
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780135895757
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780135895757
https://plusone.google.com/share?url=http://www.informit.com/title/9780135895757
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780135895757
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780135895757/Free-Sample-Chapter

Quotes for Praise
The world of networking continues to advance, and the emerging possibilities enabled
by advancements like Kubernetes and Linux containers make keeping current on best
practices a necessity to fully maximize Cisco IOS-XE, IOS-XR, and NX-OS platforms. I
find this book to be an exceptionally insightful guide to understanding configuring, acti-
vating, orchestrating, and developing operational best practices for containerizing and
instantiating applications and network services. I recommend it highly, as it is written by
the engineers who have the best real-world experience of designing and troubleshooting
these architectures.

—Tom Berghoff, Senior Vice President, Customer Experience, Cisco Systems

Time-to-value realization for our customers is key to achieving their business outcomes
with our solutions. The book that Yogesh and Nagendra have written will allow our
customers to maximize their investment by leveraging Cisco solutions in a unique and
innovative way. The passion that Yogesh and Nagendra bring to this topic through this
book will jump off the page at you. Please enjoy this well-written book, as it will help to
ensure that you realize maximum value from the investments you have made in this Cisco
solution.

—Marc Holloman, Vice President, Customer Experience, Cisco Systems

With the introduction of software-defined networking (SDN), we knew that the way we
build and operate networks was never going to be the same. For the network to keep up
with the speed of business, major changes had to happen at every layer of the enterprise
stack. With this book, the reader will get an insider look at the innerworkings of the tech-
nologies enabling this change. Two experts in the field present solutions and technologies
for successful virtualization and orchestration of network resources and applications on
Cisco platforms. A must-read for every network technology participant in the digital
transformation journey.

—Hazim Dahir, Distinguished Engineer, Customer Experience, Cisco Systems

At last, a comprehensive overview of containerization in networking context. Written by
two of the foremost experts, this book is a must for every cloud architect and network
architect contemplating the usage of containerized apps on Cisco routers for on-board
computing-related use cases such as efficient network operations.

—Rajiv Asati, CTO/Distinguished Engineer, Customer Experience, Cisco Systems

To digitize and disrupt legacy business models, agile organizations require a flexible and
scalable infrastructure. Containers provide portability, protection, and design resiliency to
modern network infrastructures. Learn to leverage the power of containers on the Cisco
Systems platforms from two of its leading minds. As authors, patent developers, and prin-
ciple engineers at Cisco, Nagendra and Yogesh are uniquely qualified to explain how you,
too, can build, test, deploy, and manage application hosting on your Cisco-enabled infra-
structure. I rely on their expertise daily and, through this book, you will, too!

—�Chris Berriman, Senior Director, Customer Experience, Cisco Systems and author
of Networking Technologies, Fundamentals of Network Management and Cisco
Network Management Solutions

As society becomes more dependent on the benefits of the digital economy, enterprise
leaders need to be informed of the technological capabilities available to meet their cus-
tomers’ demand. In this book, two of the most prolific principal engineers and technolo-
gists at Cisco, Nagendra Kumar Nainar and Yogesh Ramdoss, provide a clear introduction
into one of the major innovations fundamental to the digital economy: cloud computing
and virtualization. The work is superb in content, covering the basics of container orches-
tration and networking from a technically agnostic perspective while progressing to show
the unique capabilities and benefits of using Cisco technology. For the leader responsible
for digital transformation, this book will provide actionable insights through real-world
scenarios and a future look to the possibilities ahead.

—Hector Acevedo, Senior Director, Customer Experience, Cisco Systems

Containers in Cisco
IOS-XE, IOS-XR, and
NX-OS: Orchestration
and Operation

Yogesh Ramdoss (CCIE No. 16183)
Nagendra Kumar Nainar

(CCIE No. 20987, CCDE No. 20190014)

Cisco Press
Hoboken, New Jersey

iv    Containers in Cisco IOS-XE, IOS-XR, and NX-OS: Orchestration and Operation

Containers in Cisco IOS-XE, IOS-XR, and NX-OS:
Orchestration and Operation
Yogesh Ramdoss (CCIE No. 16183)

Nagendra Kumar Nainar (CCIE No. 20987, CCDE No. 20190014)

Copyright© 2021 Cisco Systems, Inc.

Published by:
Cisco Press

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms, and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearson.com/permissions.

No patent liability is assumed with respect to the use of the information contained herein. Although
every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

ScoutAutomatedPrintCode

Library of Congress Control Number: 2020906738

ISBN-13: 978-0-13-589575-7

ISBN-10: 0-13-589575-8

Warning and Disclaimer
This book is designed to provide information about Cisco containers. Every effort has been made to make
this book as complete and as accurate as possible, but no warranty or fitness is implied.

The information is provided on an “as is” basis. The authors, Cisco Press, and Cisco Systems, Inc. shall have
neither liability nor responsibility to any person or entity with respect to any loss or damages arising from
the information contained in this book or from the use of the discs or programs that may accompany it.

The opinions expressed in this book belong to the author and are not necessarily those of Cisco
Systems, Inc.

Trademark Acknowledgments
All terms mentioned in this book that are known to be trademarks or service marks have been appropri-
ately capitalized. Cisco Press or Cisco Systems, Inc., cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

http://www.pearson.com/permissions

v

Special Sales
For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Feedback Information
At Cisco Press, our goal is to create in-depth technical books of the highest quality and value. Each book
is crafted with care and precision, undergoing rigorous development that involves the unique expertise of
members from the professional technical community.

Readers’ feedback is a natural continuation of this process. If you have any comments regarding how we
could improve the quality of this book, or otherwise alter it to better suit your needs, you can contact us
through email at feedback@ciscopress.com. Please make sure to include the book title and ISBN in your
message.

We greatly appreciate your assistance.

Editor-in-Chief: Mark Taub

Alliances Manager, Cisco Press: Arezou Gol

Director, ITP Product Management: Brett Bartow

Executive Editor: Nancy Davis

Managing Editor: Sandra Schroeder

Development Editor: Rick Kughen

Project Editor: Mandie Frank

Copy Editor: Gill Editorial Services

Technical Editors: Richard Furr; Rahul Nimbalkar

Editorial Assistant: Cindy Teeters

Designer: Chuti Prasertsith

Composition: codeMantra

Indexer: Erika Millen

Proofreader: Charlotte Kughen

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks,
go to this URL: www.cisco.com/go/trademarks. Third party trademarks mentioned are the property of their respective owners. The use of the word partner does

not imply a partnership relationship between Cisco and any other company. (1110R)

Americas Headquarters
Cisco Systems, Inc.
San Jose, CA

Asia Pacific Headquarters
Cisco Systems (USA) Pte. Ltd.
Singapore

Europe Headquarters
Cisco Systems International BV Amsterdam,
The Netherlands

Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco Website at www.cisco.com/go/offices.

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:international@pearsoned.com
mailto:feedback@ciscopress.com
http://www.cisco.com/go/offices
http://www.cisco.com/go/trademarks
http://www.cisco.com/go/trademarks
http://www.cisco.com/go/offices

vi    Containers in Cisco IOS-XE, IOS-XR, and NX-OS: Orchestration and Operation

Credits
Figure 1-5  Screenshot of Linux processor output © Canonical Ltd

“cloud computing is defined as a model for enabling convenient, on-demand network
access to a shared pool of configurable computing resources that can rapidly provisioned
and released with minimal management effort or service provider interaction.”  NISt

vii

About the Authors
Yogesh Ramdoss (CCIE No. 16183) is a principal engineer with the Cisco Customer
Experience (CX) organization focusing on data center technologies such as Nexus
switching platforms (standalone as well as VXLAN fabric), application-centric infrastruc-
ture (ACI), and hyperconverged infrastructure HyperFlex. Associated with Cisco since
2003, Yogesh is a distinguished speaker at Cisco Live, where he shares his knowledge
and educates customers and partners on data center platforms and technologies, telem-
etry, analytics, network programmability, and various troubleshooting and packet cap-
turing tools. He is a machine and behavior learning coinventor.

Nagendra Kumar Nainar (CCIE No. 20987, CCDE No. 20190014) is a principal engi-
neer with the Cisco Customer Experience (CX) organization (formerly TAC), focusing
on enterprise networking. He is the coinventor of more than 100 patent applications on
various cutting-edge technologies and the coarchitect for various recent technologies. He
has coauthored multiple Internet RFCs and IEEE papers. Serving as Technical Program
Committee (TPC) member for various IEEE and other international conferences, he is an
active speaker in various industry forums.

viii    Containers in Cisco IOS-XE, IOS-XR, and NX-OS: Orchestration and Operation

About the Technical Reviewers
Richard Furr, CCIE No. 9173 (R&S & SP), is a technical leader of the Cisco Customer
Experience (CX) organization, providing support for customers and TAC teams around
the world. Richard has authored and acted as a technical editor for several Cisco Press
publications. During the past 19 years, Richard has provided support to service provider,
enterprise, and data center environments resolving complex problems with routing pro-
tocols, MPLS, IP Multicast, IPv6, and QoS.

Rahul Nimbalkar is a technical leader with Cisco, where he has worked since 2001. He
has been working on LXC (guestshell, OAC) and Docker containers as well as virtualiza-
tion technologies on the Cisco NX-OS data center switches. Most recently he designed
and implemented Docker container support on the standalone NX-OS 9000 series and
has been working on the NX-OSv, the virtual machine version of the NX-OS switch.

ix

Dedications
Yogesh: I dedicate this book to my parents, Ramdoss Rajagopal and Bhavani Ramdoss,
who have given me the best things in the world and taught me to do the right things to
the people around us. I further dedicate this book to my wife, Vaishnavi, and our chil-
dren, Janani and Karthik, for their patience and support throughout the authoring pro-
cess. Finally, I want to dedicate this book to my ex-manager Mike Stallings, for several
years of his support and encouragement to start this project.

Nagendra: This book is dedicated to my mother and father for their encouragement
and support throughout my life. I am what I am today because of the guidance and sup-
port from you. This book is further dedicated to my wife, Lavanya, and my daughter,
Ananyaa, who are the driving factors of my life. Lavanya, your patience and understand-
ing are a great support for me to do things beyond my capacity. Ananyaa, I love you to
the core. This book is also dedicated to my ex-manager, Mike Stallings. Mike, you are
one of the greatest managers, and I am glad that I had an opportunity to work with you.

x    Containers in Cisco IOS-XE, IOS-XR, and NX-OS: Orchestration and Operation

Acknowledgments
Yogesh: My heartfelt thanks to my manager Hector Acevedo for his trust and support.
I am thankful to my coauthor, Nagendra Kumar Nainar, for his guidance, and to my
technical reviewers, Richard Furr and Rahul Nimbalkar, for providing valuable comments
and feedback. I would like to extend my thanks to Christopher Hart for helping me
build, test, and validate deployment scenarios and use cases for this book. Last but not
least, I would like to thank Carlos Pignataro, who has been mentoring me and providing
career guidance for so many years.

Nagendra: First, I would like to thank my mentor, Carlos Pignataro, for his mentoring and
career guidance. Your guidance and advice always played a key role in my career. I would
like to thank my manager, Chris Berriman, for his support and flexibility. Your trust in
me and the flexibility you offer is encouraging, and it motivates me to explore different
opportunities.

I would like to thank my coauthor and good friend, Yogesh Ramdoss, who completed
this book on time. I would like to thank Richard Furr and Rahul Nimbalkar for the high-
quality technical review performed on our writeup. You improved the quality of the con-
tent.

I also would like to thank Akshar Sharma, who helped me significantly with various XR
content, and Akram Sheriff, who helped with IoT-related content.

I would like to thank Ajitha Buvanachandran for the tremendous help in reviewing my
work. I would like to thank Poornima Nandakumar and Satish Manchana for helping me
with various virtualization use cases.

xi

Contents at a Glance

	 Foreword   xxv

	 Introduction  xxvii

Part I	 Virtualization and Containers

Chapter 1	 Introduction to Virtualization   1

Chapter 2	 Virtualization and Cisco   23

Chapter 3	 Container Orchestration and Management   61

Chapter 4	 Container Networking Concepts   97

Part II	 Container Deployment and Operation in Cisco Products

Chapter 5	 Container Orchestration in Cisco IOS-XE Platforms   139

Chapter 6	 Container Orchestration in Cisco IOS-XR Platforms   189

Chapter 7	 Container Orchestration in Cisco NX-OS Platforms   235

Chapter 8	 Application Developers’ Tools and Resources   291

Chapter 9	 Container Deployment Use Cases   361

Chapter 10	 Current NFV Offering and Future Trends in Containers   405

	 Index   425

xii    Containers in Cisco IOS-XE, IOS-XR, and NX-OS: Orchestration and Operation

Contents
Foreword   xxv

Introduction   xxvii

Part I 	 Virtualization and Containers

Chapter 1	 Introduction to Virtualization   1

History of Computer Evolution   1

History of Virtualization   2

Motivation and Business Drivers for Virtualization   3

Resource Optimization   4

Resilience   5

Simplicity and Cost Optimization   5

Virtualization—Architecture Definition and Types   6

Architecture and Components   6

Types of Virtualization   8

Server Virtualization   8

Network Virtualization   10

Storage Virtualization   12

Connecting the Dots with Cloud Computing   13

Computing Virtualization Elements and Techniques   14

Virtual Machines   14

Containers   15

Serverless Computing   17

Virtualization Scale and Design Consideration   18

High Availability   18

Workload Distribution   19

Resource Utilization   19

Multitenancy in Virtualization   19

Summary   20

References in This Chapter   21

Chapter 2	 Virtualization and Cisco   23

History of Virtualization in Cisco   23

Network Infrastructure Virtualization   23

Network Device Virtualization   26

Virtualization in Enterprise and Service Provider Environments   30

Enterprise   30

Service Provider   31

Contents    xiii

The Era of Software-Defined Networking   32

SDN Enablers   33

Control Plane Virtualization   33

SDN Controllers   34

OpenFlow   34

Open Source Controllers   35

APIs and Programmability   36

API   36

Programmability   38

Cisco Proprietary SDN Controllers   42

APIC   42

APIC-EM   44

DNA Center   45

Modern Network Design with SDN and NFV   47

Elements in Network Function Virtualization   48

Orchestration and Deployment of Virtual Network Services   48

Technology Trends Built on SDN   51

Internet of Things (IoT)   51

Cisco’s IoT Platform for Industries   52

The Cisco IoT Platform for Service Providers   53

A Use Case for IoT with SDN: Manufacturing   55

Intent-Based Networking (IBN)   57

Summary   58

References in This Chapter   59

Chapter 3	 Container Orchestration and Management   61

Introduction to the Cloud-Native Reference Model   61

Application Development Framework   62

Automated Orchestration and Management   62

Container Runtime and Provisioning   63

The Journey from Virtual Network Function (VNF) to
Cloud Native Function (CNF)   63

Container Deployment and Orchestration Overview   65

Linux Containers (LXC)   66

Cisco Service Containers   67

Cisco Application Hosting Framework   69

Cisco Guest Shell   70

xiv    Containers in Cisco IOS-XE, IOS-XR, and NX-OS: Orchestration and Operation

Cisco Open Agent Containers   71

Docker   75

Kubernetes   79

Container Deployment and Orchestration   81

Orchestrating and Managing Containers Using LXC   81

Orchestrating and Managing Containers Using Docker   84

Docker Daemon Status Verification   85

Docker Client   86

Getting Docker Images   87

Running the Container   89

Orchestrating and Managing Containers Using Kubernetes   91

Running Docker Daemon   91

Enabling Kubernetes Master   92

Enabling Nexus 9000 Switch as Kubernetes Worker Node   93

Deploying Workload Using Kubernetes   94

Summary   95

References   95

Chapter 4	 Container Networking Concepts   97

Container Networking—Introduction and Essentials   97

Application to Host   98

Application to Application   98

Application to External Network   98

Container Networking   99

Namespace to External Network   100

Namespace to Namespace   102

Key Points   104

Container Network Models and Interfaces   105

Cisco Native App Hosting Network Model   106

Shared Network Mode   106

Dedicated Network Mode   108

Docker Networking—Container Network Model   111

None Networking   113

Host Networking   113

Bridge Networking   114

Overlay Networking   114

Macvlan   114

Kubernetes Container Network Interface (CNI) Model   114

Setting Up Container Networking   115

Native App Hosting—Shared Networking Configuration   115

Cisco IOS-XE Configuration   115

Cisco IOS-XR Configuration   117

Cisco Nexus OS Configuration   122

Support Matrix   125

Native App Hosting—Dedicated Networking Configuration   125

Cisco IOS XE Configuration   125

Routing Mode—Numbered   126

Routing Mode—Unnumbered   128

Layer 2 Mode   129

Cisco IOS XR and Nexus OS   131

Docker Network Configuration   131

None Networking   131

Host Network   132

Bridge Networking   134

Kubernetes   136

Summary   136

References   137

Part II	 Container Deployment and Operation in Cisco Products

Chapter 5	 Container Orchestration in Cisco IOS-XE Platforms   139

Cisco IOS-XE Architecture   139

Brief History of IOS-XE   140

Architecture Components and Functions   141

Switching Platforms   142

Routing Platforms   144

IOS-XE Architecture: Application Hosting   146

libvirt and Virtualization Manager   146

IOx Overview   148

IOx Applications   149

Application Types   150

Resource Requirements   153

Memory and Storage Requirements   153

VirtualPortGroup   154

Virtual NIC (vNIC)   155

Contents    xv

xvi    Containers in Cisco IOS-XE, IOS-XR, and NX-OS: Orchestration and Operation

Application Deployment Workflow and Operation States   156

Developing and Hosting Applications   157

LXC-Based Guest Shell Container   157

Activating IOx   157

Setting Up Network Configuration   157

Activating the Guest Shell Container   159

Developing PaaS-Style Applications and Hosting   161

Supported Platforms   161

Setting Up the Development Environment   161

Developing a Python Application   161

Creating a Docker Image   162

Creating an IOx Package Using YAML   162

Installing, Activating, and Running the Application   165

Developing Virtual Machine–Based Application and Hosting   166

Setting Up an Application Development Environment   167

Building the Virtual Machine File System   169

Build an IOx Package Using YAML   170

Installing, Activating, and Running the Application   172

Developing and Hosting a Docker-Style Application   175

Setting Up Docker Toolchain   175

Caveats and Restrictions   176

Development Workflow   177

Images and Package Repository   177

Develop Python Application   178

Build Docker Image   179

Building an IOx Application Package Using YAML   180

Installing, Activating, and Running the Application   182

Native Docker Application Hosting in Catalyst 9300   182

Workflow 1: Building and Exporting a Docker Image   182

Workflow 2: Performing a Docker Pull and Export   184

Deploying Native Docker Applications   184

Docker Container Networking   185

Licensing Requirements   185

Summary    186

References   187

Chapter 6	 Container Orchestration in Cisco IOS-XR Platforms   189

Cisco IOS-XR Architecture   189

Architecture and Software Evolution   190

Application Hosting Architecture   192

Kernel Interface Module (KIM)   193

Network Namespaces   195

Docker Hosting Architecture   196

Hosting Environment Readiness   198

Storage   198

CPU Share   199

Memory   200

Types of Application Hosting in Cisco XR Platform   201

Native Application Hosting   201

Native Hosting from an Existing RPM File   202

Building an RPM File for Native Hosting   206

LXC-Based Application Hosting   209

Network Configuration and Verification   216

Docker-Based Application Hosting   217

Docker Images and Registry   218

Loading from Public Registry   218

Loading from Local Registry   220

Loading Manually to Local Store   222

Container Deployment Workflow   223

Network Configuration and Verification   224

Network Reachability Configuration   224

Name Resolution Configuration   224

Network Proxy Configuration   225

Application Hosting in VRF Namespace   226

VRF Namespace   226

Application Hosting in VRF Namespace Using LXC   229

Container Management   232

Persistent Application Deployment   232

Summary   234

References  234

Chapter 7	 Container Orchestration in Cisco NX-OS Platforms   235

Cisco NX-OS Software Architecture   235

NX-OS Foundation   235

Contents    xvii

xviii    Containers in Cisco IOS-XE, IOS-XR, and NX-OS: Orchestration and Operation

NX-OS Modular Software Architecture   236

Fault Detection and Recovery   237

More Benefits of NX-OS   238

Hosting Environment Readiness   239

Guest Shell   239

Platforms Support   239

Platform Resource Requirements   240

Bash   240

LXC-based Open Agent Container (OAC)   240

Platforms Supported   241

Platform Resource Requirements   241

Container Infrastructure Configuration and Instantiation   242

Guest Shell   242

Guest Shell OVA File   242

Deployment Model and Workflow   243

Accessing Guest Shell   245

Accessing Guest Shell via SSH   246

Guest Shell Networking Setup and Verification   248

Installation and Verification of Applications   253

Custom Python Application   253

Python API–Based Application   254

Bash   256

Enabling Bash   256

Accessing Bash from NX-OS   257

Accessing Bash via SSH   258

Docker Containers   260

Docker Client   261

Docker Host   261

Starting Docker Daemon   263

Instantiating a Docker Container with Alpine Image   263

Managing Docker Container   266

Orchestrating Docker Containers Using Kubernetes   268

Orchestrating Docker Containers in a Node from the K8s Master   273

Open Agent Container (OAC)   276

OAC Deployment Model and Workflow   277

Accessing OAC via the Console   280

OAC Networking Setup and Verification   280

Management and Orchestration of OAC   284

Installation and Verification of Applications   285

Custom Python Application   285

Application Using Python APIs   287

Package Management   288

Summary   288

References   289

Chapter 8	 Application Developers’ Tools and Resources   291

Cisco Development Tool Kits and Resources   291

Nexus Software Development Kit (NX-SDK)   291

NX-SDK Release Versions   292

NX-SDK Deployment Modes   293

NX-SDK Installation and Activation   293

Python APIs—IOS-XE / NX-OS   297

Python API in NX-OS   297

Python API in IOS-XE   302

Nexus API (NX-API)   305

Transport   306

Message Formats   306

Security   306

Enabling NX-API   306

Data Management Engine and Managed Objects   309

NX-API REST   310

RESTCONF, NETCONF, and YANG   318

Enabling RESTCONF Agent in IOS-XE   320

Using a RESTCONF Agent in IOS-XE   321

Enabling RESTCONF Agent in NX-OS   323

Using the RESTCONF Agent in NX-OS   325

Enabling NETCONF Agent in IOS-XE   327

Using the NETCONF Agent in IOS-XE   329

Enabling NETCONF Agent in IOS-XR   331

Using NETCONF Agent in IOS-XR   332

Enabling the NETCONF Agent in NX-OS   333

Using NETCONF Agent in NX-OS   333

Contents    xix

xx    Containers in Cisco IOS-XE, IOS-XR, and NX-OS: Orchestration and Operation

Open-Source and Commercial Tools   336

Linx   336

Apache NetBeans   337

GitHub   337

Atom   338

AWS Cloud9   338

Zend Studio   339

Eclipse   339

Bootstrap   340

Bitbucket   340

Node.js   341

Building and Deploying Container Images   341

Build Docker Images   341

Dockerfile   342

Docker Build   343

Docker Run   343

Publish Docker Images—Docker Hub   344

Docker Hub Account   344

Docker Hub Repository   344

Docker Hub Publish   344

Docker Pull   345

Docker Registry   345

Configuration and Application Management Tools   345

Ansible   346

Puppet   346

Chef   346

Ansible and IOS-XE   347

Hosts File   347

Authentication   348

Sample Playbook   348

Running a Playbook   349

NETCONF Operations with Ansible   350

Puppet and NX-OS   351

Installing and Activating the Puppet Agent   351

Using Puppet Agent   353

Chef and IOS-XR   354

Creating a Chef Cookbook with Recipes   354

Installing and Activating Chef Client   355

Summary   357

References   357

Chapter 9	 Container Deployment Use Cases   361

General Use Cases for Enterprise, Service Provider, and Data Center
Networks   362

Inventory Management   362

Hardware and Software Stability Check   362

Control Plane Health Check   362

Resource Usage and Scalability Check   362

Configuration Consistency Check   362

Traffic Profiling and Top Talkers   363

Monitor Operational Data to Detect Failures   363

Build Infrastructure for Proof-of-Concept and Testing Purposes   363

Create and Deploy DHCP Docker Container   363

Configure the Catalyst Switch for Application Hosting   363

Create Docker Containers   365

Install and Activate DHCP Docker Container in Catalyst 9000   368

Create and Deploy DNS Docker Container   369

Prepare to Create DNS Docker Container   370

Create DNS Docker Containers   373

Install and Activate DNS Docker Container in Catalyst 9000   374

Create HAProxy and Node Containers   375

Project Initiation   375

Setting Up Web Server   376

Create Docker Image   377

Deploy, Install, and Activate Web Server Docker Containers   378

HAProxy Load Balancer Setup   380

Create Docker Image   381

Install, Activate, and Run HAProxy Docker Containers   382

IOS-XR Use Case: Disaggregated Seamless BFD as a Virtual Network
Function for Rapid Failure Detection   384

Seamless BFD Overview   385

S-BFD Discriminator   386

S-BFD Reflector Session   386

Contents    xxi

xxii    Containers in Cisco IOS-XE, IOS-XR, and NX-OS: Orchestration and Operation

Creating and Hosting S-BFD as a Virtual Network Function   387

S-BFD Docker Images   388

Hosting the S-BFD Reflectorbase on the XR Device   388

Hosting the S-BFD Client on the Server   390

NX-OS Use Case: Control Plane Health Check Using an Anomaly
Detector   391

Objective of the Application   391

Build and Host the Anomaly Detector Application in Docker—High-Level
Procedure   392

Floodlight Application   392

Capturing Traffic   394

Classifying Expected and Unexpected Control Plane Traffic   395

Running the App in NX-OS   396

NX-OS Use Case: NX-OS Docker Health Check   398

Objective of the Application   398

Build and Host the Application in Docker—High-Level Procedure   398

NX-OS Docker Health Check Application   399

Performing Health Check   399

Running the App in NX-OS   401

Summary   404

Chapter 10	 Current NFV Offering and Future Trends in Containers   405

App Hosting Services   405

Solenoid   406

Two-Way Active Measurement Protocol (TWAMP)   407

tcpdump   407

Cisco Kinetic EFM Module   408

perfSONAR   408

DNS/DHCP   409

NetBeez Agent   409

App Hosting Summary   410

Cisco NFV Offerings   411

Compute Platforms   412

Cisco Unified Computing Servers (UCS)   412

ENCS   412

Virtual Routers and Switches   414

Cisco Ultra Service Platform   415

Cisco Container Platforms   416

Consolidated View   417

Containers and Service Chaining   418

Network Service Header   419

Segment Routing   420

Serverless Computing and Network Functions   421

Summary   423

References   423

	 Index   425

Contents    xxiii

xxiv    Containers in Cisco IOS-XE, IOS-XR, and NX-OS: Orchestration and Operation

Icons Used in This Book

Layer 2
Switch

Firewall Router IOS-XR Router Nexus9000
Switch

IOS-XR
P

User Layer 3
Switch

ServerAgents / ApplicationsWorkstation

CSR1kv XRv9000 Modular
Switch

Virtual
Switching
System

Nexus Switch
(Physical/Virtual)

in ACI mode

Network

Command Syntax Conventions
The conventions used to present command syntax in this book are the same conventions
used in the IOS Command Reference. The Command Reference describes these
conventions as follows:

■■ Boldface indicates commands and keywords that are entered literally as shown. In
actual configuration examples and output (not general command syntax), boldface
indicates commands that are manually input by the user (such as a show command).

