Cert Guide
Learn, prepare, and practice for exam success

AWS Certified
SysOps Administrator Associate
(SOA-C01)
Figure Credits

Figure 1-1 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 1-2 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 1-3 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 1-4 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 1-5 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 1-6 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 1-7 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 1-8 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 2-1 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 2-2 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 2-3 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 2-4 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 2-5 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 2-6 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 2-7 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 2-8 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 3-1 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 3-2 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 3-3 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 3-4 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 3-5 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 3-6 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 4-1 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 4-2 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 4-3 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 4-4 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 4-5 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 5-2 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 5-4 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 5-5 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Figure 5-6 Screenshot of console.aws.amazon.com©Amazon Web Services, Inc.
Contents at a Glance

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>xix</td>
</tr>
<tr>
<td>CHAPTER 1 Monitoring and Reporting</td>
<td>3</td>
</tr>
<tr>
<td>CHAPTER 2 High Availability</td>
<td>39</td>
</tr>
<tr>
<td>CHAPTER 3 Deployment and Provisioning</td>
<td>71</td>
</tr>
<tr>
<td>CHAPTER 4 Storage and Data Management</td>
<td>99</td>
</tr>
<tr>
<td>CHAPTER 5 Security and Compliance</td>
<td>129</td>
</tr>
<tr>
<td>CHAPTER 6 Networking</td>
<td>155</td>
</tr>
<tr>
<td>CHAPTER 7 Automation and Optimization</td>
<td>193</td>
</tr>
<tr>
<td>CHAPTER 8 Final Preparation</td>
<td>225</td>
</tr>
<tr>
<td>Glossary of Key Terms</td>
<td>235</td>
</tr>
<tr>
<td>APPENDIX A Answers to the “Do I Know This Already?” Quizzes and Q&A Sections</td>
<td>241</td>
</tr>
<tr>
<td>APPENDIX B AWS Certified SysOps Administrator Associate (SOA-C01)</td>
<td>247</td>
</tr>
<tr>
<td>Certification Guide Exam Updates</td>
<td>247</td>
</tr>
<tr>
<td>APPENDIX C Select Frequently Asked Questions (FAQs)</td>
<td>249</td>
</tr>
<tr>
<td>Index</td>
<td>271</td>
</tr>
</tbody>
</table>

Online Only Elements

- APPENDIX D Study Planner
This page intentionally left blank
Table of Contents

Introduction xix

Chapter 1 Monitoring and Reporting 3

“Do I Know This Already?” Quiz 4
Performance and Availability Metrics 7
Accessing CloudWatch in AWS 7
 Amazon CloudWatch Console 7
 AWS CLI 7
 CloudWatch Query API 11
 AWS SDKs 13
Services Related to CloudWatch 13
Viewing Key CloudWatch Metrics for Various Services 15
Create and Maintain Metrics and Alarms 16
 Using CloudWatch Dashboards 17
 Using CloudWatch Metrics 21
 Publishing Your Own Metrics 24
 Using CloudWatch Alarms 26
Remediation Based on Metrics 31
 Services That Publish Metrics to CloudWatch 31
 Authentication and Access Control 34
 Remediation of Issues Using CloudWatch: An Example 35
Review All Key Topics 37
Define Key Terms 37
Q&A 37

Chapter 2 High Availability 39

“Do I Know This Already?” Quiz 39
Implement Scalability and Elasticity 42
 AWS Auto Scaling 42
Highly Available Versus Reliable and Resilient Environments 46
 Limit Management 48
 Networking 48
 High Availability for Applications 50
 SQS 52
Chapter 3 Deployment and Provisioning 71

"Do I Know This Already?" Quiz 71

Tools and Best Practices 74

The Importance of Automation 74
Deployment Strategies 75
Provisioning Infrastructure 75
Deploying Applications 75
Configuration Management 75
Tagging 76
Custom Variables 76
Baking Amazon Machine Images (AMI) 77
Logging 78
Instance Profiles 78
Scalability Capabilities 79
Monitoring 80
Continuous Deployment 80
Elastic Beanstalk 81
Elastic Container Service 83
OpsWorks Stacks 84
CloudFormation 86
AWS CLI 87
AWS Systems Manager 87
Deploying a REST API in API Gateway 88
Deploying Lambda Applications 91
Elastic Load Balancers 92
Chapter 4: Storage and Data Management

“Do I Know This Already?” Quiz

Object and Block Storage
- S3
- S3 Storage Classes
- S3 Versioning
- MFA Delete
- Lifecycle Policies
- EBS

Other Storage Technologies
- EFS
- AMIs
- AWS Storage Gateway
- Snowball
- Snowball Edge
- Athena

Storage Encryption
- AWS KMS
- CloudHSM
- S3 Client-Side Encryption
- S3 Server-Side Encryption
- EBS Volume Encryption
- Snapshots

Review All Key Topics
Define Key Terms
Q&A
Chapter 5 Security and Compliance 129

“Do I Know This Already?” Quiz 129

The Shared Responsibility Model 132
- Amazon Responsibilities 133
- Client Responsibilities 134

Security Policies in AWS 135
- DDoS Mitigation 135
- AWS Shield Standard 137
- AWS Shield Advanced 137

Data Encryption 138

Inventory and Configuration 139

Monitoring and Logging 139

Penetration Testing 140

Access Controls 140
- Infrastructure Security 141
- Identity and Access Management 141
- Best Practices with IAM 148

Review All Key Topics 152

Chapter 6 Networking 155

“Do I Know This Already?” Quiz 155

AWS Networking Features 157
- AWS Global Infrastructure 157
- Regions 157
- Availability Zones 159

Edge Locations and CloudFront 160

Virtual Private Cloud 163

The Default VPC 165

Networking Interfaces 166

Route Tables 168

Internet Gateways 170

Egress-Only Internet Gateways 171
DHCP Option Sets 172
DNS 174
Elastic IP Addresses 174
VPC Endpoints 175
Interface Endpoints (Powered by AWS PrivateLink) 176
Gateway Endpoints 176
NAT 177
AWS CLI 177
AWS Connectivity Services 178
Network to Amazon VPC 178
Hardware VPN 178
Direct Connect 180
Direct Connect and VPN 181
VPN CloudHub 182
Software VPN 183
Amazon VPC to Amazon VPC 184
VPC Peering 185
Software VPN 186
Software-to-Hardware VPN 186
Hardware VPN 186
Direct Connect 187
Internal User to Amazon VPC 187
Network Troubleshooting 187
Network Troubleshooting Tools 188
VPC Flow Logs 188
Route 53 Record Routing Policies 189
Review All Key Topics 190
Complete Tables and Lists from Memory 190
Define Key Terms 190
Q&A 191

Chapter 7 Automation and Optimization 193
“Do I Know This Already?” Quiz 193
Managing Resource Utilization 196
Prepare for Operational Excellence 197
Operate to Achieve Operational Excellence 200
Evolve for Operational Excellence 202
Best Practices 205

Compute 206
Storage 207
Database 208
Network 209
Trade-Offs 210
Key AWS Services 211
Monitoring 212

Cost Optimization Strategies 213
Best Practices 213
Cost Monitoring 215

Deploy Automation 218
Automation Tools and Techniques 218

CodePipeline 218
CodeBuild 218
CodeDeploy 218
CodeStar 219
Elastic Container Service 219
Lambda 219
CloudFormation 220
OpsWorks 220
Systems Manager 220
AWS Config 221
CloudWatch 221
X-Ray 221
CloudTrail 222
Elastic Beanstalk 222
CodeCommit 222
Automation Best Practices 222
Review All Key Topics 223
Define Key Terms 224
Q&A 224

Chapter 8 Final Preparation 225
Exam Information 225
Getting Ready 228
Tools for Final Preparation 229
Pearson Cert Practice Test Engine and Questions on the Website 229
Accessing the Pearson Test Prep Software Online 229
Accessing the Pearson Test Prep Software Offline 230
Customizing Your Exams 231
Updating Your Exams 232
Premium Edition 232
Chapter-Ending Review Tools 233
Suggested Plan for Final Review/Study 233
Summary 233
Glossary of Key Terms 235

APPENDIX A Answers to the “Do I Know This Already?” Quizzes and Q&A Sections 241

APPENDIX B AWS Certified SysOps Administrator Associate (SOA-C01) Certification Guide Exam Updates 247

APPENDIX C Select Frequently Asked Questions (FAQs) 249
Index 271
About the Author

Anthony Sequeira, CCIE No. 15626, is a seasoned trainer and author regarding various levels and tracks of Cisco, Microsoft, and AWS certifications. Anthony formally began his career in the information technology industry in 1994 with IBM in Tampa, Florida. He quickly formed his own computer consultancy, Computer Solutions, and then discovered his true passion—teaching and writing about information technologies.

