
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780135836705
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780135836705
https://plusone.google.com/share?url=http://www.informit.com/title/9780135836705
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780135836705
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780135836705/Free-Sample-Chapter

SamsTeachYourself

24in

Hours

Beginning
Programming

Greg Perry
Dean Miller

Fourth Edition

Editor-in-Chief

Mark L. Taub

Acquisitions Editor

Kim Spenceley

Managing Editor

Sandra Schroeder

Development Editor

Chris Zahn

Senior Project

Editor

Lori Lyons

Technical Editors

John Fonte
Michael Garcia

Production

Manager

Aswini Kumar/
codeMantra

Indexer

Ken Johnson

Proofreader

Abigail Manheim

Cover Designer

Chuti Prasertsith

Compositor

codeMantra

Sams Teach Yourself Beginning Programming in 24 Hours, Fourth Edition

Copyright © 2020 by Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or
transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, request forms and the appropriate contacts
within the Pearson Education Global Rights & Permissions Department, please visit
www.pearson.com/permissions/.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

Microsoft and/or its respective suppliers make no representations about the suitability of the
information contained in the documents and related graphics published as part of the services
for any purpose. All such documents and related graphics are provided “as is” without warranty of
any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions
with regard to this information, including all warranties and conditions of merchantability, whether
express, implied or statutory, fitness for a particular purpose, title and non-infringement. In
no event shall Microsoft and/or its respective suppliers be liable for any special, indirect or
consequential damages or any damages whatsoever resulting from loss of use, data or profits,
whether in an action of contract, negligence or other tortious action, arising out of or in connection
with the use or performance of information available from the services. The documents and
related graphics contained herein could include technical inaccuracies or typographical errors.
Changes are periodically added to the information herein. Microsoft and/or its respective suppliers
may make improvements and/or changes in the product(s) and/or the program(s) described herein
at any time. Partial screenshots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and
other countries. Screenshots and icons reprinted with permission from the Microsoft Corporation.
This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Cover credit: Ryan McVay/Photodisc/Getty Images

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of
the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales
department at corpsales@pearson.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Library of Congress Catalog Card Number: 2019951973

ISBN-13: 978-0-13-583670-5

ISBN-10: 0-13-583670-0

ScoutAutomatedPrintCode

http://www.pearson.com/permissions/
mailto:corpsales@pearson.com
mailto:governmentsales@pearsoned.com
mailto:contact$$$intlcs@pearson.com

Contents at a Glance

Introduction . xvii

Part I: Start Programming Today

 HOUR 1 Hands-On Programming. 1

 2 Process and Techniques . 17

 3 Designing a Program . 33

 4 Getting Input and Displaying Output . 49

 5 Data Processing with Numbers and Words . 63

Part II: Programming Fundamentals

 HOUR 6 Controlling Your Programs . 81

 7 Debugging Tools . 97

 8 Structured Techniques . 109

 9 Programming Algorithms . 123

Part III: Java and Object-Oriented Programming

 HOUR 10 Programming with Java . 151

 11 Java’s Details . 167

 12 Java has Class . 185

Part IV: Web Development with HTML and JavaScript

 HOUR 13 HTML5 and CSS3 . 201

 14 JavaScript . 217

 15 Having Fun with JavaScript . 233

 16 JavaScript and AJAX . 247

Part V: Other Programming Languages

 HOUR 17 SQL . 263

 18 Scripting with PHP . 277

 19 Programming with C and C++ . 309

iv Sams Teach Yourself Beginning Programming in 24 Hours

 20 Programming with Visual Basic 2019 . 333

 21 C# and the .NET Core . 347

Part VI: The Business of Programming

 HOUR 22 How Companies Program . 361

 23 Distributing Applications . 377

 24 The Future of Programming . 383

Appendixes

 A Installing Python . 393

Index . 399

 B (Online Only) Using the NetBeans Integrated Development

Environment

 C (Online Only) Glossary

http://informit.com/register

Table of Contents

Introduction xvii

Part I: Start Programming Today

HOUR 1: Hands-On Programming 1

Get Ready to Program . 1

What a Computer Program Does . 2

Common Programming Misconceptions . 3

Many Programs Already Exist . 5

Programmers Are in Demand . 5

The Real Value of Programs . 6

Users Generally Don’t Own Programs . 6

Giving Computers Programs . 6

Your First Program . 8

Clarifying Comments . 9

Entering Your Own Program . 11

Summary . 13

Q&A . 13

Workshop . 14

HOUR 2: Process and Techniques 17

Understanding the Need for Programs . 17

Programs, Programs Everywhere . 20

Programs as Directions . 20

Summary . 30

Q&A . 30

Workshop . 30

HOUR 3: Designing a Program 33

The Need for Design . 33

User–Programmer Agreement . 34

vi Sams Teach Yourself Beginning Programming in 24 Hours

Steps to Design . 35

Summary . 47

Q&A . 47

Workshop . 48

HOUR 4: Getting Input and Displaying Output 49

Printing to the Screen with Python . 49

Storing Data . 52

Assigning Values . 53

Getting Keyboard Data with input() . 55

Summary . 61

Q&A . 61

Workshop . 61

HOUR 5: Data Processing with Numbers and Words 63

Strings Revisited . 63

Performing Math with Python . 67

How Computers Really Do Math . 69

Using Unicode Characters . 73

Overview of Functions . 74

Summary . 79

Q&A . 79

Workshop . 79

Part II: Programming Fundamentals

HOUR 6: Controlling Your Programs 81

Comparing Data with if . 81

Writing the Relational Test. 85

Looping Statements . 87

Summary . 95

Q&A . 95

Workshop . 95

HOUR 7: Debugging Tools 97

The First Bug . 97

Accuracy Is Everything . 98

Table of Contents vii

Write Clear Programs . 104

Additional Debugging Techniques . 106

Summary . 106

Q&A . 107

Workshop . 107

HOUR 8: Structured Techniques 109

Structured Programming . 109

Packaging Your Python Code into Functions . 115

Testing the Program . 118

Profiling Code . 119

Getting Back to Programming . 120

Summary . 120

Q&A . 120

Workshop . 121

HOUR 9: Programming Algorithms 123

Counters and Accumulators . 124

Python Lists . 127

Accumulators for Total . 130

Swapping Values . 131

Sorting . 133

Searching Lists . 137

Taking Functions Further . 144

Nested Loops . 148

Summary . 148

Q&A . 148

Workshop . 149

Part III: Java and Object-Oriented Programming

HOUR 10: Programming with Java 151

Introducing Java . 152

Java Provides Executable Content . 154

Seamless Execution . 155

Multi-Platform Executable Content . 155

viii Sams Teach Yourself Beginning Programming in 24 Hours

Java Usage Summary . 157

Start with Standalone Java . 158

Java’s Interface . 158

Security Issues . 159

Java as a Game-Development Language . 160

Java Language Specifics . 160

Get Ready to Begin . 165

Summary . 165

Q&A . 165

Workshop . 166

HOUR 11: Java’s Details 167

Defining Java Data . 167

Operators . 173

Programming Control . 176

From Details to High Level . 182

Summary . 182

Q&A . 183

Workshop . 183

HOUR 12: Java Has Class 185

Using NetBeans to Run a Java Program . 185

Going GUI . 190

Java and OOP . 191

Overview of Classes . 192

Do You Understand OOP? . 195

Methods Do the Work in Classes . 195

Summary . 197

Q&A . 198

Workshop . 198

Part IV: Web Development with HTML and JavaScript

HOUR 13: HTML5 and CSS3 201

HTML Programming . 201

A Simpler Example . 206

Table of Contents ix

A Quick HTML Primer . 207

Using CSS to Control How Your Text Looks . 210

Including Graphics in a Website with HTML . 213

Summary . 214

Q&A . 214

Workshop . 215

HOUR 14: JavaScript 217

Getting Started with JavaScript . 218

Using Comments in JavaScript . 218

Entering Your First JavaScript Program . 218

Printing to the Screen with JavaScript . 221

Variables in JavaScript . 222

Getting Keyboard Data with prompt . 222

Comparing Data with if . 227

Looping Statements . 227

Summary . 230

Q&A . 230

Workshop . 231

HOUR 15: Having Fun with JavaScript 233

Rotating Images on a Page . 233

Capturing the Position of the Mouse. 239

Adding a Repeating News Ticker to Your Website. 241

Summary . 244

Q&A . 245

Workshop . 245

HOUR 16: JavaScript and AJAX 247

Introducing AJAX . 247

Using XMLHttpRequest . 251

Creating a Simple AJAX Library . 253

Creating an AJAX Quiz Using the Library . 254

Summary . 259

Q&A . 259

Workshop . 260

x Sams Teach Yourself Beginning Programming in 24 Hours

Part V: Other Programming Languages

HOUR 17: SQL 263

Relational Databases . 263

Basic SQL Queries . 266

Retrieving Records from a Database . 266

Inserting and Updating Database Records . 269

Deleting Records from a Database . 271

Adding, Deleting, or Modifying the Fields in an Existing Table 272

Summary . 273

Q&A . 274

Workshop . 274

HOUR 18: Scripting with PHP 277

What You Need for PHP Programming . 278

Basic Structures in PHP Scripts . 279

Looping . 284

The Building Blocks of PHP: Variables, Data Types, and Operators 286

Using and Creating Functions in PHP . 295

Working with Objects in PHP . 300

Common Uses of PHP . 304

Summary . 305

Q&A . 305

Workshop . 306

HOUR 19: Programming with C and C++ 309

Introducing C . 309

What You Need for C and C++ Programming . 311

Looking at C . 311

C Data . 313

C Functions . 314

C Operators . 321

C Control Statements Mimic Python . 321

Learning C++ . 322

Object Terminology . 322

Table of Contents xi

Fundamental Differences Between C and C++ . 323

Introducing C++ Objects . 324

Things to Come . 329

Summary . 331

Q&A . 331

Workshop . 331

HOUR 20: Programming with Visual Basic 2019 333

Reviewing the Visual Basic Screen . 333

Creating a Simple Application from Scratch . 335

Other Visual Basic Programming Considerations . 342

Your Next Step . 344

Summary . 345

Q&A . 345

Workshop . 345

HOUR 21: C# and the .NET Core 347

Understanding the Purpose of .NET . 347

The Common Language Runtime . 348

The Framework Class Library . 349

Parallel Computing Platform . 350

Dynamic Language Runtime . 350

The C# Language . 350

Summary . 359

Q&A . 359

Workshop . 360

Part VI: The Business of Programming

HOUR 22: How Companies Program 361

Data Processing and Information Technology Departments . 361

Computer-Related Jobs . 365

Job Titles . 366

Structured Walkthroughs . 371

Putting a Program into Production . 372

xii Sams Teach Yourself Beginning Programming in 24 Hours

Consulting . 374

Summary . 375

Q&A . 375

Workshop . 376

HOUR 23: Distributing Applications 377

Issues Surrounding Software Distribution . 377

Using Version Control. 380

Summary . 381

Q&A . 381

Workshop . 381

HOUR 24: The Future of Programming 383

Some Helpful Tools . 383

Will Programming Go Away? . 386

Your Ongoing Training Needs . 388

Summary . 390

Q&A . 391

Workshop . 391

APPENDIX A: Installing Python 393

Downloading Python from the Python Software Foundation . 393

Installing Anaconda . 395

Other Python Environments . 398

Index ... 399

About the Author

Greg Perry is a speaker and writer in both the programming and applications sides of com-

puting. He is known for bringing programming topics down to the beginner’s level. Perry has

been a programmer and trainer for two decades. He received his first degree in computer

science and then earned a Master’s degree in corporate finance. Besides writing, he consults

and lectures across the country, including at the acclaimed Software Development program-

ming conferences. Perry is the author of more than 75 other computer books. In his spare

time, he gives lectures on traveling in Italy, his second-favorite place to be.

Dean Miller is a writer and editor with more than 20 years of experience in both the pub-

lishing and licensed consumer products businesses. Over the years, he has created or helped

shape a number of bestselling books and series, including Sams Teach Yourself in 21 Days, Sams
Teach Yourself in 24 Hours, and the Unleashed series, all from Sams Publishing. He has writ-

ten or cowritten 15 books on computer programming and professional wrestling and is still

 looking for a way to combine the two into one strange amalgam.

Dedication

Dean: To Fran, Margaret, John, and Alice—Thanks for being the absolute best family
someone could ask for.

Acknowledgments

Greg: My thanks go to all my friends at Pearson. Most writers would refer to them as editors;

to me, they are friends. I want all my readers to understand this: The people at Pearson care

about you most of all. The things they do result from their concern for your knowledge and

enjoyment. On a more personal note, my beautiful bride, Jayne; my mother Bettye Perry;

and my friends, who wonder how I find the time to write, all deserve credit for supporting my

need to write.

Dean: I’d like to thank Greg Perry for creating outstanding book that continues to educate

generations of new computer programmers. It’s been a highlight of my career to work with

him as both his editor and co-author over the years. Thanks to Kim Spenceley for working

with me to create this new edition. I appreciate the amazing work Lori Lyons, Kitty Wilson,

and the production team at Pearson put into this book. Special thanks to my technical

reviewers, John Fonte and Michael Garcia, for improving the quality of the book with their

thorough reads. On a personal level, I have to thank my three children, John, Alice, and

Maggie, and my wife Fran for their unending patience and support.

This page intentionally left blank

Learning how to program computers is easier than you might think. If you approach

computers with hesitation, if you cannot even spell PC, if you have tried your best to avoid the

subject altogether but can do so no longer, the book you now hold contains support that you

can depend on in troubled computing times.