■■ Italic indicates arguments for which you supply actual values.

■■ Vertical bars (|) separate alternative, mutually exclusive elements.

■■ Square brackets ([]) indicate an optional element.

■■ Braces ({ }) indicate a required choice.

■■ Braces within brackets ([{ }]) indicate a required choice within an optional element.

xxv

Foreword
What do rhinos, Internet RFCs, memory buffers, and volunteering have in common? In
that intersection, you will find Nagendra and Yogesh!

A few years ago, Nagendra, Yogesh, and I met when we were providing direct customer
support on networking infrastructure. It was the common passion for technology as well
as for customer service that brought us together.

At that time, virtual local area networks (VLANs), then followed by encapsulations or
“tunnels,” were network virtualization technologies. Fast-forwarding, we can see how
the technology landscape and ecosystem has dramatically evolved and reinvented itself.
Virtualization has multiplied and expanded into many areas of networking, storage, and
computing, including containerized network functions.

This book guides and shepherds the reader through the evolution of virtualization
technologies with depth and breath. It invites images both historical and futuristically
visionary. Explaining design principles and considerations of end-to-end network
virtualization and controller architectures, it challenges the reader through the mystical
twists of context virtualization, recursing through a software stack as if it were a Möbius
strip and creating dimensional layers on a topology.

Not content with abstraction alone, this book teaches the concrete art and engineering
of configuring container orchestration and management—where the network is the node,
and the node is the network. It describes how to create bendable cloud-native network
functions, which are utilized for lifecycle management and service automation. Then, to
make Cloud real, this book instructs network wizards and software geeks how to realize
these container-based orchestration architectures in Cisco network operating system
software and platforms. Because the end goal is to conjure applications that were not
possible before, this book covers several application developer tools, resources, and real-
life container deployment use cases.

Switching contexts—no pun intended—what do technology and helping others have in
common? Everything! And as technology reinvented itself, so did the focus area and the
meaning of their careers.

Yogesh not only masters all interface counters in Nexus fabric platforms, but bends
packet captures and embedded diagnostic tools and configures Layer 2 (L2) Data Center
Interconnect (DCI). He also applies his skills and experience to design and deploy
networks, ad honorem, for the Food Bank of Central and Eastern North Carolina.
He leads selflessly.

Nagendra’s technical and architectural accomplishments include coinventing several
patented applications—in fact, he is currently the top inventor in the Cisco Customer
Experience team—and coauthoring Internet RFC standards. I’m honored to have part-
nered in white-boarding some of those with him. However, what makes me prouder is
that together we painted houses for refugee resettlement. When I asked Nagendra for
help in a hackathon in Bangalore, India, for the Cisco Sustainable Impact program, he

xxvi    Containers in Cisco IOS-XE, IOS-XR, and NX-OS: Orchestration and Operation

jumped at the chance. For techno-conservation including saving rhinos and other endan-
gered species, and for encouraging social responsibility, he engaged immediately with no
second thought.

The seeds of the technology that the two authors are showing in this book might have
always been there, but it needed thought leaders to reinvent it to accommodate its fast-
paced growth. Similarly, Nagendra and Yogesh, throughout the years, have reinvented
themselves as technologists and as leaders, continually growing. Professional portability
is reached with technology-agnostic technical skills, as they evidence from VLANs to
containers. And they further extrapolated that to food banks and techno-conservation.

I am grateful to Yogesh and Nagendra for contributing to the industry and sharing in
writing this book on container orchestration!

Carlos Pignataro
Distinguished Engineer and CTO, Emerging Technologies and Incubation, Cisco Systems
Adjunct Faculty, North Carolina State University
Fellow, National Academy of Inventors
Volunteer

Introduction    xxvii

Introduction
The introduction of cloud computing and virtualization is one of the radical innovations
that the industry has witnessed recently. These technologies have allowed the industry
to decouple the services from the proprietary hardware and allowed the users to instanti-
ate workflows on any supported compute platforms. Although toolsets such as Linux
Containers (LXC) and Kernel Virtual Machine (KVM) were developed to instantiate any
workloads as virtual machines, recent developments, such as Docker and Kubernetes,
allow the user to develop and instantiate these workloads as containers. Containerizing
the applications and network services (NFV) is the goal the industry is moving toward
for the agility and efficiency properties.

Cisco IOS-XE, IOS-XR, and NX-OS Architecture have been augmented with compute
virtualization capabilities to accommodate native and third-party container hosting
that allows the users to containerize and instantiate applications or network services.
The Software Development Kit (SDK) Cisco offers can be used to develop applications
from scratch to instantiate on Cisco IOS-XE, IOS-XR, and NX-OS platforms natively by
leveraging the built-in application hosting capabilities.

This book explains the architecture and capabilities of Cisco products, Container
infrastructure configuration, activation, orchestration, and operational activities. It acts
as a complete guide to deploying and operating applications and network services that
are hosted on Cisco platforms. This book is the first and the only comprehensive guide
featuring Cisco IOS-XE, IOS-XR, and NX-OS architecture that supports deployment of
various virtual and containerized network services and the container orchestration tools
to instantiate and operate them.

Goals and Methods
The primary goal of this book is to introduce you to the new application hosting
capabilities and the built-in toolkits that can be used to build, orchestrate, and operate
applications or services by leveraging compute resources in Cisco platforms.

This book introduces readers to the fundamentals of virtualization and associated
concepts and how virtualization and SDN are related to the Cisco IOS-XE, IOS-XR,
and NX-OS platforms. This book explores different orchestration tools (for example,
LXC, KVM, Docker, and Kubernetes) for workload instantiation (as virtual machines
or containers) and different modes of enabling the interworkload communication. It
takes a deep dive into application hosting capabilities for each of the mentioned Cisco
platforms. Furthermore, it covers available Cisco and open-source tools and resources
that application developers can leverage to build and test applications before hosting
them on the respective platforms. Beyond explaining the platform capabilities and the
methods to host applications, this book offers multiple real-world use cases in which
these applications are used in day-to-day network operations.

xxviii    Containers in Cisco IOS-XE, IOS-XR, and NX-OS: Orchestration and Operation

How This Book Is Organized
Although you could read this book cover to cover, it is designed to be flexible and allow
you to easily move between chapters and sections of chapters to cover just the material
you need, when you need it.

Part I, “Virtualization and Containers,” is an overview of the evolution of virtualization
technologies and different orchestration tools and networking concepts that are broadly
applicable for hosting a virtual service in any compute platform.

■■ Chapter 1, “Introduction to Virtualization”: This chapter starts by describing the
evolution of computing technologies and then introduces the motivation, business
drivers, and concept of computing virtualization. It also describes the architecture,
principles, and various types of virtualization.

■■ Chapter 2, “Virtualization and Cisco”: This chapter describes the history of
virtualization in the Cisco core routing and switching products and discusses how
infrastructure virtualization is being achieved in these platforms. This chapter
continues to introduce the software-defined networking (SDN) concepts, associated
protocols, Cisco and open-source controllers, function virtualization, and trending
technologies.

■■ Chapter 3, “Container Orchestration and Management”: This chapter describes
the cloud-native reference model and how the model is used to develop cloud-
native services and help the industry migrate from virtual to cloud-native network
functions. It explains different orchestration tools and the applicability of these tools
for workload instantiation on Cisco platforms.

■■ Chapter 4, “Container Networking Concepts”: This chapter describes the
fundamentals of container networking and how the underlying kernels use the
network namespaces to create resource isolation. This chapter digs deep into
different container networking models for each orchestration method and explains
all the supported modes in Cisco platforms along with the relevant configuration to
enable the container networking modes.

Part II, “Container Deployment and Operation in Cisco Products,” discusses fundamentals
of IOS-XE, IOS-XR, and NX-OS architecture; various container capabilities natively
available in related platforms; and how to leverage them to host applications to perform
day-to-day operations.

■■ Chapter 5, “Container Orchestration in Cisco IOS-XE Platforms”: This chapter starts
with a quick introduction to the architecture of IOS-XE and its key components and
functions. Next, it explains how the architecture enables application hosting with
support for various types of applications. It offers sample steps to enable, install,
activate, and orchestrate the containers (such as LXC) and how to leverage them to
host simple applications.

■■ Chapter 6, “Container Orchestration in Cisco IOS-XR Platforms”: This chap-
ter introduces the IOS-XR architecture and the latest enhancements to support

Introduction    xxix

application hosting capabilities for native or third-party services. The chapter further
explains different methods of hosting the application using orchestration tools, such
as LXC and Docker, along with the relevant network configurations. This chapter
concludes by explaining the basic management aspects of the hosted applications.

■■ Chapter 7: “Container Orchestration in Cisco NX-OS Platforms”: This chapter
introduces users to the fundamentals of the NX-OS architecture and the benefits this
architecture brings to hosting applications natively. It discusses various container
capabilities, such as Guest Shell, Bash, Docker, and more, and covers the steps to
activate and configure them and host applications. The chapter concludes with
an explanation of how a Docker container running in a Nexus platform can be
orchestrated with Kubernetes.

■■ Chapter 8: “Application Developers’ Tools and Resources”: In this chapter, you will
learn various Cisco as well as open-source tools and resources available to application
developers to develop, test, and host applications in Cisco IOS-XE, IOS-XR, and
NX-OS platforms. It provides details on the software development environment and
toolkits that are built into these platforms.

■■ Chapter 9: “Container Deployment Use Cases”: This chapter introduces vari-
ous real-world use cases for Day-0, Day-1, and Day-2 operations and explains the
applicability of the use cases with deployment examples on Cisco IOS-XR, IOS-XE,
and NX-OS platforms.

■■ Chapter 10: “Current NFV Offering and Future Trends in Containers”: This chapter
starts by introducing various open-source and certified third-party applications that
are readily available for hosting on Cisco platforms for some common use cases.
It continues by explaining different NFV services currently offered by Cisco and
highlights some virtualization trends.

This page intentionally left blank

In this chapter, you will learn the following:

■■ Cisco NX-OS architecture—key characteristics and benefits

■■ Environment readiness to host containers and applications

■■ Container infrastructure instantiation, network and access configuration, orchestration
and application hosting—LXC-based Guest Shell, Bash, Docker and LXC-based Open
Agent Container.

Cisco NX-OS Software Architecture
Cisco NX-OS is designed to meet the needs of modern data centers, which demand
products, applications, and services that are high performance, highly available,
resilient, secure, scalable, and modular in architecture. These criteria are met by all the
platforms—Nexus 3000, 5000, 6000, 7000, and 9000—that support and run Cisco
NX-OS. These characteristics provide the solid foundation of resilience and robustness
necessary for network device OSes powering the mission-critical environment of today’s
enterprise-class data centers.

NX-OS Foundation

Cisco NX-OS finds its roots in the Cisco SAN-OS operating system used in lossless SAN
networks. As a direct result of having been deployed and evolving from nearly a decade
in the extremely critical storage area networking space, NX-OS can deliver the perfor-
mance, reliability, and lifecycle expected in the data center.

Cisco NX-OS is built on a Linux kernel. By using Linux kernel as its foundation, Cisco
NX-OS has the following characteristics and benefits:

■■ An open-source and community development model, which leads to real-world field
testing and rapid defect identification and resolution

Container Orchestration in
Cisco NX-OS Platforms

Chapter 7

236    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

■■ Proven stability and maturity, with advanced capabilities

■■ A near-real-time OS kernel, which is suitable to scale real-time applications

■■ An architecture leveraging multiple run-queues for handling multicore and multiple-
CPU system configurations

■■ A multithreaded, preemptive multitasking capability that provides protected fair
access to kernel and CPU resources because it employs a highly scalable processor
queue and process-management architecture

These characteristics and benefits ensure system stability and fair access to the system
resources for software functions such as routing protocols, the spanning tree, and inter-
nal services and processes. By its inherent nature, NX-OS supports multiprocessor and
multicore hardware platforms, which help to simplify scalability by supporting not only
current hardware or software features but also future software features.

NX-OS Modular Software Architecture

NX-OS software components are modular and built on top of the Linux kernel, as
illustrated in Figure 7-1. These modular components can be described as such:

■■ Hardware drivers, which are hardware-related and highly dependent on the platform

■■ Infrastructure modules to manage the system

■■ Software features or control-plane functions

Feature

Feature

Feature

Management
infrastructure

Hardware
drivers

Netstack

Kernel

HA
infrastructure

API
API

API

Figure 7-1  NX-OS Software Architecture

The platform-dependent modules consist of hardware-related subsystems, such as hard-
ware and chipset drivers specific to a particular hardware model on which Cisco NX-OS
runs. These modules typically provide standardized APIs and messaging capabilities to

Cisco NX-OS Software Architecture    237

upper-layer subsystems. The modules essentially constitute a hardware abstraction layer
to enable consistent development at higher layers in the OS, improving overall OS porta-
bility. The code base for these hardware-dependent modules reduces the overall code that
needs to be ported to support future NX-OS releases and for other hardware platforms.

The Netstack module runs in user space and is a complete TCP/IP stack with components
L2 Packet Manager, ARP, Adjacency Manager, IPv4, Internet Control Message Protocol
v4 (ICMPv4), IPv6, ICMPv6, TCP/UDP, and socket library. The Netstack is built and used
to handle the traffic sent to and from the CPU. A user can debug Netstack to uncover the
process(es) that are triggering a high CPU utilization condition.

The system infrastructure modules such as management infrastructure and high-
availability infrastructure provide essential base system services that enable process man-
agement, fault detection and recovery, and interservice communication. High-availability
infrastructure provides subsecond recovery of a fault, enabling stateful recovery of a
process. During the recovery, it preserves the runtime state of the feature, increasing
the overall network and services availability. The Persistent Storage System (PSS) and
Message Transmission Services (MTS), the core parts of the high-availability infrastruc-
ture, enable the subsecond recovery of a fault, resulting in overall higher system uptime.

The feature modules consist of the actual underlying services responsible for deliver-
ing a feature or running a protocol at the control plane level. Open Shortest Path First
(OSPF), Border Gateway Protocol (BGP), Spanning Tree Protocol, Overlay Transport
Virtualization (OTV), and NetFlow export are all examples of modularized system-level
features or protocols. Each feature is implemented as an independent, memory-protected
process that is spawned as needed based on the overall system configuration.

This approach differs from that of legacy network operating systems in that only the
specific features that are configured are automatically loaded and started. This highly
granular approach to modularity enables benefits such as these:

■■ Compartmentalization of fault domains, resulting in overall system resiliency and
stability

■■ Simplified portability for cross-platform consistency

■■ More efficient defect isolation, resulting in rapid defect resolution

■■ Easy integration of new feature modules into the OS

■■ Support of conditional services, resulting in efficient use of memory, CPU and CLI
resources, and improved security as lesser OS functions are exposed

Fault Detection and Recovery

In addition to the resiliency gained from architectural improvements, Cisco NX-OS
provides internal hierarchical and multilayered system fault detection and recovery mech-
anisms. No software system is completely immune to problems, so it is important to have
an effective strategy for detecting and recovering from faults quickly, with as little effect
as possible. Cisco NX-OS is designed from the start to provide this capability.

238    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

Individual service and feature processes are monitored and managed by the Cisco NX-OS
System Manager, an intelligent monitoring service with integrated high-availability logic.
The system manager can detect and correct a failure or lockup of any feature service
within the system. The system manager is, in turn, monitored and managed for health by
the Cisco NX-OS kernel. A specialized portion of the kernel is designed to detect failures
and lockups of the Cisco NX-OS System Manager. The kernel itself is monitored through
hardware. A hardware process constantly monitors the kernel health and activity. Any
fault, failure, or lockup at the kernel level is detected by hardware and triggers a supervi-
sor switchover. Figure 7-2 illustrates the components involved in the fault detection and
recovery process.

Nexus
Hardware

Active Sup Engine Standby Sup Engine

Kernel

System Manager (SysMgr)

Feature 1 Feature 2 … Feature N

NX-OS

Kernel

System Manager (SysMgr)

Feature 1 Feature 2 Feature N

NX-OS

Figure 7-2  NX-OS Fault Detection and Recovery

The combination of these multilevel detection and health monitoring systems creates a
robust and resilient operating environment that can reduce the overall effect of internal
faults and, more importantly, preserve the stability of the overall network by internalizing
these types of events.

More Benefits of NX-OS

Following are some of the key but nonexhaustive benefits that this chapter will briefly
discuss:

■■ Familiar usability and operation: Cisco NX-OS maintains the familiarity of the
Cisco IOS CLI. Users comfortable with the Cisco IOS CLI will find themselves
equally comfortable with Cisco NX-OS, which has numerous user interface
enhancements.

Hosting Environment Readiness    239

■■ Virtualization capability: Cisco NX-OS offers the capability to virtualize the plat-
form on which it is running. Using Cisco NX-OS virtual device contexts (VDCs), a
single physical device can be virtualized into many logical devices, each operating
independently. And it supports virtualization of overlay transport, which addresses
the need to scale Layer 2 by extending the domain across different data centers.

■■ Enhanced security: NX-OS supports features and tools to secure the platform and
its functions. Some of the more advanced security features supported are Cisco
TrustSec (CTS), IP Source Guard, DHCP snooping, Unicast Reverse Path Forwarding
(uRPF), access control lists (ACLs), and 802.1x.

■■ Unified I/O and unified fabric: Cisco Unified Fabric includes the flexibility to run
Fiber Channel; IP-based storage, such as network-attached storage (NAS) and Small
Computer System Interface over IP (iSCSI), or FCoE; or a combination of these
technologies on a converged network.

■■ Support of standalone fabric: NX-OS supports features to build standalone fabrics
such as FabricPath, Dynamic Fabric Automation (DFA), and VXLAN/EVPN to scale
the Layer 2 domains and meet the demands of today’s virtualized computing envi-
ronments and applications.

■■ Advanced system management: NX-OS supports SNMP (v1, v2c, and v3) to enable
traditional ways of managing systems. NETCONF and XML are integrated to
NX-OS, which make it IETF-compliant to transact XML through secure connec-
tions. With the support of configuration checkpoint and rollback, managing devices
through its software lifecycle is easier.

Hosting Environment Readiness
This section discusses the various shells and containers supported in Nexus switching
platforms and the OS version and resources required to support them.

Guest Shell

Guest Shell is an execution environment isolated from the host operating system’s kernel
space and running within a Linux Container (LXC). As with OAC, having a decoupled
execution space allows customization of the Linux environment to suit the needs of the
applications without affecting the host system or applications running in other Linux
Containers.

Platforms Support

Guest Shell is supported in Nexus 3000/9000 platforms. Table 7-1 provides the minimum
NX-OS version required for each platform to run the Guest Shell environment.

240    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

Table 7-1  Nexus Switches and NX-OS Versions Supporting Guest Shell

Platforms Minimum Version

Nexus 3000 series 7.0(3)I2(1)

Nexus 9000 series 7.0(3)I2(1)

Platform Resource Requirements

The Guest Shell reserves a specific amount of memory in Bootflash. Upon activation, it
reserves dynamic RAM and CPU resources, as shown in Table 7-2.

Table 7-2  Nexus Resource Requirement for Guest Shell

Platforms DRAM Reservation Bootflash Reservation CPU reservation

Nexus 3000 series 256 MB 200 MB 1%

Nexus 9000 series 256 MB 200 MB 1%

By default, Nexus switches with 4 GB of RAM will not enable Guest Shell. Use the
guestshell enable command to install and enable Guest Shell.

Bash

In addition to Guest Shell, Cisco Nexus9000 Series devices support access to the
Bourne-Again Shell (Bash). Bash interprets commands that you enter or commands that
are read from a shell script. The following sections discuss how Bash enables access to
the underlying Linux system on the device and how it manages the system. Bash shell is
supported on both Cisco Nexus 3000 series as well as 9000-series platforms, as shown in
Table 7-3.

Table 7-3  Nexus Switches and NX-OS Versions Supporting Bash

Platforms Minimum Version

Nexus 3000 series 6.1(2)I2(2)

Nexus 9000 series 6.1(2)I2(2)

The coming sections discuss how Bash enables direct and root access to the underlying
kernel and how it instantiates the Docker service and containers.

LXC-based Open Agent Container (OAC)

OAC is a 32-bit, CentOS 6.7-based container that is built specifically to support open
agents like Puppet and Chef to manage Nexus switching platforms.

Hosting Environment Readiness    241

With the current architecture, Open Agents cannot be directly installed and run on
Nexus platforms. To overcome this challenge, a special environment is built, which is a
decoupled execution space within an LXC called as the Open Agent Container (OAC).
Having an execution space that is decoupled from the native host system enables custom-
ization of the environment to meet the applications’ requirements without affecting the
host systems’ applications or any other containers.

Platforms Supported

Open Agent Container is one of the earliest container environments supported in Nexus
platforms, and it is supported only in Nexus 5600, Nexus 6000, and Nexus 7000/7700
series platforms. Table 7-4 shows the minimum NX-OS release required for each platform
supporting OAC.

Table 7-4  Nexus Switches and NX-OS Versions Supporting OAC

Platforms Minimum Version

Nexus 5600 series 7.3(0)N1(1)

Nexus 6000 series 7.3(0)N1(1)

Nexus 7000/7700 7.3(0)D1(1)

Platform Resource Requirements

As the file required to instantiate and for associated data storage, OAC occupies up to a
specific memory size in bootflash. Upon activation, it requires dynamic RAM and CPU
resources, as shown in Table 7-5.

Table 7-5  Nexus Resource Requirement for OAC

Platforms DRAM Reservation Bootflash Reservation CPU Reservation

Nexus 5600 series 256 MB 400 MB 1%

Nexus 6000 series 256 MB 400 MB 1%

Nexus 7000/7700 256 MB 400 MB 1%

Note:  The OAC functionality will no longer be supported on the Nexus 7000 from 8.4.1
release onward. When executing the commands to enable OAC, users will be notified
about the deprecation. Even though the feature is deprecated, this book covers OAC as a
significant install base of Nexus 7000 that still runs pre-8.4.1 releases.

242    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

Container Infrastructure Configuration and
Instantiation

This section explains and provides procedures to instantiate different types of containers
and to access, configure, manage, and orchestrate them. It also provides detailed steps to
deploy and manage applications in the containers.

Guest Shell

Just as with OAC, Cisco Nexus 3000/9000 Series devices support access to an isolated
execution environment, called the Guest Shell, which is running within a secure Linux
Container (sLXC), as illustrated in Figure 7-3. Under the hood, the Guest Shell is just
a libvirt-managed LXC container. This Guest Shell is based on CentOS 7 and can be
managed using traditional Linux commands.

The Guest Shell has various functions and offers key benefits that aid developers in build-
ing and hosting applications in Nexus platforms, such as providing access to the network,
NX-OS CLI, bootflash filesystem, and above all, the ability to install Python scripts and
Linux applications.

MGMT0 Eth1-1 Eth1-2 Eth1-3 Eth1-N…

Nexus

Linux
applications

NX-OS
Secure Linux

Container (sLXC)

Guest Shell

Physical interfaces

Linux kernel

Figure 7-3  Guest Shell in NX-OS

Guest Shell OVA File

In Nexus 3000 and 9000 switches, the .ova file for the default version of Guest Shell
is integrated with the NX-OS image, and as previously discussed, you do not have to
download and install an .ova to enable it.

Container Infrastructure Configuration and Instantiation    243

Deployment Model and Workflow

It is simple to activate Guest Shell in supported platforms, and it can be done with one
command, as shown in Example 7-1. The Guest Shell needs to be explicitly activated only
in the first generation of the Nexus 3000 platform that came with 4 GB RAM. In later
generations of Nexus 3000 and Nexus 9000 platforms, Guest Shell is enabled by default.

This guestshell enable command does the following:

	 1.	 Creates a virtual service instance

	 2.	 Extracts the .ova file built into NX-OS

	 3.	 Validates the contents in the file

	 4.	 Creates a virtual environment in the device

	 5.	 Instantiates the Guest Shell container

Example 7-1  Enable Guest Shell in NX-OS

N3K-C3548P# guestshell enable

2019 Sep 12 02:04:00 N3K-C3548P %$ VDC-1 %$ %VMAN-2-INSTALL_STATE: Installing
virtual service 'guestshell+'

N3K-C3548P#

N3K-C3548P# show virtual-service list

Virtual Service List:

Name Status Package Name

guestshell+ Activating guestshell.ova

N3K-C3548P#

2019 Sep 12 02:04:55 N3K-C3548P %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully
activated virtual service 'guestshell+'

N3K-C3548P# show virtual-service list

Virtual Service List:

Name Status Package Name

guestshell+ Activated guestshell.ova

N3K-C3548P#

To know the resources allocated to the shell, use the show guestshell command. As
you can see in Example 7-2, it reports the operational state of the shell, disk, memory,
and CPU resource reservation, and it reports the filesystems/devices mounted in the
shell. The utilization command shown next shows usage of memory, CPU, and storage
resources in real time.