Anthony joined Mastering Computers in 1996 and lectured to massive audiences around the world about the latest in computer technologies. Mastering Computers became the revolutionary online training company KnowledgeNet, and Anthony trained there for many years.

Anthony is currently pursuing his second CCIE in the area of Cisco Data Center! Anthony is happier than he has ever been in his career as a freelance author and trainer. Keep up with his latest projects at AJSnetworking.com.
Dedication

Acknowledgments

This manuscript was made truly great by the incredible technical review of Ryan Dymek. Sometimes I think he might have invented AWS.

I would also like to express my gratitude to Chris Cleveland, the development editor of this book. I was so incredibly lucky to work with him again on this text. Like Ryan, he made this book several cuts above the rest.

Finally, thanks you so much to Paul Carlstroem. Paul very patiently made this book a reality.
About the Technical Reviewer

Ryan Dymek has been working with Amazon Web Services (AWS) for more than 9 years and holds all nine AWS certifications as well as various Google Cloud Platform (GCP) certifications. Ryan trains and advises some of the largest companies in the world on sound architectural practices in cloud strategy and DevOps principles. While working with business leaders, developers, and engineers, Ryan bridges the gap between business and technology, maintaining the understanding and skills required to be able to perform at a deep technical level. Ryan runs his own cloud consulting practice, advising more than 20 companies on the Fortune 500 list, and has helped many startups find their way in the cloud.

In addition to cloud and technical acumen, Ryan is a certified business coach personally trained by John Maxwell. He uses these professional skills not only to advise companies on best cloud practices but also on how to align with a business’s needs and culture, making confident business and technical decisions and cultivating a transformation into DevOps.
We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your opinion and want to know what we’re doing right, what we could do better, what areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name and email address. We will carefully review your comments and share them with the author and editors who worked on the book.

Email: community@informit.com
Introduction

The AWS Certified SysOps Administrator–Associate is a cloud-related certification that tests a candidate’s ability to operate effective solutions by calling upon the most popular aspects of Amazon Web Services. The SysOps Administrator candidates must demonstrate their skills on how to effectively implement a sophisticated design that saves costs, is secure, and, perhaps most importantly, operates with excellence. Candidates are also required to know the most important facts regarding various services and their capabilities.

The AWS Certified SysOps Administrator–Associate is an Associate-level cloud career certification. This certification is an excellent second step after the achievement of the AWS Certified Solutions Architect–Associate certification. For some students, this certification might actually be their third step. This is due to the fact they may have started with the AWS Certified Cloud Practitioner exam, which is an entry-level exam considered by those who arrive to the study of AWS with little to no prior experience.

Following the SysOps Associate certification, AWS offers a Professional level of certification for the SysOps Administrator.

AWS also offers certifications you might be interested in for different tracks. For example, there is a Developer track for AWS that also includes Associate and Professional levels. There are also Specialty certifications that Amazon will use to deep-dive into many different areas such as security and advanced networking.

NOTE The AWS Certified SysOps Administrator–Associate certification is globally recognized and does an excellent job of demonstrating that the holder has knowledge and skills across a broad range of AWS topics.

The Goals of the AWS Certified SysOps Administrator–Associate Certification

The AWS Certified SysOps Administrator–Associate certification is intended for individuals who have technical expertise in deployment, management, and operations on AWS. It seeks to validate that the candidate can do the following:

- Deploy, manage, and operate scalable, highly available, and fault tolerant systems on AWS.
- Implement and control the flow of data to and from AWS.
- Select the appropriate AWS service based on compute, data, or security requirements.
Identify appropriate use of AWS operational best practices.

Estimate AWS usage costs and identify operational cost control mechanisms.

Migrate on-premises workloads to AWS.

Recommended Prerequisite Skills

While this text provides you with the information required to pass this exam, Amazon considers ideal candidates to be those that possess the following:

- Minimum of one year of hands-on experience with AWS
- Experience managing/operating systems on AWS
- Understanding of the AWS tenets—architecting for the cloud
- Hands-on experience with the AWS CLI and SDKs/API tools
- Understanding of network technologies as they relate to AWS
- Understanding of security concepts with hands-on experience in implementing security controls and compliance requirements

The Exam Objectives (Domains)

The AWS Certified SysOps Administrator–Associate exam is broken down into five major domains. The contents of this book cover each of the domains and the sub-topics included in them, as illustrated in the following descriptions.

The following table breaks down each of the domains represented in the exam.

<table>
<thead>
<tr>
<th>Domain</th>
<th>Percentage of Representation in Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Monitoring and Reporting</td>
<td>22%</td>
</tr>
<tr>
<td>2: High Availability</td>
<td>8%</td>
</tr>
<tr>
<td>3: Deployment and Provisioning</td>
<td>14%</td>
</tr>
<tr>
<td>4: Storage and Data Management</td>
<td>12%</td>
</tr>
<tr>
<td>5: Security and Compliance</td>
<td>18%</td>
</tr>
<tr>
<td>6: Networking</td>
<td>14%</td>
</tr>
<tr>
<td>7: Automation and Optimization</td>
<td>12%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>
Here are the details of each domain:

Domain 1: Monitoring and Reporting: This domain is covered primarily in Chapter 1.

1.1 Create and maintain metrics and alarms utilizing AWS monitoring services
1.2 Recognize and differentiate performance and availability metrics
1.3 Perform the steps necessary to remediate based on performance and availability metrics

Domain 2: High Availability: This domain is covered primarily in Chapter 2.

2.1 Implement scalability and elasticity based on use case
2.2 Recognize and differentiate highly available and resilient environments on AWS

Domain 3: Deployment and Provisioning: This domain is covered primarily in Chapter 3.

3.1 Identify and execute steps required to provision cloud resources
3.2 Identify and remediate deployment issues

Domain 4: Storage and Data Management: This domain is covered primarily in Chapter 4.

4.1 Create and manage data retention
4.2 Identify and implement data protection, encryption, and capacity planning needs

Domain 5: Security and Compliance: This domain is covered primarily in Chapter 5.

5.1 Implement and manage security policies on AWS
5.2 Implement access controls when using AWS
5.3 Differentiate between the roles and responsibility within the shared responsibility model

Domain 6: Networking: This domain is covered primarily in Chapter 6.

6.1 Apply AWS networking features
6.2 Implement connectivity services of AWS
6.3 Gather and interpret relevant information for network troubleshooting
Domain 7: Automation and Optimization: This domain is covered primarily in Chapter 7.

7.1 Use AWS services and features to manage and assess resource utilization
7.2 Employ cost-optimization strategies for efficient resource utilization
7.3 Automate manual or repeatable process to minimize management overhead

Steps to Becoming an AWS Certified SysOps Administrator–Associate

To become an AWS Certified SysOps Administrator–Associate, a test candidate must meet certain prerequisites and follow specific procedures. Test candidates must qualify for the exam and sign up for the exam.

Signing Up for the Exam

The steps required to sign up for the AWS Certified SysOps Administrator–Associate are as follows:

2. Complete the examination agreement, attesting to the truth of your assertions regarding professional experience and legally committing to the adherence of the testing policies.

3. Submit the examination fee.

Facts About the Exam

The exam is a computer-based test. The exam consists of multiple-choice questions only. You must bring a government-issued identification card. No other forms of ID will be accepted.

TIP Refer to the AWS Certification site at https://aws.amazon.com/certification/ for more information regarding this, and other, AWS certifications. I am also in the process of building a simple hub site for everything AWS certification related at awscerthub.com. This site is made up of 100 percent AWS solutions, of course!
About the AWS Certified SysOps Administrator–Associate Certification Guide

This book maps directly to the topic areas of the exam and uses a number of features to help you understand the topics and prepare for the exam.

