VLSI Design Methodology Development

Thomas Dillinger
To Pat, for his inspiration
and
To Martha, who loved to write
CONTENTS AT A GLANCE

Preface.. xiv

Topic I: Overview of VLSI Design Methodology

Chapter 1 Introduction.. 13
Chapter 2 VLSI Design Methodology.. 131
Chapter 3 Hierarchical Design Decomposition... 193

Topic II: Modeling

Chapter 4 Cell and IP Modeling .. 223

Topic III: Design Validation

Chapter 5 Characteristics of Functional Validation... 259
Chapter 6 Characteristics of Formal Equivalency Verification... 301

Topic IV: Design Implementation

Chapter 7 Logic Synthesis ... 319
Chapter 8 Placement ... 363
Chapter 9 Routing ... 373
Contents at a Glance

Topic V: Electrical Analysis

Chapter 10 Layout Parasitic Extraction and Electrical Modeling405
Chapter 11 Timing Analysis ...443
Chapter 12 Noise Analysis ...475
Chapter 13 Power Analysis ...495
Chapter 14 Power Rail Voltage Drop Analysis ..509
Chapter 15 Electromigration (EM) Reliability Analysis529
Chapter 16 Miscellaneous Electrical Analysis Requirements559

Topic VI: Preparation for Manufacturing Release and Bring-Up

Chapter 17 ECOs ...595
Chapter 18 Physical Design Verification ...607
Chapter 19 Design for Testability Analysis ...625
Chapter 20 Preparation for Tapeout ...677
Chapter 21 Post-Silicon Debug and Characterization (“Bring-up”) and Product Qualification ...693

Epilogue ...705

Index ..711

Register your copy of *VLSI Design Methodology Development* at informit.com for convenient access to downloads, updates, and corrections as they become available. To start the registration process, go to informit.com/register and log in or create an account. Enter the product ISBN 9780135732410 and click Submit. Once the process is complete, you will find any available bonus content under “Registered Products.”
CONTENTS

Preface ... xiv

Topic I: Overview of VLSI Design Methodology 1
 1.1 Methodology Guidelines for Logical and Physical Design Hierarchy
 Correspondence 6
 1.2 Managing Inter-Block Glue Logic 8

Chapter 1 Introduction ... 13
 1.1 Definitions 13
 1.2 Intellectual Property (IP) Models 21
 1.3 Tapeout and NRE Fabrication Cost 42
 1.4 Fabrication Technology 44
 1.5 Power and Clock Domains On-chip 105
 1.6 Physical Design Planning 113
 1.7 Summary 126
 References 127
 Further Research 129

Chapter 2 VLSI Design Methodology ... 131
 2.1 IP Design Methodology 131
 2.2 SoC Physical Design Methodology 141
 2.3 EDA Tool and Release Flow Management 165
 2.4 Design Methodology “Trailblazing” and Reference Flows 168
Chapter 3 Hierarchical Design Decomposition ...193

3.1 Logical-to-Physical Correspondence 193
3.2 Division of SRAM Array Versus Non-Array Functionality 197
3.3 Division of Dataflow and Control Flow Functionality 198
3.4 Design Block Size for Logic Synthesis and Physical Design 202
3.5 Power and Clock Domain Considerations 206
3.6 Opportunities for Reuse of Hierarchical Units 207
3.7 Automated Test Pattern Generation (ATPG) Limitations 208
3.8 Intangibles 211
3.9 The Impact of Changes to the SoC Model Hierarchy During Design 212
3.10 Generating Hierarchical Electrical Abstracts Versus Top-Level Flat Analysis 214
3.11 Methodologies for Top-Level Logical and Physical Hierarchies 216
3.12 Summary 218
References 219
Further Research 219

Topic II: Modeling 221

Chapter 4 Cell and IP Modeling ...223

4.1 Functional Modeling for Cells and IP 223
4.2 Physical Models for Library Cells 240
4.3 Library Cell Models for Analysis Flows 241
4.4 Design for End-of-Life (EOL) Circuit Parameter Drift 251
4.5 Summary 253
References 253
Further Research 254
Topic III: Design Validation 257

Chapter 5 Characteristics of Functional Validation ...259
5.1 Software Simulation 259
5.2 Testbench Stimulus Development 262
5.3 Hardware-Accelerated Simulation: Emulation and Prototyping 268
5.4 Behavioral Co-simulation 275
5.5 Switch-Level and Symbolic Simulation 275
5.6 Simulation Throughput and Resource Planning 281
5.7 Validation of Production Test Patterns 284
5.8 Event Trace Logging 288
5.9 Model Coverage Analysis 289
5.10 Switching Activity Factor Estimates for Power Dissipation Analysis 295
5.11 Summary 296
 References 297
 Further Research 298

Chapter 6 Characteristics of Formal Equivalency Verification301
6.1 RTL Combinational Model Equivalency 301
6.2 State Mapping for Equivalency 302
6.3 Combinational Logic Cone Analysis 305
6.4 Use of Model Input Assertions for Equivalency 306
6.5 Sequential Model Equivalency 307
6.6 Functional and Test-Mode Equivalence Verification 309
6.7 Array Equivalence Verification 310
6.8 Summary 313
 References 314
 Further Research 314