244    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

Example 7-2  Guest Shell Status and Resource Allocation

N3K-C3548P#

N3K-C3548P# show guestshell

Virtual service guestshell+ detail

 State : Activated

 Package information

 Name : guestshell.ova

 Path : /isanboot/bin/guestshell.ova

 Application

 Name : GuestShell

 Installed version : 2.4(0.0)

 Description : Cisco Systems Guest Shell

 Signing

 Key type : Cisco release key

 Method : SHA-1

 Licensing

 Name : None

 Version : None

 Resource reservation

 Disk : 250 MB

 Memory : 256 MB

 CPU : 1% system CPU

 Attached devices

 Type Name Alias

 Disk _rootfs

 Disk /cisco/core

 Serial/shell

 Serial/aux

 Serial/Syslog serial2

 Serial/Trace serial3

N3K-C3548P#

N3K-C3548P# show virtual-service utilization name guestshell+

Virtual-Service Utilization:

CPU Utilization:

 Requested Application Utilization: 1 %

 Actual Application Utilization: 0 % (30 second average)

 CPU State: R : Running

Memory Utilization:

 Memory Allocation: 262144 KB

 Memory Used: 13444 KB

Container Infrastructure Configuration and Instantiation    245

Storage Utilization:

 Name: _rootfs, Alias:

 Capacity(1K blocks): 243823 Used(1K blocks): 156896

 Available(1K blocks): 82331 Usage: 66 %

 Name: /cisco/core, Alias:

 Capacity(1K blocks): 2097152 Used(1K blocks): 0

 Available(1K blocks): 2097152 Usage: 0 %

N3K-C3548P#

By default, the resources allocated to the Guest Shell are small compared to the total
resources available in a switch. An administrator can change the size of the CPU, memory,
and root filesystem (rootfs) resources allocated to the Guest Shell by using guestshell
resize commands in the configuration mode. Note that after changing resource alloca-
tions, a Guest Shell reboot is required. This can be achieved by using the guestshell
reboot command, which basically deactivates and reactivates the Guest Shell.

Accessing Guest Shell

By default, the Guest Shell starts with an open-ssh service as soon as it is enabled. The
server listens to TCP port 17700 on the local host loopback IP interface 127.0.0.1. This pro-
vides password-less access to the Guest Shell from the NX-OS, as shown in Example 7-3.

Example 7-3  Access Guest Shell

N3K-C3548P#

N3K-C3548P# guestshell

[admin@guestshell ~]$

[admin@guestshell ~]$ whoami

admin

[admin@guestshell ~]$ hostnamectl

 Static hostname: guestshell

 Icon name: computer-container

 Chassis: container

 Machine ID: 2a79cdc74cdc45659ad7788742da0599

 Boot ID: 295a7ceda3684f3caa2d5597de8ae1e0

 Virtualization: lxc-libvirt

 Operating System: CentOS Linux 7 (Core)

 CPE OS Name: cpe:/o:centos:centos:7

 Kernel: Linux 4.1.21-WR8.0.0.25-standard

 Architecture: x86-64

[admin@guestshell ~]$

[admin@guestshell ~]$

[admin@guestshell ~]$ ps -ef | grep 17700

246    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

UID PID PPID C STIME TTY TIME CMD

root 91 1 0 Aug30 ? 00:00:00 /usr/sbin/sshd -D -f /etc/ssh/
sshd_config-cisco -p 17700 -o ListenAddress=localhost

admin 1515 1495 0 18:40 pts/4 00:00:00 grep --color=auto 17700

[admin@guestshell ~]$

Notice that the file used to spawn the default SSH process is /etc/ssh/sshd_config-cisco.
If this file is altered, the guestshell command might not function properly. If that occurs,
it is recommended that you destroy and re-enable the Guest Shell.

Accessing Guest Shell via SSH

To access the Guest Shell, you need to be in the switch first and then access the shell
using the guestshell command mentioned earlier in this chapter in “Accessing Guest
Shell.” This access can be slow, and it is highly preferable to have a direct SSH access.

As you see in Example 7-4, after logging into the Guest Shell, check the SSH
configuration—the TCP port it is listening to and the IPv4/v6 addresses associated to
the SSH service. Because NX-OS has allocated TCP port number 22 to the SSH process
running in the switch, configure an unused and different TCP port number for the Guest
Shell’s SSH daemon. As you see in Example 7-4, /etc/ssh/sshd_config has Port 2222
assigned to the service, and it is listening for connections at 10.102.242.131, which is the
IP address assigned to the Ethernet1/1 interface of the switch. Make sure to configure
the DNS server for name resolution and domain information for the Guest Shell and the
applications installed in it to resolve domain names.

Example 7-4  Guest Shell Networking

[admin@guestshell ~]$ more /etc/ssh/sshd_config

<snip>

Port 2222

#AddressFamily any

ListenAddress 10.102.242.131

#ListenAddress ::

<snip>

[admin@guestshell ~]$

[admin@guestshell ~]$ cat /etc/resolv.conf

nameserver 8.8.8.8

search example.com

[admin@guestshell ~]$

In any CentOS-based Linux platform, Guest Shell uses systemd as its service manager.
Therefore, systemctl commands can be used to start, stop, restart, reload, or check the
status of the SSH service, as shown in Example 7-5. Check the status of the SSH service
before starting it.

http://example.com

Container Infrastructure Configuration and Instantiation    247

Example 7-5  Activate SSH Service

[admin@guestshell etc]$ systemctl start sshd

[admin@guestshell ~]$

[admin@guestshell ~]$ systemctl status sshd.service

sshd.service - OpenSSH server daemon

Loaded: loaded (/usr/lib/systemd/system/sshd.service; disabled; vendor preset:
enabled)

Active: inactive (dead)

<snip>

[admin@guestshell ~]$

[admin@guestshell ~]$ systemctl start sshd.service -l

[admin@guestshell ~]$

[admin@guestshell ~]$ systemctl status sshd.service -l

sshd.service - OpenSSH server daemon

Loaded: loaded (/usr/lib/systemd/system/sshd.service; disabled; vendor preset:
enabled)

Active: active (running) since Sat 2019-08-31 15:33:52 UTC; 4s ago

Main PID: 886 (sshd)

 CGroup: /system.slice/sshd.service

 └─886 /usr/sbin/sshd -D

Aug 31 15:33:52 guestshell sshd[886]: Executing: /usr/sbin/sshd -D

Aug 31 15:33:52 guestshell sshd[886]: Server listening on 10.102.242.131 port 2222.

[admin@guestshell ~]$

As shown in Example 7-6, make sure the TCP socket assigned to Guest Shell’s SSH
service is open and in the listening state. Because Guest Shell uses kstack networking
implementation, a Kernel Socket is allocated for TCP port 2222, as shown in Example 7-6.

Example 7-6  Open Kernel Sockets in Nexus Switch

N3K-C3548P#

N3K-C3548P# show sockets connection

Total number of netstack tcp sockets: 3

Active connections (including servers)

 Protocol State/ Recv-Q/ Local Address(port)/

 Context Send-Q Remote Address(port)

[host]: tcp(4/6) LISTEN 0 *(22)

 Wildcard 0 *(*)

[host]: tcp LISTEN 0 *(161)

 Wildcard 0 *(*)

[host]: tcp(4/6) LISTEN 0 *(161)

 Wildcard 0 *(*)

248    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

<snip>

Kernel Socket Connection:

Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port

tcp LISTEN 0 128 10.102.242.131:2222 *:*

<snip>

Once the SSH service is up and running and all the configured sockets are in the listen-
ing state, users can access Guest Shell via SSH from an external device, as shown in
Example 7-7.

Example 7-7  SSH Access to Guest Shell

root@Ubuntu-Server1$ ssh -p 2222 admin@10.102.242.131

admin@10.102.242.131's password:

Last login: Sat Aug 31 11:42:26 2019

[admin@guestshell ~]$

It is possible to run multiple instances of SSH Server daemons and associate them to
any VRF active in the switch. In other words, the Guest Shell can be accessed via SSH
through two sockets associated to different namespaces or VRFs, hence from different
networks. Example 7-8 shows that the switch has two sockets open: one for management
VRF and the other one for default VRF. The socket allocated for the SSH service in the
default VRF is (172.16.1.1:5123) and is (10.102.242.131:2222) for the management VRF.

Example 7-8  SSH Service per Namespace

[admin@guestshell ~]$ chvrf default

[admin@guestshell ~]$

[admin@guestshell ~]$ /usr/sbin/sshd -p 5123 -o ListenAddress=172.16.1.1

[admin@guestshell ~]$

[admin@guestshell ~]$ exit

N3K-C3548P#

N3K-C3548P# show sockets connection | include Netid|2222|5123

Netid State Recv-Q Send-Q Local Address:Port Peer Address:Port

tcp LISTEN 0 128 172.16.1.1:5123 *:*

tcp LISTEN 0 128 10.102.242.131:2222 *:*

N3K-C3548P#

Guest Shell Networking Setup and Verification

Guest Shell is a powerful container and application hosting environment because it
provides access to every front-panel port, VLAN SVIs, and port-channels in the device.
Using the Cisco kstack implementation, all these interfaces are represented and available
as network devices in the Linux kernel.

Container Infrastructure Configuration and Instantiation    249

With the command shown in Example 7-9, check the VRFs that are visible to the Guest
Shell container, where each VRF is a Kernel Network Namespace, as represented in the
Linux kernel.

Example 7-9  Guest Shell Namespaces

[admin@guestshell ~]$ ip netns list

management

default

[admin@guestshell ~]$

Figure 7-4 illustrates that namespaces created for each of the VRFs and shows the inter-
faces associated to each of these VRFs.

Guest Shell

MGMT0 Eth1-1 Eth1-2 Eth1-3 Eth1-N…
Physical interfaces

Linux
kernel

Namespace:
Management

Namespace:
Default

Figure 7-4  Guest Shell Namespaces

Because the physical and logical interfaces are accessible through network namespaces,
the container can access network elements directly. As shown in Example 7-10, the chvrf
command switches the context to a specific VRF, and ifconfig -a is used to list the
interfaces associated to the current context.

The chvrf command is a helper utility that uses the ip netns exec command under the
hood to switch the VRF context. Apart from the ifconfig command provided in this
example, you can also use the ip link show command to obtain a list of interfaces associ-
ated to the specific context.

Example 7-10  Guest Shell Namespaces and Network Devices

[admin@guestshell ~]$ chvrf default

[admin@guestshell ~]$

[admin@guestshell ~]$ ifconfig -a

Eth1-1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 10.102.242.131 netmask 255.255.255.240 broadcast 10.102.242.143

 ether 00:3a:9c:5a:00:67 txqueuelen 100 (Ethernet)

 RX packets 2045299 bytes 469647600 (447.8 MiB)

 RX errors 0 dropped 1615524 overruns 0 frame 0

250    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

 TX packets 556549 bytes 95536394 (91.1 MiB)

 TX errors 0 dropped 892 overruns 0 carrier 0 collisions 0

Eth1-2: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500

 ether 00:3a:9c:5a:00:67 txqueuelen 100 (Ethernet)

 RX packets 0 bytes 0 (0.0 B)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 0 bytes 0 (0.0 B)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Eth1-3: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500

 ether 00:3a:9c:5a:00:67 txqueuelen 100 (Ethernet)

 RX packets 0 bytes 0 (0.0 B)

<snip>

Eth1-48: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500

 ether 00:3a:9c:5a:00:67 txqueuelen 100 (Ethernet)

 RX packets 0 bytes 0 (0.0 B)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 0 bytes 0 (0.0 B)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

Lo100: flags=65<UP,RUNNING> mtu 1500

 inet 10.1.1.1 netmask 255.255.255.0

 ether 00:3a:9c:5a:00:60 txqueuelen 100 (Ethernet)

 RX packets 0 bytes 0 (0.0 B)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 0 bytes 0 (0.0 B)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

<snip>

veobc: flags=67<UP,BROADCAST,RUNNING> mtu 1494

 inet 127.1.2.1 netmask 255.255.255.0 broadcast 127.1.2.255

 ether 00:00:00:00:01:01 txqueuelen 0 (Ethernet)

 RX packets 0 bytes 0 (0.0 B)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 134 bytes 57112 (55.7 KiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

<snip>

[admin@guestshell ~]$

All the software data structures, including ARP tables, routing tables, and prefixes, are
synchronized between NX-OS and the Linux kernel by the NetBroker process, as illus-
trated in Figure 7-5. Because the Guest Shell uses the Linux kstack, the data structures
synchronization is automatic.

Container Infrastructure Configuration and Instantiation    251

Routing
table

Routing
table

ARP
cache

ARP
cache

L3 protocols
and apps

Networking
stack

System management,
monitoring, automation,

and orchestration packages

Linux Netdevices

NX-OS

Linux
kernel

Nexus switch hardware

Po-Ch A Sub-intf

Eth1-NEth1-x Eth1-y

NetBroker

Figure 7-5  NetBroker—Synchronize NX-OS and the Linux Kernel

The commands provided in Example 7-11 show the routing table, interface configuration,
and statistics as well as the ARP cache in a specific context.

Example 7-11  Guest Shell Routing and ARP Tables—Default Namespace

[admin@guestshell ~]$

[admin@guestshell ~]$ chvrf default route -vn

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

0.0.0.0 10.102.242.129 0.0.0.0 UG 51 0 0 Eth1-1

10.1.1.0 0.0.0.0 255.255.255.0 U 0 0 0 Lo100

10.102.242.128 0.0.0.0 255.255.255.240 U 0 0 0 Eth1-1

10.102.242.129 0.0.0.0 255.255.255.255 UH 51 0 0 Eth1-1

127.1.0.0 0.0.0.0 255.255.0.0 U 0 0 0 veobc

127.1.2.0 0.0.0.0 255.255.255.0 U 0 0 0 veobc

[admin@guestshell ~]$

[admin@guestshell ~]$ ifconfig -a Eth1-1

Eth1-1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 10.102.242.131 netmask 255.255.255.240 broadcast 10.102.242.143

 ether 00:3a:9c:5a:00:67 txqueuelen 100 (Ethernet)

 RX packets 2044610 bytes 469523762 (447.7 MiB)

 RX errors 0 dropped 1614879 overruns 0 frame 0

 TX packets 556415 bytes 95505736 (91.0 MiB)

 TX errors 0 dropped 892 overruns 0 carrier 0 collisions 0

[admin@guestshell ~]$

[admin@guestshell ~]$ arp 10.102.242.129

Address HWtype HWaddress Flags Mask Iface

10.102.242.129 ether 00:1e:f7:be:70:c2 CM Eth1-1

[admin@guestshell ~]$

252    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

Make sure the new route added in the default VRF context is synchronized to the global
routing table. As shown in Example 7-12, a /16 route is added in the NX-OS, which has
synchronized to the Guest Shell.

Example 7-12  NX-OS and Guest Shell Synchronization

N3K-C3548P#(config)# config t

Enter configuration commands, one per line. End with CNTL/Z.

N3K-C3548P(config)# ip route 192.168.0.0/16 10.102.242.129

N3K-C3548P(config)# end

N3K-C3548P# guestshell

[admin@guestshell ~]$

[admin@guestshell ~]$ chvrf default route -nv

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

0.0.0.0 10.102.242.129 0.0.0.0 UG 51 0 0 Eth1-1

10.1.1.0 0.0.0.0 255.255.255.0 U 0 0 0 Lo100

10.102.242.128 0.0.0.0 255.255.255.240 U 0 0 0 Eth1-1

10.102.242.129 0.0.0.0 255.255.255.255 UH 51 0 0 Eth1-1

127.1.0.0 0.0.0.0 255.255.0.0 U 0 0 0 veobc

127.1.2.0 0.0.0.0 255.255.255.0 U 0 0 0 veobc

192.168.0.0 10.102.242.129 255.255.0.0 UG 51 0 0 Eth1-1

[admin@guestshell ~]$

The NetBroker module synchronizes the ARP, routes, and other Layer 3 configuration to
every kernel namespace available. Now you will switch to the Management namespace
and verify the routes and ARP cache there (see Example 7-13).

Example 7-13  Guest Shell Routing and ARP Tables—Management Namespace

[admin@guestshell ~]$

[admin@guestshell ~]$ chvrf management

[admin@guestshell ~]$

[admin@guestshell ~]$ ifconfig -a

eth1: flags=4099<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 172.16.31.5 netmask 255.255.255.0 broadcast 172.16.31.255

 ether 00:3a:9c:5a:00:60 txqueuelen 1000 (Ethernet)

 RX packets 656019 bytes 48111417 (45.8 MiB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 118874 bytes 31380645 (29.9 MiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

<snip>

[admin@guestshell ~]$ chvrf management route -vn

Kernel IP routing table

Container Infrastructure Configuration and Instantiation    253

Destination Gateway Genmask Flags Metric Ref Use Iface

0.0.0.0 172.16.31.1 0.0.0.0 UG 51 0 0 eth1

<snip>

[admin@guestshell ~]$

[admin@guestshell ~]$ arp 172.16.31.1

Address HWtype HWaddress Flags Mask Iface

172.16.31.1 ether 00:1e:f7:a3:81:c6 CM eth1

[admin@guestshell ~]$

Installation and Verification of Applications

As you see in Example 7-14, the Guest Shell in Cisco Nexus 9000 Series devices supports
Python version 2.7.5 in both interactive and noninteractive (script) modes.

The Python scripting capability in Nexus 9000 gives programmatic access to the device’s
command-line interface (CLI) to perform various tasks like Power On Auto Provisioning
(POAP) and Embedded Event Manager (EEM).

Example 7-14  Python in Guest Shell

[admin@guestshell ~]$

[admin@guestshell ~]$ python

Python 2.7.5 (default, Jun 17 2014, 18:11:42)

[GCC 4.8.2 20140120 (Red Hat 4.8.2-16)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> print "Hello"

Hello

>>> quit()

[admin@guestshell ~]$

You will start with developing and running a Python application in the Guest Shell.

Custom Python Application

Python applications can be run from NX-OS using the run guestshell python command,
or they can be natively run in the shell itself. As you see in Example 7-15, the Python
application hello.py runs natively from NX-OS using the run guestshell python com-
mand and from the Guest Shell using the python command.

Example 7-15  Run Python Application in Guest Shell

N3K-C3548P#

N3K-C3548P# show file bootflash:hello.py

#!/usr/bin/env python

254    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

import sys

print "Hello, World!"

list = ['one', 'two', 'three']

for item in list:

	 print item

N3K-C3548P#

N3K-C3548P# run guestshell python /bootflash/hello.py

Hello, World!

one

two

three

N3K-C3548P#

N3K-C3548P# guestshell

[admin@guestshell ~]$

[admin@guestshell ~]$ python /bootflash/hello.py

Hello, World!

one

two

three

[admin@guestshell ~]$ exit

N3K-C3548P#

Python API–Based Application

Cisco NX-OS has a built-in package providing API access to CLIs at the exec level as well
as configuration commands, referred to as Python APIs. As you learned previously, Guest
Shell also has access to Python APIs. As you see in Example 7-16, an NX-OS CLI show
clock is accessed using the Python API available in the Guest Shell.

Example 7-16  Python API–Based Application

N3K-C3548P#

N3K-C3548P# guestshell

[admin@guestshell ~]$

[admin@guestshell ~]$ python

Python 2.7.5 (default, Jun 17 2014, 18:11:42)

[GCC 4.8.2 20140120 (Red Hat 4.8.2-16)] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>>

>>> from cli import *

>>> cli('show clock')

'02:24:50.130 UTC Sun Sep 01 2019\nTime source is NTP\n'

>>> exit()

[admin@guestshell ~]$

Container Infrastructure Configuration and Instantiation    255

Example 7-17 shows a sample custom Python application that leverages Python APIs. In
this example, cli returns the raw format of the CLI output, including control and special
characters. clid returns a dictionary of attribute names and values for the given CLI com-
mands, which makes it easier to process the data programmatically and automate.

Example 7-17  Python API–Based Application: JSON

[admin@guestshell ~]$ more PY-API2.py

#!/usr/bin/python

from cli import *

import json	

print("STANDARD CLI OUTPUT ...")

print (cli('show interface eth1/1 brief'))

print("JSON FORMAT CLI OUTPUT ...")

print (clid('show interface eth1/1 brief'))

[admin@guestshell ~]$

[admin@guestshell ~]$

[admin@guestshell ~]$ python PY-API2.py

STANDARD CLI OUTPUT ...

Ethernet VLAN Type Mode Status Reason Speed Port

Interface Ch #

Eth1/1 -- eth routed up none 1000(D) --

JSON FORMAT CLI OUTPUT ...

{"TABLE_interface": {"ROW_interface": {"interface": "Ethernet1/1", "vlan": "--",
"type": "eth", "portmode": "routed", "state": "up", "state_rsn_desc": "none",
"speed": "1000", "ratemode": "D"}}}

[admin@guestshell ~]$

To learn more about Python APIs and the Software Development Kit (SDK) supported in
Nexus 9000 platforms, refer to the Cisco Nexus 9000 Series SDK User Guide provided
in the “References” section.

The dohost command shown in Example 7-18 is a Python wrapper script using NX-API
functions. Make sure to have the NX-API feature enabled to leverage this capability.
Using dohost capability, application developers can perform show commands as well as
configuration commands.

256    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

Example 7-18  Run NX-OS CLIs in Guest Shell with dohost

[admin@guestshell ~]$

[admin@guestshell ~]$ dohost "show clock"

02:23:41.492 UTC Sun Sep 01 2019

Time source is NTP

As you learned in the previous section, the Guest Shell with CentOS 7 also can install
software packages using Yum utility. The Guest Shell is prepopulated with many of the
common tools that would naturally be expected on a networking device, including net-
tools, iproute, tcpdump, OpenSSH, and the PIP for installing additional Python packages.
As you have just learned, Python 2.7.5 is included by default.

Leveraging high-end capabilities and features in Guest Shell, it is easy to integrate it into
your day-to-day automation workflow. With the support of device-level API integration
and support for scripting with languages like Python, Ruby, and so on, it is easier now
to do on-box prototyping of applications or scripts. Guest Shell has its user space and
resources isolated from the host and other containers and any faults/failures seen in those
container spaces. All the capabilities make Guest Shell a powerful environment to develop
and host applications.

Bash
In addition to the NX-OS CLI, Cisco Nexus 9000 Series devices support access to Bash.
Bash interprets commands that you enter or commands that are read from a shell script. It
enables access to the underlying Linux kernel on the device and to manage the system.

As you learned in the previous sections, Bash is supported in Nexus 3000 and 9000
switching platforms, but it is disabled by default.

Enabling Bash

In the supported platforms, under configuration mode, the feature bash-shell command
enables this feature with no special license required. Use the show bash-shell command
to learn the current state of the feature, as shown in Example 7-19.

Example 7-19  Check Status and Enable Bash

N9K-C93180YC# show bash-shell

Bash shell is disabled

N9K-C93180YC#

N9K-C93180YC# conf t

Enter configuration commands, one per line. End with CNTL/Z.

N9K-C93180YC(config)# feature bash-shell

N9K-C93180YC(config)# end

Bash    257

N9K-C93180YC#

N9K-C93180YC# show bash-shell

Bash shell is enabled

N9K-C93180YC#

Accessing Bash from NX-OS

In Cisco NX-OS, Bash is accessible for users whose role is set to network-admin or dev-
ops; through Bash, a user can change system settings or parameters that could impact
devices’ operation and stability.

You can execute Bash commands with the run bash command, as shown in Example 7-20.

Example 7-20  Run Bash Commands from NX-OS

N9K-C93180YC#

N9K-C93180YC# run bash pwd

/bootflash/home/admin

N9K-C93180YC#

N9K-C93180YC# run bash ls

N9K-C93180YC# run bash uname -r

4.1.21-WR8.0.0.25-standard

N9K-C93180YC#

N9K-C93180YC# run bash more /proc/version

Linux version 4.1.21-WR8.0.0.25-standard (divvenka@ins-ucs-bld8) (gcc version 4.6.3
(Wind River Linux Sourcery CodeBench 4.6-60)) #1 SMP Sun Nov 4 19:44:18 PST 2018

N9K-C93180YC#

N9K-C93180YC#

The run bash command loads Bash and begins at the home directory for the user.
Example 7-21 shows how to load and run Bash as an admin user.

Example 7-21  Access Bash Through Console

N9K-C93180YC#

N9K-C93180YC# run bash

bash-4.3$

bash-4.3$ pwd

/bootflash/home/admin

bash-4.3$

bash-4.3$ whoami

admin

bash-4.3$

bash-4.3$ id

258    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

uid=2002(admin) gid=503(network-admin) groups=503(network-admin),504(network-
operator)

bash-4.3$

bash-4.3$ more /proc/version

Linux version 4.1.21-WR8.0.0.25-standard (divvenka@ins-ucs-bld8) (gcc version 4.

6.3 (Wind River Linux Sourcery CodeBench 4.6-60)) #1 SMP Sun Nov 4 19:44:18 PST

 2018

bash-4.3$

For users without network-admin or dev-ops level privileges, the run bash command
will not be parsed, and when executed, the system will report that permission has been
denied. As you see in Example 7-22, the testuser with the privilege level not set to
network-admin or dev-ops has its permission to execute the run bash command denied.

Example 7-22  Access Bash Privileges

User Access Verification

N9K-C93180YC login: testuser

Password:

Cisco Nexus Operating System (NX-OS) Software

TAC support: http://www.cisco.com/tac

Copyright (C) 2002-2018, Cisco and/or its affiliates.

All rights reserved.

<snip>

N9K-C93180YC# run bash

% Permission denied for the role

N9K-C93180YC#

Accessing Bash via SSH

Before accessing Bash via SSH, make sure the SSH service is enabled (see Example 7-23).

