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P R E F A C E

This book describes the steps associated with the design and verifi cation of Very 
Large Scale Integration (VLSI) integrated circuits, collectively denoted as the 
design methodology. The focus of the text is to describe the key features and 
requirements of each step in the VLSI methodology. The execution of each step 
utilizes electronic design automation (EDA) software tools, which are invoked 
by a script that manages the design confi guration, assembles the input data, 
allocates the IT job resources, and interprets the output results. The script is 
commonly referred to as the fl ow for the specifi c methodology step. This book 
covers both the underlying EDA tool algorithms applied and the characteristics 
of the related fl ow. Specifi c attention is given to the criteria used to assess the 
status of a design project as it progresses toward the release to fabrication.

The audience for the text is senior-level undergraduates and fi rst-year 
graduate students studying microelectronics. Professional engineers will also 
likely fi nd topics of interest to expand the breadth of their expertise. In many 
cases, the discussion of a specifi c step extends beyond the design engineering 
considerations to include the perspective of a project manager, a design 
automation engineer, a fabrication technology support engineer, and, to be sure, 
a member of the project methodology team.

It has been my experience that graduating engineers pursuing microelectronic 
hardware design would benefi t from broad exposure to all facets of a VLSI 
design project and an understanding of the interdependencies between the 
various engineering teams. The goal of this book is to provide a comprehensive 
discussion of a VLSI design methodology at a level of technical detail appropriate 
for a two-semester, project-oriented course of study.
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The book is targeted toward a discussion style of presentation rather than 
formal lectures. The text often highlights the trade-offs that are evaluated when 
selecting a specifi c approach for a design methodology step. An interactive 
discussion among the students provides an opportunity comparable to the 
engineering environment as part of a design team.

There are no chapter problems provided in this book. However, many 
universities participate in EDA vendor programs that provide access to 
individual software tools. This text would work extremely well in combination 
with such a program. After reviewing a step as a constituent of the overall 
design methodology, students would be able to exercise the corresponding EDA 
tool. Projects of larger scope could be incorporated to align with individual 
student interests—including fl ow scripting, pursuing power/performance/
area evaluations, designing (cell-based) circuits, and developing methodology 
policies and the software utilities to verify those design standards. Projects 
would typically culminate in a fi nal presentation to the class.

The text is divided into six major topics. Topic I, “Overview of VLSI 
Design Methodology,” is rather lengthy, intended to provide background 
on microelectronic hardware design. Students with prior exposure to these 
topics could quickly review this material. The subsequent topics include 
Topic II, “Modeling,” Topic III, “Design Validation,” Topic IV, “Design 
Implementation,” Topic V, “Electrical Analysis,” and Topic VI, “Preparation 
for Manufacturing Release and Bring-Up.” The chapters in each topic 
describe individual fl ow steps. There is admittedly some overlap in the chapter 
discussions. For example, the task of embedding an engineering change 
order (ECO) in a design database nearing release to fabrication is mentioned 
in multiple chapters and described in detail in Chapter 17, “ECOs.” This 
repetition refl ects the importance of the ECO methodology for a design project. 
Another example is the pervasive impact of lithographic multipatterning in 
advanced fabrication process nodes. The decomposition of the design data for 
a mask layer into (individually resolvable) subsets needs methodology support 
throughout design implementation, analysis, and physical verifi cation fl ows. 
The infl uence of multipatterning is therefore described in multiple chapters.

The references provided with each chapter are rather sparse and in no 
way refl ect the exceptional research that has enabled the complexity of current 
VLSI designs. The references listed are often among the landmark papers in 
their specifi c disciplines. A search for the technical papers that have recently 
cited these references will enable the reader to develop a more comprehensive 
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bibliography. The website http://www.vlsidesignmethodology.com provides 
links to errata and additional technical publications of interest.

Several technical areas deserve greater depth than the length of this book 
allows. Readers are therefore encouraged to pursue the “Further Research” 
sections provided at the end of each chapter.

Many colleagues have provided great insights to assist with the 
development of this text. The collaboration over the years with Tom Lin, Mark 
Firstenberg, Tim Horel, and Bob Deuchars has been pivotal. The technical 
review recommendations from Professor Azadeh Davoodi at the University 
of Wisconsin–Madison have been extremely benefi cial. The support from Bob 
Masleid, Tammy Silver, William Ruby, Charles Dancak, and Dan Nenni is 
greatly appreciated. Bob Lashley deserves special mention, as his expertise 
and inspiration have been invaluable. Finally, thanks to my family for their 
encouragement, especially my wife, Suzi.

Tom Dillinger
Livermore, California

http://www.vlsidesignmethodology.com
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C H A P T E R  8

Placement

8.1 Global Floorplanning of Hierarchical Units
Prior to detailed placement of cells in block netlists (and the global cells at 
the top of the SoC hierarchy), a physical fl oorplan of the chip design is re-
quired. As briefl y described in Section 3.1, the fl oorplan typically represents 
the fi rst level of the SoC model hierarchy; it is uncommon to further develop 
a “fl oorplan within a fl oorplan” for the physical design of subsequent levels 
of the SoC hierarchy. The glue logic functionality at the top hierarchical level 
is commonly allocated to channels between block fl oorplan boundaries. An 
alternative methodology would be to defi ne abutting block fl oorplan regions 
and insert global glue logic within various blocks. The advantage of the re-
duced channel area is offset by the additional dependency of global cell and 
route data on block-level physical verifi cation and electrical analysis.

