
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780135853290
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780135853290
https://plusone.google.com/share?url=http://www.informit.com/title/9780135853290
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780135853290
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780135853290/Free-Sample-Chapter

AWS Certified
Developer–
Associate
(DVA-C01)

Cert Guide

MARKO SLUGA

Pearson IT Certification

ii    AWS Certified Developer–Associate (DVA-C01) Cert Guide

Trademark Acknowledgments
All terms mentioned in this book that are known to be trademarks or service marks have been appropri-
ately capitalized. Pearson IT Certification cannot attest to the accuracy of this information. Use of a term
in this book should not be regarded as affecting the validity of any trademark or service mark.

AWS screenshots © 2020 Amazon Web Services, Inc.

AWS Certified Developer–Associate
(DVA-C01) Cert Guide
Copyright © 2020 Pearson Education, Inc.

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage and retrieval
system, without written permission from the publisher, except for the inclusion of brief quotations in a
review.

ScoutAutomatedPrintCode

Library of Congress Control Number: 2019956930

ISBN-13: 978-0-13-585329-0
ISBN-10: 0-13-585329-X

Editor-in-Chief: Mark Taub

Product Line Manager: Brett Bartow

Acquisitions Editor: Malobika Chakraborty

Managing Editor: Sandra Schroeder

Development Editor: Christopher Cleveland

Senior Project Editor: Lori Lyons

Technical Editor: Anthony Sequeira

Copy Editor: Kitty Wilson

Editorial Assistant: Cindy Teeters

Cover Designer: Chuti Prasertsith

Production Manager: Vaishnavi Venkatesan/
codeMantra

Composition: codeMantra

Indexer: Cheryl Ann Lenser

Proofreader: Charlotte Kughen

iii

Figure Credits
Cover: Mirtmirt/Shutterstock
Figure 1-1, 1-2: National Institute of Standards and Technology special publication © NIST
Figure 1-9: AWS Global infrastructure © 2020 Amazon Web Services, Inc
Figure 1-10: Amazon S3 + Amazon CloudFront: A Match Made in the Cloud, 27 JUN 2018,
© 2020 Amazon Web Services, Inc
Figure 1-11 1-12, 1-13: Screenshot of AWS © 2020 Amazon Web Services, Inc
Figure 1-14 through 1-19: Screenshot of AWS Management © 2020 Amazon Web Services, Inc
Figure 1-20, 1-21: Screenshot of AWS CLI © 2020 Amazon Web Services, Inc
Figure 2-7: How to Use SAML to Automatically Direct Federated Users to a Specific AWS Management
Console Page by Alessandro Martini © Amazon Web Services, Inc
Figure 2-8: AWS IAM Now Supports Amazon, Facebook, and Google Identity Federation by Jeff Barr
© Amazon Web Services, Inc
Figure 3-1: Difference between Public IP and Private IP address © 2020, Difference Between
Figure 3-3: Latency numbers © 2020 GitHub, Inc, https://gist.github.com/2841832
Figure 3-5: Multiple Data Center HA Network Connectivity © 2019, Amazon Web Services, Inc
Figure 3-6: Unsupported VPC Peering Configurations © 2020, Amazon Web Services, Inc
Figure 3-7: Amazon EBS Snapshots © 2020, Amazon Web Services, Inc
Figure 3-9: AWS Elastic Load Balancer © Aman Sardana
Figure 3-10: Scaling Cooldowns for Amazon EC2 Auto Scaling © 2020, Amazon Web Services, Inc
Figure 3-11: High Availability with Route53 DNS Failover © Randika Rathugamage
Figure 3-12 through 3-15: Screenshot of Amazon EC2 © Amazon Web Services, Inc
Figure 3-16: Screenshot of CLI command © Amazon Web Services, Inc
Figure 4-1: Screenshot of Amazon S3 © Amazon Web Services, Inc
Figure 4-2: Indexing Metadata in Amazon Elasticsearch Service Using AWS Lambda and Python
© Amazon Web Services, Inc
Figure 4-5: Amazon RDS Multi-AZ Deployments and Read Replicas © 2006-2020 Percona LLC
Figure 4-6: Amazon Aurora DB Clusters © 2020, Amazon Web Services, Inc
Figure 4-9: Choosing the Right DynamoDB Partition Key © 2019, Amazon Web Services, Inc
Figure 4-10: How to use Amazon DynamoDB global tables to power multiregion architectures
© 2019, Amazon Web Services, Inc
Figure 4-11: Jeff Barr, 200 Amazon CloudFront Points of Presence © 2020, Amazon Web Services, Inc.
Figure 4-12: CloudFront Events That Can Trigger a Lambda Function ©2020, Amazon Web Services, Inc.
Figure 4-13: Using Field-Level Encryption to Help Protect Sensitive Data © 2020, Amazon Web Services,
Inc.
Figure 5-1 through 5-8: Screenshot of AWS Lambda © Amazon Web Services, Inc
Figure 5-10, 5-11: Basic Amazon SQS Architecture © 2020, Amazon Web Services, Inc
Figure 6-2: DevOps in 3 Sentences © DEV Community 2016 - 2020
Figure 6-3: Difference between agile, CI/CD, and DevOps © 2020 Synopsys, Inc
Figure 6-4 through 6-22: Screenshot of AWS Cloud9 © 2019, Amazon Web Services, Inc
Figure 6-23: Screenshot of CodePipeline © 2019, Amazon Web Services, Inc
Figure 7-1 through 7-7: Screenshot of Amazon RDS © 2019, Amazon Web Services, Inc
Figure 7-8 through 7-23: Screenshot of AWS DMS © 2019, Amazon Web Services, Inc
Figure 8-1 through 8-21: Screenshot of Amazon CloudWatch © 2019, Amazon Web Services, Inc

https://gist.github.com/2841832

iv    AWS Certified Developer–Associate (DVA-C01) Cert Guide

About the Author
Marko Sluga has more than 20 years of experience in IT and has had the benefit of
witnessing the rise of cloud computing. Marko has worked on a variety of cloud-related
projects, from the early stages of SOC, corporate virtualization, and open-source API
offerings to modern, fully automated, intelligent, serverless, and cloud-native solutions.
Marko has been working with Amazon Web Services (AWS) since the start of the 2010s
and holds three associate, two professional, and three specialty AWS certifications.
Marko performs training and advising on cloud technologies and strategies, DevOps, and
IT system and process optimization to clients from a wide range of companies, including
startups, SMBs, enterprise businesses, and Fortune 500 companies. Marko runs his own
cloud training, coaching, and consulting practice under the markocloud.com brand.

About the Technical Reviewer
Anthony Sequeira, CCIE No. 15626, is a seasoned trainer and author regarding various
levels and tracks of Cisco, Microsoft, and AWS certifications. Anthony formally began
his career in the information technology industry in 1994 with IBM in Tampa, Florida.
He quickly formed his own computer consultancy, Computer Solutions, and then
discovered his true passion—teaching and writing about information technologies.

Anthony joined Mastering Computers in 1996 and lectured to massive audiences around
the world about the latest in computer technologies. Mastering Computers became the
revolutionary online training company KnowledgeNet, and Anthony trained there for
many years.

Anthony is currently pursuing his second CCIE in the area of Cisco Data Center.
Anthony is a full-time instructor at CBT Nuggets.

http://markocloud.com

v

Dedication
I would like to dedicate this book to my mother, Marta Sluga, who has always put an
emphasis on learning being the most important aspect of success.

Acknowledgments
This manuscript was made truly great by the incredible technical review of Anthony
Sequeira.

I would also like to express my gratitude to Chris Cleveland, development editor of this
book. His dedication made this book several cuts above the rest.

Finally, thanks you so much to Paul Carlstroem for giving me the benefit of the doubt
and being patient and understanding with all my ups and downs during the writing
process.

vi    AWS Certified Developer–Associate (DVA-C01) Cert Guide

Contents at a Glance

 Introduction xv

Chapter 1 Overview of AWS 2

Chapter 2 Authentication, Identity, and Access Management 36

Chapter 3 Compute Services in AWS 62

Chapter 4 Storing Data in AWS 108

Chapter 5 Going Serverless in AWS 148

Chapter 6 AWS Development Tools 178

Chapter 7 Migrating and Refactoring 226

Chapter 8 Monitoring and Troubleshooting 258

Chapter 9 Final Preparation 282

Glossary of Key Terms 290

Appendix A Answers to the “Do I Know This Already?”
Quizzes and Q&A Sections 298

Appendix B AWS Certified Developer–Associate (DVA-C01) Exam Updates 306

Index 308

Contents
Introduction xv

Chapter 1 Overview of AWS 2

“Do I Know This Already?” Quiz 4

Foundation Topics 6

Overview of Cloud Computing 6

Basics of Cloud Computing 7

IaaS, PaaS, and SaaS 9

Virtualization and Containers 11

The Shared Responsibility Model 12

AWS Services 14

Foundation Services 14

Network Services 14

Compute Services 15

Storage Services 16

Security and Identity Services 16

End-User Applications 17

Platform Services 17

Databases 18

Analytics Tools 18

Application Services 19

Developer Tools 19

Specialized Services for Mobile, IoT, and Machine Learning 19

Management Services 20

AWS Global Architecture 20

Datacenters 21

Availability Zones 21

Regions 22

Edge Locations 22

Accessing AWS 23

Creating an AWS Account 23

AWS Management Console 25

AWS CLI 29

Installing the AWS CLI 29

Using the AWS CLI 29

    vii

viii    AWS Certified Developer–Associate (DVA-C01) Cert Guide

AWS SDKs 32

Accessing AWS Through APIs 33

Summary 34

Exam Preparation Tasks 34

Review All Key Topics 35

Define Key Terms 35

Q&A 35

Chapter 2 Authentication, Identity, and Access Management 36

“Do I Know This Already?” Quiz 37

Foundation Topics 39

Overview of IAM 39

Identity Principals in IAM 39

Users 42

Access Keys, Secret Keys, and Passwords 42

MFA 43

Creating a User by Using the CLI 44

Groups 45

Creating Groups by Using the CLI 46

Roles 47

Why IAM Roles and Role Types 47

Creating Roles by Using the CLI 49

Policies 50

Types of Policies 51

Creating a Policy by Using the CLI 52

Identity Providers and Federation 52

Web Identities 54

OpenID 55

LDAP and Active Directory 56

SAML 2.0 56

Implementing Application Authentication and Authorization 56

Using IAM with Applications 56

Encryption in AWS Services 57

Encryption at Rest 57

Encryption in Transit 58

Exam Preparation Tasks 59

Review All Key Topics 59

Define Key Terms 59

Q&A 60

Chapter 3 Compute Services in AWS 62

“Do I Know This Already?” Quiz 63

Foundation Topics 65

Computing Basics 65

Networking in AWS 70

Amazon Virtual Private Cloud (VPC) 71

Connecting a VPC to the Internet 72

Connecting the VPC to Other Private Networks 75

Computing in AWS 76

Amazon EC2 77

Amazon ECS and Fargate 83

Storing Persistent Data 87

Amazon EBS 88

Scalability and High Availability 89

High Availability Design Patterns 89

AWS Elastic Load Balancer 90

Auto Scaling 91

Amazon Route 53 93

Orchestration and Automation 95

Basics of Cloud Orchestration and Automation 96

AWS Elastic Beanstalk 97

AWS CloudFormation 101

Exam Preparation Tasks 106

Review All Key Topics 106

Define Key Terms 107

Q&A 107

Chapter 4 Storing Data in AWS 108

“Do I Know This Already?” Quiz 109

Foundation Topics 112

Storing Static Assets in AWS 112

Amazon S3 112

Delivering Content from S3 113

Working with S3 in the AWS CLI 114

Hosting a Static Website 116

Versioning 117

S3 Storage Tiers 118

Contents    ix

x    AWS Certified Developer–Associate (DVA-C01) Cert Guide

Data Life Cycling 118

S3 Security 119

Relational Versus Nonrelational Databases 120

Deploying Relational Databases in AWS 123

Amazon RDS 123

Supported Database Types 124

RDS for MySQL, MariaDB, and PostgreSQL 125

Amazon Aurora 126

Oracle and Microsoft SQL on RDS 127

Scaling Databases 127

Handling Nonrelational Data in AWS 129

Amazon DynamoDB 130

Tables 130

Items 131

Attributes 132

Secondary Indexes 133

Planning for DynamoDB Capacity 133

Global Tables 134

Accessing DynamoDB Through the CLI 135

User Authentication and Access Control 136

Caching Data in AWS 137

Amazon ElastiCache 138

Memcached 138

Redis 138

Amazon DynamoDB Accelerator 138

Amazon CloudFront 138

CloudFront Security 141

Exam Preparation Tasks 145

Review All Key Topics 145

Define Key Terms 145

Q&A 145

Chapter 5 Going Serverless in AWS 148

“Do I Know This Already?” Quiz 149

Foundation Topics 151

Going Serverless 151

The AWS Serverless Application Model 152

AWS Lambda 153

Writing Code for Lambda 153

Permissions and Roles for Lambda 157

Execution Role 158

Identity-Based IAM Policy 159

A Resource Policy 159

Invoking Lambda 160

Automating Serverless Processing Flows 161

Step Functions 161

Amazon Simple Work Flow 164

Workflows 164

Activity and Decider Tasks 165

Actors 165

Domains 165

Messaging and Queueing 165

Amazon SQS 166

Visibility Timeout 167

Dead Letter Queues 171

Amazon SNS 171

Topics and Subscriptions 172

Working with SNS Topics 172

Exam Preparation Tasks 175

Review All Key Topics 175

Define Key Terms 176

Q&A 176

Chapter 6 AWS Development Tools 178

“Do I Know This Already?” Quiz 178

Foundation Topics 181

DevOps Basics 181

Waterfall 181

Agile 182

DevOps 182

CI/CD in the Cloud 184

Continuous Integration 184

Continuous Delivery 185

Continuous Deployment 185

Continuous Reaction 185

Contents    xi

xii    AWS Certified Developer–Associate (DVA-C01) Cert Guide

Developing Code in AWS Cloud9 186

Creating a Cloud9 Environment 187

Storing Code in AWS CodeCommit 196

Using CodeCommit with Git 196

Using AWS CodeBuild to Build Artifacts 198

Automating the Build Process with CodeBuild 198

Using AWS CodeDeploy to Deploy Applications 206

Deploying Code to EC2 Instances with CodeDeploy 208

Building a CI/CD Pipeline with AWS CodePipeline 214

Automating the CI/CD Process 214

Integrating the CI/CD Pipeline into Your Code 220

Exam Preparation Tasks 224

Review All Key Topics 224

Define Key Terms 225

Q&A 225

Chapter 7 Migrating and Refactoring 226

“Do I Know This Already?” Quiz 226

Foundation Topics 228

Migrating to AWS 228

AWS Migration Tools and Services 230

VM Import/Export 231

Server Migration Service 234

Database Migration Service and Schema Conversion Tool 234

Migrating a Database by Using DMS 235

Transferring Files to AWS 249

S3 Sync 249

S3 Multipart Uploads 250

AWS DataSync 254

AWS Storage Gateway 254

Snowball and Snowball Edge 255

Snowmobile 256

Exam Preparation Tasks 256

Review All Key Topics 256

Define Key Terms 256

Q&A 257

Chapter 8 Monitoring and Troubleshooting 258

“Do I Know This Already?” Quiz 258

Foundation Topics 260

Amazon CloudWatch 261

The CloudWatch Management Console 262

Collecting Logs and Metrics 269

Namespaces 269

Metrics 270

Dimensions 270

Statistics 271

Percentiles 271

CloudWatch Logs 271

Storing Metrics and Logs with the AWS CLI 271

Uploading Logs to CloudWatch 273

Monitoring EC2 Memory Usage with the CloudWatch
Enhanced Monitoring Scripts 275

Amazon CloudTrail 277

CloudTrail Security 277

CloudTrail Log Structure 277

AWS Config 279

Troubleshooting an Application in AWS 279

Exam Preparation Tasks 280

Review All Key Topics 281

Define Key Terms 281

Q&A 281

Chapter 9 Final Preparation 282

Exam Information 282

Getting Ready 284

Tools for Final Preparation 286

Pearson Cert Practice Test Engine and Questions on the Website 286

Accessing the Pearson Test Prep Software Online 286

Accessing the Pearson Test Prep Software Offline 287

Customizing Your Exams 287

Updating Your Exams 288

Premium Edition 289

Chapter-Ending Review Tools 289

Suggested Plan for Final Review/Study 289

Summary 289

Contents    xiii

xiv    AWS Certified Developer–Associate (DVA-C01) Cert Guide

 Glossary of Key Terms 290

Appendix A Answers to the “Do I Know This Already?” Quizzes
and Q&A Sections 298

Appendix B AWS Certified Developer–Associate (DVA-C01) Exam Updates 306

 Index 308

Introduction
I would like to welcome you and extend my gratitude for choosing this publication as
your guide on the journey to becoming an AWS Certified Developer. The main purpose
of the book is to guide you through the process of learning about Amazon Web Services
from the point of view of a developer. The book covers the topics that are listed as
required knowledge when preparing for the AWS Certified Developer–Associate exam.

This book also provides examples and code snippets to help you learn how to perform
the tasks being described in the book and also gives you the knowledge and tools
required to develop applications on the AWS cloud computing environment.

Taking any exam should not be taken lightly. Many experts who rate the IT industry
exams have put the AWS exams on the top of the scale as far as difficulty is concerned.
Some have gone so far as to claim that AWS sets the bar for everyone in the industry
much higher. But don’t worry, by reading through this book and following the examples,
you should gain valuable knowledge that you can put to use when you decide to take the
AWS Certified Developer–Associate exam.

But a book can only go so far, and throughout the book I stress that having hands-on
experience with AWS services, tools, and platforms is crucial to being prepared to pass
the exam. Think of the learning process as having two parts:

 ■ Gaining theoretical knowledge and practicing (which is what this book is designed
to do)

 ■ Getting real-world hands-on experience (which will be helpful as you use AWS on
a daily basis)

The Goals of the AWS Certified Developer–Associate Certification
It is important to understand the knowledge requirements for passing the AWS
Certified Developer–Associate exam. This will help you lay down a solid foundation of
understanding of the concepts that the exam is designed to test and allow you to carve a
focused path through the complicated world of AWS. I recommend creating a skills map
that you can update as you learn. This part of the book will help you create an initial
skills map and help you focus on the parts that matter.

