
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780135781869
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780135781869
https://plusone.google.com/share?url=http://www.informit.com/title/9780135781869
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780135781869
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780135781869/Free-Sample-Chapter

Praise for Clean Agile
“In the journey to all things Agile, Uncle Bob has been there, done that, and
has both the t-shirt and the scars to show for it. This delightful book is part
history, part personal stories, and all wisdom. If you want to understand
what Agile is and how it came to be, this is the book for you.”

—Grady Booch

“Bob’s frustration colors every sentence of Clean Agile, but it’s a justifi ed
frustration. What is in the world of Agile development is nothing compared
to what could be. This book is Bob’s perspective on what to focus on to get
to that ‘what could be.’ And he’s been there, so it’s worth listening.”

—Kent Beck

“It’s good to read Uncle Bob’s take on Agile. Whether just beginning, or a
 seasoned agilista, you would do well to read this book. I agree with almost all
of it. It’s just some of the parts make me realize my own shortcomings, darn
it. It made me double-check our code coverage (85.09%).”

—Jon Kern

“This book provides a historical lens through which to view Agile development
more fully and accurately. Uncle Bob is one of the smartest people I know, and
he has boundless enthusiasm for programming. If anyone can demystify Agile
development, it’s him.”

—From the Foreword by Jerry Fitzpatrick

This page intentionally left blank

Clean Agile

Clean Agile
Back to Basics

Robert C. Martin

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training
goals, marketing focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com

Library of Congress Control Number: 2019945397

Copyright © 2020 Pearson Education, Inc.

Cover image: Peresanz/Shutterstock

Foreword by Jerry Fitzpatrick, Software Renovation Corporation, March 2019. Used with permission.

Chapter 7 by Sandro Mancuso, April 27, 2019. Used with permission.

Afterword by Eric Crichlow, April 5, 2019. Used with permission.

All rights reserved. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms and the appropriate contacts within the Pearson Education Global
Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-578186-9
ISBN-10: 0-13-578186-8

ScoutAutomatedPrintLine

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com
http://www.pearsoned.com/permissions/

To every programmer who ever tilted at windmills or waterfalls.

This page intentionally left blank

ix

Contents

Foreword xv

Preface xvii

Acknowledgments xxi

About the Author xxv

Chapter 1 Introduction to Agile 1

History of Agile 3
Snowbird 10

After Snowbird 13
Agile Overview 14

The Iron Cross 15
Charts on the Wall 15
The First Thing You Know 18
The Meeting 18
The Analysis Phase 19
The Design Phase 20
The Implementation Phase 21
The Death March Phase 22
Hyperbole? 23

Contents

x

A Better Way 23
Iteration Zero 24
Agile Produces Data 25
Hope versus Management 27
Managing the Iron Cross 27
Business Value Order 31
Here Endeth the Overview 31

Circle of Life 31
Conclusion 35

Chapter 2 The Reasons for Agile 37

Professionalism 38
Software Is Everywhere 39
We Rule the World 41
The Disaster 42

Reasonable Expectations 43
We Will Not Ship Shyt! 43
Continuous Technical Readiness 45
Stable Productivity 46
Inexpensive Adaptability 49
Continuous Improvement 50
Fearless Competence 50
QA Should Find Nothing 52
Test Automation 52
We Cover for Each Other 54
Honest Estimates 54
You Need to Say “No” 55
Continuous Aggressive Learning 55
Mentoring 56

The Bill of Rights 56
Customer Bill of Rights 56
Developer Bill of Rights 57
Customers 57
Developers 59

Conclusion 61

Contents

xi

Chapter 3 Business Practices 63

Planning 64
Trivariate Analysis 65
Stories and Points 66
ATM Stories 67
Stories 74
Story Estimation 76
Managing the Iteration 78
The Demo 80
Velocity 81

Small Releases 82
A Brief History of Source Code Control 83
Tapes 85
Disks and SCCS 85
Subversion 86
Git and Tests 87

Acceptance Tests 88
Tools and Methodologies 89
Behavior-Driven Development 90
The Practice 90

Whole Team 93
Co-Location 94

Conclusion 96

Chapter 4 Team Practices 97

Metaphor 98
Domain-Driven Design 99

Sustainable Pace 100
Overtime 102
Marathon 103
Dedication 103
Sleep 104

Collective Ownership 104
The X Files 106

Continuous Integration 107
Then Came Continuous Build 108
The Continuous Build Discipline 109

Contents

xii

Standup Meetings 110
Pigs and Chickens? 111
Shout-out 111

Conclusion 111

Chapter 5 Technical Practices 113

Test-Driven Development 114
Double-Entry Bookkeeping 114
The Three Rules of TDD 116
Debugging 117
Documentation 117
Fun 118
Completeness 119
Design 121
Courage 121

Refactoring 123
Red/Green/Refactor 124
Bigger Refactorings 125

Simple Design 125
Design Weight 127

Pair Programming 127
What Is Pairing? 128
Why Pair? 129
Pairing as Code Review 129
What about the Cost? 130
Just Two? 130
Management 130

Conclusion 131

Chapter 6 Becoming Agile 133

Agile Values 134
Courage 134
Communication 134
Feedback 135
Simplicity 135

The Menagerie 136

Contents

xiii

Transformation 137
The Subterfuge 138
The Lion Cubs 138
Weeping 139
Moral 139
Faking It 139
Success in Smaller Organizations 140
Individual Success and Migration 141
Creating Agile Organizations 141

Coaching 142
Scrum Masters 143

Certification 143
Real Certification 144

Agile in the Large 144
Agile Tools 148

Software Tools 148
What Makes for an Effective Tool? 149
Physical Agile Tools 151
The Pressure to Automate 152
ALMs for the Not-Poor 153

Coaching—An Alternative View 155
The Many Paths to Agile 155
From Process Expert to Agile Expert 156
The Need for Agile Coaching 157
Putting the Coach into Agile Coach 158
Going Beyond the ICP-ACC 158
Coaching Tools 159
Professional Coaching Skills Are Not Enough 159
Coaching in a Multiteam Environment 160
Agile in the Large 161
Using Agile and Coaching to Become Agile 161
Growing Your Agile Adoption 162
Going Big by Focusing on the Small 164
The Future of Agile Coaching 165

Conclusion (Bob Again) 165

xiv

Contents

Chapter 7 Craftsmanship 167

The Agile Hangover 169
Expectation Mismatch 170
Moving Apart 172
Software Craftsmanship 173
Ideology versus Methodology 174
Does Software Craftsmanship Have Practices? 175
Focus on the Value, Not the Practice 176
Discussing Practices 177
Craftsmanship Impact on Individuals 178
Craftsmanship Impact on Our Industry 179
Craftsmanship Impact on Companies 180
Craftsmanship and Agile 181
Conclusion 182

Chapter 8 Conclusion 183

Afterword 185

Index 191

xv

Foreword

What exactly is Agile development? How did it originate? How has it evolved?

In this book, Uncle Bob provides thoughtful answers to these questions. He also
identifies the many ways in which Agile development has been misinterpreted
or corrupted. His perspective is relevant because he is an authority on the
subject, having participated in the birth of Agile development.

Bob and I have been friends for many years. We first met when I joined the
telecommunications division of Teradyne in 1979. As an electrical engineer,
I helped install and support products; later, I became a hardware designer.

About a year after I joined, the company began seeking new product ideas. In
1981, Bob and I proposed an electronic telephone receptionist—essentially a
voicemail system with call-routing features. The company liked the concept,
and we soon began developing “E.R.—The Electronic Receptionist.” Our
prototype was state of the art. It ran the MP/M operating system on an Intel
8086 processor. Voice messages were stored on a five-megabyte Seagate
ST-506 hard disk. I designed the voice port hardware while Bob started
writing the application. When I finished my design, I wrote application code,
too, and I have been a developer ever since.

Foreword

xvi

Around 1985 or 1986, Teradyne abruptly halted E.R. development and,
unknown to us, withdrew the patent application. It was a business decision
that the company would soon regret, and one that still haunts Bob and me.

Eventually, each of us left Teradyne for other opportunities. Bob started a
consulting business in the Chicago area. I became a software contractor and
instructor. We managed to stay in touch even though I moved to another state.

By the year 2000, I was teaching Object-Oriented Analysis and Design for
Learning Tree International. The course incorporated UML and the Unified
Software Development Process (USDP). I was well versed in these technologies,
but not with Scrum, Extreme Programming, or similar methodologies.

In February 2001, the Agile Manifesto was published. Like many developers,
my initial reaction was “The Agile what?” The only manifesto I knew of was
from Karl Marx, an avid Communist. Was this Agile thing a call to arms?
Dang software radicals!

The Manifesto did start a rebellion of sorts. It was meant to inspire the
development of lean, clean code by using a collaborative, adaptive, feedback-
driven approach. It offered an alternative to “heavyweight” processes like
Waterfall and the USDP.

It has been 18 years since the Agile Manifesto was published. It is, therefore,
ancient history to most of today’s developers. For this reason, your understanding
of Agile development may not line up with the intent of its creators.

This book aims to set the record straight. It provides a historical lens through
which to view Agile development more fully and accurately. Uncle Bob is one
of the smartest people I know, and he has boundless enthusiasm for
programming. If anyone can demystify Agile development, it’s him.

—Jerry Fitzpatrick

Software Renovation Corporation

March 2019

xvii

Preface

Preface

xviii

This book is not a work of research. I have not done a diligent literature
review. What you are about to read are my personal recollections,
observations, and opinions about my 20-year involvement with Agile—
nothing more, nothing less.

The writing style is conversational and colloquial. My word choices are
sometimes a bit crude. And though I am not one to swear, one [slightly
modified] curse word made it into these pages because I could think of no
better way to convey the intended meaning.

Oh, this book isn’t a complete rave. When it struck me as necessary, I cited
some references for you to follow. I checked some of my facts against those of
other folks who’ve been in the Agile community as long as I have. I’ve even
asked several folks to provide supplemental and disagreeing points of view in
their own chapters and sections. Still, you should not think of this book as a
scholarly work. It may be better to think of it as a memoir—the grumblings
of a curmudgeon telling all those new-fangled Agile kids to get off his lawn.