The physical fl oorplan data include the global power and ground grids 
and global clock distribution, typically originating from a PLL hard IP macro 
that serves as the clock reference source. The power and ground grids in the 
channels require specifi c design consideration, as the glue logic circuits include 
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high-drive-strength cells with high switching activity (e.g., signal repowering 
buffers, state-repeating register banks).

The fl oorplan may include allocated routing track segments for major 
signal busses between blocks in the overall SoC architecture, including global 
repeaters. These preroutes assist with the defi nition of the block-level fl oor-
plan pins, area, and aspect ratio.

The development of fl oorplan pins is a critical facet of SoC design plan-
ning. The pin defi nition for each block’s primary inputs and primary outputs 
includes the following:

• The pin width, corresponding to the interconnect wire width to use with 
the global signal

• The pin metal layer for the interface between global and block routing
• The pin multipatterning decomposition assignment

For advanced process nodes, depending on the metal layer, the pin defi ni-
tion may also need to include a multipatterning assignment that is consistent 
with the “color” associated with the pin’s routing track. Alternative methods 
for pin location assignment include the following:

• Internal pin locations—The pin may not be assigned to the block perime-
ter; rather, it might be given internal coordinates. The goal of using 
internal pin locations would be to improve timing. As mentioned in 
Section 7.2, the accuracy of block-level timing closure is improved if the 
cells connected to block PIs/POs are placed in close proximity to the pin. 
An internal pin location may allow optimal placement of block netlist 
cells with connectivity to both global and internal signals. A high density 
of internal pins may have an adverse impact on global routing, however, 
to accommodate both over-the-block global routes and pin accessibility.

• A fl exible range of locations—A pin may be allocated to a range of 
locations (e.g., a segment of a specifi c fl oorplan edge) but not assigned 
fi xed coordinates. In this case, the block placement fl ow includes pin 
location assignment as part of cell assignment; rather than using fi xed 
pin locations to infl uence cell placement, the algorithm is able to include 
pin placement as an optimization objective. The methodology decision 
to use fl exible pin locations as input to the block cell placement fl ow 
introduces an interdependency between global route planning and block 
physical implementation.
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Floorplan areas allocated to hierarchical design blocks are typically rect-
angular, although EDA vendor tools for physical design may support recti-
linear defi nitions. The aspect ratio of each fl oorplan block is a key factor in 
subsequent routing and path timing closure. A high aspect ratio block has a 
skewed ratio of available horizontal to vertical wiring tracks, and thus it may 
have diffi culty subsequently closing on routing.

The SoC fl oorplan includes blocks associated with the chip input/output 
pad circuits, usually located on the die perimeter. Mixed-signal IP cores are 
also typically associated with unique fl oorplan blocks, such as PLLs, data con-
version functions (ADCs, DACs), and high-speed interface SerDes IP. These 
blocks also require unique power/ground distribution design. The I/O circuits 
are likely to use additional voltages different from internal cells (e.g., VDDIO, 
VDD_1_2, VDD_1_5). Mixed-signal cores require separate low-noise supply 
rails (e.g., VDDA, GNDA) that are electrically distinct from the rails for digi-
tal switching networks.

Power-gating design is refl ected within each block, as represented by the 
power format fi le description (described in Section 7.6). The internal power 
and ground distribution to enable deep sleep behavior is not extended globally, 
as depicted in Figure 8.1.

VDD_global

VDD_global

VSS_global

VSS_global

VSS_internal

Block-internal gated power rail not part of global P/G grid

VSS_internal

Figure 8.1 The block internal power (or ground) distribution to support power 
gating is not extended globally.



366 Chapter 8 • Placement

8.2 Parasitic Interconnect Estimation
The placement fl ow utilizes a number of measurement criteria when selecting 
a candidate location for each cell or for candidate pairs of cells to swap their 
current coordinates. The process involves a combination of geometric and 
timing-driven calculations, including the following:

• Total estimated network wire length to realize all connections, using 
one of various net topology estimates (e.g., bounding box, star, Steiner 
tree) (Timing estimates from physical synthesis provide [negative slack] 
nets that may be given additional weighting in the total geometric wire 
length summation calculation.)

• Interconnect segments crossing a coarse grid overlay of the block 
fl oorplan to assess wiring track demand versus availability (to avoid 
congestion)

• Cell interconnect delay calculation for timing-driven placement 
optimization

The representation of interconnect delays during placement involves esti-
mates of the R*C parasitics and a simplifi ed computationally fast delay calcu-
lation algorithm (e.g., an Elmore delay model for the estimated net topology; 
see Section 11.1). The SoC methodology team needs to collaborate with the 
EDA vendor and the foundry to determine how to best estimate the intercon-
nect parasitic delay during cell placement. This estimate needs to refl ect the 
different (per unit length) R and C measures of the multiple horizontal and 
vertical metal routing layers available within the block. During cell placement, 
an average R*C delay measure across the available metal routing layers is used. 
An estimate for parasitic via resistances could also be included in the intercon-
nect delay model.

In addition, the methodology team may use the physical synthesis timing 
data to derive “non-default” constraints for subsequent cell placement and 
routing:

• Preferred metal layers for routing critical nets
• Wider width segments (e.g., 1.5X or 2X width rather than 1X)

The EDA placement tool applies a different set of parasitic intercon-
nect estimates for nets with non-default rules. Again, collaboration with the 
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EDA vendor and foundry is required to defi ne how multiple wire load models 
for different classes of nets should be calculated for timing-driven placement 
optimizations.