Each AWS certification exam conforms to an exam blueprint. You can use the blueprint
as a reference tool to get an overview of which areas of knowledge the exam is designed
to test. The AWS Certified Developer–Associate exam blueprint also states that taking
and passing the exam will prove:

 ■ Your understanding of core AWS services

 ■ Your understanding of AWS architecture best practices

 ■ Your proficiency in developing, deploying, and debugging cloud-based applications
using AWS

    xv

xvi    AWS Certified Developer–Associate (DVA-C01) Cert Guide

Recommended Prerequisite Skills
In the blueprint, AWS also outlines the experience that a candidate attempting the AWS
Certified Developer–Associate exam should have. The ability to understand and be able
to use AWS services should be complemented by a strong background in development.
AWS outlines that each candidate attempting the exam should have experience in the
following areas:

 ■ One or more years of hands-on experience developing and maintaining an
AWS-based application

 ■ In-depth knowledge of at least one high-level programming language

 ■ Understanding of core AWS services, uses, and basic AWS architecture best practices

 ■ Proficiency in developing, deploying, and debugging cloud-based applications using
AWS

 ■ Ability to use the AWS service APIs, AWS CLI, and SDKs to write applications

 ■ Ability to identify key features of AWS services

 ■ Understanding of the AWS shared responsibility model

 ■ Understanding of application life cycle management

 ■ Ability to use a CI/CD pipeline to deploy applications on AWS

 ■ Ability to use or interact with AWS services

 ■ Ability to apply a basic understanding of cloud-native applications to write code

 ■ Ability to write code using AWS security best practices (such as not using secret and
access keys in code but instead using IAM roles)

 ■ Ability to author, maintain, and debug code modules on AWS

 ■ Proficiency writing code for serverless applications

 ■ Understanding of the use of containers in the development process

As you see, the list of recommended AWS knowledge is quite extensive and mainly
covers real-world experience, which is invaluable in being able to develop on AWS. Of
course, this list of requirements is intended for your own assessment. AWS does not
require you to prove your experience and does allow you to take the exam even if you
do not possess all the knowledge recommendations. The basic rule is that the more
recommendations you meet, the more likely you are to pass the exam. This book is
designed to provide the theoretical part of the recommendations and to allow you to read
and study the concepts at your own pace. But I highly encourage you to gain the required
hands-on experience with all of the above before you attempt the exam.

The Domains of Knowledge
The AWS Certified Developer–Associate exam is designed to test the areas of knowledge
that are aggregated into five domains of knowledge. The following table lists the
breakdown of each of the domains represented on the exam.

Domain Percentage of Representation on Exam

1: Deployment 22%
2: Security 26%
3: Development with AWS Services 30%
4: Refactoring 10%
5: Monitoring and Troubleshooting 12%

Total 100%

The sections that follow describe each domain in greater detail.

Domain 1: Deployment

The Deployment domain, as the name indicates, focuses on testing the understanding
and knowledge of how to deploy applications on AWS. As a developer, you should have a
good understanding of how to deploy applications on AWS using the CLI, the SDK,
CI/CD pipelines, and AWS deployment processes and patterns.

The exam will test your ability to implement deployment and provisioning best
practices and gauge whether you are able to determine the right solution to use for
deploying an application. The exam also focuses on testing your understanding of tools
and approaches that allow developers to integrate the deployment of applications into
their code.

The Deployment domain involves understanding serverless application design because
an increasing number of applications are being deployed in this manner due to the
 benefits of running serverless.

The exam will test you on the following AWS topics:

 ■ The CLI and the SDKs: The exam will evaluate your understanding of what can be
achieved with the CLI and SDKs and how these tools are applicable when deploying
infrastructure services in AWS.

 ■ CloudFormation: The exam will test your understanding of when CloudFormation
is applicable, what its general purpose is, and also the ability to read the
CloudFormation syntax in JSON or YAML.

 ■ Elastic Beanstalk: The exam will test your ability to understand the benefits and
advantages of Elastic Beanstalk as well as the limitations of the solution. You should
understand the capabilities of Elastic Beanstalk and the most common use cases and
should have a good understanding of the Elastic Beanstalk update process and the
processes of customizing a deployment.

 ■ CodeDeploy and CodePipeline: The exam will ask questions focused on determin-
ing the understanding of the deployment part of a typical CI/CD pipeline as per the
best practices outlined by AWS.

 ■ AWS Lambda: The exam will evaluate whether you understand the AWS Lambda
deployment procedure and how it can integrate with other AWS services to provide
a supporting role during a deployment.

Introduction    xvii

xviii    AWS Certified Developer–Associate (DVA-C01) Cert Guide

 ■ Static websites on S3: In some cases, the exam will evaluate whether you understand
when a static website on S3 is the right type of deployment option for the outlined
case.

Domain 2: Security

Possibly the most important aspect of any application is security. The Security domain is
designed to make sure you understand how to design, develop, and deploy applications
on AWS with security in mind. Among the most important aspects tested on the exam is
the understanding of authentication and authorization, with a focus on calls to the AWS
infrastructure as well as the security of the application running on top of AWS.

The exam will test you on the following AWS topics:

 ■ Types of credentials: You must understand the different types of credentials
that can be used to access AWS and the services running on AWS, including the
username and password, access key and secret key, key pairs, and multifactor
authentication (MFA).

 ■ The CLI and the SDKs: The exam will evaluate your understanding of authentication
practices that should be observed when using the AWS CLI and the AWS SDKs.

 ■ IAM: The exam will test your understanding of the practices associated with
managing users, groups, and roles; assigning policies; and granting access via the
least privilege approach.

 ■ IAM federation: The exam will give special focus to evaluating your understanding
of how to federate authentication and authorization with external directories and
identity providers.

 ■ Security groups and NACLs: The exam will focus on understanding how to secure
an application over the network; thus basic understanding of the way security groups
and NACLs operate in VPC is required.

Domain 3: Development with AWS Services

As this exam tests your development skills, a big portion of it (about a third) is dedicated
to the development aspects. The exam will test your knowledge of how to implement
application designs into code for applications running on servers and serverless platforms,
and it will also test your knowledge of how to interact with the AWS infrastructure
through the AWS CLI, the SDKs, and the APIs.

The exam will test you on the following AWS topics:

 ■ AWS CLI and the SDKs: The exam will test your ability to use the SDKs and the
CLI to interact with the AWS services and deliver application components straight
out of the code. Some focus is given to the ability to understand the command
structure and identify the correct command. The exam will also include questions
that test your general understanding of the capabilities of the CLI and SDKs.

 ■ DevOps and Code* tools: The exam will focus on your ability to understand
the DevOps approach to development and identify the functionality of the
CodeCommit, CodeDeploy, CodeBuild, and CodePipeline tools.

Domain 4: Refactoring

Many enterprises are in the midst of a cloud adoption process, and therefore, the exam
will test your ability to understand which AWS services and features will best suit your
application and how to migrate existing applications and application code to AWS. The
exam will test you on the following AWS topics:

 ■ AWS migration tools: The exam will test your basic understanding of what AWS
migration tools can be used to transfer (VPN, DirectConnect), transport (Snowball/
Snowmobile), or transform (AWS DMS) the data from on-premises systems to AWS.

 ■ Managed AWS services: The exam will test your understanding of which managed
services can be used to refactor an application that is being implemented on or
migrated to AWS.

Domain 5: Monitoring and Troubleshooting

The Monitoring and Troubleshooting domain is designed to test your ability to write
code that can be integrated with the AWS monitoring and logging tools. In addition, the
exam will test your ability to analyze the environment by looking at the performance
information and logs captured by these tools.

The exam will test you on the following AWS topics:

 ■ CloudWatch: The exam will evaluate your ability to capture performance data and
logs to CloudWatch. Further, it will test your ability to use and analyze the captured
data to perform troubleshooting, scaling, and optimization on the application being
monitored. You should also have a clear understanding of the features and limitations
of CloudWatch, CloudWatch Logs, and CloudWatch Alarms.

 ■ CloudTrail: The exam will test your ability to trace the actions in the environment
and provide an audit-compliant log of events and actions in the AWS account.

 ■ General troubleshooting: The exam will include questions on general troubleshooting
of applications, such as steps to be taken when an application is experiencing unusual
behavior. Although some might say that this is beyond the scope of AWS, being able
to understand application behavior and general troubleshooting steps is required.

Where the Domains/Objectives Are Covered in the Book
The following table presents the domain objectives listed in the exam blueprint and where
they are covered in this book:

Domain/Objective Chapter(s) Where This Is Covered

Domain 1: Deployment
1.1 Deploy written code in AWS using existing
CI/CD pipelines, processes, and patterns.

Chapters 3 and 6

1.2 Deploy applications using Elastic Beanstalk. Chapter 3
1.3 Prepare the application deployment package to
be deployed to AWS.

Chapters 3 and 5

1.4 Deploy serverless applications. Chapters 3 and 5

Introduction    xix

xx    AWS Certified Developer–Associate (DVA-C01) Cert Guide

Domain/Objective Chapter(s) Where This Is Covered

Domain 2: Security
2.1 Make authenticated calls to AWS services. Chapters 1 and 2
2.2 Implement encryption using AWS services. Chapter 2
2.3 Implement application authentication and
authorization.

Chapter 2

Domain 3: Development with AWS Services
3.1 Write code for serverless applications. Chapters 3, 4, and 5
3.2 Translate functional requirements into application
design.

Chapters 1, 3, 4, and 5

3.3 Implement application design into application
code.

Chapters 3, 4, and 5

3.4 Write code that interacts with AWS services by
using APIs, SDKs, and AWS CLI.

Chapters 1, 3, 4, and 5

Domain 4: Refactoring
4.1 Optimize application to best use AWS services
and features.

Chapters 1, 4, 5, and 7

4.2 Migrate existing application code to run on
AWS.

Chapters 5 and 7

Domain 5: Monitoring and Troubleshooting
5.1 Write code that can be monitored. Chapter 8
5.2 Perform root cause analysis on faults found in
testing or production.

Chapter 8

Facts About the Exam
The exam, which needs to be taken at an authorized exam proctor location, consists of 70
to 80 multiple-choice and multiple-answer questions and is available in English, Japanese,
and Simplified Chinese. The allotted time for the exam is 130 minutes. The registration

fee for the exam is US$150. If you would like to try your knowledge before you take the
actual exam, you can take an online practice exam consisting of 20 questions at any time.
The registration fee for the practice exam is US $20.

Taking the practice exam is a good idea if you would like to get a feel for the exam with
sample questions that come out of the same pool of questions as the actual exam. The
practice exam can be a great tool to help you gauge your knowledge and determine
whether you are ready to pass the exam. However, passing the practice exam does not
guarantee that you will pass the real exam.

Exam Questions
The questions that will be testing your knowledge on the exam carry different weights.
Each question has a certain score assigned to it, and the scores of all the questions
together will add up 1000. AWS will be scoring you according to a percentage out of
1000 points rather than based on the number of questions you get correct. All the exam
questions are always scored in full. This means an incorrect or missing answer for a
multiple-response question will cause the score to be determined as 0. Make sure to take
your time and carefully read each question as some of the questions might be lengthy
and will be hiding crucial information that would easily help you determine the right
answer.

Passing Score
The passing score of each exam is never fully determined, and the score to shoot for is
not released publicly; however, the typical passing score for this exam is 720 points. AWS
uses statistical analysis of multiple metrics to determine the passing score. This means
that you should be as prepared as possible to pass the exam. But that can be difficult
to do, so I recommend setting a certain “confidence level” for yourself. This confidence
level can be determined by looking at the requirements and the content of this book and
taking practice exams like the ones provided in the Pearson Test Prep software for this
book. I like to set the confidence level of the content at 90%, meaning you should be able
to answer most of the questions you encounter on a certain topic.

Gauging Your Confidence Level
Use the exams in the Pearson Test Prep software to gauge your confidence level. With a
90% content confidence level, you should be able to answer at least 80% of the questions
correctly. I urge you not to attempt the exam before you reach this confidence level.

Keep in mind that AWS sources a lot of the exam question content from the FAQs for
each service, so another way to prepare for the exam is to read the FAQs and try to
answer them yourself. If you can get to this level, then you should be able to pass the
exam. The idea behind this is that an AWS certified developer should be able to do any
task outlined in the FAQs by heart. A certified developer would certainly still need to
consult the documentation and contact AWS support if needed.

Taking the Exam
Once you have determined that your confidence level is high enough to take the exam,
make sure to follow a few simple rules that will help you relax and pass the exam with

Introduction    xxi

xxii    AWS Certified Developer–Associate (DVA-C01) Cert Guide

ease. Make sure you have enough time to get to the exam location. I usually plan to be
at the proctor about 30 minutes early, which helps me deal with any kind of delays on
the way. Try to clear your calendar before you take the exam; you’ve been studying for
the exam for quite a while so don’t try to cram your exam into an already packed day.
Any additional stress might prohibit you from relaxing when taking the exam, and being
relaxed during the exam is very important.

What to Bring Along?
You will be required to carry two forms of ID because the proctor will need to verify
your identity and sign you in to the exam. You will be given a secure locker to store
your essentials; you are not allowed to bring anything into the exam room. The lockers
at some locations are quite small and will not fit a laptop bag. I therefore recommend
that you make sure you really do take only your essentials to the exam. You will then be
taken to the exam station, where you will verify your information and have to agree to
the terms and conditions onscreen before you start the exam. This is a good time to take
a deep breath and relax, release the stress of traffic on the way, and be ready to start the
exam.

Ready, Set, Go!
Once you start the exam, the timer will start ticking down from the allotted time. Make
sure to read each question and all the answers carefully. If you are unsure of an answer,
try not to spend too much time thinking about it but move on and try to answer other
questions. You can mark each question you are unsure of for review, and I highly recom-
mend doing that and continuing on. You will probably be able to answer all the easier
questions and get to the end of the exam before your time expires. Use the time left over
to focus on the questions that you marked for review. This way, you are certain to get the
highest number of questions answered. Remember that any unanswered questions will
not be scored, meaning you can lose a lot of points due to that fact.

Submitting the Exam
Once you are happy with your answers, you can submit your exam. A quick survey
is then presented, asking a handful of questions. After answering the survey, you are
presented with the result of the exam—either pass or a fail with a percentages score. It
might take some time for the exam to be recorded; after AWS receives your results, you
will receive an email with a breakdown of scores across the domains. If you fail the exam,
this breakdown will help you better prepare for the next time.

Keep calm and good luck!

Book Features
To help you customize your study time using this book, the core chapters have several
features that help you make the best use of your time:

 ■ Foundation Topics: These are the core sections of each chapter. They explain the
concepts for the topics in that chapter.

 ■ Exam Preparation Tasks: This section provides a series of study activities that you
should do at the end of each chapter:

 ■ Review All Key Topics: The Key Topic icon appears next to the most important
items in the “Foundation Topics” section of the chapter. The “Review All Key
Topics” activity lists the key topics from the chapter, along with their page
numbers. Although the contents of the entire chapter could be on the exam, you
should definitely know the information listed in each key topic, so you should
review these.

 ■ Define Key Terms: Although the AWS Certified Developer–Associate exam may
be unlikely to ask a question such as “Define this term,” the exam does require
that you learn and know a lot of AWS-related terminology. This section lists the
most important terms from the chapter and asks you to write a short definition
and compare your answer to the glossary at the end of the book.

 ■ Q&A: Confirm that you understand the content just covered by answering these
questions and reading the answer explanations.

 ■ Web-based practice exam: The companion website includes the Pearson Test Prep
application, which allows you to take practice exam questions. Use it to prepare with
a sample exam and to pinpoint topics where you need more study.

How This Book Is Organized
This book contains eight core chapters—Chapters 1 through 8. Chapter 9 provides
preparation tips and suggestions for how to approach the exam. Each core chapter covers
a subset of the topics and technologies that you will encounter on the AWS Certified
Developer–Associate (DVA-C01) exam.

Introduction    xxiii

xxiv    AWS Certified Developer–Associate (DVA-C01) Cert Guide

How to Access the Pearson Test Prep (PTP) App
You have two options for installing and using the Pearson Test Prep application: a web
app and a desktop app. To use the Pearson Test Prep application, start by finding the
registration code that comes with the book. You can find the code in these ways:

 ■ Print book: Look in the cardboard sleeve in the back of the book for a piece of
paper with your book’s unique PTP code.

 ■ Premium Edition: If you purchase the Premium Edition eBook and Practice Test
directly from the Pearson IT Certification website, the code will be populated on
your account page after purchase. Just log in at www.pearsonITcertification.com,
click account to see details of your account, and click the digital purchases tab.

 ■ Amazon Kindle: For those who purchase a Kindle edition from Amazon, the access
code will be supplied directly from Amazon.

 ■ Other bookseller e-books: Note that if you purchase an e-book version from any
other source, the practice test is not included because other vendors to date have not
chosen to vend the required unique access code.

NOTE Do not lose the activation code because it is the only means by which you can
access the online content for the book.

http://www.pearsonITcertification.com

NOTE Amazon eBook (Kindle) customers: It is easy to miss Amazon’s email that lists
your PTP access code. Soon after you purchase the Kindle eBook, Amazon should send an
email. However, the email uses very generic text and makes no specific mention of PTP or
practice exams. To find your code, read every email from Amazon after you purchase the
book. Also do the usual checks for ensuring that your email arrives, such as checking your
spam folder. If you have trouble getting an access code from Amazon, contact Pearson’s
tech support at http://pearsonitp.echelp.org.

NOTE Other eBook customers: As of the time of publication, only the publisher and
Amazon supply PTP access codes when you purchase their eBook editions of this book.

Customizing Your Exams
In the exam settings screen of the Pearson Test Prep Software, you can choose to take
exams in one of three modes:

 ■ Study mode: Allows you to fully customize your exams and review answers as
you are taking the exam. This is typically the mode you use first to assess your
knowledge and identify information gaps.

 ■ Practice Exam mode: Locks certain customization options to present a realistic
exam experience. Use this mode when you are preparing to test your exam readiness.

 ■ Flash Card mode: Strips out the answers and presents you with only the question
stem. This mode is great for late-stage preparation when you really want to challenge
yourself to provide answers without the benefit of seeing multiple-choice options.
This mode does not provide the detailed score reports that the other two modes
provide, so it is not the best mode for helping you identify knowledge gaps.

In addition to these three modes, you will be able to select the source of your questions.
You can choose to take exams that cover all of the chapters, or you can narrow your
selection to just a single chapter or the chapters that make up specific parts in the book.
All chapters are selected by default. If you want to narrow your focus to individual
chapters, simply deselect all the chapters and then select only those on which you wish
to focus in the Objectives area.

You can also select the exam banks on which to focus. Each exam bank comes complete
with a full exam of questions that cover topics in every chapter. The two exams included
online with the purchase of this book are available to you, as are two additional exams of
unique questions available with the Premium Edition. You can have the test engine serve
up exams from all four banks or just from one individual bank by selecting the desired
banks in the exam bank area.

You can make several other customizations to your exam from the exam settings screen,
such as the time allotted to take the exam, the number of questions served up, whether

Introduction    xxv

http://pearsonitp.echelp.org

xxvi    AWS Certified Developer–Associate (DVA-C01) Cert Guide

to randomize questions and answers, whether to show the number of correct answers for
multiple-answer questions, and whether to serve up only specific types of questions. You
can also create custom test banks by selecting only questions that you have marked or
questions on which you have added notes.