This book is for programmers and non-programmers alike. It is not technical.
There is no code. It is meant to provide an overview of the original intent of
Agile software development without getting into any deep technical details of
programming, testing, and managing.

This is a small book. That’s because the topic isn’t very big. Agile is a small
idea about the small problem of small programming teams doing small
things. Agile is not a big idea about the big problem of big programming
teams doing big things. It’s somewhat ironic that this small solution to a
small problem has a name. After all, the small problem in question was solved
in the 1950s and ’60s, almost as soon as software was invented. Back in those
days, small software teams learned to do small things rather well. However, it
all got derailed in the 1970s when the small software teams doing small things
got all tangled up in an ideology that thought it should be doing big things
with big teams.

Aren’t we supposed to be doing big things with big teams? Heavens, no! Big
things don’t get done by big teams; big things get done by the collaboration

Preface

xix

of many small teams doing many small things. This is what the programmers
in the 1950s and ’60s knew instinctively. And it was this that was forgotten in
the 1970s.

Why was this forgotten? I suspect it was because of a discontinuity. The
number of programmers in the world began to explode in the 1970s. Prior to
that, there were only a few thousand programmers in the world. After that,
there were hundreds of thousands. Now that number is approaching one
hundred million.

Those first programmers back in the 1950s and ’60s were not youngsters.
They started programming in their 30s, 40s, and 50s. By the 1970s, just when
the population of programmers was staring to explode, those oldsters were
starting to retire. So the necessary training never occurred. An impossibly
young cohort of 20-somethings entered the workforce just as the experienced
folks were leaving, and their experience was not effectively transferred.

Some would say that this event started a kind of dark ages in programming.
For 30 years, we struggled with the idea that we should be doing big things
with big teams, never knowing that the secret was to do many small things
with many small teams.

Then in the mid ’90s, we began to realize what we had lost. The idea of small
teams began to germinate and grow. The idea spread through the community
of software developers, gathering steam. In 2000, we realized we needed an
industry-wide reboot. We needed to be reminded of what our forebears
instinctively knew. We needed, once again, to realize that big things are done
by many collaborating small teams doing small things.

To help popularize this, we gave the idea a name. We called it “Agile.”

I wrote this preface in the first days of 2019. It’s been nearly two decades
since the reboot of 2000, and it seems to me that it’s time for yet another.
Why? Because the simple and small message of Agile has become muddled
over the intervening years. It’s been mixed with the concepts of Lean,

Preface

xx

Kanban, LeSS, SAFe, Modern, Skilled, and so many others. These other ideas
are not bad, but they are not the original Agile message.

So it’s time, once again, for us to be reminded of what our forebears knew in
the ’50s and ’60s, and what we relearned in 2000. It’s time to remember what
Agile really is.

In this book, you will find nothing particularly new, nothing astounding or
startling, nothing revolutionary that breaks the mold. What you will find is a
restatement of Agile as it was told in 2000. Oh, it’s told from a different
perspective, and we have learned a few things over the last 20 years that I’ll
include. But overall, the message of this book is the message of 2001 and the
message of 1950.

It’s an old message. It’s a true message. It’s a message that gives us the small
solution to the small problem of small software teams doing small things.

xxi

Acknowledgments

My first acknowledgment goes to a pair of intrepid programmers who
joyously discovered (or rediscovered) the practices contained herein: Ward
Cunningham and Kent Beck.

Next in line is Martin Fowler, without whose steadying hand, in those earliest
of days, the Agile revolution would likely have been stillborn.

Ken Schwaber deserves a special mention for the indomitable energy he
applied toward the promotion and adoption of Agile.

Mary Poppendieck also deserves special mention for the selfless and
inexhaustible energy she put into the Agile movement and her shepherding of
the Agile Alliance.

In my view, Ron Jeffries, through his talks, articles, blogs, and the persistent
warmth of his character, acted as the conscience of the early Agile movement.

Mike Beedle fought the good fight for Agile but was senselessly murdered by
a homeless person on the streets of Chicago.

Acknowledgments

xxii

The other original authors of the Agile Manifesto take a special place here:

Arie van Bennekum, Alistair Cockburn, James Grenning, Jim Highsmith,
Andrew Hunt, Jon Kern, Brian Marick, Steve Mellor, Jeff Sutherland, and
Dave Thomas.

Jim Newkirk, my friend and business partner at the time, worked tirelessly in
support of Agile while enduring personal headwinds that most of us (and
certainly I) can’t begin to imagine.

Next, I’d like to mention the folks who worked at Object Mentor Inc. They
all took the initial risk of adopting and promoting Agile. Many of them are
in the following photo, taken at the kickoff of the first XP Immersion course.

 Back Row: Ron Jeffries, author, Brian Button, Lowell Lindstrom, Kent Beck, Micah Martin, Angelique Martin,

Susan Rosso, James Grenning.

 Front Row: David Farber, Eric Meade, Mike Hill, Chris Biegay, Alan Francis, Jennifer Kohnke, Talisha Jefferson,

Pascal Roy.

 Not pictured: Tim Ottinger, Jeff Langr, Bob Koss, Jim Newkirk, Michael Feathers, Dean Wampler, and David

Chelimsky.

Acknowledgments

xxiii

I’d also like to acknowledge the folks who gathered to form the Agile
Alliance. Some of them are in the picture that follows, which was taken at the
kickoff meeting of that now-august alliance.

 Left to right: Mary Poppendieck, Ken Schwaber, author, Mike Beedle, Jim Highsmith. (Not pictured:

Ron Crocker.)

Finally, thanks to all the folks at Pearson, especially my publisher Julie Phifer.

This page intentionally left blank

xxv

About the Author

Robert C. Martin (Uncle Bob) has been a programmer since 1970. He is
co-founder of cleancoders.com, offering on-line video training for software
developers, and founder of Uncle Bob Consulting LLC, offering software
consulting, training, and skill development services to major corporations
worldwide. He served as the Master Craftsman at 8th Light Inc., a Chicago-
based software consulting firm.

Mr. Martin has published dozens of articles in various trade journals and is a
regular speaker at international conferences and trade shows. He is also the
creator of the acclaimed educational video series at cleancoders.com.
Mr. Martin has authored and edited many books including the following:

Designing Object-Oriented C++ Applications Using the Booch Method

Patterns Languages of Program Design 3

http://cleancoders.com
http://cleancoders.com

xxvi

About the Author

More C++ Gems

Extreme Programming in Practice

Agile Software Development: Principles, Patterns, and Practices

UML for Java Programmers

Clean Code

The Clean Coder

Clean Architecture

Clean Agile

A leader in the industry of software development, Mr. Martin served three
years as the editor-in-chief of the C++ Report, and he served as the first
chairman of the Agile Alliance.

2The Reasons for
Agile

37

Chapter 2 The Reasons for Agile

38

Before we dive into the details of Agile development, I want to explain what’s
at stake. Agile development is important, not just to software development,
but to our industry, our society, and ultimately our civilization.

Developers and managers are often attracted to Agile development for
transient reasons. They might try it because it just somehow feels right to
them, or perhaps they fell for the promises of speed and quality. These
reasons are intangible, indistinct, and easily thwarted. Many people have
dropped Agile development simply because they didn’t immediately
experience the outcome they thought were promised.

These evanescent reasons are not why Agile development is important. Agile
development is important for much deeper philosophical and ethical reasons.
Those reasons have to do with professionalism and the reasonable
expectations of our customers.

Professionalism

What drew me to Agile in the first place was the high commitment to
discipline over ceremony. To do Agile right, you had to work in pairs, write
tests first, refactor, and commit to simple designs. You had to work in short
cycles, producing executable output in each. You had to communicate with
business on a regular and continuous basis.

Look back at the Circle of Life and view each one of those practices as a
promise, a commitment, and you’ll see where I am coming from. For me,
Agile development is a commitment to up my game—to be a professional,
and to promote professional behavior throughout the industry of software
development.

We in this industry sorely need to increase our professionalism. We fail too
often. We ship too much crap. We accept too many defects. We make terrible
trade-offs. Too often, we behave like unruly teenagers with a new credit card.
In simpler times, these behaviors were tolerable because the stakes were
relatively low. In the ’70s and ’80s and even into the ’90s, the cost of software
failure, though high, was limited and containable.

Professionalism

39

Software Is Everywhere

Today things are different.

Look around you, right now. Just sit where you are and look around the
room. How many computers are in the room with you?

Here, let me do that. Right now, I am at my summer cabin in the north
woods of Wisconsin. How many computers are in this room with me?

 • 4: I’m writing this on a MacBook Pro with 4 cores. I know, they say 8, but
I don’t count “virtual” cores. I also won’t count all the little ancillary
processors in the MacBook.

 • 1: My Apple Magic Mouse 2. I’m sure it has more than one processor in it,
but I’ll just count it as 1.

 • 1: My iPad running Duet as a second monitor. I know there are lots of
other little processors in the iPad, but I’ll only count it as one.

 • 1: My car key (!).

 • 3: My Apple AirPods. One for each earpiece, and one for the case. There
are probably more in there but…

 • 1: My iPhone. Yeah, yeah, the real number of processors in the iPhone is
probably above a dozen, but I’ll keep it at one.

 • 1: Ultrasonic motion detector in sight. (There are many more in the house,
but only one that I can see.)

 • 1: Thermostat.

 • 1: Security panel.

 • 1: Flat-screen TV.

 • 1: DVD player.

 • 1: Roku Internet TV streaming device.

 • 1: Apple AirPort Express.

 • 1: Apple TV.

 • 5: Remote controls.

 • 1: Telephone. (Yes, an actual telephone.)

 • 1: Fake fireplace. (You should see all the fancy modes it’s got!)

Chapter 2 The Reasons for Agile

40

 • 2: Old computer-controlled telescope, a Meade LX 200 EMC. One
processor in the drive and another in the handheld control unit.

 • 1: Thumb drive in my pocket.

 • 1: Apple pencil.

I count at least 30 computers on my person and in this room with me. The
real number is probably double that since most of the devices have multiple
processors in them. But let’s just stick with 30 for the moment.

What did you count? I’ll bet that for most of you it came close to my 30.
Indeed, I’ll wager that most of the 1.3 billion people living in Western society
are constantly near more than a dozen computers. That’s new. In the early
’90s, that number would have averaged closer to zero.