8.3 Cell Placement
The SoC block designer relies on the (timing-driven) cell placement fl ow 
to provide a routable solution with minimal timing issues for a netlist with 
(tens of) millions of instances. Placement algorithms have evolved to provide 
greater netlist capacity with reasonable runtime. To help physical designers 
achieve improved predictability and confi dence in timing closure, the EDA 
vendor placement tools have incorporated additional features that apply input 
constraints:

• Preplaced cells and hard IP macros
• Relative placement groups of cells (a set of cells with relative alignment 

coordinates that are placed/moved as a unit)
• Restrictive area allocation within the fl oorplan block for subsets of the 

cell netlist (see Figure 8.2)
• Guidelines for maximum local cell utilization percentage (to allow for 

the addition of a suitable density of decoupling capacitance cells, 
substrate and well contact cells, and dummy logic cells for ECOs)

• Ability to place cells with cell height that spans two rows of the place-
ment image (see Figure 8.3)

SoC

A

B C

Black boxes for synthesis,
    using existing netlist

netlistA
B C

netlist
B

netlist
    C

Synthesis Placement   Cells
  from 
A and B

 Cells
 from 
C only

A  (no cells from B or C)

"Region-restricted" block placement,
  based upon netlist instance hierarchy

Figure 8.2 The block placement fl ow may be provided with restricted areas for 
placement of subsets of the block netlist cells. This subset would typically be identi-
fi ed by a specifi c string in the (fl attened netlist hierarchy) instance name.



368 Chapter 8 • Placement

F

VSS

VDD

VSS

F

F

VDD

F

Example of 2-high cell placement

in an alternating VDD/VSS

power rail image

Cell height (typically referenced

using the # of wiring tracks)

Figure 8.3 The cell library may contain physical cells spanning two rows in height.

For current fabrication process nodes, additional cell adjacency restric-
tions must be observed during placement. Lithographic uniformity of (critical 
dimension) device gates may require the insertion of dummy gates between 
cells and at the ends of cell rows. The transition between cells of different 
Vt types may also require dummy gate cells to reduce the device variation from 
Vt mask overlay and implant dosage. Depending on the design of the cell im-
age, the placement algorithm may also need to insert device well continuity 
fi ller cells in vacant locations. The methodology team needs to review the cell 
library techfi le data and fabrication process design rules to ensure that any spe-
cifi c placement restrictions and/or dummy cell insertion guidelines are coded 
for the EDA placement tool.

Throughout the evolution of EDA placement tools, the goal has consis-
tently been to provide a result that is ultimately routable and achieves timing 
targets, with runtimes that scale with the increasing block netlist instance size. 
Prior to the introduction of physical synthesis, placement tools consisted of 
constructive cell/macro location assignment followed by iterative optimization 
(or “successive refi nement”) steps. The physical synthesis methodology has 



Clock Tree Local Buffer Placement 369

resulted in a shift in EDA placement tool development emphasis to improv-
ing the iterative solutions. Numerous algorithms have been developed to se-
lect candidate cells to reposition and evaluate new proposed locations and/or 
to successively resolve placement overlaps from an existing assignment, with 
optimization objectives that address routing congestion and estimated path 
timing improvements.[1,2]

8.4 Clock Tree Local Buffer Placement
A key aspect of the placement fl ow is the special consideration to be given to 
the clock buffers in the netlist, typically added by the CTS step in the synthesis 
fl ow (see Section 7.9). The CTS algorithm attempts to balance the (estimated) 
loading on the branches of the clock tree in the network, whether originating 
from a single clock pin or connecting to a global clock grid. During cell place-
ment, the common algorithmic approach is to select clusters of fl ops in close 
proximity and place a clock buffer in the fi nal branch of the tree within the 
area spanned by the fl op cluster. Once all clock tree endpoints are placed, a 
similar approach selects clusters of clock buffers and places a buffer from the 
preceding level of the tree appropriately; this process iterates recursively to 
the root level of the clock tree. The clock buffer placement algorithm results 
in output netlist updates, as the (logically equivalent) sinks at each level of the 
tree may be swapped during the clustering phase of the placement algorithm. 
The introduction of clock gating to the CTS tree implies that the cells at each 
level of the tree are not necessarily logically equivalent; clustering of placed 
sinks needs to observe gated clk_enable functionality.

For block placement with preplaced hard IP macros, the related clock 
buffers may also be preplaced accordingly. For relative placement groups, 
clock buffers may be included in the group defi nition. An increasing design 
trend is to offer multi-bit registers as an atomic cell library offering to mini-
mize the clock routing and loading among bits. These registers are also likely 
to be part of relative placement groups with clock buffers (and decoupling 
capacitance cells).

During block routing, the attention to clock signals focuses on balancing 
the arrival latency at endpoints, primarily through R*C interconnect segment 
allocation. Performance optimization features in the routing fl ow may result 
in changes to the drive strength of logic path cells and fl ops; clock buffer tree 
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cells may likewise need to receive drive strength updates in routing. For drive 
strength increases, any resulting cell area overlaps to the placement output 
locations need to be (incrementally) resolved during routing.