Objectives and Methods

This book uses several key methodologies to help you discover the exam topics on which you need more review, to help you fully understand and remember those details, and to help you prove to yourself that you have retained your knowledge of those topics. This book does not try to help you pass the exam only by memorization; it seeks to help you to truly learn and understand the topics. This book is designed to help you pass the AWS Certified SysOps Administrator–Associate (SOA-C01) exam by using the following methods:

- Helping you discover which exam topics you have not mastered
- Providing explanations and information to fill in your knowledge gaps
- Supplying exercises that enhance your ability to recall and deduce the answers to test questions
- Providing practice exercises on the topics and the testing process via test questions on the companion website

Book Features

To help you customize your study time using this book, the core chapters have several features that help you make the best use of your time:

- Foundation Topics: These are the core sections of each chapter. They explain the concepts for the topics in that chapter.
- Exam Preparation Tasks: After the “Foundation Topics” section of each chapter, the “Exam Preparation Tasks” section lists a series of study activities that you should do at the end of the chapter:
 - Review All Key Topics: The Key Topic icon appears next to the most important items in the “Foundation Topics” section of the chapter. The Review All Key Topics activity lists the key topics from the chapter, along with their page numbers. Although the contents of the entire chapter could be on the exam, you should definitely know the information listed in each key topic, so you should review these.
Define Key Terms: Although the SysOps - Associate exam may be unlikely to ask a question such as “Define this term,” the exam does require that you learn and know a lot of AWS-related cloud terminology. This section lists the most important terms from the chapter, asking you to write a short definition and compare your answer to the glossary at the end of the book.

Review Questions: Confirm that you understand the content that you just covered by answering these questions and reading the answer explanations.

Web-based practice exam: The companion website includes the Pearson Cert Practice Test engine that allows you to take practice exam questions. Use it to prepare with a sample exam and to pinpoint topics where you need more study.

How This Book Is Organized
This book contains seven core chapters—Chapters 1 through 7. Chapter 8 includes preparation tips and suggestions for how to approach the exam. Each core chapter covers a subset of the topics on the AWS Certified SysOps Administrator–Associate (SOA-C01) exam. The core chapters map to the AWS Certified SysOps Administrator–Associate (SOA-C01) exam topic areas and cover the concepts and technologies that you will encounter on the exam.
It is amazing just how many engineers are often scared to move to the cloud due to security reasons. In all actuality, there are many reasons to move there that might encourage a more secure infrastructure. Just think, because Amazon can afford the latest in physical security measures at their data centers, you will enjoy a level of physical security that might not be possible in your own enterprise environment.

This chapter focuses on important security topics you should know and know well for AWS. This includes a look at the Shared Responsibility Model as well as an exploration of key security policies and access controls available to you.

“Do I Know This Already?” Quiz

The “Do I Know This Already?” quiz allows you to assess if you should read the entire chapter. Table 5-1 lists the major headings in this chapter and the “Do I Know This Already?” quiz questions covering the material in those headings so you can assess your knowledge of these specific areas. The answers to the “Do I Know This Already?” quiz appear in Appendix A.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Shared Responsibility Model</td>
<td>1-2</td>
</tr>
<tr>
<td>Security Policies in AWS</td>
<td>3-4</td>
</tr>
<tr>
<td>Access Controls</td>
<td>5-6</td>
</tr>
</tbody>
</table>

CAUTION The goal of self-assessment is to gauge your mastery of the topics in this chapter. If you do not know the answer to a question or are only partially sure of the answer, you should mark that question as wrong for purposes of the self-assessment. Giving yourself credit for an answer you correctly guess skews your self-assessment results and might provide you with a false sense of security.
1. Who is responsible for creating users, groups, and roles in IAM for use in an AWS architecture?
 a. The AWS customer
 b. AWS staff
 c. The managed service provider
 d. There are no users, roles, or groups in IAM

2. Who is responsible for securing the hypervisor in use in AWS?
 a. AWS staff
 b. The client of AWS
 c. The managed service provider
 d. There is no hypervisor in use in AWS

3. You would like to add DDoS protection against your EC2 instances and your Elastic Load Balancing services. What service should you use?
 a. AWS CloudIPS
 b. AWS Shield Advanced
 c. AWS Cognito
 d. AWS Shield Standard

4. What credentials would you require in order to submit a penetration testing request?
 a. AWSFullAdmin
 b. Root account
 c. AWSIAMAdmin
 d. AWS Region Admin

5. What is the IAM component that is often ideal for allowing EC2 instances to other AWS services and resources?
 a. Groups
 b. Users
 c. Clusters
 d. Roles
6. When creating a user account in AWS IAM, what are the options for access type? (Choose two.)
 a. AWS Management Console access
 b. Restore
 c. Programmatic access
 d. CLI only
The Shared Responsibility Model

The AWS Shared Responsibility Model is very simple. It divides the security responsibilities between two parties—the AWS customer (you) and Amazon (AWS). The fact that you are no longer responsible for a massive portion of the security required for scalable data centers is a huge advantage. You can leverage the massive budgets of Amazon and their intense expertise.

The next two sections of this chapter provide many examples of responsibilities in each part of the model. But for now, realize the Amazon responsibilities include the host operating system and virtualization layer down. From there, Amazon is also responsible for the physical security of the facilities in which the service operates. It is your (the customer’s) responsibility to secure the guest operating system (including updates and security patches), application software, and the AWS network security group firewall. Be aware that the client responsibilities will vary depending on which services the client chooses to use. The client responsibilities further vary based on the level of integration of AWS services consumed and their IT infrastructure. Laws and regulations that must be followed will also vary.

As shown in Figure 5-1, AWS is considered “Security of the Cloud”, and the customer’s responsibility is considered “Security in the Cloud.”

Figure 5-1 The AWS Shared Responsibility Model
In addition to partitioning the operational security concerns between the AWS client and AWS themselves, the Shared Responsibility Model applies to IT controls that are in use. Amazon categorizes these controls into three categories:

- **Inherited controls**: These are security controls that the customer fully inherits from AWS. Perfect examples are the physical and environmental security controls used by Amazon.

- **Shared controls**: These refer to controls that apply to both the infrastructure layer of Amazon and the customer responsibilities. Note that these shared controls apply to each domain in completely separate contexts or perspectives. For example, AWS provides the requirements (through controls) for the infrastructure. Then clients provide their own control implementation within their use of the services. Consider Identity and Access Management (IAM). The IAM service must be secured, meet regulatory compliance, and function as intended, while the customer should create well-crafted policies.

- **Customer-specific controls**: These are security controls that the customer is solely responsible for. This varies based on the services they selected, of course. A great example would be when you apply specific patches to one of your operating systems on an EC2 instance.

Amazon Responsibilities

Remember, Amazon is considered responsible for security of the cloud. This means that AWS is responsible for protecting the infrastructure that runs the services that customers select. This encompasses the hardware and software required to power the AWS service, including the networking and facilities used.

Specific Amazon responsibilities would include the following:

- Cloud software, including compute, storage, networking, and database software
- Hardware
- AWS Global Infrastructure (Regions, Availability Zones, Edge Locations)
Client Responsibilities

Remember, we consider the client responsible for security *in* the cloud. The specific services selected will cause variations in the client responsibilities. For example, if you are relying heavily on S3 for storage, you will be responsible for knowledge and proper configuration of the security permissions for your resources. Another example would be if the client chooses to use EC2 and run an operating system like Windows Server 2016. The client will be required to keep the operating system updated and patched. The client is also responsible for the application software required on this guest operating system. In addition, the client is responsible for the appropriate security group configuration for the EC2 instance.

Specific examples of client responsibilities would include the following:

- Customer data
- Platform, applications, Identity and Access Management (IAM)
- Guest operating systems
- Network and firewall configurations
- Client-side data encryption
- Server-side encryption (file system and or data)
- Networking traffic protection (encryption, integrity, and identity)

Figure 5-2 shows an example of a customer checking the security groups settings that would apply to an EC2 instance. This is a perfect example of client responsibilities. AWS is responsible for making sure the security group functions as intended, but it is the client’s responsibility to configure it correctly.
Security Policies in AWS

There are common security policies and practices that you should be aware of when operating AWS solutions. This section of the chapter covers some of the more important ones.

DDoS Mitigation

The distributed denial of service (DDoS) attack is one to be feared. Famous examples of this attack include stories about how huge chunks of the entire Internet itself were made unavailable for relatively long periods of time. Just like with a regular old denial of service (DoS) attack, the goal is resource exhaustion so that disruption is in place for legitimate traffic that is attempting to flow or access a service or resource. Having many systems (potentially) participate in the attack...
DDoS (and DoS) attacks can make the attack that much more effective due to the increase in frequency of the communications.

It is worth restating for clarity—there are two main and related objectives behind DDoS (and DoS):

- Exhaust resources on the server side of the computing model.
- Once exhaustion occurs, disrupt desired traffic flows or requests.

NOTE At the most precise level, DDoS (and DoS) attacks can be tricky to detect. That is because they might be made up of “normal” requests that would be transpiring against your AWS system anyway. So, it is often imperative to analyze the frequency of such requests in order to correlate the data properly and recognize that an attack is actually taking place. In fact, some of the best DDoS attacks may not be possible to detect at all beyond the simple increase in traffic flows. Thus, if all other anti-DDoS measures have been implemented, your last measure might be to simply “out-scale” the attack. This is a unique advantage to the cloud since it is often not possible in the traditional on-prem data center.