What do every single one of those nearby computers have in common? They
all need to be programmed. They all need software—software written by us.
And what, do you think, is the quality of that software?

Let me put this in a different light. How many times per day does your
grandmother interact with a software system? For those of you who still have
living grandmothers that number will likely be in the thousands, because in
today’s society you can’t do anything without interacting with a software
system. You can’t

 • Talk on the phone.

 • Buy or sell anything.

 • Use the microwave oven, refrigerator, or even the toaster.

 • Wash or dry your clothes.

 • Wash the dishes.

 • Listen to music.

 • Drive a car.

 • File an insurance claim.

 • Increase the temperature in the room.

 • Watch TV.

Professionalism

41

But it’s worse than that. Nowadays, in our society, virtually nothing of
significance can be done without interacting with a software system. No law
can be passed, enacted, or enforced. No government policy can be debated.
No plane can be flown. No car can be driven. No missile launched. No ship
sailed. Roads can’t be paved, food can’t be harvested, steel mills can’t mill
steel, auto factories can’t make cars, candy companies can’t make candy,
stocks can’t be traded…

Nothing gets done in our society without software. Every waking moment is
dominated by software. Many of us even monitor our sleep with software.

We Rule the World

Our society has become utterly and wholly dependent on software. Software
is the life’s blood that makes our society run. Without it, the civilization we
currently enjoy would be impossible.

And who writes all that software? You and I. We, programmers, rule the
world.

Other people think they rule the world, but then they hand the rules they’ve
made to us and we write the actual rules that run in the machines that
monitor and control virtually every activity of modern life.

We, programmers, rule the world.

And we are doing a pretty poor job of it.

How much of that software, that runs absolutely everything, do you think is
properly tested? How many programmers can say that they have a test suite
that proves, with a high degree of certainty, that the software they have
written works?

Do the hundred million lines of code that run inside your car work? Have you
found any bugs in it? I have. What about the code that controls the brakes, and
the accelerator, and the steering? Any bugs in that? Is there a test suite that can

Chapter 2 The Reasons for Agile

42

be run at a moment’s notice that proves with a high degree of certainty that
when you put your foot on the brake pedal, the car will actually stop?

How many people have been killed because the software in their cars failed to
heed the pressure of the driver’s foot on the brake pedal? We don’t know for
sure, but the answer is many. In one 2013 case Toyota paid millions in
damages because the software contained “possible bit flips, task deaths that
would disable the fail-safes, memory corruption, single-point failures,
inadequate protections against stack overflow and buffer overflow, single-fault
containment regions, [and] thousands of global variables” all within
“spaghetti code.”1

Our software is now killing people. You and I probably didn’t get into this
business to kill people. Many of us are programmers because, as kids, we
wrote an infinite loop that printed our name on the screen, and we just
thought that was so cool. But now our actions are putting lives and fortunes
at stake. And with every passing day, more and more code puts more and
more lives and fortunes at stake.

The Disaster

The day will come, if it hasn’t already by the time you read this, when some
poor programmer is going to do some dumb thing and kill ten thousand
people in a single moment of carelessness. Think about that for a minute. It’s
not hard to imagine half a dozen scenarios. And when that happens, the
politicians of the world will rise up in righteous indignation (as they should)
and point their fingers squarely at us.

You might think that those fingers would point at our bosses, or the
executives in our companies, but we saw what happened when those fingers
pointed to the CEO of Volkswagen, North America, as he testified before
Congress. The politicians asked him why Volkswagen had put software in
their cars that purposely detected and defeated the emissions testing hardware

1. Safety Research & Strategies Inc. 2013. Toyota unintended acceleration and the big bowl
of “spaghetti” code [blog post]. November 7. Accessed at http://www.safetyresearch.net/blog/
articles/toyota-unintended-acceleration-and-big-bowl-%E2%80%9Cspaghetti%E2%80%9D-code.

http://www.safetyresearch.net/blog/articles/toyota-unintended-acceleration-and-big-bowl-%E2%80%9Cspaghetti%E2%80%9D-code
http://www.safetyresearch.net/blog/articles/toyota-unintended-acceleration-and-big-bowl-%E2%80%9Cspaghetti%E2%80%9D-code

Reasonable Expectations

43

used in California. He replied, “This was not a corporate decision, from my
point of view, and to my best knowledge today. This was a couple of software
engineers who put this in for whatever reasons.”2

So, those fingers will point at us. And rightly so. Because it will have been our
fingers on the keyboards, our disciplines that were lacking, and our
carelessness that was the ultimate cause.

It was with this in mind that I held such high hopes for Agile. I hoped then,
as I hope today, that the disciplines of Agile software development would be
our first step toward turning computer programming into a true and
honorable profession.

Reasonable Expectations

What follows is a list of perfectly reasonable expectations that managers,
users, and customers have of us. Notice as you read through this list that one
side of your brain agrees that each item is perfectly reasonable. Notice that
the other side of your brain, the programmer side, reacts in horror. The
programmer side of your brain may not be able to imagine how to meet these
expectations.

Meeting these expectations is one of the primary goals of Agile development.
The principles and practices of Agile address most of the expectations on this
list quite directly. The behaviors below are what any good chief technology
officer (CTO) should expect from their staff. Indeed, to drive this point home,
I want you to think of me as your CTO. Here is what I expect.

We Will Not Ship Shyt!

It is an unfortunate aspect of our industry that this expectation even has to
be mentioned. But it does. I’m sure, dear readers, that many of you have
fallen afoul of this expectation on one or more occasions. I certainly have.

2. O’Kane, S. 2015. Volkswagen America’s CEO blames software engineers for emissions
cheating scandal. The Verge. October 8. Accessed at https://www.theverge.com/2015/10/8/9481651/
volkswagen-congressional-hearing-diesel-scandal-fault.

https://www.theverge.com/2015/10/8/9481651/volkswagen-congressional-hearing-diesel-scandal-fault
https://www.theverge.com/2015/10/8/9481651/volkswagen-congressional-hearing-diesel-scandal-fault

Chapter 2 The Reasons for Agile

44

To understand just how severe this problem is, consider the shutdown of the
Air Traffic Control network over Los Angeles due to the rollover of a 32-bit
clock. Or the shutdown of all the power generators on board the Boeing 787
for the same reason. Or the hundreds of people killed by the 737 Max MCAS
software.

Or how about my own experience with the early days of healthcare.gov?
After initial login, like so many systems nowadays, it asked for a set of
security questions. One of those was “A memorable date.” I entered 7/21/73,
my wedding anniversary. The system responded with Invalid Entry.

I’m a programmer. I know how programmers think. So I tried many different
date formats: 07/21/1973, 07-21-1973, 21 July, 1973, 07211973, etc. All
gave me the same result. Invalid Entry. This was frustrating. What date
format did the blasted thing want?

Then it occurred to me. The programmer who wrote this didn’t know what
questions would be asked. He or she was just pulling the questions from a
database and storing the answers. That programmer was probably also
disallowing special characters and numbers in those answers. So I typed:
Wedding Anniversary. This was accepted.

I think it’s fair to say that any system that requires its users to think like
programmers in order to enter data in the expected format is crap.

I could fill this section with anecdotes about crappy software like this. But
others have done this far better than I could. If you want to get a much better
idea of the scope of this issue, read Gojko Adzic’s book Humans vs.
Computers3 and Matt Parker’s Humble Pi.4

It is perfectly reasonable for our managers, customers, and users to expect
that we will provide systems for them that are high in quality and low in

3. Adzic, G. 2017. Humans vs. Computers. London: Neuri Consulting LLP. Accessed at
http://humansvscomputers.com.

4. Parker, M. 2019. Humble Pi: A Comedy of Maths Errors. London: Penguin Random House UK.
Accessed at https://mathsgear.co.uk/products/humble-pi-a-comedy-of-maths-errors.

http://healthcare.gov?
http://humansvscomputers.com
https://mathsgear.co.uk/products/humble-pi-a-comedy-of-maths-errors

Reasonable Expectations

45

defect. Nobody expects to be handed crap—especially when they pay good
money for it.

Note that Agile’s emphasis on Testing, Refactoring, Simple Design, and
customer feedback is the obvious remedy for shipping bad code.

Continuous Technical Readiness

The last thing that customers and managers expect is that we, programmers,
will create artificial delays to shipping the system. But such artificial delays
are common in software teams. The cause of such delays is often the attempt
to build all features simultaneously instead of the most important features
first. So long as there are features that are half done, or half tested, or half
documented, the system cannot be deployed.

Another source of artificial delays is the notion of stabilization. Teams will
frequently set aside a period of continuous testing during which they watch
the system to see if it fails. If no failures are detected after X days, the
developers feel safe to recommend the system for deployment.

Agile resolves these issues with the simple rule that the system should be
technically deployable at the end of every iteration. Technically deployable
means that from the developers’ points of view the system is technically solid
enough to be deployed. The code is clean and the tests all pass.

This means that the work completed in the iteration includes all the coding,
all the testing, all the documentation, and all the stabilization for the stories
implemented in that iteration.

If the system is technically ready to deploy at the end of every iteration, then
deployment is a business decision, not a technical decision. The business may
decide there aren’t enough features to deploy, or they may decide to delay
deployment for market reasons or training reasons. In any case, the system
quality meets the technical bar for deployability.

Chapter 2 The Reasons for Agile

46

Is it possible for the system to be technically deployable every week or two?
Of course it is. The team simply has to pick a batch of stories that is small
enough to allow them to complete all the deployment readiness tasks before
the end of the iteration. They’d better be automating the vast majority of
their testing, too.

From the point of view of the business and the customers, continuous
technical readiness is simply expected. When the business sees a feature work,
they expect that feature is done. They don’t expect to be told that they have
to wait a month for QA stabilization. They don’t expect that the feature only
worked because the programmers driving the demo bypassed all the parts that
don’t work.

Stable Productivity

You may have noticed that programming teams can often go very fast in the
first few months of a greenfield project. When there’s no existing code base to
slow you down, you can get a lot of code working in a short time.

Unfortunately, as time passes, the messes in the code can accumulate. If that
code is not kept clean and orderly, it will put a back pressure on the team that
slows progress. The bigger the mess, the higher the back pressure, and the
slower the team. The slower the team, the greater the schedule pressure, and
the greater the incentive to make an even bigger mess. That positive-feedback
loop can drive a team to near immobility.