8.5 Summary
The incorporation of constructive placement algorithms in logic synthesis 
fl ows has resulted in a shift in focus for EDA vendors providing placement 
tools. Iterative optimization and legalization of the initial physical location 
cell assignment from synthesis requires judicious selection of candidate cells 
for re-positioning, with fast and accurate evaluation of interconnect parasitic 
estimates. This focus on estimation effi ciency is required to support an increas-
ing number of cell instances in a design block. In addition, tools are applying 
a richer set of designer input constraints to direct the resulting cell placement 
to a solution optimized for routability, path timing closure, and power dissi-
pation reduction. Increasingly, physical implementation design resources for 
an SoC project are being re-directed from executing cell placement to address-
ing the complexities of interconnect routing optimizations for electrical and 
reliability analysis fl ows, such as timing, power, noise, and electromigration. 
Nevertheless, the quality of results for the cell placement fl ow is crucial to 
achieving subsequent design closure in routing.
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Further Research
Estimated Wire Length

Placement algorithms are dependent on wire length estimation calculations. 
Constructive placement methods often use total estimated wire length for all 
nets as a measurement criterion. Subsequent iterative optimization algorithms 
may add “weighting factors” to timing-critical and high-switching-activity 
nets as part of the wire length minimization objective.
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Describe the various net topology alternatives commonly used for wire 
length estimation (e.g., Steiner tree, star, bounding box). Describe the advan-
tages and disadvantages of the different topologies in terms of computation 
time and accuracy trade-offs.

Constructive Placement and Physical Synthesis

The physical synthesis fl ow provides an initial placed netlist, and serial/parallel 
repowering cells are added during synthesis. Placement tools incorporate both 
constructive and iterative optimization steps and signal repowering features. 
As a result, a fl ow option could be provided to disregard the placement assign-
ments from physical synthesis altogether and apply the constructive placement 
step on the complete block netlist.

Describe the trade-offs in exercising a constructive placement step on the 
full block netlist. Describe the sample experiments and quality-of-results cri-
teria that could assist with this trade-off  decision.
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soft, 69–70, 163
ESD checking. See electrostatic discharge (ESD) 

checking
ESD clamp circuit, 572–576
ETM (extracted timing model), 215
Euler method, 516–517
EUV (extreme ultraviolet), 54
event monitors, 132
event queue, 259–261
event trace logging, 288–289
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executable specifi cation, 264
expression coverage, 291–292
extracted timing model (ETM), 215
extraction. See layout parasitic extraction (LPE)
extraction model (electromigration), 544–545
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fabrication technology. See also FinFET devices
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CMOS devices
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overview of, 94
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71–74
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86–89
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overview of, 92–93
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overview of, 92–93
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second sourcing, 47
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sum of failure rates, 534–535
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fault diagnosis, 38
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node transition faults, 662
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simulation, 627, 674
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undetectable faults, 631
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FIB (focused ion beam), 672
fi eld-programmable gate arrays (FPGAs), 272–273
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concept of, 363–365
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overview of, 42
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FSMs (fi nite state machines), 198–199, 294
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full-sleep power state, 106
fully depleted silicon-on-insulator (FD-SOI), 

71–74
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behavioral modeling. See behavioral modeling
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232–234
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delay-based, 474
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hardware-accelerated simulation, 267–268
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simulation model statement coverage
simulation throughput, 281–284
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event-driven, 259–261
HDL source/confi guration cross-reference, 262
interactive mode, 261
waveform display, 261

status, 187–188
switching activity factor estimates, 296–297
switch-level simulation, 276
symbolic simulation, 277–281
testbench development. See testbenches

functions, loopback, 135
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hardware attach interface, 273
hardware description language (HDL) modeling, 32, 
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logical hierarchy. See hierarchy, logical and physical
logical macros, 27–29
logically symmetric inputs, 424
loopback functions, 135
low Vt (LVT) cells, 334–335
low-down victim noise transients, 487–488, 493
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die thermal, 502, 507
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Maxwell’s equations, 405–406
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MOR (model order reduction) algorithms, 489–490
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circuit optimizations, 585–587
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node transition faults, 662
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direct aggressor coupling assumption, 477, 493
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noise impact on delay

I*R voltage drop effect, 483–484
modeling, 481
static timing analysis, 482–483

parallel run length, 475–476
sensitivity windows, 487
small aggressor considerations, 485
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path-based timing analysis, 472
paths, false. See false paths
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physical design verifi cation (PDV)
design rule checking (DRC), 607–610
DRC waivers, 620–621
electrical rule checking (ERC), 616–618
job execution, 622–623
layout-versus-schematic netlist checking (LVS). 

See layout-versus-schematic netlist 
checking (LVS)

lithography process checking (LPC), 618–620
physical integration, 141–143
physical synthesis placement fl ow, 371
physically aware logic synthesis, 324–325
pillars, 377, 389
pin assignment, 114–119
pin data, 94, 116, 138–139
pin groups, 117, 240
pin property, 115
pin shape, 115, 120
pin-to-output pin arcs, 241–242
pitch

contacted gate, 68
forbidden, 191, 394–395
matching, 200

pitches,188
placement, 94, 367–369

clock tree local buffer, 369–370
constructive, 368–369, 371
device-level, 400–401
Elmore delay, 366
estimated wire length, 370–371
global fl oorplanning of hierarchical units, 

363–365
parasitic interconnect estimation, 366–367
relative cell placement, 27, 200–201, 325

placement-and-routing boundary 
(prBoundary), 137

platforms, 2
PLL (phase-locked loop), 124–125, 629–630
PMIC ( power management integrated circuit), 101
point tool integration, 169
Portable Test and Stimulus Standard (PSS), 299
post-silicon debug

low-temperature operating life (LTOL) stress 
testing, 699

shmoo plots, 695–698
systematic test fails, 693–695

post-synthesis netlist characteristics, 339–340
post-tapeout engineering change orders (ECOs), 