This 24-hour tutorial does more than explain programming. This tutorial does more than

describe the difference between JavaScript, C++, and Java. This tutorial does more than teach

you what programming is all about. This tutorial is a training tool that you can use to develop

proper programming skills. The aim of this text is to introduce you to programming using

professionally recognized principles, while keeping things simple at the same time. It is not

this text’s singular goal to teach you a programming language (although you will be writing

programs before you finish it). This text’s goal is to give you the foundation to become the

best programmer you can be.

These 24 one-hour lessons delve into proper program design principles. You’ll not only learn

how to program, but also how to prepare for programming. This tutorial also teaches you how

companies program and explains what you have to do to become a needed resource in a pro-

gramming position. You’ll learn about various programming job titles and what to expect if

you want to write programs for others. You’ll explore many issues related to online computing

and learn how to address the needs of the online programming community.

Who Should Use This Book?
The title of this book says it all. If you have never programmed a computer, if you don’t

even like them at all, or if updating the operating system of your phone throws you into

fits, take three sighs of relief! This text was written for you so that, within 24 hours, you will

understand the nature of computer programs and you will have written programs.

This book is aimed at three different groups of people:

 N Individuals who know nothing about programming but who want to know what

programming is all about.

Introduction

Introduction

xviii Sams Teach Yourself Beginning Programming in 24 Hours

 N Companies that want to train nonprogramming computer users for programming

careers.

 N Schools—both for introductory language classes and for systems analysis and design

classes—that want to promote good coding design and style and that want to offer an

overview of the life of a programmer.

Readers who seem tired of the plethora of quick-fix computer titles cluttering today’s shelves

will find a welcome reprieve here. The book you now hold talks to newcomers about pro-

gramming without talking down to them.

What This Book Will Do for You
In the next 24 hours, you will learn something about almost every aspect of programming.

The following topics are discussed in depth throughout this 24-hour tutorial:

 N The hardware and software related to programming

 N The history of programming

 N Programming languages

 N The business of programming

 N Programming jobs

 N Program design

 N Internet programming

 N The future of programming

Can This Book Really Teach Programming
in 24 Hours?
In a word, yes. You can master each chapter in one hour or less. (By the way, chapters are

referred to as “hours” or “lessons” in the rest of this book.) The material is balanced with

mountains of shortcuts and methods that will make your hours productive and hone your

programming skills more and more with each hour. Although some chapters are longer than

others, many of the shorter chapters cover more detailed or more difficult issues than the

shorter ones. A true attempt was made to make each hour learnable in an hour. Exercises at

the end of each hour will provide feedback about the skills you learned.

Conventions Used in This Book
This book uses several common conventions to help teach programming topics. Here is a sum-

mary of those typographical conventions:

 N Commands and computer output appear in a special monospaced computer font.

Sometimes a line of code will be too long to fit on one line in this book. The code con-

tinuation symbol (➥) indicates that the line continues.

 N Words you type also appear in the monospaced computer font.

 N If a task requires you to select from a menu, the book separates menu commands with

a comma. Therefore, this book uses File, Save As to select the Save As option from the

File menu.

In addition to typographical conventions, the following special elements are included to set

off different types of information to make it easily recognizable.

▼

The best way to learn how to program is to jump right in and start programming. These
Try it Yourself sections will teach you a simple concept or method to accomplish a goal
programmatically. The listing will be easy to follow and then the programs’ output will be
displayed along with coverage of key points in the program. To really get some practice,
try altering bits of the code in each of these sections in order to see what your tweaks
accomplish.

TRY IT YOURSELF

NOTE

Special notes augment the material you read in each hour. These notes clarify concepts and
procedures.

TIP

You’ll find numerous tips that offer shortcuts and solutions to common problems.

CAUTION

The cautions warn you about pitfalls. Reading them will save you time and trouble.

Introduction xix

This page intentionally left blank

HOUR 3
Designing a Program

Programmers learn to develop patience early in their programming careers. They learn that

proper design is critical to a successful program. Perhaps you have heard the term systems analysis
and design. This is the name given to the practice of analyzing a problem and then designing a

program from that analysis. Complete books and college courses have been dedicated to systems

analysis and design. Of course, you want to get back to hands-on programming—and you’ll be

doing that very soon. However, to be productive at hands-on programming, you need to under-

stand the importance of design. This chapter covers program design highlights, letting you see

what productive computer programmers go through before writing programs.

The highlights of this hour include the following:

 N Understanding the importance of program design

 N Mastering the three steps required to write programs

 N Using output definition

 N Comparing top-down and bottom-up designs

 N Seeing how flowcharts and pseudocode are making room for RAD

 N Preparing for the final step in the programming process

The Need for Design
A builder who begins to build a house doesn’t pick up a hammer and begin on the kitchen’s

frame. A designer must design the new house before anything can begin to be built. As you will

soon see, a program should also be designed before it is written.

A builder must first find out what the purchasers of the house want. Nothing can be built unless

the builder has an end result in mind. Therefore, the buyers of the house must meet with an

 architect. They tell the architect what they want the house to look like. The architect helps the

buyers decide by telling them what is possible and what isn’t. During this initial stage, the price is

always a factor that requires the designers and the purchasers to reach compromise agreements.

34 HOUR 3: Designing a Program

After the architect completes the plans for the house, the builder must plan the resources needed

to build the house. Only after the design of the house is finished, the permits are filed, the money

is in place, the materials are purchased, and the laborers are hired can any physical building

begin. As a matter of fact, the more effort the builder puts into these preliminary requirements,

the faster the house can actually be built.

The problem with building a house before it is properly designed is that the eventual owners may

want changes made after it is too late to change them. It is very difficult to add a bathroom in the

middle of two bedrooms after the house is completed. The goal is to get the owners to agree with

the builder on the design of the house prior to construction. When the specifications are agreed

on by all the parties involved, there is little room for disagreement later. The clearer the initial

plans are, the fewer problems down the road because all parties agreed on the same house plans.

Sure, this is not a book on house construction, but this example provides a good analogy for writ-

ing programs of any great length. You should not go to the keyboard and start typing instructions

into the editor before designing the program any more than a builder should pick up a hammer

before the house plans are finalized.

TIP

The more up-front design work that you do, the faster you will finish the final program.

Thanks to computer technology, a computer program is easier to modify than a house. If you

leave out a routine that a user wanted, you can add it later more easily than a builder can add

a room to a finished house. Nevertheless, adding something to a program is never as easy as

designing the program correctly the first time.

User–Programmer Agreement
Suppose you accept a job as a programmer for a small business that wants to create sales and

inventory software. (After you’ve gone through these 24 hours, you’ll understand programming

better, and you’ll even learn how to write programs in Python or be able to switch to another

 language.) The changes that the owners want sound simple. They want you to write some interac-

tive Python routines that enable them to look at existing inventory and to print what products

have sold in the past day, week, month, or year.

So, you listen to what they want, you agree to a price for your services, you get an advance pay-

ment, you plan out the software, and you go to your home office to begin the work. After some

grueling months of work, you bring your masterpiece program back to show the owners.

“Looks good,” they say. “But where is the report that breaks down credit card versus cash pur-

chases? Where can we check in-store versus warehouse inventory? Where does the program list

Steps to Design 35

the products we’ve back-ordered and that are unavailable? Why can’t the program total sales tax

we’ve collected anywhere?”

You’ve just learned a painful lesson about user–programmer agreements. The users did a lousy

job at explaining what they wanted. In fairness to them, you didn’t do a great job at pulling out

of them what they needed. Both of you thought you knew what you were supposed to do, and

 neither knew in reality. You realize that the price you quoted them originally will pay for about

10% of the work this project requires.

Before you start a job and before you price a job, you must know what your users want. Learning

this is part of the program design experience. You need to know every detail before you’ll be able

to price your service accurately and before you’ll be able to make customers happy.

NOTE

Proper user–programmer agreement is vital for all areas of programming, not just for contract
 programmers. If you work for a corporation as a programmer, you also will need to have detailed
specifications before you can begin your work. Other corporate users who will use the system must
sign off on what they want so that everybody knows up front what is expected. If the user comes
back to you later and asks why you didn’t include a feature, you will be able to answer, “Because we
never discussed that feature. You approved specifications that never mentioned that feature.”

The program maintenance that takes place after the program is written, tested, and distributed is

one of the most time-consuming aspects of the programming process. Programs are continually

updated to reflect new user needs. Sometimes, if the program is not designed properly before it is

written, the user will not want the program until it does exactly what the user wants it to do.

Computer consultants learn early to get the user’s acceptance—and even the user’s signature—on

a program’s design before the programming begins. If both the user and the programmers agree

on what to do, there is little room for argument when the final program is presented. Company

resources are limited; there is no time to add something later that should have been in the system

all along.

Steps to Design
There are three fundamental steps you should perform when you have a program to write:

 1. Define the output and data flows.

 2. Develop the logic to get to that output.

 3. Write the program.

36 HOUR 3: Designing a Program

Notice that writing the program is the last step in writing the program. This is not as silly as it

sounds. Remember that physically building the house is the last stage of building the house;

proper planning is critical before any actual building can start. You will find that writing and typ-

ing in the lines of a program is one of the easiest parts of the programming process. If your design

is well thought out, the program practically writes itself; typing it in becomes almost an after-

thought to the whole process.

Step 1: Define the Output and Data Flows
Before beginning a program, you must have a firm idea of what the program should produce and

what data is needed to produce that output. Just as a builder must know what the house should

look like before beginning to build it, a programmer must know what the output is going to be

before writing the program. Anything that the program produces and the user sees is considered

output that you must define. You must know what every screen in the program should look like

and what will be on every page of every printed report.

Some programs are rather small, but without knowing where you’re heading, you might take

longer to finish the program than you would if you first determined the output in detail. Suppose

you wanted to add a Python-based program that allowed a small business to record and store

customer contact information. To start, you should make a list of all fields that the program is to

produce onscreen. You would not only list each field but also describe the fields. Table 3.1 details

the fields on the program’s window.

TABLE 3.1 Fields that your contact management program might display

Field Type Description

Contacts Scrolling list Displays the list of contacts

Name Text field Holds contact’s name

Address Text field Holds contact’s address

City Text field Holds contact’s city

State Text field Holds contact’s state

Zip Text field Holds contact’s zip code

Home Phone # Text field Holds contact’s phone number

Cell Phone # Text field Holds contact’s mobile number

Email Text field Holds contact’s email address

Stage Fixed, scrolling list Displays a list of possible stages this contact might
reside in, such as being offered a special follow-up call
or perhaps the initial contact

Notes Text field Miscellaneous notes about the contact, such as whether
the contact has bought from the company before

Steps to Design 37

Field Type Description

Filter Contacts Fixed, scrolling list Enables the user to search for groups of contacts based
on the stage the contacts are in so that the user can
see a list of all contacts who have been sent a mailing

Edit Function Enables the user to modify an existing contact

Add Function Enables the user to add a new contact

Delete Function Enables the user to delete an existing contact

Many of the fields you list in an output definition may be obvious. The field called Name obvi-

ously will hold and display a contact’s name. Being obvious is okay. Keep in mind that if you write

 programs for other people, as you often will do, you must get approval of your program’s param-

eters. One of the best ways to begin is to make a list of all the intended program’s fields and make

sure that the user agrees that everything is there. Perhaps your client has specific interests, like

wanting the Twitter handle of contacts as well. By communicating with your client, you will get

a better idea of what you need to add to the program.

As you’ll see later this hour, in the section “Rapid Application Development,” you’ll be able to use

programs to put together a model of the actual output screen that your users can see. With the

model and with your list of fields, you have double verification that the program contains exactly

what the user wants.

Input windows such as the Contacts program data-entry screen are part of your output definition.

This may seem contradictory, but input screens require that your program place fields on the

screen, and you should plan where these input fields must go.

The output definition is more than a preliminary output design. It gives you insight into what

data elements the program should track, compute, and produce. Defining the output also helps

you gather all the input you need to produce the output.

CAUTION

Some programs produce a huge amount of output. Don’t skip this first all-important step in the
design process just because there is a lot of output. With more output, it becomes more important
for you to define it. Defining the output is relatively easy—sometimes even downright boring and
time-consuming. The time you need to define the output can take as long as typing in the program.
You will lose that time and more, however, if you shrug off the output definition at the beginning.

The output definition consists of many pages of details. You must be able to specify all the details

of a problem before you know what output you need. Even command buttons and scrolling list

boxes are output because the program will display these items.

38 HOUR 3: Designing a Program

In Hour 1, “Hands-On Programming,” you learned that data goes into a program, and the

program outputs meaningful information. You should inventory all the data that goes into a

program. If you’re using Python to make a customer contact program, you need to know what

specific data the owners want to collect from the users. Define what each piece of data is. Perhaps

the owners want to ask customers whether they want to submit a name and email address for

the weekly sales email blast. Does the company want any additional data from the user, such as

physical address, age, and income?

Object-Oriented Design
Throughout this 24-hour tutorial, you will learn what object-oriented programming (OOP) is all about.
Basically, OOP turns data values, such as names and prices, into objects that can take on a life
of their own inside programs. Part III, “Java and Object-Oriented Programming,” covers the basics
of OOP.

A few years ago, some OOP experts developed a process for designing OOP programs called object-
oriented design (OOD). OOD made an advanced science out of specifying data to be gathered in a
program and defining that data in a way that was appropriate for the special needs of OOP program-
mers. Grady Booch was one of the founders of OOD. His specifications from almost three decades
ago continue to help OOP programmers collect data for the applications they are about to write and
to turn that data into objects for programs.

In Hour 4, “Getting Input and Displaying Output,” you’ll learn how to put these ideas into a

program. You will learn how a program asks for data and produces information on the screen.