Example 7-23  Access Bash Privileges

bash-4.3$ service /etc/init.d/sshd status

openssh-daemon (pid 14190) is running…

bash-4.3$

bash-4.3$ ps -ef | grep sshd

UID PID PPID C STIME TTY TIME CMD

admin 5619 5584 0 01:26 ttyS0 00:00:00 grep sshd

root 14190 1 0 Sep12 ? 00:00:00 /usr/sbin/sshd

bash-4.3$

bash-4.3$ ps --pid 1

 PID TTY TIME CMD

 1 ? 00:00:28 init

bash-4.3$

Bash    259

An NX-OS admin user can configure a user with privileges to directly log in to the Bash.
Example 7-24 demonstrates user bashuser with a default shelltype access.

Example 7-24  Access Bash Privileges: shelltype

N9K-C93180YC#

N9K-C93180YC# conf t

Enter configuration commands, one per line. End with CNTL/Z.

N9K-C93180YC(config)#

N9K-C93180YC(config)# username bashuser password 0 Cisco!123

N9K-C93180YC(config)# username bashuser shelltype bash

N9K-C93180YC(config)# end

N9K-C93180YC#

Log in to Bash directly from an external device with username bashuser, as shown in
Example 7-25.

Example 7-25  Access Bash—Shelltype User

Ubuntu-Server$ ssh -l bashuser 172.16.28.5

User Access Verification

Password:

-bash-4.3$

-bash-4.3$ pwd

/var/home/bashuser

-bash-4.3$

-bash-4.3$ id

uid=2003(bashuser) gid=504(network-operator) groups=504(network-operator)

-bash-4.3$

-bash-4.3$ whoami

bashuser

-bash-4.3$

-bash-4.3$ exit

logout

Connection to 10.102.242.131 closed.

Ubuntu-Server$

Following are the guidelines for elevating the privileges of an existing user.

■■ Bash must be enabled before elevating user privileges.

■■ Only an admin user can escalate privileges of a user to root.

■■ Escalation to root is password protected.

If you SSH to the switch using the root username through a nonmanagement interface,
it will default to Linux Bash shell-type access for the root user. If a user has established

260    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

an SSH connection directly to Bash and needs to access NX-OS, use vsh commands, as
shown in Example 7-26.

Example 7-26  Access NX-OS from Bash

bash-4.3$

bash-4.3$ vsh -c "show clock"

21:17:24:136 UTC Fri Sep 13 2019

Time source is NTP

bash-4.3$

bash-4.3$ su - root

Password:

root@N9K-C93180YC#

root@N9K-C93180YC# id

uid=0(root) gid=0(root) groups=0(root)

root@N9K-C93180YC# whoami

root

root@N9K-C93180YC#

root@N9K-C93180YC# vsh

Cisco Nexus Operating System (NX-OS) Software

TAC support: http://www.cisco.com/tac

Copyright (C) 2002-2018, Cisco and/or its affiliates.

All rights reserved.

<snip>

root@N9K-C93180YC#

root@N9K-C93180YC# show clock

21:18:53.903 UTC Fri Sep 13 2019

Time source is NTP

root@N9K-C93180YC#

Based on what you have learned this section, Bash interprets the instructions and commands
that a user or application provides and executes. With direct access to the underlying infra-
structure, file systems, and network interfaces, it enables developers to build and host appli-
cations to monitor and manage the devices. However, users should exercise extreme caution
when accessing, configuring, or making changes to the underlying infrastructure because
doing so could affect the host system’s operation and performance. Remember that Bash
directly accesses the Wind River Linux (WRL) on which NX-OS is running in a user space,
and unlike Guest Shell or OAC, it is not isolated from the host system.

Docker Containers

Docker provides a way to securely run applications in an isolated environment, with
all dependencies and libraries packaged. If you want to know more about Docker, its
usage, and functionalities, refer to the Docker Documentation page provided in the
“References” section.

Bash    261

Beginning with Release 9.2(1), support has been included for using Docker within the
Cisco NX-OS switch. The version of Docker that is included on the switch is 1.13.1. By
default, the Docker service or daemon is not enabled. You must start it manually or set it
up to automatically restart when the switch boots up.

Even though the scope of this book does not intend to cover Docker in detail, it is good
to take a quick look at the key components in the Docker architecture and their func-
tions, as illustrated in Figure 7-6.

Client

Containers Images

Host

Docker daemon

Registry

Docker run

Docker pull

Docker build

APIs

User

Docker

Figure 7-6  Docker Architecture

Docker Client

The Docker client enables end users to interact with the Docker host and the daemons
running on it. The Docker client can be on a dedicated device or can reside on the same
device as a host. A Docker client can communicate with multiple daemons running on
multiple host devices. The Docker client provides a CLI and REST APIs that allow users
to issue build, run, and stop application commands to a Docker daemon. The main pur-
pose of the Docker client is to provide a means to direct pulling images from a registry
and having them run on a Docker host.

Docker Host

The Docker host provides an environment dedicated to executing and running applica-
tions. The key component is a Docker daemon that interacts with the client as well as the
registry and with containers, images, the network, and storage. This daemon is responsi-
ble for all container-related activities and carrying out the tasks received via CLIs or APIs.
The Docker daemon pulls the requested image and builds containers as requested by the
client, following the instructions provided in a build file.

262    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

Images

Images are read-only templates providing instructions to create a Docker container. The
images contain metadata that describe the container’s capabilities and needs. The neces-
sary Docker images can be pulled from the Docker Hub or a local registry. Users can cre-
ate their own and customized images by adding elements to extend the capabilities, using
Dockerfile.

Containers

As has been discussed in previous chapters, containers are self-contained environments
in which you run applications. The container is defined by the image and any additional
configuration parameters provided during its instantiation. These configuration param-
eters are used to identify the file systems and partitions to mount, to set specific network
mode, and so on.

Now you will learn how to enable and use Docker in the context of the Cisco Nexus
switch environment.

Bash is a prerequisite to enable and activate Docker. Example 7-27 provides the detailed
procedure to activate Docker. Before activating Docker, follow these steps.

	 1.	 Enable Bash.

	 2.	 Configure the domain name and name servers appropriately for the network.

	 3.	 If the switch is in a network that uses an HTTP proxy server, set up the http_proxy
and https_proxy environment variables in the /etc/sysconfig/docker file.

Example 7-27  Enable Bash to Activate Docker Service

N9K-C93180YC# conf t

N9K-C93180YC(config)# feature bash-shell

N9K-C93180YC(config)# vrf context management

N9K-C93180YC(config-vrf)# ip domain-name cisco.com

N9K-C93180YC(config-vrf)# ip name-server 208.67.222.222

N9K-C93180YC(config-vrf)# ip name-server 208.67.220.220

N9K-C93180YC(config-vrf)# end

N9K-C93180YC# run bash

bash-4.3$

bash-4.3$ cat /etc/resolv.conf

domain cisco.com

nameserver 208.67.222.222

nameserver 208.67.220.220

bash-4.3$

bash-4.3$ cat /etc/sysconfig/docker | grep http

export http_proxy=http://192.168.21.150:8080

export https_proxy=http://192.168.21.150:8080

bash-4.3$	

Bash    263

Starting Docker Daemon

Please be aware that when the Docker daemon is started for the first time, 2 GB of stor-
age space is carved out for a file called dockerpart in the bootflash filesystem. This file
will be mounted as /var/lib/docker. If needed, the default size of this space reservation
can be changed by editing /etc/sysconfig/docker before you start the Docker daemon for
the first time.

Start the Docker daemon by following Example 7-28.

Example 7-28  Enable Docker Service

bash-4.3$	

bash-4.3$ service docker start

bash-4.3$

bash-4.3$ service docker status

dockerd (pid 5334) is running...

bash-4.3$

bash-4.3$ ps -ef | grep docker

UID PID PPID C STIME TTY TIME CMD

root 16532 1 0 03:15 ttyS0 00:00:00 /usr/bin/dockerd --debug=true

root 16548 16532 0 03:15 ? 00:00:00 docker-containerd -l unix:///var

admin 16949 12789 0 03:18 ttyS0 00:00:00 grep docker

bash-4.3$

bash-4.3$

Instantiating a Docker Container with Alpine Image

As you can see in Example 7-29, the host device has various Docker images, includ-
ing Alpine, Ubuntu, and nginx. Alpine Linux is a lightweight Linux distribution based
on musl libc and Busybox, and it is security-oriented. Musl (read as, “muscle”) libc is a
standard library of Linux-based devices focused on standards-conformance and safety.
Busybox brings many UNIX/Linux utilities together into a single and small executable;
because it is modular, it is easy to customize and integrate it into embedded systems. For
more information, see the references provided for Alpine Linux, musl libc, and Busybox,
in the “References” section at the end of this chapter.

Example 7-29 shows instantiating an Alpine Linux Docker container on the switch, which
is, by default, launched in the host network mode. The Docker containers instantiated in
the bridged networking mode have external network connectivity but do not necessar-
ily care about the visibility into or access to ports in the host. Note that the containers
operating in bridged networking mode are far more secure than the ones operating in
host networking mode.

264    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

Example 7-29  Container with Alpine Image

bash-4.3$

bash-4.3$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

docker dind 12adad4e12e2 3 months ago 183 MB

ubuntu latest d131e0fa2585 4 months ago 102 MB

nginx latest 27a188018e18 5 months ago 109 MB

alpine latest cdf98d1859c1 5 months ago 5.53 MB

centos latest 9f38484d220f 6 months ago 202 MB

alpine 3.2 98f5f2d17bd1 7 months ago 5.27 MB

hello-world latest fce289e99eb9 8 months ago 1.84 kB

bash-4.3$

bash-4.3$

bash-4.3$ docker run --name=myalpine -v /var/run/netns:/var/run/netns:ro,rslave
--rm --network host --cap-add SYS_ADMIN -it alpine

/ #

/ # whoami

root

/ # id

uid=0(root) gid=0(root) groups=0(root),1(bin),2(daemon),3(sys), 4(adm),6(disk),10(wh
eel),11(floppy),20(dialout),26(tape),27(video)

/ #

/ # ip route

default via 10.102.242.129 dev Eth1-1 metric 51 onlink

10.1.1.0/24 dev Lo100 scope link

10.102.242.128/28 dev Eth1-1 scope link

10.102.242.129 dev Eth1-1 scope link metric 51

127.1.0.0/16 dev veobc scope link src 127.1.1.1

127.1.2.0/24 dev veobc scope link src 127.1.2.1

172.17.0.0/16 dev docker0 scope link src 172.17.0.1

172.18.0.0/16 dev br-b96ec30eb010 scope link src 172.18.0.1

172.16.0.0/16 via 10.102.242.129 dev Eth1-1 metric 51 onlink

/ #

/ # ifconfig Eth1-1

Eth1-1 Link encap:Ethernet Hwaddr 00:3A:9C:5A:00:67

 inet addr:10.102.242.131 Bcast:10.102.242.143 Mask:255.255.255.240

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:2873124 errors:0 dropped:2299051 overruns:0 frame:0

 TX packets:797153 errors:0 dropped:1230 overruns:0 carrier:0

 collisions:0 txqueuelen:100

 RX bytes:622065894 (593.2 MiB) TX bytes:135952384 (129.6 MiB)

/ #

Bash    265

Figure 7-7 illustrates a Docker container running an Alpine image that was instantiated
from Bash by the commands provided in Example 7-29.

Linux kernel

Nexus9000

Myalpine

Docker service

Docker container

Bash

Figure 7-7  Alpine Docker Container

The –rm option used to launch the Docker container in Example 7-29 removes it auto-
matically when the user exits the container with the exit command. Press Ctrl+Q to
detach from the container without deinstantiating it and get back to Bash. Use the docker
attach <container-id> command to reattach to the container that is still up and running,
as shown in Example 7-30.

Example 7-30  Docker Processes—Attach to Container

bash-4.3$

bash-4.3$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

6469af028115 alpine "/bin/sh" 3 minutes ago Up 3 minutes myalpine

bash-4.3$

bash-4.3$ docker attach 6469af028115

/ #

/ #

If you want to mount a specific file system or partitions, use the -v option, as shown in
Example 7-31, when you launch the container. The Bootflash file system will be mounted
into and accessible only from the myalpine1 container; it will not be available from myal-
pine, which was instantiated without mounting the Bootflash file system.

Example 7-31  Docker Container—File System Mount

bash-4.3$

bash-4.3$ docker run --name=myalpine1 -v /var/run/netns:/var/run/netns:ro,rslave -v
/bootflash:/bootflash --rm —-network host —-cap-add SYS_ADMIN -it alpine

/ #

266    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

/ # ls

bin etc media proc sbin tmp

bootflash home mnt root srv usr

dev lib opt run sys var

/ # / # ifconfig

Eth1-1 Link encap:Ethernet Hwaddr 00:3A:9C:5A:00:67

 inet addr:10.102.242.131 Bcast:10.102.242.143 Mask:255.255.255.240

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:2848104 errors:0 dropped:2282704 overruns:0 frame:0

 TX packets:786971 errors:0 dropped:1209 overruns:0 carrier:0

 collisions:0 txqueuelen:100

 RX bytes:618092996 (589.4 MiB) TX bytes:134371507 (128.1 MiB)

Eth1-10 Link encap:Ethernet Hwaddr 00:3A:9C:5A:00:67

 UP BROADCAST MULTICAST MTU:1500 Metric:1

<snip>

The Alpine Docker containers instantiated in the past few examples were done in
the default host namespace. To instantiate a Docker container in a specific network
namespace, use the docker run command with the –network <namespace> option.

Managing Docker Container

Beyond instantiating and activating containers with applications installed, you need to
know how to manage the containers. Container management becomes critical when con-
tainers are deployed at scale. This section discusses managing containers deployed in the
Nexus switches, and associated techniques.

Container Persistence Through Switchover

To have Docker container persisting through the manual supervisor engine switchover,
make sure to copy the dockerpart file from the active supervisor engine’s bootflash to
the standby supervisor engine’s bootflash before the switchover of supervisor engines in
applicable platforms like Nexus 9500. Be aware that the Docker containers will not be
running continuously and will be disrupted during the switchover.

You will start an Alpine container and configure it to always restart unless it is
explicitly stopped or the Docker service is restarted. Please note that this command uses
the –restart option instead of the –rm option, which restarts the container right after the
user exits. See Example 7-32.

Example 7-32  Docker Container—Persistent Restart

bash-4.3$

bash-4.3$ docker run -dit --name=myalpine2 --restart unless-stopped --network host
--cap-add SYS_ADMIN -it alpine

da28182a03c4032f263789ec997eea314130a95e6e6e6a0574e49dfcba5f2776

Bash    267

bash-4.3$

bash-4.3$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

0355f5ba1fd6 alpine "/bin/sh" 18 minutes ago Up 5 minutes myalpine2

bash-4.3$

bash-4.3$ docker attach 0355f5ba1fd6

/#

/# exit

bash-4.3$

bash-4.3$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

0355f5ba1fd6 alpine "/bin/sh" 19 minutes ago Up 2 seconds myalpine2

bash-4.3$

With the previous commands, you have made the Alpine Linux container restart. As
shown in Example 7-33, use the chkconfig utility to make the service persistent, before
the supervisor engine switchover. Then copy the dockerpart file created in the active
supervisor engine to standby.

Example 7-33  Docker Container—Restart on Supervisor Engine Failover

bash-4.3$

bash-4.3$ chkconfig | grep docker

bash-4.3$

bash-4.3$ chkconfig --add docker

bash-4.3$

bash-4.3$ chkconfig | grep docker

docker 0:off 1:off 2:on 3:on 4:on 5:on 6:off

bash-4.3$

bash-4.3$ service docker stop

Stopping dockerd: dockerd shutdown

bash-4.3$

bash-4.3$ cp /bootflash/dockerpart /bootflash_sup-remote/

bash-4.3$

bash-4.3$ service docker start

bash-4.3$

Stopping the Docker Container and Service

If a specific container needs to be stopped, use the docker stop command, as shown in
Example 7-34. To learn more Docker command options, use the docker –help and docker
run –help commands.

When a specific container is stopped, all the applications, along with their packages and
libraries, will cease to function, and any file system mounted will be unmounted.

268    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

Example 7-34  Stopping the Docker Container

bash-4.3$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

0355f5ba1fd6 alpine "/bin/sh" 36 minutes ago Up 13 minutes myalpine2

bash-4.3$

bash-4.3$ docker stop 0355f5ba1fd6

0355f5ba1fd6

bash-4.3$

If a Docker service needs to be stopped altogether, follow the procedure as given in
Example 7-35. As you have learned, if a Docker service is not up and running, contain-
ers will cease to exist in Nexus switches. Make sure to delete the dockerpart file from
the active supervisor engine’s bootflash as well as the standby’s bootflash in applicable
deployment scenarios.

Example 7-35  Stopping the Docker Service

bash-4.3$

bash-4.3$ service docker stop

Stopping dockerd: dockerd shutdown

bash-4.3$

bash-4.3$ service docker status

dockerd is stopped

bash-4.3$ exit

N9K-C93180YC#

N9K-C93180YC# delete bootflash:dockerpart

Do you want to delete "/dockerpart" ? (yes/no/abort) y

N9K-C93180YC#

Orchestrating Docker Containers Using Kubernetes

Kubernetes is an open-source platform for automating, deploying, scaling, and operating
containers. Kubernetes was first created by Google and then donated to Cloud Native
Compute Foundation (open source). Since Kubernetes became open source, there have
been several projects to increase its scope and improve it to enable networking, storage,
and more, which allows users to focus on developing and testing applications rather than
spending resources to gain expertise in and maintain container infrastructure.

Kubernetes Architecture

Following is a brief discussion on the Kubernetes architecture, which will help you follow
the procedures and examples provided later.

In a Kubernetes (or K8s) cluster functionally, there are two major blocks—Master and
Node—as illustrated in Figure 7-8.

Bash    269

Master components provide the cluster’s control plane. Master components make global
decisions about the cluster (for example, scheduling) and detect and respond to cluster
events (for example, starting up a new pod). Master components are kube-apiserver, etcd,
kube-scheduler, kube-controller-manager, and cloud-controller-manager. Master compo-
nents can be run on any machine in the cluster, and it is highly recommended that you have
all master components running in the same machine, where no containers are instantiated.

Node components run on every host or a virtual machine, maintaining pods deployed
and providing the Kubernetes runtime environment. Node components are kubelet,
kube-proxy, and container runtime.

Kube-controller
manager

Kube API-server

Kubelet

Kube-proxy

Container
runtime

Container Container

Kube scheduler

Cloud-controller
manager

K8s master

K8s worker

Etcd Host

Figure 7-8  Kubernetes Architecture

The Cloud controller manager is a daemon that has the cloud-specific control loops. The
Kubernetes controller manager is a daemon that has the core control loops. In K8s, a con-
troller is a control loop that monitors the state of the cluster through the API server and
makes necessary changes to move the current state toward the desired state. Examples of
controllers that ship with Kubernetes are the replication controller, endpoints controller,
namespace controller, and service accounts controller.

You will take a quick look at the common terminologies used in the Docker containers
and Kubernetes world.

Pod

A pod is a group of containers sharing resources such as volumes, file systems, storage,
and networks. It also is a specification on how these containers are run and operated. In
a simple view, a pod is synonymous to an application-centric logical host, which contains
one or more tightly coupled containers. In a given pod, the containers share an IP address
and Layer 4 port space and can communicate with each other using standard interprocess
communication.

Controllers

Kubernetes contains many higher-level abstractions called controllers. Controllers build
upon the basic objects and provide additional functionality and convenience features,
such as ReplicaSet, StatefulSet, and DaemonSet.

270    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

The objective of a ReplicaSet is to maintain a set of replica pods running at any given
time, guaranteeing the availability of a specified number of identical pods.

StatefulSet is the workload API object used to manage stateful applications. It manages
the deployment and scaling of a set of pods and guarantees the ordering and unique-
ness of these pods.

A DaemonSet is an object that ensures that all or some of the nodes run a copy of a
pod. As a cluster expands by adding more nodes, DaemonSet makes sure that pods are
added to the new added nodes. When nodes are removed from the cluster, those pods are
removed, and the garbage is collected.

If you need more information on Kubernetes, please see the Kubernetes page at https://
kubernetes.io/.

Building Kubernetes Master

You are going to build a K8s Master in an Ubuntu server, as shown in Example 7-36.

A K8s Master can be run natively in a Linux environment such as Ubuntu. But for conve-
nience, you will run the K8s Master as a Docker container. The command provided in the
example enables the Docker service to prepare the Ubuntu server for running Kubernetes
Master components. Note that the following example uses Kubernetes version 1.2.2.

Example 7-36  Building K8s Master—Docker Service

root@Ubuntu-Server1$

root@Ubuntu-Server1$ service docker start

root@Ubuntu-Server1$

root@Ubuntu-Server1$ service docker status

dockerd (pid 17362) is running…

root@Ubuntu-Server1$

etcd is a highly available database of the K8s Master, which has all cluster data in a
key-value pair format. As shown in Example 7-37, the docker run command starts the
etcd component. The IP address and TCP port it is listening to are 10.0.0.6 and 4001,
respectively.

Example 7-37  Building K8s Master—etcd

root@Ubuntu-Server1$ docker run -d \

 --net=host \

 gcr.io/google_containers/etcd:2.2.1 \

 /usr/local/bin/etcd --listen-client-urls=http://10.0.0.6:4001 \

 --advertise-client-urls=http://10.0.0.6:4001 --data-dir=/var/etcd/data

As you notice in Example 7-38, the K8s Master components API server is started, and it
is listening to the same IP address and TCP port as etcd.

https://kubernetes.io/
https://kubernetes.io/

Bash    271

Example 7-38  Building K8s Master—API Server

root@Ubuntu-Server1$ docker run -d --name=api \

 --net=host --pid=host --privileged=true \

 gcr.io/google_containers/hyperkrs/hyperkubeube:v1.2.2 \

/hyperkube apiserver --insecure-bind-address=10.0.0.6 \

 --allow-privileged=true \

 --service-cluster-ip-range=172.16.1.0/24 \

 --etcd_servers=http://10.0.0.6:4001 --v=2

The next step is to start the kubelet of the K8s Master components. The kubelet is listen-
ing to the same IP address as the etcd or the API server, but the TCP port is 8080. Please
follow the steps provided in Example 7-39 to start the kubelet.

Example 7-39  Building K8s Master—Kubelet

root@Ubuntu-Server1$ docker run -d --name=kubs \

 --volume=/:/rootfs:ro --volume=/sys:/sys:ro --volume=/dev:/dev \

 --volume=/var/lib/docker/:/var/lib/docker:rw \

 --volume=/var/lib/kubelet/:/var/lib/kubelet:rw \

 --volume=/var/run:/var/run:rw --net=host --pid=host \

 --privileged=true \

 gcr.io/google_containers/hyperkube:v1.2.2 \

/hyperkube kubelet --allow-privileged=true \

 --hostname-override="10.0.0.6" \

 --address="10.0.0.6 --api-servers=http://10.0.0.6:8080 \

 --cluster_dns=10.0.0.10 \

 --cluster_domain=cluster.local --config=/etc/kubernetes/manifests-multi

The last step you need to do in the Master is to enable kube-proxy. It is a network proxy
that runs on each node in your cluster, and it maintains the network rules on nodes.
These network rules allow network communication to your pods from network sessions
inside or outside your cluster. kube-proxy uses the operating system packet filtering layer
if it is available. Enable kube-proxy as shown in Example 7-40.

Example 7-40  Building K8s Master—Kube Proxy

root@Ubuntu-Server1$ docker run -d --name=proxy --net=host –privileged gcr.io/
google_containers/hyperkube:v1.2.2/hyperkube proxy --master=http://10.0.0.6:8080
--v=2

Figure 7-9 illustrates the K8s Master running in an Ubuntu server and various compo-
nents in the K8s Master.

272    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

Kube-controller
manager

Kube API-server

Kube Scheduler

Cloud-controller
manager

K8s master

Etcd

Docker service

Linux kernel

NIC

10.0.0.6/24 Ubuntu server

Network

Figure 7-9  Kubernetes Master—Ubuntu Server

Now that you have a K8s Master service running, register Nexus 9000 as a node to
the K8s Master. As you see in Example 7-41, the docker run commands register to the
Master and the socket to which the kube-apiserver and other Master components are
listening.

Example 7-41  Register Nexus Switch as K8s Node to Master

N9K-C93180YC# run bash

bash-4.3$

bash-4.3$ docker run -d --name=kubs --net=host --pid=host --privileged=true
--volume=/:/rootfs:ro --volume=/sys:/sys:ro --volume=/dev:/dev --volume=/var/
lib/docker/:/var/lib/docker:rw --volume=/var/lib/kubelet/:/var/lib/kubelet:rw
--volume=/var/run:/var/run:rw \ gcr.io/google_containers/hyperkube:v1.2.2/
hyperkube kubelet –allow-privileged=true --containerized --enable-server
--cluster_dns=10.0.0.10 \--cluster_domain=cluster.local --config=/etc/
kubernetes/manifests-multi \--hostname-override="10.0.0.6" --address=0.0.0.0
--api-servers=http://10.0.0.6:4001

bash-4.3$

bash-4.3$ docker run --name=proxy \--net=host --privileged=true gcr.io/google_
containers/hyperkube:v1.2.2 /hyperkube proxy --master=http://10.0.0.6:4001 --v=2

bash-4.3$

Bash    273

Once the Nexus 9000 successfully registers as a K8s Node to the Master, it should
begin to communicate with the Master. Figure 7-10 shows a Kubernetes Cluster, with an
Ubuntu server acting as a K8s Master and a Nexus 9000 acting as a K8s Node.

Kube Controller
Manager

Kube API Server

Kube Scheduler

Cloud Controller
Manager

K8s master

Etcd

Docker service

Linux kernel

NICEth1/1

10.0.0/6/2410.102.242/131/28 Ubuntu server

Network

Linux kernel

Nexus 9000

Myalpine

Docker service

Docker container

Bash

K8s Node

Kubelet

Kube-Proxy

Container runtime

Figure 7-10  Kubernetes Cluster

The certificate exchange must happen between the Master and Node to establish a secure
connection between them, so all the data and control message communication happens
securely.