688–689
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power, performance, and area (PPA), 14–15
power abstract, 97
power analysis

cell model characterization data, 245–247
design-for-power feedback from, 504–505
device self-heat models, 502–504
die thermal maps, 502, 507
global clock power dissipation, 501–502
hot spots, 496
introduction to, 495–497
IP power models, 501–502
peak power calculation, 500–501
power dissipation, 296–297, 497–500, 507
power stressmark testcases, 496, 506
PVT corners, 500, 503–504, 506
summary of, 505–506
switching factors, 495
temperature inversion, 501

power and ground (P/G) distribution rails
ASIC (application-specifi c integrated circuit) 

direct release, 510–512
conservative versus aggressive P/G grid design, 

510
dynamic P/G voltage drop analysis, 513–526
sleepFET devices, 512
static I*R rail analysis, 512–513

power dissipation, 296–297, 497–500, 507
power distribution network (PDN), 34, 175–177, 

509. See also power rail voltage drop 
analysis

power domain, 105–107, 206–207
power format description, 40
power format fi le, 340–343
power grid, 119–122

power grid admittance matrix, 516–519
power grid conductance matrix, 516–519

power intent fi les, 104, 340–343
power management integrated circuit (PMIC), 101
power map abstract, 96
power optimization

detailed routing and, 391–392
ECO mode netlist updates, 145–148
logic synthesis, 345–348

power rail electromigration analysis (powerEM), 
545–548

power rail voltage drop analysis, 509
ASIC (application-specifi c integrated circuit) 

direct release, 510–512
conservative versus aggressive P/G grid design, 

510
dynamic P/G voltage drop analysis

analysis results, 521–522

global and partition-level models for, 519–521
global power delivery frequency response, 523
matrix solution, 516–519
P/G rail capacitance, 514–515
simultaneous switching output (SSO) 

analysis, 523–526
sleepFET devices, 512
static I*R rail analysis, 512–513

power state sequence validation, 266
power stressmark testcases, 496, 506
power supply sequence validation, 266
powerEM, 545–548
power-gating design, 365
power-state leakage, 499
PPA (power, performance, and area), 14–15
pragmas, 133
prBoundary, 137
preprocessors, 361
pressure cooker test (PCT), 700
PRIMA calculation, 375
printed circuit boards (PCBs), 15–16
PRL (parallel run length), 52, 475–476
process, voltage, and temperature (PVT) corners, 

86–89, 321, 500, 503–504, 506
process design kit (PDK), 18, 40–42
process migration, 92–93

parameterized layout cells (pCells), 93
relative cell placement, 94

process nodes, 44–45
process retargeting, 92–93

parameterized layout cells (pCells), 93
relative cell placement, 94

process variation-aware design
array design, 91–92
best-case (BC) process, 89–90
high-sigma Monte Carlo, 92–93
worst-case (WC) process, 89–90

process windows, 620
product qualifi cation

highly accelerated temperature/humidity stress 
test (HAST), 700

high-temperature operating life (HTOL) testing, 
698–699, 703

part sampling, 700–701
thermal cycling qualifi cation testing, 700

production test patterns, validation of, 284–288
project scoreboards, 677
Property Specifi cation Language (PSL), 265, 299
prototyping (simulation acceleration), 272–274, 299
PRPG (pseudo-random testcase pattern generator), 

282–283, 650–652
pseudo-logical gate, 664
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pseudo-random pattern generation (PRPG), 
282–283, 632, 650–652

PSL (Property Specifi cation Language), 265, 299
PSRO (performance-sensing ring oscillator), 

525–526, 629, 697
PSS (Portable Test and Stimulus Standard), 299
PVT (process, voltage, and temperature) corners, 

86–89, 321, 500, 503–504, 506

Q
Qcrit, 580–581
quality of results (QoR), 185, 191

R
raised source/drain nodes, 67
random pattern resistant fault, 648
random sampling, 255
random testcase generation, 263–264
range, 582
RAT (required arrival time), 455
RDL (redistribution layer), 395
RDRs (recommended design rules), 152–153
recognition operations, 409
recommended design rules (RDRs), 152–153
redistribution layer (RDL), 395
redundant vias, 396
reference EDA tools, 40–41
reference fl ows, 168–169
register fi les, 198
registered input/output pins, 473
register-transfer level (RTL) modeling, 133, 

232–234, 302–306
design optimization, 185–186
linting, 185
netlist signal name correspondence, 339–340
power stressmark testcases, 496, 506
PVT corners, 86–89, 321, 500, 503–504, 506
RTL combination model equivalency, 301–302
of scans, 285–288
simulation model statement coverage

analog mixed-signal coverage, 294–295
bad machine path coverage, 294
expression and conditional coverage, 291–292
fi nite state machine (FSM) coverage, 294
memory array coverage, 292–293
model coverage analysis, 290–291
path coverage, 293
signal toggle activity, 291
strengths and weaknesses of, 295–296

regression, 281
relative cell placement, 27, 94, 200–201, 325
release fl ow management, 165–168

release gate, 263
reliability function, 531
Rent’s Rule, 203, 219
reporting, 460–461, 472–473
required arrival time (RAT), 455
required time, 147
reset, 179, 265–266
resistance increase, 543
resistive fails, 557
resistive Joule heating, 540–541
resistive shielding, 326, 375
resolution function, 227
resource planning, 281–284
return current loop, 439
ring-oscillator frequency variation, 102
rip-up and re-route, 141–142, 399
river routes, 394–395
RLC modeling, 439
robust design, 529
routing, 122, 373–374