Topic IV: Design Implementation 317

Chapter 7 Logic Synthesis ..319
7.1 Level of Hardware Description Language Modeling 319
7.2 Generation and Verification of Timing Constraints 320
7.3 Technology Mapping to the Cell Library 328
7.4 Signal Repowering and “High-Fan-out” Net Synthesis (HFNS) 335
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.6</td>
<td>RLC Modeling</td>
<td>439</td>
</tr>
<tr>
<td>10.7</td>
<td>Summary</td>
<td>439</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>Further Research</td>
<td>442</td>
</tr>
<tr>
<td></td>
<td>Chapter 11 Timing Analysis</td>
<td>443</td>
</tr>
<tr>
<td>11.1</td>
<td>Cell Delay Calculation</td>
<td>443</td>
</tr>
<tr>
<td>11.2</td>
<td>Interconnect Delay Calculation</td>
<td>446</td>
</tr>
<tr>
<td>11.3</td>
<td>Electrical Design Checks</td>
<td>452</td>
</tr>
<tr>
<td>11.4</td>
<td>Static Timing Analysis</td>
<td>453</td>
</tr>
<tr>
<td>11.5</td>
<td>Summary</td>
<td>469</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td>Further Research</td>
<td>472</td>
</tr>
<tr>
<td></td>
<td>Chapter 12 Noise Analysis</td>
<td>475</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction to Noise Analysis</td>
<td>475</td>
</tr>
<tr>
<td>12.2</td>
<td>Static Noise Analysis, Part I</td>
<td>476</td>
</tr>
<tr>
<td>12.3</td>
<td>Noise Impact on Delay</td>
<td>481</td>
</tr>
<tr>
<td>12.4</td>
<td>Electrical Models for Static Noise Analysis</td>
<td>485</td>
</tr>
<tr>
<td>12.5</td>
<td>Static Noise Analysis, Part II</td>
<td>488</td>
</tr>
<tr>
<td>12.6</td>
<td>Summary</td>
<td>491</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>492</td>
</tr>
<tr>
<td></td>
<td>Further Research</td>
<td>493</td>
</tr>
<tr>
<td></td>
<td>Chapter 13 Power Analysis</td>
<td>495</td>
</tr>
<tr>
<td>13.1</td>
<td>Introduction to Power Analysis</td>
<td>495</td>
</tr>
<tr>
<td>13.2</td>
<td>Models for Switching Activity Power Dissipation</td>
<td>497</td>
</tr>
<tr>
<td>13.3</td>
<td>IP Power Models</td>
<td>501</td>
</tr>
<tr>
<td>13.4</td>
<td>Device Self-Heat Models</td>
<td>502</td>
</tr>
<tr>
<td>13.5</td>
<td>Design-for-Power Feedback from Power Analysis</td>
<td>504</td>
</tr>
<tr>
<td>13.6</td>
<td>Summary</td>
<td>505</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>506</td>
</tr>
<tr>
<td></td>
<td>Further Research</td>
<td>506</td>
</tr>
<tr>
<td></td>
<td>Chapter 14 Power Rail Voltage Drop Analysis</td>
<td>509</td>
</tr>
<tr>
<td>14.1</td>
<td>Introduction to Power Rail Voltage Drop Analysis</td>
<td>509</td>
</tr>
<tr>
<td>14.2</td>
<td>Static I*R Rail Analysis</td>
<td>512</td>
</tr>
</tbody>
</table>
Chapter 14 Dynamic P/G Voltage Drop Analysis .. 513
 14.3 Dynamic P/G Voltage Drop Analysis .. 513
 14.4 Summary ... 526
 References ... 526
 Further Research .. 527

Chapter 15 Electromigration (EM) Reliability Analysis 529
 15.1 Introduction to EM Reliability Analysis ... 529
 15.2 Fundamentals of Electromigration .. 535
 15.3 Power Rail Electromigration Analysis: powerEM 545
 15.4 Signal Interconnect Electromigration Analysis: sigEM 548
 15.5 Summary ... 555
 References ... 555
 Further Research .. 556

Chapter 16 Miscellaneous Electrical Analysis Requirements 559
 16.1 SleepFET Power Rail Analysis ... 559
 16.2 Substrate Noise Injection and Latchup Analysis 562
 16.3 Electrostatic Discharge (ESD) Checking .. 568
 16.4 Soft Error Rate (SER) Analysis .. 576
 16.5 Summary ... 590
 References ... 590
 Further Research .. 591

Topic VI: Preparation for Manufacturing Release and Bring-Up 593

Chapter 17 ECOs ... 595
 17.1 Application of an Engineering Change .. 595
 17.2 ECOs and Equivalency Verification ... 599
 17.3 Use of Post-Silicon Cells for ECOs .. 600
 17.4 ECOs and Design Version Management .. 602
 17.5 Summary ... 605
 References ... 606
 Further Research .. 606

Chapter 18 Physical Design Verification ... 607
 18.1 Design Rule Checking (DRC) ... 607
 18.2 Layout- Versus-Schematic (LVS) Verification 610
18.3 Electrical Rule Checking (ERC) 616
18.4 Lithography Process Checking (LPC) 618
18.5 DRC Waivers 620
18.6 Summary 622