We often use the Open Systems Interconnection (OSI) model in order to help us think about and mitigate DDoS attacks. Figure 5-3 shows the OSI model.

![Figure 5-3 The OSI Model](image)

DDoS attacks that tend to focus on the lower layers (1 through 4) of the OSI model are often called *infrastructure attacks*, whereas upper layers that come under attack are referred to as *application-layer* attacks. An example of a Layer 4 attack might be a
SYN flood or an amplified UDP reflection attack. An attack at Layer 7 (Application) might be an HTTP flood.

Let’s examine one of these in more detail. In an amplified UDP reflection attack, the attacker uses the connectionless UDP protocol to ask a server for some piece of information. The attacker forges the packet header so that it contains a different sender address. The machine that receives these “spoofed” packets will send a response back to the forged source address.

ICMP, NTP, DNS, DHCP, TFTP, and many more are all examples of UDP services that, if left unchecked, can be abused. Depending on the command sent and data requested, the amplification ratio can range from 2x to over 200x. This is to say that the attacker sends a small request to the vulnerable server, and the server sends a much larger response to the target system.

Fortunately, AWS knows of these many potentially devastating DDoS attacks and includes some powerful protections for us for free, as well as ensures these protections are in an always-on state.

AWS Shield Standard

If you are using the AWS services of Route 53 (DNS) and CloudFront (CDN), you are already taking advantage of the free DDoS prevention methods of AWS Shield Standard. AWS engages in powerful protection methods for these services that include powerful network flow monitoring as well as protection mechanisms against Layer 3 and Layer 4 attacks. For example, the amplified UDP reflection attack described previously should be blocked thanks to the default behaviors of AWS Shield Standard.

NOTE These protections do require that you have configured your DNS in Route 53 and your CloudFront services correctly. Incorrectly configuring these services might render the security protections useless, of course.

AWS Shield Advanced

While it is not free like the AWS Shield Standard’s functionality, you might be compelled to take advantage of the more advanced version, AWS Shield Advanced. This is most commonly acquired through an Enterprise-level support agreement with AWS.
As you might guess, AWS Shield Advanced has the ability to protect a wider range of services than the standard version can. Here are some of the services that are provided protection by the suite of features:

- EC2
- Elastic Load Balancing
- Elastic IP Addressing
- CloudFront
- Route 53
- AWS Global Accelerator

Not only do you enjoy a wider range of services that are protected, your features expand as well, including the following:

- Advanced analysis
- Resource baselining and trending
- Protection against Application (Layer 7) attacks
- AWS DDoS Response Team (DRT)
- DDoS Cost Protection
- Real-time Threat Dashboard access

As if this was not enough, if you use AWS Shield Advanced to protect your EC2 instances, during an attack AWS Shield Advanced automatically deploys your VPC network ACLs to the border of the AWS network. This allows the security suite to provide protection against larger DDoS events.

Data Encryption

It is well known that encrypting your data at rest is often necessary to obtain the level of security you require. Fortunately, AWS not only supports this, but provides many tools to allow you a variety of protections in a variety of configurations. Data encryption capabilities include the following:

- Data encryption capabilities available in AWS storage and database services, such as EBS, S3, Glacier, Oracle RDS, SQL Server RDS, and Redshift
- Flexible key management options, including AWS Key Management Service; allowing you to choose whether to have AWS manage the encryption keys or to have you keep complete control over your keys
Chapter 5: Security and Compliance

- Encrypted message queues for the transmission of sensitive data using server-side encryption (SSE) for Amazon SQS
- Dedicated, hardware-based cryptographic key storage using AWS CloudHSM, allowing you to satisfy compliance requirements

In addition, AWS provides APIs for you to integrate encryption and data protection with any of the services you develop or deploy. For more information on data encryption, see Chapter 4, “Storage and Data Management.”

Inventory and Configuration

One of the legitimate concerns when moving to a cloud service like AWS is the flexibility and ease of resource creation getting out of hand. You can have inventory and the configuration of devices become unmanageable. AWS has tools such as the following to assist with this potential problem:

- Amazon Inspector is a security assessment service that automatically checks applications for vulnerabilities or deviations from best practices. This inspection includes impacted networks, OS, and attached storage.
- Deployment tools to manage the creation and decommissioning of AWS resources according to organization standards.
- Inventory and configuration management tools, including AWS Config, that identify AWS resources and then track and manage changes to those resources over time.
- Template definition and management tools, including AWS CloudFormation to create standard, preconfigured environments; for more information on CloudFormation, see Chapter 7, “Automation and Optimization.”

Monitoring and Logging

“Track everything” is the war cry for many AWS engineers with concerns about cloud security. AWS provides tools for monitoring and logging that include the following:

- Deep visibility into API calls through CloudTrail, including details on the calls themselves
- Log aggregation options, streamlining investigations, and compliance reporting
Alert notifications through CloudWatch when specific events occur or thresholds are exceeded

Consistent use of these tools can improve the security posture, and reduce the risk profile, of your AWS solutions.

Penetration Testing

In order to perform penetration testing to or originating from any AWS resources, you must complete a request form to obtain permissions from Amazon.

NOTE AWS does now permit penetration testing within many services without the formal request process. For purposes of your exam, this recent fact might not be indicated.

There are several important things to note about penetration testing requests. As previously mentioned, there have been modifications to some of these parameters, but your exam might not reflect the current changes:

■ To request permission, you must be logged in to the AWS portal using the root credentials associated with the instances you wish to test; otherwise, the form will not pre-populate correctly. If you have hired a third party to conduct your testing, Amazon suggests that you complete the form and then notify your third party when approvals are granted.

■ You are only permitted testing of EC2 and RDS instances that you own. Tests against any other AWS services or AWS-owned resources are prohibited.

■ Amazon does not permit testing small or micro RDS instance types; testing of m1.small or t1.micro EC2 instance types is not permitted.

Access Controls

AWS solutions must provide secure access by clients and providers of the technologies. This is accomplished using a robust set of technologies.
Infrastructure Security

Amazon provides security capabilities and services to increase privacy and control network access. These include the following:

- Network firewalls built into Virtual Private Cloud (VPC), and web application firewall capabilities in AWS WAF, let you create private networks and control access to your instances and applications.
- Encryption in transit with TLS across all services.
- Connectivity options that enable private, or dedicated, connections from your office or on-premises environment.

Identity and Access Management

IAM is a cloud service that helps you securely control access to AWS resources. You use IAM to control who is authenticated and authorized to use resources.

Upon AWS account creation, you begin with a single sign-in that has complete access to all AWS services in the account. This sign-in is called the AWS account root user. You access AWS with the account by signing in with the email address and password you used at sign-up.

Amazon strongly recommends that you do not use the root account for your everyday tasks, even the administrative ones. Instead, follow the best practice of using the root account only to create your first IAM user. Then securely lock away the root account credentials and use them to perform only a few account and service management tasks.

IAM permits extremely fine-grained permissions. For example, you might grant someone read access to only a single bucket of objects in S3. Or you might use IAM to control specific calls (GetObject) against a single object stored in S3. Perhaps you examine a particular time/date range or the source IP address of the call.

Other features of IAM include the following:

- **Access from service to resource in AWS:** For example, you can have an application running on an EC2 instance access an S3 bucket. As you will learn later in this chapter, we often use roles for such access.
- **Multi-factor authentication (MFA):** Permitting access through a password and a code from an approved device, thus strengthening security greatly. Figure 5-4 shows the configuration area for MFA in the IAM Management Console.
Identity federation: Users who have already authenticated with another service can gain temporary access to resources and services in your account.

Identity information for assurance: CloudTrail can trace and log all API activity against every service and resource in your account. Figure 5-5 shows the CloudTrail Dashboard in AWS.
PCI DSS compliance: IAM supports the processing, storage, and transmission of credit card data by a merchant or service provider, and it has been validated as being compliant with the Payment Card Industry (PCI) Data Security Standard (DSS).

Integration: IAM integrates with every major service of AWS.

Eventually consistent: Amazon replicates important data around the world with their Global Infrastructure to help ensure high availability (HA). As a result, data in some locations might lag others. Therefore, with IAM, consider implementing your changes for IAM first, and then verify full replication before working with dependent service deployments.

Always free: Whereas some services of AWS can be used for one year free (using the Free Tier account), IAM services remain free for the life of your account.