blockages, 137, 377
C effective model reduction for delay calculation, 

374–375
congestion, 33
cut masks, 378
design-for-yield (DFY) optimizations, 

395–399
antenna diode insertion, 396–399
line extensions past vias, 395–396
redundant vias, 396
wire spreading, 395

detailed, 378–383
device-level placement, 400–401
DRC rule complexity, 375–376
electrical analysis optimizations, 389–393

electromigration, 392–393
noise optimization, 391
power optimization, 391–392
timing optimization, 390

estimates, 383
global, 122–124, 378–383
hold time fi xes, 401
Manhattan, 122
metallization stack, 383–387
multi-corner optimization, 401
multipatterning, 376–377
non-default rule (NDR), 114
non-orthogonal routes, 394–395
overfl ows, 382
pillars, 377
rip-up and re-route, 399
route blockage maps, 22
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route segment and via topologies, 387–389
“balanced” routing, 388
route shielding, 388
via optimizations, 388–389
via pillars, 389

route segments, 387–389
router shielding, 388
sidewall coupling capacitance, 374–375
track jobs, 122

RTL. See register-transfer level (RTL) modeling
runset, 40, 607

S
SADP (self-aligned, double-patterning), 57–58
SAIF (Switching Activity Interchange Format), 299
SAQP (self-aligned, quad-patterning), 59, 130
scaled-sigma sampling, 255
scaling factor, 44–45
scan

boundary, 180, 635
RTL modeling of, 285–288
scan chains, 179
scan dumps, 695

scanning electron microscopy (SEM), 703
scenic path, 122, 348–349
schematic/circuit netlist, 140
scoreboards, 142, 186, 472–473, 677
SCR (silicon-controlled rectifi er), 69–70
scribe channels, 124
SDKs (software development kits), 30
second sourcing, 47
second-pass design, 35, 43
segments, route, 387–389
“selected net” extraction, 438–439
self-aligned, double-patterning (SADP), 57–58
self-aligned, quad-patterning (SAQP), 59, 130
self-aligned contacts, 130
self-heating, 82–83, 253, 502–504
SEM (scanning electron microscopy), 703
Semiconductor Equipment and Materials 

International (SEMI), 19
semiconductor foundries, 18. See also fabrication 

technology
semi-custom designs, 17
sensitivity analysis, 181, 487
sequential cells, modeling for, 249–251
sequential circuit characterization, 424–425
sequential logic equivalency, 307–309
SER. See soft error rate (SER)
serial shift-register scan chain, 632
series connection equivalence, 613–614
setup and hold time defi nition, 38, 130

SEU (single-event upset), 70–71
severity parameters, 238
shallow trench oxide isolation (STI), 59–60
shielding

resistive, 326, 375
route, 388

shipped project quality level (SPQL), 164–165
shmoo plots, 695–698
short channel Vt effect, 347
shrink nodes, 46
shuttles, 44
sidewall coupling capacitance, 374–375
sidewall spacers, 57
signal interconnect electromigration analysis 

(sigEM), 548–555
signal repowering

balanced repowering trees, 335–336
buffering networks, 336–339

signal toggle activity, 291
signature registers, 209–210
signatures, 641
signoff fl ow, 42

defi nition of, 149–150
design rule checking (DRC), 152
design-for-manufacturability (DFM), 153–156

chemical-mechanical polishing (CMP) 
analysis, 155–156

lithography process checking (LPC), 154–155
design-for-yield (DFY), 153
DRC errors/waivers, 156–157
EDA DFM services, 156
electrical analysis fl ows for, 160–163
electrical rule checking (ERC), 157–160

electrostatic discharge (ESD) protection, 
158–159

voltage-dependent design rule checks, 
159–160

layout-versus-schematic netlist checking (LVS), 
150–151

recommended design rules (RDRs), 152–153
test analysis for, 163–165

silicon-controlled rectifi er (SCR), 69–70
silicon-on-insulator processes, 253
simulation. See also fault diagnosis; testbenches

behavioral co-simulation, 275
event trace logging, 288–289
hardware-accelerated, 268

emulation, 268–272, 274
prototyping, 272–274

Portable Test and Stimulus Standard (PSS), 299
resource planning, 281–284
software
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delay-based functional simulation, 474
event-driven, 259–261
HDL source/confi guration cross-reference, 

262
interactive mode, 261
waveform display, 261

switch-level, 276
symbolic, 277–281
throughput, 281–284
time, 225–226

simulation model statement coverage
analog mixed-signal coverage, 294–295
bad machine path coverage, 294
expression and conditional coverage, 291–292
fi nite state machine (FSM) coverage, 294
memory array coverage, 292–293
model coverage analysis, 290–291
path coverage, 293
signal toggle activity, 291
strengths and weaknesses of, 295–296

Simulation Program with Integrated Circuit 
Emphasis (SPICE), 19

simultaneous switching output (SSO), 98, 523–526
single-event upset (SEU), 70–71
sinkless pins, 143
skew management, 124–126
slack, timing, 454–457
sleep mode, 87
sleepFET devices, 106, 341