Further Research 622

Chapter 19 Design for Testability Analysis625

19.1 Stuck-at Fault Models and Automated Test Pattern Generation (ATPG) 625
19.2 DFT Design Rule Checking 636
19.3 Memory Built-in Self-Test (MBIST) 638
19.4 Logic Built-in Self-Test (LBIST) 645
19.5 Delay Faults 659
19.6 Bridging Faults 664
19.7 Pattern Diagnostics 665
19.8 Summary 672

References 673

Further Research 674

Chapter 20 Preparation for Tapeout677

20.1 Introduction to Tapeout Preparation 677
20.2 Foundry Interface Release Tapeout Options 678
20.3 Tapeout Checklist Review 684
20.4 Project Tapeout Planning 689

Further Research 692

Chapter 21 Post-Silicon Debug and Characterization (“Bring-up”) and Product Qualification693

21.1 Systematic Test Fails 693
21.2 “Shmoo” of Performance Dropout Versus Frequency 695
21.3 Product Qualification 698
21.4 Summary 702

Reference 702

Further Research 703

Epilogue ...705

Index ...711
This book describes the steps associated with the design and verification of Very Large Scale Integration (VLSI) integrated circuits, collectively denoted as the design methodology. The focus of the text is to describe the key features and requirements of each step in the VLSI methodology. The execution of each step utilizes electronic design automation (EDA) software tools, which are invoked by a script that manages the design configuration, assembles the input data, allocates the IT job resources, and interprets the output results. The script is commonly referred to as the flow for the specific methodology step. This book covers both the underlying EDA tool algorithms applied and the characteristics of the related flow. Specific attention is given to the criteria used to assess the status of a design project as it progresses toward the release to fabrication.

The audience for the text is senior-level undergraduates and first-year graduate students studying microelectronics. Professional engineers will also likely find topics of interest to expand the breadth of their expertise. In many cases, the discussion of a specific step extends beyond the design engineering considerations to include the perspective of a project manager, a design automation engineer, a fabrication technology support engineer, and, to be sure, a member of the project methodology team.

It has been my experience that graduating engineers pursuing microelectronic hardware design would benefit from broad exposure to all facets of a VLSI design project and an understanding of the interdependencies between the various engineering teams. The goal of this book is to provide a comprehensive discussion of a VLSI design methodology at a level of technical detail appropriate for a two-semester, project-oriented course of study.
The book is targeted toward a discussion style of presentation rather than formal lectures. The text often highlights the trade-offs that are evaluated when selecting a specific approach for a design methodology step. An interactive discussion among the students provides an opportunity comparable to the engineering environment as part of a design team.

There are no chapter problems provided in this book. However, many universities participate in EDA vendor programs that provide access to individual software tools. This text would work extremely well in combination with such a program. After reviewing a step as a constituent of the overall design methodology, students would be able to exercise the corresponding EDA tool. Projects of larger scope could be incorporated to align with individual student interests—including flow scripting, pursuing power/performance/area evaluations, designing (cell-based) circuits, and developing methodology policies and the software utilities to verify those design standards. Projects would typically culminate in a final presentation to the class.

The text is divided into six major topics. Topic I, “Overview of VLSI Design Methodology,” is rather lengthy, intended to provide background on microelectronic hardware design. Students with prior exposure to these topics could quickly review this material. The subsequent topics include Topic II, “Modeling,” Topic III, “Design Validation,” Topic IV, “Design Implementation,” Topic V, “Electrical Analysis,” and Topic VI, “Preparation for Manufacturing Release and Bring-Up.” The chapters in each topic describe individual flow steps. There is admittedly some overlap in the chapter discussions. For example, the task of embedding an engineering change order (ECO) in a design database nearing release to fabrication is mentioned in multiple chapters and described in detail in Chapter 17, “ECOs.” This repetition reflects the importance of the ECO methodology for a design project. Another example is the pervasive impact of lithographic multipatterning in advanced fabrication process nodes. The decomposition of the design data for a mask layer into (individually resolvable) subsets needs methodology support throughout design implementation, analysis, and physical verification flows. The influence of multipatterning is therefore described in multiple chapters.

The references provided with each chapter are rather sparse and in no way reflect the exceptional research that has enabled the complexity of current VLSI designs. The references listed are often among the landmark papers in their specific disciplines. A search for the technical papers that have recently cited these references will enable the reader to develop a more comprehensive
Several technical areas deserve greater depth than the length of this book allows. Readers are therefore encouraged to pursue the “Further Research” sections provided at the end of each chapter.

Many colleagues have provided great insights to assist with the development of this text. The collaboration over the years with Tom Lin, Mark Firstenberg, Tim Horel, and Bob Deuchars has been pivotal. The technical review recommendations from Professor Azadeh Davoodi at the University of Wisconsin–Madison have been extremely beneficial. The support from Bob Masleid, Tammy Silver, William Ruby, Charles Dancak, and Dan Nenni is greatly appreciated. Bob Lashley deserves special mention, as his expertise and inspiration have been invaluable. Finally, thanks to my family for their encouragement, especially my wife, Suzi.