Updating Your Exams
If you are using the online version of the Pearson Test Prep software, you should always
have access to the latest version of the software as well as the exam data. If you are using
the Windows desktop version, every time you launch the software while connected to
the Internet, it checks whether there are any updates to your exam data and automatically
downloads any changes made since the last time you used the software.

Sometimes, due to a number of factors, the exam data may not fully download when
you activate your exam. If you find that figures or exhibits are missing, you may need to
manually update your exams. To update a particular exam you have already activated and
downloaded, simply select the Tools tab and click the Update Products button. Again,
this is only an issue with the desktop Windows application.

If you want to check for updates to the Windows desktop version of the Pearson Test
Prep exam engine software, simply select the Tools tab and click the Update Application
button. Doing so allows you to ensure that you are running the latest version of the
software engine.

CHAPTER 4

Storing Data in AWS

This chapter covers the following subjects:

Storing Static Assets in AWS: One of the key aspects of cloud computing is the ability
to consume a virtually unlimited amount of resources. The first part of this chapter
covers how to use the S3 and Glacier services to store and deliver unlimited amounts of
static data in AWS.

Relational Versus Nonrelational Databases: To prepare you for the next two chapters,
this section provides a short overview of the differences between relational and
nonrelational databases and data types suitable for each database type.

Deploying Relational Databases in AWS: This section examines the deployment of
relational databases using AWS Relational Database Service (RDS).

Handling Nonrelational Data in AWS: Some datasets are just not suitable for relational
databases. When sustained and predictable performance for relatively simple datasets
is required, you can use the DynamoDB service in AWS. This section examines the
characteristics of DynamoDB and shows how to use DynamoDB in your applications.

Caching Data in AWS: The last part of this chapter covers the different options for
caching data and accelerating the delivery of content from the storage systems covered in
this chapter.

This chapter covers content important to the following exam domains:

Domain 3: Development with AWS Services

 ■ 3.1 Write code for serverless applications.

 ■ 3.2 Translate functional requirements into application design.

 ■ 3.3 Implement application design into application code.

 ■ 3.4 Write code that interacts with AWS services by using APIs, SDKs, and AWS CLI.

Domain 4: Refactoring

 ■ 4.1 Optimize application to best use AWS services and features.

The challenge of maintaining and storing data in the most efficient manner has been plaguing
enterprises for decades. There is never enough storage, and storage performance is quite often
a factor in poor application performance. Moreover, storing data securely and preventing
disastrous consequences of losing data can be a huge challenge. As the old saying goes,
“If your data is not stored in three places at once, it does not exist persistently.”

A typical enterprise might make tremendous investments in data storage hardware, storage
area networks, storage management software, replication, snapshots, backup software,
virtual tape libraries, and all kinds of different solutions for storing different data types on
different tiers, only to find itself needing to make more hefty investments a year later. I have
personally witnessed millions of dollars being spent on data storage solutions with little
effect on the final outcome over the long term. It seems the storage industry has no need to
plan obsolescence of their products as storage is the only resource in computing that will
keep growing and growing.

So what is the solution? Well, it’s mostly about selecting the right storage back end for the
right type of data. It is not possible to solve a data crisis with a one-size-fits-all service;
rather, you need to take a multipronged approach including classifying your data, decid-
ing which data is suitable for the cloud, and selecting the right type of cloud solution for
storing that data. Some data might be bound by compliance, confidentiality, or governance
that therefore might need to stay on premises, but for most other data, a much more cost-
effective way is to store it in the cloud. AWS offers several different services for storing your
data, and this chapter takes a look at each of them.

“Do I Know This Already?” Quiz
The “Do I Know This Already?” quiz allows you to assess whether you should read the entire
chapter. Table 4-1 lists the major headings in this chapter and the “Do I Know This Already?”
quiz questions covering the material in those headings so you can assess your knowledge of
these specific areas. The answers to the “Do I Know This Already?” quiz appear in Appendix A,
“Answers to the ‘Do I Know This Already?’ Quizzes and Q&A Sections.”

Table 4-1 “Do I Know This Already?” Foundation Topics Section-to-Question Mapping

Foundations Topics Section Questions

Storing Static Data in AWS 1, 2, 5, 10, 11
Deploying Relational Databases in AWS 3, 6, 7
Handling Nonrelational Data in AWS 4, 8, 12
Caching Data in AWS 9, 13

CAUTION The goal of self-assessment is to gauge your mastery of the topics in this
chapter. If you do not know the answer to a question or are only partially sure of the answer,
you should mark that question as wrong for purposes of the self-assessment. Giving yourself
credit for an answer you correctly guess skews your self-assessment results and might
provide you with a false sense of security.

1. You are asked to provide an HTTP-addressable data store that will have the ability to
serve a static website. Which data back end would be the most suitable to complete
this task?
a. DynamoDB
b. EBS
c. Glacier
d. S3

110    AWS Certified Developer–Associate (DVA-C01) Cert Guide

2. Complete this sentence: The S3 service allows for storing an unlimited amount of data
as long as individual files are not larger than _____ and any individual PUT commands
do not exceed _____.
a. 5 GB; 5 MB
b. 5 GB; 5 GB
c. 5 TB; 5 GB
d. 5 TB; 5 MB

3. Which of these databases is not supported by RDS?
a. Cassandra
b. Microsoft SQL
c. Oracle
d. MariaDB

4. To determine the number of read capacity units required for your data, what do you
need to consider ?
a. Whether reads are performed in the correct sequence
b. Whether reads are strongly or eventually consistent
c. Whether reads are coming from one or multiple sources
d. All of these answers are correct.

5. Which of the following is not an S3 service tier?
a. S3 Standard
b. S3 Accelerated Access
c. S3 Infrequent Access
d. S3 Reduced Redundancy Store

6. RDS has the ability to deliver a synchronous replica in another availability zone in
which mode?
a. Multi-AZ mode
b. High-availability mode
c. Cross-AZ mode
d. Master-slave mode

7. Your company is implementing a business intelligence (BI) platform that needs to
retain end-of-month datasets for analytical purposes. You have been asked to create
a script that will be able to create a monthly record of your complete database that
can be used for analytics purposes only if required. What would be the easiest way of
doing this?
a. In RDS, choose to create an automated backup procedure that will create a data-

base snapshot every month. The snapshot can be restored to a working database
if required by the BI software.

b. Write a script that will run on a predetermined day and hour of the month and
snapshot the RDS database. The snapshot can be restored to a working database
if required by the BI software.

Chapter 4: Storing Data in AWS    111

c. Write a script that will offload all the monthly data from the database into S3.
The data in S3 can be imported into a working database if required by the BI
software.

d. In RDS, choose to create an automated export procedure that will offload all the
monthly data from the database into S3. The data in S3 can be imported into a
working database if required by the BI software.

8. If your application has unknown and very spiky read and write performance character-
istics, which of the following should you consider choosing?
a. Using a NoSQL solution such as Memcached
b. Auto-scaling the DynamoDB capacity
c. Distributing data across multiple DynamoDB tables
d. Using the on-demand model for DynamoDB

9. Which service would you select to accelerate the delivery of video files?
a. S3 Accelerated Access
b. ElastiCache
c. CloudCache
d. CloudFront

10. When uploading files to S3, it is recommended to do which of the following?
(Choose all that apply.)
a. Split files 100 MB in size to multipart upload them to increase performance
b. Use a WAN accelerator to increase performance
c. Add metadata when initiating the upload
d. Use a VPN connection to increase security
e. Use the S3 HTTPS front end to increase security
c. Add metadata after the upload has completed

11. Which of these data stores would offer be the least expensive way to store millions of
log files that are kept for retention purposes?
a. DynamoDB
b. EBS
c. Glacier
d. S3

12. DynamoDB reads are performed via:
a. HTTP NoSQL requests to the DynamoDB API.
b. HTTP HEAD requests to the DynamoDB API.
c. HTTP PUT requests to the DynamoDB API.
d. HTTP GET requests to the DynamoDB API.

13. Which ElastiCache engine can support Multi-AZ deployments?
a. Redis
b. Memcached
c. DAX
d. All of these answers are correct.

4

112    AWS Certified Developer–Associate (DVA-C01) Cert Guide

Foundation Topics
Depending on the way you deliver content, you can classify your data in to three major
categories:

 ■ Static assets: Any type of content that cannot be opened from the storage environment
directly (via block access) but that must rather be transferred locally (downloaded) and
only then opened can be considered a static asset. These assets can be any types of files,
such as text, videos, images, archives, packages, and other data blobs that reside on a
web server and are accessed only via the web service. Because static assets are delivered
across the network, the access times for data ranges from tens of milliseconds to seconds
to minutes and even to hours (for very large files over slow links).

 ■ Dynamic assets: These assets are any type of content that is opened and used from
the storage environment directly via block-level access. These can be any types of files
that are consumed by services to maintain data records or state, such as databases, log
files, and executable files. Usually dynamic assets are opened by a certain process and
start writing the records. A dynamic asset is not accessible to other processes on the
file system and is accessible only through a service such as a database service or an
API. Because static assets can be accessed directly through block access, you usually
see the latencies being measured in a few milliseconds to a few seconds.

 ■ In-memory assets: An in-memory asset is any type of content that is loaded into
memory and used by one or multiple processes within a server directly via access
to the memory. Most commonly these assets are any kind of block-level data that
is cached for performance, in-memory databases, and other data that needs to be
accessed with the lowest possible latency. As the cost of memory per gigabyte is
much higher than the cost of disks, it is common to store only “hot data” or caches
in memory to increase the performance of traditional disk-based systems. Because
in-memory assets are ready to serve, the latencies for delivering data can be decreased
down to microseconds.

Storing Static Assets in AWS
To identify static assets, you can simply scan the file system of your application and look at
all the files that have not been changed since they were created. If the creation time matches
the last time the file was modified, you can be certain the asset is a static piece of data. In
addition, any files being delivered via an HTTP, FTP, SCP, or other type of service can fall
into the category of static assets because these files are most likely not being consumed on
the server but are rather being consumed by a client connecting to the server through one of
these protocols. Once you have identified your static assets, you need to choose the right
type of data store. It needs to be able to scale with your data and needs to do that in an
efficient, cost-effective way. In AWS, Simple Storage Service (S3) is used to store any kind of
data blobs on an object storage back end with unlimited capacity.

Amazon S3
Amazon S3 is essentially a serverless storage back end that is accessible via HTTP/HTTPS.
The service is fully managed and has a 99.99% high availability SLA per region and a
99.999999999% SLA for durability of data. The 99.99% high availability means you can
expect to have less than 45 minutes of service outage per region during a monthly billing

Chapter 4: Storing Data in AWS    113

cycle, and the 99.999999999% durability means the probability of losing a file is equal to
1 in 10,000,000 per every 10,000 years.

S3 delivers all content through the use of content containers called buckets. Each bucket
serves as a unique endpoint where files and objects can be aggregated (see Figure 4-1).
Each file you upload to S3 is called a key; this is the unique identifier of the file within the
S3 bucket. A key can be composed of the filename and prefixes. Prefixes can be used to
structure the files even further and to provide a directory-like view of the files, as S3 has no
concept of directories.

Figure 4-1 The Key Prefixes Representing a Directory Structure in S3

With S3 you can control access permissions at the bucket level, and thus you can define the
level of access to the bucket itself. You can essentially make a bucket completely public by
allowing anonymous access, or you can strictly control the access to each key in the bucket.
There are two different ways of allowing access to an S3 bucket:

 ■ Use an access control list (ACL) or a bucket ACL: With the ACL approach, you can
control the permissions on a broader spectrum than by using the bucket policy. This
approach is designed to quickly allow access to a large group of users, such as another
account or everyone with a specific type of access to all the keys in the bucket; for
example, an ACL can easily be used to define that everyone can list the contents of
the bucket.

 ■ Use a bucket policy: A bucket policy is a JSON-formatted document that is structured
exactly like an IAM policy. A bucket policy can be used to granularly control access
to a bucket and its contents. For example, by using a bucket policy, you can allow a
specific user to access only a specific key within a bucket.

Delivering Content from S3
The S3 service is very easy to use when developing applications because it is addressable
via standard HTTP method calls. And because the service delivers files through a standard
HTTP web interface, it is well suited for storing any kind of static website content, shar-
ing files, hosting package repositories, and even hosting a static website that can have
extended app-like functionality with client-side scripting. Developers are also able to use
the built-in change notification system in S3 to send messages about file changes and allow
for processing with other AWS services, such as AWS Lambda, which can pick up any file

4

114    AWS Certified Developer–Associate (DVA-C01) Cert Guide

coming onto S3 and perform transformations, record metadata, and so on so that the static
website functionality can be greatly enhanced. Figure 4-2 illustrates how a file being stored
on S3 can trigger a dynamic action on AWS Lambda.

S3 Events

Amazon S3Files
uploaded to
Amazon S3

AWS Lambda

Figure 4-2 S3 Events Triggering the Lambda Service

Because S3 is basically an API that you can communicate with, you can simply consider it
programmatically accessible storage. By integrating your application with S3 API calls, you
can greatly enhance the capability of ingesting data and enhancing raw storage services with
different application-level capabilities. S3’s developer-friendly features have made it the gold
standard for object storage and content delivery.

Working with S3 in the AWS CLI
To create a bucket, you can simply use the aws s3api create-bucket command:

aws s3api create-bucket --bucket bucket-name --region region-id

Say that you want to create a bucket called everyonelovesaws. If you are following along
with this book, you will have to select a different name because AWS bucket names are
global, and the everyonelovesaws bucket already exists for the purpose of demonstrating
FQDNs. To create the bucket, simply replace bucket-name and set your desired region:

aws s3api create-bucket --bucket everyonelovesaws --region us-east-2

After the bucket is created, you can upload an object to it. You can upload any arbitrary
file, but in this example, you can upload the index file that will later be used for the static
website:

aws s3 cp index.html s3://everyonelovesaws/

This simply uploads this one file to the root of the bucket. To do a bit more magic, you can
choose to upload a complete directory, such as your website directory:

aws s3 cp /my-website/ s3://everyonelovesaws/ --recursive

You might also decide to include only certain files by using the --exclude and --include
switches. For example, when you update your website HTML, you might want to update all
the HTML files but omit any other files, such as images, videos, CSS, and so on. You might
need to use multiple commands and search for all the HTML files. To do all this with one
command, you can simply run the following:

aws s3 cp /my-website/ s3://everyonelovesaws/ --recursive
--exclude "*" --include "*.html"

By excluding everything (*) and including only *.html, you ensure that all HTML files get
uploaded while all the content that hasn’t changed is not touched.

http://index.html
http://"*.html"
http://*.html

Chapter 4: Storing Data in AWS    115

When accessing content within a bucket on S3, there are three different URLs that you can
use. The first (default) URL is structured as follows:

http{s}://s3.{region-id}.amazonaws.com/{bucket-name}/{optional key
prefix}/{key-name}

As you can see, the default naming schema makes it easy to understand: First you see the
region the bucket resides in (from the region ID in the URL). Then you see the structure
defined in the bucket/key-prefix/key combination.

Here are some examples of files in S3 buckets:

 ■ A file in the root of the everyonelovesaws bucket: https://s3.us-east-2.amazonaws.
com/everyonelovesaws/index.html

 ■ A file with the key prefix key-prefix-2019/ in the everyonelovesaws bucket:
https://s3.us-east-2.amazonaws.com/everyonelovesaws/key-prefix-2019/index.html

 ■ A file with the key prefix key-prefix-2019/08/20 in the everyonelovesaws bucket:
https://s3.us-east-2.amazonaws.com/everyonelovesaws/key-prefix-2019/08/20/index.html

However, the default format might not be the most desirable, especially if you want to
represent the S3 data as being part of your website. For example, suppose you want to host
all your images on your S3 website, and you would like to redirect the subdomain images.
mywebsite.com to an S3 bucket. The first thing to do would be to create a bucket with that
exact name images.mywebsite.com in it so you can create a CNAME in your domain and not
break the S3 request.

To create a CNAME, you can use the second type of FQDN in your URL that is provided
for each bucket, with the following format:

{bucket-name}.s3.{optional region-id}.amazonaws.com

As you can see, the regional ID is optional, and the bucket name is a subdomain of
s3.amazonaws.com, so it is easy to create a CNAME in your DNS service to redirect a
subdomain to the S3 bucket. For the image redirection, based on the preceding syntax, you
would simply create a record like this:

images.mywebsite.com CNAME images.mywebsite.com.
s3.amazonaws.com.

If you want to disclose the region ID, you can optionally create an entry with the region ID
in the target name.

NOTE Bucket names are globally unique. Because every bucket name is essentially a sub-
domain of .s3.amazonaws.com, there is no way to make two buckets with the same name in
all of AWS.

Here are some working examples of a bucket called images.markocloud.com that is a
subdomain of the markocloud.com domain:

 ■ FQDN with the region ID is serving the index.html key this way:
http://images.markocloud.com.s3.us-east-1.amazonaws.com/index.html

4

https://s3.us-east-2.amazonaws.com/everyonelovesaws/index.html
https://s3.us-east-2.amazonaws.com/everyonelovesaws/index.html
https://s3.us-east-2.amazonaws.com/everyonelovesaws/key-prefix-2019/index.html
https://s3.us-east-2.amazonaws.com/everyonelovesaws/key-prefix-2019/08/20/index.html
http://images.mywebsite.com
http://images.mywebsite.com
http://images.mywebsite.com
http://s3.amazonaws.com
http://.s3.amazonaws.com
http://images.markocloud.com
http://markocloud.com
http://index.html
http://images.markocloud.com.s3.us-east-1.amazonaws.com/index.html

116    AWS Certified Developer–Associate (DVA-C01) Cert Guide

 ■ FQDN without the region ID is serving the index.html key this way:
http://images.markocloud.com.s3.amazonaws.com/index.html

 ■ FQDN with the CNAME on the markocloud.com domain is serving the index.html
key this way: http://images.markocloud.com/index.html

Hosting a Static Website
S3 is a file delivery service that works on HTTP/HTTPS. To host a static website, you simply
need to make the bucket public by providing a bucket policy and enabling the static website
hosting option. Of course, you also need to upload all your static website files, including an
index file.

To make a bucket serve a static website from the AWS CLI, you need to run the aws s3
website command using the following syntax:

aws s3 website s3://{bucket-name}/ --index-document {index-
document-key} --error-document {optional-error-document-key}

To make the everyonelovesaws bucket into a static website, for example, you would simply
enter the following:

aws s3 website s3://everyonelovesaws/ --index-document index.html

You now also need to apply a bucket policy to make the website accessible from the outside
world. If you are creating your own static website, you need to replace everyonelovesaws in
the resource ARN ("Resource": "arn:aws:s3:::everyonelovesaws/*-) with your bucket name,
as demonstrated in Example 4-1.

