 570
 kubectl version command, 567
 managing nodes, 568
 minikube start command, 566–567
 proxies, 570
 rules, 566
 starting, 566–567
 Stealthwatch Cloud and, 590
 tutorials, 568
 version verification, 567
long-term viability, 50
man-in-the-middle attacks, 50
micro-segmentation, 570–571
microservices, 570–571
Nomad, 560
PaaS, 48, 552
patch management, 575
private clouds, 48, 552
provider liability, 50
public clouds, 48, 552
regulatory requirements, 49
SaaS, 48, 552
security, 51
security assessments, 575–577
serverless cloud computing, 559
session hijacking, 50
session riding, 50
side-channel attacks, 51
SLA, 49
SP 500–292, 48, 552
SP 800–145, 47–48
SQL injection, 50
Stealthwatch Cloud, 251–256, 590
Tetration, 593–594
 ADM, 594
 connectors, 595
 Forensics feature, 594
 Security Dashboard, 594–595
 Security Score, 595
 Vulnerability Dashboard, 595–596
Umbrella, 167, 577
 architecture of, 577–578
 Investigate, 580–582
 SIG, 578–580
waterfall development methodology, 552–553

WebEx, 167
XSS, 50
clusters, 16, 425–427
CNA (CVE Naming Authorities), 9–10
CoA (Change of Authorization), 193–196
coding, bugs in, 376
collecting data, IoT, 51
collision resistance, 85
command injections, 32
commercial CA, 94
communication (covert), 23–24
 application layer tunneling, 25
 covert channels, 24
 covert storage channel attacks, 23
 covert timing channel attacks, 23
DNS, 25
HTTP, 25
HTTPS, 25
ICMP, 24
IPv6, 24
TCP, 24–25
UDP, 25
community clouds, 48, 552
confidentiality
 CIA triad, 40–43
 disclosure of confidential information, 12–13
configurations
 client-based remote access SSL VPN, 525
 configuration files, security, 364–365
 CoPP, 381–382
 DAI, 331–332
 DHCP snooping, 329–330
 DMVPN
 hub configurations, 487–488
 spoke configurations, 488–489
Flexible NetFlow, 275
 flow exporters, 280–282
 flow monitors, 278–282
 flow records, 276–278
flow exporters, 280–282
flow monitors, 278–282
hub configurations, DMVPN, 487–488
IPv4, flow monitors, 278–280
IPv6, 367
 autoconfiguration, 376
 flow monitors, 278–280
 routing, 370–372
misconfigurations, 9
NetFlow, 269–270
NTP, 363–364
PortFast, 321–322
RADIUS authentication, 202–205
RSTP, 321–322
site-to-site VPN
 ASA firewall configurations, 502–511
 router configurations, 479–502
spoke configurations, DMVPN, 488–489
SSL VPN, 516–518
syslog, 362–363
TACACS+ access, 196–199, 200–202
WCCP
 ASA configurations, 609–610, 612
 switch configurations, 610–612
 web traffic redirection to WSA, 609–610, 612
connectors
 AMP for Endpoints, 648
 Tetration, 595
console cables, management plane (NFP), 339
containers, 561
 Apache Mesos, 560
 Docker Swarm, 561
 images, 561–565
 Katacoda container deployments, 563
 Kubernetes, 559
 Nomad, 560
 OCI, 561
 orchestration, 559–561
 registries, 561
containment/eradication/recovery phase (IRP), 62
content security
 AsyncOS, 604
 ESA, 582, 619
 Content SMA, 624–628
 deployments, 620–621
 DKIM, 623
 DLP, 622–623
 listeners, 621–622
 RAT, 622
 SenderBase, 622
 SMTP authentication/encryption, 623
 SPF, 623
fundamentals of, 603–604
WSA, 582, 604
 Content SMA, 624–628
 DNS, 607
 explicit forward mode, 606–608
 features of, 604–605
 policy configurations, 615–617
 policy-based routing, 612–613
 proxies, 605–606
 reports, 617–619
 security services, 613–614
 SOCKS proxies, 607–608
traffic redirection, 609–610, 612–613
transparent mode, 608–609
WCCP, 608–612, 615
web proxy IP spoofing, 614–615
WPAD, 607
content-dependent access control, 172
Content SMA (Security Management Appliance), 624–628
context-dependent access control, 172
context services (ISE), 184–185
continuity (business). See BCP
Contiv, 120, 571
contracts (cloud computing), ending, 50
control information exchanges (TCP), 24
control plane
NFP, 333–334
best practices, 336–337
CoPP, 336
CPPr, 336–337
minimizing traffic, 379–380
secure routing protocols, 379
security, 336–337
SPD, 337
traditional networks, 109
controllers, SDN, 110
cookies, manipulation attacks, 37–38
coordination, incident response, 64, 72
CoPP (Control Plane Policing), 336, 380–381
ACL, permitted traffic, 381
configurations, 381–382
show policy-map control-plane command, 380
verifying configurations, 382
CORBA (Common Object Request Broker Architecture), 38
covert communication, 23–24
application layer tunneling, 25
covered channels, 24
covered storage channel attacks, 23
covered timing channel attacks, 23
DNS, 25
HTTP, 25
HTTPS, 25
ICMP, 24
IPv6, 24
TCP, 24–25
UDP, 25
CPPr (Control Plane Protection), 336–337, 383
crackers, 13
cracking passwords, 33–34
credentials, authentication-based vulnerabilities
brute force attacks, 33–34
default credentials, 34
credit card data, Trojans, 20
crime (organized), 13
CRL (Certificate Revocation Lists), 98, 100
cross-certifying CA, 102
Cross-Site Request Forgery (XSRF), 37
Cross-Site Scripting (XSS), 32, 35–36
cloud computing, 50
DOM-based attacks, 36
examples of, 36
finding vulnerabilities, 36–37
reflected XSS attacks, 36
stored (persistent) XSS attacks, 36
testing, 37
CRS (Composite Risk Scores), Cloudlock, 589
crypters, malware distribution, 22
crypto maps, 479, 506–508
CryptoDefense, 23

cryptography (cryptology)

- algorithms, 470. See also ciphers
- asymmetric algorithms, 83–84
- authentication-based vulnerabilities, 33
- symmetric encryption algorithms, 82–83

attacks, cloud computing, 50

CA, 87–89, 93–94
- authentication, 98–99
- commercial CA, 94
- digital certificates, 94, 97–98
- enrollment, 98–99
- identity certificates, 94, 96–97
ciphers. See also algorithms
- block ciphers, 82
ciphertext streams, 82
- defined, 80
digit streams, 82
polyalphabetic method, 81
stream ciphers, 82
substitution method, 81
transposition method, 81
defined, 80
DH key exchange protocol, 83–84
digital certificates
- in practice, 100
everoking, 98–100
digital signatures, 86–89, 91–92, 93–94
DSA, 84
ECC, 84
ElGamal asymmetric encryption, 84
hashes, 84–86
IPsec, 90
keys, 81
digital certificates, 97
keyspace, 89

managing, 89
OTP, 81–82
private key pairs, 93
public key pairs, 93
next-generation encryption protocols, 89–90
PKCS, 83, 99
PKI, 87, 93
cross-certifying CA, 102
hierarchical CA, 101–102
single root CA, 101
subordinate CA, 101
topologies, 101–102
private key cryptography, 83, 93
public key cryptography, 83
digital certificates, 97
PKCS, 99
public key pairs, 93
quantum computing, 86
RSA algorithm, 83
SSL, 91
TLS, 91

CryptoLocker, 23

CryptoWall, 23

CSIRT (Computer Security Incident Response Teams), 64–66, 71–72

CSP (Cloud Service Providers)
customer/provider cloud security responsibilities, 573–575
penetration testing, 575–577
questions to ask, 575–577

CSRF. See XSRF

CTA (Cognitive Threat Analytics), 262–268
custody (digital forensics), chain of, 59
custom privileges, 344
customer/provider cloud security responsibilities, 573–575
CVE (Common Vulnerabilities and Exposures), 9–10, 30
CVSS (Common Vulnerability Scoring System), 67–71, 193, 595
cyberattacks, 12
cybersecurity, 6
access control management
DAC, 47
factors, 47
MAC, 47
privileges, 45–46
process of, 46
RBAC, 47
assets, defined, 12
CIA triad, 40
availability, 43–45
confidentiality, 40–43
integrity, 42–43
cloud computing, 50, 51
access, 49
API attacks, 51
attacks, 50–51
auditing, 49
authentication attacks, 51
BCP, 50
contracts, 50
cryptographic attacks, 50
data classification systems, 49
data separation, 49
DDoS attacks, 50
DR, 50
employee training, 49
encryption, 49
issues/concerns, 48–50
long-term viability, 50
man-in-the-middle attacks, 50
provider liability, 50
regulatory requirements, 49
session hijacking, 50
session riding, 50
side-channel attacks, 51
SLA, 49
SQL injection, 50
XSS, 50
covered communication, 23–25
CVE, 9–10
digital forensics, 58–59
exploits, 10–11
FIPS, 7
hardware vulnerabilities
authentication-based vulnerabilities, 32–35
buffer overflows, 39
cookie manipulation attacks, 37–38
CVE, 30
injection vulnerabilities, 30–32
NVD, 30
OWASP Top 10 list, 40
race conditions, 38
ret2libc attacks, 39
unprotected API, 38–39
XSRF, 37
XSS, 35–37
incident response, 55
benefits of, 56
CERT, 71–72
coordination centers, 72
CSIRT, 64–66, 71–72
CVSS, 67–71
digital forensics, 58–59
DIH, 73
false positives/negatives, 57–58
FIRST, 71
FISMA of 2002, Public Law 107–347, 56
incidents, defined, 56–57
incidents, examples of, 57
incidents, reporting, 58–59
incidents, security levels, 58
information sharing/coordination, 64
IRC, 73
IRP, 60–63
IRT, 73–74
ISO/IEC 27002:2013, 55–56
MSSP, 73
NIST, 55–56
PSIRT, 66–67, 70
SDL, 70–71
SP 800–61, 56, 61
SP 800–61 revision 2, 55, 60
SP 800–83, 55
SP 800–86, 55
tabletop exercises/playbooks, 63–64
TPS security, 71
ture positives/negatives, 57–58
InfoSec vs, 7
IoT, security challenges/considerations, 52
IRP, 29, 60–61, 63
ISO/IEC 27000 series, 8
ITL, 8
keyloggers, 25–26
malware
distribution types, 22
dynamic analysis, 27–29
payloads, 17–18
static analysis, 27–29
transmission methods, 16–17
NIST cybersecurity framework, 7–8
NISTIR, 8
open source software vulnerabilities, 40
ransomware (data hiding), 19, 23
risk
defined, 12
residual risk, 12
software vulnerabilities
authentication-based vulnerabilities, 32–35
buffer overflows, 39
cookie manipulation attacks, 37–38
CVE, 30
injection vulnerabilities, 30–32
NVD, 30
OWASP Top 10 list, 40
race conditions, 38
ret2libc attacks, 39
unprotected API, 38–39
XSRF, 37
XSS, 35–37
SP
800 Series, 7
1800 Series, 8
spyware, 16, 26–27
threats
defined, 9, 12–13
threat actors, 13–14
threat intelligence, 14–15
Trojans
communication methods, 19
defined, 18
effects of, 22
goals of, 20
infection mechanisms, 20–21
ports, 19
types of, 18–19
viruses, 16
components of, 17–18
transmission methods, 16–17
types of, 16–17
vulnerabilities, defined, 9–10
worms, 16
transmission methods, 16–17
types of, 16–17
zero-trust, 161–167
CybOX (Cyber Observable EXpression), 15

best practices, 337–338
IPv6 configuration/security
security, 337–338

traditional networks, 109
data separation, cloud computing, 49
data storage, Trojans, 20
DCE/RPC preprocessors, 450
DCOM (Distributed Component Object Model), 38
DDoS attacks, 13
availability (CIA triad), 45
botnets, 45
cloud computing, 50
NetFlow and DDoS attack migration, 229–231
default credentials, authentication-based vulnerabilities, 34
deployment scenarios, NetFlow, 242–243
data center, 246–248
Internet edge, 245
remote VPN, 248–249
site-to-site VPN, 248–249
user access layer, 243
WLAN, 244
detection and analysis phase (IRP), 61–62
development methodologies (cloud computing)
agile methodology, 553–556, 559
waterfall methodology, 552–553