Accessibility options: You can access the components of IAM in a variety of ways, including the AWS Management Console, AWS command-line tools, AWS SDKs, and IAM HTTPS API.
It is critical that you understand the main identities you'll use in IAM. Realize that there is much more to IAM than these identities, but at this point in your AWS education, we are covering the main foundational components.

Remember, an account that supersedes the IAM service is root. As stated earlier in this chapter, this account should rarely be used.

Identities in IAM consist of the following:

- **Users**: These are the entities you create in AWS to represent the people or services that use the IAM user to interact with AWS. When you create an IAM user, you grant it permissions by making it a member of a group. You assign appropriate permission policies to the group. This is the recommended approach from Amazon. Note that you could directly attaching policies to the user, but this is not recommended because it is not a scalable approach and could make security management more difficult. You can also clone the permissions of an existing IAM user. This approach automatically makes the new user a member of the same groups and attaches all the same policies. Figure 5-6 shows a user in AWS.

![User in AWS IAM](image)
Groups: A collection of IAM users. You can use groups to specify permissions for a collection of users, which can make those permissions easier to manage for those users.

Roles: These are similar to user accounts, but they do not have credentials (password or access keys) associated with them.

In the following steps, we create a group that provides full access to S3 in AWS and then create a user, adding it to this group:

Step 1. Navigate to the AWS Management Console and then search for the IAM service.

Step 2. Select Groups in the left navigation pane. Figure 5-7 shows the Groups console.

![Groups in IAM](image_url)
Step 3. Click the Create New Group button.

Step 4. Set the Group Name and click Next Step.

Step 5. In the Attach Policy page (shown in Figure 5-8), enter S3 in the Filter option.

Step 6. Check AmazonS3FullAccess and click Next Step.

Step 7. Review the configuration and click Create Group.

Step 8. Click the Users option in the left navigation pane.

Step 9. Click the Add User button.

Step 10. Provide the username and then allow both types of access to the accounts. Leave the defaults in place regarding the password. Figure 5-9 shows this page.
Step 11. Click **Next: Permissions**.

Step 12. Add the user to the group you created earlier in these steps. Click **Next: Tags**.

Step 13. Click **Next: Review**. Remember, adding tags is an excellent idea to indicate various identifiers, but here in a lab environment, we will just skip it.

Step 14. Review your settings and click **Create User**.
Best Practices with IAM

While IAM in AWS provides many exciting capabilities, its complexity can cause organizations to make fatal flaws when working with the service. This is why following best practices is critical.

You should consider following most (if not all) of these recommendations.

- **Care of the root account**: The root account for your AWS implementation should be used infrequently. The current best practice is to delete any access keys associated with root. Root should never have automation keys. You should never automate against root, and the only reason to have keys is for automation. Root should have only a login (email address and password) and physical MFA. Physical MFA is the best practice because you do not want a single person with root access on the phone; it should be a separate hardware device locked up and not used except in an emergency. As you no doubt realize, MFA for root on a phone, which could be lost, could be obtained easily. Some companies have one team manage the password for root, while another team manages the physical MFA device. This ensures checks and balances to gain access to root. Exceptions to these best practices may be in the case of organizations where new AWS accounts are managed via automation.

- **Create individual IAM users**: Because you do not want to use root for your AWS implementation, it is critical that you create additional users. This would include for yourself so that you are not required to use root. In larger organizations, you will have a large team working on AWS. You must create multiple users for your staff to ensure that everyone is authenticating and being authorized for only those resources and permissions that are required for members to do their jobs. You will most likely have one user in IAM for every person who requires administrative access.

 NOTE This recommendation is assuming no federation is in place. Some companies larger than just a few IT staff will typically use Active Directory federation and may actually have no IAM users at all, but rather simply a SAML trust and use of roles.

- **Use groups to assign permissions to IAM users**: Even though it might seem silly, if you are the sole administrator of your AWS implementation, you will want to create a group and assign permissions to this group. Why? If you do need to grow and hire another administrator, you can just add that user account to the group you created. We always want our AWS implementations
to scale, and using groups helps ensure this. It should also be noted that applying permissions to groups instead of individual user accounts will help eliminate assignment errors, as we are minimizing the number of permissions we must grant.

- **Use AWS-defined policies for permissions**: Amazon was very kind to us. They defined a ton of policies we can easily leverage when working with IAM. What’s more, AWS maintains and updates these policies as they introduce new services and API operations. The policies that AWS created for us are defined around the most common tasks we need to perform. These make up an excellent starting place for your own policies. You can copy a given policy and customize it to make it even more secure. Oftentimes, you will find the default defined policies are too broad with access.

- **Grant least privilege**: Create the IAM user identity for your AWS user that provides the least privileges they require. That way, if an attacker does manage to capture security credentials and begins acting as that user in the AWS architecture, he can do a limited amount of damage.

- **Review IAM permissions**: You should not use a “set and forget” policy when it comes to your permissions in IAM. You should consistently review the permissions level assigned to ensure that you are following least privilege concepts and that you are still granting those permissions to the groups that require them. There is even a policy summary option within IAM to facilitate this.

- **Always configure a strong password policy for your users**: It is a sad fact of human nature: Your users will tend to be lazy about setting (and changing) their passwords. They will tend to use simple passwords that are easy for them to remember. Unfortunately, these simple passwords are also easy to crack. Help your security by setting a strong password policy that your users must adhere to. Figure 5-10 shows the configuration of a password policy for user accounts in the IAM Management Console.
Enable multi-factor authentication for privileged user accounts: Of course, you do this for the seldom-used AWS root account, but you should also protect key admin accounts you have created in AWS. Using multi-factor authentication (MFA) ensures the user knows something (like a password) and also possesses something (like a smartphone). With most AWS environments today, MFA is considered mandatory.

Use roles: You should consider the use of roles in AWS when you have applications or services running on EC2 instances that need to access other services or resources.

Use roles to delegate permissions: Roles can also prove valuable when you need to permit one AWS account to access resources in another AWS account. This is a much more secure option to providing the other AWS account with username and password information for your account. And remember, the use of roles is always recommended within an AWS account.
■ **Do not share access keys:** It might be tempting to take the access keys that permit programmatic access to a service or resource and just share those with another account that needs the same access. Resist this temptation. Remember, you can always create a role that encompasses the required access.

■ **Rotate credentials:** Be sure to change passwords and access keys regularly in AWS. The reason for this, of course, is the fact that if these credentials are compromised, you will have minimized the damage that can be done when the stolen credentials no longer function. Roles rotate credentials automatically for you many times per day. This is a huge security advantage and makes their use desirable, especially at scale.

■ **Remove unnecessary credentials:** Because it is so easy to learn and test new features in AWS, it can get messy as far as IAM components you leave in place that are no longer needed are concerned. Be sure to routinely audit your resources for any “droppings” that are no longer needed. AWS even assists in this regard with structuring reports around credentials that have not been recently used. Again, roles provide another built-in advantage in this regard.

■ **Use policy conditions:** Always consider building conditions into your security policies. For example, access might have to come from a select range of IP addresses, or MFA might be required.

■ **Monitor, monitor, monitor:** AWS services provide the option for an intense amount of logging. Here are just some of the services where careful logging and analysis can dramatically improve security:

 ■ CloudFront
 ■ CloudTrail
 ■ CloudWatch
 ■ AWS Config
 ■ S3
Exam Preparation Tasks

As mentioned in the section “How to Use This Book” in the Introduction, you have a couple of choices for exam preparation: the exercises here, Chapter 8, “Final Preparation,” and the exam simulation questions in the Pearson Test Prep Software Online.

Review All Key Topics

Review the most important topics in this chapter, noted with the Key Topics icon in the outer margin of the page. Table 5-2 lists these key topics and the page numbers on which each is found.

<table>
<thead>
<tr>
<th>Key Topic Element</th>
<th>Description</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>The AWS Shared Responsibility Model</td>
<td>132</td>
</tr>
<tr>
<td>List</td>
<td>Amazon responsibilities</td>
<td>133</td>
</tr>
<tr>
<td>List</td>
<td>Client responsibilities</td>
<td>134</td>
</tr>
<tr>
<td>Overview</td>
<td>AWS Shield Standard and AWS Shield Advanced</td>
<td>137</td>
</tr>
<tr>
<td>Overview</td>
<td>Inventory and Configuration</td>
<td>139</td>
</tr>
<tr>
<td>Overview</td>
<td>Penetration Testing</td>
<td>140</td>
</tr>
<tr>
<td>List</td>
<td>AWS IAM identities</td>
<td>144</td>
</tr>
<tr>
<td>Steps</td>
<td>Creating users and groups in IAM</td>
<td>145</td>
</tr>
<tr>
<td>List</td>
<td>IAM best practices</td>
<td>148</td>
</tr>
</tbody>
</table>

Define Key Terms

Define the following key terms from this chapter and check your answers in the glossary:

The AWS Shared Responsibility Model, Security of the Cloud, Security in the Cloud, DDoS, AWS Shield, AWS Account Root User, IAM Users, IAM Groups, IAM Roles
Q&A

The answers to these questions appear in Appendix A. For more practice with exam format questions, use the Pearson Test Prep Software Online.