Example 4-1 An IAM Statement That Allows Read Access to All Items in a Specific S3
Bucket

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Sid": "PublicReadGetObject",

 "Effect": "Allow",

 "Principal": "*",

 "Action": "s3:GetObject",

 "Resource": "arn:aws:s3:::everyonelovesaws/*"

 }

]

}

As you can see, the policy is allowing access from anywhere and performing the
s3:GetObject function, which means it is allowing everyone to read the content but not
allowing the listing or reading of the file metadata.

You can save this bucket policy as eveyonelovesaws.json and apply it to the bucket with the
following command:

aws s3api put-bucket-policy --bucket everyonelovesaws --policy
file:// eveyonelovesaws.json

http://index.html
http://images.markocloud.com.s3.amazonaws.com/index.html
http://markocloud.com
http://index.html
http://images.markocloud.com/index.html
http://index.html

Chapter 4: Storing Data in AWS    117

NOTE You have seen two different S3 CLI commands: aws s3 and aws s3api. The s3
command is designed to make it easier to work with files and objects in S3, whereas s3api
follows the API model precisely and is purely JSON driven. You can more granularly control
making the bucket public by using the s3api put-bucket-website command, but this command
requires a JSON configuration file as input, so instead you can use the s3 command. The s3
command provides a bit more abstraction and achieves the same result with a simpler, shorter
command.

When the static website is enabled, you are provided with a URL that looks like this:

http://everyonelovesaws.s3-website.us-east-2.amazonaws.com/

Note in this example as well as in the example of the CNAMED images bucket, that the
HTTP URL is not secure. This is due to the fact that there is a limitation to bucket names
containing dots when using HTTPS. The default S3 certificate used for signing is *.s3.
amazonaws.com. This certificate can only sign the first subdomain of .s3.amazonaws.com.
Any dot in the name will be represented as a further subdomain, which would break the
certificate chain. Therefore, going to the following site will show an insecure warning:

https://images.markocloud.com.s3.amazonaws.com/index.html

This is due to the fact that the *.s3.amazonaws.com certificate only signs the “com.
s3.amazonaws.com” portion of the domain name and going to the following site will now
show an insecure warning since the * certificate does not sign the DNS name for the “images.
markocloud.” part of the domain:

https://everyonelovesaws.s3.amazonaws.com/index.html

For hosted websites, you can, of course, have dots in the name of the bucket. However,
if you tried to add an HTTPS CloudFront distribution and point it to such a bucket, you
would break the certificate functionality by introducing a domain-like structure to the name.
Nonetheless, all static websites on S3 would still be available on HTTP directly even if there
were dots in the name. The final part of this chapter discusses securing a static website
through HTTPS with a free certificate attached to a CloudFront distribution.

Versioning
S3 provides the ability to create a new version of an object if it is uploaded more than once.
For each key, a separate entry is created, and a separate copy of the file exists on S3. This
means you can always access each version of the file and also prevent the file from being
deleted because a deletion will only mark the file as deleted and will retain the specific
previous versions.

To enable versioning on your bucket, you can use the following command:

aws s3api put-bucket-versioning --bucket everyonelovesaws
--versioning-configuration Status=Enabled

There are three status options: Disabled, Enabled, and Suspended. By default, a bucket has
versioning disabled, but once it is enabled, it cannot be removed but only suspended. When
versioning is suspended, new versions of the document are not created; rather, the newest
version is overwritten, and the older versions are retained.

4

http://everyonelovesaws.s3-website.us-east-2.amazonaws.com/
http://*.s3.amazonaws.com
http://*.s3.amazonaws.com
http://.s3.amazonaws.com
https://images.markocloud.com.s3.amazonaws.com/index.html
http://*.s3.amazonaws.com
http://$$$�com.s3.amazonaws.com�
http://$$$�com.s3.amazonaws.com�
https://everyonelovesaws.s3.amazonaws.com/index.html

118    AWS Certified Developer–Associate (DVA-C01) Cert Guide

S3 Storage Tiers
When creating an object in a bucket, you can also select the storage class to which the
object will belong. This can also be done automatically through data life cycling. S3 has six
storage classes:

 ■ S3 Standard: General-purpose online storage with 99.99% availability and
99.999999999% durability (that is, “11 9s”).

 ■ S3 Infrequent Access: Same performance as S3 Standard but up to 40% cheaper with
99.9% availability SLA and the same “11 9s” durability.

 ■ S3 One Zone-Infrequent Access: A cheaper data tier in only one availability zone
that can deliver an additional 25% savings over S3 Infrequent Access. It has the same
durability, with 99.5% availability.

 ■ S3 Reduced Redundancy Storage (RRS): Previously this was a cheaper version of S3
providing 99.99% durability and 99.99% availability of objects. RRS cannot be used in
a life cycling policy and is now more expensive than S3 Standard.

 ■ S3 Glacier: Less than one-fifth the price of S3 Standard, designed for archiving and
long-term storage.

 ■ S3 Glacier Deep Archive: Costs four times less than Glacier and is the cheapest
storage solution, at about $1 per terabyte per month. This solution is intended for very
long-term storage.

NOTE Due to the reduction in price of S3 Standard over time and low interest in using
RRS, RRS is now more expensive. However, at press time, there is no official plan to sunset
the RRS tier, which is still being used to temporarily restore data from Glacier and Glacier
Deep Archive.

Data Life Cycling
S3 supports automatic life cycling and expiration of objects in an S3 bucket. You can create
rules to life cycle objects older than a certain time into cheaper storage. For example, you
can set up a policy that will store any object older than 30 days on S3 Infrequent Access (S3
IA). You can add additional stages to move the object from S3 IA to S3 One Zone IA after
90 days and then push it out to Glacier after a year, when the object is no longer required to
be online. Figure 4-3 illustrates S3 life cycling.

S3 Standard

30 Days

S3 IA

90 Days 365 Days

Object DeletedS3 Glacier

Figure 4-3 Illustration of an S3 Life Cycling Policy

Chapter 4: Storing Data in AWS    119

S3 Security
When storing data in the S3 service, you need to consider the security of the data. First,
you need to ensure proper access control to the buckets themselves. There are three ways to
grant access to an S3 bucket:

 ■ IAM policy: You can attach IAM policies to users, groups, or roles to allow granular
control over different levels of access (such as types of S3 API actions, like GET, PUT,
or LIST) for one or more S3 buckets.

 ■ Bucket policy: Attached to the bucket itself as an inline policy, a bucket policy can
allow granular control over different levels of access (such as types of S3 API actions,
like GET, PUT, or LIST) for the bucket itself.

 ■ Bucket ACL: Attached to the bucket, an access control list (ACL) allows coarse-
grained control over bucket access. ACLs are designed to easily share a bucket with a
large group or anonymously when a need for read, write, or full control permissions
over the bucket arises.

Both policy types allow for much better control over access to a bucket than does using
an ACL.

Example 4-2 demonstrates a policy that allows all S3 actions over the bucket called
everyonelovesaws from the 192.168.100.0/24 CIDR range.

Example 4-2 S3 Policy with a Source IP Condition

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Principal": "*",

 "Action": "s3:*",

 "Resource": "arn:aws:s3:::everyonelovesaws/*",

 "Condition": {

 "IpAddress": {"aws:SourceIp": "192.168.100.0/24"},

 }

 }

]

}

On top of access control to the data, you also need to consider the security of data during
transit and at rest by applying encryption. To encrypt data being sent to the S3 bucket, you
can either use client-side encryption or make sure to use the TLS S3 endpoint. (Chapter 1
covers encryption in transit in detail.) To encrypt data at rest, you have three options in S3:

 ■ S3 Server-Side Encryption (SSE-S3): SSE-S3 provides built-in encryption with an AWS
managed encryption key. This service is available on an S3 bucket at no additional cost.

 ■ S3 SSE-KMS: SSE-KMS protects data by using a KMS-managed encryption key. This
option gives you more control over the encryption keys to be used in S3, but the root
encryption key of the KMS service is still AWS managed.

4

120    AWS Certified Developer–Associate (DVA-C01) Cert Guide

 ■ S3 SSE-C: With the SSE-C option, S3 is configured with server-side encryption that
uses a customer-provided encryption key. The encryption key is provided by the
client within the request, and so each blob of data that is delivered to S3 is seamlessly
encrypted with the customer-provided key. When the encryption is complete, S3
discards the encryption key so the only way to decrypt the data is to provide the same
key when retrieving the object.

Relational Versus Nonrelational Databases
Before doing a deep dive into the database services available in AWS, you need to take a look
at the two major categories of databases that exist. In essence, a database is a collection of
data that can be accessed in a certain ordered manner. Traditionally enterprise databases have
been designed using a relational format. Enterprises traditionally needed to collect strictly
formatted and well-structured data and then perform queries to get insights into how the
different pieces of data in the database related to each other. When running business intel-
ligence, analytics, ERP, accounting, management, and other tasks commonly done in an enter-
prise, it is always preferred to run these tasks on a well-structured dataset to get the clearest
results and easily identify trends and outliers. These are typically SQL databases that are
designed to run a whole SQL command on one server or even one CPU thread.

But the world has changed. Internet-connected companies today are ingesting data from
sources where the structure is undefined, where data is stored for temporary purposes,
where relationship information is not provided, or where the relationships are so complex
that the sheer volume of data would easily overwhelm a traditional database server. The
Internet-connected world needs databases where data can be stored at high velocity, where
performance can be scaled linearly by adding nodes, and where data can be stored in an
arbitrary format with an arbitrary structure. A new generation of databases has emerged;
these databases are called NoSQL (or Not only SQL). These database models are designed
to store key/value pairs, documents, data payloads of arbitrary structure, graphs, and so on.
Also, nonrelational databases are typically schema-less. Figure 4-4 illustrates different data
structures of SQL and NoSQL databases.

SQL Databases

Relational

Analytical (OLAP)

Key-Value
valuekey

key

key

key

value

value

value

Column-Family

DocumentGraph

NoSQL Databases

Figure 4-4 SQL Versus NoSQL Databases

Chapter 4: Storing Data in AWS    121

Choosing which type of database to use is essentially governed by the data model. A typical
relational database model is strictly structured by row and column, as illustrated in Table 4-2.
The data must fit fully within one row and is required to be structured to fit the categories
defined in the columns.

Table 4-2 Relational Database Table Example

Index Name Surname Occupation Active

0000 Anthony Soprano Waste Management Consultant Y
0001 Christopher Moltisanti Disposal Operator N

Different columns of a traditional database are indexed to expedite the retrieval of the data
from the database. The index is usually loaded into memory and allows for very fast retrieval
of specific pieces of data. Traditional databases are usually also ACID compliant, where
ACID stands for

 ■ Atomicity: Every transaction against an SQL database is atomic and (usually) cannot
be broken down into smaller pieces. If a transaction fails, the whole operation needs to
be restarted.

 ■ Consistency: Data must be consistent at all times, even if replicated across a cluster.
This means that data will be made unavailable until the replication has completed and
the data is confirmed to be consistent.

 ■ Isolation: Concurrent transactions can never interfere with each other. In SQL, for
example, you always put a lock on a table or an index that you are modifying so no
other transaction can interfere with it.

 ■ Durability: Data must be stored durably and must also have the ability to be recovered
in case of a failure. You should keep a transaction log that can be replayed and one or
more backups of a database to maintain durability.

With a NoSQL database, you can represent the whole dataset of one row as a set of key/value
pairs that are stored and retrieved as a document. This document needs to be encoded in a for-
mat from which the application can build the rows and columns represented in the document.
Example 4-3 demonstrates a JSON-formatted document that represents the same data as the
first row of your SQL table (refer to Table 4-2).

Example 4-3 JSON-Formatted Data with Key/Value Pairs Matching the First Row of
Table 4-2

{

 "Index":"0000",

 "Name":" Anthony ",

 "Surname":" Soprano"

 "Occupation":" Waste Management Consultant"

 "Active":"Y"

 }

To speed up retrieval of the data, you need to select a key that can appear in all documents and
allow for the prompt retrieval of the complete dataset. The benefit of this type of format is that
only a certain part of the data—not the complete dataset—defines the structure. So you can

4

122    AWS Certified Developer–Associate (DVA-C01) Cert Guide

essentially shorten or extend the dataset with any number of additional key/value pairs on the
fly. For example, if you want to add the date of last activity for a user, you can simply add an
additional key/value pair to the document denoting the date, as demonstrated in Example 4-4.

Example 4-4 Adding the Last Active Attribute to the Data

{

 "Index":"0001",

 "Name":" Christopher ",

 "Surname":" Moltisanti "

 "Occupation":" Disposal Operator "

 "Active":"N"

 "Last active": 13052007

 }

You could even structure the day, month, and year as their own nested key/value pairs in the
Last active key, as demonstrated in Example 4-5.

Example 4-5 Adding an Entry as Nested Key/Value Pairs

{

 "Index":"0001",

 "Name":" Christopher ",

 "Surname":" Moltisanti "

 "Occupation":" Disposal Operator "

 "Active":"N"

 "Last active": [

 { "Day":13},

 { "Month":"05"},

{ "Year":"2007" },

]

 }

The ability to nest keys in your database adds a lot more flexibility to the way you store and
access the data in the NoSQL database. Just think of the impact of the schema modifications
required to fit the new type of data into an existing SQL table: Not only would the process
be disruptive to ongoing operations, but rolling back changes to a schema is sometimes
impossible. With NoSQL, you can change the data model on the fly by adding and removing
key/value pairs to items with ease.

NoSQL databases are designed with linear scalability in mind as all data is distributed across
multiple nodes, which become authoritative for a certain subset of indexing keys. To retrieve
the data, you usually address a common front end that then delivers the data by contact-
ing multiple back ends and delivers documents from all of them in parallel. With a SQL
database, that design is very hard to implement as the transaction usually cannot be easily
distributed across multiple back ends. Unlike SQL databases, NoSQL databases usually
conform to the BASE database ideology, where BASE stands for

 ■ Basic availability: Availability of the database is the main requirement. The database
must seem to be up all the time, and reads from/writes to the database must succeed
as much as possible.

Chapter 4: Storing Data in AWS    123

 ■ Soft state: The state of the system is allowed to change over time: The database
is allowed to be repartitioned (by adding or removing nodes), and the data can be
expired, deleted, or offloaded. The replication system ensures that the data is repli-
cated as soon as possible, but the availability must not be affected by the any state
changes.

 ■ Eventual consistency: The system will eventually (after a period of time) achieve con-
sistency of data across all the nodes of a cluster. The data will be available even during
replication, and a client requesting data could access a node with a stale piece of data.
To mitigate eventual consistency, strongly consistent reads can be utilized to read data
from multiple nodes to ensure that the data is always in a consistent state when being
read. The read consistency must be handled by the application.

Deploying Relational Databases in AWS
Many applications require the ability to store data in a relational database. From web ser-
vices, business intelligence, and analytics to infrastructure management, many different tasks
require the recording of data in a database. In AWS, you have two choices:

 ■ You can deploy an EC2 instance with a database server application installed.

 ■ You can choose to use Amazon Relational Database Service (RDS).

Amazon RDS
The choice between a standalone EC2 instance with a database on top and RDS is essentially
the choice between an unmanaged environment where you have to manage everything your-
self and a managed service where most of the management tasks are automated and complete
control over deployment, backups, snapshots, restores, sizing, high availability, and replicas
is as simple as making an API call. When developing in AWS, it always makes sense to lean
toward using a managed service as the benefits of reducing the management overhead can be
numerous. Aside from simplifying the management, another business driver can be increased
flexibility and automation, which can be achieved by using the AWS CLI, the SDKs, and
CloudFormation to deploy the database back end with very little effort or through an auto-
mated CI/CD system. Managed services essentially empower developers to take control of
the infrastructure and design services that can be easily deployed and replicated and that can
have auto-healing characteristics built into them.

Example 4-6 shows how the deployment of an RDS database can be integrated in a Java
application by using the AWS Java SDK, giving you the ability to deploy the database and
use the database string returned to connect to the newly created database.

Example 4-6 Java Script That Can Be Used to Build an RDS Database

// define the credentials

AWSCredentials credentials = new BasicAWSCredentials(

 "AJDEIX4EE8UER4",

 " D3huG40jThD3huG40jThNPaAx2P3py85NPaAx2P3py85"

);

AmazonRDSClientBuilder.standard().withCredentials(credentials) // pull the
credentials into RDS Builder

4

124    AWS Certified Developer–Associate (DVA-C01) Cert Guide

 .withRegion(Regions.US_EAST_2) // define the region as us-east-2

 .build();

CreateDBInstanceRequest request = new CreateDBInstanceRequest(); // define the
create request

request.setDBInstanceIdentifier("javadbinstance"); // give the database instance
(the server) a name

request.setDBInstanceClass("db.t3.small"); // define the size of the database
instance

request.setEngine("mysql"); // define the database engine type

request.setMultiAZ(true); // make the database highly available with MultiAZ

request.setMasterUsername("master"); // define the database master username

request.setMasterUserPassword("javadbpw"); // define the database master password

request.setDBName("masterdb"); // give the database a name

request.setStorageType("gp2"); // define the storage type - gp2 is general purpose
SSD

request.setAllocatedStorage(30); // define the storage size as 30 GB

amazonRDS.createDBInstance(request); // issue the request

NOTE This example breaks the rules by storing credentials in the code. This can be
avoided by running the code on an EC2 instance and using a role with the permissions to
create the RDS database. You need to be aware that you also have the ability to enable data-
base authentication via IAM and generate an IAM token within your Java code to authenti-
cate to the database without having any passwords baked in the code.

Once the script is created, you can list all your instances with the DescribeDBInstanceRe-
sult class. You will want to get the instance identifier and the endpoint, which is the SQL
endpoint URL that you can later use to connect to the database. You can do this by includ-
ing the snippet shown in Example 4-7 in your Java code.

Example 4-7 Using the Java DescribeDBInstanceResult Class

DescribeDBInstancesResult result = amazonRDS.describeDBInstances();

List<DBInstance> instances = result.getDBInstances();

for (DBInstance instance : instances) {

 String identifier = instance.getDBInstanceIdentifier();

 Endpoint endpoint = instance.getEndpoint();

}

Supported Database Types
Currently the RDS service supports six different database engines that can be deployed
from RDS:

 ■ MySQL

 ■ MariaDB

 ■ PostgreSQL

 ■ Amazon Aurora

Chapter 4: Storing Data in AWS    125

 ■ Oracle

 ■ Microsoft SQL Server

RDS for MySQL, MariaDB, and PostgreSQL
MySQL, MariaDB, and PostgreSQL are the most popular open-source relational databases
used in today’s enterprise environments. Being open source and requiring little or no
licensing while still having enterprise-grade support available makes these databases a great
choice for an enterprise looking to deploy applications in a more efficient manner. They can
easily replace traditional databases that tend to have expensive licensing attached to them.