Managers, puzzled by this slowdown, may finally decide to add human
resources to the team in order to increase productivity. But as we saw in the
previous chapter, adding personnel actually slows down the team for a few
weeks.

The hope is that after those weeks the new people will come up to speed and
help to increase the velocity. But who is training the new people? The people
who made the mess in the first place. The new people will certainly emulate
that established behavior.

Reasonable Expectations

47

Worse, the existing code is an even more powerful instructor. The new people
will look at the old code and surmise how things are done in this team, and
they will continue the practice of making messes. So the productivity
continues to plummet despite the addition of the new folks.

Management might try this a few more times because repeating the same
thing and expecting different results is the definition of management sanity in
some organizations. In the end, however, the truth will be clear. Nothing that
managers do will stop the inexorable plunge towards immobility.

In desperation, the managers ask the developers what can be done to increase
productivity. And the developers have an answer. They have known for some
time what needs to be done. They were just waiting to be asked.

“Redesign the system from scratch.” The developers say.

Imagine the horror of the managers. Imagine the money and time that has
been invested so far into this system. And now the developers are
recommending that the whole thing be thrown away and redesigned from
scratch!

Do those managers believe the developers when they promise, “This time
things will be different”? Of course they don’t. They’d have to be fools to
believe that. Yet, what choice do they have? Productivity is on the floor. The
business isn’t sustainable at this rate. So, after much wailing and gnashing of
teeth, they agree to the redesign.

A cheer goes up from the developers. “Hallelujah! We are all going back to
the beginning when life is good and code is clean!” Of course, that’s not what
happens at all. What really happens is that the team is split in two. The ten
best, The Tiger Team—the guys who made the mess in the first place—are
chosen and moved into a new room. They will lead the rest of us into the
golden land of a redesigned system. The rest of us hate those guys because
now we’re stuck maintaining the old crap.

Chapter 2 The Reasons for Agile

48

From where does the Tiger Team get their requirements? Is there an up-to-
date requirements document? Yes. It’s the old code. The old code is the only
document that accurately describes what the redesigned system should do.

So now the Tiger Team is poring over the old code trying to figure out just
what it does and what the new design ought to be. Meanwhile the rest of us
are changing that old code, fixing bugs and adding new features.

Thus, we are in a race. The Tiger Team is trying to hit a moving target. And,
as Zeno showed in the parable of Achilles and the tortoise, trying to catch up
to a moving target can be a challenge. Every time the Tiger Team gets to
where the old system was, the old system has moved on to a new position.

It requires calculus to prove that Achilles will eventually pass the tortoise. In
software, however, that math doesn’t always work. I worked at a company
where ten years later the new system had not yet been deployed. The customers
had been promised a new system eight years before. But the new system never
had enough features for those customers; the old system always did more than
the new system. So the customers refused to take the new system.

After a few years, customers simply ignored the promise of the new system.
From their point of view that system didn’t exist, and it never would.

Meanwhile, the company was paying for two development teams: the Tiger
Team and the maintenance team. Eventually, management got so frustrated
that they told their customers they were deploying the new system despite
their objections. The customers threw a fit over this, but it was nothing
compared to the fit thrown by the developers on the Tiger Team—or, should
I say, the remnants of the Tiger Team. The original developers had all been
promoted and gone off to management positions. The current members of
the team stood up in unison and said, “You can’t ship this, it’s crap. It needs
to be redesigned.”

OK, yes, another hyperbolic story told by Uncle Bob. The story is based on
truth, but I did embellish it for effect. Still, the underlying message is entirely
true. Big redesigns are horrifically expensive and seldom are deployed.

Reasonable Expectations

49

Customers and managers don’t expect software teams to slow down with
time. Rather, they expect that a feature similar to one that took two weeks at
the start of a project will take two weeks a year later. They expect
productivity to be stable over time.

Developers should expect no less. By continuously keeping the architecture,
design, and code as clean as possible, they can keep their productivity high
and prevent the otherwise inevitable spiral into low productivity and redesign.

As we will show, the Agile practices of Testing, Pairing, Refactoring, and
Simple Design are the technical keys to breaking that spiral. And the Planning
Game is the antidote to the schedule pressure that drives that spiral.

Inexpensive Adaptability

Software is a compound word. The word “ware” means “product.” The word
“soft” means easy to change. Therefore, software is a product that is easy to
change. Software was invented because we wanted a way to quickly and easily
change the behavior of our machines. Had we wanted that behavior to be
hard to change, we would have called it hardware.

Developers often complain about changing requirements. I have often heard
statements like, “That change completely thwarts our architecture.” I’ve got
some news for you, sunshine. If a change to the requirements breaks your
architecture, then your architecture sucks.

We developers should celebrate change because that’s why we are here.
Changing requirements is the name of the whole game. Those changes are the
justification for our careers and our salaries. Our jobs depend on our ability
to accept and engineer changing requirements and to make those changes
relatively inexpensive.

To the extent that a team’s software is hard to change, that team has
thwarted the very reason for that software’s existence. Customers, users, and
managers expect that software systems will be easy to change and that the
cost of such changes will be small and proportionate.

Chapter 2 The Reasons for Agile

50

We will show how the Agile practices of TDD, Refactoring, and Simple
Design all work together to make sure that software systems can be safely
changed with a minimum of effort.

Continuous Improvement

Humans make things better with time. Painters improve their paintings,
songwriters improve their songs, and homeowners improve their homes. The
same should be true for software. The older a software system is, the better it
should be.

The design and architecture of a software system should get better with time.
The structure of the code should improve, and so should the efficiency and
throughput of the system. Isn’t that obvious? Isn’t that what you would
expect from any group of humans working on anything?

It is the single greatest indictment of the software industry, the most obvious
evidence of our failure as professionals, that we make things worse with time.
The fact that we developers expect our systems to get messier, cruftier, and
more brittle and fragile with time is, perhaps, the most irresponsible attitude
possible.

Continuous, steady improvement is what users, customers, and managers
expect. They expect that early problems will fade away and that the system
will get better and better with time. The Agile practices of Pairing, TDD,
Refactoring, and Simple Design strongly support this expectation.

Fearless Competence

Why don’t most software systems improve with time? Fear. More specifically,
fear of change.

Imagine you are looking at some old code on your screen. Your first thought
is, “This is ugly code, I should clean it.” Your next thought is, “I’m not

Reasonable Expectations

51

touching it!” Because you know if you touch it, you will break it; and if you
break it, it will become yours. So you back away from the one thing that
might improve the code: cleaning it.

This is a fearful reaction. You fear the code, and this fear forces you to behave
incompetently. You are incompetent to do the necessary cleaning because you
fear the outcome. You have allowed this code, which you created, to go so far
out of your control that you fear any action to improve it. This is
irresponsible in the extreme.

Customers, users, and managers expect fearless competence. They expect that
if you see something wrong or dirty, you will fix and clean it. They don’t
expect you to allow problems to fester and grow; they expect you to stay on
top of the code, keeping it as clean and clear as possible.

So how do you eliminate that fear? Imagine that you own a button that
controls two lights: one red, the other green. Imagine that when you push this
button, the green light is lit if the system works, and the red light is lit if the
system is broken. Imagine that pushing that button and getting the result
takes just a few seconds. How often would you push that button? You’d never
stop. You’d push that button all the time. Whenever you made any change to
the code, you’d push that button to make sure you hadn’t broken anything.

Now imagine that you are looking at some ugly code on your screen. Your
first thought is, “I should clean it.” And then you simply start to clean it,
pushing the button after each small change to make sure you haven’t broken
anything.

The fear is gone. You can clean the code. You can use the Agile practices of
Refactoring, Pairing, and Simple Design to improve the system.

How do you get that button? The Agile practice of TDD provides that button
for you. If you follow that practice with discipline and determination, you
will have that button, and you will be fearlessly competent.

Chapter 2 The Reasons for Agile

52

QA Should Find Nothing

QA should find no faults with the system. When QA runs their tests, they
should come back saying that everything works as required. Any time QA
finds a problem, the development team should find out what went wrong in
their process and fix it so that next time QA will find nothing.

QA should wonder why they are stuck at the back end of the process
checking systems that always work. And, as we shall see, there is a much
better place for QA to be positioned.

The Agile practices of Acceptance Tests, TDD, and Continuous Integration
support this expectation.

Test Automation

The hands you see in the picture in Figure 2.1 are the hands of a QA manager.
The document that manager is holding is the table of contents for a manual
test plan. It lists 80,000 manual tests that must be run every six months by an
army of testers in India. It costs over a million dollars to run those tests.

Figure 2.1 Table of contents for the manual test plan

Reasonable Expectations

53

The QA manager is holding this document out to me because he just got back
from his boss’ office. His boss just got back from the CFO’s office. The year
is 2008. The great recession has begun. The CFO cut that million dollars in
half every six months. The QA manager is holding this document out to
me asking me which half of these tests he shouldn’t run.

I told him that no matter how he decided to cut the tests, he wouldn’t know
if half of his system was working.

This is the inevitable result of manual testing. Manual tests are always
eventually lost. What you just heard was the first and most obvious
mechanism for losing manual tests: manual tests are expensive and so are
always a target for reduction.

However, there is a more insidious mechanism for losing manual tests.
Developers seldom deliver to QA on time. This means that QA has less time
than planned to run the tests they need to run. So, QA must choose which
tests they believe are most appropriate to run in order to make the shipment
deadline. And so some tests aren’t run. They are lost.

And besides, humans are not machines. Asking humans to do what machines
can do is expensive, inefficient, and immoral. There is a much better activity
for which QA should be employed—an activity that uses their human
creativity and imagination. But we’ll get to that.

Customers and users expect that every new release is thoroughly tested. No
one expects the development team to bypass tests just because they ran out of
time or money. So every test that can feasibly be automated must be
automated. Manual testing should be limited to those things that cannot be
automatically validated and to the creative discipline of Exploratory Testing.5

The Agile practices of TDD, Continuous Integration, and Acceptance Testing
support this expectation.