1. Provide at least three examples each for client and AWS responsibilities in the Shared Security Model.
2. Name two services protected by AWS Shield Standard.
3. What service would you use to log API calls in AWS?
Index

A
access control, 34
accessing
APIs, 258
CloudWatch Console, 7
EFS (Elastic File System), 264
accounts, aliases, 265
ALARM state, 27
alarms, 251
characteristics, 28
CloudWatch, 26–27
CPU utilization, 35–36
creating, 28–31
false positives, 27
M out of N, 30
missing data points, 28
parameters, 27
states, 27
Amazon Athena, 119–120
Amazon VPC Endpoints, 260
Amazon-to-Amazon VPC, 184–185
VPC peering, 185
AMI (Amazon Machine Images), 113–114
baking, 77–78
API Gateway, FAQs, 256–258
APIs
CloudWatch Query API, 11–12
configuring, 89–90
Application Load Balancer, 92, 255
error messages, 94–95
application-layer attacks, 136
applications
deployment, 75
in Elastic Beanstalk, 81
asynchronous decoupling, 53
SQS (Simple Queue Services), 52–53
Athena, 119–120
Aurora, 43
authentication, 34
MFA Delete, 107
Auto Scaling, 42
best practices, 44
configuring, 45
FAQs, 254–255
predictive scaling, 44
pre-implementation considerations, 44
troubleshooting areas, 45–46
automation, 47, 57, 74, 197. See also automation tools
best practices, 222–223
of deployment provisioning, 75
automation tools
AWS Config, 221
CloudFormation, 220
CloudTrail, 222
CloudWatch, 221
CodeBuild, 218
CodeCommit, 222
CodeDeploy, 218
CodePipeline, 218
CodeStar, 219
Elastic Container Service, 219
Lambda, 219
OpsWorks, 220
Systems Manager, 220–221
X-Ray, 221
availability, S3 (Simple Storage Service), 104
AWS (Amazon Web Services), 3, 74.
See also CloudWatch
accounts, 34
achieving operational excellence in, 199–204
alarms, creating, 28–31
AMIs (Amazon Machine Images), 113–114
baking, 77–78
authentication, 34
Auto Scaling, 42
best practices, 44
predictive scaling, 44
pre-implementation considerations, 44
troubleshooting areas, 45–46
BYOIP (Bring Your Own IP), 267
ClassicLink, 267
CLI, 177–178
CLI (command line interface), 87
aws configure command, 8–9
CloudFormation, 86–87
CloudFront, 160–163
CloudHSM, 122
CloudWatch
alarms, 26–27
console, accessing, 7
dashboards, 17
installing on Windows, 10, 8
metrics, 21–22
configuration management approaches, 75–76
Connectivity services
Amazon-to-Amazon VPC, 184–187
internal user-to-Amazon VPC, 187
Network-to-Amazon VPC, 178–184
connectivity services, 178
continuous deployment, 80
Cost Management dashboard, 216–218
Cross Service Dashboard, 15–16
removing services from, 16
dashboards
alarms, 26
creating, 17–18
creating with JSON, 19–20
editing, 19
DataSync, 264
deployment
of applications, 75
blue-green, 74
canary, 74
custom variables, 76
provisioning infrastructure, 75
design goals, 47
Detailed Monitoring, 21
EBS (Elastic Block Storage), 111–112
volume encryption, 123–125
ECS (Elastic Container Service), 83–84
Edge Locations, 160–163
EFS (Elastic File System), 112–113
Elastic Beanstalk, 81–83
Elastic Load Balancers, 92–93
example HA solution, 67
Fargate, 83
Global Infrastructure
AZs, 159–160
regions, 157–159
HA for applications, 50–51
IAM (Identity and Access Management), 34
identity-based policies, 35
key services, 211–212
KMS (Key Management Service), 121
Lambda applications, deploying, 91–92
limit management, 48
logging, 78
metrics, 3
publishing, 24–25
viewing, 21–24
navigation pane, pinning dashboard to, 19

networking
redundancy, 50
reliability, 49
resiliency, 49
services, 49–50
VPC, 48
VPG (Virtual Private Gateway), 50
object storage, 102
OpsWorks, 84–86
PrivateLink, 267
provisioning infrastructure, 75
root user account, 34

S3 (Simple Storage Service), 102–103
advantages of, 104–105
client-side encryption, 122
configuring versioning, 107
Glacier Deep Archive storage class, 106
Glacier storage class, 105–106
Intelligent-Archiving storage class, 105
lifecycle policies, 107–108
MFA Delete, 107
One Zone-Infrequent Access storage class, 105
server-side encryption, 122–123
snapshots, 125
standard storage class, 105
standard-IA storage class, 105
storage buckets, 102–103
uses, 103
versioning, 106
scalability capabilities, 79
SDKs, 13
security policies
data encryption, 138–139
DDoS mitigation, 135–137
IAM, 141–151
infrastructure security, 141
inventory and configuration, 139
monitoring and logging, 139–140
penetration testing, 140
Serverless Application Model (SAM), 92
services, 13–14
Shield Advanced, 137–138
Shield Standard, 137
Snowball, 117–118
storage, 207
storage encryption, 120–121
Storage Gateway, 115–117
System Manager, 87–88
Systems Manager Parameter Store, 76

VPC
components, 163–165
default, 165–166
DHCP option sets, 172–173
DNS, 174
egress-only Internet gateways, 171–172
elastic IP addresses, 174–175
endpoints, 175
gateway endpoints, 176
interface endpoints, 176
Internet gateways, 170–171
NAT, 177
network interfaces, 166–167
route tables, 168–170
aws cloudwatch get-metric-statistics command, 9–10
AWS Config, 221
aws configure command, 8–9
AWS Shield, 50
AZs (Availability Zones), 157, 159–160

B
backups, 63, 66–67
EFS (Elastic File System), 264
snapshots, 125
baking AMIs (Amazone Machine Images), 77–78
Batch Operations (S3), 262
benefits, of RDS, 61
best practices
for achieving operational excellence, 199–204
for automation, 222–223
AWS Auto Scaling, 44
cost optimization, 213–214
HA (high availability), 52
IAM (Identity and Access Management), 148–151
for managing resource utilization, 205–206
RDS (Relational Database Service), 61
block storage, 102
blue-green deployments, 74
BYOIP (Bring Your Own IP), 267

C
calling, deployed APIs, 89
canary deployments, 74
categories of disruptions, 51
change deployment, 67
characteristics
of alarms, 28
of SNS, 59
CIDR (Classless Inter-Domain Routing), 48
Classic Load Balancer, 93
error messages, 94–95
ClassicLink, 164, 267
CLI (command line interface), 87, 177–178
SQS management, 57
clients, SNS (Simple Notification Service), 58
client-side encryption, 122
cloud computing
AWS (Amazon Web Services)
design goals, 47

limit management, 48
PaaS (Platform as a Service), 81
VPC (Virtual Private Cloud), 48
VPC, components, 163–165
CloudFormation, 86–87, 91–92, 220
FAQs, 268–269
templates, 86–87, 268–269
troubleshooting, 96
CloudFront, 160–163
FAQs, 268
supported content, 268
CloudHSM, 122
CloudTrail, 14, 222
FAQs, 252–254
CloudWatch, 3, 221
alarms, 26–27, 251
characteristics, 28
creating, 28–31
false positives, 27
M out of N, 30
missing data points, 28
parameters, 27
states, 27
CLI commands, 10–11
dashboards, 17
creating, 17–18
editing, 19
dimensions, 25
FAQs, 249–252
home page, 4
identity-based policies, 35
installing on Windows, 10, 8
logging, 249–251
metrics, 21–24
custom, 26
publishing, 24–25
publishing services, 31–33
remediation of issues, 35–36
services related to, 13–15
CloudWatch Console, accessing from AWS, 7
CloudWatch Query API, 11–12
HTTP requests, 12
CodeBuild, 218
CodeCommit, 222
CodeDeploy, 218
CodePipeline, 218
CodeStar, 219

commands
- `aws cloudwatch get-metric-statistics`, 9–10
- `aws configure`, 8–9
- CloudWatch CLI, 10–11
- `get-metric-statistics`, 24

compute solutions, 206–207
configuring
- APIs, 89–90
- AWS Auto Scaling, 45
- lifecycle policies, 108–111
- SNS (Simple Notification Service), 59–60
- SQS (Simple Queue Services), 54–56
- System Manager, 88
- versioning in S3, 107

connectivity, categories of disruptions, 51
connectivity services, 178
containers, 83, 206
continuous deployment, 80
control plane, 52
controls, Shared Responsibility Model, 133
Cost Management dashboard, 216–218

cost optimization
- best practices, 213–214
- design principles, 214–215
- pricing models, 214
- strategies, 213