The MySQL, MariaDB, and PostgreSQL engines all have similar general characteristics and
support highly available Multi-AZ deployment topologies with a synchronous master/slave
pair across two availability zones. All of them also have the ability to deploy multiple read
replicas in the same region or in another region. The RDS service supports the following
versions of these open-source databases:

 ■ MySQL Community Edition versions 5.5+ and 8.0

 ■ MariaDB Server versions 10.0+

 ■ All PostgreSQL versions (though version 9.3.5t is required for Multi-AZ and read replicas)

Figure 4-5 illustrates synchronous replication in Multi-AZ RDS deployments.

RDS Master RDS Standby Replica

Synchronous Replication

Availability Zone - us-east-1a Availability Zone - us-east-1b

AWS Region

Figure 4-5 A Multi-AZ RDS Deployment

The MySQL, MariaDB, and PostgreSQL databases all support the use of SSL connections
for the encryption of data in transit and can be configured with built-in volume encryption
for data at rest.

These three database types are limited in size to 16 TB per volume and can use numerous
different RDS instance types so you can scale the size of an instance from small to 8xlarge.

4

126    AWS Certified Developer–Associate (DVA-C01) Cert Guide

Amazon Aurora
Amazon Aurora is the next-generation open-source engine currently supporting the MySQL
and PostgreSQL database types. The benefit of Aurora is that it decouples the processing
from the storage. All the data is stored on a synchronously replicated volume in three avail-
ability zones, and the processing of SQL requests is performed on the cluster instances. The
instances have no local storage, and they all access the cluster volume at the same time, so
the performance of the cluster can be linearly scaled by adding nodes.

The write node in an Aurora cluster, also called the primary instance, is used to process
all write requests. The primary instance type needs to be scaled to the write performance
requirements of your application and can be easily resized by promoting a larger read replica
to the primary role. All other members of the cluster are called replica instances, and they
can respond to read requests. The primary and the replicas have different DNS names to
which you send requests, which means you can simply configure your application with two
FQDN targets—one for the writes and another for the reads—and do not need to handle the
read/write distribution on your own.

Because the primary and replica instances have access to the same synchronously replicated
cluster volume, you can also instantly promote any read replica into the primary role if the
primary instance fails or if the availability zone where the primary instance is running experi-
ences difficulties. Figure 4-6 illustrates how the Aurora design ensures synchronous writes
and decouples storage from the compute layer.

R
ea

ds

Amazon Aurora DB Cluster

Availability Zone a

Primary
Instance

R
ea

ds

R
ea

ds

R
ea

ds

W
rites

Writes

Writes

Aurora
Replica

Data Copies Data Copies

Cluster Volume

Data Copies

Aurora
Replicas

Availability Zone b Availability Zone c

Figure 4-6 Design of an Aurora Database Cluster

An Aurora cluster can scale quite a bit because you can add up to 15 replicas to the primary
instance while additionally adding another 16 asynchronous replicas in another region. The
Aurora engine also extends the maximum cluster volume to 64 TB, delivering not only a
performance advantage but also a capacity advantage over traditional open-source databases,
while maintaining the ability to use SSL for encryption in transit and delivering built-in
encryption at rest.

Chapter 4: Storing Data in AWS    127

Aurora is now available in serverless on-demand mode as a pay-per-request service. This is a
great option for any kind of transient SQL clusters where keeping the primary and replicas
running 24/7 would cause unnecessary costs. The on-demand Aurora also handles all scaling
and capacity management automatically so that you can send as many requests as you need
and always get a response. This essentially allows you to also support very spiky applica-
tions where you are not sure of the performance required before the requests start rolling in.

Oracle and Microsoft SQL on RDS
Traditional enterprise databases are sometimes the only option, so RDS allows you to deploy
an Oracle 11g or Microsoft 2008 or newer SQL server as a service. The cost of these two
engine types can have the licensing included, so there is no need to spend large sums of money
for licensing upfront. There is, of course, also an option to bring your own license for each.

While you have a lot of choice of RDS instance types to run on, the Oracle and Microsoft
engines are limited to a Multi-AZ mode and provide no support for read replicas and a
maximum size of 16 TB per volume. To protect data at rest and in transit, Transparent Data
Encryption (TDE) is supported on both engine types.

Scaling Databases
There are four general ways to scale database performance:

 ■ Vertical scaling: You can give a single database engine more power by adding more
CPU and RAM.

 ■ Horizontal scaling: You can give a database cluster more power by adding more
instances.

 ■ Read offloading: You can add read replicas and redirect read traffic to them.

 ■ Sharding: You can distribute the data across multiple database engines, with each one
holding one section, or shard, of data.

With relational databases, vertical scaling always works, but it has a maximum limit. In AWS,
the maximum limit is the largest instance size that can be deployed in the service. An alter-
native is horizontal scaling, but generally relational databases are not the best at being able
to scale horizontally. The nature of the atomicity of the SQL transactions usually means that
the whole transaction must be processed by one server—or sometimes even in one thread
on a single CPU.

If an RDS database is deployed in a Multi-AZ configuration, the resizing can be done trans-
parently because the slave database is resized first, the data is synchronized, the connection
fails over, and the slave becomes the master while the previous master instance is resized.
When the resizing is complete, data is again synchronized, and a failover is performed to the
previous master instance.

Example 4-8 uses the boto3 Python SDK to increase the instance size from db.t3.small to
db-t3-medium for the instance created in the previous example.

4

128    AWS Certified Developer–Associate (DVA-C01) Cert Guide

Example 4-8 Python SDK (boto3) Script That Can Be Used to Create an RDS Instance

import boto3 # boto3 is the AWS SDK for python

client = boto3.client('rds') # define the RDS client to be used

response = client.modify_db_instance(# modify an existing instance

 DBInstanceIdentifier=' javadbinstance ', # specify the instance ID

 DBInstanceClass=' db.t3.medium ', # define the new size

 ApplyImmediately=True, # run the command immediately (will not impact the
 availability since we set the database to be MultiAZ

)

Another way of scaling is to distribute the read and write transactions on multiple nodes. A typi-
cal relational database is more read intensive than write intensive, with a typical read-to-write
ratio being 80:20 or even 90:10. By introducing one or more read replicas, you can offload 80%
or even 90% of the traffic off your write node. Aurora excels at read replica scaling, whereas the
other services that support read replicas support only asynchronous replication, which means
the read data is not as easily distributed across the cluster because the data read from the replica
might be stale. But even asynchronous replicas can be a great benefit for offloading your write
master where historical analytics and business intelligence applications are concerned.

Typically the last resort for scaling relational databases is to shard the data. Essentially this
means that a dataset is sliced up into meaningful chunks and distributed across multiple
masters, thus linearly increasing write performance.

NOTE The performance in sharding increases linearly only under the utmost perfect condi-
tions, where data distribution across shards is equal. In real-world scenarios, achieving equal
distribution of data across shards and retaining meaningful pieces of data on the same server
is the biggest challenge.

For example, imagine a phone directory in a database with names from A to Z. When you
need more performance, you can simply split up the database into names starting with A to
M and N to Z. This way, you have two databases to write to, thus theoretically doubling the
performance. Figure 4-7 illustrates the principle of sharding RDS databases to achieve better
performance.

Names A-M

Names N-Z

Names A-Z

Analytics

Shard N-Z

Shard A-M

Figure 4-7 Sharding a Phone Directory into Two Databases

Chapter 4: Storing Data in AWS    129

However, the limitation of sharding is immediately apparent when you try to perform analyt-
ics as you need to access two databases, join the two tables together, and only then perform
the analytics or BI operation. Figure 4-8 illustrates tables from sharded databases being
joined to an analytical database.

Names A-M

Names N-Z

Names N-Z

Analytics

Jo
in N-Z

Join A-M

Figure 4-8 Steps Required for Analytics on Sharded Databases

Handling Nonrelational Data in AWS
As you saw with the different data models discussed earlier in this chapter, not all data fits
well into a traditional relational database. Some cases are more suitable for a NoSQL back
end than a standard SQL back end—such as where data requires a flexible schema, where
data is being collected temporarily, where data consistency is not as important as availability,
and where consistent, low-latency write performance is crucial. AWS offers several different
solutions for storing NoSQL data, including the following:

 ■ DynamoDB: A NoSQL key/value storage back end that is addressable via HTTP/
HTTPS

 ■ ElastiCache: An in-memory NoSQL storage back end

 ■ DocumentDB: A NoSQL document storage back end

 ■ Neptune: A NoSQL graphing solution for storing and addressing complex networked
datasets

 ■ Redshift: A columnar data warehousing solution that can scale to 2 PB per volume

 ■ Redshift Spectrum: A serverless data warehousing solution that can address data
sitting on S3

 ■ TimeStream: A time series recording solution for use with IoT and industrial telemetry

 ■ Quantum Ledger: A ledger database designed for record streams, banking transactions,
and so on

As you can see, you are simply spoiled for choice when it comes to storing nonrelational
data types in AWS. This chapter focuses on the first two database types, DynamoDB and
ElastiCache, as they are important both for gaining a better understanding of the AWS
environment and for the AWS Certified Developer–Associate exam.

4

130    AWS Certified Developer–Associate (DVA-C01) Cert Guide

Amazon DynamoDB
DynamoDB is a serverless NoSQL solution that uses a standard REST API model for both
the management functions and data access operations. The DynamoDB back end is designed
to store key/value data accessible via a simple HTTP access model. DynamoDB supports
storing any amount of data and is able to predictably perform even under extreme read and
write scales of 10,000 to 100,000 requests per second from a single table at single-digit
millisecond latency scales. When reading data, DynamoDB has support for eventually
consistent, strongly consistent, and transactional requests. Each request can be augmented
with the JMESPath query language, which gives you the ability to sort and filter the data
both on the client side and on the server side.

A DynamoDB table has three main components:

 ■ Tables, which store items

 ■ Items, which have attributes

 ■ Attributes, which are the key/value pairs containing data

Tables
Like many other NoSQL databases, DynamoDB has a distributed back end that enables it
to linearly scale in performance and provide your application with the required level of per-
formance. The distribution of the data across the DynamoDB cluster is left up to the user.
When creating a table, you are asked to select a primary key (also called a hash key). The
primary key is used to create hashes that allow the data to be distributed and replicated
across the back end according to the hash. To get the most performance out of DynamoDB,
you should choose a primary key that has a lot of variety. A primary key is also indexed so
that the attributes being stored under a certain key are accessible very quickly (without the
need for a scan of the table).

For example, imagine that you are in charge of a company that makes online games. A table
is used to record all scores from all users across a hundred or so games, each with its own
unique identifiers. Your company has millions of users, each with a unique username. To
select a primary key, you have a choice of either game ID or username. There are more
unique usernames than game IDs, so the best choice would be to select the username as the
primary key as the high level of variety in usernames will ensure that the data is distributed
evenly across the back end.

Optionally, you can also add a sort key to each table to add an additional index that you can
use in your query to sort the data within a table. Depending on the type of data, the sorting
can be temporal (for example, when the sort key is a date stamp), by size (when the sort key
is a value of a certain metric), or by any other arbitrary string.

A table is essentially just a collection of items that are grouped together for a purpose.
A table is regionally bound and is highly available within the region as the DynamoDB
back end is distributed across all availability zones in a region. Because a table is regionally
bound, the table name must be unique within the region within your account.

Chapter 4: Storing Data in AWS    131

Figure 4-9 illustrates the structure of a DynamoDB table.

Partition Key Sort Key

Products

Attributes

Schema is defined per item

Items

Product
ID

2

3

2

1

Type

1871

6 Partitas

Partita
No. 1

The Kid

Bach

Drama,
Comedy Chaplin

HomerOdyssey

Album ID

Album ID:
Track ID

Movie ID

Book ID

Primary Key

Figure 4-9 Structure of a DynamoDB Table

DynamoDB also has support for reading streams of changes to each table. By enabling
DynamoDB Streams on a table, you can point an application to the table and then continu-
ously monitor the table for any changes. As soon as a change occurs, the stream is populated,
and you are able to read the old value, the new value, and both the new and old values. This
means you can use DynamoDB as a front end for your real-time processing environment and
also integrate DynamoDB with any kind of security systems, monitoring systems, Lambda
functions, and other intelligent components that can perform actions triggered by a change
in DynamoDB.

When creating a table, you need to specify the performance mode and choose either
provisioned capacity or on-demand mode. Provisioned capacity is better when there is a
predictable load expected on the table, and on-demand mode can be useful for any kind of
unknown loads on the table. With provisioned capacity, you can simply select AutoScaling
for the capacity, which can increase or decrease the provisioned capacity when the load
increases or decreases.

Encryption is also available in DynamoDB at creation; you can select whether to integrate
encryption with the KMS service or with a customer-provided key.

Items
An item in a table contains all the attributes for a certain primary key or the primary key and
sort key if the sort key has been selected on the table. Each item can be up to 400 KB in size
and is designed to hold key/value data with any type of payload. The items are accessed via
a standard HTTP model where PUT, GET, UPDATE, and DELETE operations allows you to
perform create, read, update, and delete (CRUD) operations. Items can also be retrieved in
batches, and a batch operation is issued as a single HTTP method call that can retrieve up to
100 items or write up to 25 items with a collective size not exceeding 16 MB.

4

132    AWS Certified Developer–Associate (DVA-C01) Cert Guide

Attributes
An attribute is a payload of data with a distinct key. An attribute can have one of the
following values:

 ■ A single value that is either a string, a number, a Boolean, a null, or a list of values

 ■ A document containing multiple nested key/value attributes up to 32 levels deep

 ■ A set of multiple scalar values

Scalar Type Key/Value Pairs
For each attribute, a single value or a list of arbitrary values exists. In this example, the list
has a combination of number, string, and Boolean values:

{

 "name" : Anthony,

 "height" : "6.2",

 "results" : ["2.9", "ab", "false"]

}

These attributes would be represented in a DynamoDB table as illustrated in Table 4-3.

Table 4-3 Scalar Types

name height results

Anthony 6.2 2.9, ab, false

Document Type: A Map Attribute
The document attribute contains nested key/value pairs, as shown in this example:

{

"date_of_bith" : ["year" : 1979, "month" : 09, "day" : 23]

}

This attribute would be represented in a DynamoDB table as illustrated in Table 4-4.

Table 4-4 Table with an Embedded Document

name height results date_of_birth

Anthony 6.2 5, 2.9, ab, false year:1979
month:09
day:23

Set Type: A Set of Strings
The set attribute contains a set of values of the same type—in this example, string:

{

 "activities" :

 ["running", "hiking", "swimming"]

Chapter 4: Storing Data in AWS    133

}

This attribute would be represented in a DynamoDB table as shown in Table 4-5.

Table 4-5 Table with an Embedded Document and Set

name height results date_of_birth activities

Anthony 6.2 5, 2.9, ab, false year:1979 running, hiking,
swimmingmonth:09

day:23

Secondary Indexes
Sometimes the combination of primary key and sort key does not give you enough of an
index to efficiently search through data. You can add two more indexes to each table by
defining the following:

 ■ Local secondary index (LSI): The LSI can be considered an additional sort key for
sifting through multiple entries of a certain primary key. This is very useful in applica-
tions where two ranges (the sort key and the secondary index) are required to retrieve
the correct dataset. The LSI consumes some of the provisioned capacity of the table
and can thus impact your performance calculations in case it is created.

 ■ Global secondary index (GSI): The GSI can be considered an additional primary key
on which the data can be accessed. The GSI allows you to pivot a table and access
the data through the key defined in the GSI and get a different view of the data. The
GSI has its own provisioned read and write capacity units that can be set completely
independently of the capacity units provisioned for the table.

Planning for DynamoDB Capacity
Careful capacity planning should be done whenever using provisioned capacity units to
avoid either overprovisioning or underprovisioning your DynamoDB capacity. Although
AutoScaling is essentially enabled by default on any newly created DynamoDB table,
you should still calculate the required read and write capacity according to your pro-
jected throughput and design the AutoScaling with the appropriate limits of minimum
and maximum capacity in mind. You also have the ability to disable AutoScaling and set a
certain capacity to match any kind of requirements set out by your SLA.

When calculating capacities, you need to set both the read capacity units (RCUs) and write
capacity units (WCUs):

 ■ One RCU represents one strongly consistent 4 KB or two eventually consistent
4 KB reads.

 ■ One WCU represents one write request of up to 1 KB in size.

For example, say that you have industrial sensors that continuously feed data at a rate of
10 MB per second, with each write being approximately 500 bytes in size. Because the write
capacity units represent a write of up to 1 KB in size, each 500-byte write will consume
1 unit, meaning you will need to provision 20,000 WCUs to allow enough performance for
all the writes to be captured.

4

134    AWS Certified Developer–Associate (DVA-C01) Cert Guide

As another example, say you have 50 KB feeds from a clickstream being sent to DynamoDB
at the same 10 MB per second. Each write will now consume 50 WCUs, and at 10 MB per
second, you are getting 200 concurrent writes, which means 10,000 WCUs will be sufficient
to capture all the writes.

With reads, the calculation is dependent on whether you are reading with strong or eventual
consistency because the eventually consistent reads can perform double the work per
capacity unit. For example, an the application is reading at a consistent rate of 10 MB per
second and performing strongly consistent reads of items 50 KB in size, each read consumes
13 RCUs of 4 KB, whereas eventually consistent reads consume only 7 RCUs. To read the
10 MB per second in a strongly consistent manner, you would need an aggregate of 2600
RCUs, whereas eventually consistent reads would require you to only provision 1400 RCUs.

Global Tables
In DynamoDB, you also have the ability to create a DynamoDB global table (see Figure 4-10).
This is a way to share data in a multi-master replication approach across tables in different
regions. To create a global table, you need to first create tables in each of the regions and
then connect them together in the AWS console or by issuing a command in the AWS CLI
to create a global table from the previously created regional tables. Once a global table is
established, each of the tables subscribes to the DynamoDB stream of each other table in
the global table configuration. This means that a write to one of the tables will be instantly
replicated across to the other region. The latency involved in this operation will essentially be
almost equal to the latency of the sheer packet transit across one region to another.

Globally dispersed users

Global App

Global Table

Replica (N. America) Replica (Asia)

Replica (Europe)

Figure 4-10 DynamoDB Global Tables

Chapter 4: Storing Data in AWS    135

Accessing DynamoDB Through the CLI
It is possible to interact with a DynamoDB table through the CLI. Using the CLI is an effective
way to show how each and every action being performed is simply an API call. The CLI has
abstracted shorthand commands, but you can also use direct API calls with the JSON attributes.