Orchestrating Docker Containers in a Node from the K8s Master

Now you will look into orchestration of Docker containers in a pod from the K8s Master
and how you can manage them through their lifecycles. Kubectl is a critical component in
managing and orchestrating containers.

Kubectl is a set of CLI commands to manage Kubernetes clusters. It can deploy applica-
tions and inspect and manage cluster resources, among other tasks.

Download and install kubectl packages in an Ubuntu server in which you have already
instantiated the K8s Master. Example 7-42 shows using the curl command to download
a specific version—in this case, it is v1.15.2. If you want to download a different version,
replace v1.15.2 with the preferred version.

274    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

Example 7-42  Install Kubectl in K8s Master

root@Ubuntu-Server1$ curl -o ~/.bin/kubectl http://storage.googleapis.com/
kubernetes-release/release/v1.15.2/bin/linux/amd64/kubectl

root@Ubuntu-Server1$

Change the permissions to make the binary executable, and move it into the executable
path, as shown in Example 7-43.

Example 7-43  Make Kubectl Executable

root@Ubuntu-Server1$ chmod u+x ./kubectl

root@Ubuntu-Server1$ mv ./kubectl /usr/local/bin/kubectl

By default, kubectl configuration is located in the ~/.kube/config file. For kubectl to
discover and access a Kubernetes cluster, it looks for the kubeconfig file in the ~/.kube
directory, which is created automatically when your cluster is created.

This kubeconfig file organizes information about clusters, users, namespaces, and authen-
tication mechanisms. The kubectl command uses kubeconfig files to find the information
it needs to choose a cluster and communicate with the API server of a cluster. If required,
you can use the –kubeconfig flag to specify other kubeconfig files.

To learn how to install kubectl on different operating systems like Microsoft Windows
or Apple macOS, please refer to the Install and Setup Kubectl Guide provided in the
References section. Table 7-6 shows the kubectl syntax for common operations with
examples, such as apply, get, describe, and delete. Note that the filenames used in the
following table are for illustrative purposes only.

Table 7-6  Kubectl Operations and Commands

Operations Commands

Create a service using the definition in the
example-service.yaml file

kubectl apply -f example-service.yaml

Create a replication controller using the
definition in a YAML file

kubectl apply -f example-controller.yaml

Create the objects that are defined in any
.yaml, .yml, or .json files in a specific
directory

kubectl apply -f <directory>

List all pods in plain-text output format kubectl get pods <pod-name>

Get a list of all pods in plain-text output
format and include additional information
(node name, etc.)

kubectl get pods -o wide

Get a list of pods sorted by name kubectl get pods --sort-by=.metadata.name

Bash    275

Operations Commands

Get a list of all pods running on node
by name

kubectl get pods --field-selector=spec.
nodeName=<node-name>

Display the details of the node with node
name

kubectl describe nodes <node-name>

Display the details of the pod with pod name kubectl describe pods/<pod-name>

Delete a pod using the label Kubectl delete pods -l name=<label>

Delete a pod using the type and name
specified in a YAML file

kubectl delete -f pod.yaml

Delete all pods—initialized as well
as uninitialized ones

kubectl delete pods –all

For details about each operation command, including all the supported flags and subcom-
mands, see the Kubectl Overview document provided in the “References” section.

Now that you have learned about kubectl, you will see how to use it to manage clusters
and nodes. In this case, the Kubernetes clusters have the Ubuntu server as K8s Master,
the Nexus 9000 as Node, and an application named Alpine deployed. Example 7-44
shows kubectl commands to get the nodes, deployment, and pods from the K8s Master.
The command results indicate that an application is running as container myalpine in the
K8s pods.

Example 7-44  Use Kubectl to Get Nodes, Deployments, and Pods

root@Ubuntu-Server1$

root@Ubuntu-Server1$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

Ubuntu-Server1 Ready master 11m v1.2.2

N9K-C93180YC Ready <none> 18m v1.2.2

root@Ubuntu-Server1$

root@Ubuntu-Server1$ kubectl get deployments

NAME READY UP-TO-DATE AVAILABLE AGE

alpine 1/1 1 1 16m

root@Ubuntu-Server1$

root@Ubuntu-Server1$ kubectl get pods

NAME READY STATUS RESTARTS AGE

myalpine 1/1 RUNNING 0 12m

root@Ubuntu-Server1$

If you need to delete a specific container, you can orchestrate it from the Master using
the command given in Example 7-45. If the pod is using labels, it can also be deleted
using the kubectl delete pods -l command, as provided in Table 7-6.

276    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

Example 7-45  Use Kubectl to Delete Nodes, Deployments, and Pods

root@Ubuntu-Server1$

root@Ubuntu-Server1$ kubectl delete pods myalpine

pod "myalpine" deleted

root@Ubuntu-Server1$

root@Ubuntu-Server1$ kubectl get pods myalpine

Error from server (NotFound): pods "myalpine" not found

root@Ubuntu-Server1$

root@Ubuntu-Server1$ kubectl delete deployments alpine

deployment.extensios "alpine" deleted

root@Ubuntu-Server1$

root@Ubuntu-Server1$ kubectl get deployments

Error from server (NotFound): deployment.extensions "alpine" not found

root@Ubuntu-Server1$

To automate the instantiation, management, and deletion of pods and deployments,
kubectl supports YAML, which plays a key role in deploying either a single instance of
the objects or at scale. Chapter 8, “Application Developers’ Tools and Resources,” dis-
cusses the usage of JSON/XML and YAML.

Open Agent Container (OAC)

To support network device automation and management, Nexus switches can be enabled
with Puppet and Chef agents. However, open agents cannot be directly installed on these
platforms. To support these agents and similar applications, an isolated execution space
within an LXC called the OAC was built.

As you see in Figure 7-11, the Open Agent Container (OAC) application is packaged into an
.ova image and hosted at the same location where NX-OS images are published on Cisco.com.

Figure 7-11  Open Agent Container OVA Download

http://Cisco.com

Bash    277

First copy the .ova image to the Nexus switch. In Example 7-46, the file is copied to the
bootflash file system in a Nexus 7700 switch.

OAC Deployment Model and Workflow

To install and activate OAC on your device, use the commands shown in Example 7-46.
The virtual-service install command creates a virtual service instance, extracts the .ova
file, validates the contents packaged into the file, validates the virtual machine definition,
creates a virtual environment in the device, and instantiates a container.

Example 7-46  Install OAC

Nexus7700# virtual-service install name oac package bootflash:oac.8.3.1.ova

Note: Installing package 'bootflash:/oac.8.3.1.ova' for virtual service 'oac'. Once
the install has finished, the VM may be activated. Use 'show virtual-service list'
for progress

Nexus7000#

2019 Aug 28 10:22:59 Nexus7700 %VMAN-2-INSTALL_FAILURE: Virtual Service
[oac]::Install::Unpacking error::Unsupported OVA Compression/Packing format

2019 Aug 28 11:20:27 Nexus7700 %VMAN-5-PACKAGE_SIGNING_LEVEL_ON_INSTALL: Pack-
age 'oac.8.3.1.ova' for service container 'oac' is 'Cisco signed', signing level
allowed is 'Cisco signed'

2019 Aug 28 11:20:30 Nexus7700 %VMAN-2-INSTALL_STATE: Successfully installed virtual
service 'oac'

Nexus7700#

Nexus7700# show virtual-service list

Virtual Service List:

Name Status Package Name

--

oac Installed oac.8.3.1.ova

Nexus7700#

Using the show virtual-service list command, you can check the status of the container
and make sure the installation is successful and the status is reported as installed. Then
follow the steps given in Example 7-47 to activate the container. The NX-API feature is
enabled, which will be used by OAC to perform the NX-OS CLIs directly from the con-
tainer. As you see in the example, once the OAC is activated successfully, the show virtual-
service list command shows the status of the container as activating and then activated.

Example 7-47  Activate OAC

Nexus7700# configure terminal

Nexus7700(config)# feature nxapi

Nexus7700(config)# virtual-service oac

Nexus7700(config-virt-serv)# activate

Nexus7700(config-virt-serv)# end

278    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

Note: Activating virtual-service 'oac', this might take a few minutes. Use 'show
virtual-service list' for progress.

Nexus7700#

Nexus7700# show virtual-service list

Virtual Service List:

Name Status Package Name

oac Activating oac.8.3.1.ova

Nexus7700#

2019 Aug 28 11:23:06 Nexus7000 %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully
activated virtual service 'oac'

Nexus7700#

Nexus7700# show virtual-service list

Virtual Service List:

Name Status Package Name

oac Activated oac.8.3.1.ova

Nexus7700#

Nexus7700# 2019 Aug 28 11:23:06 Nexus7000 %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE:
Successfully activated virtual service 'oac'

As shown in Example 7-48, you can verify that the OAC is instantiated and actively run-
ning on the device with the show virtual-service detail command. The command supplies
details of the resources allocated to the container, such as disk space, CPU, and memory.

Example 7-48  Verify OAC Installation and Activation

Nexus7000# show virtual-service detail

Virtual service oac detail

 State : Activated

 Package information

 Name : oac.8.3.1.ova

 Path : bootflash:/oac.8.3.1.ova

 Application

 Name : OpenAgentContainer

 Installed version : 1.0

 Description : Cisco Systems Open Agent Container

 Signing

 Key type : Cisco release key

 Method : SHA1

 Licensing

 Name : None

 Version : None

 Resource reservation

 Disk : 500 MB

 Memory : 384 MB

 CPU : 1% system CPU

Bash    279

 Attached devices

 Type Name Alias

 Disk _rootfs

 Disk /cisco/core

 Serial/shell

 Serial/aux

 Serial/Syslog serial2

 Serial/Trace serial3

Successful OAC activation depends on the availability of the required resources for OAC.
If a failure occurs, the output of the show virtual-service list command will show the
status as Activate Failed (see Example 7-49).

Example 7-49  OAC Activation Failure

Nexus7700# show virtual-service list

 Virtual Service List:

 Name Status Package Name

 oac Activate Failed oac.8.3.1.ova

Nexus7700#

To obtain additional information on the failure, you can use the show system internal
virtual-service event-history debug command. As shown in Example 7-50, the reason for
failure is clearly reported as insufficient disk space.

Example 7-50  System Internal Event History

Nexus7700# show system internal virtual-service event-history debug

243) Event:E_VMAN_MSG, length:124, at 47795 usecs after Wed Aug 28 09:23:52 2019
(info): Response handle (nil), string Disk storage request (500 MB) exceeds
remaining disk space (344 MB) on storage

244) Event:E_VMAN_MSG, length:74, at 47763 usecs after Wed Aug 28 09:23:52 2019
(debug): Sending Response Message: Virtual-instance: oac - Response: FAIL

Instantiation of the OAC is persistent across the reload of the switch or supervisor
engine. It means that the OAC will be instantiated upon supervisor engine reset or reload,
but it will not be activated. It is not necessary to save the configurations with “copy
running-config startup-config” to have the OAC instantiated and activated, without man-
ual intervention, upon supervisor engine reset or reload. Because the OAC does not have
high-availability support, the instantiation of the OAC is not replicated automatically to
the standby supervisor engine. In other words, if you need to have OAC instantiated and
activated for switchover, copy and save either the same .ova file or a different file in the
standby supervisor engine’s bootflash.

280    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

Accessing OAC via the Console

To connect to the virtual service environment from the host Nexus switch, use the
virtual-service connect command, as shown in Example 7-51.

Example 7-51  Accessing OAC via the Console

Nexus7700# virtual-service connect name oac console

Connecting to virtual-service. Exit using ^c^c^c

Trying 127.1.1.3...

Connected to 127.1.1.3.

Escape character is '^]'.

CentOS release 6.9 (Final)

Kernel 3.14.39ltsi+ on an x86_64

Nexus7700 login:

Password:

You are required to change your password immediately (root enforced)

Changing password for root.

(current) UNIX password:

New password:

Retype new password:

[root@Nexus7700 ~]#

[root@Nexus7700 ~]#whoami

root

[root@Nexus7700 ~]#

The default credentials to attach to the containers’ console are root/oac or oac/oac. You
must change the root password upon logging in. Just like in any other Linux environment,
you can use Sudo to root after logging in as user oac.

Because you are accessing through console needs, you need to be on the switch first.
The access can be slow, so many users prefer to access OAC via SSH. Before OAC can be
accessed via SSH, the SSH service should be enabled and the container networking set
up. The following section tells you how to enable this access method.

OAC Networking Setup and Verification

By default, networking in the OAC is done in the default routing table instance. Any addi-
tional route that is required (for example, a default route) must be configured natively in
the host device and should not be configured in the container.

As you can see in Example 7-52, the chvrf management command is used to access
a different routing instance (for example, the management VRF). After logging in
to the container through the console, enable SSH process/daemon (sshd) in the
management VRF.

Bash    281

Every VRF in the system has a numerical value assigned to it, so you need to make sure
the sshd context matches the number assigned to the management VRF to confirm that
the SSH process is active on the right VRF context. As shown in Example 7-52, the
number assigned to VRF management is 2, which matches with the DCOS_CONTEXT
assigned to the SSHD process.

Example 7-52  Verify Container Networking

[root@Nexus7700 ~]# chvrf management

[root@Nexus7700 ~]#

[root@Nexus7700 ~]# getvrf

management

[root@Nexus7700 ~]#

[root@Nexus7700 ~]# /etc/init.d/sshd start

Starting sshd:

[OK]

[root@Nexus7700 ~]#

[root@Nexus7700 ~]# more /etc/init.d/sshd | grep DCOS

export DCOS_CONTEXT=2

[root@Nexus7700 ~]#

[root@Nexus7700 ~]# vrf2num management

2

[root@Nexus7700 ~]# /etc/init.d/sshd status

openssh-daemon (pid 315) is running…

[root@Nexus7700 ~]#

Because NX-OS has allocated TCP port number 22 to the SSH process running in the
host, configure an unused and different TCP port number for the OAC’s SSH daemon.
As demonstrated in Example 7-53, the /etc/sshd_config file has been edited to assign
Port 2222 to OAC’s SSH service, and the SSH service is listening for connections at
10.122.140.94, which is the Mgmt0 interface of the Nexus switch.

Example 7-53  Configure TCP Port for SSH

[root@Nexus7700 ~]# cat /etc/ssh/sshd_config

<snip>

Port 2222

#AddressFamily any

ListenAddress 10.122.140.94

#ListenAddress ::

<snip>

[root@Nexus7700 ~]#

 [root@Nexus7700 ~]#

282    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

Make sure to configure the DNS server and domain information so that OAC and agents
installed in it can resolve domain names, as shown in Example 7-54.

Example 7-54  Verify DNS Configuration

[root@Nexus7700 ~]#

[root@Nexus7700 ~]# cat /etc/resolv.conf

nameserver 208.67.222.222

nameserver 208.67.220.220

[root@Nexus7700 ~]#

The command shown in Example 7-55 is performed in the host device, which confirms
that a socket is open for OAC for the SSH connections at the IP address of the manage-
ment port and TCP port 2222.

Example 7-55  Verify Open Sockets

Nexus7700# show sockets connection

Total number of netstack tcp sockets: 5

Active connections (including servers)

 Protocol State/ Recv-Q/ Local Address(port)/

 Context Send-Q Remote Address(port)

<snip>

[slxc]: tcp LISTEN 0 10.122.140.94(2222)

 default 0 *(*)

<snip>

Nexus7700#

Access the container to verify SSH accessibility, as shown in Example 7-56.

Example 7-56  Verify SSH Access for OAC

Ubuntu-Server1$

Ubuntu-Server1$ ssh -p 2222 root@10.122.140.94

CentOS release 6.9 (Final)

Kernel 3.14.39ltsi+ on an x86_64

Nexus7700 login: root

Password:

Last login: Tue Sep 10 10:26:46 on pts/0

#

If you are making changes to SSH parameters and settings in OAC, it is recommended
that you restart the SSH service and check the status with service sshd commands. Now
you have an active OAC that can be accessed via console or SSH. Next you will learn

Bash    283

how the kernel and OAC handles the packet from and to the front-panel ports in the host
device, as illustrated in Figure 7-12.

MGMT0 Eth1-1 Eth1-2 Eth1-3 Eth1-N…

Nexus switch

Open agents
and applications

NX-OS
Linux Container

(LXC)

Open Agent
Container

Netstack

Physical interfaces

Linux kernel

Figure 7-12  Packet Handling in OAC

As far as the containers are concerned, it all comes back to its namespace and the sockets
and file descriptors associated to each container.

Once a socket is listening on a port, the kernel tracks those structures by namespace.
As a result, the kernel knows how to direct traffic to the correct container socket. Here is
a brief look at how traffic received by a Nexus switch’s front-panel port is forwarded to a
specific container:

	 1.	 OAC implements a Message Transmission Service (MTS) tunnel to redirect container
IP traffic to an NX-OS Netstack for forwarding lookup and packet processing to the
front-panel port. This requires libmts and libns extensions, which are already includ-
ed and set up in the oac.ova. Nexus 7000 has Netstack, which is a complete IP stack
implementation in the user space of NX-OS. Netstack handles any traffic sent to the
CPU for software processing.

	 2.	 The modified stack looks for the DCOS_CONTEXT environment variable, as men-
tioned in Example 7-56, to tag the correct VRF ID before sending the MTS message
to Netstack.

	 3.	 The OAC is VDC aware because the implementation forwards traffic to the correct
Netstack instance in which the OAC is installed.

Example 7-56 helped you verify that the OAC is accessible through SSH from an external
device. In other words, the container should also be able to connect to the external net-
work. Verify the reachability to the external network by sending ICMP pings to an exter-
nal device, as shown in Example 7-57.

284    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

Example 7-57  OAC Reachability to External Network

[root@Nexus7700 ~]# chvrf management ping 10.122.140.65

PING 10.122.140.65 (10.122.140.65): 56 data bytes

64 bytes from 10.122.140.65: icmp_seq=0 ttl=254 time=2.495 ms

64 bytes from 10.122.140.65: icmp_seq=1 ttl=254 time=3.083 ms

64 bytes from 10.122.140.65: icmp_seq=2 ttl=254 time=2.394 ms^C

--- 10.122.140.65 ping statistics ---

3 packets transmitted, 3 packets received, 0.0% packet loss

round-trip min/avg/max/stddev = 1.221/2.444/3.962/1.138 ms

[root@Nexus7700 ~]#

From within the OAC, in addition to accessing the network, the network administrator
can access the device CLI using the dohost command, access the Cisco NX-API infra-
structure, and more importantly, install and run Python scripts as well as 32-bit Linux
applications.

Management and Orchestration of OAC

If there is a new version of OVA available for OAC, you can upgrade the currently
active container using virtual-service commands, as shown in the following example. To
upgrade, you need to deactivate the currently active container, as shown in Example 7-58.

Example 7-58  Upgrade OAC

Nexus7700(config)# virtual-service oac

Nexus7700(config-virt-serv)# no activate

Nexus7700(config-virt-serv)# end

2019 Sep 9 22:46:46 N77-A-Admin %$ VDC-1 %$ %VMAN-2-ACTIVATION_STATE: Successfully
deactivated virtual service 'oac'

Nexus7700#

Nexus7700# show virtual-service list

Virtual Service List:

Name Status Package Name

oac Deactivated oac.8.3.1.ova

Nexus7700#

Nexus7700# virtual-serv install name oac package bootflash:oac.8.3.1-v2.ova

Nexus7700#

Nexus7700# show virtual-service list

Virtual Service List:

Name Status Package Name

--

oac Installed oac.8.3.1-v2.ova

Nexus7700#

Bash    285

Nexus7700# config t

Nexus7700(config)# feature nxapi

Nexus7700(config)# virtual-service oac

Nexus7700(config-virt-serv)# activate

Nexus7700(config-virt-serv)# end

Nexus7700# show virtual-service list

Virtual Service List:

Name Status Package Name

--

oac Activated oac.8.3.1-v2.ova

Nexus7700#

To deactivate the container and uninstall the package, follow the steps as depicted in
Example 7-59.

Example 7-59  Deactivate OAC

Nexus7700#

Nexus7700# config t

Nexus7700(config)# virtual-service oac

Nexus7700(config-virt-serv)# no activate

Nexus7700(config-virt-serv)# end

Nexus7700# show virtual-service list

Virtual Service List:

Name Status Package Name

--

oac Deactivated oac.8.3.1-v2.ova

Nexus7700#

Nexus7700# config t

Nexus7700(config)# no virtual service oac

Nexus7700(config)# exit

Nexus7700# virtual-service uninstall name oac

Installation and Verification of Applications

Open Agent Container, as the name suggests, is specifically developed to run open agents
that cannot be natively run on NX-OS, such as Puppet agents and Chef agents.

Custom Python Application

To demonstrate the capability, you will look into a simple Python application. The
Python file in Example 7-60 prints the system date and time every 10 seconds until the
user stops the application by pressing Ctrl+C.

286    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

Example 7-60  OAC—Sample Python Application

[root@Nexus7700 ~]# more datetime.py

#!/usr/bin/python

import datetime

import time

while True:

 print("Time now is ... ")

 DateTime = datetime.datetime.now()

 print (str(DateTime))

 time.sleep(10)

[root@Nexus7700 ~]#

Check the file permissions and make sure the user root has permission to execute the file.
Execute the Python file, as shown in Example 7-61.

Example 7-6  Run Python Application in OAC

[root@Nexus7700 ~]#

[root@Nexus7700 ~]# ls -l datetime.py

-rwxr--r-- 1 root root 194 Sep 10 23:16 datetime.py

[root@Nexus7700 ~]#

[root@Nexus7700 ~]# ./datetime.py

Time now is ...

2019-09-10 23:16:09.563576

Time now is ...

2019-09-10 23:16:19.573776

Time now is ...

2019-09-10 23:16:29.584028

^CTraceback (most recent call last):

 File "./ datetime.py", line 8, in <module>

 time.sleep(10)

KeyboardInterrupt

[root@Nexus7700 ~]#

Now that you know how to run a simple Python application in an OAC, you will see how
to use Python APIs that are built-in and available in Nexus platforms. You can use these
Python APIs to develop and run customized applications to monitor device health, track
events, or generate alerts.

Bash    287

Application Using Python APIs

Cisco NX-OS has a built-in package providing API access to CLIs, both at the exec level
as well as configuration commands, referred to as Python APIs. Example 7-62 is a simple
Python script that leverages Python APIs that are natively available in the Nexus switches.

Example 7-62  Application Using Python APIs

[root@Nexus7700 ~]# more PY-API.py

#!/usr/bin/python

from cli import *

import json

print("STANDARD CLI OUTPUT ...")

print (cli('show interface brief'))

print("JSON FORMAT CLI OUTPUT ...")

print (clid('show interface brief'))

[root@Nexus7700 ~]#

Example 7-63 demonstrates the outputs generated by the application. As you notice, cli
returns the raw format of the CLI results, including control and special characters. clid
returns a dictionary of attribute names and values for the given CLI command.

Example 7-63  Run Python API Application in OAC

 [root@Nexus7700 ~]# ls -l PY-API.py

-rwxr--r-- 1 root root 194 Sep 10 23:37 PY-API.py

[root@N77-A-Admin ~]#

[root@N77-A-Admin ~]# ./PY-API.py

STANDARD CLI OUTPUT ...

Port VRF Status IP Address Speed MTU

mgmt0 -- up 10.122.140.94 1000 1500

JSON FORMAT CLI OUTPUT ...

{"TABLE_interface": {"ROW_interface": {"interface": "mgmt0", "state": "up", "ip_
addr": "10.122.140.94", "speed": "1000", "mtu": "1500"}}}

[root@Nexus7700 ~]#

The dohost command in Example 7-64 is a Python wrapper script using NX-API func-
tions and Linux domain sockets back to NX-OS. Using dohost capability, a user can
perform show commands and configuration commands within the VDC in which the
container is created.

288    Chapter 7: Container Orchestration in Cisco NX-OS Platforms

Example 7-64  Run NX-OS CLIs in OAC with dohost

[root@N77-A-Admin ~]#

[root@N77-A-Admin ~]# dohost "show clock"

Time source is NTP

23:38:15.692 EST Tue Sep 10 2019

[root@N77-A-Admin ~]#

Package Management

As shown in Example 7-65, you can install packages in OAC using yum install <package-
name> commands, just like in any CentOS Linux environment. Before installing packages,
make sure to install them in the right VRF context. The namespace or VRF should have
network connectivity and have the configurations required to resolve domain names.

Example 7-65  OAC Package Management

[root@Nexus7700 ~]# chvrf management yum install -y vim

Setting up Install Process

Resolving Dependencies

<snip>

Use yum repolist commands to verify the installed packages and repositories.

From OAC, you can run Open Agents, 32-bit Linux applications, and custom Python
applications leveraging Python APIs, NX-APIs, or simple dohost commands to run CLIs
and analyze the data. Chapter 9, “Container Deployment Use Cases,” will discuss the
various use cases for packages and applications.

Summary
This chapter introduced the fundamentals of the NX-OS architecture—its key compo-
nents and benefits. It presented the key built-in capabilities that enable application host-
ing and containers in Nexus switching platforms. It discussed various popular features
such as Open Agent Containers (OAC), Guest Shell, Bash, and Docker containers—how
to enable or instantiate them; how to configure them to communicate with external
networks; how to enable console as well as SSH access; how to install simple Python or
Python API-based applications and run those applications; how to instantiate Docker
containers in supported platforms; and how to orchestrate them using Kubernetes.

Cisco NX-OS platforms have built-in capabilities helping developers deploy custom appli-
cations in the networking devices connected to the end hosts. These applications become
more effective as they are brought closer to the data generated at the network edge,
which can be processed in real time to gain insights. Above all, users can orchestrate and
manage the lifecycle of containers and applications by activating or deactivating them,

References    289

upgrading the applications or packages installed, and leveraging the abilities the platforms
provide for automation and scalability.