DAC (Discretionary Access Controls), 47, 168
dACL (downloadable ACL), 181
DAI (Dynamic ARP Inspection), 324, 330–332, 338
“dark web”, 10
DAST (Dynamic Application Security Testing), 572–573
database view, 172
data breaches
examples of, 156
IOC, 454, 455
data center, NetFlow deployment scenario, 246–248
data classification systems, cloud computing, 49
data collection, IoT, 51
data-driven network segmentation, 286–288
data hiding (ransomware), 19, 23
data integrity, verifying, 84–86
data leak detection/prevention, NetFlow, 231
data plane
NFP, 333–334
device hardening
IPv4, 372
IPv6, 372
device tracking, IPv6, 377
DevNet, 136, 142
DevOps, 552, 556–557
DevSecOps, 571
assurance tools/methods, 572–573
CI/CD pipelines, 572
OWASP Proactive Controls, 571–572
tutorials, 571
DH key exchange protocol, 83–84
DHCP (Dynamic Host Configuration Protocol)
ASA and, 412
DHCPv6, 375
snooping, 324, 328–330, 338
DHS (Department of Homeland Security), CERT, 72
Diameter, 176–178, 179
Diffie-Hellman key exchange, 471–473, 504, 507, 509
digit streams (ciphers), 82
digital certificates, 94
AAA, 100
components of, 97–98
CRL, 98, 100
identity certificates, 94, 96–97
OCSP, 100
in practice, 100
revoking, 98–100
root certificates, 95–96
thumbprint algorithms, 98
digital/electronic wallets, Trojans, 20
digital forensics, 58–59
digital signatures, 86–89, 91–92
digital certificates, 97
DSA, 84
RSA, 93–94

DIH (Designated Incident Handlers), 73
DIKTA questions, exam preparation, 658
direct DoS attacks, availability (CIA triad), 44
direct objects
insecure direct object reference vulnerabilities, 35
reference example, 35
directories, X.500 standards, 97
disaster recovery (DR), cloud computing, 50
disclosure of confidential information, 12–13
distributed ISE deployments, sizing, 214
DKIM (Domain Keys Identified Mail), 623
DLP (Data Loss Prevention), ESA, 622–623
DMVPN (Dynamic Multipoint Virtual Private Networks), 486
example of, 487
hub configurations, 487–488
NAT-T, 487
NHRP, 486–487
site-to-site VPN router configurations, 486–489
spoke configurations, 488–489
DNA (Digital Network Architecture)
application policies, 126–127
architecture of, 121
DNAC, 121–124
API, 130, 132
Assurance solution, 128–129
multivendor support, 132
Security solution, 132
group-based access control policy, 124
ip-based access control policy, 124
policies, 123
traffic copy policy, 127
DNS (Domain Name System)
attacks, cloud computing, 50
covet communication, 25
DNS preprocessors, 450
MX records, 620
OpenDNS, Umbrella, 577–582
servers, Kubernetes, 570
Umbrella, 577
architecture of, 577–578
Investigate, 580–582
SIG, 578–580
WSA, 607
dnscat, 25
do not allow negotiations, VLAN, 323
Docker
container images, 562–565
docker images command, 562, 565
docker ps command, 562–563
docker run mypython command, 565
docker search command, 563
Dockerfiles, 564–565
documentation, 565
images, 564–565
legacy rules, 566
Docker Swarm, 561
documentation
API, 39
Docker, 565
FIPS, 7
ISO/IEC 27000 series, 8
ITL bulletins, 8
NISTIR, 8
SP 800 Series, 7, 8
Swagger, 39
WADL, 39
WSDL, 39
XSD documents, 38
DOM (Document Object Model)
cookie manipulation attacks, 37–38
XSS attacks, 36
DoS (Denial of Service) attacks, 13
amplification attacks, availability (CIA triad), 45
availability (CIA triad), 44–45
buffer overflows, availability (CIA triad), 45
data plane (NFP), 338
DDoS attacks, availability (CIA triad), 45
direct DoS attacks, availability (CIA triad), 44
IPv4, 373–374
IPv6, 373–374
reflected DoS attacks, availability (CIA triad), 45
Trojans, 19
DR (Disaster Recovery), cloud computing, 50
droppers
malware distribution, 22
spyware, 26
DSA (Digital Signature Algorithm), 84
DTLS (Datagram Transport Layer Security), 529
dual stacks, IPv6, 376
Duo Access Gateways, 160
Duo Security, 159–163
cloud computing, 167
SSO applications, 166
duties, separation of, 155
dynamic malware analysis, 27–29
FakeNet, 29
MAC addresses, 29
VM, 28–29
dynamic NAT and ASA, 438, 441–442
dynamic PAT and ASA, 442

E

EAP (Extensible Authentication Protocol), 179
EAPoL (EAP over LAN), 179
eavesdropping attacks, IPv4/IPv6, 374
e-banking, 19
ECC (Elliptic Curve Cryptography), 84
edb (Evan’s Debugger), 27
EDR (Endpoint Detection and Response), 638
EER (Equal Error Rates), 159
EIGRP, MD5 authentication, 384–385
electronic/digital wallets, Trojans, 20
ElGamal asymmetric encryption, 84
email security
 AMP, 582
 attachments, Trojans, 21
 CASE, 582
 DNS MX records, 620
 encryption, 583
 ESA, 582, 619
 FED, 583
 IMAP, 620
 MDA, 619
 MSA, 619
 MTA, 619
 MUA, 619
 Office 365, 583–584
 POP, 620
 SPF, 583
 Talos, 582
 WSA, 582
employee training, cloud computing, 49
encrypted management protocols,
management plane (NFP), 340
encryption, 86
 cloud computing, 49
 components of, 92
 email security, 583
 encrypted management protocols,
 344–345
 IDS, 58
 IPS, 58
next-generation encryption protocols,
 89–90
SMTP, ESA, 623
symmetric encryption algorithms,
 82–83
endpoint protection/detection,
 636–637
 AMP for Endpoints, 637–639
 AnyConnect AMP Enabler, 650
 Application Control, 644–645
 connectors, 648
 Ethos, 650
 exclusion sets, 645–647
 IP blacklists/whitelists, 643–644
 Outbreak Control, 639–643
 policies, 648–649
 reports, 651–654
 Spero, 650
 TETRA, 650
 EDR, 638
 EPP, 638
 ETDR, 637
 Threat Response, 654–655
enforcers, networks as, 226–227
enrollment, CA, 98–99
EPG (Endpoint Groups), 289–290
EPP (Endpoint Protection Platform), 638
errors
CER, 159
EER, 159
FAR, 159
FRR, 159
ERSPAN mode (passive), NGFW/NGIPS, 422
ESA (Email Security Appliance), 582, 619
Content SMA, 624–628
deployments, 620–621
DKIM, 623
DLP, 622–623
listeners, 621–622
RAT, 622
SenderBase, 622
SMTP authentication/encryption, 623
SPF, 623
ETA (Encrypted Traffic Analytics), 132, 262
ETDR (Endpoint Threat Detection and Response), 637
EtherType ACL, 431
ethical hackers, 13
Ethos, 454, 650
Evan’s Debugger (edb), 27
exams
preparing for, 658
Blueprints, 658
DIKTA questions, 658
hands-on activities, 658
Pearson Cert Practice Test engine, 659
“Review Questions” sections, 659
review/study plans, 658–659
updates, 686–687
exchanging control information (TCP), 24
exclusion sets, 645–647
explicit forward mode (WSA), 606–608
exploits
“dark web”, 10
defined, 10–11
Exploit-DB, 10
GitHub, 10
POC exploits, 10
searchsploits, 10–11
zero-day exploits, 10
exposures, CVE, 9–10
extended ACL, 430–431
factors (access control management), 47
failover (high-availability) mode,
ASA/FTD, 423–425
FakeNet, 29
false positives/negatives, incident response, 57–58
FAR (False Acceptance Errors), 159
fast infections, 17
FDM (Firepower Device Manager), 404–407
FED (Forged Email Detection), 583
federated identities, 165–166
FFRDC (Federally Funded Research and Development Center), 9–10
file infections, 16
filtering
bogus IPv6 addresses, 376
ICMP, 437
ICMPv6, 377
nonlocal multicast addresses, 377
traffic
 ASA, 396–397
 to-the-box traffic filtering, 434–435
 through-the-box traffic filtering, 431
Findsecbugs, 572–573
FIPS (Federal Information Processing Standards), 7
Firepower, 396, 398
 1000 series, 397
 2100 series, 397–398
 4100 series, 398
 9300 series, 399
FDM, 404–407
FMC, 401–404
FXOS, 407
NGIPS variables, 449–450
platform settings policies, 450
software patches/updates, 458
FirePOWER module, 396–397
firewalls, 180, 395–396
 ASA firewalls, 187
 CDO, 408–410
 Centri Firewall, 396
 Cisco history/legacy, 396
 Firepower, 398
 1000 series, 397
 2100 series, 397–398
 4100 series, 398
 9300 series, 399
MMTF, 416
NGFW
 inline pairs, 420
 inline pairs with tap, 420–421
 passive ERSPAN mode, 422
 passive (monitoring) mode, 420–422
partitioning, 414
routed firewalls, 413
security contexts, 414
SMTF, 414–416
transparent firewalls, 413, 414
 MMTF, 416
 SMTF, 414–416
ZBFW, 411–412
FIRST (Forum of Incident Response and Security Teams), 71
first-hop security binding tables, 377
five-tuples, 227
Flame, 17
Flex-Auth (Flexible Authentication), 203
Flexible NetFlow, 228
 application tracking (simultaneous), 270–271
 configurations, 275
 flow monitors, 278–282
 flow records, 276–278
 flow exporters, 275, 280–282
 flow monitors, 275, 282–283
 flow samplers, 275
 IPFIX export format, 283
 key fields, 271–273
 non-key fields, 273–274
 records, 271
 flow records, 276–278
 predefined records, 274
 user-defined records, 275
FlexVPN, 492–496, 499–501
flow
 defined, 227
Flexible NetFlow
 flow exporters, 275, 280–283
 flow monitors, 275
 flow samplers, 275
FlowCollector, 250
flow exporters
 configurations, 280–282
 NX-OS configurations, 284
 show flow exporter command, 281
 show running-config flow exporter command, 281
flow monitors
 applications, 285
 applying to interfaces, 282–283
 configurations, 278–282
 NX-OS configurations, 284
 show flow monitor command, 279
 show flow monitor name
 NY-ASR-FLOW-MON-1
 cache record format command, 281–282
 show running-config flow monitor command, 279–280
flow records
 configurations, 276–278
 NX-OS configurations, 284
FlowReplicator, 251
FlowSensor, 251
fps, determining, 269
inline pairs, 420
IPFIX, 237–241, 283
licenses, 250
NetFlow, 225–237
sessions versus, 229
Flow Sensor (Stealthwatch), 233
FMC (Firepower Management Center), 401–404, 449
fog computing, 51
fog-edge devices, IoT, 52
forensics
 digital forensics, 58–59
 Forensics feature (Tetration), 594
 network security, NetFlow, 231–236
four-step shutdowns (TCP), 25
fps (Flow Per Second), determining, 269
fragmentation
 IDS, 58
 IPS, 58
 IPv6, 380
 site-to-site VPN configurations, 510–511
freeware, Trojans, 21
FRR (False Rejection Errors), 159
FTD (Firepower Threat Defense), 397
 access control policies, 443–445
 BVI and, 417–419
 CDO, 409–410
 clustering, 425–427
 deployment design considerations, 422–423
 deployment modes, 416–417
 failover (high-availability) mode, 423–425
 FDM, 404–407
Firepower, 396, 398
 1000 series, 397
 2100 series, 397–398
 4100 series, 398
 9300 series, 399
FMC, 401–404
FXOS, 407
 inline interfaces, 420
 interface modes, 417–419
 intrusion policies, 446–449
 ISR and, 399
 remote-access VPN, 530–531, 540
 site-to-site VPN, 541–543
FTP (File Transfer Protocol)
 Telnet preprocessors, 450
 Trojans, 19
fuzz testing (fuzzing), 573
FXOS (Firepower eXtensible Operating System), 407