This I/O (input/output) process is the most critical part of an application. You want to capture all

data required and in an accurate way.

Something is still missing in all this design discussion. You understand the importance of gather-

ing data. You understand the importance of knowing where you’re headed by designing the out-

put. But how do you go from data to output? That’s the next step in the design process: You need

to determine what processing will be required to produce the output from the input (data). You

must be able to generate proper data flows and calculations so that your program manipulates

that data and produces the correct output. The final sections of this hour discuss ways to develop

the centerpiece—the logic for your programs.

All output screens, printed reports, and data-entry screens must be defined in advance so you

know exactly what is required of your programs. You must also decide what data to keep in files

and the format of your data files. As you progress in your programming education, you will learn

ways to lay out data files in appropriate formats.

When capturing data, you want to gather data from users in a way that is reasonable, requires

little time, and has prompts that request the data in a friendly and unobtrusive manner.

Prototyping (discussed next) and rapid application development can help.

Steps to Design 39

Prototyping
In the days of expensive hardware and costly computer usage time, the process of system design

was, in some ways, more critical than it is today. The more time you spent designing your code,

the smoother the costly hands-on programming became. This is far less true today because com-

puters are inexpensive, and you have much more freedom to change your mind and add program

options than before. Yet the first part of this hour was spent in great detail explaining why

 up-front design is critical.

The primary problem many new programmers have today is that they do absolutely no design

work. That’s why many problems take place, such as the one mentioned earlier this hour about

the company that wanted far more in its program than the programmer ever dreamed of.

Although the actual design of output, data, and even the logic in the body of the program itself

is much simpler to work with, given the power and low cost of today’s computing tools, you still

must maintain an eagle eye toward developing an initial design with agreed-upon output from

your users. You must also know all the data that your program is to collect before you begin your

coding. If you don’t, you will have a frustrating time as a contract programmer or as a corporate

programmer because you’ll constantly be playing catch-up with what the users actually want and

failed to tell you about.

One of the benefits of the Windows operating system is its visual nature. Before Windows, pro-

gramming tools were limited to text-based design and implementation. Designing a user’s

screen today means starting with a programming language such as Visual Basic, drawing the

screen, and dragging to the screen objects that the user will interact with, such as an OK button.

Therefore, you can quickly design prototype screens that you can send to the user. A prototype is

a model, and a prototype screen models what the final program’s screen will look like. After the

user sees the screens that he or she will interact with, the user will have a much better feel for

whether you understand the needs of the program.

Many Windows programming languages, such as Visual C++ and Visual Basic, include prototyp-

ing tools. For comparison, Figure 3.1 shows the Visual Basic development screen. The language

covered in these early chapters, Python, is more likely to help you behind the scenes, working with

the data and analyzing it as needed. You can certainly perform input and output functions with

Python, but if you are developing a Windows application, other languages are more appropriate,

such as what you see in Figure 3.1. The screen looks rather busy, but the important things to look

for are the Toolbox and the output design window. To place controls such as command buttons

and text boxes on the form that serves as the output window, the programmer only has to drag

that control from the Toolbox window to the form. So, to build a program’s output, the program-

mer only has to drag as many controls as needed to the form and does not have to write a single

line of code in the meantime.

40 HOUR 3: Designing a Program

Toolbox Drag controls here Already-placed controls

FIGURE 3.1
Program development systems such as Visual Basic provide tools that you can use to create output
 definitions visually.

Once you place controls on a form window with a programming tool such as Visual Basic, you can

do more than show the form to your users. You actually can compile the form, just as you would

a program, and let your user interact with the controls. When the user is able to work with the

controls, even though nothing happens as a result, the user is better able to tell if you understand

the goals of the program. The user often notices if there is a missing piece of the program and can

also offer suggestions to make the program flow more easily from a user’s point of view.

CAUTION

A prototype is often only an empty shell that cannot do anything except simulate user interaction
until you tie its pieces together with code. Your job as a programmer has only just begun once
you get approval on the screens, but the screens are the first place to begin because you must
 understand what your users want in order to know how to proceed.

Steps to Design 41

Rapid Application Development
A more advanced program design tool used for defining output, data flows, and logic itself is

called rapid application development, or RAD for short. RAD is the process of quickly placing con-

trols on a form—not unlike you just saw done with Visual Basic—connecting those controls to data,

and accessing pieces of prewritten code to put together a fully functional application without writ-

ing a single line of code. In a way, programming systems such as Visual Basic are fulfilling many

goals of RAD. When you place controls on a form, as you’ll see done in far more detail in Hour 20,

“Programming with Visual Basic 2012,” the Visual Basic system handles all the programming

needed for that control. You don’t ever have to write anything to make a command button act like

a command button should. Your only goal is to determine how many command buttons your pro-

gram needs and where they are to go.

But these tools cannot read your mind. RAD tools do not know that, when the user clicks a certain

button, a report is supposed to print. Programmers are still needed to connect all these things

to each other and to data, and programmers are needed to write the detailed logic so that the

 program processes data correctly. Before these kinds of program development tools appeared,

programmers had to write thousands of lines of code, often in the C programming language,

just to produce a simple Windows program. At least now the controls and the interface are more

rapidly developed. Perhaps someday a RAD tool will be sophisticated enough to develop the logic

also. But in the meantime, don’t quit your day job if your day job is programming, because you’re

still in demand.

TIP

Teach your users how to prototype their own screens! Programming knowledge is not required to
design the screens. Your users, therefore, will be able to show you exactly what they want. The pro-
totyped screens are interactive as well. That is, your users will be able to click the buttons and enter
values in the fields even though nothing happens as a result of that use. The idea is to let your
users try the screens for a while to make sure they are comfortable with the placement and appear-
ance of the controls.

Top-Down Program Design
For large projects, many programming staff members find that a top-down design helps them

focus on what a program needs and helps them detail the logic required to produce the program’s

results. Top-down design is the process of breaking down a problem into more and more detail until

you finalize all the details. With top-down design, you produce the details needed to accomplish a

programming task.

42 HOUR 3: Designing a Program

The problem with top-down design is that programmers tend not to use it. They tend to design

from the opposite direction (called bottom-up design). When you ignore top-down design, you

impose a heavy burden on yourself to remember every detail that will be needed; with top-down

design, the details fall out on their own. You don’t have to worry about the petty details if you

 follow a strict top-down design because the process of top-down design takes care of producing

the details.

TIP

One of the keys to top-down design is that it forces you to put off the details until later. Top-down
design forces you to think in terms of the overall problem for as long as possible. Top-down design
keeps you focused. If you use bottom-up design, it is easy to lose sight of the forest for the trees.
You get to the details too fast and lose sight of your program’s primary objectives.

Top-down design involves a three-step process:

 1. Determine the overall goal.

 2. Break that goal into two, three, or more detailed parts. Don’t add too many details, or you

might leave things out.

 3. Keep repeating steps 1 and 2—and put off the details as long as possible—until you cannot

reasonably break down the problem any further.

You can learn about top-down design more easily by relating it to a common real-world problem

before looking at a computer problem. Top-down design is not just for programming problems.

Once you master top-down design, you can apply it to any part of your life that you must plan in

detail. Perhaps the most detailed event that a person can plan is a wedding. Therefore, a wedding

is the perfect place to see top-down design in action.

What is the first thing you must do to have a wedding? First, find a prospective spouse. (You’ll

need a different book for help with that.) When it comes time to plan the wedding, the top-down

design is the best way to approach the event. The way not to plan a wedding is to worry about the

details first, yet this is the way most people plan a wedding. They start thinking about the dresses,

the organist, the flowers, and the cake to serve at the reception. The biggest problem with trying

to cover all these details from the beginning is that you lose sight of so much; it is too easy to for-

get a detail until it’s too late. The details of bottom-up design get in your way.

What is the overall goal of a wedding? Thinking in the most general terms possible, “Have a wed-

ding” is about as general as it can get. If you were in charge of planning a wedding, the general

goal of “Have a wedding” would put you right on target. Assume that “Have a wedding” is the

highest-level goal.

Steps to Design 43

NOTE

The overall goal keeps you focused. Despite its redundant nature, “Have a wedding” keeps out
details such as planning the honeymoon. If you don’t put a fence around the exact problem you are
working on, you’ll get mixed up with details and, more importantly, you’ll forget some details. If
you’re planning both a wedding and a honeymoon, you should do two top-down designs or include
the honeymoon trip in the top-level general goal. This wedding plan includes the event of the
wedding—the ceremony and reception—but doesn’t include any honeymoon details. (Leave the
honeymoon details to your spouse so you can be surprised. After all, you have enough to do with
the wedding plans, right?)

Now that you know where you’re heading, begin by breaking down the overall goal into two

or three details. For instance, what about the colors of the wedding, what about the guest list,

what about paying the officiant…oops, too many details! The idea of top-down design is to put

off the details for as long as possible. Don’t get in a hurry. When you find yourself breaking the

current problem into more than three or four parts, you are rushing the top-down design. Put

off the details. Basically, you can break down “Have a wedding” into the following two major

 components: the ceremony and the reception.

The next step of top-down design is to repeat the same process with the new components. The

ceremony is made up of the people and the location. The reception includes the food, the people,

and the location. The ceremony’s people include the guests, the wedding party, and the workers

(officiant, organist, and so on—but those details come a little later).

TIP

Don’t worry about the time order of the details yet. The goal of top-down design is to produce every
detail you need (eventually), not to put those details into any order. You must know where you are
heading and exactly what is required before considering how those details relate to each other and
which ones come first.

Eventually, you will have several pages of details that cannot be broken down any further. For

instance, you’ll probably end up with the details of the reception food, such as peanuts for

 snacking. (If you start out listing those details, however, you could forget many of them.)

Now move to a more computerized problem; assume that you are assigned the task of writing a

payroll program for a company. What would that payroll program require? You could begin by

listing the payroll program’s details, such as:

 N Print payroll checks.

 N Calculate federal taxes.

 N Calculate state taxes.

44 HOUR 3: Designing a Program

What is wrong with this approach? If you said that the details were coming too early, you are

 correct. The perfect place to start is at the top. The most general goal of a payroll program might

be “Perform the payroll.” This overall goal keeps other details out of this program (no general

ledger processing will be included, unless part of the payroll system updates a general ledger file)

and keeps you focused on the problem at hand.

Consider Figure 3.2. This might be the first page of the payroll’s top-down design. Any payroll pro-

gram has to include some mechanism for entering, deleting, and changing employee information

such as address, city, state, zip code, number of exemptions, and so on. What other details about

the employees do you need? At this point, don’t answer that question. The design is not ready for

all those details.

Perform the
payroll

Track employee
information

Print
reports

Calculate
payroll amounts

Add employee
information

Change employee
information

Delete
employee information

Taxes Payroll Government
reports

Company
reports

Paychecks

State Federal FICA

FIGURE 3.2
The first page of the payroll program’s top-down design would include the highest level of details.

There is a long way to go before you finish with the payroll top-down design, but Figure 3.2 is the

first step. You must keep breaking down each component until the details finally appear.

Only when you and the user gather all the necessary details through top-down design can you

decide what is going to comprise those details.

Step 2: Develop the Logic
After you and the user agree to the goals and output of the program, the rest is up to you. Your

job is to use that output definition to decide how to make a computer produce the output. You

have broken down the overall problem into detailed instructions that the computer can carry out.

This doesn’t mean you are ready to write the program—quite the contrary. You are now ready to

develop the logic that produces that output.

The output definition goes a long way toward describing what the program is supposed to do. Now

you must decide how to accomplish the job. You must order the details that you have so they oper-

ate in a time-ordered fashion. You must also decide which decisions your program must make and

the actions produced by each of those decisions.

Steps to Design 45

Throughout the rest of this 24-hour tutorial, you’ll learn the final two steps of developing pro-

grams. You will gain insight into how programmers write and test a program after developing the

output definition and getting the user’s approval on the program’s specifications.

CAUTION

Only after learning to program can you learn to develop the logic that goes into a program, yet
you must develop some logic before writing programs to be able to move from the output and
data definition stage to the program code. This “chicken before the egg” syndrome is common for
 newcomers to programming. When you begin to write your own programs, you’ll have a much better
understanding of logic development.

In the past, users would use tools such as flowcharts and pseudocode to develop program logic.

A flowchart is shown in Figure 3.3. It is said that a picture is worth a thousand words, and the

flowchart provides a pictorial representation of program logic. The flowchart doesn’t include all

the program details but represents the general logic flow of the program. If your flowchart is cor-

rectly drawn, writing the actual program becomes a matter of rote. After the final program is

completed, the flowchart can act as documentation for the program.

Flowcharts are made up of industry-standard symbols. Plastic flowchart symbol outlines, called

flowchart templates, are still available at office supply stores to help you draw better-looking

 flowcharts instead of relying on freehand drawing. There are also some programs that guide you

through the creation of a flowchart and enable you to print flowcharts on your printer.

Although some still use flowcharts today, RAD and other development tools have virtually elimi-

nated flowcharts except for depicting isolated parts of a program’s logic for documentation pur-

poses. Even in its heyday in the 1960s and 1970s, flowcharting did not completely catch on. Some

companies preferred another method for logic description called pseudocode, sometimes called

structured English, which involves writing logic using sentences of text instead of the diagrams used

in flowcharting.

Pseudocode doesn’t have any programming language statements in it, but it also is not free-

flowing English. It is a set of rigid English words that allow for the depiction of logic you see so

often in flowcharts and programming languages. As with flowcharts, you can write pseudocode

for anything, not just computer programs. A lot of instruction manuals use a form of pseudocode

to illustrate the steps needed to assemble parts. Pseudocode offers a rigid description of logic that

tries to leave little room for ambiguity.