I*R voltage drop effect, 559–560
power rail voltage drop analysis, 512
sleep-to-active state transition, 561–562
substrate noise injection, 562–563

sleep-to-active state transition, 561–562
slots, 148–149
small aggressors, 485
small-scale integration (SSI), 13
SMO (source-mask optimization), 618
SMT (surface-mount technology), 94
snapback mode, 574
snapshots, 142, 174
SoC. See System-on-Chip (SoC)
soft error rate (SER), 69–70, 163, 529–530, 576–577

alpha particles, 577–578
circuit optimizations, 585–587
combinational logic, 584
cosmic rays, 578
fl ops, 584
linear energy transfer (LET), 581–583
multi-bit errors, 584–589

circuit optimizations, 585–587
process optimizations, 584–589

system design optimizations, 587–589
process optimizations, 584–589
Qcrit, 580–581
SER diagnosis, 579–580
system design optimizations, 587–589

soft fuses, 182
soft IP, 32, 207
software development kits (SDKs), 30
software simulation

delay-based functional simulation, 474
event-driven, 259–261
HDL source/confi guration cross-reference, 262
interactive mode, 261
waveform display, 261

sourceless pins, 143
source-mask optimization (SMO), 618
spacer dielectric, 67–71
spare logic cells, 600–602
SPEF (Standard Parasitic Exchange Format), 19
SPICE (Simulation Program with Integrated Circuit 

Emphasis), 19
split lot processing, 43
SPQL ( shipped project quality level), 164–165
SRAFs (sub-resolution assist features), 618
SRAM bit cell design, 197

array compilers, 197
methodology fl ows, 197–198
register fi les, 198

SSI (small-scale integration), 13
SSO (simultaneous switching output), 98, 523–526
STA. See static timing analysis (STA)
stacked via topologies, 375–376
standard cells

drive strength, 22–24
layout of, 21–22
logic, 36–37
threshold voltage, 24–25

Standard Parasitic Exchange Format (SPEF), 19
standard Vt (SVT) cells, 334–335
state mapping, 302–304
state-dependent delays, 420–421, 459
statements

assertion, 132, 238–239
immediate assignment, 225
wait, 223

states
inferred, 229–230
trap, 252

static I*R power grid voltage analysis, 483–484, 
512–513

static leakage tests, 180
static noise analysis. See noise analysis
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static timing analysis (STA). See timing, static timing 
analysis (STA)

Steiner tree route, 122, 379
stepping window, 608
STI (shallow trench oxide isolation), 59–60
stop lists, 610
stopping power, 581
straggle, 582
streamed layout data, 683
stress testing

burn-in, 104, 208–211, 625–626, 703
highly accelerated temperature/humidity stress 

test (HAST), 700
high-temperature operating life (HTOL), 698–699, 

703
low-temperature operating life (LTOL), 699

strong inversion, 61
structural cell-level netlists, 319
stuck-at fault, 241, 626–629
sub-resolution assist features (SRAFs), 618
substrate noise injection, 562–563

analog IP tests, 563–564
I/O pad circuit design, 563–565
latchup analysis, 562–563
latchup qualifi cation, 565–567

subthreshold leakage currents, 62–63
subthreshold current sensors, 102
subthreshold slope, 72, 76–77, 79–80

sum of failure rates, 534–535
surface-mount technology (SMT), 94
survival function, 531, 533
sustaining voltage, 564
SVT (standard Vt) cells, 334–335
swaps, cell, 203
switching activity factor estimates, 296–297
Switching Activity Interchange Format (SAIF), 299
switching factors, 495
switch-level simulation, 276
symbolic simulation, 277–281
synthesis, 8

clock tree synthesis (CTS), 336
high-fan-out net synthesis (HFNS), 335–339
logic. See logic synthesis
mapping, 32
pragmas, 133
test insertion, 134

System Verilog, 19, 32
systematic test fails, 693–695
SystemC, 254
System-on-Chip (SoC), 17–21, 212–214. 

See also design implementation; 
electrical analysis; formal equivalency 
verifi cation

error capture/recovery, 179
hierarchy, logical and physical. See hierarchy, 

logical and physical
physical design methodology

chip fi nishing, 148–149
ECO mode, 143–148
fl oorplanning, 141
physical integration, 141–143
signoff fl ow, 149–165

reset, 179

T
tapeout, 42–44

foundry interface release tapeout options
back-end-of-line (BEOL) layer data, 

679–680
cut metal masks, 682–684
FinFET data, 681–682
front-end-of-line (FEOL) layer data, 679–680
multipatterning decomposition color 

assignment, 678–679
tapeout data volume, 680–681

mock physical tapeouts, 621
planning, 603–604
project tapeout planning, 603–604, 689–691
tapeout audits, 189–190
tapeout checklist, 677

overview of, 684–685
post-tapeout engineering change orders 

(ECOs), 688–689
tapeout waivers, 685–688

tapeout signoff, 42
TAT (turnaround time), 600
techfi les, 40
technology mapping to cell library, 328–335
TEM (transmission electron microscopy), 703
temperature inversion, 86–87, 501
temperature sensing, 102–104
template (standard cell design image), 21
template-based model, 21
template-based noise analysis, 490–491
test compression, 209–210, 652–658
test escape, 164–165, 625
test insertion, 134
test models, 134–136, 235–236
test modes, 88
test pattern diagnostics

automated test pattern generation (ATPG) 
limitations, 208–211

IP design methodology, 134–136
ordering, 179–182
overview of, 197
pattern generation, 179–182
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test syndrome, 669
testability, design for. See design for testability 

(DFT)
testbenches, 30, 346

defi nition of, 259–260
pseudo-random pattern generation (PRPG), 

282–283
stimulus development

assertion-based validation (ABV), 264–265
bad machine error injection testcases, 267
directed testcases, 263
model managers, 267–268
power state sequence validation, 266
power supply sequence validation, 266
random testcase generation, 263–264
reset validation, 265–266
transaction-based, 262
uninitialized signal propagation, 265–266

testcases
assertion-based validation (ABV), 264–265
bad machine error injection testcases, 267
defi nition of, 259–260
directed, 263
error injection testcases, 267
model managers, 267–268
power state sequence validation, 266
power supply sequence validation, 266
pseudo-random pattern generation (PRPG), 