Tom Dillinger
Livermore, California
Thomas Dillinger has more than 30 years of experience in the microelectronics industry, including semiconductor circuit design, fabrication process research, and EDA tool development. He has been responsible for the design methodology development for ASIC, SoC, and complex microprocessor chips for IBM, Sun Microsystems/Oracle, and AMD. He is the author of the book *VLSI Engineering* and has written for SemiWiki.
This page intentionally left blank
8.1 Global Floorplanning of Hierarchical Units

Prior to detailed placement of cells in block netlists (and the global cells at the top of the SoC hierarchy), a physical floorplan of the chip design is required. As briefly described in Section 3.1, the floorplan typically represents the first level of the SoC model hierarchy; it is uncommon to further develop a “floorplan within a floorplan” for the physical design of subsequent levels of the SoC hierarchy. The glue logic functionality at the top hierarchical level is commonly allocated to channels between block floorplan boundaries. An alternative methodology would be to define abutting block floorplan regions and insert global glue logic within various blocks. The advantage of the reduced channel area is offset by the additional dependency of global cell and route data on block-level physical verification and electrical analysis.

The physical floorplan data include the global power and ground grids and global clock distribution, typically originating from a PLL hard IP macro that serves as the clock reference source. The power and ground grids in the channels require specific design consideration, as the glue logic circuits include
high-drive-strength cells with high switching activity (e.g., signal repowering buffers, state-repeating register banks).

The floorplan may include allocated routing track segments for major signal busses between blocks in the overall SoC architecture, including global repeaters. These preroutes assist with the definition of the block-level floorplan pins, area, and aspect ratio.

The development of floorplan pins is a critical facet of SoC design planning. The pin definition for each block’s primary inputs and primary outputs includes the following:

- The pin width, corresponding to the interconnect wire width to use with the global signal
- The pin metal layer for the interface between global and block routing
- The pin multipatterning decomposition assignment

For advanced process nodes, depending on the metal layer, the pin definition may also need to include a multipatterning assignment that is consistent with the “color” associated with the pin’s routing track. Alternative methods for pin location assignment include the following:

- **Internal pin locations**—The pin may not be assigned to the block perimeter; rather, it might be given internal coordinates. The goal of using internal pin locations would be to improve timing. As mentioned in Section 7.2, the accuracy of block-level timing closure is improved if the cells connected to block PIs/POs are placed in close proximity to the pin. An internal pin location may allow optimal placement of block netlist cells with connectivity to both global and internal signals. A high density of internal pins may have an adverse impact on global routing, however, to accommodate both over-the-block global routes and pin accessibility.

- **A flexible range of locations**—A pin may be allocated to a range of locations (e.g., a segment of a specific floorplan edge) but not assigned fixed coordinates. In this case, the block placement flow includes pin location assignment as part of cell assignment; rather than using fixed pin locations to influence cell placement, the algorithm is able to include pin placement as an optimization objective. The methodology decision to use flexible pin locations as input to the block cell placement flow introduces an interdependency between global route planning and block physical implementation.
Floorplan areas allocated to hierarchical design blocks are typically rectangular, although EDA vendor tools for physical design may support rectangular definitions. The aspect ratio of each floorplan block is a key factor in subsequent routing and path timing closure. A high aspect ratio block has a skewed ratio of available horizontal to vertical wiring tracks, and thus it may have difficulty subsequently closing on routing.

The SoC floorplan includes blocks associated with the chip input/output pad circuits, usually located on the die perimeter. Mixed-signal IP cores are also typically associated with unique floorplan blocks, such as PLLs, data conversion functions (ADCs, DACs), and high-speed interface SerDes IP. These blocks also require unique power/ground distribution design. The I/O circuits are likely to use additional voltages different from internal cells (e.g., VDDIO, VDD_1_2, VDD_1_5). Mixed-signal cores require separate low-noise supply rails (e.g., VDDA, GNDA) that are electrically distinct from the rails for digital switching networks.

Power-gating design is reflected within each block, as represented by the power format file description (described in Section 7.6). The internal power and ground distribution to enable deep sleep behavior is not extended globally, as depicted in Figure 8.1.

![Block-internal gated power rail not part of global P/G grid](image)

Figure 8.1 The block internal power (or ground) distribution to support power gating is not extended globally.
8.2 Parasitic Interconnect Estimation

The placement flow utilizes a number of measurement criteria when selecting a candidate location for each cell or for candidate pairs of cells to swap their current coordinates. The process involves a combination of geometric and timing-driven calculations, including the following:

- Total estimated network wire length to realize all connections, using one of various net topology estimates (e.g., bounding box, star, Steiner tree) (Timing estimates from physical synthesis provide [negative slack] nets that may be given additional weighting in the total geometric wire length summation calculation.)
- Interconnect segments crossing a coarse grid overlay of the block floorplan to assess wiring track demand versus availability (to avoid congestion)
- Cell interconnect delay calculation for timing-driven placement optimization

The representation of interconnect delays during placement involves estimates of the R*C parasitics and a simplified computationally fast delay calculation algorithm (e.g., an Elmore delay model for the estimated net topology; see Section 11.1). The SoC methodology team needs to collaborate with the EDA vendor and the foundry to determine how to best estimate the interconnect parasitic delay during cell placement. This estimate needs to reflect the different (per unit length) R and C measures of the multiple horizontal and vertical metal routing layers available within the block. During cell placement, an average R*C delay measure across the available metal routing layers is used. An estimate for parasitic via resistances could also be included in the interconnect delay model.