46 HOUR 3: Designing a Program

START

Did
employee
work 40 or
fewer hours

?

Yes

No

PAY equals
RATE times hours A

Did
employee

work less than 50
hours

?

Yes

No

PAY equals
RATE times 40

OVERTIME equals
1.5 times all hours

over 40 times the rate
A

PAY equals
RATE times 40

DOUBLE OVERTIME
equals 2 times all hours

over 50 times
RATE

OVERTIME equals
1.5 times RATE

times 10

Print
Paycheck

A

STOP

FIGURE 3.3
The flowchart depicts the payroll program’s logic graphically.

Here is the logic for the payroll problem in pseudocode form. Notice that you can read the text,

yet it is not a programming language. The indention helps keep track of which sentences go

together. The pseudocode is readable by anyone, even by people unfamiliar with flowcharting

symbols:

For each employee:

 If the employee worked 0 to 40 hours then

 net pay equals hours worked times rate.

 Otherwise,

 if the employee worked between 40 and 50 hours then

 net pay equals 40 times the rate;

 add to that (hours worked -40) times the rate times 1.5.

 Otherwise,

 net pay equals 40 times the rate;

 add to that 10 times the rate times 1.5;

 add to that (hours worked -50) times twice the rate.

 Deduct taxes from the net pay.

Print the paycheck.

47Q&A

Step 3: Writing the Code
The program writing takes the longest to learn. After you learn to program, however, the actual

programming process takes less time than the design if your design is accurate and complete. The

nature of programming requires that you learn some new skills. The next few hourly lessons will

teach you a lot about programming languages and will help train you to become a better coder so

that your programs will not only achieve the goals they are supposed to achieve but also will be

simple to maintain.

Summary
A builder doesn’t build a house before designing it, and a programmer should not write a

 program without designing it either. Too often, programmers rush to the keyboard without think-

ing through the logic. A badly designed program results in lots of bugs and maintenance. This

hour describes how to ensure that your program design matches the design that the user wants.

After you complete the output definition, you can organize the program’s logic using top-down

design, flowcharts, and pseudocode.

The next hour focuses on training you in your first computer language, Python.

Q&A
 Q. At what point in the top-down design should I begin to add details?

 A. Put off the details as long as possible. If you were designing a program to produce sales
reports, you would not enter the printing of the final report total until you had completed
all the other report design tasks. The details fall out on their own when you can no longer
break a task into two or more other tasks.

 Q. Once I break the top-down design into its lowest-level details, don’t I also have the

 pseudocode details?

 A. The top-down enables you to determine all the details your program will need. The top-down
design doesn’t, however, put those details into their logical execution order. The pseudo-
code dictates the executing logic of your program and determines when things happen, the
order in which they happen, and when they stop happening. The top-down design simply
determines everything that might happen in the program. Instead of using pseudocode,
however, you should consider getting a RAD tool that will help you move more quickly from
the design to the finished, working program. Today’s RAD systems are still rather primitive,
and you’ll have to add much of the code yourself.

48 HOUR 3: Designing a Program

Workshop
The quiz questions are provided for your further understanding.

Quiz
 1. Why does proper design often take longer than writing the program code?

 2. Where does a programmer first begin determining the user’s requirements?

 3. True or false: Proper top-down design forces you to put off details as long as possible.

 4. How does top-down design differ from pseudocode?

 5. What is the purpose of RAD?

 6. True or false: You do not have to add code to any system that you design with RAD.

 7. Which uses symbols: a flowchart or pseudocode?

 8. True or false: You can flowchart both program logic as well as real-world procedures.

 9. True or false: Your user will help you create a program’s output if you let the user work with
an output prototype.

 10. What is the final step of the programming process (before testing the final result)?

Answers
 1. The more thorough the design, the more quickly the programming staff can write the

 program.

 2. A programmer often begins defining the output of the proposed system.

 3. True

 4. Top-down design enables a program designer to incrementally generate all aspects of a pro-
gram’s requirements. Pseudocode enables you to specify the logic of a program once the
program’s design has been accomplished using tools such as top-down design.

 5. RAD provides a way to rapidly develop systems and move quickly from the design stage to
a finished product. RAD tools are not yet advanced enough to handle most programming
tasks, although RAD can make designing systems easier than designing without RAD tools.

 6. False. RAD requires quite a bit of programming in many instances once its work is done.

 7. A flowchart uses symbols.

 8. True

 9. True

 10. The final step of programming is writing the program code.

HOUR 4
Getting Input and Displaying

Output

Input and output are the cornerstones that enable programs to interact with the outside world.

In the previous hour, you learned how important the output process is to programming because

through output, your program displays information. A program must get some of its data and

control from the user’s input, so learning how to get the user’s responses is critical as well.

The highlights of this hour include the following:

 N Displaying output in Python

 N Printing multiple occurrences per line

 N Separating output values

 N Using variables to hold information

 N Getting data in Python

 N Prompting for data input

 N Sending output to your printer

Printing to the Screen with Python
In Python, the primary method for displaying output on the screen is to use the print()

 function. You’ve already seen the print() function in action in the programs presented in the

first two hours of the book. Almost every program you write will output some data to the screen.

Your users must be able to see results and read messages from the programs that they run.

NOTE

In programming, a function is a collection of programming statements that perform a specific task.
When programming, if you find yourself needing to do the same thing over and over again, you
will save time by creating a function. Most programming languages include a series of predefined
 functions for output, input, and many mathematical operations. Some of Python’s built-in functions
are covered in this book, but there are many more available. The Python functions that you learn in
this book generally have comparable functions in other programming languages; once you learn one,
it should be pretty easy to understand other similar functions in other languages.

50 HOUR 4: Getting Input and Displaying Output

The output to the screen in most programs is a combination of unchanging and changing

 information. Luckily, the print() function can handle both. The following statements show

some examples:

print('2 + 3 = ',2+3)

print('Math is fun!')

These statements produce the following output:

2 + 3 = 5

Math is fun!

Remember that with the print() function in Python, you need to put what you plan to print

in the parentheses. Without that, you will not get a result; instead, your code will generate an

error message. You may be wondering about the information between the parentheses in the

lines of code. There’s a string of characters between the two single quote marks in both, and that

first single quote tells Python “print all characters you see from here on out until you get to the

second, closing single quote mark.” The quotation marks are not printed; they mark the string to

be printed. But what if you want to print quotation marks? Python has an easy solution. If you

enclose your string to be printed in double quote marks, you can then include the single quotation

mark as something to print. For example, if you changed the second line to the line:

print("Isn't math fun?")

the output would be:

Isn't math fun?

Whether you use single or double quotation marks, understand that numbers and mathematical

expressions will print as is inside the string. Python will not do any math within a string. If you

write:

print('2 + 3')

Python doesn’t print 5 (the result of 2 + 3). Because quotation marks enclose the expression,

the expression prints exactly as it appears inside the quotation marks. However, as you can see

in the second half of the first statement, if you print an expression without the quotation marks,

Python prints the result of the calculated expression:

print(5 + 7)

prints 12.

Printing to the Screen with Python 51

NOTE

Don’t worry too much about understanding the calculations in this hour’s programs. Hour 5, “Data
Processing with Numbers and Words,” explains how to form calculations in Python.

Here is the output you see if you run the program in Listing 4.1:

The area of a circle with a radius of 3 is

28.2744

The area of one-half that circle is

14.1372

Note that in Python, each time you call the print() function, it begins its output on a new line.

You can also force the output to a second line by using the newline character (\n). For the newline

character to work, it must be typed as the backlash character immediately followed by an n. For

example, in the previous code, if you wanted the output in the first statement to span two lines

but didn’t want to write two print() statements, you could alter the code to:

print("The area of a circle \nwith a radius of 3 is ");

and the output of that line of code would be:

The area of a circle

with a radius of 3 is

▼TRY IT YOURSELF

Consider the program in Listing 4.1. It prints the radius of a circle, as well as the area of the
entire circle and half of the circle.

LISTING 4.1 Printing results of calculations

Filename: AreaHalf.py

Program that calculates and prints the area

of a circle and half circle

print("The area of a circle with a radius of 3 is ");

print(3.1416 * 3 * 3);

print("The area of one-half that circle is ");

print((3.1416 * 3 * 3) / 2);

52 HOUR 4: Getting Input and Displaying Output

Storing Data
As its definition implies, data processing refers to a program processing data. That data must some-

how be stored in memory while a program processes it. In Python programs, as in most other

 languages’ programs, you must store data in variables. You can think of a variable as if it were

a box inside your computer holding a data value. The value might be a number, a character, or

a string of characters.

NOTE

Data is stored inside memory locations. Variables keep you from having to remember which memory
locations hold your data. Instead of remembering a specific storage location (called an address), you
only have to remember the name of the variables you create. The variable is like a box that holds
data, and the variable name is a label for that box that lets you know what’s inside.

Your programs can have as many variables as you need. Variables have names associated with

them. You don’t have to remember which internal memory location holds data; you can attach

names to variables to make them easier to remember. For instance, Sales is much easier to

remember than the 4,376th memory location.

You can use almost any name you want, provided that you follow these naming rules:

 N Variable names must begin with an alphabetic character such as a letter.

 N Variable names can be as long as you need them to be.

 N Uppercase and lowercase variable names differ; MyName and MYNAME refer to two different

variables.

 N After the first alphabetic character, variable names can contain numbers and underscores.

CAUTION

Avoid strange variable names. Try to name variables so that their names help describe the kind of
data being stored. Balanc19 is a much better variable name for an accountant’s 2019 balance
value than X1y96a, although Python doesn’t care which one you use.

Here are some examples of valid and invalid variable names:

Valid Invalid

Sales04 Sales-04

MyRate My$Rate

ActsRecBal 5ActsRec

row if

Assigning Values 53

CAUTION

Don’t assign a variable the same name as a Python statement, or Python will issue an invalid
 variable name error message.

Variables can hold numbers or character strings. A character string usually consists of one or more

characters, such as a word, a name, a sentence, or an address. Python lets you hold numbers or

strings in your variables.

Assigning Values
Many Python program statements use variable names. Often, Python programs do little more

than store values in variables, change variables, calculate with variables, and output variable

values.

When you are ready to store a data value, you must name a variable to put it in. You must use

an assignment statement to store values in your program variables. The assignment statement

includes an equal sign (=). Here are two sample assignment statements:

sales = 956.34

salesperson = "Tina Grant"

TIP

If you learn another language, it may require that you use a keyword to first declare a variable, so
keep that in mind.

Think of the equal sign in an assignment statement as a left-pointing arrow. Whatever is on the

right side of the equal sign is sent to the left side to be stored in the variable there. Figure 4.1

shows how the assignment statement works.

A=23

A

Variable

23

FIGURE 4.1
The assignment statement stores values in variables.

54 HOUR 4: Getting Input and Displaying Output

If you want to store character string data in a variable, you must enclose the string inside either

single or double quotation marks. Here is how you store the phrase Python programmer in a

 variable named myJob:

myJob = "Python programmer" # Enclose strings in quotation marks

After you put values in variables, they stay there for the entire run of the program or until you

put something else in them. A variable can hold only one value at a time. Therefore, the two

 statements:

age = 67;

age = 27;

result in age holding 27 because that was the last value stored there. The variable age cannot

hold both values.

You can also assign values of one variable to another and perform math on the numeric vari-

ables. Here is code that stores the result of a calculation in a variable and then uses that result in

another calculation:

pi = 3.1416;

radius = 3;

area = pi * radius * radius;

halfArea = area / 2;

▼ TRY IT YOURSELF

When you are looking to print the values stored in variables, print the variable names without
quotes around them. Listing 4.2 contains code similar to Listing 4.1, but instead of printing cal-
culated results directly, the program first stores calculations in variables and prints the variables’
values.

LISTING 4.2 Calculating the area of a circle with variables

Filename AreaHalf2.py

program that calculates and prints the area

of a circle and half circle

pi = 3.14159; # mathematical value of PI

radius = 3; # radius of the circle

55Getting Keyboard Data with input()

Getting Keyboard Data with input()
So far, the programs you’ve created have used specific pieces of information and data coded right

into the programs. Even variables have been defined with specific values, such as the radius of

the circle in Listing 4.1. While this is interesting, it’s ultimately limiting. To make programs more

 valuable, you need to get information from your user.

The input() function is sort of the opposite of print(). The input function receives values

from the keyboard. You can then assign the values typed by the user to variables. In the previous

 section, you learned how to assign values to variables. You used the assignment statement

because you knew the actual values. However, you often don’t know all the data values when you

write a program.

Think of a medical reception program that tracks patients as they enter the doctor’s office. The

programmer has no idea who will walk in next and so cannot assign patient names to variables.

The patient names can be stored in variables only when the program is run.

When a program reaches a prompt call, it creates a dialog box that stays until the user types

a value and clicks or taps the OK button. Here is an input:

input("What is your favorite color?");

When program execution reaches this statement, the computer displays a dialog box or prompt

with the message you type in the quotation marks. The dialog box is a signal to the user that

something is being asked, and a response is desired. The more clear you make the statement you

send to the prompt, the easier it will be for the user to enter the correct information.

▼TRY IT YOURSELF

The program in Listing 4.3 is a third attempt at the area of a circle program, but this time the
user gets to enter the radius of the circle. Now that the user can enter the radii of different-sized
circles, this program has far more value.

▼# calculate the area of the whole circle

area = pi * radius * radius;

print("The area of a circle with a radius of 3 is ", area);

print("The area of a half circle is ", area/2);

▼

56 HOUR 4: Getting Input and Displaying Output

▼ NOTE

It might start to get a little dull to keep writing variations of the same program, but making just
subtle changes to your code to achieve the same or slightly different results is a great way to
 understand new commands and techniques.