5. Agile Alliance. Exploratory testing. Accessed at https://www.agilealliance.org/glossary/
exploratory-testing.

https://www.agilealliance.org/glossary/exploratory-testing
https://www.agilealliance.org/glossary/exploratory-testing

Chapter 2 The Reasons for Agile

54

We Cover for Each Other

As CTO, I expect development teams to behave like teams. How do teams
behave? Imagine a team of players moving the ball down the field. One of the
players trips and falls. What do the other players do? They cover the open
hole left behind by the fallen team member and continue to move the ball
down the field.

On board a ship, everyone has a job. Everyone also knows how to do someone
else’s job. Because on board the ship, all jobs must get done.

In a software team, if Bob gets sick, Jill steps in to finish Bob’s tasks. This
means that Jill had better know what Bob was working on and where Bob
keeps all the source files, and scripts, etc.

I expect that the members of each software team will cover for each other.
I expect that each individual member of a software team makes sure that there
is someone who can cover for him if he goes down. It is your responsibility to
make sure that one or more of your teammates can cover for you.

If Bob is the database guy, and Bob gets sick, I don’t expect progress on the
project to grind to a halt. Someone else, even though she isn’t “the database
guy,” should pick up the slack. I don’t expect the team to keep knowledge in
silos; I expect knowledge to be shared. If I need to reassign half the members
of the team to a new project, I do not expect that half the knowledge will be
removed from the team.

The Agile practices of Pair Programming, Whole Team, and Collective
Ownership support these expectations.

Honest Estimates

I expect estimates, and I expect them to be honest. The most honest estimate
is “I don’t know.” However, that estimate is not complete. You may not know
everything, but there are some things you do know. So I expect you to provide
estimates based on what you do and don’t know.

Reasonable Expectations

55

For example, you may not know how long something will take, but you can
compare one task to another in relative terms. You may not know how long it
will take to build the Login page, but you might be able to tell me that the
Change Password page will take about half the time as Login. Relative
estimates like that are immensely valuable, as we will see in a later chapter.

Or, instead of estimating in relative terms, you may be able to give me a range
of probabilities. For example, you might tell me that the Login page will take
anywhere from 5 to 15 days to complete with an average completion time of
12 days. Such estimates combine what you do and don’t know into an honest
probability for managers to manage.

The Agile practices of the Planning Game and Whole Team support this
expectation.

You Need to Say “No”

While it is important to strive to find solutions to problems, I expect you to
say “no” when no such solution can be found. You need to realize that you
were hired more for your ability to say “no” than for your ability to code.
You, programmers, are the ones who know whether something is possible. As
your CTO, I am counting on you to inform us when we are headed off a cliff.
I expect that, no matter how much schedule pressure you feel, no matter how
many managers are demanding results, you will say “no” when the answer
really is “no.”

The Agile practice of Whole Team supports this expectation.

Continuous Aggressive Learning

As CTO, I expect you to keep learning. Our industry changes quickly. We
must be able to change with it. So learn, learn, learn! Sometimes the company
can afford to send you to courses and conferences. Sometimes the company
can afford to buy books and training videos. But if not, then you must find
ways to continue learning without the company’s help.

The Agile practice of Whole Team supports this expectation.

Chapter 2 The Reasons for Agile

56

Mentoring

As CTO I expect you to teach. Indeed, the best way to learn is to teach. So
when new people join the team, teach them. Learn to teach each other.

Again, the Agile practice of Whole Team supports this expectation.

The Bill of Rights

During the Snowbird meeting, Kent Beck said that the goal of Agile was to
heal the divide between business and development. To that end, the following
bill of rights was developed by Kent, Ward Cunningham, and Ron Jeffries,
among others.

Notice, as you read these rights, that the rights of the customer and the rights
of the developer are complementary. They fit together like a hand in a glove.
They create a balance of expectations between the two groups.

Customer Bill of Rights

The customer bill of rights includes the following:

 • You have the right to an overall plan and to know what can be
accomplished when and at what cost.

 • You have the right to get the most possible value out of every iteration.

 • You have the right to see progress in a running system, proven to work by
passing repeatable tests that you specify.

 • You have the right to change your mind, to substitute functionality, and to
change priorities without paying exorbitant costs.

 • You have the right to be informed of schedule and estimate changes, in time
to choose how to reduce the scope to meet a required date. You can cancel
at any time and be left with a useful working system reflecting investment
to date.

The Bill of Rights

57

Developer Bill of Rights

The developer bill of rights includes the following:

 • You have the right to know what is needed with clear declarations of
priority.

 • You have the right to produce high-quality work at all times.

 • You have the right to ask for and receive help from peers, managers, and
customers.

 • You have the right to make and update your own estimates.

 • You have the right to accept your responsibilities instead of having them
assigned to you.

These are extremely powerful statements. We should consider each in turn.

Customers

The word “customer” in this context refers to businesspeople in general. This
includes true customers, managers, executives, project leaders, and anyone
else who might carry responsibility for schedule and budget or who will pay
for and benefit from the execution of the system.

Customers have the right to an overall plan and to know what can be
 accomplished when and at what cost.

Many people have claimed that up-front planning is not part of Agile
development. The very first customer right belies that claim. Of course the
business needs a plan. Of course that plan must include schedule and cost.
And, of course that plan should be as accurate and precise as practical.

It is in that last clause that we often get into trouble because the only way to
be both accurate and precise is to actually develop the project. Being both
accurate and precise by doing anything less is impossible. So what we
developers must do to guarantee this right is to make sure that our plans,
estimates, and schedules properly describe the level of our uncertainty and
define the means by which that uncertainty can be mitigated.

Chapter 2 The Reasons for Agile

58

In short, we cannot agree to deliver fixed scopes on hard dates. Either the
scopes or the dates must be soft. We represent that softness with probability
curve. For example, we estimate that there is a 95% probability that we can
get the first ten stories done by the date. A 50% chance that we can get the
next five done by the date. And a 5% chance that the five after that might get
done by the date.

Customers have the right to this kind of probability-based plan because they
cannot manage their business without it.

Customers have the right to get the most possible value out of every iteration.

Agile breaks up the development effort into fixed time boxes called iterations.
The business has the right to expect that the developers will work on the most
important things at any given time, and that each iteration will provide them
the maximum possible usable business value. This priority of value is
specified by the customer during the planning sessions at the beginning of
each iteration. The customers choose the stories that give them the highest
return on investment and that can fit within the developer’s estimation for the
iteration.

Customers have the right to see progress in a running system, proven to work by
passing repeatable tests that they specify.

This seems obvious when you think about it from the customer’s point of
view. Of course they have the right to see incremental progress. Of course
they have the right to specify the criteria for accepting that progress. Of
course they have the right to quickly and repeatedly see proof that their
acceptance criteria have been met.

Customers have the right to change their minds, to substitute functionality, and to
change priorities without paying exorbitant costs.

After all, this is software. The whole point of software is to be able to easily
change the behavior of our machines. The softness is the reason software was

The Bill of Rights

59

invented in the first place. So of course, customers have the right to change
the requirements.

Customers have the right to be informed of schedule and estimate changes in time
to choose how to alter the scope to meet the required date.

Customers may cancel at any time and be left with a useful working system
 reflecting investment to date.

Note that customers do not have the right to demand conformance to the
schedule. Their right is limited to managing the schedule by changing the
scope. The most important thing this right confers is the right to know that
the schedule is in jeopardy so that it can be managed in a timely fashion.

Developers

In this context, developers are anyone who works on the development of
code. This includes programmers, QA, testers, and business analysts.

Developers have the right to know what is needed with clear declarations of
 priority.

Again, the focus is on knowledge. Developers are entitled to precision in the
requirements and in the importance of those requirements. Of course, the
same constraint of practicality holds for requirements as holds for estimates.
It is not always possible to be perfectly precise about requirements. And
indeed, customers have the right to change their minds.

So this right only applies within the context of an iteration. Outside of an
iteration, requirements and priorities will shift and change. But within an
iteration the developers have the right to consider them immutable. Always
remember, however, that developers may choose to waive that right if they
consider a requested change to be inconsequential.

Developers have the right to produce high-quality work at all times.

Chapter 2 The Reasons for Agile

60

This may be the most profound of all these rights. Developers have the right
to do good work. The business has no right to tell developers to cut corners
or do low-quality work. Or, to say this differently, the business has no right to
force developers to ruin their professional reputations or violate their
professional ethics.

Developers have the right to ask for and receive help from peers, managers, and
customers.

This help comes in many forms. Programmers may ask each other for help
solving a problem, checking a result, or learning a framework, among other
things. Developers might ask customers to better explain requirements or
to refine priorities. Mostly, this statement gives programmers the right to
communicate. And with that right to ask for help comes the responsibility to
give help when asked.

Developers have the right to make and update their own estimates.

No one can estimate a task for you. And if you estimate a task, you can
always change your estimate when new factors come to light. Estimates are
guesses. They are intelligent guesses to be sure, but they’re still guesses. They
are guesses that get better with time. Estimates are never commitments.

Developers have the right to accept their responsibilities instead of having them
assigned.

Professionals accept work, they are not assigned work. A professional
developer has every right to say “no” to a particular job or task. It may be
that the developer does not feel confident in their ability to complete the task,
or it may be that the developer believes the task better suited for someone
else. Or, it may be that the developer rejects the tasks for personal or moral
reasons.6

6. Consider the developers at Volkswagen who “accepted” the tasks of cheating the EPA test rigs in
California. https://en.wikipedia.org/wiki/Volkswagen_emissions_scandal.

https://en.wikipedia.org/wiki/Volkswagen_emissions_scandal

Conclusion

61

In any case, the right to accept comes with a cost. Acceptance implies
responsibility. The accepting developer becomes responsible for the quality
and execution of the task, for continually updating the estimate so that the
schedule can be managed, for communicating status to the whole team, and
for asking for help when help is needed.

Programming on a team involves working closely together with juniors and
seniors. The team has the right to collaboratively decide who will do what.
A technical leader might ask a developer to take a task but has no right to
force a task on anyone.

Conclusion

Agile is a framework of disciplines that support professional software
development. Those who profess these disciplines accept and conform to the
reasonable expectations of managers, stakeholders, and customers. They also
enjoy and abide by the rights that Agile confers to developers and customers.
This mutual acceptance and conference of rights and expectations—this
profession of disciplines—is the foundation of an ethical standard for
software.