In addition, the methodology team may use the physical synthesis timing data to derive “non-default” constraints for subsequent cell placement and routing:

- Preferred metal layers for routing critical nets
- Wider width segments (e.g., 1.5X or 2X width rather than 1X)

The EDA placement tool applies a different set of parasitic interconnect estimates for nets with non-default rules. Again, collaboration with the
EDA vendor and foundry is required to define how multiple wire load models for different classes of nets should be calculated for timing-driven placement optimizations.

8.3 Cell Placement

The SoC block designer relies on the (timing-driven) cell placement flow to provide a routable solution with minimal timing issues for a netlist with (tens of) millions of instances. Placement algorithms have evolved to provide greater netlist capacity with reasonable runtime. To help physical designers achieve improved predictability and confidence in timing closure, the EDA vendor placement tools have incorporated additional features that apply input constraints:

- Preplaced cells and hard IP macros
- Relative placement groups of cells (a set of cells with relative alignment coordinates that are placed/moved as a unit)
- Restrictive area allocation within the floorplan block for subsets of the cell netlist (see Figure 8.2)
- Guidelines for maximum local cell utilization percentage (to allow for the addition of a suitable density of decoupling capacitance cells, substrate and well contact cells, and dummy logic cells for ECOs)
- Ability to place cells with cell height that spans two rows of the placement image (see Figure 8.3)

Figure 8.2 The block placement flow may be provided with restricted areas for placement of subsets of the block netlist cells. This subset would typically be identified by a specific string in the (flattened netlist hierarchy) instance name.
For current fabrication process nodes, additional cell adjacency restrictions must be observed during placement. Lithographic uniformity of (critical dimension) device gates may require the insertion of dummy gates between cells and at the ends of cell rows. The transition between cells of different V_t types may also require dummy gate cells to reduce the device variation from V_t mask overlay and implant dosage. Depending on the design of the cell image, the placement algorithm may also need to insert device well continuity filler cells in vacant locations. The methodology team needs to review the cell library techfile data and fabrication process design rules to ensure that any specific placement restrictions and/or dummy cell insertion guidelines are coded for the EDA placement tool.

Throughout the evolution of EDA placement tools, the goal has consistently been to provide a result that is ultimately routable and achieves timing targets, with runtimes that scale with the increasing block netlist instance size. Prior to the introduction of physical synthesis, placement tools consisted of constructive cell/macro location assignment followed by iterative optimization (or “successive refinement”) steps. The physical synthesis methodology has
resulted in a shift in EDA placement tool development emphasis to improving the iterative solutions. Numerous algorithms have been developed to select candidate cells to reposition and evaluate new proposed locations and/or to successively resolve placement overlaps from an existing assignment, with optimization objectives that address routing congestion and estimated path timing improvements.\[1,2\]

8.4 Clock Tree Local Buffer Placement

A key aspect of the placement flow is the special consideration to be given to the clock buffers in the netlist, typically added by the CTS step in the synthesis flow (see Section 7.9). The CTS algorithm attempts to balance the (estimated) loading on the branches of the clock tree in the network, whether originating from a single clock pin or connecting to a global clock grid. During cell placement, the common algorithmic approach is to select clusters of flops in close proximity and place a clock buffer in the final branch of the tree within the area spanned by the flop cluster. Once all clock tree endpoints are placed, a similar approach selects clusters of clock buffers and places a buffer from the preceding level of the tree appropriately; this process iterates recursively to the root level of the clock tree. The clock buffer placement algorithm results in output netlist updates, as the (logically equivalent) sinks at each level of the tree may be swapped during the clustering phase of the placement algorithm. The introduction of clock gating to the CTS tree implies that the cells at each level of the tree are not necessarily logically equivalent; clustering of placed sinks needs to observe gated clk_enable functionality.

For block placement with preplaced hard IP macros, the related clock buffers may also be preplaced accordingly. For relative placement groups, clock buffers may be included in the group definition. An increasing design trend is to offer multi-bit registers as an atomic cell library offering to minimize the clock routing and loading among bits. These registers are also likely to be part of relative placement groups with clock buffers (and decoupling capacitance cells).

During block routing, the attention to clock signals focuses on balancing the arrival latency at endpoints, primarily through R*C interconnect segment allocation. Performance optimization features in the routing flow may result in changes to the drive strength of logic path cells and flops; clock buffer tree
cells may likewise need to receive drive strength updates in routing. For drive strength increases, any resulting cell area overlaps to the placement output locations need to be (incrementally) resolved during routing.

8.5 Summary

The incorporation of constructive placement algorithms in logic synthesis flows has resulted in a shift in focus for EDA vendors providing placement tools. Iterative optimization and legalization of the initial physical location cell assignment from synthesis requires judicious selection of candidate cells for re-positioning, with fast and accurate evaluation of interconnect parasitic estimates. This focus on estimation efficiency is required to support an increasing number of cell instances in a design block. In addition, tools are applying a richer set of designer input constraints to direct the resulting cell placement to a solution optimized for routability, path timing closure, and power dissipation reduction. Increasingly, physical implementation design resources for an SoC project are being re-directed from executing cell placement to addressing the complexities of interconnect routing optimizations for electrical and reliability analysis flows, such as timing, power, noise, and electromigration. Nevertheless, the quality of results for the cell placement flow is crucial to achieving subsequent design closure in routing.