G

GDOI protocol, 489
geolocation updates, 458
GETVPN (Group Encrypted Transport VPN), 489–492
Ghidra, 28
GitHub, 10, 15
 agile development methodology (cloud computing), 555
 fuzz testing (fuzzing), 573
 GETVPN, 492
 IPsec VPN, 499
 pxGrid examples, 184
 XSS, 36
 ZBFW, 412
GKE (Google Kubernetes Engine), 568
global ACL, 429
global addresses, internal address translation to, 438
gNMI (gRPC Network Management Interface), 145–146
government/state-sponsored threats, 13
Grandcrab, 23
GraphQL, 38, 137
gray hat hackers, 14
GRE, site-to-site VPN router configurations
 GRE over IPsec, 482–484
 mGRE tunnels, 486
group-based access control policy (DNA), 124
group policy
 client-based remote access SSL VPN, 525–526
 remote-access VPN ASA configurations, 513
 SSL VPN, 518–519
GTP preprocessors, 451
guest access (unauthenticated/authenticated), 188

H

hackers
 attacks, 12
 black hat hackers, 14
 defined, 13
 ethical hackers, 13
 gray hat hackers, 14
 motivations, 14
hacking, IoT hacking tools/methods, 54–55
hacktivists, 13
handshakes (three-step), TCP, 24
hardening devices, IPv4/IPv6, 372
hardware vulnerabilities, 9
 authentication-based vulnerabilities, 32–35
 buffer overflows, 39
 cookie manipulation attacks, 37–38
 CVE, 30
 injection vulnerabilities, 30–32
 NVD, 30
 OWASP Top 10 list, 40
 race conditions, 38
 ret2libc attacks, 39
 unprotected API, 38–39
XSRF, 37
XSS, 35–37
hashes, 86
AMP, 85
collision resistance, 85
cryptographic hash functions, 85
defined, 84
eample of, 84–85
HMAC, 86
MD5
checksums, 85
md5sum Linux command, 85
SHA
checksums, 85
SHA512 checksum, 84
shasum Linux command, 85
vulnerabilities, 85–86
verify md5 command, 84
hierarchical CA, 101–102
high-availability (failover) mode,
ASA/FTD, 423–425
hijacking sessions, 34, 50
HMAC (Hashed Message
Authentication Code), 86
hoaxes (virus), 17
hop-by-hop extension headers, IPv6,
375–376
HTML injection vulnerabilities, 32
HTTP (HyperText Transfer Protocol)
ACL and HTTP traffic, 432–433
covert communication, 25
HTTP preprocessors, 450
Requests, 135
status code messages, 135
XSRF, 37
HTTPS (HTTP Secure), 25, 91–92, 362
hub configurations, DMVPN, 487–488
hybrid clouds, 48, 552
IaaS (Infrastructure as a Service), 48,
552
ICMP (Internet Control Message
Protocol)
covert communication, 24
filtering, 437
icmp command, 437
ICMPv6
filtering, 377
IPv6, 376
unreachables, 380
IDA Pro, 27
identity certificates, 94, 96–97
identity management
802.1X, 187
active policy enforcement,
295–298
authentication configurations,
205–211
authentication failures, 203
C3PL, 204–205
monitor mode deployments,
294–295
Multi-Auth mode, 203
Open Authentication, 204
port security, 203
CoA, 193–196
Flex-Auth, 203
ISE, 181–182
authorization rules, 187–188
context services, 184–185
design tips, 211–213
identity services, 184–185,
187–188
profiling services, 184–187
MAB, 188
posture assessments, 192–193
incident response

pxGrid, 182–184
RADIUS, 187, 202–205
TACACS+
 access configuration, 196–199, 200–202
debugging, 199–200
TrustSec, 190–192
 ACI integration, 298–301
 active policy enforcement, 295–298
 monitor mode deployments, 294–295
 SGT, 188
web authentication, 187–188
identity NAT and ASA, 442
identity services (ISE), 184–185, 187–188
IDS (Intrusion Detection Systems), 399
 address proxying, 58
 address spoofing, 58
 encryption, 58
 false positives/negatives, 57–58
 fragmentation, 58
 low-bandwidth attacks, 58
 pattern change evasion, 58
 true positives/negatives, 57–58
IEC. See ISO
IKE (Internet Key Exchange), 470
 IKEv1 phase 1, 470–472
 IKEv1 phase 2, 472–474
 IKEv2, 475–476, 504
NAT-T, 474
RFC 2409, 470
RFC 5996, 470
UDP, 472
IM (Instant Messaging), Trojans, 20
IMAP (Internet Message Access Protocol), 451, 620
im impersonated mobile apps, Trojans, 21
implicit deny, authorization, 168
incident response, 55
 benefits of, 56
 CERT, 71–72
 coordination centers, 72
 CSIRT, 64–66, 71–72
 CVSS, 67–71
digital forensics, 58–59
 DIH, 73
false positives/negatives, 57–58
FIRST, 71
FISMA of 2002, Public Law 107–347, 56
incidents
 defined, 56–57
 examples of, 57
 reporting, 58–59
 security levels, 58
information sharing/coordination, 64
IRC, 73
IRP
 containment/eradication/recovery phase, 62
defined, 60–61
detection and analysis phase, 61–62
 elements of, 60
 phases of, 61–63
post-incident activity phase, 63
preparation phase, 61
process of, 61–63
IRT, 73–74
ISO/IEC 27002:2013, 55–56
MSSP, 73
NetFlow, 231–236
NIST, 55–56
PSIRT, 66–67, 70
Inference routines, 18

Inferential (blind) SQL injection, 32

Information sharing/coordination, incident response, 64

InfoSec (Information Security) vs cybersecurity, 7

Infrastructure access controls, 170

Infrastructure security

AAA, 342
 CLI, troubleshooting AAA for Cisco routers, 353–356
 method list, 343
 router access authentication, 342–343
 user authentication, 349–353

Administrator views, 344

Bootsets, 364–365

Cisco IOS, 346–347, 364–365

Cisco IOS-XE, 346–347

Cisco IOS-XR, 346–347

Cisco NX-OS, 346–347

Configuration files (startup), 364–365

Control plane
 CoPP, 380–382
 CPPr, 383
 minimizing traffic, 379–380
 packets, 379

Encrypted management protocols, 344–345

HTTPS, 362

IPv4
 best practices, 372–373
 common threats, 373–374

IPv6, 365–366, 374–375
 ACL, 377–378
 address format, 367
 address types, 367–370
 best practices, 372–373, 376–377
 common threats, 373–374
 configurations, 367
 IPv4 versus, 366
 moving to, 372
 potential risks, 375–376
 router configurations, 370–372
 security plans, 372
 shortcuts, 367

Layer 2 security, 310
 BPDU Guard, 324–325
 CDP, 327–328
 common threats, 322–323
 DAI, 330–332
 DHCP snooping, 328–330
 LLDP, 327–328
 port security, 325–327
 Root Guard, 325
 security toolkit, 324
 STP, 317–322
 VLAN, 310–317