CPU utilization, monitoring, 35–36
creating
- alarms, 28–31
- dashboards
 - CloudWatch, 17–18
 - using JSON, 19–20

Elastic Beanstalk environments, 81–83
encrypted root volume, 123–124
OpsWorks stacks, 85–86
queues, 54–56
Cross Service Dashboard, 15–16
services, removing, 16
cross-zone load balancing, 255–256
CRR (Cross-Region Replication), 263
custom metrics, 26
custom variables, 76
customer-specific controls, Shared Responsibility Model, 133
CWE (CloudWatch Events), 251–252

D

dashboards, 80
- alarms, 26
- CloudWatch, 17
 - creating, 17–18
 - editing, 19
- creating, using JSON, 19–20
- pinning to navigation pane, 19
- widget type, choosing, 18
data encryption, 138–139
data plane, 52
data points, 28
data transfers
 - Snowball, 117–118
 - Snowball Edge, 118–119
database solutions, 208
DataSync, 264
DDoS mitigation, 135–137
default VPC (Virtual Private Cloud), 165–166
deployment
- of applications, 75
 - blue-green, 74
 - canary, 74
- configuration management approaches, 75–76
- continuous, 80
- custom variables, 76
feature toggles, 75
of Lambda applications, 91–92
monitoring, 80
OpsWorks, 84–86
of REST API, 88–91
scalability capabilities, 79
tagging, 76
design goals, for AWS, 47
design principles
 for cost optimization, 214–215
 for performance efficiency, 204–205
Detailed Monitoring, 21
DHCP option sets, 163, 172–173
dimensions parameter, 25
Direct Connect, 180–182
disruptions, 51
DNS (Domain Naming Service), 163, 174
DR (disaster recovery), 46
 backup and restore approach, 66
 backups, 63
 multi-site solution method, 66
 pilot light method, 66
 RPO (recovery point objective), 65
 RTO (recovery time objective), 65
 warm-standby method, 66
durability, 103
DynamoDB, 43, 65, 208

E
EBS (Elastic Block Storage), 102,
 111–112
 FAQs, 263
 performance, 263
 snapshots, 263
 volume encryption, 123–125
EC2 (Elastic Compute Cloud), 3, 21, 49
 Auto Scaling, 14, 254
 Detailed Monitoring, 21
 instance profiles, 78
ECS (Elastic Container Service), 43,
 83–84
 launch types, 83–84
 troubleshooting, 93–94
edge computing, Snowball Edge, 118–119
Edge Locations, 160–163
editing, CloudWatch dashboards, 19
EFS (Elastic File System), 112–113
 accessing, 264
 backups, 264
 business cases, 264
 FAQs, 264
egress-only Internet gateways, 163,
 171–172
Elastic Beanstalk, 81–83, 222
 applications, 81
 environment tiers, 81
Elastic Container Service, 219
elastic IP addresses, 163, 174–175
Elastic Load Balancers, 92–93
 CloudWatch metrics, 95–96
 error messages, 94–95
 FAQs, 255–256
ElastiCache, 63
 HA aspects, 64–65
 in-memory caching engines, 64
elasticity, 38, 67
 AWS Auto Scaling, 42
 best practices, 44
 configuring, 45
 predictive scaling, 44
 pre-implementation considerations, 44
 troubleshooting areas, 45–46
load balancing, 49
encryption, 120–121
 client-side, 122
 server-side, 122–123
 volume, 123–125
endpoints
 gateway, 176
 interface, 176
 VPC, 164, 175
endpoints, VPC (Virtual Private Cloud),
 265–267
environments, Elastic Beanstalk, 81–83
error messages, Elastic Load Balancing, 94–95
exam, 225–227
 objectives, 227–228
 preparing for, 228–229
 tools for final preparation, 229–233
exam information, 222–223

F
failure scenarios, testing, 47
false positives, 27
FAQs
 API Gateway, 256–258
 CloudFormation, 268–269
 CloudFront, 268
 CloudTrail, 252–254
 CloudWatch, 249–252
 EBS (Elastic Block Storage), 263
 EFS (Elastic File System), 264
 Elastic Load Balancers, 255–256
 IAM (Identity and Access Management), 264–265
 Lambda, 258–260
 S3 (Simple Storage Service), 260–263
 VPC (Virtual Private Cloud), 265–267
Fargate, 83
feature toggles, 75
file gateways, 115–116
filter policy, SNS (Simple Notification Service), 59
flat storage, 102
Flow Logs, 188–189
FT (fault tolerance), 46
functions, 207
functions, Lambda, 258, 259

G
gateway endpoints, 176
get-metric-statistics command, 24
Glacier, 102
Glacier Deep Archive storage class, 106
Glacier storage class, 105–106
Global Accelerator, 49
Global Infrastructure
 AZs, 159–160
 regions, 157–159
H
HA (high availability), 39. See also SQS (Simple Queue Services)
 for applications, 50–51
 backups, 63
 best practices, 52
 categories of disruptions, 51
 EFS (Elastic File System), 113
 Elastic Load Balancers, 92–93
 ElastiCache, 63–65
 in-memory caching engines, 64
 example solution in AWS, 67
 FT (fault tolerance), 46
 multi-region, 65
 versus reliability, 46
 versus resiliency, 46
 and RTO (recovery time objective), 46
 high resolution metrics, 24–25
 horizontal scalability, 47
 HSMs (Hardware Security Modules), 121
 HTTP requests, CloudWatch Query API, 11–12

I
IAM (Identity and Access Management), 14, 34, 102, 141–151
 best practices, 148–151
 FAQs, 264–265
 identities, 144–145
 identity federation, 265
 policy simulator, 265
 role account, 34
 temporary security credentials, 265
 user account, 34
identity federation, 265
identity-based policies, 35
infrastructure attacks, 136
inherited controls, Shared Responsibility Model, 133
InsufficientInstanceCapacity error, troubleshooting, 94
installing, CloudWatch, 8
instance profiles, 78
InstanceLimitExceeded errors, troubleshooting, 94
instances, 206
INSUFFICIENT_DATA state, 27
Intelligent-Archiving storage class, 105
interactive query services, Athena, 119–120
interface endpoints, 176
internal user-to-Amazon VPC, 187
Internet gateways, 163, 170–171
inventory and configuration, 139

J
JSON, creating dashboards, 19–20

K
key services, 211–212
KMS (Key Management Service), 121
KPIs (key performance indicators), 47

L
Lambda applications, 219
deploying, 91–92
event source, 259
FAQs, 258–260
Lambda@Edge, 259
launch types, ECS (Elastic Container Service), 83–84
LCU (Load Balancer Capacity Unit), 255
lifecycle policies, 107–108
configuring, 108–111
limit management, 48
load balancing, 49
Elastic Load Balancers, 92–93, 255–256
CloudWatch metrics, 95–96
logging, 78, 139–140, 250–251, 260
Flow Logs, 188–189

M
M out of N alarms, 30
Management Console
alarms, creating, 28–31
encrypted root volume, creating, 123–124
SQS (Simple Queue Services), configuring, 54–56
managing resource utilization, 91–111
best practices, 205–206
master keys, 121
Memcached, 64
in-memory caching engines,
ElastiCache, 64
metrics, 3, 17
CloudWatch, 21–22
publishing, 24–25
publishing services, 31–33
custom, 26
high resolution, 24–25
standard resolution, 24–25
viewing, 21–24
MFA (multi-factor authentication), 141
MFA Delete, 107
monitoring, 67, 139–140, 212. See also alarms
CPU utilization, 35–36
deployments, 80
Detailed Monitoring, 21
Multi-AZ RDS, 61–62
multi-region HA, 65
multi-site solution approach, 66