In this example, you will be creating a DynamoDB table to create a table called vegetables
and define some attributes in the table. To create the table, you use the aws dynamodb
create-table command, where you need to define the following:

 ■ --table name: The name of the table

 ■ --attribute-definitions: The attributes with the name of your attribute (AttributeName)
and the type of value (AttributeType: S = string, N = number, or B = binary)

 ■ --key-schema: The primary and sort key to use

 ■ KeyType: The primary key (HASH), and the sort key (RANGE)

 ■ --provisioned-throughput: The RCUs and WCU

The command should look like so:

aws dynamodb create-table \

--table-name vegetables \

--attribute-definitions \

AttributeName=name,AttributeType=S AttributeName=type,
AttributeType=S \

--key-schema \

AttributeName=name,KeyType=HASH AttributeName=type,KeyType=RANGE \

--provisioned-throughput ReadCapacityUnits=5,WriteCapacityUnits=10

NOTE The CLI commands in DynamoDB can be quite extensive, and for the sake of
 clarity, the preceding example uses the \ newline Linux command-line separator.

After the table is created, you can use the aws dynamodb put-item command to write items
to the table:

 ■ --table-name: The table you want to write into

 ■ --item: The item, as a key/value pair

 ■ "key": {"data type":"value"}: The name, type, and value of the data

The command should look something like this:

aws dynamodb put-item --table-name vegetables \

--item '{ "name": {"S": "potato"}, "type": {"S": "tuber"}, "cost":
{"N": "1.5"} }'

4

136    AWS Certified Developer–Associate (DVA-C01) Cert Guide

If you are following along with the instructions, you can create some more entries in the
table with the put-item command.

When doing test runs, you can also add the --return-consumed-capacity TOTAL switch at
the end of your command to get the number of capacity units the command consumed in
the API response.

Next, to retrieve the data from the DynamoDB table for your user with the primary key
potato and sort key tuber, you issue the following command:

aws dynamodb get-item --table-name users \

--key '{ "name": {"S": "potato"}, "type": {"S": "tuber"} }

The response from the query should look something like the output in Example 4-9.

Example 4-9 Response from the aws dynamodb get-item Query

HTTP/1.1 200 OK

 x-amzn-RequestId: <RequestId>

 x-amz-crc32: <Checksum>

 Content-Type: application/x-amz-json-1.0

 Content-Length: <PayloadSizeBytes>

 Date: <Date>

 {

"Item": {

 "name": { "S": ["potato"] },

 "type": { "S": ["tuber"] },

 "cost": { "N": ["1.5"] },

 }

 }

User Authentication and Access Control
Because DynamoDB provides a single API to control both the management and data access
operations, you can simply define two different policies to allow for the following:

 ■ Administrative access with permissions to create and modify DynamoDB tables

 ■ Data access with specific permissions to read, write, update, or delete items in specific
tables

You can also write your application to perform both the administrative and data access
tasks. This gives you the ability to easily self-provision the table from the application. This is
especially useful for any kind of data where the time value is very sensitive, also it is useful
for any kind of temporary data, such as sessions or shopping carts in an e-commerce website
or an internal report table that can give management a monthly revenue overview.

You can provision as many tables as needed. If any tables are not in use, you can simply
delete them. When data availability is required, you can reduce the RCU and WCU provi-
sioning to 5 units (the lowest possible setting). This way, a reporting engine can still access
historical data, and the cost of keeping the table running is minimal.

Chapter 4: Storing Data in AWS    137

For a sales application that records sales metrics each month, the application could be
trusted to create a new table every month with the production capacity units but maintain
the old tables for analytics. Every month, the application would reduce the previous monthly
table's capacity units to whatever would be required for analytics to run.

Because policies give you the ability to granularly control permissions, you can lock down
the application to only one particular table or a set of values within the table by simply
adding a condition on the policy or by using a combination of allow and deny rules.

The policy in Example 4-10 locks down the application to exactly one table by denying
access to everything that is not this table and allowing access to this table. This way, you can
ensure that any kind of misconfiguration will not allow the application to read or write to
any other table in DynamoDB.

Example 4-10 IAM Policy Locking Down Permissions to the Exact DynamoDB Table

{

 "Version": "2012-10-17",

 "Statement":[{

 "Effect":"Allow",

 "Action":["dynamodb:*"],

 "Resource":["arn:aws:dynamodb:us-east-1:111222333444:table/vegetables"]

 },

 {

 "Effect":"Deny",

 "Action":["dynamodb:*"],

 "NotResource":["arn:aws:dynamodb:us-east- 1:111222333444:table/ vegetables "]

 },

]

 }

Caching Data in AWS
Caching is an important feature of designing an application in the cloud as caching offers a
double function. On one hand, you can think of caching as a temporary database that can
automatically expire and delete stale data; on the other hand, caching can be considered as a
system that can deliver frequently used data to the user in a much faster manner.

As a simple analogy, consider your refrigerator and the supermarket. Your fridge is basically
your local cache, it takes you seconds to get to the fridge and retrieve a yogurt. But it might
take you several minutes or even tens of minutes to go buy a yogurt from the supermarket.
You can also introduce several layers of cache. For example, your fridge has the lowest
capacity but the fastest retrieval rate, whereas the supermarket has the highest capacity but
the slower retrieval rate. In some cases, going to a nearby convenience store might make
sense instead of going all the way to the supermarket. So the cost of storage of the yogurt
is the most expensive in your fridge, whereas the cost of storage at the supermarket is the
cheapest. When caching, you are essentially trying to balance the low cost of keeping the
yogurt at the supermarket with a higher cost of the fridge, where you want to keep just
enough yogurt to feed the family for a few days.

4

138    AWS Certified Developer–Associate (DVA-C01) Cert Guide

Amazon ElastiCache
ElastiCache is a managed service that helps simplify the deployment of in-memory data
stores in AWS. With in-memory data stores, you can perform caching of frequently retrieved
responses, maintain session state, and, in some cases, run SQL-like databases that support
transaction type queries through scripting.

One of the primary uses for ElastiCache is simple database offloading. Your application
is likely to have a high read-to-write ratio, and some requests are possibly made over and
over and over again. If all of these common requests are constantly being sent to the back-
end database, you might be consuming more power in that database than needed, and it
might become very expensive. Instead of constantly retrieving data from the database, you
can ensure that frequent responses are cached in an intermediary service that is faster to
respond and that can help you reduce the size of the database server. No matter whether
your application requires just a simple place to store simple values that it retrieves from the
database or whether it requires a scalable, highly available cluster that offers high-performance
complex data types, ElastiCache can deliver the right solution for the right purpose.

Memcached
Memcached is a high-performance, distributed, in-memory caching system. The basic
design of the Memcached system is meant for storing simple key/value information. The
Memcached service differs from the DynamoDB back end in the fact that each key has only
one value. Of course, you can nest multiple values into the value of the key, but there is no
index to the data because all the data is stored in memory and retrievable with microsecond
latency.

Memcached is perfectly suited for simple caching such as offloading of database responses
where the key is the query and the value is the response. It is also perfectly suited for storing
session information for your web application, where the cookie ID can be used as the key
and linked with the session state as the value.

ElastiCache offers an easy way to deploy a Memcached cluster in a single availability zone.

Redis
When a more advanced in-memory database is required, Redis is the solution. Redis supports
running an in-memory database in a more classical approach, with a Multi-AZ pair and read
replicas in the cluster. It supports more complex datasets and schema-type data, has the abil-
ity to be used as a messaging back end, and gives some transactional data access support
through Lua scripting.

Amazon DynamoDB Accelerator
The DynamoDB Accelerator (DAX) service is designed to store hot data from a DynamoDB
table in memory, which accelerates the read performance of a DynamoDB database up to
10 times. DAX supports millions of requests per second and reduces the latency for each
read request from single-digit milliseconds down to microseconds. DAX has a completely
transparent read model; essentially, all reads to your table can be redirected to DAX, and no
modification is required on the application side.

Amazon CloudFront
CloudFront is a serverless content delivery network that can enhance the user experience of
any application running in the AWS cloud, outside the cloud, or on premises. CloudFront

Chapter 4: Storing Data in AWS    139

provides you with the ability to cache common responses from your HTTP/HTTPS web
application by caching the responses to GET, HEAD, and OPTIONS HTTP methods. The
data is cached at the AWS edge locations, which are distributed closer to densely populated
areas in more than 100 different locations. Figure 4-11 illustrates the AWS regions and edge
location distribution across the globe.

Edge
Locations

Multiple
Edge Locations

Regional
Edge Caches

Figure 4-11 CloudFront Global Points of Presence

CloudFront also has the ability to establish connections for incoming requests, including
PUT, POST, UPDATE, PATCH, and DELETE, thus making it seem as if the application front
end is much closer to the user than it actually is. Here is a breakdown of the HTTP methods
CloudFront supports:

 ■ GET: A read operation that retrieves a document from the web server

 ■ HEAD: A read operation that retrieves only the header of the document

 ■ OPTIONS: A read request to determine the communication options available on the
web server

 ■ POST: A write operation that is used to send text-based content to a web server

 ■ PUT: A write operation that is used to send a file or data blob to a web server

 ■ PATCH: A write operation as an extension to a PUT that enables you to modify
an existing file

 ■ DELETE: A write operation that deletes a file or some content on a web server

The following settings are supported on a CloudFront distribution:

 ■ GET and HEAD: Standard caching for documents and headers. Useful for static websites.

 ■ GET, HEAD, and OPTIONS: Adds the ability to cache OPTIONS responses from an
origin server.

4

140    AWS Certified Developer–Associate (DVA-C01) Cert Guide

 ■ GET, HEAD, OPTIONS, PUT, PATCH, POST, and DELETE: Terminates all HTTP/
HTTPS sessions at the CloudFront edge location and can increase the performance of
both read and write requests.

In addition, you can control the time-to-live (TTL) of your cache. By controlling the TTL,
you can set a custom way of expiring content when it should be refreshed. CloudFront
distributions support the following options for setting TTL:

 ■ Min TTL: When forwarding all headers, this is a required setting. Determines the
minimum cache lifetime for your CloudFront distribution and determines the shortest
interval for CloudFront to check the origin for newer versions of the document.

 ■ Max TTL: This optional value defines the longest possible period that objects can stay
in the cache. It is used to override any cache-control headers being sent out by the
origin.

 ■ Default TTL: This optional value works only when no specific TTL is set in the head-
ers coming from the origin. It allows the origin to control its own cache behavior and
override the default with cache-control headers.

CloudFront offers the capability to both improve the performance of an application and
decrease the cost of content delivery. For example, when delivering content from S3, the
transfer costs can add up. With CloudFront, the transfer cost for your data is cheaper
per gigabyte. This makes a lot of difference when content that goes viral is hosted on S3.
Imagine a video-sharing service where videos tend to go viral and are getting millions of
views per day. If each video is 10 MB in size, each million views would carry 10 TB of
transfer costs from S3. To achieve the same performance from S3, you can turn on Transfer
Acceleration, which increases the delivery speed of content to remote regions. The cost of
delivery of the content doubles this way. So with CloudFront you can get initial savings,
which can translate to less than 50% of the cost of delivering from S3 with Transfer
Acceleration, while also reaping the benefit of having the content cached much closer to the
user, who will benefit from the decreased latency of your service. Figure 4-12 illustrates the
operation of the CloudFront cache.

Viewer request

Viewer response

Origin request

Origin response

Origin
server

End user

Cloud Front cache

Figure 4-12 Basic Operation of the CloudFront Service

Latency is not something to dismiss. Web pages load content somewhat sequentially, and
even small increases in back-end performance can add up dramatically. Amazon did a study
on latency versus sales performance and discovered that a mere increase of 100 ms in web
page load latency would directly influence sales on amazon.com by 1%. Even worse, a study

http://amazon.com

Chapter 4: Storing Data in AWS    141

performed by Google found that the traffic to a typical website decreases by 20% if the
latency of the web page load is increased by 500 ms. A typical website sequentially loads
anywhere between 10 and 100 objects when delivering a web page, and that can translate
to a site loading anywhere from a few seconds (less than 3 seconds is considered good) up
to tens of seconds for the worst-performing sites. If the latency to request each of those
objects is about 100 ms, that alone adds a whole second for each of those 10 objects. Using
CloudFront can bring down the request latency times to single-digit or low double-digit
milliseconds, thus drastically improving the performance of a web page’s load time even
without any site content optimization. It should be noted, though, that optimizing the site
content makes the biggest difference; however, optimization can require quite a lot of effort,
whereas turning on CloudFront can accelerate a site within minutes.

Another great feature that can help you develop and tune the content delivery is the fact
that CloudFront is addressable via the API. This means you can easily control the behavior
of the caching environment from within the application. You have complete control over
how the headers are forwarded to the origin, you have control over compression, you can
modify the responses coming directly out of CloudFront, and you can detect the client
type within the cache.

To add some processing power to CloudFront, a distribution can be integrated with
Lambda@Edge, which executes predefined functions at the edge location, thus allow-
ing you to include some dynamic responses at the cone of access to your application.
The Lambda@Edge execution performance will have the same low latency as the content
being delivered from CloudFront and can significantly increase the user experience with
your application.

CloudFront Security
CloudFront is secure and resilient to L3 and L4 DDoS attacks when used with AWS Shield
Standard. The AWS Shield Advanced service on your CloudFront distribution gives you a
24/7 response team look after your site, allows for custom DDoS mitigation for advanced
higher-layer DDoS attacks, and protects you from incurring additional costs associated with
the increase in capacity when absorbing a DDoS attack. CloudFront can also be integrated
with the AWS Web Application Firewall (WAF), which can help mitigate other types of
attacks, such as web address manipulations, injection attacks, and web server vulnerabilities
(known and zero-day attacks), and provides the ability to implement different types of rules
for allowed patterns, sources, and methods.

To secure data in transit, you can use a TLS endpoint over HTTPS. CloudFront seamlessly
integrates with the AWS Certificate Manager (ACM) service, which can automatically
provision, renew, and replace an HTTPS certificate on your distribution at no additional cost.
This service provides a great benefit to your web application because you never need to
worry about renewing, replacing, or paying for an X.509 certificate from a public certificate
authority.

You can also use CloudFront to offload all in-transit encryption by sending data to an
HTTP origin. When sensitive data is involved, you can use field-level encryption, which only
encrypts chosen fields being sent to the server, as with a payment form where the credit card
details are encrypted but the rest of the information (such as customer name and address) are
sent in clear text to the origin. Field-level encryption uses a set of public and private keys to
asymmetrically encrypt and decrypt data across the network and keep the data secure, as
illustrated in Figure 4-13.

4

142    AWS Certified Developer–Associate (DVA-C01) Cert Guide

Personally
identifiable
information

Keys or
credentials

Personal health
information

Confidential
information

Payments data

User agents CloudFront distribution

POST /submit HTTP/1.1
Host: origin.example.com

POST /submit HTTP/1.1
Host: www.example.com

Public key Private key

Custom origin

Figure 4-13 Field-Level Encryption in an AWS CloudFront Distribution

All data being cached by CloudFront is also automatically encrypted at rest through
encrypted EBS volumes in the CloudFront distribution servers.

CloudFront also offers the ability to restrict access to your content in three different ways:

 ■ Restricting access to your application content with signed URLs or cookies

 ■ Restricting access to content based on geolocation

 ■ Restricting access to S3 buckets using Origin Access Identity (OAI)

This example shows how to create an OAI and allow access only to a specific S3 bucket
through the identity. The command needs two arguments:

 ■ CallerReference, which ensures that the request can't be replayed (like a timestamp)

 ■ Comment, which essentially gives a friendly name to your distribution

To try this example, run the following:

aws cloudfront create-cloud-front-origin-access-identity \

--cloud-front-origin-access-identity-config \

CallerReference=20190820,Comment=everyonelovesaws

Make sure to capture the OAI ID from the response because you will be using it in your
configuration.

Now that you have created the origin access identity, you need to add the identifier
of the origin access identity to the bucket policy that you will protect with the origin
access identity. The following policy allows only the origin access identity with the ID
E37NKUHHPJ30OF to access the everyonelovesaws bucket. You apply this bucket policy
to the S3 bucket that you previously made public. Example 4-11 shows a policy that allows
access for the origin access identity.

http://origin.example.com
http://www.example.com

Chapter 4: Storing Data in AWS    143

Example 4-11 Bucket Policy for a CloudFront Origin Access Identity

{

 "Version": "2008-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Principal": {

 "AWS": "arn:aws:iam::cloudfront:user/CloudFront Origin Access
Identity E37NKUHHPJ30OF"

 },

 "Action": "s3:GetObject",

 "Resource": "arn:aws:s3:::everyonelovesaws/*"

 }

]

}

This policy makes your bucket unavailable until you create the distribution in CloudFront.
You can test this by trying to access the bucket through its URL.

To create the CloudFront distribution, you can use the cloudfront.json file shown in
Example 4-12 as an input to the AWS CloudFront create-distribution command. In the file
you need to define at least the following sections:

 ■ CallerReference: A file that prevents replays

 ■ DefaultRootObject: The index file to be used in the distribution

 ■ Id: The friendly name for the distribution

 ■ OriginAccessIdentity: The ID of the origin access identity

 ■ DomainName: The FQDN of the S3 bucket or your custom origin

 ■ DefaultCacheBehavior: Want to cache

 ■ Comment: A comment, which is required but can be left blank

 ■ Enabled: A Boolean that can be set to true to enable the distribution or false to
disable it

Example 4-12 CloudFront Distribution Configuration File in JSON

{

 "CallerReference": "20190820",

 "Aliases": {

 "Quantity": 0

 },

 "DefaultRootObject": "index.html",

 "Origins": {

 "Quantity": 1,

 "Items": [

4

http://"index.html"

144    AWS Certified Developer–Associate (DVA-C01) Cert Guide

 {

 "Id": "everyonelovesaws",

 "DomainName": "everyonelovesaws.s3.amazonaws.com",

 "S3OriginConfig": {

 "OriginAccessIdentity": "origin-access-identity/cloudfront/E37NKUHHPJ30OF"

 }

 }

]

 },

 "DefaultCacheBehavior": {

 "TargetOriginId": "everyonelovesaws",

 "ForwardedValues": {

 "QueryString": true,

 "Cookies": {

 "Forward": "none"

 }

 },

 "TrustedSigners": {

 "Enabled": false,

 "Quantity": 0

 },

 "ViewerProtocolPolicy": "allow-all",

 "MinTTL": 0

 },

 "Comment": "",

 "Enabled": true

}

Save this file to where you are running the CLI command and run the aws cloudfront
create-distribution command as follows:

aws cloudfront create-distribution \

--distribution-config file://cloudfront.json

This command returns the complete set of JSON settings from the cloudfront.json file, but
the most important thing it returns is the distribution FQDN. Look for the following string
in the response from the last command:

"DomainName": "d1iq7pwkt6nlfb.cloudfront.net"

Now you can browse the d1iq7pwkt6nlfb.cloudfront.net FQDN and see that your S3 bucket
is accessible only from the CloudFront origin access identity. This FQDN can also be used as
a CNAME for your website so you can serve your content with your custom domain name.

http://"d1iq7pwkt6nlfb.cloudfront.net"
http://d1iq7pwkt6nlfb.cloudfront.net

Chapter 4: Storing Data in AWS    145

Exam Preparation Tasks
To prepare for the exam, use this section to review the topics covered and the key aspects
that will allow you to gain the knowledge required to pass the exam. To gain the necessary
knowledge, complete the exercises, examples, and questions in this section in combination
with Chapter 9, “Final Preparation,” and the exam simulation questions in the Pearson Test
Prep Software Online.