References
Cisco Nexus 7000 series Switches–NX-OS Architecture and Features: https://www.

cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/
white_paper_c11-622511.html

Open NX-OS and Linux–Developer Guide: https://developer.cisco.com/docs/nx-os/

Cisco Nexus 9000 series Python SDK User Guide and API Reference: https://
developer.cisco.com/docs/nx-os/#!cisco-nexus-9000-series-python-sdk-user-guide-
and-api-reference

Docker Documentation: https://docs.docker.com/

Alpine Linux–Home Page: https://alpinelinux.org/

Musl libc–Home Page: http://musl.libc.org/

Busybox–Home Page: https://busybox.net/about.html

Install and Setup Kubectl Guide: https://kubernetes.io/docs/tasks/tools/install-kubectl/

Kubectl Overview: https://kubernetes.io/docs/reference/kubectl/overview/

https://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/white_paper_c11-622511.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/white_paper_c11-622511.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-7000-series-switches/white_paper_c11-622511.html
https://developer.cisco.com/docs/nx-os/
https://docs.docker.com/
https://alpinelinux.org/
http://musl.libc.org/
https://busybox.net/about.html
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/reference/kubectl/overview/
https://developer.cisco.com/docs/nx-os/#!cisco-nexus-9000-series-python-sdk-user-guideand-api-reference
https://developer.cisco.com/docs/nx-os/#!cisco-nexus-9000-series-python-sdk-user-guideand-api-reference

Index

Numbers
3GPP Cellular IoT (CIoT), 53
3rd Generation Partnership Project

(3GPP), 64
5G wireless, 53
A10 Networks, 418
802.1Q, 24
802.1x, 239

A
AAA (authentication, authorization, and

accounting), 320–321, 327
access control, 30
accessibility, verification of, 380,

383–384
ACLs (access control lists), 30–31, 239
active containers, listing, 90
active-active mode, 19
active-standby mode, 19
Address Resolution Protocol (ARP), 24
admin plane, 193
Alpine images

instantiating Docker containers with,
263–266

container with Alpine image,
263–264

docker attach command, 265
file system mount, 265–266

Linux container deployment, 223
anomaly detector application,

391–398
floodlight application, 392–396

docker create command, 393
docker-compose.yml file,

393–394
traffic capture, 394–395
traffic classification, 395–396

high-level procedure for, 392
objectives of, 391
running in NX-OS, 396–398

Ansible
authentication, 348
checking version of, 347
hosts file, 347
NETCONF operations with,

350–351
overview of, 346
playbooks, 348–350

ansible.cfg file, 349
Apache NetBeans, 337

426  Apache OpenWhisk

Apache OpenWhisk, 17
APIC, 42–44
APIC-EM, 44
APIs (application programming interfaces)

API-based applications in GuestShell,
254–256

definition of, 36
NX-API (Nexus API), 305–318

data management engine, 309–310
enabling, 306–309
managed objects, 309–310
Message Format component, 306
NX-API REST, 310–318
NX-API Sandbox, 313–315
overview of, 305
Security component, 306
Transport component, 306

overview of, 36–37
Python, 297

in IOS-XE, 302–305
in NX-OS, 297–302

REST APIs
NX-API REST, 310–318
overview of, 38

SDN (software-defined networking), 33
apk add --no-cache dhcp command, 366
app hosting services, 405–406

Cisco Kinetic, 408
DNS (Domain Name System), 409
NetBeez Agent, 409–410
open-source applications, 410
OWAMP (One-Way Active Measurement

Protocol), 407
perfSONAR, 408–409
Solenoid, 406
tcpdump, 407–408
TWAMP (Two-Way Active Measurement

Protocol), 407
AppGigEthernet interface, 125–126,

129–130

application communication
application to external network, 98–99
application to host, 98

application development
Cisco NX-SDK (Nexus Software

Development Kit), 294–295
framework for, 62

application hosting
CAF (Cisco Application Hosting

Framework), 69–70
in IOS-XE, 146–149

Docker-style applications, 152,
175

IOx application types, 150–152
IOx framework, 148–149
libvirt, 146–148
LXC-based Guest Shell

containers, 150, 157–160
native Docker application in

Catalyst 9300, 182–186
PaaS-style applications, 151,

161–166
virtual machine-based applications

and hosting, 151, 166–175
VMAN (Virtualization Manager),

146–148
in IOS-XR, 192–193

application hosting volumes,
198–199

Docker-based application hosting,
217–223

Linux-based application hosting,
209–217

native application hosting,
201–209

network configuration,
216–217, 224–225

persistent application deployment,
232–234

VRF namespace, application host-
ing in, 226–232

bridge networking  427

application installation. See also
deployment

application deployment workflow, 156
Chef, 355
Cisco NX-SDK (Nexus Software

Development Kit), 293–297
Docker-style application on IOS-XE plat-

forms, 182
Guest Shell, 245–248, 253
IOx, 157
OAC (Open Agent Containers), 285–288

application using Python APIs,
287–288

custom Python application,
285–286

package management, 288
PaaS-style applications, 165–166
Puppet, 351–353
SDK, 207
virtual machine-based applications,

172–175
Application Policy Infrastructure

Controller, 42–44
application programming interfaces.

See APIs (application programming
interfaces)

application services, starting/stopping,
169

architecture, container, 15–17
ARP (Address Resolution Protocol), 24,

251, 252–253
ASICs (Doppler in Switching Platforms),

142
assurance, Cisco DNA Center, 46–47
Atom, 338
authentication

AAA (authentication, authorization, and
accounting), 320–321, 327

in Ansible, 348
automated orchestration, 62
AVI Networks, 418
AVI Vantage, 418

AWS Cloud9, 338–339
AWS Lambda, 17
Azure Function, 17

B
bare metal as a service (BMaaS), 20
Base Header (NSH), 419
base-rootfs file, 390
Bash, 202, 256–260

accessing from NX-OS, 257–258
accessing via SSH, 258–260
enabling, 256–257
NX-OS support for, 240

Beacon, 35
Bell Labs, 2
BFD, Seamless (S-BFD), 384–391

client, hosting on server, 390–391
discriminators, 386
Docker images, 388
overview of, 385
reflector sessions, 386–387
reflectorbase, hosting on XR devices,

388–389
as VNF (virtual network functions),

387–388
BGP (Border Gateway Protocol), 237, 395
Bidirectional Forwarding Detection. See

S-BFD (Seamless BFD)
Big Switch Networks, Floodlight, 35
BIND configuration, 371
Bitbucket, 340–341
BMaaS (bare metal as a service), 20
Bootstrap, 340
Border Gateway Protocol (BGP), 237, 395
Bourne-Again Shell. See Bash
bridge networking

configuration, 134–136
definition of, 114

428  business drivers for virtualization

business drivers for virtualization, 3–6
cost optimization, 5
resilience, 5
resource optimization, 4–5
simplicity, 5

C
cache-coherent, non-uniform memory

access (ccNUMA) machine, 3
CAF (Cisco Application Hosting

Framework), 69–70
Cambridge Monitor System (CMS), 3
Cambridge Scientific Center, 3
capturing traffic, 394–395
Catalyst switches

Catalyst 9000
DNS container installation in,

374–375
Docker container installation in,

368–369
DHCP Docker containers, 363–364

device license, 364
IOS-XE version verification,

363–364
IOX framework, enabling, 364

native Docker application in Catalyst
9300, 182–186
Docker image creation, 182–186
Docker pull and export, 182–183

non-uniform memory access) machine, 3
CCP (Cisco Container Platform),

416–417
CDP (Cisco Discovery Protocol), 332,

395
certificates, NX-API

exporting, 308–309
generating, 307–308

cgroups, 16

Chef
cookbooks, creating, 354–355
installation, 355
overview of, 346
resources, 354

chef-client command, 356–357
chkconfig utility, 267
chvrf management command, 280
CIoT (3GPP Cellular IoT), 53
Cisco APIC, 42–44
Cisco APIC-EM, 44
Cisco Application Hosting Framework

(CAF), 69–70
Cisco ASA 5506 firewall, 10
Cisco Container Platform (CCP), 416–417
Cisco Digital Network Architecture

(DNA), 55
Cisco Discovery Protocol (CDP), 332, 395
Cisco DNA Center, 45–47, 55

assurance, 46–47
design, 45
policy, 46
provision, 46

Cisco Elastic Services Controller (ESC), 49
Cisco Enterprise NFV Open Ecosystem,

418
Cisco Guest Shell. See Guest Shell
Cisco Inter-Switch Link (ISL), 24
Cisco IOS-XE. See IOS-XE platforms
Cisco IOS-XR. See IOS-XR platforms
Cisco IOS-XR platforms. See IOS-XR

platforms
Cisco Kinetic, 52–53, 408
Cisco native-app hosting network model,

106–111
dedicated networking

Cisco IOS-XE configuration,
125–130

Cloud9  429

Cisco IOS-XR configuration, 131
Nexus OS configuration, 131

shared networking
Cisco IOS-XE configuration,

115–117
Cisco IOS-XR configuration,

117–122
Cisco Nexus OS configuration,

122–125
output, 107–108
overview of, 106–107
support matrix for, 125

Cisco NFV infrastructure architecture,
411–412

Cisco NX-OS. See NX-OS platforms
Cisco NX-SDK (Nexus Software

Development Kit), 291–297
Cisco Open Agent Containers. See OAC

(Open Agent Containers)
Cisco Open SDN Controller, 36
Cisco SDN solutions

Cisco APIC, 42–44
Cisco APIC-EM, 44
Cisco DNA Center, 45–47

assurance, 46–47
design, 45
policy, 46
provision, 46

modern network design with, 47
Cisco Service Containers, 67–69

CLI-based commands, 68
OVA file for, 67–68
software support matrix for, 69

Cisco TrustSec (CTS), 239
Cisco Ultra Services Platform, 53–54,

415–416
Cisco Unified Computing Servers (UCS),

10, 412
Cisco Unified Fabric, 239

Cisco User Plane Function (UPF), 416
Cisco Virtual Internet Routing Lab

(VIRL), 7
ciscobridge, 103
cisco-centos virtual machine

application installation in, 210–211
environment preparation, 214
launching, 210
libvirtd daemon, 214
LXC container root filesystem, 211–215
LXC spec file, 213–214
virsh command, 215
virsh console command, 215

Cisco-IOS-XR-cdp-cfg.yang, 332
clear configuration lock command, 330
clear NETCONF-yang session command,

329–330
cli command, 255, 287, 303–304
cli import command, 299–300
cli Python module

cli command, 303–304
clip command, 303–304
configure command, 304
configurep command, 304
displaying details about, 303–304
execute command, 305
executep command, 305

clid command, 255, 287
clients

Chef, 355
Cisco Application Hosting Framework

(CAF), 69
Docker, 86–87, 261
S-BFD (Seamless BFD), 390–391

clip command, 303–304
cloud computing, 13
Cloud Native Computing Foundation

(CNCF), 79
Cloud9, 338–339

430  cloud-native network functions (CNFs)

cloud-native network functions (CNFs),
63–65, 416

cloud-native reference model, 61–62
CMS (Cambridge Monitor System), 3
CMTs (Configuration Management Tools)

Ansible
authentication, 348
checking version of, 347
hosts file, 347
NETCONF operations with,

350–351
overview of, 346
playbooks, 348–350

Chef
cookbooks, creating, 354–355
installation, 355
overview of, 346
resources, 354

Puppet
installation, 351–353
OSPF configuration with, 353–354
overview of, 346, 351

CNCF (Cloud Native Computing
Foundation), 79

CNFs (cloud-native network functions),
63–65, 416

CNI (Container Network Interface) model
components of, 114–115
deployment, 136

CNM (Container Network Model), 111–114
components of, 111–112
network creation, 113
network types, 112–114

defining, 113
Docker Bridge, 114, 134–136
Docker Host, 113, 132–134
Docker MACVLAN, 114
Docker None, 113, 131–132
Docker Overlay, 114

output, 112

communication modes, 97–99
compute platforms

Cisco UCS (Unified Computing Servers),
412

ENCS (Enterprise Network Compute
System), 412

computer evolution, history of, 1–2
confd, 327, 328
config.ini file, 399, 404
Configuration Management Tools. See

CMTs (Configuration Management
Tools)

configure command, 304
configure terminal command, 364
configurep command, 304
Connected Vehicles, 53–54
Container Network Interface (CNI) model

components of, 114–115
deployment, 136

Container Network Model. See CNM
(Container Network Model)

Container Runtime, 63
Container Runtime Interface (CRI), 63
Context Header (NSH), 419
control groups, 16
Control Plane and User Plane Separation

(CUPS), 64, 415
control plane health check

anomaly detector application
floodlight application, 392–396
high-level procedure for, 392
objectives of, 391
running in NX-OS, 396–398

overview of, 362, 391–398
Control Plane Policing (CoPP) counters,

399–401
control plane virtualization, 33–34, 64
Control Program (CP) hypervisor, 3
controllers (SDN), 34–36

open source, 35–36
OpenFlow, 34–35

deployment  431

cookbooks (Chef), 354–355
cookies, nxapi_auth, 306
CoPP (Control Plane Policing) counters,

399–401
copy running-config startup-config

command, 395
<copy-config> operation, 329
cost optimization, 5
counters, CoPP (Control Plane Policing),

399–401
CP (Control Program) hypervisor, 3
CPU share, 198–199
CRI (Container Runtime Interface), 63
CTERA, 418
CTS (Cisco TrustSec), 239
CUPS (Control Plane and User Plane

Separation), 64, 415
curl command, 273, 322–323, 326, 380,

383

D
daemons

Docker
running, 91–92, 263
verification of, 85–86

libvirtd, 214
Data Management Engine (DME), 306
data management engine (NX-API),

309–310
Data Model Interface (DMI), 327
data modeling languages

table of, 39
YANG, 39–42

db.foobar.local file, 371
dedicated networking

Cisco IOS-XE configuration, 125–130
AppGigEthernet interface,

125–126
Layer 2 mode, 129–130

numbered routing, 126–128
unnumbered routing, 128–129
VirtualPortGroup interface,

125–126
Cisco IOS-XR configuration, 131
Nexus OS configuration, 131
output, 109–111
overview of, 108–109

default namespaces, 122, 124, 251
default VRFs, 248
define command, 233
DELETE operations (RESTCONF), 320
demilitarized zone (DMZ), 55
deployment

Cisco NX-SDK (Nexus Software
Development Kit), 293

CNFs (cloud-native network
functions), 63

Docker
container, running, 89–91
daemon, running, 91–92
daemon status verification, 85–86
Docker Client, 86–87
images, pulling from registry to

local store, 87–89
Guest Shell, 159–160, 243–245

guestshell enable command, 243
guestshell resize commands, 245
show guestshell command,

243–245
status and resource allocation,

243–245
HAProxy Docker container, 382
IOS-XE deployment workflow, 156
Kubernetes

deploying workload with, 94–95
master nodes, enabling, 92–93
workers nodes, enabling, 93–94

LXC (Linux containers), 81–84
CLI commands, 82–83

432  deployment

Guestshell rootsfs content, 83–84
IOx Service on IOS-XE, 81–82
IOX-specific syslog message, 83
in Ubuntu server, 84

Node.js Docker container, 378
OAC (Open Agent Containers), 277–279

activation, 277–278
failures in, 279
installation, 277
system internal event history, 279
verification, 278–279

use cases, 361
configuration consistency check,

362
control plane health check, 362
DHCP Docker container

deployment, 363–369
DNS Docker container

deployment, 369–375
HAProxy and Node containers,

375–384
hardware/software stability check,

362
infrastructure for proof-of-concept

and testing purposes, 363
inventory management, 361
operational data monitoring, 363
resource usage and scalablity

check, 362
traffic profiling and top talkers,

363
virtual network services, 48

design, network. See network design
development environment

IOx PaaS-style applications, 161
PaaS-style applications, 161

development tools
Ansible

authentication, 348
checking version of, 347
hosts file, 347

NETCONF operations with,
350–351

overview of, 346
playbooks, 348–350

Apache NetBeans, 337
Atom, 338
AWS Cloud9, 338–339
Bitbucket, 340–341
Bootstrap, 340
Chef

cookbooks, creating, 354–355
installation, 355
overview of, 346
resources, 354

Docker Build, 343
Docker Hub, 344

account creation, 344
docker pull command, 345
DTR (Docker Trusted Registry),

345
repository, 344

Dockerfile, 342–343
Eclipse, 339–340
GitHub, 337–338
Linx, 336–337
NETCONF Agent

Ansible with, 350–351
in IOS-XE, 327–331
in IOS-XR, 331–332
in NX-OS, 333–336
overview of, 318–319
RESTCONF compared to, 320

Node.js, 341
NX-API (Nexus API), 305–318

data management engine, 309–310
enabling, 306–309
managed objects, 309–310
Message Format component, 306
NX-API REST, 310–318

DNS Docker container deployment  433

NX-API Sandbox, 313–315
overview of, 305
Security component, 306
Transport component, 306

NX-SDK (Nexus Software Development
Kit), 291–297
deployment modes, 293
framework, 291–292
installation and activation,

293–297
release versions, 292

Puppet
installation, 351–353
OSPF configuration with, 353–354
overview of, 346, 351

Python APIs (application programming
interfaces)
in IOS-XE, 302–305
in NX-OS, 297–302

RESTCONF Agent
in IOS-XE, 320–323
NETCONF compared to, 320
in NX-OS, 323–326
overview of, 318–319

Zend Studio, 339
device licensing, verification of, 364
device virtualization, history of, 26–29
DevNet Data Model, 310
DFA (Dynamic Fabric Automation), 239
DHCP (Dynamic Host Configuration

Protocol), 24, 185
DHCP snooping, 239
DHCPd, 363, 365

DHCP Docker container deployment,
363–369

Catalyst switch configuration, 363–364
device license, 364
IOS-XE version verification,

363–364
IOX framework, enabling,

364

container creation, 364–368
DHCPd configuration, 365
Dockerfile file, 366–367
folders, 365
image, building, 367–368
image archive, 368

container installation in Catalyst 9000,
368–369

dhcpd.conf file, 365–366
Digital Network Architecture (DNA), 55
DISCO, 3
discriminators, S-BFD (Seamless BFD),

386
distinguished names (DNs), 309
DME (Data Management

Engine), 306
DMI (Data Model Interface), 327
dmiauthd, 328
DMZ (demilitarized zone), 55
DNA (Digital Network Architecture), 55
DNA Center (DNAC), 45–47, 55

assurance, 46–47
design, 45
policy, 46
provision, 46

DNA-Advantage licensing, 185
DNs (distinguished names), 309
DNS (Domain Name System), 409

NFV (network functions virtualization)
and, 47

verifying configuration of, 282
DNS Docker container deployment,

369–375
container creation, 373–374
container installation in Catalyst 9000,

374–375
preparation for, 370–373

BIND configuration, 371
Dockerfile file, 371–373
folders, 370

434  DNS Docker container deployment

nameserver daemon configuration,
370

Docker, 75–78. See also Dockerfile
architecture, 75–76
CNM (Container Network Model),

111–114
components of, 111–112
Docker Bridge, 114, 134–136
Docker Host, 113, 132–134
Docker MACVLAN, 114
Docker None, 113, 131–132
Docker Overlay, 114
network creation, 113
output, 112

DHCP Docker container deployment,
363–369
Catalyst switch configuration,

363–364
container creation, 364–368
container installation in Catalyst

9000, 368–369
DNS Docker container deployment,

369–375
container creation, 373–374
container installation in Catalyst

9000, 374–375
preparation for, 370–373

Docker Build, 343
Docker Hub, 344–345
Docker-based application hosting,

217–223
container deployment workflow,

223
loading from public registry,

218–220
loading images from local registry,

220–222
loading images from public

registry, 218–220
loading manually to local store,

222–223

HAProxy container solution, 375–384
Docker image creation, 377–378,

381–382
HAProxy Docker container

installation, 382–384
HAProxy load balancer setup,

380–381
project initiation, 375–376
Web server configuration, 376–377
Web server Docker container

installation, 378–380
hosting architecture, 196–198
images

building, 341–344, 367–368, 373,
377, 381

Docker-style application on IOS-
XE platform, 179–181

HAProxy and Node containers,
377–378, 381–382

image archive, 368, 373–374, 378,
382

loading from local registry,
220–222

loading manually to local store,
222–223

native Docker application in
Catalyst 9300, 182–186

in NX-OS platforms, 262
PaaS-style applications on

IOS-XE, 162
publishing, 344–345
pulling, 87–89, 182–183, 218–220
S-BFD (Seamless BFD), 387–388

installation, 294
native application in Catalyst 9300,

182–186
deployment, 184–185
Docker container networking, 185
Docker image creation, 182–183
Docker pull and export, 182–183
licensing requirements, 185–186

Doppler in Switching Platforms (ASICs)  435

network stack, 90–91
in NX-OS platforms, 260–276

architecture, 260–261
Docker client, 261
Docker daemon, 263
Docker hosts, 261–262
instantiating with Alpine image,

263–266
managing, 266–268
NX-OS Docker health check,

398–404
orchestration with Kubernetes, 268–276

architecture, 268–270
Kubectl, 273–276
Masters, building, 270–273

overview of, 80
software support matrix for, 77–78
toolchain, 175

docker attach alpine command, 90
docker attach command, 265
Docker Bridge networking

configuration, 134–136
definition of, 114

Docker Build, 343
docker build command, 373
docker create command, 393
Docker Host networking

configuration, 132–134
definition of, 113

Docker Hub, 344
account creation, 344
repository, 344

docker pull command, 345
DTR (Docker Trusted Registry),

345
docker images command, 223
docker load command, 88, 223
docker logs <container-name> command,

367
Docker MACVLAN network type, 114

docker network ls command, 113
Docker None networking

configuration, 131–132
definition of, 113

Docker Overlay networking, 114
docker ps command, 90, 221, 223
docker pull command, 88, 184, 221, 222,

293, 345
docker run command, 89, 221, 223, 268
docker save alpine command, 88, 222
docker stop command, 267–268
Docker Trusted Registry (DTR), 345
docker version command, 197
docker-compose up command,

396–398, 401–404
docker-compose.yml file, 393–394,

396–398, 399, 401–404
Dockerfile, 76–77, 342–343

creating folders for, 376, 380
editing, 366–367, 371–373, 376–377,

381, 388
dockerpart file, 263
Docker-style applications

Docker-style application on IOS-XE plat-
forms
caveats and restrictions, 175
components of, 152
development workflow, 177
Docker toolchain, 175
images, creating, 179–180
installing and running, 182
IOx package creation with YAML,

180–181
package repository, 177–178
Python application development,

178
on IOS-XE platforms, 175

dohost command, 255, 284, 287, 288
Domain Name System. See DNS (Domain

Name System)
Doppler in Switching Platforms (ASICs),

142

436  Dot1Q

Dot1Q, 24–25
DTR (Docker Trusted Registry), 345
Dynamic Fabric Automation (DFA), 239
Dynamic Host Configuration Protocol

(DHCP), 24, 185

E
EC2 (Elastic Compute Cloud), 3
Eclipse, 339–340
Edge and Fog Processing Module (EFM),

408
edit-config operator, 335
<edit-config> operation, 329
EEM (Embedded Event Manager), 297
EIGRP (Enhanced Interior Gateway

Routing Protocol), 395
Elastic Compute Cloud (EC2), 3
Elastic Services Controller (ESC), 49
Electronic Numerical Integrator and

Computer (ENIAC), 2
Embedded Event Manager (EEM), 297
Embedded Services Processor (ESP), 144
ENCS (Enterprise Network Compute

System), 412
endpoints, Docker, 112
Enhanced Interior Gateway Routing

Protocol (EIGRP), 395
Enhanced SerDes Interconnect (ESI), 145
ENIAC (Electronic Numerical Integrator

and Computer), 2
Enterprise File Service Platform, 418
Enterprise Network Compute System

(ENCS), 412
Enterprise NFV Open Ecosystem, 418
enterprise virtualization, 30–31
EOBC (Ethernet Out-of-Band Channel),

145
EPC (Evolved Packet Core) network, 64
ESC (Elastic Services Controller), 49
ESI (Enhanced SerDes Interconnect), 145

ESP (Embedded Services Processor), 144
/etc/ansible/hosts file, 349
etcd, 80
/etc/ssh/sshd_config file, 246
/etc/sysconfig/docker file, 263
/etc/yum/yum.conf file, 203
Ethernet Out-of-Band Channel (EOBC), 145
ETL (Extract, Transform, and Load), 17
ETSI (European Telecommunication

Standards Institute), 47
Evolved Packet Core (EPC) network, 64
exaBGP, 406
execute command, 305
executep command, 305
expected traffic, 391
exporting certificates, 308–309
Extensible Markup Language (XML),

38, 306
external networks, namespaces to,

100–102
namespace connectivity, 101
namespace creation, 100
veth interface, 100–101

Extract, Transform, and Load (ETL), 17

F
FaaS (Function as a Service), 17–18,

421–423
FabricPath, 239
failure detection, S-BFD (Seamless BFD)

for, 384–391
client, 390–391
discriminators, 386
Docker images, 388
overview of, 385
reflector sessions, 386–387
reflectorbase, 388–389
as VNF (virtual network functions),

387–388

Guest Shell  437

fault detection, 237–238
FCoE, 239
FD.IO, 420
feature bash-shell command, 256–257
feature nxapi command, 306–307
FED (Forwarding Engine Driver), 142
file systems, virtual machine, 169–170
firewalls

Cisco ASA 5506, 10
ONEFW (One Firewall), 67

Fission, 423
Floodlight, 35
floodlight application, 392–396

docker create command, 393
docker-compose.yml file, 393–394
running in NX-OS, 396–398
traffic capture, 394–395
traffic classification, 395–396

FMAN (Forwarding Manager), 142
folders

creating, 376, 380
Docker, 365
HAProxy, 375–376
Node.js, 375–376

FortiGate firewalls, 418
Fortinet, 418
Forwarding Engine Driver (FED), 142
Forwarding Manager (FMAN), 142
full virtualization, 6–7
Function as a Service (FaaS), 17–18,

421–423
fwd_ew interface, 121
fwdintf interface, 121

G
GDT (global description table), 6
generic routing encapsulation (GRE),

30–31

GET requests
NX-API REST, 317–318
RESTCONF Agent, 320

in IOS-XE, 322–323
in NX-OS, 325–326

GigabitEthernet1 interface, 116
git command, 293
GitHub, 337–338
global description table (GDT), 6
global VRF route table, 121
global-vrf namespace, 119–120, 121
GRE (generic routing encapsulation),