N
NAT (Network Address Translation), 164, 177
NAT Gateway, 50
network interfaces, VPC, 166–167
Network Load Balancer, 93, 256
network resources, 209–210
networking
AWS Global Infrastructure
AZs, 159–160
regions, 157–159
CIDR (Classless Inter-Domain Routing), 48
CloudFront, 160–163
Edge Locations, 160–163
redundancy, 50
reliability, 49
resiliency, 49
services, 49–50
troubleshooting, 187–189
VPC, 48
components, 163–165
default, 165–166
DHCP option sets, 172–173
DNS, 174
egress-only Internet gateways, 171–172
elastic IP addresses, 174–175
endpoints, 175
gateway endpoints, 176
interface endpoints, 176
Internet gateways, 170–171
NAT, 177
network interfaces, 166–167
route tables, 168–170
network-to-Amazon VPC, 178
Direct Connect, 180–182
hardware VPN, 178–180
software VPN, 183–184
VPN CloudHub, 182–183
North American regions, 158

O
Object Lock (S3), 263
object storage, 102
OK state, 27
One Zone-Infrequent Access storage class, 105
operating solutions, tradeoffs, 210
operational excellence
best practices, 199–204
preparing for, 197
OpsWorks, 84–86, 220
OpsWorks Stacks, 84

P
PaaS (Platform as a Service), 81
parameters
for alarms, 27
dimensions, 25
Partner Networks, 50
PCI DSS (Payment Card Industry Data Security Standard), 143
penetration testing, 140
performance
of EBS, 263
monitoring, 212
performance efficiency, design principles, 204–205
permissions, 34
physical limits, of AWS, 48
pilot light approach, 66
pinning dashboard to navigation pane, 19
in-place upgrades, 80
policies, identity-based, 35
PowerShell, 8
predictive scaling, 44, 255
preparing for operational excellence, 197
pricing models, 214
PrivateLink, 267
programmatic access to CloudWatch data
AWS SDKs, 13
CloudWatch Query API, 11–12
provisioning infrastructure, 75
publishing, CloudWatch metrics, 24–25
Q
queues, creating, 54–56

R
RDS (Relational Database Service), 60
automated failover, 62
benefits of, 61
best practices, 61
database engine version, 63
Multi-AZ, 61–62
Read Replicas, 62–63
snapshots, 63
Read Replicas, 62–63
Redis, 64
RedShift, 208
redundancy, AWS networking, 50
regions, 157–159
reliability
of AWS networking, 49
versus HA, 46
removing, services from Cross Service Dashboard, 16
requirements, for AWS database solutions, 208
resiliency, 67
of AWS networking, 49
versus HA, 46
SQS (Simple Queue Services), 53
resource types
compute, 206–207
database, 208
network, 209–210
storage, 207
REST API, deploying in API Gateway, 88–91
restores, 66
root user account (AWS), 34
Route, 53, 49, 65
record routing policies, 189
route tables, 163
VPC, 168–170
RPO (recovery point objective), 65
RTO (recovery time objective), 46, 65
S
S3 (Simple Storage Service), 102–103
advantages of, 104–105
Amazon VPC Endpoints, 260
Batch Operations, 262
client-side encryption, 122
configuring versioning, 107
controlling access to data, 260
CRR (Cross-Region Replication), 263
FAQs, 260–263
Intelligent-Tiering, 260
Inventory reports, 261
lifecycle policies, 107–108
configuring, 108–111
logging, 260
Object Lock, 263
object tags, 261
server-side encryption, 122–123
snapshots, 125
standard storage class, 105
storage buckets, 102–103
Storage Class Analysis, 261
Transfer Acceleration, 261
uses, 103
versioning, 106
MFA Delete, 107
scalability, 38
AWS Auto Scaling, 42
best practices, 44
configuring, 45
predictive scaling, 44
pre-implementation considerations, 44
troubleshooting areas, 45–46
capabilities in AWS, 79
horizontal, 47
RDS (Relational Database Service), 61
S3 (Simple Storage Service), 104
SDKs (software development kits), AWS, 13
security. See also encryption
S3 (Simple Storage Service), 104
storage encryption, 120–121
security policies
data encryption, 138–139
DDoS mitigation, 135–137
IAM, 141–151
infrastructure security, 141
inventory and configuration, 139
monitoring and logging, 139–140
penetration testing, 140
Serverless Application Model (SAM), 92
Serverless Application Repository, 92
server-side encryption, 122–123
services
API Gateway, deploying REST API in, 88–91
Cloudwatch, 13–15
connectivity, 178
ECS (Elastic Container Service), 83–84
Elastic Beanstalk, 81–83
ElastiCache, 63–65
key, 211–212
networking, 49–50
publishing, 31–33
RDS (Relational Database Service), 60
automated failover, 62
benefits of, 61
best practices, 61
Multi-AZ, 61–62
Read Replicas, 62–63
snapshots, 63
removing from Cross Service Dashboard, 16
S3 (Simple Storage Service), 102–103
advantages of, 104–105
configuring lifecycle policies, 108–111
configuring versioning, 107
Glacier Deep Archive storage class, 106
Glacier storage class, 105–106
Intelligent-Archiving storage class, 105
lifecycle policies, 107–108
MFA Delete, 107
One Zone-Infrequent Access storage class, 105
snapshots, 125
standard storage class, 105
standard-IA storage class, 105
storage buckets, 102–103
uses, 103
versioning, 106
SNS (Simple Notification Service), 58
characteristics, 59
clients, 58
filter policy, 59
SQS (Simple Queue Services), 52–53
asynchronous decoupling, 53
configuring, 54–56
managing from CLI, 57
resiliency, 53
shared controls, Shared Responsibility Model, 133
Shared Responsibility Model
Amazon responsibilities, 133
client responsibilities, 134–135
controls, 133
Shield Advanced, 137–138
Shield Standard, 137
snapshots, 63, 125, 263
Snowball, 117–118
Snowball Edge, 118–119
SNS (Simple Notification Service), 13, 58
characteristics, 59
clients, 58
configuring, 59–60
filter policy, 59
software-to-hardware VPN, 186–187
Solutions Architects, 52
SQS (Simple Queue Services), 52–53
asynchronous decoupling, 53
configuring, 54–56
managing from CLI, 57
resiliency, 53
stacks, 84
 CloudFormation, 86
stages, 89
standard resolution metrics, 24–25
standard storage class, 105
standard-IA storage class, 105
states, of alarms, 27
storage buckets, 102–103
storage classes
 Glacier, 105–106
 Glacier Deep Archive, 106
 Intelligent-Archiving, 105
 One Zone-Infrequent Access, 105
 standard, 105
 standard-IA, 105
storage encryption, 120–121
Storage Gateway, 115–117
storage solutions, 207
sustained load testing, 52
Systems Manager, 220–221
 configuring, 88

tagging, 76
tape gateways, 117
templates, CloudFormation, 86–87,
 268–269
temporary security credentials, 265
testing, 67
 failure scenarios, 47
TPM (Trusted Platform Module), 118
tradeoffs, 210
trails, 253
troubleshooting
 AWS Auto Scaling, 45–46
 CloudFormation, 96
ECS (Elastic Container Service), 93–94
ELB CloudWatch metrics, 95–96
networking, 187–189

U
upgrades, in-place, 80
user accounts, AWS, 34

V
versioning
 MFA Delete, 107
S3 (Simple Storage Service), 106
viewing
 Cross Service Dashboard, 15–16
 metrics, 21–24
volume encryption, 123–125
volume gateways, 116–117
VPC (Virtual Private Cloud), 48
Amazon-to-Amazon, 184–185
 software VPN, 186
 VPC peering, 185
CIDR (Classless Inter-Domain Routing), 48
components, 163–165
cost of using, 266
default, 165–166, 266
dHCP option sets, 172–173
DNS, 174
egress-only Internet gateways, 171–172
elastic IP addresses, 174–175
endpoints, 175, 265–267
FAQs, 265–267
Flow Logs, 188–189
gateway endpoints, 176
interface endpoints, 176
internal user-to-Amazon, 187
Internet gateways, 170–171
NAT, 177
network interfaces, 166–167
network-to-Amazon
Direct Connect, 180–182
hardware VPN, 178
software VPN, 183–184
VPN CloudHub, 182–183
peering connections, 267
route tables, 168–170
security groups, 266
VPG (Virtual Private Gateway), 50

W
warm-standby approach, 66
web services, ElastiCache, 63

widget type, choosing for your dashboard, 18
Windows, 10, installing CloudWatch on, 8

X
X-Ray, 221

Z
zero RTO (recovery time objective), 46