Logging features, 362–363

Logging files, 345–346

NFP, 332
 control plane, 333–334, 336–337
 data plane, 333–334, 337–338
 framework of, 333
 importance of, 332
 interdependence, 333
management plane, 333–336, 338–341
passwords, 338–341
NTP, 346
authentication keys, NTPv3, 363–364
client synchronization, 364
configurations, 363–364
passwords, 341, 347–348
privileges (custom), 344
RBAC, 344
parser views, 358–360
privilege levels, 356–358
routing protocols, 383
BGP, 386–387
EIGRP, 384–385
MD5 authentication, BGP, 386–387
MD5 authentication, RIPv2, 385–386
OSPF, 383–384
RIP, 385–386
SSH, 360–362
startup configuration files, 364–365
Syslog, 362–363
user authentication, 349–353
injection vulnerabilities, 30
command injections, 32
HTML, 32
SQLi, 30, 31–32
in-band SQL injection, 32
blind (inferential) SQL injection, 32
example of, 31
out-of-band SQL injection, 32
queries, 32
SQL statements, 30–31
inline interfaces, 420
inline pairs, 420
flow, 420
with tap, 420–421
insecure direct object reference vulnerabilities, 35
insider information, Trojans, 20
INSTEON, IoT, 54
integrity
CIA triad, 42–43
data, verifying, 84–86
Intent API, DNAC API, 130, 132
interface ACL, 429
internal to global address translation, 438
Internet edge, NetFlow deployment scenario, 245
Internet of Things. See IoT
inter-VLAN routing, 316
router-on-a-stick, 316–317
virtual “sub” interfaces, 316–317
intrusions
detection, defined, 446
policies (FTD), 446–449
prevention, defined, 446
IOC (Indicators of Compromise), 15, 454–455
IOS (Internetworking Operating System), 346–347
crypto maps, 479
NetFlow configurations, 269–270
VPN, site-to-site VPN configurations, 479–482
ZBFW, 411–412
IOS-XE, 346–347
crypto maps, 479
NetFlow configurations, 269–270
site-to-site VPN configurations, 479–482
IOS-XR, 346–347
IoT (Internet of Things), 51
 6LoWPAN, 54
API, 53
BLE, 53
Bluetooth Smart, 53
cellular connections, 54
closed-loop functioning, 51
cloud computing, 53
data collection, 51
fog computing, 51
fog-edge devices, 52
hacking tools/methods, 54–55
INSTEON, 54
LoRaWAN, 54
LRWPAN, 54
messaging protocols, 54
network resource preservation, 51
protocols, 53–54
security challenges/considerations, 52
Wi-Fi, 54
Zigbee, 53
Z-Wave, 53

IP (Internet Protocol)
accounting versus NetFlow, 229
addresses, management plane (NFP), 335
blacklists/whitelists, 643–644
IP Source Guard, 324, 338
pools, remote-access VPN ASA configurations, 513
spoofing, web proxy IP spoofing (WSA), 614–615
ip-based access control policy (DNA), 126
ip ospf authentication-key command, 383
ip ospf message-digest-key command, 383

IPFIX (IP Flow Information Export), 237–238
architecture of, 238
Flexible NetFlow and IPFIX export format, 283
mediators, 239
SCTP, 241
templates, 238
 example of, 240
 option templates, 241
 structure of, 239–240

IPS (Intrusion Prevention Systems), 395–396
address proxying, 58
address spoofing, 58
encryption, 58
false positives/negatives, 57–58
fragmentation, 58
legacy IPS, 399–400
low-bandwidth attacks, 58
NGIPS, 399–401
 FMC, 401–404
 inline pairs, 420
 inline pairs with tap, 420–421
 passive (monitoring) mode, 420–422
 passive ERSPAN mode, 422
 preprocessors, 450–452
 variables, 449–450
pattern change evasion, 58
ture positives/negatives, 57–58

IPsec (IP security), 90
GRE over IPsec, site-to-site VPN router configurations, 482–484
IKE, 470
 IKEv1 phase 1, 470–472
 IKEv1 phase 2, 472–474
 IKEv2, 475–476
IPv6

IPv6 (Internet Protocol version 6)

NAT-T, 474
RFC 2409, 470
RFC 5996, 470
UDP, 472
OSPFA over IPsec, 509
remote-access VPN ASA
configurations, 512–514
site-to-site VPN ASA firewall
configurations, 505–506
transform sets, 479
tunnels, troubleshooting, 496–502
IPv4 (Internet Protocol version 4)
AAA, 373
application layer attacks, 373–374
best practices, 372–373
common threats, 373–374
device hardening, 372
DoS attacks, 373, 374
eavesdropping attacks, 374
flow monitor configurations, 278–280
IPv6 versus, 366
man-in-the-middle attacks, 374
physical security, 372
routing attacks, 374
routing protocol security, 373
security policies, 373
sniffing attacks, 374
spoofing attacks, 374
unauthorized access, 374
zone access, 373
IPv6 (Internet Protocol version 6),
365–366
6LoWPAN, IoT, 54
AAA, 373
ACL, 377–378
address format, 367
address shortcuts, 367
anycast addresses, 368–369
application layer attacks, 373–374
ARP requests, 380
autoconfiguration, 376
best practices, 372–373, 376–377
bugs in code, 376
common threats, 373–374
configurations, 367
covt covert communication, 24
data plane (NFP)
device hardening, 372
device tracking, 377
DHCPv6, 375
DoS attacks, 373, 374
dual stacks, 376
eavesdropping attacks, 374
extra addresses, 367–368
filtering
 bogus addresses, 376
 ICMPv6, 377
 nonlocal multicast addresses,
 377
first-hop security binding tables, 377
flow monitor configurations, 278–280
fragmentation, 380
hop-by-hop extension headers,
 375–376
ICMP unreachables, 380
ICMPv6, 376
interface information, 369–370
IPv4 versus, 366
link-local addresses, 368
lopbback addresses, 368
man-in-the-middle attacks, 374
moving to, 365, 372
multicast addresses, 369
 all-nodes multicast addresses,
 368
all-routers multicast addresses, 368
solicited-node multicast addresses, 369
ND Inspection, 377
NDP, 375
neighbor cache resource starvation, 375
packet amplification attacks, 376
physical security, 372
port-based access lists, 377
potential risks, 375–376
RA Guard, 377
RH0 packets, 377
rogue IPv6 devices, 377
routing, 370–372
routing attacks, 374
routing protocol security, 373
security, 374–375
security plans, 372
security policies, 373
SeND, 377
show ipv6 route command, 372
sniffing attacks, 374
spoofing attacks, 374
TTL, 380
tunneling, 376, 377
unauthorized access, 374
unicast addresses, 368–369
zone access, 373
IRT (Incident Response Teams), 73–74
ISAKMP, site-to-site VPN ASA firewall configurations, 503–504
ISE (Identity Services Engine), 181–182
802.1X
active policy enforcement, 295–298
monitor mode deployments, 294–295
authorization rules, 188–190
tool context services, 184–185
design tips, 211–213
distributed deployments, sizing, 214
DNAC, 121–122, 124
identity services, 184–185, 187–188
profiling services, 184–187
TACACS+ access configurations, 200–202
ISO (International Organization for Standardization), 8
ISO/IEC 27000 series, 8
ISO/IEC 27001:2005, 66
ISO/IEC 27002:2005, 66
ISO/IEC 27002:2013, 55–56
ISO/IEC 27005:2008, 66
ISO/IEC 27033, 66
ISO/PAS 22399:2007, 66
ISR (Integrated Service Routers), FTD for ISR, 399
issuers
digital certificates, 97
root certificates, 95
ITL bulletins, 8
J - K

Kanban scheduling system, 555
Katacoda container deployments, 563
keychain authentication (BGP), 387
KeyGhost, 26
keyloggers, 25–26
keys (cryptography), 81
 - digital certificates, 97
 - keyspace, 89
 - managing, 89
 - OTP, 81–82
 - private key pairs, 93
 - public key pairs, 93
know (authorization), need to, 168
knowledge, authentication by, 156–157

Kubernetes (k8s), 559
 - application deployments, 568
 - clusters, 565–566, 568–570, components of, 566
 - deployments, 566–567
 - DNS servers, 570
 - GKE, 568
 - GUI, 570
 - kubeadm, 568
 - kubectl get nodes command, 567, 570
 - kubectl version command, 567
 - minikube start command, 566–567
 - nodes
 - displaying, 567
 - managing, 568
 - proxies, 570
 - rules, 566
 - starting, 566–567
 - Stealthwatch Cloud and, 590
 - tutorials, 568
 - version verification, 567
KVM (Kernel-based Virtual Machines) and ISE, 182

L

labels (security), authorization, 167
LAN (Local Area Networks)
 - EAPoL, 179
 - VXLAN, 110, 112–114
 - WLAN, NetFlow deployment scenario, 244
Layer 2 security, 310
 - 802.1X, 324
 - ACL, 324
 - BPDU Guard, 324–325
 - CDP, 327–328
 - common threats, 322–323
 - DAI, 324, 330–332
 - DHCP snooping, 324, 328–330
 - IP Source Guard, 324
 - LLDP, 327–328
 - loops, 317–318
 - port security, 324, 325–327
 - Root Guard, 324, 325
 - Storm Control, 324
 - STP, 317–318
 - annotations, 318–320
 - instances of, 321
 - new ports, 321
 - port states, 321
 - PortFast, 321–322
 - RSTP, 321–322
 - time until forwarding, 321–322
 - verification, 318–320
 - toolkit, 324
Layer 2 security

VLAN, 310–311
 creating, 311
 defined, 311
 example of, 311
 show interfaces Gi0/2 switchport command, 313
 show vlan brief command, 312
 show vlan id command, 312–313
 switch ports, 323
 trunking, 313–315
 VLAN 10 interface assignments, 312
 VLAN 20 interface assignments, 312

leaf switches
 ACI, 110
 spine nodes/switches, 110–111

leaks (data), detection/prevention with NetFlow, 231

least privilege, principle of, 155

liability (provider), cloud computing, 50

licenses (flow), 250

linked (centralized) identities, 165–166

link-local addresses, IPv6, 368

Linux
 cat Linux command, 84
 Duo Security, 161–162
 md5sum Linux command, 85
 shasum Linux command, 85

listeners (ESA), 621–622

LLDP (Link Layer Discovery Protocol), 327–328

locking down switch ports, 323

Login Password Retry Lockout, management plane (NFP), 339–340

logging
 ACL, 380
 files, 345–346

management plane (NFP), 340

NSEL, 248

syslog, configurations, 362–363

long-term viability, cloud computing, 50

loopback addresses, IPv6, 368

loops
 closed-loop functioning, IoT, 51
 Layer 2 security, 317–318

LoRaWAN (Long Range Wide Area Network), 54

low-bandwidth attacks, IPS/IDS, 58

LRWPAN (Long Range Wireless Personal Area Network), 54

MAB (MAC Authorization Bypass), 188, 203

MAC (Mandatory Access Controls), 47, 168

MAC addresses
 dynamic malware analysis, 29
 flooding, data plane (NFP), 338
 macro infections, 16
 malware, 12