30–31
guest enable command, 83
guest operating system (guest OS), 14
Guest Shell, 70–71

deploying with LXC, 81–84
CLI commands, 82–83
Guestshell rootsfs content, 83–84
IOx Service on IOS-XE, 81–82
IOX-specific syslog message, 83
in Ubuntu server, 84

in IOS-XE, 157–160
accessing, 160
Guest Shell container activation,

159–160
IOx activation, 157
network configuration,

157–158
verification of, 159–160

native-app hosting with dedicated net-
working, 127–128

in NX-OS, 239–240, 242–256
accessing, 245–248
application installation,

245–248, 253
deployment model and workflow,

243–245
network configuration, 248–253
OVA file, 242

http://FD.IO

438  Guest Shell

Python application development,
253–256

support and resource
requirements, 239–240

with shared networks, 124–125
versions of, 71

guestshell command, 246
guestshell destroy command, 83
guestshell disable command, 83
guestshell enable command, 82–84, 159,

243
guestshell reboot command, 245
guestshell resize commands, 245
guestshell run command, 82–84, 160
guestshell sync command, 83

H
HAProxy, 375–384

Docker container installation, 382–384
Docker image creation, 377–378, 381–

382
load balancer setup, 380–381
project initiation, 375–376
Web server configuration, 376–377
Web server Docker container installation,

378–380
hardware-assisted virtualization, 7
hardware/software stability check, 362
HEAD operations, 320
health check, Docker, 398–404

config.ini file, 399
Control Plane Policing (CoPP) counters,

399–401
docker-compose.yml file, 399
high-level procedure for, 392–398
objectives of, 398
running, 401–404

Helium, 35–36
help command, 297, 303
high availability, 18

Hollerith, Herman, 1–2
Hollerith Cards, 1–2
hosted hypervisors, 10
hosting

Docker-style application on IOS-XE, 175
caveats and restrictions, 175
development workflow, 177
Docker toolchain, 175
images, creating, 179–180
installing and running, 182
IOx package creation with YAML,

180–181
package repository, 177–178
Python application development,

178
environment readiness for

IOS-XR platforms, 198
NX-OS platforms, 239–241

PaaS-style applications, 161–166
components of, 151
development environment, 161
Docker image creation, 162
installing and running, 165–166
IOx package creation with YAML,

162–165
Python application development,

161–162
supported platforms, 161

S-BFD clients, 390–391
S-BFD reflectorbase, 388–389
virtual machine-based applications,

166–175
components of, 151
installing and running, 172–175
IOx package creation with YAML,

170–172
network configuration, 174
tool/library installation, 168–169
virtual machine file systems,

169–170
virtual machines, building, 167–168

interface sync  439

hosts file, Ansible, 347
Hot Standby Router Protocol (HSRP), 395
HSRP (Hot Standby Router Protocol), 395
HTTPS (Hypertext Transfer Protocol

Secure)
NX-API support for, 306
Transport Layer Security (TLS)-based,

321
Hydrogen, 35–36
Hyperkube, 92–93
Hypertext Transfer Protocol Secure. See

HTTPS (Hypertext Transfer Protocol
Secure)

hypervisors
hosted, 10
native, 10

I
I2C (inter-integrated circuit), 145
IaaS (infrastructure as a service), 20
IBM Cambridge Scientific Center, 3
IBN (Intent-Based Networking),

55, 57
IES (Industrial Ethernet Switches), 55
ietf-interfaces modules, 40–41
images (Docker)

building, 341–344, 367–368, 373, 377,
381

Docker-style application on IOS-XE plat-
forms, 179–180

HAProxy, 377–378, 381–382
image archive, 368, 373–374, 378, 382
native Docker application in Catalyst

9300, 182–186
PaaS-style applications on IOS-XE, 162
publishing, 344–345
pulling, 87–89, 182–183
S-BFD (Seamless BFD), 387–388

index.js file, editing, 376-C09.5564
Industrial Ethernet Switches (IES), 55

Information Technology Infrastructure
Library (ITIL) framework, 4

infrastructure as a service (IaaS), 20
infrastructure virtualization, history of,

23–27
init process, 100
in-service software upgrade (ISSU), 40
installation. See also deployment

application deployment workflow, 156
Chef, 355
Cisco NX-SDK (Nexus Software

Development Kit), 293–297
Docker-style application on IOS-XE plat-

forms, 182
Guest Shell, 245–248, 253
IOx, 157
OAC (Open Agent Containers), 285–288

application using Python APIs,
287–288

custom Python application,
285–286

package management, 288
PaaS-style applications, 165–166
Puppet, 351–353
SDK, 207
virtual machine-based applications,

172–175
instantiating containers, 265–266

with Docker, 263–266
container with Alpine image,

263–264
daemon, 85–86, 91–92
docker attach command, 265
Docker Client, 86–87
pulling images for, 87–89
running containers, 89–91

with LXC (Linux containers), 81–84
S-BFD (Seamless BFD) reflector

container, 389
Intent-Based Networking (IBN), 55
interface sync, 193

440  interfaces

interfaces
AppGigEthernet, 125–126, 129–130
VirtualPortGroup, 125–126

inter-integrated circuit (I2C), 145
Internet of Things. See IoT (Internet of

Things)
Internet Systems Consortium, 363
interprocess communication (IPC), 81,

143
Inter-Switch Link (ISL), 24
inventory management use case, 361
invoke function, 17
IO Privilege Level (IOPL) flags, 6
IOPL (IO Privilege Level) flag, 6
ios_vrf module, 348
IOS-XE platforms. See also use cases

Ansible
authentication, 348
checking version of, 347
hosts file, 347
NETCONF operations with,

350–351
overview of, 346
playbooks, 348–350

application deployment workflow, 156
application hosting capabilities, 146–149

IOx application types,
150–152

IOx framework, 148–149
libvirt, 146–148
VMAN (Virtualization Manager),

146–148
Cisco IOS-XE CLI, 185
dedicated networking in, 125–130

AppGigEthernet interface,
125–126

Layer 2 mode, 129–130
numbered routing, 126–128
unnumbered routing,

128–129

VirtualPortGroup interface,
125–126

Docker-style application, 175
caveats and restrictions, 175
components of, 152
development workflow, 177
Docker toolchain, 175
images, creating, 179–180
installing and running, 182
IOx package creation with YAML,

180–181
package repository, 177–178
Python application development,

178
history of, 140–142
key components of, 139–140
LXC-based Guest Shell containers,

157–160
components of, 150
Guest Shell container activation,

159–160
IOx activation, 157
network configuration,

157–158
native Docker application in Catalyst

9300, 182–186
deployment, 184–185
Docker container networking, 185
Docker image creation,

182–186
Docker pull and export,

182–183
licensing requirements,

185–186
NETCONF Agent, 327–331

enabling, 327–329
NETCONF-Yang processes in,

328–329
operations with, 329–331
supported features, 331

operation states, 156

IOS-XR platforms  441

PaaS-style applications, 161–166
components of, 151
development environment, 161
Docker image creation, 162
installing and running,

165–166
IOx package creation with YAML,

162–165
Python application development,

161–162
supported platforms, 161–166

Python APIs, 302–305
accessing, 302
cli command, 303–304
clip command, 303–304
configure command, 304
configurep command, 304
displaying details about, 303
execute command, 305
executep command, 305

releases, 140–141
resource requirements, 153–156

memory, 153–154
storage, 153–154
VirtualPortGroup, 154–155
vNICs (virtual network interface

cards), 155–156
RESTCONF Agent, 320–323

enabling, 320–321
operations with, 322–323
supported methods, 320–321

routing platforms, 144–146
shared networking, 115–117
switching platforms, 142–144
virtual machine-based applications,

166–175
components of, 151
installing and running, 172–175
IOx package creation with YAML,

170–172

network configuration, 174
tool/library installation, 168–169
virtual machine file systems,

169–170
virtual machines, building,

167–168
IOS-XR platforms. See also use cases

architecture
application hosting architecture,

192–193
application hosting volumes,

198–199
CPU share, 198–199
Docker hosting architecture,

196–198
hosting environment readiness,

198
KIM (Kernel Interface Module),

193–195
memory, 200–201
network namespaces, 195–196
resource allocation, 201
software evolution and,

190–191
storage, 198–199

Chef
cookbooks, creating, 354–355
installation, 355
overview of, 346
resources, 354

container management, 232–234
dedicated networking, 131
Docker-based application hosting,

217–223
container deployment workflow,

223
loading from public registry,

218–220
loading images from local registry,

220–222

442  IOS-XR platforms

loading images from public
registry, 218–220

loading manually to local store,
222–223

evolution of, 190–191
hosting S-BFD reflectorbase on, 388–389
Linux-based application hosting,

209–217
application installation in test

virtual machine, 210–211
environment preparation, 214
libvirtd daemon, 214
LXC container root filesystem,

211–215
LXC spec file, 213–214
TPNNS namespace login, 212–213
virsh command, 215
virsh console command, 215
virtual machine, launching, 210
workflow summary, 209–210

native application hosting, 201–209
building RPM file for, 206–209
from existing RPM file, 202–206
overview of, 201–202

NETCONF Agent, 331–332
enabling, 331
operations with, 332

network configuration, 216–217,
224–225
name resolution, 224–225
network reachability, 224–225
proxy configuration, 225

persistent application deployment,
232–234

shared networking, 117–122
global VRF route table, 121
LXC spec file, 122
TPA configuration, 121
TPNNS (third-party network

namespace), 119, 121–122
XRNNS (XR network namespace),

117–119

VRF namespace, application hosting in,
226–232
with LXC (Linux containers),

229–232
VRF namespace configuration,

226–229
IOS-XRv 9000, instantiating, 414–415
IoT (Internet of Things), 51–57

Cisco Kinetic, 52–53, 408
Cisco Ultra Services Platform, 53–54
Connected Vehicles, 53–54
devices in, 51–57
Edge Computing, 55
manufacturing use case, 55–57

IOx framework
application hosting capabilities, 148–149
application types, 150–152
architecture, 148–149
enabling, 364
IOx Service on IOS-XE, 81–82
IOX-specific syslog messages, 83
LXC-based Guest Shell containers, 157

Guest Shell container activation,
159–160

network configuration, 157–158
package creation with YAML,

162–165, 170–172, 180–181
virtual machine-based applications and

hosting, 170–172
IP Address Assignment and Management

(IPAM), 98
ip link add vethcisco01 type veth

command, 100–101
ip netns add cisco1 command, 100
ip netns exec global-vrf ip link command,

196
IP Source Guard, 239
ip unnumbered command, 128
IP_Move application, 293–297

activating, 295–296
development of, 294–295
Linux environment, building, 293–294

libvirtd daemon  443

packaging, 295
running, 295–296

IPAM (IP Address Assignment and
Management), 98

IPC (interprocess communication), 81,
143

iPerf application
installing from YUM repository, 205–206
installing with Chef, 355
RPM spec file, 208–209

iperf3 command, 205–206
IPv6 (SRv6) data plane, 420–421
ISCSI (Small Computer System Interface

over IP), 239
ISL (Inter-Switch Link), 24
ISSU (in-service software upgrade), 40
ITIL (Information Technology

Infrastructure Library)
framework, 4

J
JavaScript

creating folders for, 376
index.js file, editing, 376-C09.5564

JSON (JavaScript Object Notation), 38,
255

NX-API support for, 306
Python API automation with JSON

results, 299–300

K
K8S. See Kubernetes
Kernel Interface Module (KIM), 193–195
Kernel Sockets, 247–248
Kernel-based Virtual Machine

(KVM), 146
keys, Puppet, 351
<kill-session> request, 330
KIM (Kernel Interface Module), 193–195

Kinetic, 52–53, 408
kstack networking, 247
Kube Controller Manager, 80
Kube-apiserver, 80
/kube/config file, 274
kubeconfig file, 274
Kubectl, 273–276
kubectl cluster-info command, 93
kubectl command, 94
kubectl get pod -o wide

command, 95
Kubeless, 423
Kubelet, 80
Kube-proxy, 81
Kubernetes, 79–81, 268–276

architecture, 79, 268–270
CNI (Container Network Interface) model

components of, 114–115
deployment, 136

deploying workload with, 94–95
Docker daemon, running, 91–92
Kubectl, 273–276
masters, 80, 92–93, 270–273
serverless computing and, 423
worker nodes, 80–81, 93–94

Kube-scheduler, 80
KVM (Kernel-based Virtual

Machine), 146
kvm command, 414–415

L
LACP (Link Aggregation Control

Protocol), 27
Lambda, 17
libnetwork package, 111
library installation, IOS-XE, 168–169
libvirt, 146–148, 192
libvirtd daemon, 214

444  licensing requirements

licensing requirements, native Docker
application in Catalyst 9300, 185–186

Link Aggregation Control Protocol
(LACP), 27

Link Layer Discovery Protocol (LLDP),
395

Linux bridge, creation of, 103
Linux containers. See LXC (Linux

containers)
Linux Foundation, OpenDaylight, 35–36
Linux KVM, 10
Linux-based application hosting,

209–217
application installation in test virtual

machine, 210–211
environment preparation, 214
libvirtd daemon, 214
LXC container root filesystem, 211–215
LXC spec file, 213–214
TPNNS namespace login, 212–213
virsh command, 215
virsh console command, 215
virtual machine, launching, 210
workflow summary, 209–210

Linx, 336–337
LIPC (Local IPC), 143
LLDP (Link Layer Discovery Protocol),

395
lo interface, 121
load balancers

HAProxy, 380–381
NFV (network functions virtualization)

and, 47
Local IPC (LIPC), 143
local registries, loading Docker images

from, 220–222
local stores, loading Docker images to,

218–223
from local registry, 220–222
manually, 222–223
from public registry, 218–220

<lock> operation, NETCONF Agent,
329–330

Lubuntu, 7
LXC (Linux containers), 16–17, 66–67,

242
CAF (Cisco Application Hosting

Framework), 69–70
daemons

running, 91–92
status verification, 85–86

Docker Client, 86–87
Guest Shell, 70–71

deploying with LXC, 81–84
overview of, 70
versions of, 71

images, pulling, 87–89
instantiation and management, 81–84
LXC-based Guest Shell containers,

213–214
components of, 150
Guest Shell container activation,

159–160
IOx activation, 157–160
network configuration,

157–158
OAC (Open Agent Containers), 71–75

commands, 74–75
OAC.OVA file, 71–72
oac.xml file, 72–74
resource output, 74–75

root filesystems in, 211–215
running, 89–91

active containers, listing, 90
Docker network stack, 90–91
docker run command, 89

Service Containers, 67–69
CLI-based commands, 68
OVA file for, 67–68
software support matrix for, 69

spec files, 122, 213–214

native Docker application in Catalyst 9300  445

TPNNS namespace login, 212–213
VRF namespace, application hosting in,

226–229

M
Macvlan, 114
Maestro, 36
managed objects, 309–310
management information tree (MIT),

309–310
management namespace, 122–124,

252–253
management VRFs, 248
manifest files

Cisco OAC (Open Agent Containers),
72–74

Cisco Service Containers, 67
MANO (management and orchestration).

See orchestration
manufacturing use case, 55–57
masters (Kubernetes), 80, 92–93,

270–273
MEC (mobile edge computing), 64
memory

in IOS-XE, 153–154
in IOS-XR, 200–201

Message Format component (NX-API),
306

Message Queue IPC (MQIPC), 144
Message Transmission Services (MTS),

237
/misc/app_host volume, 198
MIT (management information tree),

309–310
mobile edge computing (MEC), 64
models, network. See network models
Moore, Gordon, 2
MPLS (SR-MPLS), 420–421
MPLS VPN (Multiprotocol Label

Switching VPN), 25–27

MQIPC (Message Queue IPC), 144
MTS (Message Transmission Services),

237
Multiprotocol Label Switching VPN

(MPLS VPN), 25–27
multitenancy, 19–20

N
name resolution, 224–225
named.conf file, 370
nameserver daemon configuration, 370
namespaces

to another namespace, 100–102
Linux bridge, 103
namespace creation, 102
veth interface, 102–104

Cisco NXOS, 105
definition of, 16, 99
to external network, 100–102

namespace connectivity, 101
namespace creation, 100
veth interface, 100–101

Guest Shell, 248–250
IOS-XR platforms, 195–196
key points for, 104–105

NAS (network-attached storage), 12, 239
NAT (Network Address Translation), 47
National Institute of Standards and

Technology (NIST), 13
native application hosting, IOS-XR

platforms, 201–209
building RPM file for, 206–209
from existing RPM file, 202–206
overview of, 201–202

native Docker application in Catalyst
9300, 182–186

deployment, 184–185
Docker container networking, 185
Docker image creation, 182–186

446  native Docker application in Catalyst 9300

Docker pull and export, 182–183
licensing requirements, 185–186

native hypervisors, 10
native-app hosting network model,

106–111
dedicated networking

Cisco IOS-XE configuration,
125–130

Cisco IOS-XR configuration, 131
Nexus OS configuration, 131
output, 109–111
overview of, 108–109

shared networking
Cisco IOS-XE configuration,

115–117
Cisco IOS-XR configuration,

117–122
Cisco Nexus OS configuration,

122–125
output, 107–108
overview of, 106–107
support matrix for, 125

ncsshd, 328
ndbmand, 328
Neon, 35–36
nesd, 328
nested virtualization, 7
NetBeez Agent, 409–410
NETCONF Agent, 39

Ansible with, 350–351
in IOS-XE, 327–331

enabling, 327–329
NETCONF-Yang processes in,

328–329
operations with, 329–331
supported features, 331

in IOS-XR, 331–332
enabling, 331
operations with, 332

in NX-OS, 333–336

enabling, 333
operations with, 333–336

overview of, 318–319
RESTCONF compared to, 320

NETCONF-yang command, 327, 328
netns_identify command, 203
Netscout, 418
Netstack module, 237
Network Address Translation. See NAT

(Network Address Translation)
NETwork CONFiguration (NETCONF),

39
network connectivity, 99
network design

Cisco DNA Center, 45
with NFV (network functions

virtualization), 47
with SDN (software-defined networking),

47
virtualization

high availability, 18
multitenancy, 19–20
workload distribution, 19

network device virtualization, history of,
26–29

Network Function Virtualization
Infrastructure Software (NFVIS), 412

network functions virtualization. See NFV
(network functions virtualization)

network infrastructure virtualization,
history of, 23–27

Network Interface Module (NIM), 153
network isolation, 99
Network Management Servers (NMS),

404
network measurement

OWAMP (One-Way Active Measurement
Protocol), 407

perfSONAR, 408–409
TWAMP (Two-Way Active Measurement

Protocol), 407

networking  447

network models, 105
Cisco native-app hosting

dedicated networking, 108–111
shared networking, 106–111

Docker CNM (Container Network
Model), 111–114
components of, 111–112
Docker Bridge, 114, 134–136
Docker Host, 113, 132–134
Docker MACVLAN, 114
Docker None, 113, 131–132
Docker Overlay, 114
network creation, 113
network types, 112–114
output, 112

Kubernetes CNI (Container Network
Interface)
components of, 114–115
deployment, 136

network namespaces
to another namespace, 100–102

Linux bridge, 103
namespace creation, 102
veth interface, 102–104

Cisco NXOS network namespace, 105
definition of, 99
to external network, 100–102

namespace connectivity, 101
namespace creation, 100
veth interface, 100–101

IOS-XR platforms, 195–196
key points for, 104–105

network operational service applications,
405

app hosting services, 405–406
Cisco Kinetic, 408
DNS (Domain Name System), 409
NetBeez Agent, 409–410
open-source applications, 410

OWAMP (One-Way Active
Measurement Protocol), 407

perfSONAR, 408–409
Solenoid, 406
tcpdump, 407–408
TWAMP (Two-Way Active

Measurement Protocol), 407
Cisco NFV offerings

CCP (Cisco Container Platform),
416–417

Cisco UCS (Unified Computing
Servers), 412

Cisco Ultra Service Platform,
415–416

consolidated view of, 417–418
ENCS (Enterprise Network

Compute System), 412
NFV infrastructure architecture,

411–412
virtual routers and switches,

414–415
containers and service chaining, 418–421

NSH (Network Service Header),
419–420

SRv6 (Segment Routing v6),
420–421

serverless computing, 421–423
network programmability. See

programmability
Network Service Header (NSH), 419–420
Network Services Orchestrator (NSO), 49
network-attached storage (NAS),

12, 239
networking, 105. See also SDN (software-

defined networking); virtualization
communication modes, 97–99
consistency checks, 362
dedicated, 131

Cisco IOS-XE, 125–130
Cisco IOS-XE configuration,

125–130

448  networking

Cisco IOS-XR, 131
Nexus OS, 131
Nexus OS configuration, 131
output, 109–111
overview of, 108–109

Docker CNM (Container Network
Model), 111–114
components of, 111–112
Docker Bridge, 114, 134–136
Docker Host, 113, 132–134
Docker MACVLAN, 114
Docker None, 113, 131–132
Docker Overlay, 114
network creation, 113
output, 112

Kubernetes CNI (Container Network
Interface) model, 136
components of, 114–115
deployment, 136

namespaces
to another namespace, 100–102
Cisco NXOS network namespace,

105
definition of, 99
to external network, 100–102
key points for, 104–105

network slicing, 64
network stack, 90–91
SANs (storage area networks), 12
shared, 106–107, 108

Cisco IOS-XE, 115–117
Cisco IOS-XR, 117–122
Cisco Nexus OS, 122–125
support matrix for, 125

Nexus 9000 switches, enabling as
Kubernetes worker node, 93–94

Nexus API. See NX-API (Nexus API)
Nexus Software Development Kit.

See NX-SDK (Nexus Software
Development Kit)

Nexus Software Development Kit
(NX-SDK), 291–297

NFV (network functions virtualization)
app hosting services, 405–406

Cisco Kinetic, 408
DNS (Domain Name System), 409
NetBeez Agent, 409–410
open-source applications, 410
OWAMP (One-Way Active

Measurement Protocol), 407
perfSONAR, 408–409
Solenoid, 406
tcpdump, 407–408
TWAMP (Two-Way Active

Measurement Protocol), 407
Cisco NFV offerings

CCP (Cisco Container Platform),
416–417

Cisco NFV infrastructure
architecture, 411–412

Cisco UCS (Unified Computing
Servers), 412

Cisco Ultra Service Platform,
415–416

consolidated view of, 417–418
ENCS (Enterprise Network

Compute System), 412
virtual routers and switches,

414–415
Cisco SDN solutions

Cisco APIC, 42–44
Cisco APIC-EM, 44
Cisco DNA Center, 45–47

definition of, 11
elements in, 48
modern network design with, 47
virtual network service deployment, 48

NFVI (NFV Infrastructure), 48, 411
NFVIS (Network Function Virtualization

Infrastructure Software), 412
NFVO (NFV Orchestration), 411

NX-OS platforms  449

nginx process
NETCONF Agent and, 328
NX-API (Nexus API), 306
RESTCONF Agent and, 321

Nicira Networks, NOX, 35
NIM (Network Interface

Module), 153
NIST (National Institute of Standards and

Technology), 13
NMS (Network Management Servers),

404
Node.js, 341

folders, 375–376
HAProxy and Node containers, 375–384

Docker image creation,
377–378, 381–382

HAProxy Docker container
installation, 382–384

HAProxy load balancer setup,
380–381

project initiation, 375–376
Web server configuration, 376–377
Web server Docker container

installation, 378–380
nodes, managing with Kubectl,

275–276
none networking (Docker), 113, 131–132
noninteractive mode, Python APIs in,

300–302
NOX, 35
NSH (Network Service Header), 419–420
NSO (Network Services Orchestrator), 49
numbered routing, 126–128

Guest Shell, 127–128
VirtualPortGroup configuration, 127

NX-API (Nexus API), 305–318
data management engine, 309–310
enabling, 306–309

certificates, exporting, 308–309
certificates, generating,

307–308

feature nxapi command,
306–307

managed objects, 309–310
Message Format component, 306
NX-API REST, 310–318

logical view, 311
NX-API GET request in Python v3,

317–318
NX-API Sandbox, 313–315
response to REST API request,

312–313
URL format, 311

NX-API Sandbox, 313–315
overview of, 305
Security component, 306
Transport component, 306

nxapi sandbox command, 313
nxapi_auth, 306
NX-OS platforms. See also use cases

anomaly detector application,
391–398
floodlight application, 392–396
high-level procedure for, 392
objectives of, 391
running, 396–398

Bash, 256–260
accessing from NX-OS,

257–258
accessing via SSH, 258–260
enabling, 256–257

benefits of, 238–239
Cisco NXOS network namespace, 105
Docker containers, 260–276

architecture, 260–261
Docker client, 261
Docker daemon, 263
Docker hosts, 261–262
instantiating with Alpine image,

263–266
managing, 266–268

450  NX-OS platforms

orchestration with Kubernetes,
268–276

foundation of, 235–238
Guest Shell, 242–256

accessing, 245–248
application installation, 253
deployment model and workflow,

243–245
network configuration,

248–253
OVA file, 242
Python application development,

253–256
hosting environment readiness, 239–241

Bash, 240
Guest Shell, 239–240
OAC (Open Agent Containers),

240–241
NETCONF Agent, 333–336

enabling, 333
operations with, 333–336

NX-OS Docker health check,
398–404
config.ini file, 399
Control Plane Policing (CoPP)

counters, 399–401
docker-compose.yml file, 399
high-level procedure for,

392–398
objectives of, 398
running, 401–404

OAC (Open Agent Containers), 276–288
accessing via console, 280
application installation and verifi-

cation, 285–288
architecture, 276–277
deactivating, 285
deployment model and

workflow, 277–279
network configuration,

280–284
upgrading, 284–285

Puppet
installation, 351–353
OSPF configuration with, 353–354
overview of, 346, 351

Python APIs in, 297–302
benefits of, 302
noninteractive mode, 300–302
Python API package, displaying,