References

Further Research

Estimated Wire Length

Placement algorithms are dependent on wire length estimation calculations. Constructive placement methods often use total estimated wire length for all nets as a measurement criterion. Subsequent iterative optimization algorithms may add “weighting factors” to timing-critical and high-switching-activity nets as part of the wire length minimization objective.
Describe the various net topology alternatives commonly used for wire length estimation (e.g., Steiner tree, star, bounding box). Describe the advantages and disadvantages of the different topologies in terms of computation time and accuracy trade-offs.

Constructive Placement and Physical Synthesis

The physical synthesis flow provides an initial placed netlist, and serial/parallel repowering cells are added during synthesis. Placement tools incorporate both constructive and iterative optimization steps and signal repowering features. As a result, a flow option could be provided to disregard the placement assignments from physical synthesis altogether and apply the constructive placement step on the complete block netlist.

Describe the trade-offs in exercising a constructive placement step on the full block netlist. Describe the sample experiments and quality-of-results criteria that could assist with this trade-off decision.
This page intentionally left blank
INDEX

A
abgen, 136
absolute failure, 542
abstract generation (abgen), 136
ABV (assertion-based validation), 264–265
activation energy, 537
activity factor, 246, 296–297
admittance, 444, 516–519
AEC (Automotive Electronics Council), 699
aggressive P/G grid design, 510
aggressor net, 477. See also noise analysis
air gap, 129
aliases, 641
alpha particles, 577–578
analog IP tests, 180, 563–564
analog layout design, 130
analysis flows, library cells models for
cell delay models, 241–245, 255
input cell pin noise sensitivity, 247–249
cell models for synthesis and testability analysis,
241
clock buffers and sequential cells, 249–251
power analysis characterization, 245–247
analysis mixed-signal coverage, 294–295
annealing of cell placements, 145
antennas, 148–149
diodes, 396–399
rules, 191
application programming interfaces (APIs), 2, 415
application-specific integrated circuits (ASICs)
ASIC direct release, 510–512
overview of, 15–17
area pins, 138–139
array generation, 31
array repair (fuses), 181, 314–315
array weak bit, 243–244
arrays
array compilers, 197
array equivalence verification, 310–313, 314
array generation, 31
array repair (fuses), 181, 314–315
methodology flows, 197–198
process variation-aware design, 91–92
register files, 198
arrival time (AT), 147, 455
ASIC. See application-specific integrated circuits
(ASICs)
assertion statements, 132, 238–239
assertion-based validation (ABV), 239, 264–265
assert statement, 238
ATE (automated test equipment), 629
ATPG (automated test pattern generation), 163,
208–211, 356, 627, 631–636
audits, tapeout, 189–190
automated test equipment (ATE), 629
automated test pattern generation (ATPG), 163,
208–211, 356, 627, 631–636
Automotive Electronics Council (AEC), 699
autonomous linear feedback shift register (LFSR),
648
avalanche breakdown (ESD protect device),
62–63
avalanche current, 573
back-end-of-line (BEOL), 46–50, 679–680
backfill cells
 abstracts, 38–39
 gate array cells, 35–36
 model constraints, 39–40
 model properties, 39–40
 overview of, 33
 process design kit (PDK), 40–42
 standard cell logic, 36–37
 views, 38–39
backward inference, 626, 674
bad machine error injection testcases, 267
bad machine path coverage, 294
balanced repowering trees, 335–336
“balanced” routing, 388
bandgap voltage reference generators, 102
bathtub curve, 532
BC (best-case) process, 87, 89–90, 243
BDDs (binary decision diagrams), 315
behavioral co-simulation, 275
behavioral modeling, 319
 data structures, 228
 definition of, 224
 inferred state, 229–230
 modules/entities, 230–231
 regs, 227
 representation of simulation time, 225–226
 resolution function, 227
 scope, 231–232
 signals, 227
 SystemC, 254
 types, 228–229
 variables, 227
 wires, 227
BEM (boundary element method), 406, 442
BEOL (back-end-of-line), 46–50, 679–680
best-case (BC) process, 87, 89–90, 243
biased outputs, 648
BiCMOS, 59
bidirectional DC current density (j_{AC}), 539–540
binary decision diagrams (BDDs), 315
binning, 607
BISD. See built-in self diagnosis (BISD)
BIST. See built-in self-test (BIST)
black box IP, 152
Black’s equation, 537–538
Blech length, 538, 557
blind build part, 630
block netlists, 371
 block size, 202
 logic synthesis, 203–204
 low-effort synthesis (LES), 204–205
 physical design, 205–206
placement
 cell placement, 367–369
 clock tree local buffer placement, 369–370
 estimated wire length, 370–371
 global floorplanning of hierarchical units, 363–365
 parasitic interconnect estimation, 366–367
blockage map, 22
blockages, 137
block-based design, 202
 block-level noise analysis, 493–494
 block-level timing constraint budgeting, 473–474
 electrical abstracts, 214–216
 logic synthesis, 203–204