AMP, 582, 637

AMP for Endpoints, 637, 638–639
 AnyConnect AMP Enabler, 650
 Application Control, 644–645
 connectors, 648
 engines, 650
 exclusion sets, 645–647
 IP blacklists/whitelists, 643–644
 Outbreak Control, 639–643
 policies, 648–649
 reports, 651–654
 BIOS infections, 16
 Bluetooth, 17
crypters, 22
distribution types, 22
droppers, 22, 26
dynamic analysis, 27, 28–29
file infections, 16
Flame, 17
IRP, 29
master boot record infections, 16
packers, 22
payloads, 17–18
static analysis, 27–28, 29
wrappers, 22
management plane, traditional networks, 109
management plane (NFP), 333–334
AAA, 339
availability checks, 341
best practices, 334–336, 339–341
console cables, 339
encrypted management protocols, 340
logging, 340
management traffic security, 338–339
monitoring, 340
NTP, 340
OOB management, 340, 341
passwords, 339–340, 341, 347–348
RBAC, 340
security, 334–336
user authentication, 339
management traffic
management plane (NFP), 338–339
security, 338–339
man-in-the-browser attacks, 34
man-in-the-middle attacks, 34
cloud computing, 50
IPv4, 374
IPv6, 374
manual NAT, 443
Mariposa, 13
master boot record infections, 16
MD5 (Message Digest 5)
authentication
EIGRP authentication, 384–385
OSPF authentication, 383–384
checksums, 85
HMAC, 86
md5sum Linux command, 85
secure routing protocols, 383
verify md5 command, 84
MDA (Mail Delivery Agents), 619
MDM (Mobile Device Management) and Meraki SM, 653–654
mediators (IPFIX), 239
memory cards, 158
Meraki, 167
Meraki SM and MDM, 653–654
Stealthwatch Cloud, 256
messaging, Trojans
IM, 20
SMS messages, 21
metrics collection/exportation, AVC, 242
mGRE (multipoint) tunnels, site-to-site VPN router configurations, 486
micro-segmentation, 115–116, 120, 289–290, 570–571
microservices, 570–571
minikube start command, 566–567
minimizing control plane traffic, 379–380
misconfigurations, 9
MITRE, 9–10, 455
MMTF (Multi-Mode Transparent Firewalls), 416
mobile apps (impersonated), Trojans, 21
mobile devices
AnyConnect Secure Mobility, 478–479
MDM and Meraki SM, 653–654
monitoring
AppDynamics Cloud Monitoring, 590–593
management plane (NFP), 340
passive monitoring mode,
NGFW/NGIPS, 420–422
MPF (Modular Policy Frameworks), 433
MSA (Mail Submission Agents), 619
MSSP (Managed Security Service Providers), 73
MTA (Mail Transfer Agents), 619
MUA (Mail User Agents), 619
Multi-Auth mode (802.1X), 203
multicast addresses, 369
 all-nodes multicast addresses, 368
 all-routers multicast addresses, 368
 solicited-node multicast addresses, 369
multifactor authentication, 159, 160–161, 166, 341
multilayer authentication, 47
multipartite viruses, 16
Mutiny Fuzzing Framework, 573
MX (Mail Exchanger) records, 620

nameif command, 412, 432
NAT (Network Address Translation), 437–438, 443
 ASA support, 396
 auto-NAT, 443
 dynamic NAT, 438, 441–442
 identity NAT, 442
manual NAT, 443
policy NAT, 442
remote-access VPN ASA configurations, 514
site-to-site VPN configurations, 508–509
static NAT, 438, 441
TCP Intercept, 443
NATAS virus, 16
native VLAN, trunking, 315–316
NAT-T (NAT-Traversal), 474
 DMVPN, 487
 site-to-site VPN configurations, 510
natural disasters, 12
NBAR2 libraries, application policies (DNA), 127
NDP (Network Discovery Protocol), IPv6, 375
need to know, authorization, 168
neighbor cache resource starvation, IPv6, 375
neighbor discovery, SeND, 377
NETCONF, 141–143
NetFlow, 225–227
 anomaly detection, 229–231
 best practices, 268–269
 caches, 228–229
 collection considerations, 268–269
 configurations, 269–270
 data leak detection/prevention, 231
 DDoS attack mitigation, 229–231
 deployment scenarios, 242–243
 data center, 246–248
 Internet edge, 245
 remote VPN, 248–249
 site-to-site VPN, 248–249
 user access layer, 243
 WLAN, 244
Flexible NetFlow, 228

application tracking
(simultaneous), 270–271
configurations, 275–285
flow exporters, 275, 280–282
flow monitors, 275, 282–283
flow samplers, 275
IPFIX export format, 283
key fields, 271–273
non-key fields, 273–274
records, 271, 274–278

fps, determining, 269
incident response, 231–236
IP accounting versus, 229
network planning, 236
network security, 229
network visibility, 229
NSEL, 248
NX-OS configurations, 283–285
PDU, 228
random-sampled NetFlow, 269
role of, 229
scalability, 269
threat hunting, 231–236
timers, 284–285
traffic engineering, 236
versions of, 237

Netmaster, 120
Netplugin, 120

nets. See also SDN; VLAN; VPN
6LoWPAN, IoT, 54
ACI, 110–112
ACL, 180
APIC, 110, 111–112
control plane, 109
data plane, 109

DNA
architecture of, 121
policies, 123–127
DNAC, 121–124
API, 130, 132
Assurance solution, 128–129
multivendor support, 132
Security solution, 132

enforcers, networks as, 226–227
infrastructure access controls, 170
infrastructure device images, security, 364–365
IoT and network resource preservation, 51

LAN
EAPoL, 179
VXLAN, 110, 112–114
LoRaWAN, IoT, 54
LRWPAN, IoT, 54
management plane, 109
managing traditional solutions, 109.
See also SDN
network device API, 139
network preprocessors, 451
NVF, 118
architecture of, 119
NVF MANO, 119–120
OPNFV, 118–119
overlays, 112–114
OVN, 117
P2P networks, Trojans, 20
PAN
6LoWPAN, 54
LRWPAN, 54
planning, NetFlow, 236
programmability
API, 132–133, 136–140
DevNet, 136, 142
gNMI, 145–146
Neutron, 117
next-generation encryption protocols, 89–90
NFP (Network Foundation Protection), 332
auto secure command-line utility, 334
control plane, 333–334
best practices, 336–337
CoPP, 336
CPPr, 336–337
minimizing traffic, 379–380
secure routing protocols, 379
security, 336–337
SPD, 337
data plane, 333–334
best practices, 337–338
IPv6 configuration/security, 365–378
security, 337–338
framework of, 333
implementing, 333–334
importance of, 332
interdependence, 333
management plane, 333–334
AAA, 339
availability checks, 341
best practices, 334–336, 339–341
console cables, 339
encrypted management protocols, 340
logging, 340
Login Password Retry Lockout, 339–340
management traffic security, 338–339
monitoring, 340
NTP, 340
passwords, 339, 341, 347–348
RBAC, 340

NETCONF, 141–143
OpenConfig, 145–146
Python programming, 133–136
RESTCONF, 143–145
YANG models, 139–140
security forensics, NetFlow, 231–236
segmentation, 285
application-based segmentation, 288–289
data-driven segmentation, 286–288
ISE, 290–291
micro-segmentation, 289–290
SGT assignments/deployments, 294
SXP, 292–294
sensors, networks as, 226–227
visibility, 224–225
AVC, 241–242
CTA, 262–268
enforcers, networks as, 226–227
ETA, 262
five-tuples, 227
flow, defined, 227
flow, sessions versus, 229
NVM, 249
sensors, networks as, 226–227
visibility (networks), IPFIX, 237–241, 283
VXLAN, 110, 112–114, 120
WAN, LoRaWAN, 54
WLAN, NetFlow deployment scenario, 244
security, 333–334
user authentication, 339
passwords, 341
NGFW (Next-Generation Firewalls), 395–396
Firepower, 398
1000 series, 397
2100 series, 397–398
4100 series, 398
9300 series, 399
inline pairs, 420–421
passive ERSPAN mode, 422
passive (monitoring) mode, 420–422
NGIPS (Next-Generation Intrusion
Prevention Systems), 395–396, 399–401
FMC, 401–404
inline pairs, 420–421
passive ERSPAN mode, 422
passive (monitoring) mode, 420–422
preprocessors, 450–452
variables, 449–450
NHRP (Next Hop Resolution Protocol), 486–487
NIST (National Institute of Standards
and Technology)
cybersecurity framework, 7–8
1800 Series, 8
FIPS, 7
ITL, 8
NISTIR, 8
SP 800 Series, 7
incident response, 55–56
IRP, 60
SOP, defined, 60–61
SP 500–292, 48, 552
SP 800–52 revision 2, 91
SP 800–61, 61
SP 800–61 revision 2, 55, 60, 62–63, 231
SP 800–63B, 157
SP 800–145, 47–48
NISTIR (NIST Internal or Interagency
Reports), 8
Nomad, 560
nonlocal multicast addresses, filtering, 377
northbound API, 118
NSEL (NetFlow Secure Event Logging), 248
NTP (Network Time Protocol), 346
configurations, 363–364
management plane (NFP), 335, 340
NTPv3, authentication keys, 363–364
synchronization, verifying, 364
NVD (National Vulnerabilities
Database), 30
NVF (Network Function
Virtualization), 118
architecture of, 119
NVF MANO, 119–120
OPNFV, 118, 119
NVF MANO (NVF Management and
Network Orchestration), 119–120
NVM (Network Visibility Module), 249
NX-OS, 346–349
Nyeta, 23

O

OASIS, 455
object capability, authorization, 167
object grouping, ACL, 435–436
OCI (Open Container Initiative), 561
OCSP (Online Certificate Status
Protocol), 100
ODL (OpenDaylight), 117–118
Office 365, email security, 583–584
OllyDbg, 28
one-to-one address mapping, 438
OOB (Out-of-Band) management, management plane (NFP), 340–341
OpenAPI, Swagger, 39
Open Authentication, 204
OpenC2 (Open Command and Control), 15
OpenConfig, network programmability, 145–146
OpenDNS, Umbrella, 577
architecture of, 577–578
Investigate, 580–582
SIG, 578–580
OpenIOC (Open Indicators of Compromise), 15
open source software, vulnerabilities, 40
OPNFV (Open Platform for Network Function Virtualization), 118–119
option templates (IPFIX), 241
organized crime, 13
OS (Operating Systems)
NX-OS, 346–349
vulnerabilities, 9
OSPF (Open Shortest Path First)
ip ospf authentication-key command, 383
ip ospf message-digest-key command, 383
MDS authentication, 383–384
OSPF over IPsec, 509
OTP (One-Time Pads), 81–82
OTP (One-Time Passwords), 157–158
Outbreak Control, 639–643
out-of-band authentication, 47, 158
out-of-band SQL injection, 32
overlays (network), 112–114
OVN (Open Virtual Network), 117
OVS (Open vSwitch), 110, 117
OVSDB (Open vSwitch Database), 110, 117
OWASP (Open Web Application Security Project)
Proactive Controls, 571–572
Top 10 list, 40
ownership, authentication by, 157–158