Agile is not a process. Agile is not a fad. Agile is not merely a set of rules.
Rather, Agile is a set of rights, expectations, and disciplines of the kind that
form the basis of an ethical profession.

191

Index

A
Acceptance Tests

Behavior-Driven Development, 90
collaboration between business

analysts, QA, and developers, 91–93
Continuous Build server in, 93
developer’s responsibility for, 93
expectation of test automation, 53
expectation that QA finds no faults,

52
overview of, 88–89
practice of, 90–91
QA and, 79–80
tools/methodologies, 89–90

ACSM (Advanced Certified Scrum
Master), 165

Adaptability
expectation related to expense of,

49–50
great tools and, 153–154

Adaptive Software Development (ASD),
174–175

Adkins, Lyssa, 158

Advanced Certified Scrum Master
(ACSM), 165

Adzic, Gojko, 44
Agile & Iterative Development: A

Manager’s Guide (Larman), 3
Agile hangover, 169–170
Agile in the large (big or multiple teams)

appropriateness of Agile for, 144–147
becoming Agile and, 161

Agile Introduction
Analysis Phase of Waterfall approach,

19–20
chart use in data presentation, 15–18
Circle of Life of XP practices, 31–34
comparing Agile with Waterfall

approach, 23–24
data produced by Agile approach,

25–27
dates frozen while requirements

change, 18
Death March Phase of Waterfall

approach, 22
Design Phase of Waterfall approach,

20–21

Index

192

Agile Introduction (continued)
features implemented based on

business value, 31
history, 3–10
hope vs. management, 27
Implementation Phase of Waterfall

approach, 21–22
Iron Cross of project management,

15, 27
Iteration Zero, 24–25
managing software projects, 14
The Meeting in Waterfall approach,

18–19
overview of, 2
post-Snowbird, 13–14
quality and, 29–30
schedule changes, 28
scope changes, 30–31
Snowbird meeting, 10–13
staff additions, 28–29
summary, 35

Agile Lifecycle Management (ALM),
153–155

Agile Manifesto
becoming Agile and, 161–162
emerges out of many on similar

journeys, 155
goals, 34
ideals, 187, 189
ideology, 174
origination at Snowbird, 12–14
outcome of Snowbird meeting, 2
simplicity of, 157
Software Craftsmanship adds values

to, 173
Agile, process of becoming

addresses small team issue not big
team issues, 144–147

Agile in the large (big or multiple
teams) and, 161

Agile Lifecycle Management (ALM),
153–155

Agile Manifesto and, 161–162

automation, 152
certifications, 143–144, 158
coaching, 142–143, 157–158
coaching in multiteam environment,

160
conclusion/summary, 165
creating Agile organizations,

141–142
faking it, 139–140
future of coaching, 165
going big by focusing on the small,

164–165
growing the adaptation, 162–164
insufficiency of coaching skills,

159–160
many paths to, 155–156
overview of, 133–134
from process expert to Agile expert,

156–157
selecting methods, 136
stories/examples, 138–139
successes, 140–141
tools, 148–151
values, 134–136

Agile Project Management: Creating
Innovative Products (Highsmith), 175

Agile, reasons for
ability/willingness to say “no,” 55
adaptability, 49–50
competence in face of change, 50–51
continuous improvement, 50
continuous learning, 55
continuous technical readiness, 45–46
customer bill of rights, 56–59
developer bill of rights, 57, 59–61
honesty in estimation, 54–55
mentoring, 56
professionalism, 38
QA finding no faults, 52
reasonable expectations, 43
refusal to ship bad code, 43–45
software and its potential dangers,

42–43

Index

193

software extent and dependence,
39–42

stable productivity, 46–49
summary/conclusion, 61
team sharing responsibility, 54
test automation, 52–53

ALM (Agile Lifecycle Management),
153–155

Analysis, ongoing in Agile, 24–25
Analysis Phase, Waterfall approach,

19–20
Analysts, subset of developers, 59
Arguments, refactoring code, 123
ASD (Adaptive Software Development),

174–175
Automatic Computing Engine

(Turing), 3
Automation

deployment when test suite complete,
119

expectation of test automation, 52–53
tools for, 152
who should write automated tests,

88–89

B
Bamboo, continuous build tool, 109
Basili, Vic, 3
Beck, Kent

Agile basics, 183
attendees at Snowbird meeting, 11
author meeting and partnering with,

9–10
example of Metaphor practice, 98
healing divide between business and

development, 96
history of XP, 32
role in Agile bill of rights, 56
rules of Simple Design, 125–126

Beedle, Mike, 8, 11
Behavior-Driven Development (BDD), 90
Best-case, trivariate analysis, 65

Bill of rights
Agile ideals, 187, 189
customer bill of rights, 56–59
developer bill of rights, 57, 59–61

Booch, G.
Agile basics, 183
beginning of Agile, 8
“faking it” as strategy to transition to

Agile, 140
Brooks, Jr., F.P., 28
Brooks’ law, on staff addition, 28
Bugs

Agile hangover and, 169
debugging, 117
inadequacy of software testing, 41–43

Burn-down charts
presenting Agile data, 16–17
updating, 81–82

Business analysts, collaboration in
Acceptance tests, 91–93

Business decisions
continuous technical readiness and, 45
healing divide between business and

development, 96
ordering feature implementation by

business value, 31
Business practices

Acceptance Tests. See Acceptance
Tests

conclusion/summary, 96
planning. See Planning
Small Releases. See Small Releases
Whole Team. See Whole Team

C
CEC (Certified Enterprise Coach), 165
Certifications

Agile hangover and, 169
ICP-ACC, 158
limitations of, 143–144
need for real Agile certification

program, 144

Index

194

Certified Enterprise Coach (CEC), 165
Certified Team Coach (CTC), 165
Change

dates frozen while requirements
change, 18

expectation of competence in face of,
50–51

quality changes, 29–30
schedule changes, 28
scope changes, 30–31
young developers introducing sea

change in methodology, 188
Charts, use in data presentation, 15–18
Cheating, costs of, 110
Chief technology officer (CTO), 43
Circle of Life (XP)

Agile basics, 183
methods, 136
overview of, 31–34
Team Practices, 98

Classes, refactoring code, 123–124
Clean Code

practices, 176
Software Craftsmanship’s impact on

industry, 179–180
Co-location

increasing team efficiency, 94–95
tools supporting, 151

Coaching
demand for, 171
future of, 165
ICP-ACC certification, 158
misconceived as management, 172
in multiteam environment, 160
need for, 142–143, 157–158
paths to Agile, 155–156
role of, 161–162
Scrum Master as coach, 143
skill requirements, 159–160
tools, 158–159

Coaching Agile Teams (Adkins), 158
Cockburn, Alistair, 8, 10–11

Code
clean and orderly, 121–123
code coverage as team metric, 120
controlling source code. See Source

code control
developers, 59
improving without altering. See

Refactoring
minimizing design weight of, 126
pairing as alternative to code review,

129
refusal to ship bad code, 43–45

“Code slingers,” 185
Collaboration

in Acceptance tests, 91–93
in choosing stories, 78–79
expectation mismatch, 170–171

Collective Ownership
expectation of team sharing

responsibility, 54
maladroit example of company X,

106–107
overview of, 104–106
XP Circle of Life practices, 33

Command-line tools, for Agile
developers, 148

Communication
Agile values, 134–135
core tools for Agile developers,

149
Companies. See Organizations/

companies
Competence, expected in face of change,

50–51
Continuous Integration

build discipline, 109
build tools, 108–109
core tools for Agile developers, 149
costs of cheating, 110
expectation of test automation, 53
expectation that QA finds no

faults, 52

Index

195

expectation mismatch, 171
Git and, 87
overview of, 107–108
Small releases, 83
Software Craftsmanship practices,

176, 179–180
SOLID principles, 164
XP practices, 33, 172

Coplien, James, 8–9, 184
Costs

of adaptability, 49–50
of cheating, 110
Iron Cross, (good, fast, cheap, done),

15
of pairing, 130
of tools, 154

Courage
Agile values, 134
Test-Driven Development and,

121–123
Craftsmanship. See Software

Craftsmanship
Craftspeople, 174
Crichlow, Eric, 185
CruiseControl, continuous build tool,

108–109
Crystal Methods (Cockburn), 8, 11
CTC (Certified Team Coach), 165
CTO (chief technology officer), 43
Cucumber, automated test tools, 89–90
Cunningham, Ward

attendees at Snowbird meeting, 11–13
history of Agile, 3
history of XP, 32
role in Agile bill of rights, 56

Customers
bill of rights, 56–59
communication as value, 134–135
feedback as remedy for shipping bad

code, 45
Whole Team and, 93–94

D
The Daily Scrum, 110–111. See also

Standup Meeting
Data

charts, 15–18
produced by Agile approach, 25–27

Data Dictionaries (DeMarco), 100
Data formats, core tools for Agile

developers, 148
Dates

frozen while requirements change, 18
schedule changes, 28

Deadlines, 101
Death March Phase, of Waterfall

approach, 22
Debugging, 117
Decoupling, testability and, 121
Dedication, overtime vs. sustainable

pace, 103–104
Defects, QA disease and, 92
Delays, artificial delay in software teams,

45
Delivery, continuous. See Continuous

Integration
DeMarco, Tom, 100, 183
Demo story, for stakeholders, 80–81
Deployment

continuous technical readiness and,
45–46

core tools for Agile developers, 149
when test suite complete, 119

Design. See also Simple Design
minimizing design weight of code,

126–127
ongoing in Agile, 24–25
Test-Driven Development as design

technique, 121
Design Patterns, 8
Design Phase, of Waterfall approach,

20–21
Developers. See also Programmers;

Software development/project
management

Index

196

Developers (continued)
Acceptance Tests and, 80
Agile and, 187–188
Agile hangover and, 169
bill of rights, 57, 59–61
collaboration in Acceptance tests,

91–93
expectation of adaptability, 49–50
expectation of productivity, 46–49
expectation mismatch, 171
Software Craftsmanship steadily

adding, 174
software tools to master, 148–149
trend of moving apart from

Agile, 172
what they should and should not do,

178
young developers introducing sea

change in methodology, 188
Devos, Martine, 8
Directness, simplicity and, 135–136
Disks, in source code control, 85–86
Documentation, in Test-Driven