Review All Key Topics
Review the most important topics in this chapter, noted with the Key Topics icon in the
outer margin of the page. Table 4-6 lists these key topics and the page number on which
each is found.

Table 4-6 Key Topics for Chapter 4

Key Topic
Element

Description Page
Number

Section Working with S3 in the AWS CLI 114
Section Hosting a Static Website 116
Example 4-1 Example of a bucket policy 116
Table 4-2 Relational database table example 121
Example 4-3 JSON structure for NoSQL database examples 121
Example 4-6 Building an RDS database in the Java SDK 123
Example 4-8 Resizing an RDS database using the boto3 Python SDK 128
Section Attributes 132
Section Accessing DynamoDB through the CLI 135
Example 4-10 DynamoDB IAM policy example 137
Tutorial Creating a CloudFront distribution with OAI 142

Define Key Terms
Define the following key terms from this chapter and check your answers in the glossary:

storage, static asset, dynamic asset, relational database, nonrelational database, ACID, BASE,
SQL, NoSQL, S3, web server, HTTP, HTTPS, SSL, TLS, object storage, RDS, RDS instance,
RDS database instance, RDS connection string, IAM, DynamoDB, ElastiCache, Redis,
Memcached, CloudFront, CDN, OAI, CloudFront distribution, origin, Multi-AZ

Q&A
The answers to these questions appear in Appendix A. For more practice with exam format
questions, use the Pearson Test Prep Software Online.

1. True or false: In most cases, it is not possible to determine the type of storage to use
simply by looking at the data structure.

2. True or false: A video being delivered via a streaming service should be considered a
static asset.

3. What is the maximum file size that can be sent to the S3 service in one PUT
command?

4

146    AWS Certified Developer–Associate (DVA-C01) Cert Guide

4. Which types of security documents allow you to limit the access to the S3 bucket?
5. Which types of database engines are supported on RDS?
6. Can an RDS database be resized without service disruption?
7. True or false: In a DynamoDB database, both the management and data access are

available through the same DynamoDB API.
8. True or false: A DynamoDB database always requires you to specify the RCU and

WCU capacities and use AutoScaling.
9. Which service would you recommend to cache commonly returned responses from a

database?
10. What is an origin access identity in CloudFront?

A
access control

in Amazon DynamoDB, 136–137
in Amazon S3, 113, 119

access control lists (ACLs), 51
access keys, 42–43

creating, 28
accessing. See also IAM (Identity and

Access Management)
AWS, 23

account creation, 23–24
APIs (application programmable

interfaces), 33–34
CLI (command-line interface),

29–32
Management Console, 25–29
SDKs (software development

kits), 32–33
bucket content, 115–116
Pearson Cert Practice Test Engine,

286–287
accounts (AWS), creating, 23–24
ACID compliance, 121
ACLs (access control lists), 51
Active Directory, 56
activity tasks, 165
actors, 165
Agile, 182

DevOps and CI/CD versus, 184
Amazon API Gateway, 19

Index

Amazon Aurora, 126–127
Amazon Cloud Hardware Security

Model (CloudHSM), 17
Amazon CloudFront, 14, 70, 138–144
Amazon CloudSearch, 18
Amazon CloudTrail, 20, 277–279

log structure, 277–279
security, 277

Amazon CloudWatch, 20, 261–277
collecting logs and metrics, 269–271
enhanced monitoring scripts, 275–277
Management Console, 262–269
storing logs and metrics, 271–273
uploading logs, 273–275

Amazon DocumentDB, 129
Amazon DynamoDB, 18, 129–137

attributes, 132–133
authentication and access control,

136–137
capacity planning, 133–134
CLI access, 135–136
global tables, 134
items, 131
on-demand mode, 152
secondary indexes, 133
tables, 130–131

Amazon DynamoDB Accelerator
(DAX), 18, 138

Amazon Elastic Block Storage (EBS),
16, 88–89

Amazon Elastic Cloud Computing
(EC2), 15, 76–83

creating instances, 80–83
deploying code to, 208–214
instance types, 77–80
monitoring memory usage, 275–277

Amazon Elastic Container Registry, 84
Amazon Elastic Container Service

(ECS), 15, 76, 83–87
Amazon Elastic File System (EFS), 16
Amazon Elastic Kubernetes Service

(EKS), 15, 84
Amazon Elastic Load Balancing (ELB),

14, 70, 90–91
Amazon Elastic Map Reduce (EMR),

18
Amazon Elastic Transcoder, 19
Amazon ElastiCache, 18, 129, 138
Amazon Glacier, 16
Amazon Identity and Access

Management (IAM). See IAM
(Identity and Access Management)

Amazon Inspector, 17
Amazon Key Management Service

(KMS), 17
Amazon Kinesis, 18
Amazon Neptune, 129
Amazon Quantum Ledger, 129
Amazon RedShift, 18
Amazon Relational Database Service

(RDS), 18, 123–124
scaling databases, 127–129
supported database types, 124–127

Amazon Route 53, 14, 70, 93–95
Amazon Simple Notification Service

(SNS), 171–175
subscriptions, 172
topics, 172–175

Amazon Simple Queue Service (SQS),
166–171

dead letter queues, 171
visibility timeout, 167–171

Amazon Simple Storage Service (S3),
16, 112–120

access control, 113, 119
CLI usage, 114–116
content delivery, 113–114
data life cycling, 118
security, 119–120
as serverless service, 152
storage tiers, 118
transferring static files, 249–254

with multipart uploads, 250–254
with s3 sync command, 249–250

versioning, 117
website hosting, 116–117

Amazon Simple Workflow (SWF), 19,
164–165

Amazon TimeStream, 129
Amazon Virtual Private Cloud (VPC),

14, 70, 71–76
CIDR notation, 71–72
creating VPCs, 72
Internet connections, 72–75
private network connections, 75–76

Amazon Web Application Firewall
(WAF), 17, 71

Amazon Web Services. See AWS
(Amazon Web Services)

Amazon WorkDocs, 17
Amazon WorkMail, 17
Amazon WorkSpaces, 17
Amazon Redshift, 129
Amazon Redshift Spectrum, 129
AMI instances, 80
analytics tools, 18

310    API Gateway

API Gateway, 19
APIs (application programmable

interfaces), 33–34
application protocols, 66–67
application services, 19
applications. See also software

development
deploying, 206–214
IAM with, 56–57
migrating to AWS, 228–230

approaches, 229
AWS Database Migration

Service (DMS), 234–249
AWS Server Migration Service

(SMS), 234
challenges, 230–231
transferring static files, 249–256
VM Import/Export service,

231–234
monitoring

with Amazon CloudTrail,
277–279

with Amazon CloudWatch,
261–277

with AWS Config, 279
benefits of, 260–261

troubleshooting, 279–280
artifact building with AWS CodeBuild,

198–206
assigning permissions, 27–28, 40–41
asynchronous communication, 67
atomicity, 121
attributes in Amazon DynamoDB,

132–133
Aurora, 126–127
authentication in Amazon DynamoDB,

136–137. See also IAM (Identity
and Access Management)

authorization. See access control; IAM
(Identity and Access Management)

Auto Scaling, 91–92
automating

CI/CD process, 214–220
serverless processing flows, 161–165

Amazon Simple Workflow (SWF),
164–165

AWS Step Functions, 161–164
automation, 95–97

AWS CloudFormation, 101–106
AWS Elastic Beanstalk, 97–101

availability zones, 21–22. See also high
availability

AWS (Amazon Web Services)
accessing, 23

account creation, 23–24
APIs (application programmable

interfaces), 33–34
CLI (command-line interface),

29–32
Management Console, 25–29
SDKs (software development

kits), 32–33
advantages of, 3–4
Foundation services, 14

compute services, 15
end-user applications, 17
network services, 14–15
security and identity services,

16–17
storage services, 16

global architecture, 20–21
availability zones, 21–22
datacenters, 21
edge locations, 22–23
regions, 22

history of, 2–3

aws ec2 create-internet-gateway command    311

Management services, 20
migrating to, 228–230

approaches, 229
AWS Database Migration

Service (DMS), 234–249
AWS Server Migration Service

(SMS), 234
challenges, 230–231
transferring static files, 249–256
VM Import/Export service,

231–234
Platform services, 17

analytics tools, 18
application services, 19
databases, 18
developer tools, 19
specialized services, 19–20

AWS Auto Scaling, 91–92
aws autoscaling create-auto-scaling-

group command, 211
aws autoscaling update-auto-scaling-

group command, 213, 215
AWS Cloud9, 19, 186–196
AWS CloudFormation, 20, 96,

101–106
aws cloudformation delete-stack

command, 105
aws cloudformation deploy command,

104, 217
aws cloudformation describe-stacks

command, 104–105
aws cloudfront create-distribution

command, 143, 144
aws cloudwatch put-metric-data

command, 272
AWS CodeBuild, 19, 186, 198–206
aws codebuild batch-get-builds

command, 206
aws codebuild create-project command,

201

aws codebuild list-builds-for-project
command, 206

aws codebuild start-build command,
204

AWS CodeCommit, 19, 186, 196–198
aws codecommit create-repository

command, 196
AWS CodeDeploy, 19, 96, 186,

206–214
AWS CodePipeline, 19, 186
aws codepipeline get-pipeline-state

command, 218
aws codepipeline list-pipelines

command, 217
AWS CodeStar, 19, 186
AWS Cognito, 19
aws command, 30
AWS Config, 20, 279
aws configure command, 29–30
AWS Database Migration Service

(DMS), 234–249
AWS DataSync, 254
aws deploy create-application

command, 211
aws deploy get-deployment command,

212
AWS Device Farm, 19
AWS Direct Connect, 14, 70
aws dynamodb create-table

command, 135
aws dynamodb get-item command, 136
aws dynamodb put-item command,

135–136
aws ec2 allocate-address command, 74
aws ec2 associate-route-table

command, 73
aws ec2 attach-internet-gateway

command, 73
aws ec2 create-internet-gateway

command, 73

312    aws ec2 create-key-pair command

aws ec2 create-key-pair command, 104
aws ec2 create-nat-gateway

command, 74
aws ec2 create-route command, 73
aws ec2 create-route-table

command, 73
aws ec2 create-subnet command,

73–74
aws ec2 create-vpc command, 72
aws ec2 describe-import-image-tasks

command, 234
aws ec2 import-image command, 233
aws ecs create-cluster command, 85
aws ecs register-task-definition

command, 86–87
AWS Elastic Beanstalk, 96–101

CLI for, 99–101
components, 97–98
services controlled by, 98–99
supported platforms, 98

AWS Fargate, 77, 84, 152
aws help command, 30–31
aws iam add-role-to-instance-profile

command, 210
aws iam add-user-to-group command,

196
aws iam attach-group-policy command,

196
aws iam attach-role-policy command,

208, 235–236
aws iam create-group command, 196
aws iam create-instance-profile

command, 210
aws iam create-role command, 200,

208–209, 215, 231, 235–236
aws iam put-role-policy command,

210, 233
AWS Internet of Things (IoT)

Services, 20

AWS Lambda, 15, 76–77, 153–161
code writing in, 153–157
invoking, 160–161
permissions and roles, 157–160

aws lambda get-function command,
159

aws logs create-log-group command,
274

aws logs create-log-stream command,
274

aws logs put-log-events command,
274–275

AWS OpsWorks, 20, 97
AWS Pinpoint, 19
aws s3 command, 117
aws s3 sync command, 249–250
aws s3 website command, 116
aws s3api abort-multipart-upload

command, 251
aws s3api command, 117
aws s3api complete-multipart-upload

command, 254
aws s3api create-bucket command,

114, 198
aws s3api create-multipart-upload

command, 251
AWS SageMaker, 20
AWS Schema Conversion Tool (SCT),

235
AWS Server Migration Service

(SMS), 234
AWS Serverless Application Model

(SAM), 152
AWS Shield, 71
AWS Snowball, 16, 255–256
AWS Snowball Edge, 255–256
AWS Snowmobile, 16, 256
aws sns create-topic command,

172–173
aws sns publish command, 174

clients    313

aws sns subscribe command, 173–174
aws sqs create-queue command, 167
aws sqs delete-message command, 170
aws sqs get-queue-attributes

command, 169
aws sqs get-queue-url command,

167–168
aws sqs receive-message command,

169–170
aws sqs send-message command, 169
AWS Step Functions, 161–164
AWS Storage Gateway, 16, 254–255
AWS Systems Manager, 97
AWS Virtual Private Gateway, 14
AWS-managed policies, 51

B
BASE ideology, 122–123
basic availability, 122
broad network access, 6
buckets, 113

access control, 119
accessing content, 115–116
creating, 114
uploading to, 114

building artifacts with AWS CodeBuild,
198–206

building pipelines (CI/CD), 214–224
automating CI/CD process, 214–220
integrating into code, 220–224

built-in encryption, 57

C
cache, 67–68
cache hit, 68
caching data, 137–144

Amazon CloudFront, 138–144
Amazon DynamoDB Accelerator

(DAX), 138
Amazon ElastiCache, 138
Memcached, 138
Redis, 138

capacity planning in Amazon
DynamoDB, 133–134

CI/CD (continuous integration/
continuous delivery and
deployment), 184–185

continuous delivery, 185
continuous deployment, 185
continuous integration, 184–185
tools

AWS Cloud9, 186–196
AWS CodeBuild, 198–206
AWS CodeCommit, 196–198
AWS CodeDeploy, 206–214
AWS CodePipeline, 214–224
list of, 186

CIDR (Classless Inter-Domain Routing)
notation, 71–72

CLI (command-line interface), 29
in Amazon CloudWatch, 271–273
in Amazon DynamoDB, 135–136
in Amazon S3, 114–116
in AWS Elastic Beanstalk, 99–101
configuring, 29–30
groups (IAM), creating, 46–47
installing, 29
policies (IAM), creating, 52
roles (IAM), creating, 49–50
S3 bucket creation, 31–32
structure of, 30–31
template generation, 32
users (IAM), creating, 44–45

clients, 66–67

314    client-side encryption

client-side encryption, 58
cloud computing

advantages of, 3–4
Amazon CloudFront, 138–144
containers, 11
definition of, 6–7
delivery models, 7–10
deployment types, 6
shared responsibility model, 12–13
stateful versus stateless design, 69–70
virtualization, 11

Cloud9, 19, 186–196
CloudFormation, 20, 96, 101–106
CloudFront, 14, 70, 138–144
CloudHSM (Cloud Hardware Security

Model), 17
CloudHSM integrated encryption, 58
CloudSearch, 18
CloudTrail, 20, 277–279

log structure, 277–279
security, 277

CloudWatch, 20, 261–277
collecting logs and metrics, 269–271
enhanced monitoring scripts, 275–277
Management Console, 262–269
storing logs and metrics, 271–273
uploading logs, 273–275

clustering, 89
code

deploying with AWS CodeDeploy,
206–214

storing in AWS CodeCommit,
196–198

writing
in AWS Cloud9, 186–196
in AWS Lambda, 153–157

CodeBuild, 19, 186, 198–206
CodeCommit, 19, 186, 196–198

CodeDeploy, 19, 96, 186, 206–214
CodePipeline, 19, 186
CodeStar, 19, 186
Cognito, 19
command-line interface. See CLI

(command-line interface)
community cloud, 6
compute services, 15

Amazon Elastic Cloud Computing
(EC2), 77–83
creating instances, 80–83
instance types, 77–80

Amazon Elastic Container Service
(ECS), 83–87

overview of requirements, 65–70
types of, 76–77

Config, 20, 279
configuring CLI (command-line

interface), 29–30
consistency, 121
containers, 11, 83–84. See also

Amazon Elastic Container Service
(ECS)

content delivery in Amazon S3,
113–114

CR (continuous reaction), 185–186
credentials, types of, 42–43
cross-account access, 48–49
customer-managed policies, 51
customizing Pearson Cert Practice Test

Engine, 287–288

D
data life cycling in Amazon S3, 118
data storage

dynamic assets, 112
in-memory assets, 112

DynamoDB    315

nonrelational, 129
in Amazon DynamoDB, 130–137
caching data, 137–144
relational versus, 120–123

persistent data
Amazon Elastic Block Storage

(EBS), 88–89
instance stores, 87–88

relational
Amazon RDS, 123–124
deploying in AWS, 123
nonrelational versus, 120–123
scaling databases, 127–129
supported database types,

124–127
static assets, 112

in Amazon S3, 112–120
types of disks, 68
volatile memory, 68–69

Database Migration Service (DMS),
234–249

databases, 18
ACID compliance, 121
BASE ideology, 122–123
encryption, 58
migrating, 234–249
nonrelational, 129

in Amazon DynamoDB, 130–137
caching data, 137–144
relational versus, 120–123

relational
Amazon RDS, 123–124
deploying in AWS, 123
nonrelational versus, 120–123
scaling, 127–129
supported database types,

124–127
datacenters, 21

DataSync, 254
DAX (DynamoDB Accelerator), 18,

138
dead letter queues, 171
decider tasks, 165
dedicated instances, 79
deploying code with AWS CodeDeploy,

206–214
developer tools, 19
Device Farm, 19
DevOps

Agile and CI/CD versus, 184
software development life cycle in,

182–183
tools

AWS Cloud9, 186–196
AWS CodeBuild, 198–206
AWS CodeCommit, 196–198
AWS CodeDeploy, 206–214
AWS CodePipeline, 214–224
list of, 186

dimensions, 270
Direct Connect, 14, 70
disks, 68
DMS (Database Migration Service),

234–249
DNS (Domain Name Service).