P

P2P (Peer-to-Peer) networks, Trojans, 20
PaaS (Platform as a Service), 48, 552
packers, malware distribution, 22
packet amplification attacks, 376
PAN (Personal Area Networks), 54
parser views
creating, 358–359
RBAC, 358–360
user accounts, associating with views, 360
partitioning firewalls, 414
PAS. See ISO
passive ERSPAN mode, NGFW/NGIPS, 422
passive (monitoring) mode, NGFW/NGIPS, 420–422
passwords, 156–157
cracking, 33–34
Login Password Retry Lockout, management plane (NFP), 339–340
management plane (NFP), 339, 347–348
multifactor authentication, 341
NFP, 341
OTP, 157–158
pxGrid, 184
security passwords min-length command, 341
single-factor authentication, 341
Trojans, 20
PAT (Port Address Translation)
ASA and, 440
dynamic PAT, 442
policy PAT, 442
static PAT, 441
patches
cloud patch management, 575
Firepower, 458
pattern change evasion, IDS/IPS, 58
payloads (viruses), 18
PDU (Protocol Data Units), 228
Peach, 573
Pearson Cert Practice Test engine, exam preparation, 659
persistent (stored) XSS attacks, 36
PFS (Perfect Forward Secrecy), site-to-site VPN configurations, 509
PGP (Pretty Good Privacy), key servers, 93
physical access, Trojans, 21
physical security IPv4/IPv6, 372
ping command, 24
Ping of Death, 13
PKCS (Public Key Cryptography Standards), 83, 99
PKI (Public Key Infrastructure), 87, 93
cross-certifying CA, 102
hierarchical CA, 101–102
single root CA, 101
subordinate CA, 101
topologies, 101–102
planning networks, NetFlow, 236
platform settings policies, Firepower, 450
playbooks, incident response, 63–64
POC exploits, 10
poison apple attacks/USB key drops, 19
policy NAT and ASA, 442
policy PAT and ASA, 442
polyalphabetic method, ciphers, 81
polymorphic viruses, 17
POP (Post Office Protocol), 620
PortFast configurations, 321–322
ports
access lists, IPv6, 377
Layer 2 security, 324, 325–327
MAC address flooding, 338
PAT, 440–441
redirecting, 441
security, 802.1X, 203
STP
new ports, 321
port states, 321
switch ports, locking down, 323
Trojan ports, 19
VLAN, locking down switch ports, 323
possession, authentication by, 157–158
POST (Power On Self-Tests), BIOS infections, 16
post-incident activity phase (IRP), 63
posture assessments, 192–193
practice tests, Pearson Cert Practice Test engine, 659
predicting session tokens, 34
preparation phase (IRP), 61
preparing for exams, 658
Blueprints, 658
DIKTA questions, 658
hands-on activities, 658
Pearson Cert Practice Test engine, 659
“Review Questions” sections, 659
review/study plans, 658–659
preprocessors (NGIPS), 450–452
private clouds, 48, 552
private key cryptography, 83, 93
privileges
access control management, 45–46
custom privileges, 344
principle of least privilege, 155
RBAC privilege levels, 356–358
profiling services (ISE), 184–187
programmability (networks)
API, 132–133, 136
GraphQL, 137
network device API, 139
REST, 137–139
SOAP, 136, 137
Swagger (OpenAPI), 137
WADL documents, 137
WSDL documents, 137
YANG models, 139–140
DevNet, 136, 142
gNMI, 145–146
NETCONF, 141–143
OpenConfig, 145–146
Python programming, 133–136
pxGrid (Platform Exchange Grid),
182–184
Pyeta, 23
Python programming, 133–136
quantum computing, cryptography, 86
queries, SQLi attacks, 32
questions, exam preparation
DIKTA questions, 658
“Review Questions” sections, 659
race conditions, 38
Radamsa, 573
RADIUS (Remote Authentication
Dial-In User Service), 173–176,
179, 187
authentication configuration, 202–205
client-based remote access SSL VPN,
526
rainbow tables, authentication-based
vulnerabilities, 33–34
random-sampled NetFlow, 269
ransomware (data hiding), 19, 23
RAT (Remote Access Trojans), 18
RAT (Recipient Access Tables), 622
RBAC (Role-Based Access Controls), 47, 168–169, 344
management plane (NFP), 334–335, 340
parser views, 358–360
privilege levels, 356–358
recovery (disaster), cloud computing, 50
redirecting ports, 441
reflected DoS attacks, availability (CIA triad), 45
reflected XSS attacks, 36
registries (containers), 561
regulatory requirements, cloud computing, 49
remote VPN, NetFlow deployment scenario, 248–249
remote-access VPN, 468–469
ASA firewall configurations, 511–512
 attributes, 518
 client-based remote access SSL VPN, 524–526
 clientless remote access SSL VPN, 514–515
 design considerations, 515–516
 group policy, 513
 IP pools, 513
 IPsec, 512–514
 NAT exemptions, 514
 policy inheritance model, 518
 tunnel groups, 513–514
FTD, 530–531, 540
Policy Wizard, 531–540
reporting incidents, incident response, 58–59
residual risk, defined, 12
REST (Representational State Transfer), 38, 137–139
RESTCONF, 143–145
RESTful API, IoT, 53
ret2libc (return-to-libc) attacks, 39
retrospection, 456–457
“Review Questions” sections, exam preparation, 659
review/study plans, exam preparation, 658–659
revoking digital certificates, 98, 99–100
RFC 2409, 470
RFC 3547, 489
RFC 4594, 127
RFC 5585, 623
RFC 5617, 623
RFC 5863, 623
RFC 5996, 470
RFC 6241, 141
RFC 6242, 141
RFC 6347, 529
RFC 6376, 623
RFC 6526, 241
RH0 packets, IPv6, 377
riding sessions, cloud computing, 50
RIP (Routing Information Protocol)
 MD5 authentication, 385–386
 routing update authentication, 385–386
risk
 defined, 12
 residual risk, 12
rogue IPv6 devices, 377
root certificates, 95–96
Root Guard, 324, 325
routed firewalls, 413
routing
 all-routers multicast addresses, 368
 IPv4
 routing attacks, 374
 routing protocol security, 373
routing

IPv6, 370–372
 routing attacks, 374
 routing protocol security, 373
router access authentication, 342–343
router-on-a-stick, 316–317
RRI, site-to-site VPN configurations, 509
secure routing protocols, 379, 383
site-to-site VPN configurations, 479
debug commands, 496–502
DMVPN, 486–489
FlexVPN, 492–496, 499–501
GETVPN, 489–492
GRE over IPsec, 482–484
IOS/IOS-XE devices, 479–482
mGRE tunnels, 486
R1 configurations, 480–481
R2 configurations, 481–482
show commands, 496–502
topologies, 480
troubleshooting IPsec tunnels, 496–502
tunnel interfaces, 482, 484–486
TACACS+, debugging in routers, 199–200
troubleshooting, AAA with CLI, 353–356
update authentication
 BGP, 386–387
 RIP, 385–386
VLAN, inter-VLAN routing, 316–317
RPC (Remote Procedure Calls), 145
RPF (Reverse Path Forwarding), Unicast RPF, 380
RRI (Reverse Route Injection), site-to-site VPN configurations, 509
RSA (Rivest-Shamir-Adleman), 83, 93–94
rsa-signatures. See digital signatures
RSTP (Rapid Spanning Tree Protocol), 321–322
rule-based access control, 169