282–283
random testcase generation, 263–264
reset validation, 265–266
transaction-based, 262
uninitialized signal propagation, 265–266

test-mode equivalence verifi cation, 309–310
testpoints, 302
text analysis, 163–165
thermal cycling qualifi cation testing, 700
thermal gradients, 535
thermal hot spots, 206–207
Thermal Interface Material layers (TIM), 502
thermal interface material (TIM), 96, 183
thermal management, 101–104
thermal maps, 253, 502, 507
thermal resistance, 82–83
thermal sensing, 206–207
thermal shock, 700
thermomigration, 535
thermsense, 102, 496
thick gate oxide devices, 26, 48
three-dimensional (3D) fi eld-solver algorithms, 

405–406
threshold voltage, 24–25, 67
throughput, 281–284

TIM (thermal interface material), 96, 183
time borrowing, 251
Time to Profi t (TTP), 691
timing analysis. 

block-level timing constraint budgeting, 473–474
cell delay calculation, 241–245, 443–446
delay-based functional simulation, 468, 474
derating delay multipliers, 451, 462–466
electrical design checks, 452–453
graph- versus path-based, 472
interconnect delay calculation, 446–451
static timing analysis (STA), 424, 453–454, 

482–483
delay adjust, 458–459
delay-based timing verifi cation, 467–469
false paths, 458–459, 472
inertial signal delay, 468–469
pin constraints, 457
reporting, 460–461, 472–473
timing analysis modes, 459–460
timing “don’t care,” 458–459
timing slack, 454–457
transport signal delay, 468–469
variation-based timing, 461–466

timing constraints, 361, 457
effective capacitance (Ceff), 326–328
generation and verifi cation of, 320–326
total capacitance (Ctotal), 326–328

timing optimization
buffering networks, 336–339
detailed routing and, 390
ECO mode netlist updates, 145–148
hold timing optimization, 348–349, 362

timing slack, 24, 335, 454–457
total negative slack (TNS), 188, 461
worst negative slack (WNS), 188, 461

timing windows, 479, 482–483, 486–488
TLP (transmission line pulse), 568–569
TMR (triple modular redundancy), 588
TNS (total negative slack), 188, 344–345, 461
tool evaluation, 169–170, 191–192
“top off” method, 652
top-level fl at analysis, 214–216
total capacitance (Ctotal), 326–328
total negative slack (TNS), 188, 344–345, 461
trace fi les, 233, 298–299
trailblazing, 11, 170–171, 191–192
transaction-based testcases, 262
transfer function, 448–451
transfer gates, 329–330
transistor fi ngers, 22–23
transistor-level parasitic modeling, 411

cell characterization, 419–422
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cell extraction, 411–413
cell power characterization, 430–431
extraction corners, 417–419
input pin noise characterization, 426–430
layout-dependent effects (LDEs), 414–417
logically symmetric inputs, 424
multiple-input switching (MIS), 423–424
out-of-range delay calculation, 422
sequential circuit characterization, 424–425
voltage values, 422–423

transition time, 61
transmission electron microscopy (TEM), 703
transmission line pulse (TLP), 568–569
transport signal delay, 468–469
trap states, 252
trench isolation, 585
triggering input, 69–70
triple modular redundancy (TMR), 588
triple-well process option, 49, 563
trusted partners, 136
truth tables, 360–361
TTP (Time to Profi t), 691
turnaround time (TAT), 600
twin-well process, 585

U
UDP (user-defi ned primitive), 360
ultra-low-Vt (ULVT) cells, 344
unateness property, 454
underfi ll, 694
underfl ow, 292–293
undetectable faults, 631
unidirectional DC current density (jDC), 539–540
uninitialized signal propagation, 265–266
United States Department of Defense, 699
useful clock skew, 351
user-defi ned primitive (UDP), 360
U-value propagation, 185

V
vacancy, 535
Value Change Dump (VCD), 298
variation-based timing, 461–466
vectored data, 346

vectorless data, 346
Verilog, 19
very-large-scale integration (VLSI), 13–14
VHSIC Hardware Description Language (VHDL), 

19, 32
via optimizations, 388–389
via pillars, 153, 389
via resistance, 442
via/contact resistance, 442
victim nets, 477, 488–491. See also noise analysis
viewports, 267
views, cell, 38–39
virtual fi lesystem interfaces, 171
VLSI (very-large-scale integration), 13–14
voids, 535
voltage. See electrical analysis
voltage regulator models (VRMs), 266
voltage-dependent design rule checks, 159–160

W
wafer probe-level testing, 44
wait statements, 223
waivers

DRC, 156–157, 620–621
tapeout, 685–688

waveform display, 261
WC (worst-case) process, 87, 89–90, 243
weak inversion, 61
wearout region, 530, 533
wire length, estimation of, 370–371
wire spreading, 395
wire temperature increase due to resistive Joule 

heating (JRMS), 540–541
wireload per fan-out estimates, 325
wiring tracks, 9
worst negative slack (WNS), 188, 344–345, 461
worst-case (WC) process, 87, 89–90, 243, 255
wrap test, 134–136, 163–164, 209, 635
wrong-way segments, 122, 380

X-Y-Z
yield, design for. See design-for-yield (DFY)
yield with repair, 645
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