 low-effort synthesis (LES), 204–205
 physical design, 205–206
 blocking, 227
body (model builds), 231
body bias, 63
body effect, 63–66, 79–80, 329–330
borophosphosilicate glass (BPSG), 579
boundaries, 137
boundary element method (BEM), 406, 442
boundary scan, 180, 209, 635
bounding boxes, 325
Box, George, 221
BPSG (borophosphosilicate glass), 579
branch configuration (DDM), 173–174
breakpoints, 231, 261
bridging faults, 164, 388, 664–665
budgeting, timing constraint, 473–474
buffering, 331, 336–339
bug trackers, 187, 192
built-in self diagnosis (BISD), 641–645. See also
 built-in self-test (BIST)
built-in self repair (BISR), 642–645
built-in self-test (BIST), 112, 134–136
 logic built-in self-test (LBIST)
 compaction, 649–650
 hierarchical testing, 658–659
 overview of, 645
 pattern generation, 645–648
 pseudo-random pattern generation (PRPG), 650–652
 test compression, 652–658
 X-values in fault simulation, 650
memory built-in self-test (MBIST), 163–164, 638–645
bulk CMOS devices. See also soft error rate (SER)
 body effect, 63–66
 contacted gate pitch, 68
early chip-package floorplanning, 95–96
overview of, 94
chip-package-system (CPS) simulation, 97–98
circuit under test (CUT), 645–646
circuit-limited yield (CLY), 90, 666
circuit-switching, power dissipation model for, 497–500, 507
cladding, 435
clamp circuit, 573
clk_enable-to-clk timing test, 454
clock arrival analysis, 438
clock buffers, 249–251
clock distribution, 124–126, 175–177
clock domain crossing, 5, 110–113, 206–207
clock gating, 107–109
clock tree local buffer placement, 369–370
clock tree synthesis (CTS), 336, 350–353
clock-to-output delay arc, 424
cloning, 186
clustering, 325
CLY (circuit-limited yield), 90, 666
CMOS devices
bulk CMOS devices. See also soft error rate (SER)
body effect, 63–66
contacted gate pitch, 68
cross-over current, 61
device punchthrough, 62–63
latchup, 69–70
low-resistivity gate material, 66–67
overview of, 59–63
raised source/drain nodes, 67
spacer dielectric, 67–71
subthreshold leakage currents, 62–63
transition time, 61
FinFET devices
advantages of, 78–80
characteristics of, 77–78
constraints, 80–83
design methodology, 83–85
electromigration, 82–83, 392–393
foundry interface release tapeout options, 681–682
overview of, 74–77
self-heating, 82–83, 253, 502–504
snapback mode, 574
thermal resistance, 82–83
fully depleted silicon-on-insulator (FD-SOI), 71–74
CMOS transfer gate, 60–63
CMOS devices. See also soft error rate (SER)
body effect, 63–66
contacted gate pitch, 68
cross-over current, 61
device punchthrough, 62–63
latchup, 69–70
low-resistivity gate material, 66–67
overview of, 59–63
raised source/drain nodes, 67
spacer dielectric, 67–71
subthreshold leakage currents, 62–63
transition time, 61
FinFET devices
advantages of, 78–80
characteristics of, 77–78
constraints, 80–83
design methodology, 83–85
electromigration, 82–83, 392–393
foundry interface release tapeout options, 681–682
overview of, 74–77
self-heating, 82–83, 253, 502–504
snapback mode, 574
thermal resistance, 82–83
fully depleted silicon-on-insulator (FD-SOI), 71–74
CMOS transfer gate, 60–63
coefficient of thermal expansion (CTE), 700
collection volume, 579–580
combinational logic, 301–302, 305–306, 584
common data model, 2
compactors, 641
compilers, array, 197
complementary metal-oxide-semiconductor. See CMOS devices
current sequential processes (CSPs), 223, 319
conditional coverage, 291–292
conductance matrix, 516–519
configuration management, 192
configuration specification (confi gspec), 172–173, 231
congestion, routing, 33
connectivity checks, 143
conservative P/G grid design, 510
constant failure rate, 533
constraints
model, 39–40
timing, 361, 457
effective capacitance (Ceff), 326–328
generation and verification of, 320–326
total capacitance (Ctotal), 326–328
constructive placement, 368–369, 371
contact resistance, 442
contacted gate pitch, 68
context cells, 53, 84–85
continuing process improvement (CPI), 41, 620–621
control flow / dataflow
dataflow cell synthesis, 200
dataflow library cell design, 199–200
definition of, 198–199
general block modeling, 201–202
relative cell placement, 27, 200–201
control-flow graph (CFG), 293
core wrap architecture, 30
correspondence points, 6–8, 193–196
cosmic rays, 578
coupling capacitance, 435–436
coverage. See simulation model statement coverage
covergroups, 290
coverpoints, 290
CPI (continuing process improvement), 41, 620–621
CPS (chip-package-system) simulation, 97–98
CRC (cyclic redundancy check), 683
critical area, 92
critical charge (Qcrit) for a soft error upset (SEU), 580–581
cross-coupled devices, 34
Index

cross-over current, 61, 497
CSPs (concurrent sequential processes), 223, 319
CTE (coefficient of thermal expansion), 700
CTS (clock tree synthesis), 336, 350–353
cumulative density function (CDF), 483, 531
current crowding, 442, 542, 575
CUT (circuit under test), 645–646
cut masks, 54–59, 378, 682–684
cutout overlay cells, 217–218
cycle simulation, 233
cyclic decomposition error, 56
cyclic layout, 54
cyclic redundancy, 376–377
cyclic redundancy check (CRC), 683