LISTING 4.3 Using input to get the value of a circle’s radius

Filename AreaHalf3.py

program that calculates and prints the area

of a circle and half circle

pi = 3.14159 # mathematical value of PI

radius = float(input("Enter a circle's radius: ")) # get radius

calculate the area of the whole circle

area = pi * radius * radius

print("The area of a circle with a radius of", radius, "is %.2f" % area);

print("The area of a half circle is %.2f" % (area/2));

If the user runs this program, the prompt statement produces the dialog box featured in Figure 4.2.

FIGURE 4.2
The program will not advance until the user enters a value and then presses Enter.

The statement to get the input needs to be examined a bit:

radius = float(input("Enter a circle's radius: "))

You are using the input() function to get the value the user wants and will be assigning it to
the variable radius. But when users enter information, the computer makes no assumptions
that what they have entered is a string of letters or a number. So, you have to tell Python to treat
the information as a number—in this case, by putting float() around the input statement. This
tells Python to treat whatever is inside the () as a floating-point number, a concept known as
casting. This concept will be covered in more detail in later hours, but remember from Hour 1 that
computers are dumb machines that do exactly what you tell them to do, so you have to tell them
this specific variable is a number.

Once the user enters a value for the radius, the program proceeds as it did before, with a few
differences. First, it shows the area of an entire circle and then the area of a half circle. But the
print() function looks a little different than it did before:

print("The area of a circle with a radius of that radius is %.2f" % area);

print("The area of a half circle is %.1f" % (area/2));

57Getting Keyboard Data with input()

Inputting Strings
Unlike in many programming languages, a variable in Python can hold either a number or a

string. Any type of variable, numeric or string, can be entered by the user through a prompt

 dialog box. For example, this line waits for the user to enter a string value:

fname = input("What is your first name");

When the user types a name in response to the question, the name is put into the fname variable.

CAUTION

If the user only clicks or taps OK, without entering a value in response to the prompt, Python puts a
value called null into the variable. A null value is a zero for numeric variables or an empty string for
string variables. An empty string—a string variable with nothing in it—is literally zero characters long.

▼TRY IT YOURSELF

Listing 4.4 is a simple program that once again takes user input and again stores the information
in variables. This time, you are prompting the user for strings (two of them).

LISTING 4.4 Using input to get a user’s first and last names

Filename entername.py

program that asks the user's first and last

▼Now the output is a little different. Rather than just ending the two strings with is and then print-
ing the number, you have …%.2f at the end of the first string and %.1f at the end of the second
one. These are specific formatting instructions for Python. In the first case, you are telling Python
to take the value after the second %—the one outside the string (the area)—and put it inside the
string. However, the .2 is telling Python to include only two places after the decimal point. So if
you entered 2 as the radius, the area output would be 12.57. Without the .2 in the %.2f (that
is, if your string ended with %f) the area output would be 12.566360. It’s a more exact answer,
but it’s also more awkward. Using this kind of formatting is useful for cleaner-looking output,
especially when you are dealing with money. If you were trying to figure out how much sales tax
you’d pay if the tax rate were 7% and the amount were $56.76, without this type of formatting
help, you’d get an answer of $3.9732. But $3.97 is not only cleaner looking but correct. So
sometimes you need to do this type of formatting.

The second line shows the same type of formatting, but with only one value to the right of the deci-
mal place, showing that you can be as exact as you want. Without formatting, Python defaults to
using six digits, but you can actually use formatting to print more than (or less than) six.

58 HOUR 4: Getting Input and Displaying Output

 TIP

Python’s ability to combine the string asking the user to enter information and the prompt for the
data itself is not a feature all programming languages share. When you use other languages (such
as C), you may have to have a separate output statement telling the user what you need and an
input statement to receive the information.

This program gets two strings from the user—a first name and a last name—and then combines

them in two different formats in print() statements. There are other ways to combine strings,

as discussed in the next lesson. The other issue is that there is no checking to ensure that the user

entered the correct information. With strings, the program accepts numbers and treats them as

strings. So if your user enters Helga as their first name and 11 as their last name, Python will set

the full name as Helga 11.

While numbers can be treated as strings, the opposite is not true (for strings being entered as

numbers). In Listing 4.3, if the user enters a series of letters for the radius, the program returns

an error. When you are writing programs that take input, you often need to ensure that the user

has entered the expected value. This is known as data validation, and this topic is covered in more

detail in Hour 6, “Controlling Your Programs.”

▼ # name and then displays it in a last, first format

Ask the user for their first name

fname = input("What is your first name? ")

Ask the user for their last name

lname = prompt("What is your last name? ")

print("First name first: ", fname, lname);

print("Last name first: ", lname, ",", fname);

▼ TRY IT YOURSELF

Listing 4.5 shows a program that a small store might use to compute totals at the cash register.
The input functions in this program are required; only at runtime will the customer purchase
 values be known. As you can see, getting input at runtime is vital for real-world data processing.

59Getting Keyboard Data with input()

▼LISTING 4.5 You can use Input to simulate a cash register program for a small

store

Filename: Storereg.py

A more practical use of input and output

Asks users for specific info on sold items

print("Welcome to Fran's Place!\n\n")

print("Let's proceed to checkout!")

A series of statements to find out how much of each

item has been purchased

candy = int(input("How many candy bars did they buy? "))

drinks = int(input("How many energy drinks did they buy? "))

gas = int(input("How many gallons of gas did they buy? "))

This section will take each value and

multiply it by the current cost per item

candytotal = candy * 1.25

drinktotal = drinks * 2.25

gastotal = gas * 2.879

subtotal = candytotal + drinktotal + gastotal

Don't forget sales tax! 7.25% in this example

tax = subtotal * .0725;

#Finally print the itemized receipt

print("\n\nItem Qnt Total")

print("------------------------------")

print("Candy ", candy, " $%.2f" % candytotal)

print("Drinks ", drinks, " $%.2f" % drinktotal)

print("Gas ", gas, " $%.2f" % gastotal)

print("------------------------------")

print("Subtotal $ %.2f" % subtotal)

print("Tax $ %.2f" % tax)

print("Total $ %.2f" % (subtotal+tax))

print("\n\nHAVE A GREAT DAY!")

60 HOUR 4: Getting Input and Displaying Output

Figure 4.3 shows the output of this program. As you can see, this type of program could be helpful

for a small store. Obviously, it is unlikely that a store would only have three items, but once you

learn some additional features of Python (such as dictionaries), you can quickly and easily build a

more robust set of data for any need you have, personally or professionally.

You might be wondering about the \t character that appears in several of the last 10 lines that

print out the receipt. This is another example of a formatting character you can use in Python.

When Python encounters a \t in a string, it tabs over (as in a word processor) before continuing

to print. This can be extremely useful if you are looking to line up columns when printing out

output, as this program does for the quantities and totals of items purchased. The print() state-

ments also perform formatting you have seen before, including using \n to jump down a line and

%.2f to limit the digits to the right of the decimal points to two, which is all you should see in a

financial transaction. When asking for purchase amounts, this program has lines for each item

in inventory. While this works, it can be inefficient. Later on, in Hour 6, you will learn some tricks

to loop through identical or similar code lines with fewer total lines. This might not seem like a

big deal when you’re only dealing with 3 products, but what if you had 20 or more? In such situa-

tions, you can really improve your coding efficiency by taking advantage of loops.

FIGURE 4.3
Running the cash register program produces this output.

NOTE

Again, there is a lot you can do with input and output in Python, but this lesson just covers
 programming basics. If you want to learn more, please pick up a tutorial devoted to the language;
your programs will thank you if you do!

61Workshop

Summary
Proper input and output can mean the difference between a program that your users like to use

and one they hate to use. If you properly label all input that you want so that you prompt your

users through the input process, the users will have no questions about the proper format for your

program.

The next hour describes in detail how to use Python to program calculations using variables and

the mathematical operators, as well as some handy string-manipulation tricks.

Q&A
 Q. How can I ensure users enter information in the proper format for my program?

 A. As mentioned earlier in the hour, techniques known as data validation can check to make
sure the information entered is expected. If it isn’t you can either generate an error
message or give the user another chance to enter the information. Data validation is
covered more in later hours, but it will become an important consideration of any program
that features user interaction.

 Q. Why don’t I have to tell Python what type of variable I want to use?

 A. Python is just that smart! Actually, for most programming languages, you need to specify
the type of variable, and if you try to put a different type of data in that variable, you can
get an error or unpredictable results. Python changes the variable type on-the-fly, so you can
use the same variable as a string in the beginning of the program and then a number later.
This is not the best idea, however. You should keep your variables focused on a specific
type and a specific job.

Workshop
The quiz questions are provided for your further understanding.

Quiz
 1. What is a function?

 2. How would you write a print() statement that prints the sum of 10 and 20?

 3. Declare a variable named movie and assign to it the last movie you saw in theaters.

 4. What character is used in print() statements to force a new line?

 5. What is a variable?

 6. What function is used to get information from a program’s user?

 7. What is a prompt?

62 HOUR 4: Getting Input and Displaying Output

 8. Write a simple program that asks the user for his or her birthday in three separate
prompts—one for month, one for day, and one for year—and then combine the three into
a Month date, year format that you print on the screen.

 9. In Python, what does the /t character do?

Answers
 1. A function is a collection of statements that perform a specific task.

 2. print(10 + 20)

 3. (Obviously, this should vary based on your most recent cinema-viewing experience.) For me:

movie = "Once Upon a Time in Hollywood"

 4. The newline character is \n.

 5. A variable is a named storage location.

 6. The input() function

 7. A prompt describes the information that a user is to type.

 8. Here is one possible solution:

Answer to Chapter 4, Question 8

bYear = input("What year were you born? ")

bMonth = input("What month were you born? ")

bDay = input("What day were you born? ")

print("You were born on", bMonth, bDay, ",", bYear, "!")