See Amazon Route 53
Docker standard, 84–85
document type (Amazon DynamoDB),

132
DocumentDB, 129
domains, 165, 283
durability, 121
dynamic assets, 112
DynamoDB, 18, 129–137

attributes, 132–133

316    DynamoDB

authentication and access control,
136–137

capacity planning, 133–134
CLI access, 135–136
global tables, 134
items, 131
on-demand mode, 152
secondary indexes, 133
tables, 130–131

DynamoDB Accelerator (DAX),
18, 138

E
eb create command, 100
eb init command, 99
eb terminate command, 101
EBS (Elastic Block Storage), 16, 88–89
EC2 (Elastic Cloud Computing), 15,

76, 77–83
creating instances, 80–83
deploying code to, 208–214
instance types, 77–80
monitoring memory usage, 275–277

EC2 instances, 80
ECS (Elastic Container Service), 15,

76, 83–87
edge locations, 22–23
EFS (Elastic File System), 16
EKS (Elastic Kubernetes Service),

15, 84
Elastic Beanstalk, 96–101

CLI for, 99–101
components, 97–98
services controlled by, 98–99
supported platforms, 98

Elastic Block Storage (EBS), 16, 88–89
Elastic Container Registry, 84

Elastic Transcoder, 19
ElastiCache, 18, 129, 138
ELB (Elastic Load Balancing), 14, 70,

90–91
EMR (Elastic Map Reduce), 18
encryption, 57

in Amazon S3, 119–120
at rest, 57–58
in transit, 58–59

end-user applications, 17
enhanced monitoring scripts, 275–277
error responses, 280
eventual consistency, 123
exam preparation

chapter reviews, 289
day of exam, 284–286
information about exam, 282–284
objectives of exam, 283–284
Pearson Cert Practice Test Engine,

286–289
accessing, 286–287
customizing, 287–288
Premium Edition, 289
updating, 288

skill requirements for exam, 283
suggested study plan, 289

examples, 283
adding entry as nested key/value

pairs, 122
adding last active attribute to

data, 122
appspec.yml file written in

YAML, 203
AWS CLI input required to attach

policies to CodePipeline role, 215
aws dynamodb get-item command

response, 136
aws ec2 create-vpc command output,

72

examples    317

AWS Step Functions machine that
checks first value of name1 key,
163–164

bucket policy for CloudFront origin
access identity, 143

buildspec.yml file written in YAML,
203

CLI input to create autoscaling launch
configuration, 211

CLI input to create CodeDeploy
deployment, 212

CLI input to create CodeDeploy
deployment group, 212

CLI script to add Lambda permission
to S3 bucket, 160

CloudFormation template, 103–104
CloudFormation template to deliver

complete pipeline deployment,
216–217

CloudFront distribution configuration
file in JSON, 143–144

CloudTrail log content, 278–279
CodeBuild IAM role policy, 199–200
CodeBuild project command output,

201–202
CodeBuild specification for project,

201
CodeDeploy appspec.yml file, 207
complete-multipart-upload command

output, 254
container task definition, 86–87
create-multipart-upload command

output, 251
create-repository command output,

197
.NET code that runs task definition, 87
event handler for Lambda function,

154
get-deployment CLI command output,

212–213

get-pipeline command output,
218–220

git push command output, 198
IAM policy

allowing access to S3 and logs
required by Lambda, 158

allowing CodeDeploy to assume
role, 208

allowing CodePipeline to assume
role, 214–215

allowing DMS service to assume
role, 235

allowing read access to items in
S3 bucket, 116

allowing read access to S3, 209
in EC2 instance role, 209
locking down permissions to

DynamoDB table, 137
that allows VM import service to

assume vmimport role, 231
for vmimport role, 232
to write and retrieve metrics and

logs to/from CloudWatch, 276
import-image command response, 233
Java DescribeDBInstanceResult class,

124
JavaScript to build RDS database,

123–124
JSON-formatted data with key/value

pairs, 121
Lambda function invocation permis-

sion IAM document, 159
Lambda security policy required to

run Python script, 83
log input file for CloudWatch,

273–274
metric input file for CloudWatch, 272
node.js script that creates EC2

instance, 80

318    examples

parallel input for multipart upload
operation, 253

Python script
to build complete pipeline

through AWS boto3 SDK,
221–224

to create EC2 instance, 82
to create RDS instance, 128

receive-message command response
formatted in JSON, 175

receive-message command response
with receipt handle, 170

S3 policy with source IP condition,
119

s3 sync command output, 249
show database command output after

successful migration, 249
show database command output for

RDS database, 241
show databases command output, 237
SQL script to create sample database,

237
start-build command output, 204–205
test data for Lambda function, 155
user data bash script that deploys

CodeDeploy agent, 210
VM import definition specifying S3

bucket and key for import process,
233

execution roles in AWS Lambda, 158

F
Fargate, 77, 84, 152
federation, 52–54

LDAP and Active Directory, 56
OpenID, 55
SAML 2.0, 56
web identities, 54–55
when to use, 56

federation roles (IAM), 49
Flash Card mode, 288
Foundation services, 14

compute services, 15
end-user applications, 17
network services, 14–15
security and identity services, 16–17
storage services, 16

G
Git, AWS CodeCommit with, 196–198
Glacier, 16
global architecture of AWS, 20–21

availability zones, 21–22
datacenters, 21
edge locations, 22–23
regions, 22

global tables in Amazon DynamoDB,
134

groups (IAM), 41, 45–47
adding users, 46
creating, 46–47

GSI (global secondary index), 133

H
high availability, 89

Amazon Elastic Load Balancing (ELB),
90–91

Amazon Route 53, 93–95
design patterns, 89–90

history
of AWS, 2–3
of software development

Agile, 182
CI/CD, 184–185
CR (continuous reaction),

185–186

IP (Internet Protocol)    319

DevOps, 182–183
Waterfall, 181–182

horizontal scaling, 127
hosting websites in Amazon S3,

116–117
HTTP methods, Amazon CloudFront

support, 139–140
hybrid cloud, 6

I
IaaS (Infrastructure as a Service),

9–10, 12
IAM (Identity and Access

Management), 16
with applications, 56–57
federation, 52–54

LDAP and Active Directory, 56
OpenID, 55
SAML 2.0, 56
web identities, 54–55
when to use, 56

groups, 45–47
adding users, 46
creating, 46–47

identity principals, 39–41
overview, 39
policies, 50–52

creating, 52
types of, 51

roles, 47–50
creating, 49–50
cross-account access, 48–49
federation, 49
service, 48
user-based, 48

users, 42–45
access keys, 28

adding to groups, 46
assigning permissions, 27–28
creating, 26–27, 44–45
credentials, 42–43
MFA (multifactor

authentication), 43–44
iam add-user-to-group command, 46
iam create-group command, 46–47
iam create-policy command, 52
iam create-role command, 49–50
iam create-user command, 44–45
iam get-group command, 46–47
Identity and Access Management.

See IAM (Identity and Access
Management)

identity principals, 39–41
identity providers, 52–54

LDAP and Active Directory, 56
OpenID, 55
SAML 2.0, 56
web identities, 54–55

identity-based policies, 51, 159
Infrastructure as a Service (IaaS),

9–10, 12
inline policies, 51
in-memory assets, 112
Inspector, 17
installing CLI (command-line interface),

29
instance stores, 87–88
instances

creating, 80–83
deploying code to, 208–214
types of, 77–80

Internet connections for VPCs, 72–75
invoking AWS Lambda, 160–161
IoT (Internet of Things) Services, 20
IP (Internet Protocol), 65–66

320    IPsec VPNs

IPsec VPNs, 59
IPv4 (Internet Protocol version 4),

65–66
IPv6 (Internet Protocol version 6),

65–66
isolation, 121
items in Amazon DynamoDB, 131

K
Kinesis, 18
KMS (Key Management Service), 17
KMS integrated encryption, 57

L
Lambda, 15, 76–77, 153–161

code writing in, 153–157
invoking, 160–161
permissions and roles, 157–160

LANs (local area networks), 65
latencies, 68
LDAP, federation, 56
life cycling in Amazon S3, 118
logs

collecting, 269–271
storing, 271–273
structure in Amazon CloudTrail,

277–279
uploading, 273–275

LSI (local secondary index), 133

M
Management Console, 25–29

Amazon CloudWatch section,
262–269

AWS Cloud9 section, 187–196
AWS Lambda section, 153–155

Management services, 20
MariaDB, 125
measured service, 7
Memcached, 138
memory usage, monitoring, 275–277
messaging services, 165

Amazon Simple Notification Service
(SNS), 171–175
subscriptions, 172
topics, 172–175

Amazon Simple Queue Service (SQS),
166–171
dead letter queues, 171
visibility timeout, 167–171

metrics
collecting, 269–271
definition of, 270
storing, 271–273

MFA (multifactor authentication),
43–44

Microsoft SQL, 127
migrating to AWS, 228–230

approaches, 229
AWS Database Migration Service

(DMS), 234–249
AWS Server Migration Service

(SMS), 234
challenges, 230–231
transferring static files, 249–256
VM Import/Export service, 231–234

monitoring
with Amazon CloudTrail, 277–279

log structure, 277–279
security, 277

with Amazon CloudWatch, 261–277
collecting logs and metrics,

269–271
enhanced monitoring scripts,

275–277

percentiles    321

Management Console, 262–269
storing logs and metrics,

271–273
uploading logs, 273–275

with AWS Config, 279
benefits of, 260–261

multifactor authentication (MFA),
43–44

multipart uploads, 250–254
MySQL, 125

N
namespaces, 269–270
NAT (Network Address Translation), 66
Neptune, 129
network addresses, 71–72
network services, 14–15

Amazon Route 53, 93–95
Amazon Virtual Private Cloud (VPC),

71–76
CIDR notation, 71–72
creating VPCs, 72
Internet connections, 72–75
private network connections,

75–76
clients and servers, 66–67
Internet Protocol (IP), 65–66
LANs versus WANs, 65
types of, 70–71

nonrelational databases, 129
in Amazon DynamoDB, 130–137

attributes, 132–133
authentication and access

control, 136–137
capacity planning, 133–134
CLI access, 135–136
global tables, 134

items, 131
secondary indexes, 133
tables, 130–131

caching data, 137–144
Amazon CloudFront, 138–144
Amazon DynamoDB Accelerator

(DAX), 138
Amazon ElastiCache, 138
Memcached, 138
Redis, 138

relational versus, 120–123
NoSQL, 120–123. See also

nonrelational databases

O
objectives of exam, 283–284
on-demand instances, 79
on-demand self-service, 6
OpenID, 55
OpsWorks, 20, 97
Oracle, 127
orchestration, 95–97

AWS CloudFormation, 101–106
AWS Elastic Beanstalk, 97–101

P
PaaS (Platform as a Service), 9–10,

12–13
passwords, strength of, 42–43
Pearson Cert Practice Test Engine,

286–289
accessing, 286–287
customizing, 287–288
Premium Edition, 289
updating, 288

percentiles, 271

322    permissions

permissions
assigning, 27–28, 40–41
in AWS Lambda, 157–160
policies (IAM), 50–52
types of, 41

permissions boundaries, 51
persistent data storage

Amazon Elastic Block Storage (EBS),
88–89

instance stores, 87–88
Pinpoint, 19
pipelines (CI/CD), building, 214–224

automating CI/CD process, 214–220
integrating into code, 220–224

Platform as a Service (PaaS), 9–10,
12–13

Platform services, 17
analytics tools, 18
application services, 19
databases, 18
developer tools, 19
specialized services, 19–20

policies (IAM), 39–40, 50–52
creating, 52
identity-based, 159
for passwords, 42–43
resource-based, 159–160
types of, 51

PostgreSQL, 125
Practice Exam mode, 288
practice exam software. See Pearson

Cert Practice Test Engine
Premium Edition of Pearson Cert

Practice Test Engine, 289
preparing for exam. See exam

preparation
private cloud, 6

private network connections for VPCs,
75–76

public cloud, 6

Q
Quantum Ledger, 129
queueing. See Amazon Simple Queue

Service (SQS)

R
rapid elasticity, 6
RDS (Relational Database Service), 18,

123–124
scaling databases, 127–129
supported database types, 124–127

read offloading, 127
Redis, 138
RedShift, 18
regions, 22
relational databases

Amazon RDS, 123–124
deploying in AWS, 123
nonrelational versus, 120–123
scaling, 127–129
supported database types, 124–127

resiliency, 68–69
resource pooling, 6
resource-based policies, 51, 159–160
RIs (reserved instances), 79
role assumption, 47
roles (IAM), 47–50

in AWS Lambda, 157–160
creating, 49–50
cross-account access, 48–49
federation, 49
service, 48

session policies    323

user-based, 48
users versus, 39

Route 53, 14, 70, 93–95
RRS (S3 Reduced Redundancy Storage)

storage class, 118

S
S3 (Simple Storage Service), 16,

112–120
access control, 113, 119
CLI usage, 114–116
content delivery, 113–114
data life cycling, 118
security, 119–120
as serverless service, 152
storage tiers, 118
transferring static files, 249–254

with multipart uploads, 250–254
with s3 sync command, 249–250

versioning, 117
website hosting, 116–117

S3 Glacier Deep Archive storage class,
118

S3 Glacier storage class, 118
S3 Infrequent Access storage class,

118
S3 One Zone-Infrequent Access

storage class, 118
S3 Reduced Redundancy Storage (RRS)

storage class, 118
S3 Server-Side Encryption (SSE-S3),

119
S3 SSE-C, 120
S3 SSE-KMS, 119
S3 Standard storage class, 118
SaaS (Software as a Service), 9–10
SageMaker, 20

SAM (Serverless Application Model),
152

SAML 2.0, 56
scalability, 89. See also high availability

AWS Auto Scaling, 91–92
scalar type (Amazon DynamoDB), 132
scaling databases, 127–129
SCPs (service control policies), 51
scripts in Amazon CloudWatch,

275–277
SCT (Schema Conversion Tool), 235
SDKs (software development kits),

32–33
secondary indexes in Amazon

DynamoDB, 133
security

in Amazon CloudFront, 141–144
in Amazon CloudTrail, 277
in Amazon S3, 119–120

security and identity services, 16–17
Server Migration Service (SMS), 234
Serverless Application Model (SAM),

152
serverless services, 151–152

automating processing flows, 161–165
Amazon Simple Workflow (SWF),

164–165
AWS Step Functions, 161–164

AWS Lambda, 153–161
code writing in, 153–157
invoking, 160–161
permissions and roles, 157–160

AWS Serverless Application Model
(SAM), 152

servers, 66–67
service control policies (SCPs), 51
service roles (IAM), 48
session policies, 51

324    set type (Amazon DynamoDB)

set type (Amazon DynamoDB),
132–133

sharding, 127, 128–129
shared responsibility model, 12–13
Shield, 71
Simple Queue Service (SQS), 166–171

dead letter queues, 171
visibility timeout, 167–171

Simple Storage Service (S3). See S3
(Simple Storage Service)

Simple Workflow (SWF), 19, 164–165
skeleton files, generating, 32
skill requirements for exam, 283
SMS (Server Migration Service), 234
snapshots, 80–81
Snowball, 16, 255–256
Snowball Edge, 255–256
Snowmobile, 16, 256
SNS (Simple Notification Service),

171–175
subscriptions, 172
topics, 172–175

soft state, 123
Software as a Service (SaaS), 9–10
software development

history of
Agile, 182
CI/CD, 184–185
CR (continuous reaction),

185–186
DevOps, 182–183
Waterfall, 181–182

tools
AWS Cloud9, 186–196
AWS CodeBuild, 198–206
AWS CodeCommit, 196–198
AWS CodeDeploy, 206–214
AWS CodePipeline, 214–224
list of, 186

software development kits (SDKs),
32–33

specialized services, 19–20
spot instances, 79
SQL, 120
SQS (Simple Queue Service), 166–171

dead letter queues, 171
visibility timeout, 167–171

SSE-S3 (S3 Server-Side Encryption),
119

stateful design versus stateless design,
69–70

static assets, 112
in Amazon S3, 112–120

access control, 113, 119
CLI usage, 114–116
content delivery, 113–114
data life cycling, 118
security, 119–120
storage tiers, 118
transferring, 249–254
versioning, 117
website hosting, 116–117

statistics, 271
Step Functions, 161–164
Storage Gateway, 16, 254–255
storage services, 16
storage tiers in Amazon S3, 118
storing

code in AWS CodeCommit, 196–198
data. See data storage
logs and metrics in Amazon

CloudWatch, 271–273
Study mode, 288
subscriptions (Amazon SNS), 172
SWF (Simple Workflow), 19, 164–165
synchronous communication, 67
Systems Manager, 97

writing code    325

T
tables in Amazon DynamoDB,

130–131
templates

in AWS CloudFormation, 102–104
generating, 32

threads, 67
TimeStream, 129
time-to-live (TTL), 140
TLS encryption, 58
topics (Amazon SNS), 172–175
transferring static files, 249–254

AWS DataSync, 254
AWS Snowball, 255–256
AWS Snowball Edge, 255–256
AWS Snowmobile, 256
AWS Storage Gateway, 254–255
with multipart uploads, 250–254
with s3 sync command, 249–250

troubleshooting applications, 279–280
TTL (time-to-live), 140

U
updating Pearson Cert Practice Test

Engine, 288
uploading

to buckets, 114
logs, 273–275

user-based roles (IAM), 48
users (IAM), 42–45

access keys, 28
adding to groups, 46
assigning permissions, 27–28
creating, 26–27, 44–45
credentials, 42–43

MFA (multifactor authentication),
43–44

roles versus, 39

V
versioning in Amazon S3, 117
vertical scaling, 127
Virtual Private Gateway, 14
virtualization, 11
visibility timeout, 167–171
VM Import/Export service, 231–234
volatile memory, 68–69
VPC (Virtual Private Cloud), 14,

70–76
CIDR notation, 71–72
creating VPCs, 72
Internet connections, 72–75
private network connections, 75–76

W
WAF (Web Application Firewall),

17, 71
WANs (wide area networks), 65
Waterfall, 181–182
web identities, 54–55
Web Services. See AWS (Amazon Web

Services)
websites, hosting in Amazon S3,

116–117
WorkDocs, 17
workflows, 164–165
WorkMail, 17
WorkSpaces, 17
writing code

in AWS Cloud9, 186–196
in AWS Lambda, 153–157

	Cover
	Title Page
	Copyright Page
	Figure Credits
	About the Author
	About the Technical Reviewer
	Dedication
	Acknowledgments
	Contents at a Glance
	Contents
	Introduction
	Chapter 4 Storing Data in AWS
	“Do I Know This Already?” Quiz
	Foundation Topics
	Storing Static Assets in AWS
	Amazon S3
	Delivering Content from S3
	Working with S3 in the AWS CLI
	Hosting a Static Website
	Versioning
	S3 Storage Tiers
	Data Life Cycling
	S3 Security

	Relational Versus Nonrelational Databases
	Deploying Relational Databases in AWS
	Amazon RDS
	Supported Database Types
	RDS for MySQL, MariaDB, and PostgreSQL
	Amazon Aurora
	Oracle and Microsoft SQL on RDS
	Scaling Databases

	Handling Nonrelational Data in AWS
	Amazon DynamoDB
	Tables
	Items
	Attributes
	Secondary Indexes
	Planning for DynamoDB Capacity
	Global Tables
	Accessing DynamoDB Through the CLI
	User Authentication and Access Control

	Caching Data in AWS
	Amazon ElastiCache
	Memcached
	Redis
	Amazon DynamoDB Accelerator
	Amazon CloudFront
	CloudFront Security

	Exam Preparation Tasks
	Review All Key Topics
	Define Key Terms
	Q&A

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