S

SaaS (Software as a Service), 48, 251–256, 552
same-security-traffic permit inter-interface command, 412
SAML (Security Assertion Markup Language), 159, 165
SamSam, 23
sandboxes
 malware analysis, 29
 ThreatGrid, 29
SAST (Static Application Security Testing), 572–573
SCADA preprocessors, 451
scalability, NetFlow, 269
SCEP (Simple Certificate Enrollment Protocol), 99
scripting
 script kiddies, 13
 XSS, 32
Scrum framework, agile development methodology (cloud computing), 554–555
SCTP (Stream Control Transmission Protocol), 241
SDL (Secure Development Life Cycle), 70–71
SDLC (Secure Development Life Cycle), 555
SDN (Software-Defined Networking), 108–109
 ACI, 110–112
 APIC, 110, 111–112
 Contiv, 120
controllers, 110
DNA
architecture of, 121
policies, 123–127
DNAC, 121–124
API, 130, 132
Assurance solution, 128–129
multivendor support, 132
Security solution, 132
micro-segmentation, 115–116, 120
network overlays, 112–114
Neutron, 117
northbound API, 118
NVF, 118
architecture of, 119
NVF MANO, 119–120
OPNFV, 118, 119
ODL, 117–118
open-source initiatives, 117–118
OVN, 117
OVS, 110, 117
OVSDB, 110, 117
southbound API, 118
VTEP, 110–111
VXLAN, 110, 112–114
SD-WAN configurations, ZBFW, 411–412
search routines, 17
searchsploits, 10–11
secure routing protocols, control plane (NFP), 379
secure system files, management plane (NFP), 341
security contexts, firewalls, 414
security intelligence, updating, 457–458
security labels, authorization, 167
security passwords min-length command, 341
security plans, IPv6, 372
security policies, IPv4/IPv6, 373
Security Score (Tetration), 595
security-software disablers, 19
Security solution, DNAC, 132
security zones, 406–407
segmentation (networks), 285
application-based segmentation, 288–289
data-driven segmentation, 286–288
ISE, 290–291
micro-segmentation, 289–290
SGT assignments/deployments, 294
SXP, 292–294
SEI, CERT SEI, 72
SeND (Secure Neighbor Discovery), IPv6, 377
SenderBase, 622
sensors, networks as, 226–227
separation of duties, 155
sequence numbers (TCP), 25
serial numbers
digital certificates, 97
root certificates, 95
serverless cloud computing, 559
servers (PGP key), 93
service timestamps, syslog, 363
session
sessions
flow versus, 229
hijacking, 34, 50
riding, cloud computing, 50
sniffing, 34
token predictions, 34
SGACL (Security Group-based ACL), 181
SGT (Security Group Tags), 188, 294
SHA (Secure Hash Algorithm)
checksums, 85
HMAC, 86
SHA512 checksum, 84
shasum Linux command, 85
vulnerabilities, 85–86
sharing information/coordination, incident response, 64
shortcuts, IPv6 addresses, 367
show commands
IPsec tunnels, troubleshooting, 496–502
site-to-site VPN router configurations, 496–502
show crypto ikev2 sa command, 498
show crypto ikev2 sa detailed command, 498
show crypto ikev2 sa session command, 498–499
show crypto isakmp sa command, 498
show flow exporter command, 281
show flow monitor command, 279
show flow monitor name NY-ASR-FLOW-MON-1 cache record format command, 281–282
show flow record command, 278
show interface trunk command, 314
show interfaces Gi0/2 switchport command, 313, 314–315
show ip cef output command, 379–380
show ipv6 route command, 372
show monitor event-trace crypto ikev2 command, 501
show monitor event-trace crypto ikev2 error all command, 502
show policy-map control-plane command, 380
show running-config flow exporter command, 281
show running-config flow monitor command, 279–280
show running-config flow record command, 278
show vlan brief command, 312
show vlan id command, 312–313
show-access list command, 435
shrinkwrap software, vulnerabilities, 9
shutdowns (four-step), TCP, 25
side-channel attacks, cloud computing, 51
SIG (Security Internet Gateway), 578–580
signatures (digital), 86–89
digital certificates, 97
DSA, 84
RSA, 93–94
single root CA, 101
single-factor authentication, 47, 159, 341
SIP preprocessors, 451
site-to-site VPN, 468–469
ASA firewall configurations, 502–503
bypass NAT, 508–509
crypto maps, 506–508
fragmentation, 510–511
IPsec policies, 505–506
ISAKMP, 503–504
management access, 510
NAT-T, 510
OSPF over IPsec, 509
PFS, 509
traffic-filtering, 503–508
tunnel default gateways, 510
tunnel groups, 504–505
FTD, 541–543
NetFlow deployment scenario, 248–249
router configurations, 479
debug commands, 496–502
DMVPN, 486–489
FlexVPN, 492–496, 499–501
GETVPN, 489–492
GRE over IPsec, 482–484
IOS/IOS-XE devices, 479–482
mGRE tunnels, 486
R1 configurations, 480–481
R2 configurations, 481–482
show commands, 496–502
topologies, 480
troubleshooting IPsec tunnels, 496–502
tunnel interfaces, 482, 484–486
sizing ISE distributed deployments, 214
SKEYID, 472
SLA (Service Level Agreements), 49
smartcards, 158
SMC (Stealthwatch Management Console), 250
SMS messages, Trojans, 21
SMTF (Single-Mode Transparent Firewalls), 414–416
SMTP (Simple Mail Transfer Protocol)
ACL and SMTP traffic, 432–433
ESA, 623
preprocessors, 451
sniffing attacks, IPv4/IPv6, 374
SNMP, management plane (NFP), 335
SOAP (Simple Object Access Protocol), 38, 136, 137
SOCKS proxies, 607–608
Sodinokibi, 23
software
assurance tools/methods, 572–573
DAST, 572–573
Findsecbugs, 572–573
fuzz testing (fuzzing), 573
open source software, vulnerabilities, 40
SAST, 572–573
shrinkwrap software, vulnerabilities, 9
SonarQube, 573
updates, 458
vulnerabilities
authentication-based vulnerabilities, 32–35
buffer overflows, 39
cookie manipulation attacks, 37–38
CVE, 30
injection vulnerabilities, 30–32
NVD, 30
open source software, 40
OWASP Top 10 list, 40
race conditions, 38
ret2libc attacks, 39
unprotected API, 38–39
XSRF, 37
XSS, 35–37
solicited-node multicast addresses, IPv6, 369
SonarQube, 573
SOP (Standard Operating Procedures), 60–61
southbound API, 118
SP (Special Publication)
500–292, 48, 552
800 Series, 7
800–52 revision 2, 91
800–61, 56, 61
800–61 revision 2, 55, 60, 62–63, 231
800–63B, 157
800–83, 55
800–86, 55
800–145, 47–48
1800 Series, 8
sparse infections, 17
SPD (Selective Packet Discard), 337
Spero, 454, 650
SPF (Sender Policy Framework), 583, 623
spine nodes/switches, 111
split tunneling, AnyConnect Secure Mobility, 528–529
spoke configurations, DMVPN, 488–489
spoofing addresses, IDS/IPS, 58
spoofing attacks
 ARP spoofing, 330, 338
data plane (NFP), 338
IPv4, 374
IPv6, 374
Spora, 23
spyware, 16, 26
 advertising, 26
droppers, 26
surveillance, 26
SQL injection, cloud computing, 50
SQLi (SQL injection), 30, 31–32
 blind (inferential) SQL injection, 32
 example of, 31
 in-band SQL injection, 32
 out-of-band SQL injection, 32
 queries, 32
 SQL statements, 30–31
SRU (Snort Rules Updates), 458
SSH (Secure Shell), 360–362, 451
SSL (Secure Socket Layer), 91
 preprocessors, 451
VPN, 476–479
 application access, 524–525
 client-based remote access SSL VPN, 524–526
 configurations, 516–518
 enabling, 522–523
 group policies, 518–519
 tunnel policies, 518–519
 tunnel groups, 519–520
 user authentication, 520–522
 Webtype ACL, 523–524
SSO (Single Sign-On) applications, 164–167
 Duo Security, 166
 SAML, 159
stacks (dual), IPv6, 376
standard ACL, 430, 435–436
state-sponsored/government threats, 13
static malware analysis, 27–28, 29
 BinText, 27
edb, 27
Ghidra, 28
IDA Pro, 27
OllyDbg, 28
UPX, 27
static NAT and ASA, 438, 441
static PAT and ASA, 441
stealth AnyConnect, posture assessments, 193
Stealthwatch, 132, 230–231, 243, 250
 components of, 250–251
 flow licenses, 250
 Flow Sensor, 233
 FlowCollector, 250
 FlowReplicator, 251
 FlowSensor, 251
 on-premises appliances, 256–259
 SMC, 250
 Stealthwatch Cloud, 251–256, 590
 threat hunting, 258–261
STIX (Structured Threat Information Expression), 15, 455
storage (data), Trojans, 20
temporal agents, posture assessments

stored (persistent) XSS attacks, 36
Storm, 13
Storm Control, 324
STP (Spanning Tree Protocol), 317–318
 annotations, 318–320
 ports
 new ports, 321
 port states, 321
Root Guard, 325
RSTP, configurations, 321–322
 time until forwarding, 321–322
 verification, 318–320
stream ciphers, 82
Stuxnet, 12
subjects, digital certificates, 97
subordinate CA, 101
substitution method, ciphers, 81
Sun RPC preprocessors, 450
surveillance, spyware, 26
Swagger (OpenAPI), 39, 137
switches
 leaf switches, 110–111
 ToR switches, 111
SXP (Scalable Group Tag Exchange Protocol), 292–294
symmetric encryption algorithms, 82–83
SYN packets, 25
syslog
 configurations, 362–363
 logging files, 345–346
 management plane (NFP), 335
 service timestamps, 363
 severity levels, 346
sysopt connection permit-vpn command, 508
system root CA certificates, 88–89

T

tabletop exercises/playbooks, incident response, 63–64
TACACS+ (Terminal Access Control Access Control System Plus), 174–176
 access configuration, 196–199, 200–202
debugging, 199–200
Talos, 458
 AMP and, 453
e-mail security, 582
TAN grabbers, 19
TAXII (Trusted Automated EXchange of Indicator Information), 15, 455
TC-NAC, CoA, 193
TCP (Transmission Control Protocol)
 ACK packets, 25
 acknowledgements, 25
 control information exchanges, 24
 covert communication, 24–25
 four-step shutdowns, 25
 process of, 24–25
 sequence numbers, 25
 SYN packets, 25
 TCP Intercept, 443
tree-step handshakes, 24
Teardrop, 13
Telnet
 encrypted management protocols, 344–345
 FTP and Telnet preprocessors, 450
templates (IPFIX), 238
 example of, 240
 option templates, 241
 structure of, 239–240
temporal agents, posture assessments, 192
terminal monitor command, 199
terrorist groups, 13
test aaa command, 356
testing
 fuzz testing (fuzzing), 573
 Pearson Cert Practice Test engine, 659
 penetration testing, CSP, 575–577
 XSS, 37
TETRA, AMP for Endpoints, 650
Tetration, 593–594
 ADM, 594
 connectors, 595
 Forensics feature, 594
 Security Dashboard, 594–595
 Security Score, 595
 Vulnerability Dashboard, 595–596
Threat Grid, 29, 452–453, 455–456
threat hunting, NetFlow, 231–236
threats
 catastrophic damage, 12
 covert communication, 23–25
 CTA, 262–268
 cyberattacks, 12
 cybersecurity threats, defined, 9
 DDoS attacks, 13
 defined, 12
 disclosure of confidential information, 12–13
 DoS attacks, 13
 hacker attacks, 12
 hacktivists, 13
 IPv4 common threats, 373–374
 IPv6 common threats, 373–374
 IRP, 29
 keyloggers, 25–26
 Layer 2 security, 322–323
malware, 12
 distribution types, 22
 dynamic analysis, 27–29
 payloads, 17–18
 static analysis, 27–29
 transmission methods, 16–17
Mariposa, 13
natural disasters, 12
Ping of Death, 13
ransomware (data hiding), 19, 23
spyware, 16, 26–27
Stealthwatch threat hunting, 258–261
Storm, 13
Stuxnet, 12
Teardrop, 13
threat actors
 crackers, 13
 defined, 13–14
 hackers, 13–14
 organized crime, 13
 script kiddies, 13
 state-sponsored/government threats, 13
 terrorist groups, 13
threat detection preprocessors, 451
threat intelligence
 CybOX, 15
 defined, 14
 OpenC2, 15
 OpenIOC, 15
 process of, 14
 standards, 14–15
 STIX, 15, 455
 TAXII, 15, 455
 updating, 457–458
Threat Response, 654–655
Trojans

communication methods, 19
defined, 18
effects of, 22
goals of, 20
infection mechanisms, 20–21
ports, 19
types of, 18–19

viruses, 12, 16
components of, 17–18
transmission methods, 16–17
types of, 16–17

weather-related threats, 12
worms, 16
transmission methods, 16–17
types of, 16–17
three-step handshakes (TCP), 24
through-the-box traffic filtering, 431

thumbprint algorithms
digital certificates, 98
root certificates, 96
time until forwarding, STP, 321–322
timers (NetFlow), 284–285
timestamps (service), syslog, 363
TLS (Transport Layer Security), 91

TOCTOU attacks. See race conditions
tokens, session token predictions, 34
ToR (Top-of-Rack) switches, 111
to-the-box traffic filtering, 434–435

TPS security, 71
tracking IPv6 devices, 377
traffic copy policy (DNA), 127
traffic engineering, NetFlow, 236

traffic-filtering
ASA, 396–397
through-the-box traffic filtering, 431
to-the-box traffic filtering, 434–435
training, cloud computing, 49

transform sets, 479
transmission methods of malware, 16–17

transparent firewalls, 413–414
MMTF, 416
SMTF, 414–416
transparent mode (WSA), 608–609
transposition method, ciphers, 81
trigger routines, 18