 9. It tabs over the input.

quizzes, creating with libraries,

254–255

HTML files, 255–256

JavaScript files, 257–258

testing, 258–259

requests, 248

server-side scripts, 248–249

XML, 249, 256

XMLHttpRequest, 247–248

awaiting responses to, 252

creating requests, 251

interpreting responses to,

252–253

opening URL, 251–252

sending requests, 252

algorithms, 124

accumulators, 123, 130–131

counters, 123–127

defined, 123

dictionaries, 127–129

functions and, 144–147

lists, 127

nested loops, 148

sorting data, 123, 133

Numbers

2D/3D graphics, Java, 159

A

abs() function, 77

abstraction, C++, 322

accumulators, 123, 130–131

accuracy in programming,

98–104

AI (Artificial Intelligence), 28

AJAX (Asynchronous JavaScript

and XML), 158, 247

ajaxRequest function, 254

ajaxResponse function, 254

examples of, 249–250

frameworks, 250

JavaScript Client, 248

JSON, 249

libraries, 250, 253–259

limitations of, 250–251

Index

400 algorithms

ascending sort order, 133

bubble sorts, 133–137

character string data, 133

descending sort order, 133

subroutines, 144–147

swapping data, 131–132

ALTER TABLE statements, 272

Amazon.com, AJAX, 249

ambiguity in programming, 28–29

Anaconda, installing, 395–398

analysis/design jobs, 369–370

anchor tags, 213–214

and operator, 179

animation, web pages, 155

API (Application Programming

Interface), Java database API,

159

applets, 153, 155, 157–160

applications

C# applications, creating,

352–355

buttons, 356

controls, 357–359

declaring variables,

357–358

guidelines, 356

labels, 356

naming variables,

356–357

compiled applications,

378–379

distributing, 377

cloud computing, 379

compiled applications,

378–379

mobile applications,

380

open-source software, 380

packaged applications,

378–379

software distributions,

377–378

Java, 153, 158

packaged applications,

378–379

Visual Basic applications,

creating, 335–336

adding details, 337–339

aligning controls, 339

centering forms, 339

changing/assigning

properties, 337

procedures, 341–344

properties of, 340

resizing form windows,

336

subroutines, 341

Windows applications

code modules, 334, 344

form files, 334

other files, 334

arguments, Java, 188, 195

arithmetic assignment operators,

174–175

arithmetic operators, 289

arrays, 74–75

Java, 172

JavaScript, 226–227

ascending sort order, 133

ASCII table, 65, 71–73

character values, 65–66

nonprinting characters, 73

assembly language, 309–310

assignment operators, 286, 289,

291–292. See also combined

assignment operators

assignment statements, C, 314

automated testing, 385–386

B

back end/front end developers,

370–371

Backbone.js, 250

\n, 60

\t, 60

behavior, adding to objects (C++),

326–328

beta testing, 118–119

BigDecimal class, 179

binary, 27

binary arithmetic, 69–72

binary searches, 141–143

bleeding edge technology, industry

standards, 389

blocks of code, 176–177

<body> tags, 208

boldfaced text, 209

Boolean literals, 168

Boolean variables, 171

 tags, 208–209

branching, 111

break statements, 283

breakpoints, debugging, 106

bubble sorts, 133–137

bugs

common bugs, 98

debugging tools, accuracy in

programming, 98–104

http://Amazon.com

401call statements, Visual Basic

dot operators, 326

extraction operator, 323–324

filename extensions, 322

functions

member functions,

326–327

operator overloading

functions, 329–330

prototypes, 327

inheritance, 322, 330

insertion operator, 323–324

Java and, 160–161, 167, 169

messages, 322–323

newline character, 324

objects, 322–323

behavior, adding to objects,

326–328

class, 325

class statements,

327–328

class statements and, 325

declaring, 324–325

declaring object variables,

325–326

dot operators, 326

endl object, 324

member access, 326

OOP and, 322–323

operator overloading

functions, 329–330

polymorphism, 323, 330

reusability, 323

string classes, 330

Calculator class, 188

call stacks, 106

call statements, Visual Basic, 344

stdio.h files, 313

strcpy() function, 317

strings, 313–314, 317

supported data types,

313–314

variables

declaring, 314

floating-point variables,

313

integer variables, 313

writing functions, 320–321

C#, 350–351. See also .NET

Framework

applications, creating,

352–355

buttons, 356

controls, 357–359

declaring variables,

357–358

guidelines, 356

labels, 356

naming variables,

356–357

DLR, 350

visual nature of, 355–359

C++, 309

abstraction, 322

C versus

I/O differences, 323–324

name differences, 323

class statements, 322

objects and, 325,

327–328

scope of, 328–329

string classes, 330

declaring, object variables,

325–326

logic errors, 99–101

origin of, 97–98

syntax errors, 99–101

built-in PHP functions, 295–296

buttons, C#, 356

buying programs, 18

bytecode, 155–157

C

C, 309

assignment statements, 314

built-in functions, 315–320

C++ versus

I/O differences, 323–324

name differences, 323

clear programs, writing,

104–105

command keywords, 310

comments, 314

compilers, 311

control statements, 321–322

cryptic nature of, 309–312,

314

grouping symbols, 312

header files, 313

#include statement, 312–313

main() function, 312,

320–321

operators, 310, 321

portability of, 315

preprocessor directives,

312–313

printf() function, 315–320

scanf() function, 318–320

402 called methods

called methods, 195–197

camel notation, 356

capital/lowercase letters in

strings, 75

CASE (Computer-Aided Software

Engineering) tools, 387–388

cash register program, input

example, 58–60

centering forms, Visual Basic, 339

certificates

computer-related jobs,

366–367

site certificates, 160

CGI (Common Gateway Interface),

155

character literals, 168–169

character strings, 52–53, 133

character variables, 172

chargeback, IT/data process

departments, 364–365

chr() function, 73

CI (Continuous Integration), 386

CIL (Common Intermediate

Language), 349

class statements, 322

objects and, 325, 327–328

scope of, 328–329

string classes, 330

classes

arguments, methods and, 195

Calculator class, 188

data members, 193

inheritance, 193

methods, 193, 195

arguments and, 195

called methods, 195–197

doubleIt() method, 197

objects (PHP), 300

overview of, 192–194

subclasses (derived classes),

193

SwingCalculator class, 190

clear programs, writing, 104–105

cloud computing

applications, distributing, 379

cloud services, 379

private cloud storage, 379

public cloud storage, 379

CLR (Common Language

Runtime), 348–349

COBOL (Common Business-

Oriented Language), 97

code

blocks of code, 176–177

defined, 6–7

managed/unmanaged code,

.NET framework, 348

profilers, 119–120

writing (designing programs),

47

code modules, Windows

applications, 334, 344

collections, 159

combined assignment operators,

290–292. See also assignment

operators

command tags (HTML), 205–206

commands, SQL queries, 266

comments, 11

C, 314

defined, 9

JavaScript, 218

PHP, 281

placement of, 10–11

pound sign (#), 9–10

reasons for, 10

companies, programming

departments, 361–363

chargeback, 364–365

contract programmers,

364–365

funny money, 364

jobs, 365–366

analysis/design jobs,

369–370

consulting jobs, 374–375

data entry jobs, 367–368

degrees/certificates,

366–367

egoless programmers, 372

front end/back end

developers, 370–371

mobile developers,

370–371

programmer jobs,

368–369

putting programs into

production, 372–374

security, 374

systems analysts,

369–370

titles, 366

training, 388–390

UI developers, 370–371

overhead, 363

resource allocation, 363

telecommuting, 364

comparing data

elif statements, 84, 86

else statements, 83–84, 86

if statements, 81–84

403data processing/IT departments

decision symbols, 83

elif statements, 86

nesting, 86

relational operators,

84–85

comparison operators, 175–176,

292

compiled applications, 378–379

compilers, 311

complex test expressions, creating

with logical operators, 292–293

computer-related jobs, 365–366

analysis/design jobs,

369–370

consulting jobs, 374–375

data entry jobs, 367–368

degrees/certificates,

366–367

egoless programmers, 372

front end/back end

developers, 370–371

job security, 374

mobile developers, 370–371

production, putting programs

into, 372–374

programmer jobs, 368–369

systems analysts, 369–370

titles, 366

training, 388–390

UI developers, 370–371

computers make mistakes,

programming myths, 4

concatenating (merging) strings,

63–64

concatenation operators,

289–290

conditional operator, 176

constants, 294–295. See also

variables

constructs, 110–111

decisions (selections),

112–113

sequences, 111–114

consulting jobs, 374–375

contract programmers,

364–365

control statements in C, 321–322

cookies in user sessions, PHP

and, 304

counters, 123–127

Create a New Project screen

(Visual Basic), navigating,

334–335

CSS (Cascading Style Sheets),

formatting text, 210–213

CTS (Common Time System),

348–349

customizing programs, 18–19

D

data

comparisons

elif statements, 84, 86

else statements, 83–84,

86

if statements, 81–86

flow, defining (designing

programs), 36–38

data gathering process,

38–40

listing fields, 36–37

prototyping, 38–41

RAD, 41

top-down program design,

41–44

gathering process (designing

programs), 38–40

information versus, 2

processing, 2

sorting data, 123, 133

ascending sort order, 133

bubble sorts, 133–137

character string data, 133

descending sort order, 133

storage

private cloud storage, 379

public cloud storage, 379

variables, 52–55, 57

swapping data, 131–132

validation, 58

data entry jobs, 367–368

data members, 193

data processing/IT departments,

361–363

chargeback, 364–365

contract programmers,

364–365

funny money, 364

jobs, 365–366

analysis/design jobs,

369–370

consulting jobs, 374–375

data entry jobs, 367–368

degrees/certificates,

366–367

egoless programmers, 372

front end/back end

developers, 370–371

404 data processing/IT departments

mobile developers,

370–371

programmer jobs,

368–369

putting programs into

production, 372–374

security, 374

systems analysts,

369–370

titles, 366

training, 388–390

UI developers, 370–371

overhead, 363

resource allocation, 363

telecommuting, 364

data types (PHP), 288

database API (Application

Programming Interface), Java,

159

databases, PHP interaction with,

304

databases (relational), 263–264

deleting, 271–272

fields, 264–265

adding to tables, 272

deleting from tables, 273

modifying in tables, 273

records

deleting, 271

inserting, 269

narrowing data results,

267–269

retrieving, 266–269

updating, 270–271

SQL queries

ALTER TABLE statements,

272–273

common commands, 266

DELETE statements, 271

DROP DATABASE state-

ments, 271–272

DROP TABLE statements,

271–272

INSERT INTO statements,

269

SELECT statements,

266–269

UPDATE statements,

270–271

WHERE clause, 267–269

tables, 264–266

adding fields to tables,

272

ALTER TABLE statements,

272–273

deleting, 271–272

deleting fields from tables,

273

modifying fields in tables,

273

debugging tools

accuracy in programming,

98–104

breakpoints, 106

bugs

common bugs, 98

logic errors, 99–101

origin of, 97–98

runtime errors, 102

syntax errors, 99–101

call stacks, 106

clear programs, writing,

104–105

IDE, 101

testing, 101–104

variables, 106

decision statements

elif statements, 84

else statements, 83–84, 86

if statements, 81–84

decision symbols, 83

elif statements, 86

nesting, 86

relational operators,

84–85

decision symbols, 83

decisions (selections), 112–113

decrement/increment operators,

173–174

defining PHP functions, 296–298

degrees/certificates, computer-

related jobs, 366–367

DELETE statements, 271

deleting

records from relational

databases, 271

relational databases,

271–272

tables from relational

databases, 271–272

demand for programmers, 5

deprecate, defined, 153

derived classes (subclasses), 193

descending sort order, 133

design tools, 23

design/analysis jobs, 369–370

designing programs

data flow, defining, 36–38

data gathering process,

38–40

405formatting

listing fields, 36–37

prototyping, 38–41

RAD, 41

top-down program design,

41–44

logic development, 44–46

need for design, 33–34

OOD, 38

OOP, 38

output, defining, 36–38

data gathering process,

38–40

listing fields, 36–37

prototyping, 38–41

RAD, 41

top-down program design,

41–44

user-programmer agreements,

34–35

writing code, 47

desk checking, 118

detailed instructions, 20–23

dictionaries, 127–129

difficulties in programming,

programming myths, 5

digital signatures, 160

directions, programs as, 20–21

distributing applications, 377

cloud computing, 379

compiled applications,

378–379

mobile applications, 380

open-source software, 380

packaged applications,

378–379

software distributions,

377–378

DLR (Dynamic Language

Runtime), 350

<!DOCTYPE html> tags, 208

dot operators, C++ objects, 326

doubleIt() method, 197

do.while loops, 228–230, 285

downloading, Python, 393–395

drag and drop, Java, 159

drawstring() method, 164

DROP DATABASE statements,

271–272

DROP TABLE statements,

271–272

E

EBCDIC table, 66

echo statements, 279–280

egoless programmers, 372

elif statements, 84, 86

else statements, 83–84, 86,

177–179

endl object, 324

English (structured), logic

development, 44–46

errors

debugging

logic errors, 99–101

runtime errors, 102

syntax errors, 99–101

typing errors, 145

escape sequences, 168–169

executable content, Java,

154–157

experts, programming myths, 3–4

extraction operator, 323–324

F

Facebook, AJAX, 249

false/true literals, 168

FCL (Framework Class Library),

349–350

fields

listing (designing programs),

36

relational databases,

264–265

adding fields to tables,

272

deleting fields from tables,

273

modifying fields in tables,

273

first programs, writing, 8, 11–13,

218–221

floating-point literals, 168

floating-point variables, 171, 313

flowcharts, logic development,

44–46

flow control, PHP, 281

fonts/text, Visual Basic

applications, creating, 338

form data and PHP, 304

form files, Windows applications,

334

formatting

\n, 60

\t, 60

Java statements, 177

text

CSS, 210–213

HTML, 208–213

406 FORTRAN (Formula Translation)

FORTRAN (Formula Translation),

30

frameworks

AJAX, 250

FCL, 349–350

free-form programming

languages, 10

front end/back end developers,

370–371

functions

abs() function, 77

ajaxRequest function, 254

ajaxResponse function, 254

algorithms and, 144–147

chr() function, 73

creating, 115–118

defined, 49, 74

flow control functions,

281–283

input() function, 55–57

cash register program,

input example, 57–60

data validation, 58

strings, 57–60

main() function, 312,

320–321

math.atan() function, 78

math.exp() function, 78–79

math.floor() function, 76–77

math.log() function, 79

member functions (C++),

326–327

numeric functions, 76–79

operator overloading

functions, 329–330

overview of, 74

PHP functions, 295

built-in PHP functions,

295–296

defining, 296–298

variable scope in

functions, 298–300

print() function, 49–51

print() statements, 145

printf() function, 315–320

prototypes, 327

range() function, for loops,

91–93

round() function, 77

scanf() function, 318–320

strcpy() function, 317

string functions, 75–76

subroutines, 144–147

typing errors, preventing, 145

funny money, IT/data processing

departments, 364

G

game-development and Java, 160

garbage collection, .Net

framework, 349

global variables, 169–170, 287

Gmail, AJAX, 249

goto statements, 111

graphics/multimedia images in

web pages, 205, 213

grouping symbols (C), 312

GUI (Graphical User Interface),

Java, 190–191

guidelines, C#, 356

H

<h> tags, 209–210

hardware, industry standards,

389

<head> tags, 208

header files, 313

HTML (HyperText Markup

Language), 30, 201–202

<body> tags, 208

 tags, 208–209

<!DOCTYPE html> tags,

208

<h> tags, 209–210

<head> tags, 208

<html> tags, 208

 tags, 213

<title> tags, 208

AJAX quizzes, creating,

255–256

anchor tags, 213–214

attribute tags, 204

command tags, 205–206

example of, 203–204,

206–207

formatting text,

208–213

graphics/multimedia images