Development, 117–118
Domain-Driven Design (Evans), 99–100
Domain-Driven Design, Metaphor

practice, 99–100
Done

definition of, 80
Iron Cross, (good, fast, cheap, done),

15
project end, 73
tests and, 91

Double-entry bookkeeping, compared
with Test-Driven Development,
114–115

Dynamic Systems Development Method
(DSDM)

comparing ideology with
methodology, 174

representatives at Snowbird meeting,
11

E
Escalation trees, growing the Agile

adaptation, 163
Estimates

accuracy of, 64–65
developer bill of rights, 60
estimating stories, 68–70, 76–77
expectation of honesty, 54–55
INVEST guidelines for stories, 75
trivariate analysis, 65
yesterday’s weather in estimating

iterations, 72–73
Evans, Eric, 99
Expectation mismatch, in Agile, 170–171
Expectations, reasonable

ability/willingness to say “no” when
necessary, 55

adaptability, 49–50
continuous improvement, 50
continuous learning, 55
continuous technical readiness, 45–46
fearless competence in face of change,

50–51
honesty in estimation, 54–55
mentoring, 56
overview of, 43
QA finding no faults, 52
refusal to ship bad code, 43–45
stable productivity, 46–49
team sharing responsibility, 54
test automation, 52–53

Expertise, of Agile coaches, 160
Extreme Programming Explained:

Embrace Change (Beck), 32, 183
Extreme Programming (XP)

Circle of Life, 31–34
comparing ideology with

methodology, 174
comparing with Agile, 180
growing the Agile adaptation, 163
history of Agile and, 9–10
physical management tools, 152

Index

197

representatives at Snowbird meeting,
11

Software Craftsmanship practices, 176
technical practices, 172
transitioning to, 137

F
“Faking it” (Booch and Parnas),

becoming Agile by, 139–140
Fearlessness, in face of change, 50–51.

See also Courage
Feature-Driven Development

comparing ideology with
methodology, 175

representatives at Snowbird meeting,
11

Features
creating stories in Iteration Zero,

24–25
Design Phase of waterfall approach,

19–20
Implementation Phase of waterfall

approach, 21–22
ordering implementation by business

value, 31
Feedback

Agile values, 135
feedback-driven, 17
remedy for shipping bad code, 45

FitNesse, automated test tools, 89–90
“Flaccid Scrum” (Fowler), 136
Flexibility, balancing with robustness,

171. See also Adaptability
Flip charts, as information radiator, 151
Flying Fingers, in story estimation,

76–77
Fowler, Martin

attendees at Snowbird meeting, 10–12
on “Flaccid Scrum,” 136
on refactoring, 123, 183
role in Agile Manifesto, 12

Frameworks, Agile and, 162
Functions, refactoring code, 123–124

G
Git

example of what makes an effective
tool, 149–150

source code control, 87
Given-When-Then, formalizing language

of testing, 90
Golden Story

comparing subsequent stories, 69
estimating stories, 82

Grenning, James, 11

H
Help, in developer bill of rights, 60
Highsmith, Jim, 11, 175
Honesty, in estimates, 54–55
Hope, vs. management, 27
Humans vs. Computers (Adzic), 44
Humble Pi (Parker), 44
Hunt, Andy, 11

I
IBM, birth of PC, 141
ICAgile’s Certified Agile Coach

(ICP-ACC), 158
ICF (International Coach Federation),

158, 165
IDE (Integrated development

environment), 148
Ideology, comparing with methodology,

174–175
Implementation Phase, Waterfall

approach, 21–22
Improvement, continuous and steady, 50
Independent, INVEST story guidelines,

74
Independent, Negotiable, Valuable,

Estimable, Small, Testable
(INVEST), 74–75

Index cards, in managing stories,
66–67

Individuals, Craftsmanship impact on,
178–179

Index

198

Industry, Craftsmanship impact on,
179–180

Information radiators, 151
Integrated development environment

(IDE), 148
International Coach Federation (ICF),

158, 165
INVEST (Independent, Negotiable,

Valuable, Estimable, Small, Testable),
74–75

Iron Cross, (good, fast, cheap, done), 15
Iteration Planning Meeting (IPM), 70–71
Iteration Zero, 24–25
Iterations

accumulating of real data, 25–27
in Agile approach, 23–24
checking stories at midpoint, 72
estimating, 72–73
Iteration Zero, 24–25
managing, 78–79
planning first, 70–71
technical readiness, 45–46, 87

J
JBehave, automated test tools, 89–90
Jeffries, Ron

attendees at Snowbird meeting, 11
Circle of Life, 31, 183
role in Agile bill of rights, 56
Team Practices, 98

Jenkins, continuous build tool, 109

K
Kanban

growing the Agile adaptation, 163
teaching tools, 159

Kern, Jon, 11

L
Larman, Craig, 3
Learning, expectation of continuous, 55
LEGO city building, teaching tools, 159

M
Magnetic tapes, in source code control,

85
Management

barriers to transformation, 137
coaching and, 172
code coverage not a management

metric, 120
“faking it” as strategy to transition to

Agile, 139–140
lifecycle management, 153–155
Pair Programming and, 130–131
physical tools, 152
portfolio management, 163
Scientific Management, 4, 6–7
software projects. See Software

development/project management
vs. hope, 27
Waterfall approach. See Waterfall

project management
Managers

Agile hangover and, 168–169
communication as value, 134–135
vs. coaches, 143

Marathons, Sustainable Pace and, 103
The Meeting, beginning Waterfall

approach, 18–19
Meetings

Iteration Planning Meeting (IPM),
70–71

midpoint review, 72
Standup Meeting, 110–111

Mellor, Steve, 11
Mentoring, 56. See also Coaching
Merging stories, 77–78
Metaphor practice

advantages/disadvantages, 98–99
Circle of Life, 33
Domain-Driven Design, 99–100

Methods/methodology
acceptance Tests, 89–90
Agile as, 187

Index

199

comparing with ideology, 174–175
Crystal Methods (Cockburn), 8, 11
Mikado Method, 150
refactoring code, 123
selecting Agile methods, 136
young developers introducing sea

change in, 188
Metrics, 187
Mikado Method, 150
Mob programming, 130
Model-Driven programming, 11
Models, in communication with

stakeholders, 100

N
Negotiable, INVEST guidelines for

stories, 74
Newkirk, Jim, 102–104
“No,” when to say, 55
Nominal-case, trivariate analysis, 65
North, Dan, 90

O
Object-Oriented Programming (OOP), 8
On-Site Customer. See Whole Team
Optimistic locks, in source code control,

86
Organizations/companies

Craftsmanship impact on,
180–181

creating Agile organizations,
141–142

Overtime, Sustainable Pace and,
102–103

Ownership. See also Collective
Ownership

Product Owner, 94, 172
Software Craftsmanship, 174

P
Pair Programming

code review and, 129
costs, 130

expectation of team sharing
responsibility, 54

management and, 130–131
mob programming, 130
overview of, 127
reasons for, 129
Software Craftsmanship practices,

176, 179–180
what is pairing, 128–129

Pairing
Circle of Life practices, 34
example, 107–108
expectation of continuous

improvement, 50
what it is, 128–129

Parker, Matt, 44
Partnerships, productive, 174
PCs (personal computers), IBM and, 141
PERT (Program evaluation and review

technique), 65
Pessimistic locks, in source code control,

86
Pillory board, ALM tools, 154
Ping-Pong, in pair programming, 128
Planning

checking stories at midpoint of
iteration, 72

demo of new stories to stakeholders,
80–81

estimating stories, 68–70, 76–77
first iteration, 70–71
Golden Story standard for story

estimation, 82
guidelines for stories, 74–76
managing iterations, 78–79
overview of, 64–65
project end, 73
QA and Acceptance Tests, 79–80
return on investment, 71–72
splitting, merging, and spiking stories,

77–78
stories and points, 65–68
trivariate analysis, 65

Index

200

Planning (continued)
updating velocity and burn-down

charts, 81–82
yesterday’s weather in estimating

iterations, 72–73
Planning Game

Circle of Life practices, 33
expectation of honesty in estimates,

55
expectation of stable productivity, 50

Planning Poker, estimating stories, 76–77
Points. See Stories
Poole, Damon, 155
Portfolio management, Kanban, 163
Practices, technical. See Technical

Practices
Pragmatic Programmers, at Snowbird

meeting, 11
Process expert, becoming Agile expert,

156–157
Product Owner

not feeling part of team, 172
Scrum, 94

Productivity
expectation of stability, 46–49
staff additions and, 29

Profession
contrasting with job, 178–179
uniqueness of programming as a

profession, 114
Professionalism

combining Craftsmanship with Agile,
181

community of professionals, 173
overview of, 38
software and its potential dangers,

42–43
for software extent and dependence,

39–42
Program evaluation and review technique

(PERT), 65
Programmers. See also Developers

burn out, 101

collaboration in Acceptance tests,
91–93

collaboration in choosing stories,
78–79

communication as value, 134–135
design weight as cognitive load, 127
expectation to not ship bad code,

43–45
ruling the contemporary world, 41–43
as subset of developers, 59
uniqueness of programming as a

profession, 114
Programming, comparing XP with Agile,

180
Programming languages, core tools for

Agile developers, 148
Project end. See Done
Project management. See Software

development/project management;
Waterfall project management

Punch cards, in source code control,
83–84

Q
QA (quality assurance)

Acceptance Tests and, 79–80
collaboration in, 91
expectation of no faults, 52
liability of testing at the end, 92–93
QA testers as subset of developers, 59
role and burden of, 91
test automation, 52–53

Quality
decreasing to meet schedules, 29–30
developer bill of rights, 59
Iron Cross, (good, fast, cheap, done),

15
Questioning, as coaching competency,

159

R
Rational Unified Process (RUP), 2, 168
RCS (Revision Control System), 86

Index

201

Reasonable expectations. See
Expectations, reasonable

Refactoring. See also Simple Design
Circle of Life practices, 34
expectation of continuous

improvement, 50
expectation of inexpensive

adaptability, 50
expectation of stable productivity, 50
overview of, 123–124
Red/Green/Refactor cycle, 124–125
remedy for shipping bad code, 45
Software Craftsmanship practices,