297–299
RESTCONF Agent in, 323–326

enabling, 323–325
operations with, 325–326

shared networking, 122–125
default network namespace, 122,

124
Guest Shell, 124–125
management network namespace,

122–124
software architecture, 235–238

NX-SDK (Nexus Software Development
Kit), 291–297

deployment modes, 293
framework, 291–292
installation and activation, 293–297

activation, 295–296
application development, 294–295
Linux environment, building,

293–294
packaging applications, 295
running applications, 295–296

release versions, 292

O
OAC (Open Agent Containers), 71–75,

276–288
accessing via console, 280
application installation and verification,

285–288
application using Python APIs,

287–288

orchestration  451

custom Python application,
285–286

package management, 288
architecture, 276–277
commands, 74–75
deactivating, 285
deployment model and workflow,

277–279
failures in, 279
OAC activation, 277–278
OAC installation, 277
OAC verification, 278–279
system internal event history, 279

network configuration, 280–284
DNS (Domain Name System), 282
OAC reachability to external net-

work, 284
open sockets, 282
SSH access, 282
TPC port, 281
verification of, 281

NX-OS support for, 240–241
OAC.OVA file, 71–72
oac.xml file, 72–74
resource output, 74–75
upgrading, 284–285

OBFL (On-Board Failure Logging), 139
objects, managed, 309–310
OCI (Open Container Initiative), 63
On-Board Failure Logging (OBFL), 139
ONEFW (One Firewall), 67
One-Way Active Measurement Protocol

(OWAMP), 407
ONF (Open Network Foundation), 35
ONOS (Open Source Network OS), 36
Open Agent Containers. See OAC (Open

Agent Containers)
Open Container Initiative (OCI), 63
Open Network Foundation (ONF), 35

Open SDN Controller, 36
Open Shortest Path First (OSPF), 27, 237,

353–354, 395–396
open sockets, verification of, 282
open source controllers, 35–36
Open Source Network OS (ONOS), 36
Open Virtual Switch (OVS), 420
Open Virtualization Format (OVF), 14
OpenDaylight, 35–36
OpenFlow, 34–35, 420
open-source tools

Apache NetBeans, 337
app hosting services, 410
Atom, 338
AWS Cloud9, 338–339
Bitbucket, 340–341
Bootstrap, 340
Eclipse, 339–340
GitHub, 337–338
Linx, 336–337
Node.js, 341
Zend Studio, 339

openssl commands, 307–308
OpenTransit, 36
OpenWhisk, 17
operating expenses (OpEx), 33
operation states (IOS-XE), 156
operational data monitoring, 363
OpEx (operating expenses), 33
opkg utility, 178
optimization

cost, 5
resource, 4–5

orchestration
application development framework, 62
automated, 62
cloud-native reference model, 61–62
CNFs (cloud-native network functions),

63–65, 416

452  orchestration

deployment model, 63
framework, 64

Container Runtime, 63
Docker, 75–78

architecture, 75–76
CNM (Container Network Model),

111–114
container, running, 89–91
daemon, running, 91–92
daemon status verification, 85–86
Docker Client, 86–87
Dockerfile, 76–77
images, pulling from registry to

local store, 87–89
network stack, 90–91
software support matrix for, 77–78

in IOS-XE platforms
application deployment workflow,

156
application hosting capabilities,

146–149
Docker-style application,

140–142, 175–182
key components of, 139–140
LXC-based Guest Shell containers,

157–160
native Docker application in

Catalyst 9300, 182–186
operation states, 156
PaaS-style applications,

161–166
resource requirements,

 153–156
routing platforms, 144–146
switching platforms, 142–144
virtual machine-based applications

and hosting, 166–175
in IOS-XR platforms

architecture, 192–201
container management,

232–234

Docker-based application hosting,
217–223

evolution of, 190–191
Linux-based application hosting,

209–217
native application hosting,

201–209
network configuration,

216–217, 224–225
persistent application deployment,

232–234
VRF namespace, application host-

ing in, 226–232
Kubernetes, 79–81

architecture, 79
CNI (Container Network Interface)

model, 114–115
deploying workload with, 94–95
deployment, 136
Docker daemon, running, 91–92
master nodes, 80
master nodes, enabling, 92–93
worker nodes, 80–81
workers nodes, enabling, 93–94

LXC (Linux containers)
CAF (Cisco Application Hosting

Framework), 69–70
Cisco Guest Shell, 70–71, 81–84
Cisco OAC (Open Agent

Containers), 71–75
Cisco Service Containers, 67–69
container instantiation and

management with, 81–84
overview of, 66–67

NFV (network functions virtualization)
and, 47

in NX-OS platforms
Bash, 256–260
benefit of NX-OS, 238–239
Docker containers, 260–276
Guest Shell, 242–256

programmability  453

hosting environment readiness,
239–241

software architecture, 235–238
overview of, 65–66

OSPF (Open Shortest Path First), 27, 237,
353–354, 395–396

OTV (Overlay Transport Virtualization),
237

OVA file, 242
overlay networking, 114
Overlay Transport Virtualization (OTV),

237
OVF (Open Virtualization Format), 14
OVS (Open Virtual Switch), 420
OWAMP (One-Way Active Measurement

Protocol), 407

P
PaaS (platform as a service)

components of, 151
PaaS-style applications, 161–166

components of, 151
development environment, 161
Docker image creation, 162
installing and running,

165–166
IOx package creation with YAML,

162–165
Python application development,

161–162
supported platforms, 161

packages
Cisco NX-SDK (Nexus Software

Development Kit), 295
Docker repository, 177–178
IOx

Docker-style application on
IOS-XE, 180–181

PaaS-style applications on
IOS-XE, 162–165

virtual machine-based applications
and hosting, 170–172

OAC (Open Agent Containers), 288
Python API, 297–299

package.yaml descriptor file
Docker-style applications, 176
PaaS-style application, 163
virtual machine file system, 170–171

packet capture, 407–408
Packet Gateway (PGW), 64
PAM (Programmable Authentication

Module), 306
paravirtualization, 7
PATCH operations, 320
path isolation, 30
.pcapng file, 394–395
perfSONAR, 408–409
persistence

Docker, 266–267
persistent application deployment,

232–234
PSS (Persistent Storage System), 237

PGW (Packet Gateway), 64
ping command, 101
playbooks, Ansible

example of, 348–349
running, 349

POAP (Power On Auto Provisioning), 253,
297

pods, 275–276
policy, Cisco DNA Center, 46
ports, TCP, 281
POST requests, 320
Power On Auto Provisioning (POAP), 253,

297
POX, 35
programmability, 38–42

data modeling languages
table of, 39
YANG, 39–42

REST APIs, 38

454  Programmable Authentication Module (PAM)

Programmable Authentication Module
(PAM), 306

proof-of-concept, infrastructure for, 363
provision, Cisco DNA Center, 46
proxy configuration, 225
PSS (Persistent Storage System), 237
public registries, pulling Docker images

from, 218–220
publishing Docker images, 344–345
Puppet

installation, 351–353
OSPF configuration with, 353–354
overview of, 346, 351

PUT operations, 320
Python APIs, 297. See also Python

application development
application using, 287–288
in IOS-XE, 302–305

accessing, 302
cli command, 303–304
clip command, 303–304
configure command, 304
configurep command, 304
displaying details about, 303
execute command, 305
executep command, 305

in NX-OS, 297–302
benefits of, 302
noninteractive mode, 300–302
Python API package, displaying,

297–299
Python application development, 38,

317–318. See also Python APIs
Docker-style application on IOS-XE, 178
in Guest Shell in NX-OS, 253–256

API-based applications,
254–256

running applications, 253–254
IOx PaaS-style applications, 161–162
OAC (Open Agent Containers)

application using Python APIs,
287–288

installation, 285–286
package management, 288

python command, 253–254,
300–302

Q-R
QEMU (Quick Emulator), 146, 169
RADIUS

NETCONF Agent, 327
RESTCONF Agent, 320–321

reachability, network, 224–225
RedHat Package Manager (RPM), 202
reflect function, 388
reflector sessions (S-BFD), 386–387
reflectorbase (S-BFD), 388–389
register_disc function, 388
registries

DTR (Docker Trusted Registry), 345
loading Docker images from

from local, 220–222
from public, 218–220

relative names (RNs), 310
Remote IPC (RIPC), 143
repositories

Docker Hub, 344
YUM

configuration, 203
default, 203
installing native applications from,

204
representational state transfer (REST)

APIs, 38
requests

GET, 317–318, 322–323, 325–326
NX-API REST, 312–316

resilience, 5
resolv.conf file, 224–225

S-BFD (Seamless BFD)  455

resource optimization, 4–5
resource requirements, 19

IOS-XE, 153–156
memory, 153–154
storage, 153–154
VirtualPortGroup, 154–155
vNICs (virtual network interface

cards), 155–156
IOS-XR, 201

resource usage and scalablity check, 362
REST (representational state transfer)

APIs
NX-API REST, 310–318

logical view, 311
NX-API GET request in Python v3,

317–318
NX-API Sandbox, 313–315
response to REST API request,

312–313
URL format, 311

overview of, 38. See also RESTCONF
Agent

RESTCONF Agent
in IOS-XE, 320–323

enabling, 320–321
operations with, 322–323
supported methods, 320–321

NETCONF compared to, 320
in NX-OS, 323–326

enabling, 323–325
operations with, 325–326

overview of, 318–319
RIB (Routing Information Base) table, 406
RIPC (Remote IPC), 143
RNs (relative names), 310
role-based access control (RBAC), 302
rootfs, 83–84, 179
route command, 224
route injection agents, Solenoid, 406
Route Processor (RP), 144

routing
global VRF route table, 121
Guest Shell

default namespace, 251
management namespace,

252–253
IOS-XE routing platforms, 144–146
RIB (Routing Information Base) table,

406
route configuration

numbered, 126–128
unnumbered, 128–129

route sync, 193
virtual routers and switches,

414–415
RP (Route Processor), 144
RPM (RedHat Package Manager) files,

202
IP_Move application, 295
native hosting from

existing RPM files, 202–206
newly built RPM files, 206–209

RPM spec file, 208–209
rpm_gen.py, 295
rpmbuild -ba command, 209
run bash command, 117–118,

257–258
run guestshell python command, 253–254
runc, 63
Ryu, 36

S
SaaS (software as a service), 20
SAE (Secure Agile Exchange), 50
sandbox, 111–112, 313–315
SANs (storage area networks), 12
S-BFD (Seamless BFD), 384–391

client, hosting on server, 390–391
discriminators, 386

456  S-BFD (Seamless BFD)

Docker images, 388
overview of, 385
reflector sessions, 386–387
reflectorbase, hosting on XR devices,

388–389
as VNF (virtual network functions),

387–388
Scapy, 395
SDA (Software-Defined Access), 55
SDK installation, 207
SDN (software-defined networking)

APIs (application programming
 interfaces), 33

Cisco SDN solutions
Cisco APIC, 42–44
Cisco APIC-EM, 44
Cisco DNA Center, 44

control plane, 33
controllers, 34–36

open source, 35–36
OpenFlow, 34–35

enablers, 33
APIs (application programming

interfaces), 36–37
control plane virtualization, 33–34
programmability, 38–42
SDN controllers, 34–36

high-level architecture of, 32–33
IoT (Internet of Things), 51–57

Cisco Kinetic, 52–53
Cisco Ultra Services Platform,

53–54
devices in, 51–57
manufacturing use case, 55–57

modern network design with, 47
Seamless BFD. See S-BFD (Seamless BFD)
Secure Agile Exchange (SAE), 50
Secure Shell. See SSH (Secure Shell)
Security component (NX-API), 306
Segment Routing (SRv6), 420–421

self-signed certificates
exporting, 308–309
generating, 307–308

sequential command persistence, 299
server virtualization, 8–10
serverless computing, 17–18,

421–423
service chaining, 418–421

NSH (Network Service Header), 419–420
SRv6 (Segment Routing v6),

420–421
Service Containers, 67–69

CLI-based commands, 68
OVA file for, 67–68
software support matrix for, 69

service docker command, 86
service docker start command, 91
service docker status command, 92
service function chaining (SFC), 64
Service Gateway (SGW), 64
Service mesh, 62
Service Oriented Architecture

(SOA), 13
Service Path Header (NSH), 419
service providers, 31
Service Set Identifiers (SSIDs),

30, 153
service sshd commands, 282–283
services edge, 30–31
session cookies, nxapi_auth, 306
Session Manager Daemon (SMD), 140,

143
SFC (service function chaining), 64
SGW (Service Gateway), 64
shared networking

Cisco IOS-XE configuration,
115–117

Cisco IOS-XR configuration,
117–122
global VRF route table, 121
LXC spec file, 122

STP (Spanning Tree Protocol)  457

TPA configuration, 121
TPNNS (third-party network

namespace), 119–121, 122
XRNNS (XR network namespace),

117–119
Cisco Nexus OS configuration, 122–125

default network namespace, 122,
124

Guest Shell, 124–125
management network namespace,

122–124
on IOS-XR platforms, 216
output, 107–108
overview of, 106–107
support matrix for, 125

shells. See Bash; Guest Shell
show bash-shell command, 256–257
show guestshell command, 243–245
show iox-service command, 82
show ip arp command, 294–295
show kim status command, 195
show mac address-table command, 294
show NETCONF-yang sessions command,

329–330
show platform command, 364
show processes kim command,

194–195
show system internal virtual-service

event-history debug command, 279
show version command, 364
show virtual-service detail command,

278–279
show virtual-service list command,

277–278, 279
Simple Network Management Protocol

(SNMP), 327, 330
simplicity, 5
SIP (SPA Interface Processor), 144
Small Computer System Interface over IP

(iSCSI), 239
Smart Licensing, 186

SMD (Session Manager Daemon), 140,
143

SNMP (Simple Network Management
Protocol), 327, 330

SOA (Service Oriented Architecture), 13
SOA (Start of Authority), 371
sockets, verification of, 282
software as a service (SaaS), 20
software stability check, 362
Software-Defined Access (SDA), 55
software-defined networking. See SDN

(software-defined networking)
Solenoid, 406
SPA Interface Processor (SIP), 144
Spanning Tree Protocol (STP), 27, 237,

395
Spec files, IP_Move application, 295
SRv6 (Segment Routing v6), 420–421
SSH (Secure Shell), 395

access for OAC (Open Agent Containers),
282

accessing Bash with, 258–260
accessing Guest Shell with, 245–248
activating, 246–247
NETCONF Agent and, 334
TCP port configuration for, 281

SSIDs (Service Set Identifiers), 30, 153
standalone fabric, 239
standard error descriptor, 367
Start of Authority (SOA), 371
startup-config command, 395
stderr, 367
stopping Docker containers, 267–268
storage

IOS-XE, 153–154
IOS-XR, 198–199

storage area network (SANs), 12
storage virtualization, 12–13
STP (Spanning Tree Protocol), 27, 237,

395

458  sudo virsh command

sudo virsh command, 74
switches

Catalyst. See Catalyst switches
IES (Industrial Ethernet Switches), 55
network device virtualization, 26–29
network infrastructure virtualization,

23–27
virtual, 414–415
VSL (Virtual Switch Link), 27
VSS (Virtual Switching System), 27–29

switching platforms, 142–144
switchover, container persistence through,

266–267
syncfd, 327, 328
synchronization, NX-OS and Guest Shell,

252
systemctl commands, 169, 246–247
systemd, 246

T
tables

ARP (Address Resolution Protocol), 251,
252–253

global VRF route, 121
RIB (Routing Information Base), 406

TACACS+ protocol
NETCONF Agent, 327
RESTCONF Agent, 320–321

.tar files, importing, 172
TCP port configuration, 281
tcpdump, 407–408
tenants, multitenancy, 19–20
testing, infrastructure for, 363
third-party applications, 405–406

Cisco Kinetic, 408
DNS (Domain Name System), 409
NetBeez Agent, 409–410
OWAMP (One-Way Active Measurement

Protocol), 407
perfSONAR, 408–409

Solenoid, 406
tcpdump, 407–408
TWAMP (Two-Way Active Measurement

Protocol), 407
third-party hosting plane, 193
third-party network namespace (TPNNS),

119–121, 122, 195, 212–213,
224–225

TLS (Transport Layer Security),
34, 321

toolchain, Docker, 175
tool/library installation (IOS-XE),

168–169
tools, 305–318
top talkers, 363
touch /var/lib/dhcp/dhcpd.leases

command, 366
TPA configuration, 121, 217, 224
TPNNS (third-party network namespace),

119, 121–122, 195, 212–213,
224–225

traffic
capture of, 394–395
classification of, 395–396
expected versus unexpected, 391
profiling, 363

transistors, 2
Transport component (NX-API), 306
Transport Layer Security (TLS), 34, 321
transport layer socket sync, 193
Trunking protocols, 24–25
tshark command, 394–395
Turing, Alan, 1–2
Turing Machine, 2
TWAMP (Two-Way Active Measurement

Protocol), 407

U
Ubuntu server, LXC (Linux containers)

in, 84
UCS (Unified Computing System), 10, 412

VDCs (virtual device contexts)  459

Ultra Services Platform, 53–54, 415–416
unexpected traffic, 391
Unicast Reverse Path Forwarding (uRPF),

239
Unified Computing System (UCS),

10, 412
Unified Fabric, 239
unmanaged switches, 24
unnumbered routing, 128–129
UPF (User Plane Function), 416
upgrading OAC (Open Agent Containers),

284–285
uRPF (Unicast Reverse Path Forwarding),

239
use cases, 361

anomaly detector application,
391–398
floodlight application,

392–396
high-level procedure for, 392
objectives of, 391

configuration consistency check, 362
control plane health check, 362
DHCP Docker container deployment,

363–369
Catalyst switch configuration,

363–364
container creation, 364–368
container installation in Catalyst

9000, 368–369
DNS Docker container deployment,

369–375
container creation, 373–374
container installation in Catalyst

9000, 374–375
preparation for, 370–373

HAProxy and Node containers, 375–384
Docker image creation, 377–378,

381–382
HAProxy Docker container

installation, 382–384
HAProxy load balancer setup,

380–381

project initiation, 375–376
Web server configuration, 376–377
Web server Docker container

installation, 378–380
hardware/software stability check, 362
infrastructure for proof-of-concept and

testing purposes, 363
inventory management, 362
NX-OS Docker health check,

398–404
config.ini file, 399
Control Plane Policing (CoPP)

counters, 399–401
docker-compose.yml file, 399
high-level procedure for, 392–398
objectives of, 398
running, 401–404

operational data monitoring, 363
resource usage and scalablity check, 362
S-BFD (Seamless BFD) for rapid

failure detection, 384–391
client, hosting on server,

390–391
discriminators, 386
Docker images, 388
overview of, 385
reflector sessions, 386–387
reflectorbase, hosting on XR devic-

es, 388–389
as VNF (virtual network

functions), 387–388
traffic profiling and top talkers, 363

User Plane Function (UPF), 416
users, segmentation of, 25–27

V
/var/lib/docker file, 263
/var/lib/lxd/containers/ directory, 211
vCPU (virtual CPU), 9
VDCs (virtual device contexts), 29, 239

460  Vector Packet Processor (VPP)

Vector Packet Processor (VPP),
416, 420

vehicles, connected, 53–54
veth interface, 100–101, 102–104
VIC (virtual interface cards), 412
VIRL (Virtual Internet Routing

Lab), 7
virsh command, 74, 213–214, 215,

232–234
Virtual Arbor Edge Defense, 418
virtual CPU (vCPU), 9
virtual device contexts (VDCs), 29, 239
virtual interface cards (VIC), 412
Virtual Internet Routing Lab

(VIRL), 7
Virtual Machine Disk (VMDK), 15
virtual machine file systems, 169–170
Virtual Machine Monitor (VMM), 7
virtual machine-based applications,

166–175
components of, 151
installing and running, 172–175
IOx package creation with YAML,

170–172
network configuration, 174
tool/library installation, 168–169
virtual machine file systems,

169–170
virtual machines, building, 167–168

virtual machines, 14–15
virtual network functions. See VNFs

(virtual network functions)
virtual network interface cards (vNICs),

15, 155–156
Virtual PortChannel (vPC), 28, 395
Virtual Route Forwarding (VRF), 30–31
Virtual Router Redundancy Protocol

(VRRP), 395
Virtual Switch Link Protocol (VSLP), 27
Virtual Switch Link (VSL), 27

Virtual Switching System (VSS), 27–29
virtual user plane forwarder (vUPF), 64
Virtual Wide Area Application Service

(vWAAS), 67
virtualization

architecture and components of, 6–8
cloud computing versus, 13
containers, 15–17
control plane, 33–34
definition of, 6
design considerations

high availability, 18
multitenancy, 19–20
workload distribution, 19

full, 6–7
hardware-assisted, 7
history of, 2–3, 23–29

enterprise virtualization, 30–31
network device virtualization,

26–29
network infrastructure virtualiza-

tion, 23–27
service providers, 31
software-defined networking,

32–33
IBN (Intent-Based Networking), 57
IoT (Internet of Things), 51–57

Cisco Kinetic, 52–53
Cisco Ultra Services Platform,

53–54
devices in, 51–57
manufacturing use case, 55–57

motivation and business drivers for, 3–6
cost optimization, 5
resilience, 5
resource optimization, 4–5
simplicity, 5

nested, 7
network, 10–11

WCM (Wireless Client Manager)  461

NFV (network functions virtualization)
elements in, 48
modern network design with, 47
virtual network service

deployment, 48
paravirtualization, 7
routers and switches, 414–415
SDN (software-defined networking), 33,

47
APIs (application programming

interfaces), 36–37
control plane virtualization, 33–34
programmability, 38–42
SDN controllers, 34–36

server, 8–10
serverless computing, 17–18, 421–423
storage, 12–13
VNFs (virtual network functions), 405,

411
containers and service

chaining, 418–421
definition of, 48
S-BFD (Seamless BFD) as, 387–388

Virtualization Manager (VMAN), 67,
146–148

VirtualPortGroup, 125–126
configuration, 127
creating, 158, 172
IOS-XE requirements, 154–155

virtualportgroup command, 154
virtual-service command, 74, 280
VLAN Trunking protocol, 24–25
VLANs (virtual LANs), 23–27
VMAN (Virtualization Manager), 67,

146–148
VMDK (Virtual Machine Disk), 15
VMM (Virtual Machine Monitor), 7
VMware, 30, 170

VNFs (virtual network functions), 405,
411

containers and service chaining, 418–421
NSH (Network Service Header),

419–420
SRv6 (Segment Routing v6), 420–

421
definition of, 48
S-BFD (Seamless BFD) as, 387–388

vNICs (virtual network interface cards),
15, 155–156

vPC (Virtual PortChannel), 28, 395
VPP (Vector Packet Processor), 416, 420
VRF (Virtual Route Forwarding), 30–31

VRF namespace, application hosting in,
226–232
with LXC (Linux containers),

229–232
namespace configuration,

226–229
VRF sync, 193
VRF-Lite, 25

VRRP (Virtual Router Redundancy
Protocol), 395

VSL (Virtual Switch Link), 27
VSLP (Virtual Switch Link Protocol), 27
VSS (Virtual Switching System), 27–29
vThunder Secure Application Services,

418
vtyserverutild, 328
vUPF (virtual user plane forwarder), 64
vWAAS (Virtual Wide Area Application

Service), 67

W
WAPs (wireless access points), 143
WCM (Wireless Client Manager), 140,

143

462  Web servers

Web servers
configuration

for Docker containers, 378–380
for HAProxy and Node

containers, 376–377
S-BFD clients, hosting, 390–391

/well-known/host-meta resource, 321
Wi-Fi 6 technologies, 53
wireless access points (WAPs), 143
Wireless Client Manager (WCM), 140,

143
wireless networking

5G, 53
Wi-Fi 6 technologies, 53

worker nodes (Kubernetes), 80–81, 93–94
workload distribution, 19
WRL environment, 207

X
XaaS (Anything as a Service), 17–18, 20
Xen, 3
XML (Extensible Markup Language), 38,

306
XR control plane, 193
XRNNS (XR network namespace),

117–119, 195

Y-Z
YAML (YAML Ain’t Markup Language),

38
Alpine Linux container deployment, 94
Cisco Application Hosting Framework

(CAF), 69
Cisco Service Container descriptor file,

67–68
interface data model, 40–42
IOx package creation with, 170–172
package creation with, 162–165,

180–181
package.tar file, 163–165
package.yaml descriptor file, 163

YANG (Yet Another Next Generation),
39–42

yum install command, 70, 204, 288
yum repolist command, 203, 288
YUM repositories

configuration, 203
default, 203
installing native applications from, 204

Zend Studio, 339

	Cover
	Title Page
	Copyright Page
	About the Authors
	About the Technical Reviewers
	Dedications
	Acknowledgments
	Contents at a Glance
	Contents
	Foreword
	Introduction
	Chapter 7 Container Orchestration in Cisco NX-OS Platforms
	Cisco NX-OS Software Architecture
	NX-OS Foundation
	NX-OS Modular Software Architecture
	Fault Detection and Recovery
	More Benefits of NX-OS

	Hosting Environment Readiness
	Guest Shell
	Platforms Support
	Platform Resource Requirements
	Bash
	LXC-based Open Agent Container (OAC)
	Platforms Supported
	Platform Resource Requirements

	Container Infrastructure Configuration and Instantiation
	Guest Shell
	Guest Shell OVA File
	Deployment Model and Workflow
	Accessing Guest Shell
	Accessing Guest Shell via SSH
	Guest Shell Networking Setup and Verification
	Installation and Verification of Applications
	Custom Python Application
	Python API–Based Application

	Bash
	Enabling Bash
	Accessing Bash from NX-OS
	Accessing Bash via SSH
	Docker Containers
	Docker Client
	Docker Host
	Starting Docker Daemon
	Instantiating a Docker Container with Alpine Image
	Managing Docker Container
	Orchestrating Docker Containers Using Kubernetes
	Orchestrating Docker Containers in a Node from the K8s Master
	Open Agent Container (OAC)
	OAC Deployment Model and Workflow
	Accessing OAC via the Console
	OAC Networking Setup and Verification
	Management and Orchestration of OAC
	Installation and Verification of Applications
	Custom Python Application
	Application Using Python APIs
	Package Management

	Summary
	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X
	Y-Z