in web pages, 213

hyperlinks, 213–214

Java, 154

PHP and, 280–281

tag references/commands,

205

W3C standardization, 202

hyperlinks, 213–214

407IT/data processing departments

I

IDE (Integrated Development

Environment), 384–385,

393–405

debugging tools, 101

Java, 165

Python IDE, 9

if statements, 81–84, 177–179,

281–282, 284

decision symbols, 83

JavaScript, 227

nesting, 86

relational operators, 84–85

if-else statements, 177–179

 tags, 213

import commands, Java, 162–163

#include statement, 312–313

incremental variables, 124

increment/decrement operators,

173–174

industry standards, 389

infinite loops, 114, 285

information systems/services,

361–363

chargeback, 364–365

contract programmers,

364–365

funny money, 364

jobs, 365–366

analysis/design jobs,

369–370

consulting jobs, 374–375

data entry jobs, 367–368

degrees/certificates,

366–367

egoless programmers, 372

front end/back end

developers, 370–371

mobile developers,

370–371

programmer jobs,

368–369

putting programs into

production, 372–374

security, 374

systems analysts,

369–370

titles, 366

training, 388–390

UI developers,

370–371

overhead, 363

resource allocation, 363

telecommuting, 364

information versus data, 2

inheritance

C++, 322, 330

Java classes, 193

init() method, 163

input() function, 55–57

cash register program, input

example, 57–60

data validation, 58

strings, 57–60

input verification, if statements,

178

INSERT INTO statements, 269

inserting records into relational

databases, 269

insertion operator, 323–324

installing

Anaconda, 395–398

Python, 395–405

instructions

detailed instructions, 20–23

saved instructions, programs

as, 24–26

statements as, 9

instructor terminators, 286

integer literals, 168

integer variables, 170–171, 313

interactivity, adding to photos,

237–241

interpreting responses to

requests, 252–253

I/O (Input/Output), C versus

C++, 323–324

italicized text, 209

IT/data processing departments,

361–363

chargeback, 364–365

contract programmers,

364–365

funny money, 364

jobs, 365–366

analysis/design jobs,

369–370

consulting jobs, 374–375

data entry jobs, 367–368

degrees/certificates,

366–367

egoless programmers, 372

front end/back end

developers, 370–371

mobile developers,

370–371

programmer jobs,

368–369

putting programs into

production, 372–374

security, 374

408 IT/data processing departments

systems analysts,

369–370

titles, 366

training, 388–390

UI developers, 370–371

overhead, 363

resource allocation, 363

telecommuting, 364

iteration/repetition (looping),

113–114, 284

J

Java, 30, 151–153, 164

2D/3D graphics, 159

applets, 153, 155, 157–160

applications, 153, 158

apps, 153

arguments, 188, 195

arrays, 172

BigDecimal class, 179

blocks of code, 176–177

bytecode, 155–157

C++ and, 160–161, 167, 169

classes

Calculator class, 188

data members, 193

inheritance, 193

methods, 193

overview of, 192–194

subclasses (derived

classes), 193

SwingCalculator class, 190

collections, 159

data members, 193

database API, 159

drag and drop, 159

drawstring() method, 164

escape sequences, 168–169

example of, 161–162

executable content, 154–155

game-development, 160

GUI, 190–191

HTML, 154

IDE, 165

import commands, 162–163

inheritance, 193

init() method, 163

interface, 158–159

JavaFX library, 191

JavaScript and, 158, 217

JDBC, 159

JVM, 156

literals, 167

Boolean literals, 168

character literals,

168–169

floating-point literals, 168

integer literals, 168

string literals, 169

true/false literals, 168

loops

for loops, 180–182

while loops, 179–180

methods, 193, 195

arguments and, 195

called methods, 195–197

doubleIt() method, 197

NetBeans, 165, 185–190

network support, 159

objects, 193–194

OOP, 160–161, 191–192, 195

operators

arithmetic assignment

operators, 174–175

comparison operators,

175–176

conditional operator, 176

increment/decrement

operators, 173–174

and operator, 179

primary math operators,

173

packages, 162

paint() method, 163–164

public statements, 163

resize() method, 163–164

security, 159–160

servlets, 153

setColor() method, 164

sound, 159

standalone Java applications,

158

statements

else statements, 177–179

formatting, 177

if statements, 177–179

if-else statements, 177–179

success of, 153

Swing object library, 191

timers, 159

usage summary, 157–158

variables

Boolean variables, 171

character variables, 172

floating-point variables,

171

global variables, 169–170

409literals

integer variables, 170–171

local variables, 169–170

object variables, 194

string variables, 172

updating, 175

VM, 156

JavaScript, 30, 218

advantages of, 217

AJAX, 158, 247

ajaxRequest function, 254

ajaxResponse function,

254

examples of, 249–250

frameworks, 250

JavaScript Client, 248

JSON, 249

libraries, 250, 253–259

limitations of, 250–251

quizzes, creating with

libraries, 254–259

requests, 248

server-side scripts, 248–249

XML, 249

XMLHttpRequest,

247–248, 251–253

arrays, 226–227

comments, 218

do.while loops, 228–230

first programs, writing,

218–221

if statements, 227

Java and, 158, 217

for loops, 228

mouse events, 224–226,

239–241

news tickers (repeating), add-

ing to websites, 241–244

photos

adding interactivity,

237–241

rotating on page, 233–236

printing to screen, 221

prompt method, 222–223

strings, 223

variables, 222

while loops, 228–230

JDBC (Java Database

Connectivity), 159

jobs, computer-related,

365–366

analysis/design jobs,

369–370

consulting jobs, 374–375

data entry jobs, 367–368

degrees/certificates,

366–367

egoless programmers, 372

front end/back end

developers, 370–371

job security, 374

mobile developers, 370–371

production, putting programs

into, 372–374

programmer jobs, 368–369

systems analysts, 369–370

titles, 366

training, 388–390

UI developers, 370–371

jQuery, 250

JSON (JavaScript Object Notation),

AJAX and, 249

Jupyter Notebook, naming

programs, 11–12

JVM (Java Virtual Machines), 156

L

labels

C#, 356

Visual Basic forms, 338

LAN (Local Area Networks),

370–371

languages, 28–30

binary, 27

FORTRAN, 30

HTML, 30

Java, 30

JavaScript, 30

list of, 29

machine languages, 8

defined, 7

example of, 7–8

PHP, 30

programming languages,

free-form programming

languages, 10

leading edge technology, industry

standards, 389

libraries (AJAX), 250

creating, 253–254

quizzes, creating with libraries,

254–259

licenses (software), 18

listing fields (designing programs),

36–37

lists, 127, 137–138

binary searches, 141–143

sequential searches,

138–141

literals, 167

Boolean literals, 168

character literals, 168–169

410 literals

floating-point literals, 168

integer literals, 168

string literals, 169

true/false literals, 168

local variables, 169–170

logic development (designing

programs), 44–46

logic errors, 99–101

logical operators, 292–293

loops, 87, 113–114, 127. See

also statements

do.while loops, 228–230, 285

for loops, 87–91, 180–182,

285

controlling, 91–93

JavaScript, 228

range() function, 91–93

infinite loops, 114, 285

iteration/repetition, 284

nested loops, 148, 286

PHP, 284–286

while loops, 93–94, 179–180,

228–230, 284–285

lowercase/capital letters in

strings, 75

M

machine languages, 8. See also

Python

defined, 7

example of, 7–8

main() function, 312, 320–321

MAMP (Macintosh, Apache,

MySQL, Perl/Python/PHP), 278

managed/unmanaged code, .NET

framework, 348

math

abs() function, 77

advanced math functions,

78–79

binary arithmetic, 69–72

math.atan() function, 78

math.exp() function, 78–79

math.floor() function, 76–77

math.log() function, 79

negate numbers, 70

operators, 67–69

two’s complement, 70

member functions (C++),

326–327

memory

extra memory, benefits of, 26

layout (typical), 26

OS and, 25–26

program-to-output process, 25

RAM, 24

MenuStrip control (Visual Basic),

342–343

merging (concatenating) strings,

63–64

messages, C++, 322–323

methods

called methods, 195–197

doubleIt() method, 197

Java, 193, 195

objects (PHP), 300, 302–303

MIS (Management Information

Systems), 361–363, 386

chargeback, 364–365

contract programmers,

364–365

funny money, 364

jobs, 365–366

analysis/design jobs,

369–370

consulting jobs, 374–375

data entry jobs, 367–368

degrees/certificates,

366–367

egoless programmers, 372

front end/back end

developers, 370–371

mobile developers,

370–371

programmer jobs,

368–369

putting programs into

production, 372–374

security, 374

systems analysts,

369–370

titles, 366

training, 388–390

UI developers, 370–371

overhead, 363

resource allocation, 363

telecommuting, 364

mistakes, programming myths, 4

mobile applications, distributing,

380

mobile developers, 370–371

Morse code, 66

mouse events, JavaScript,

224–226, 239–241

multimedia images in web pages,

205, 213

multi-platform executable content,

155–157

411operators

myths about programming, 3

difficulties in programming, 5

experts, 3–4

mistakes, 4

N

naming

camel notation, 356

programs, 11–12

C, 323, 356–357

C++, 323

variables, 52–53

C#, 356–357

narrowing query data results,

relational databases, 267–269

need for

design, 33–34

programmers, 20

programs, 17–20

negate numbers, 70

nested loops, 148, 286

nesting

elif statements, 86

else statements, 86

if statements, 86

NetBeans, 165, 185–190

.NET Core, 348

CIL, 349

CLR, 348–349

CTS, 348–349

FCL, 349–350

garbage collection, 349

parallel computing, 350

.NET Framework, 347. See also

C#

CIL, 349

CLR, 348–349

CTS, 348–349

FCL, 349–350

garbage collection, 349

parallel computing, 350

purpose of, 347–348

networks

Java support, 159

LAN, 370–371

WAN, 370–371

newline character and C++, 324

news tickers (repeating), adding

to websites, 241–244

null values, 57

number variable, 124

number-guessing game, counter

variables, 125–127

numeric functions, 76–79

O

objects

C, 322–323

C++, 323

behavior, adding to objects,

326–328

class, 325

class statements, 325,

327–328

declaring, 324–325

dot operators, 326

endl object, 324

member access, 326

variables, 325–326

Java, 193–194

PHP, 300

classes, 300

creating, 300–301

methods, 300, 302–303

properties of, 302

obtaining programs, advantages/

disadvantages, 18

OOD (Object-Oriented Design), 38

OOP (Object-Oriented

Programming), 26, 38

C and, 322–323

Java, 160–161, 191–192,

195

opening, URL with

XMLHttpRequest, 251–252

open-source software,

distributing, 380

operators, 288–289

and operator, 179

arithmetic assignment

operators, 174–175

arithmetic operators, 289

assignment operators, 286,

289, 291–292

C operators, 321

combined assignment

operators, 290–292

comparison operators,

175–176, 292

concatenation operators,

289–290

conditional operator, 176

decrement/increment

operators, 173–174

412 operators

extraction operator, 323–324

increment/decrement

operators, 173–174

insertion operator, 323–324

logical operators, 292–293

math operators, 67–69

operator overloading

functions, 329–330

post-decrement operators,

291–292

post-increment operators,

291–292

precedence, 67, 293–294

primary math operators, 173

relational operators, 84–85

OS (Operating Systems), memory,

25–26

other files, Windows applications,

334

output, 24

defining (designing programs),

36–38

data gathering process,

38–40

listing fields, 36–37

prototyping, 38–41

RAD, 41

top-down program design,

41–44

print() function, 49–51

program-to-output process, 25

variables, 52

character strings, 53

naming, 52–53

null values, 57

value assignments, 53–55

overhead, IT/data processing

departments, 363

ownership of programs, 6

P

packaged applications, 378–379

packages, defined, 162

paint() method, 163–164

parallel computing, .NET

Framework, 350

parallel testing, 119

people-years, writing programs,

19–20

photos

interactivity, adding to photos,

237–241

rotating on page, 233–236

Visual Basic applications,

creating, 339

PHP (PHP: Hypertext

Preprocessor), 30

arithmetic operators, 289

assignment operators, 286,

289

break statements, 283

built-in PHP functions,

295–296

combined assignment

operators, 290

comments, 281

common uses of, 304–305

comparison operators, 292

complex test expressions,

creating with logical

operators, 292–293

concatenation operators,

289–290

constants, 294–295.

See also variables

data types, 288

databases, interacting with,

304

development of, 277

echo statements, 279–280

flow control, 281–283

form data, 304

functions

defined, 295

defining *separate entry,

296–298

variable scope in

functions, 298–300

HTML and, 280–281

if statements, 281–282, 284

instructor terminators, 286

logical operators, 292–293

loops, 284–286

do.while loops, 285

for loops, 285–286

nested loops, 286

objects, 300

classes, 300

creating, 300–301

methods, 300, 302–303

properties of, 302

operators

defined, 288–289

precedence, 293–294

post-decrement operators,

291–292

post-increment operators,

291–292

413programs/programming

ternary operators, 283

print() statements, 279–280

requirements, 278–279

switch statements, 282–283

user sessions, cookies in,

304

variables, 286–287. See also

constants

global variables, 287

incrementing/decre-

menting automatically,

291–292

scope in functions,

298–300

superglobal variables, 287

while loops, 284–285

pixels, Visual Basic windows,

337–338, 340

polymorphism, C++, 323, 330

post-decrement operators,

291–292

post-increment operators,

291–292

pound sign (#), comments, 9–10

precedence (operator), 293–294

pre-existing programs, 5

preprocessor directives, 312–313

primary math operators, 173

print() function, 49–51

print() statements, 145, 279–280

printf() function, 315–320

printing to screen, JavaScript, 221

private cloud storage, 379

procedures, Visual Basic applica-

tions, 341–344

process of programming, 8

production, putting programs into,

372–374

profilers, 119–120, 383–384

programmer jobs, 368–369

programming languages

(free-form), 10

programs/programming, 26, 383

accuracy in programming,

98–104

ambiguity in programming,

28–29

art or science, 26–27

buying programs, 18

CASE tools, 387–388

CI, 386

code, defined, 6–7

comments, 11

defined, 9

placement of, 10–11

pound sign (#), 9–10

reasons for, 10

common myths about

programming, 3

difficulties in

programming, 5

experts, 3–4

mistakes, 4

customizing programs, 18–19

defined, 2

demand for programmers, 5

design tools, 23

designing programs

defining data flow, 36–44

defining output, 36–44

logic development, 44–46

need for design, 33–34

user-programmer

agreements, 34–35

writing code, 47

detailed instructions, 20–22

directions, programs as,

20–21

first programs, writing, 8,

11–13

giving computers programs, 6

IDE, 384–385

languages, 29–30

machine languages, defined, 7

memory

benefits of extra memory,

26

layout (typical), 26

OS and, 25–26

program-to-output process,

25

MIS, 386

naming programs, 11–12

need for programmers, 20

need for programs, 17–20

OOD, 38

OOP, 38

output

defined, 24

program-to-output process,

25

ownership of programs, 6

pre-existing programs, 5

process of programming, 8

production, putting programs

into, 372–374

profilers, 383–384

program-to-output process, 25

resource editors, 384

414 programs/programming

role of, 2–3

saved instructions, programs

as, 24–26

science or art, 26–27

statements, defined, 9

structured programming, 26,

109–110

beta testing, 118–119

constructs, 110–114

decisions (selections),

112–113

desk checking, 118

functions, 115–118

looping (repetition/

iteration), 113–114

parallel testing, 119

profilers, 119–120

roots of, 110

sequences, 111–112

testing, 118–119

structured walkthroughs,

371–372

switches, 27

syntax, defined, 6–7

testing, 101–104, 385–386

UML: data modeling, 388

user-programmer agreements,

34–35

value of programs, 6

version control, 374

writing programs, 18–20

projects (Visual Basic), defined,

335

prompt method, 222–223

Prototype, 250

prototypes, functions, 327

prototyping (designing programs),

38–41

pseudocode (structured English)