176, 179–180
Refactoring (Fowler), 123, 183
Regression tests, 92
Releases. See also Small Releases

Agile hangover and, 169
defined, 87
expectation mismatch, 171

Remote work, 95–96
Repository tools, for Agile developers,

148
Responsibility

for Acceptance Tests, 93
developer bill of rights, 60–61
expectation of team sharing, 54

Return on investment (ROI), estimating
stories, 71–72

Revision Control System (RCS), 86
Royce, Winston, 5–6
Runaway Process Inflation, 22
RUP (Rational Unified Process), 2, 168

S
Scalability, of Agile, 160
SCCS (Source Code Control System),

85–86
Schedules

changes to, 28
impact of changing quality, 29–30
impact of changing scope, 30–31
impact of staff addition, 28–29

Schwaber, Ken, 8, 11
Scientific Management, 4, 6–7
Scope, changing to meet schedules,

30–31
Scripts, core tools for Agile developers,

148
Scrum

Agile synonymous with, 172
comparing ideology with

methodology, 174
growing the Agile adaptation, 163
history of Agile, 8
Product Owner, 94
representatives at Snowbird meeting,

11
Scrum Master as coach, 143
Scrum Master certification, 144
selecting Agile methods, 136

Sharon, Yonat, 8
Shirt Sizes approach, estimating stories,

76
Simple Design

Circle of Life practices, 34
expectation of continuous

improvement, 50
expectation of inexpensive

adaptability, 50
expectation of stable productivity,

50
refactoring and, 125
remedy for shipping bad code, 45
rules of (Beck), 125–126
Software Craftsmanship practices,

176, 179–180
SOLID principles, 165
weight of design and, 127

Simplicity, Agile values, 135–136
Sleep, Sustainable Pace and, 104
Small, INVEST guidelines for stories, 75
Small Releases

Circle of Life practices, 33
disks and SCCS in source code

control, 85–86

Index

202

Small Releases (continued)
driving team to shorter and shorter

release cycles, 87
Git and, 87
overview of, 82–83
SOLID principles, 164
source code control, 83–84
subversion in source code control, 86
tapes in source code control, 85

Smalltalk, 8
Snowbird meeting

goal of, 2
healing divide between business and

development, 96
overview of, 10–13
post-Snowbird, 13–14
starting the Agile momentum, 183

Software Craftsmanship
Agile and, 181
conclusion/summary, 182
discussing practices, 177–178
focusing on value and not practice,

176–177
ideology vs. methodology, 174–175
impact on companies, 180–181
impact on individuals, 178–179
impact on industry, 179–180
overview of, 173–174
practices, 175–176

Software development/project
management

Agile addressing problems of small
teams, 146–147

Agile as religion, 189
Agile promising fast delivery, 168–169
Agile use, 187
Analysis Phase of Waterfall approach,

19–20
charts for data presentation, 15–18
comparing Agile with Waterfall

approach, 23–24
comparing Agile with XP, 180

dates frozen while requirements
change, 18

Death March Phase of Waterfall
approach, 22

dependence of contemporary society
on, 39–42

Design Phase of Waterfall approach,
20–21

Design Phase of waterfall approach,
19–20

Implementation Phase of Waterfall
approach, 21–22

Iron Cross of, 15, 27
The Meeting beginning Waterfall

approach, 18–19
overview of, 14
potential dangers, 42–43

SOLID principles
overview of, 164
Software Craftsmanship practices,

176, 179–180
Source code control

disks and SCCS in, 85–86
Git for, 87
history of, 83–84
subversion in, 86
tapes in, 85

Source Code Control System (SCCS),
85–86

SpecFlow, automated test tools, 89–90
Specialization, Collective Ownership

and, 105
Specification, as tests, 88
Speed. See Velocity
Spikes, story for estimating stories,

77–78
Splitting stories, 77–78
Sprints. See Iterations
Staff, making additions, 28–29
Stakeholders

calculating return on investment,
71–72

demoing new stories to, 80–81

Index

203

models in communicating with, 100
participants in Iteration Planning

Meeting, 70
Standup Meeting

Agile hangover and, 170
overview of, 110–111

Stop the Presses events, breaks in
continuous build, 109

Stories
ATM example, 67–68
checking at iteration midpoint, 72
demo for stakeholders, 80–81
estimating, 68–70, 76–77
examples of becoming Agile,

138–139
failure to deliver, 170
feedback loop in, 66–67
Golden Story standard, 82
guidelines for, 74–76
Iteration Zero, 24–25
managing iterations, 78–79
overview of, 66–67
SOLID principles, 164
splitting, merging, and spiking,

77–78
in trivariate analysis, 65

Story points. See Stories
Structured Programming (Dijkstra), 8
Subversion (SVN), in source code

control, 86
Sustainable Pace

Circle of Life practices, 33
dedication and, 103–104
getting sufficient sleep, 104
marathons and, 103
overtime and, 102
overview of, 100–101

Sutherland, Jeff, 8, 11
SVN (Subversion), in source code

control, 86
Systems, Craftsmanship impact on,

180–181

T
Tapes (magnetic), in source code control,

85
Taylor, Frederick Winslow, 4
TCR (Test && Commit || Revert), 150
TDD. See Test-Driven Development

(TDD)
Team Practices

Collective Ownership, 104–107
conclusion/summary, 111
Continuous Integration, 107–110
Metaphor, 98–100
Standup Meeting, 110–111
Sustainable Pace, 100–104

TeamCity, continuous build tool,
109

Teams. See also Team Practices; Whole
Team

Agile address to small team issues,
144–147

coaching in multiteam environment,
160

collaborative approach to choosing
stories, 78–79

expectation of stable productivity,
46–49

expectation mismatch, 171
growing the Agile adaptation, 163
pairing and, 129
sharing responsibility, 54

Technical debt, Agile hangover and, 169
Technical Practices

discussing, 177–178
focusing on value and not practice,

176–177
methodologies and, 175
overview of, 114
Pair Programming. See Pair

Programming
Refactoring. See Refactoring
Simple Design. See Simple Design
Software Craftsmanship, 175–176

Index

204

Technical Practices (continued)
technical issues as business problem,

172
Test-Driven Development. See

Test-Driven Development (TDD)
Technical readiness (technically

deployable)
expectation of continuous, 45–46
iterations and, 87

Test-Driven Development (TDD)
Author’s first experience with, 9
Circle of Life practices, 34
comparing with double-entry

bookkeeping, 114–115
completeness, 119–120
courage, 121–123
debugging and, 117
as design technique, 121
documentation, 117–118
expectation of continuous

improvement, 50
expectation of fearless competence, 51
expectation of inexpensive

adaptability, 50
expectation of test automation, 53
expectation that QA finds no faults,

52
focusing on value and not practice,

176–177
as fun, 118
overview of, 114
Software Craftsmanship practices,

176, 179–180
three rules of, 116–117
XP and, 172

Test && Commit || Revert (TCR), 150
Testable, INVEST guidelines for stories,

75
Testers, as subset of developers, 59
Tests/testing. See also Acceptance Tests;

Test-Driven Development (TDD)
Agile hangover and, 169
core tools for Agile developers, 149

coverage as team metric not
management metric, 120

expectation of automation, 52–53
expectation of stable productivity, 50
formalizing language of, 90
in remedy for shipping bad code, 45
specification as test, 88

Thomas, Dave, 11
Three Rules

courage, 121–123
decoupling, 121
Red/Green/Refactor cycle, 124–125
of Test-Driven Development, 116–117

Tools, Agile
Agile Lifecycle Management (ALM),

153–155
automation, 152
coaching tools, 159
effectiveness of, 149–151
overview of, 148
physical tools, 151
software tools, 148–149

Torvalds, Linus, 150
Trainers, vs. coaches, 142
Training. See also Coaching

certification and, 143–144
great tools and, 153

Transition/transformation. See also
Agile, process of becoming

Agile hangover, 169–170
“faking it” as strategy to transition to

Agile, 139–140
from non-Agile approach, 137

Transparency, great tools and, 153
Trivariate analysis, in estimation, 65
Turing, Alan, 3, 184
Two, Mike, 108–109

U
Ubiquitous Language (Evans), 99–100
User stories, 66. See also Stories

defined
INVEST guidelines, 74–75

Index

205

V
Valuable, INVEST guidelines for stories,

74–75
Values, Agile

communication, 134–135
courage, 134
feedback, 135
focusing on value and not practice,

176–177
simplicity, 135–136
Software Craftsmanship adds to, 173
transitioning from non-Agile

approach, 137
van Bennekum, Arie, 11
Velocity

estimating in Iteration Planning
Meeting, 70–71

falling, 82
Iron Cross, (good, fast, cheap, done),

15
rising, 81–82
slope of velocity charts, 81

Velocity charts
Agile data presented in chart views, 16
updating, 81–82

W
Waterfall project management

Analysis Phase, 19–20
comparing with Agile, 23–24
Crichlow on, 186

Death March Phase, 22
Design Phase, 20–21
dominance as programming approach,

7–8
Implementation Phase, 21–22
limitations of, 156
The Meeting example, 18–19
Royce diagram, 5–6
Snowbird meeting to address

limitations in, 2
Whole Team

Circle of Life practices, 33
co-location increasing efficiency,

94–95
expectation of continuous aggressive

learning, 55
expectation of honesty in estimates,

55
expectation of mentoring, 56
expectation of team sharing

responsibility, 54
expectation of willingness to say

“no,” 55
overview of, 93–94
participants in Iteration Planning

Meeting, 70
working remotely, 95–96

Wideband Delphi, estimating stories, 76
Working remotely, 95–96
Worst-case, trivariate analysis, 65

	Cover
	Title Page
	Copyright Page
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 2 The Reasons for Agile
	Professionalism
	Software Is Everywhere
	We Rule the World
	The Disaster

	Reasonable Expectations
	We Will Not Ship Shyt!
	Continuous Technical Readiness
	Stable Productivity
	Inexpensive Adaptability
	Continuous Improvement
	Fearless Competence
	QA Should Find Nothing
	Test Automation
	We Cover for Each Other
	Honest Estimates
	You Need to Say “No”
	Continuous Aggressive Learning
	Mentoring

	The Bill of Rights
	Customer Bill of Rights
	Developer Bill of Rights
	Customers
	Developers

	Conclusion

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