Trojans

APT, 20
backdoors, 19
browser/brower extension vulnerabilities, 21
communication methods, 19
credit card data, 20
data hiding (ransomware), 19
data storage, 20
defined, 18
DoS attacks, 19
e-banking, 19
effects of, 22
electronic/digital wallets, 20
email attachments, 21
freeware, 21
FTP Trojans, 19
goals of, 20
IM, 20

impersonated mobile apps, 21
infection mechanisms, 20–21
insider information, 20
IRC, 21
P2P networks, 20
passwords, 20
physical access, 21
poison apple attacks/USB key drops, 19
ports, 19
proxy Trojans, 19
RAT, 18
security-software disablers, 19
SMS messages, 21
TAN grabbers, 19
types of, 18–19
watering holes, 21
Zeus, 19
troubleshooting
AAA for Cisco routers, 353–356
IPsec tunnels, site-to-site VPN configurations, 496–502
remote-access VPN, 540
true positives/negatives, incident response, 57–58
trunking, VLAN, 313–314
802.1Q trunking, 313–315
broadcast frames, 315
interfaces as trunk ports, 313–315
native VLAN, 315–316
port negotiations, 316
show interface trunk command, 314
show interfaces Gi0/2 switchport command, 314–315
TrustSec, 190–192
ACI integration, 298–301
active policy enforcement, 295–298
monitor mode deployments, 294–295
SGT, 188
TTL (Time-To-Live), IPv6, 380
tunneling
AnyConnect Secure Mobility, 528–529
application layer tunneling, 25
client-based remote access SSL VPN, 525–526
IPv6, 376, 377
remote-access VPN ASA configurations, 513–514
site-to-site VPN
ASA firewall configurations, 504–505
VPN router configurations, tunnel interfaces, 482, 484–486
split tunneling, 528–529
SSL VPN, 519–520
tunnel default gateways, site-to-site VPN configurations, 510
tunnel mode command, 485
tunnel mode gre multipoint command, 486
UDP tunneling, 25
VTI, 485
UDP (User Datagram Protocol)
(User Datagram Protocol)
covert communication, 25
dnscat, 25
flow exporters, 280
IKE, 472
management plane (NFP), 335
tunneling, 25
VLAN, 113
Umbrella, 167, 577
architecture of, 577–578
Investigate, 580–582
SIG, 578–580
Stealthwatch Cloud, 256
unauthenticated/authenticated guess access, 188
unauthorized access, IPv4/IPv6, 374
unicast addresses, IPv6, 368–369
Unicast RPF (Reverse Path Forwarding), 380
UNIX, Duo Security, 161–162
unprotected API, 38–39
unreachables (ICMP), 380
updates
 exams, 686–687
 Firepower, 458
 geolocation updates, 458
 routing update authentication
 BGP, 386–387
 RIP, 385–386
 security intelligence, 457–458
 software, 458
 SRU, 458
 threat intelligence, 457–458
UPX (Ultimate Packer for Executables), 27
URL, database record retrieval, 35
USB key drops/poison apple attacks, 19
US-CERT, 71, 72
user access layer, NetFlow deployment scenario, 243
user accounts, parser views, 360
user authentication, 342
 management plane (NFP), 339, 349–353
 SSL VPN, 520–522
validation, digital certificates, 97
validity dates, root certificates, 96
variables
 FMC, 449
 NGIPS, 449–450
VDB (Vulnerability Database) updates, 458
verification
 CoPP configurations, 382
 data integrity, hashes, 84–86
digital signatures, 87
Kubernetes versions, 567
STP, 318–320
verify md5 command, 84
VERIS community database, examples of data breaches, 156
viability (long-term), cloud computing, 50
virtual “sub” interfaces, inter-VLAN routing, 316–317
virtualization, NVF, 118
 architecture of, 119
 NVF MANO, 119–120
 OPNFV, 118, 119
viruses, 12, 16
 antidetection routines, 18
 clusters, 16
 components of, 17–18
 fast infections, 17
 hoaxes, 17
 infection routines, 18
 macro infections, 16
 multipartite viruses, 16
 NATAS virus, 16
 payloads, 18
 polymorphic viruses, 17
 search routines, 17
 sparse infections, 17
 transmission methods, 16–17
 trigger routines, 18
 types of, 16–17
VirusTotal website, 29
visibility (networks), 224–225
 AVC, 241
 application recognition, 241–242
 metrics collection/exportation, 242
CTA, 262–268
enforcers, networks as, 226–227
ETA, 262
five-tuples, 227
flow
defined, 227
sessions versus, 229
IPFIX, 237–238
architecture of, 238
Flexible NetFlow and IPFIX export format, 283
mediators, 239
SCTP, 241
templates, 238, 239–241
NetFlow, 225–227, 229
anomaly detection, 229–231
best practices, 268–269
caches, 228–229
collection considerations, 268–269
configurations, 269–270
data leak detection/prevention, 231
DDoS attack mitigation, 229–231
deployment scenarios, 242–249
Flexible NetFlow, 228, 270–275, 283
fps, determining, 269
incident response, 231–236
IP accounting versus, 229
network planning, 236
network security, 229
NSEL, 248
NX-OS configurations, 283–285
PDU, 228
random-sampled NetFlow, 269
role of, 229
scalability, 269
threat hunting, 231–236
timers, 284–285
traffic engineering, 236
versions of, 237
NVM, 249
sensors, networks as, 226–227
Stealthwatch, 230–231, 243, 250
components of, 250–251
Flow Sensor, 233
on-premises appliances, 256–259
Stealthwatch Cloud, 251–256
threat hunting, 258–261
VLAN (Virtual Local Area Networks), 310–311
802.1Q trunking, 313–315
ACL, 181
creating, 311
defined, 311
do not allow negotiations, 323
deﬁned, 311
elementary of, 311
inter-VLAN routing, 316
router-on-a-stick, 316–317
virtual “sub” interfaces, 316–317
native VLAN, trunking, 315–316
show interfaces Gi0/2 switchport command, 313
show vlan brief command, 312
show vlan id command, 312–313
STP, instances of, 321
switch ports, locking down, 323
trunking, 313–314
broadcast frames, 315
interfaces as trunk ports, 314
native VLAN, 315–316
port negotiations, 316
show interface trunk command, 314
show interfaces Gi0/2 switchport command, 314–315
VLAN 10 interface assignments, 312
VLAN 20 interface assignments, 312
VM (Virtual Machines)
dynamic malware analysis, 28–29
KVM and ISE, 182
WebSploit, 562
VMware ESXi and ISE, 182
VNID (VXLAN Network Identifiers), 113
VPN (Virtual Private Networks), 454
AnyConnect Secure Mobility, 478–479, 527–529
CoA, 195–196
DMVPN, 486
tunnel configurations, 487–488
NAT-T, 487
NHRP, 486–487
spoke configurations, 488–489
FlexVPN, 492–496, 499–501
GETVPN, 489–492
IPsec
IKE, 470–474
VPN, 499
RADIUS, 187
remote-access VPN, 468–469
ASA firewall configurations, 502–540
FTD, 530–531, 540
NetFlow deployment scenario, 248–249
Policy Wizard, 531–540
site-to-site VPN, 468–469
ASA firewall configurations, 502–511
FTD, 541–543
NetFlow deployment scenario, 248–249
router configurations, 479–502
SSL VPN, 476–479
application access, 524–525
client-based remote access SSL VPN, 524–526
configurations, 516–518
enabling, 522–523
group policies, 518–519
tunnel groups, 519–520
user authentication, 520–522
Webtype ACL, 523–524
VTEP (Virtual Tunnel Endpoint)
function, 110–111
VTI (Virtual-Tunnel Interfaces), 485
VTY lines, AAA method lists, 351–353
vulnerabilities
applications, 9
authentication-based vulnerabilities, 32–33
credential brute force attacks, 33–34
cryptographic algorithms, 33
default credentials, 34
insecure direct object reference vulnerabilities, 35
password cracking, 33–34
rainbow tables, 33–34
session hijacking, 34
WEP, 34
CVE, 9–10
CVSS, 67–71, 193, 595
defined, 9–10
hardware, 9
authentication-based vulnerabilities, 32–35
buffer overflows, 39
cookie manipulation attacks, 37–38
CVE, 30
injection vulnerabilities, 30–32
NVD, 30
OWASP Top 10 list, 40
race conditions, 38
ret2libc attacks, 39
unprotected API, 38–39
XSRF, 37
XSS, 35–37
injection vulnerabilities, 30
command injections, 32
HTML, 32
SQLi, 30–32
misconfigurations, 9
open source software, 40
OS, 9
SHA, 85–86
shrinkwrap software, 9
software vulnerabilities
 authentication-based vulnerabilities, 32–35
 buffer overflows, 39
 cookie manipulation attacks, 37–38
 CVE, 30
 injection vulnerabilities, 30–32
 NVD, 30
 OWASP Top 10 list, 40
 race conditions, 38
 ret2libc attacks, 39
 unprotected API, 38–39
 XSRF, 37
 XSS, 35–37

Tetration Vulnerability Dashboard, 595–596
VDB updates, 458
VXLAN (Virtual Extensible LAN), 110, 112–114, 120

W

W3 schools, 135
WADL (Web Application Description Language), 39, 137
wallets (electronic/digital), Trojans, 20
WannaCry, 23
waterfall development methodology (cloud computing), 552–553
watering holes, Trojans, 21
WCCP (Web Cache Communication Protocol), 608
ASA configurations, 609–610, 612
IP spoofing, 615
switch configurations, 610–612
web traffic redirection to WSA, 609–610, 612
weather-related threats, 12
web authentication, 187–188
WebEx, 167
web forms, XSS testing, 37
web proxy IP spoofing (WSA), 614–615
WebGoat, 31
WebSploit, 562
Webtype ACL, 431, 523–524
WEP, authentication-based vulnerabilities, 34
white hack hackers, 14
whitelists/blacklists (IP), 643–644
Wi-Fi, IoT, 54
WLAN (Wireless LAN), NetFlow deployment scenario, 244
worms, 16–17
WPAD (Web Proxy Auto-Discovery), 607
wrappers, malware distribution, 22
WSA (Web Security Appliance), 582, 604
 Content SMA, 624–628
 DNS, 607
 explicit forward mode, 606–608
 features of, 604–605
 policy configurations, 615–617
 proxies, 605–606
 reports, 617–619
 security services, 613–614
 SOCKS proxies, 607–608
 traffic redirection
 policy-based routing, 612–613
 WCCP, 609–610, 612
 transparent mode, 608–609
WCCP, 608
 ASA configurations, 609–610, 612
 IP spoofing, 615
 switch configurations, 610–612
 web traffic redirection to WSA, 609–610, 612
web proxy IP spoofing, 614–615
WPAD, 607
WSDL (Web Services Description Language), 39, 137

X
X.500 standards, directory services, 97
XMPP and pxGrid, 183
XSD documents, 38
XSRF (Cross-Site Request Forgery), 37
XSS (Cross-Site Scripting), 32, 35–36
 cloud computing, 50
 DOM-based attacks, 36
 examples of, 36
 finding vulnerabilities, 36–37
 reflected XSS attacks, 36
 stored (persistent) XSS attacks, 36
 testing, 37

Y - Z
YANG models, 139–140
ZBFW (Zone-Based Firewalls), 411–412
zero-day exploits, 10
zero-trust, 161–167, 571
Zeus, 19
Zigbee, IoT, 53
zombies, 230
zone access, IPv4/IPv6, 373
Z-Wave, 53