logic development, 44–46

structured programming

decisions (selections),

112–113

looping (repetition/

iteration), 113–114

sequences, 112

public cloud storage, 379

public/private keys, 160

public statements, Java, 163

Python

Anaconda, installing, 395–398

arrays, 74–75

character strings, 52–53

debugging tools

breakpoints, 106

bugs, common, 98

bugs, origin of, 97–98

call stacks, 106

IDE, 101

logic errors, 99–101

runtime errors, 102

syntax errors, 99–101

testing, 101–104

watch variables, 106

writing clear programs,

104–105

detailed instructions, 22–23

downloading, 393–395

elif statements, 84

else statements, 83–84, 86

first programs, writing, 11–13

formatting

\n, 60

\t, 60

functions

abs() function, 77

chr() function, 73

creating, 115–118

defined, 74

input() function, 55–60

math.atan() function, 78

math.exp() function, 78–79

math.floor() function,

76–77

math.log() function, 79

numeric functions, 76–79

overview of, 74

print() function, 49–51

range() function, 91–93

round() function, 77

string functions, 75–76

IDE, 9, 393–405

if statements, 81–84

decision symbols, 83

elif statements, 86

nesting, 86

relational operators,

84–85

installing, 395–405

loops, 87

for loops, 87–93

while loops, 93–94

math operators, 67–69

naming programs, 11–12

strings

ASCII table, 65–67

capital/lowercase letters,

75

resize() method 415

functions, 75–76

inputting, 57–60

merging (concatenating)

strings, 63–64

replacing parts of, 75–76

Unicode characters, 72–73

variables, 52

character strings, 53

debugging, 106

naming, 52–53

null values, 57

value assignments, 53–55

watch variables, 106

whitespace, 9–10

wrapping text, 9

Q

QA (Quality Assurance) testing,

385–386

queries (SQL)

ALTER TABLE statements,

272–273

common commands, 266

DELETE statements, 271

DROP DATABASE statements,

271–272

DROP TABLE statements,

271–272

INSERT INTO statements, 269

SELECT statements, 266–269

UPDATE statements, 270–271

WHERE clause, 267–269

quizzes, creating with AJAX

libraries, 254–255

HTML files, 255–256

JavaScript files, 257–258

testing quizzes, 258–259

R

RAD (Rapid Application

Development), 41

RAM (Random Access Memory),

24

range() function, for loops, 91–93

records (relational databases)

deleting, 271

inserting, 269

narrowing data results,

267–269

retrieving, 266–269

updating, 270–271

relational databases, 263–264

deleting, 271–272

fields, 264–265

adding to tables, 272

deleting from tables, 273

modifying in tables, 273

records

deleting, 271

inserting, 269

narrowing data results,

267–269

retrieving, 266–269

updating, 270–271

SQL queries

ALTER TABLE statements,

272–273

common commands, 266

DELETE statements, 271

DROP DATABASE state-

ments, 271–272

DROP TABLE statements,

271–272

INSERT INTO statements,

269

SELECT statements,

266–269

UPDATE statements,

270–271

WHERE clause, 267–269

tables, 264–266

adding fields to tables,

272

ALTER TABLE statements,

272–273

deleting, 271–272

deleting fields from tables,

273

modifying fields in tables,

273

relational operators, 84–85

remarks. See comments

remote scripting, 247–248. See

also AJAX

repeating news tickers, adding to

websites, 241–244

repetition/iteration (looping),

113–114, 284

replacing parts of strings, 75–76

requests

creating, 251

responses to requests,

awaiting, 252

sending, 252

XMLHttpRequest, interpreting,

252–253

resize() method, 163–164

416 resource allocation, IT/data processing departments

resource allocation, IT/data

processing departments, 363

resource editors, 384

responses to requests

awaiting, 252

interpreting, 252–253

retrieving records from relational

databases, 266–269

reusability, C++, 323

rotating photos on page, 233–236

round() function, 77

runtime errors, 102

S

saved instructions, programs as,

24–26

scanf() function, 318–320

screens, printing to, 221

scripting (AJAX)

remote scripting, 247–248

server-side scripts, 248–249

searching lists, 137–138

binary searches, 141–143

sequential searches,

138–141

security

applets, 159–160

digital signatures, 160

Java, 159–160

job security, 374

public/private keys, 160

site certificates, 160

SELECT statements, 266–269

selections (decisions), 112–113

sending requests, 252

sequences, 111–114

sequential searches, 138–141

server-side scripts (AJAX),

248–249

servlets, 153

setColor() method, 164

signatures (digital), 160

site certificates, 160

software

CASE tools, 387–388

distributing

issues with distributions,

377–378

open-source software, 380

industry standards, 389

licenses, 18

version control, 374, 380–381

sorting data, 123, 133

ascending sort order, 133

bubble sorts, 133–137

character string data, 133

descending sort order, 133

sound, Java, 159

source code

comments, 11

defined, 9

placement of, 10–11

pound sign (#), 9–10

reasons for, 10

defined, 7

first programs, writing, 8,

11–13

machine languages, 8

defined, 7

example of, 7–8

naming programs, 11–12

process of programming, 8

statements, defined, 9

whitespace, 9–10

spacing text. See whitespace

spaghetti code, 111

SQL (Structured Query Language)

queries

ALTER TABLE statements,

272–273

common commands, 266

DELETE statements, 271

DROP DATABASE state-

ments, 271–272

DROP TABLE statements,

271–272

INSERT INTO statements,

269

SELECT statements,

266–269

UPDATE statements,

270–271

WHERE clause, 267–269

relational databases

adding fields to tables,

272

deleting fields from tables,

273

modifying fields in tables,

273

standalone Java applications, 158

statements. See also loops

ALTER TABLE statements,

272–273

assignment statements, 314

break statements, 283

call statements, 344

417testing

class statements, 322

objects and,

325, 327–328

scope of, 328–329

string classes, 330

control statements in C,

321–322

defined, 9

DELETE statements, 271

DROP DATABASE statements,

271–272

DROP TABLE statements,

271–272

echo statements, 279–280

else statements, 177–179

formatting, 177

if statements, 177–179, 227,

281–282, 284

if-else statements, 177–179

#include statement, 312–313

INSERT INTO statements, 269

lists, 127

binary searches, 141–143

searching, 137–143

sequential searches,

138–141

print() statements, 145,

279–280

public statements, 163

SELECT statements, 266–269

switch statements, 282–283

UPDATE statements, 270–271

WHERE clause, 267–269

stdio.h files, 313

storing data

private cloud storage, 379

public cloud storage, 379

variables, 52

character strings, 53

naming, 52–53

null values, 57

value assignments, 53–55

strcpy() function, 317

strings

ASCII table, 65

character values, 65–66

C and, 313–314, 317

capital/lowercase letters, 75

classes, 330

functions, 75–76

inputting, 57–60

JavaScript, 223

literals, 169

merging (concatenating)

strings, 63–64

replacing parts of, 75–76

variables, 172

structured English (pseudocode),

logic development, 44–46

structured programming, 26,

109–110

constructs, 110–111

decisions (selections),

112–113

looping (repetition/

iteration), 113–114

sequences, 111–112

functions, creating, 115–118

roots of, 110

testing, 118

beta testing, 118–119

desk checking, 118

parallel testing, 119

profilers, 119–120

structured walkthroughs, 371–372

subclasses (derived classes), 193

subroutines, 144–147, 341

superglobal variables, 287

swapping data, 131–132

Swing object library, 191

SwingCalculator class, 190

switch statements, 282–283

switches, 27

syntax

defined, 6–7

errors, 99–101

systems analysts, 369–370

T

tables (relational databases),

264–266

ALTER TABLE statements,

272–273

deleting, 271–272

fields

adding to tables, 272

deleting from tables, 273

modifying in tables, 273

tag references/commands

(HTML), 205

telecommuting, IT/data process-

ing departments, 364

ternary operators, 283

test expressions (complex),

creating with logical operators,

292–293

testing

automated testing, 385–386

beta testing, 118–119

418 testing

desk checking, 118

parallel testing, 119

profilers, 119–120

programs/programming,

101–104

QA testing, 385–386

structured programming,

118–119

test-driven development,

385–386

text

boldfaced text, 209

formatting

CSS, 210–213

HTML, 208–213

italicized text, 209

underlined text, 209

Visual Basic applications,

creating, 338

whitespace, 9–10

wrapping text, 9

text editors, writing first programs,

11–13

tickers (repeating news), adding

to websites, 241–244

timers, Java, 159

<title> tags, 208

titles, computer-related jobs, 366

top-down program design, 41–44

training, 388–390

true/false literals, 168

twips, Visual Basic windows, 337

two’s complement, 70

type safety, 350

typing errors, preventing, 145

U

UI (User Interface) developers,

370–371

UML (Unified Modeling

Language):data modeling, 388

underlined text, 209

Unicode characters, 72–73

unmanaged/managed code, .NET

framework, 348

UPDATE statements, 270–271

updating

Java variables, 175

records in relational

databases, 270–271

URL (Uniform Resource Layers),

opening with XMLHttpRequest,

251–252

user sessions, cookies in, 304

user-programmer agreements,

34–35

V

validating data, 58

value assignments, variables,

53–55

value of programs, 6

variables, 52. See also constants

accumulators, 123, 130–131

character strings, 52–53

counters, 123–127

C# variables,

declaring, 357–358

debugging, 106

decrementing variables,

291–292

floating-point variables, 313

global variables, 287

incremental variables, 124,

291–292

integer variables, 313

Java variables

Boolean variables, 171

character variables, 172

floating-point variables,

171

global variables, 169–170

integer variables, 170–171

local variables, 169–170

string variables, 172

updating, 175

JavaScript, 222

lists, 127

binary searches, 141–143

searching, 137–143

sequential searches,

138–141

naming, 52–53, 356–357

null values, 57

number variable, 124

object variables, 194

PHP, 286–287, 298–300

superglobal variables, 287

swapping data, 131–132

value assignments, 53–55

watch variables, 106

verifying input, if statements, 178

version control, 374, 380–381

Visual Basic, 333, 344–345

applications, creating,

335–336

419XML (Extensible Markup Language)

code (designing programs), 47

functions in C, 320–321

programs, 18–19

clarity in, 104–105

JavaScript, 218–221

people-years, 19–20

X - Y - Z

XAMPP (Cross-Platform, Apache,

MariaDB, PHP, Perl), 278

XML (Extensible Markup

Language), 249

AJAX, 158, 247

ajaxRequest function, 254

ajaxResponse function,

254

examples of, 249–250

frameworks, 250

JavaScript Client, 248

JSON, 249

libraries, 250, 253–259

limitations of, 250–251

quizzes, creating with

libraries, 254–259

requests, 248

server-side scripts,

248–249

XMLHttpRequest, 247–248,

251

awaiting responses to

requests, 252

creating requests, 251

interpreting responses to

requests, 252–253

sending requests, 252

URL, 251–252

W

W3C (World Wide Web

Consortium), HTML

standardization, 202

walkthroughs (structured),

371–372

WAMP (Windows, Apache, MySQL,

PHP), 278

WAN (Wide Area Networks),

370–371

watch variables, 106

web pages. See also HTML

animation, 155

CGI, 155

displaying, 205, 207

formatting, text, 208–213

graphics/multimedia images,

205, 213

photos

adding interactivity,

237–241

rotating on page, 233–236

websites, repeating news tickers,

241–244

WHERE clause, SQL SELECT

statements, 267–269

while loops, 93–94, 179–180,

228–230, 284–285

whitespace, 9–10

Windows applications

code modules, 334, 344

form files, 334

other files, 334

Windows Form Application, 335

word processors, 9, 25

wrapping text, 9

writing

adding details, 337–339

aligning controls, 339

centering forms, 339

changing/assigning

properties, 337

labels, 338

photos, 339

procedures, 341–344

properties of, 340

resizing form windows,

336

subroutines, 341

text/fonts, 338

call statements, 344

Create a New Project screen,

navigating, 334–335

DLR, 350

labels in forms, 338

language behind, procedures,

344

MenuStrip control, 342–343

pixels, 337–338, 340

projects, defined, 335

twips, 337

Visual Studio

.NET Core, 348

CIL, 349

CLR, 348–349

CTS, 348–349

FCL, 349–350

garbage collection, 349

parallel computing, 350

versions of, 335

Visual Basic. See separate

entry

VM (Virtual Machines), JVM, 156

	Cover
	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	About the Author
	Acknowledgments
	We Want to Hear from You
	Register Your Book
	Introduction
	HOUR 3: Designing a Program
	The Need for Design
	User–Programmer Agreement
	Steps to Design
	Summary
	Q&A
	Workshop

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