d
DAGs (directed acyclic graphs), 302
dark silicon, 504
data repositories, 171
dataflow
dataflow cell synthesis, 200
dataflow library cell design, 199–200
definition of, 198–199
general block modeling, 201–202
relative cell placement, 27, 200–201
“days per mask layer” target metric, 601
DDM. See design data management (DDM)
de facto standards, 19
debugging
array equivalence verification, 310–313, 314
with array repair, 314–315
data structures for, 315
functional and test-mode equivalence verification, 309–310
layout-versus-schematic netlist checking (LVS), 616
model input assertions for, 306–307
sequential logic equivalency, 307–309
decompression logic, 653
decoupling capacitance, 431–433
deep n-well, 563
deep sleep operating mode, 87
defect density-limited yield, 92
delamination, 694, 700
delay
C effective model reduction for delay calculation, 374–375
cell, 443–446
cell delay models, 241–245, 255
delay adjust, 458–459
delay-based functional simulation, 468, 474
delay-based timing verification, 467–469
delta, 225
derating delay multipliers, 451
Elmore delay, 366, 375, 446–451
FO4, 329–330
interconnect, 446–451
noise impact on
I*R voltage drop effect, 483–484
modeling, 481
static timing analysis, 482–483
out-of-range delay calculation, 422
state-dependent, 459
delay arcs, 424
delay faults, 164
definition of, 659
gross delay fault, 627–628, 661–662
hold latches, 660–661
internal cell delay faults, 662–664
launch-from-shift, 660
path delay faults, 662
delta delay, 225
Dennard, Robert, 44–45
Dennard scaling rules, 44–45, 129
dependency traceback, 262
depth-of-focus (DoF), 155–156
derate tables, 464–466
derating multipliers, 90, 243, 451, 462–466
design data management (DDM)
branch configuration, 173–174
checkout/checking, 173
configuration specification (“configspec”), 172–173
data repositories, 171
latest configuration, 173–174
main configuration, 173–174
metadata, 171
overview of, 171–172
physical design data, 174–175
power and clock domain management, 175–177
virtual filesystem interfaces, 171
deign for testability (DFT), 163. See also design rule checking (DRC)
automated test pattern generation (ATPG), 627, 631–636
backward inference, 626, 674
bridging faults, 664–665
controllability and observability, 135, 625
delay faults. See delay faults
embedded deterministic test (EDT), 653
embedded macro test, 134
forward propagation, 626, 674
logic built-in self-test (LBIST)
 compaction, 649–650
 hierarchical testing, 658–659
 overview of, 645
 pattern generation, 645–648
 pseudo-random pattern generation (PRPG), 650–652
 test compression, 652–658
 X-values in fault simulation, 650
low-effort synthesis (LES), 356–357
memory array fault models, 674–675
memory built-in self-test (MBIST), 638–645
 overview of, 177–179
 parametric faults and tests, 629–631
 pattern diagnostics, 665–666
 diagnostic network analysis, 666–667
 diagnostic pattern-to-fault correlation, 668–670
 failing dies, 672, 675
 overview of, 665–666
 test response compaction, 670–672
scan chains, 179
stuck-at faults, 626–629
summary of, 183–184
test escape, 625
test pattern generation, 179–182
test pattern ordering, 179–182
voltage and temperature test options, 183
design freeze milestones, 595–597
design implementation, 328–335
design optimization, 185–186
design platforms, 162
design robustness, 529
logic synthesis. See logic synthesis
multipatterning, 377
placement. See placement
routing, 373–374. See routing
design methodology new releases
 reference flows, 168–169
 tool evaluation, 169–170
trailblazing, 170–171
design rule checking (DRC), 152, 356–357,
 607–610, 636–638
 DRC waivers, 156–157, 620–621
 routing and, 375–376
 voltage-dependent design rule checks, 159–160
design rule manual (DRM), 50–59
 chemical-mechanical polishing (CMP), 51
cut masks, 54–59
dummy shapes, 52–53
layer data, 54–59
line segment orientations, 53–54
metal spacing, 52
multipatterning, 54–59
pitch, 51
design validation. See formal equivalency verification; functional validation; placement
design version management, 602–604
design-for-manufacturability (DFM), 153–156,
 184–185, 398–399
 chemical-mechanical polishing (CMP) analysis, 155–156
EDA DFM services, 156
 lithography process checking (LPC), 154–155
design-for-power feedback, 504–505
design-for-test (DFT) insertion, 134. See also design for testability (DFT)
design-for-yield (DFY)
 overview of, 153, 184–185, 398–399, 687
 routing optimization, 395–399
 antenna diode insertion, 396–399
 line extensions past vias, 395–396
 redundant vias, 396
 wire spreading, 395
detailed routing assignment, 378–383
detectable faults, 631
deterministic sequences, 653. See also embedded deterministic test (EDT)
device punchthrough, 62–63
device self-heat models, 502–504
device under test (DUT), 263, 571
device width, representation of, 612–613
device-level placement, routing and, 400–401
DFM. See design-for-manufacturability (DFM)
DFT. See design for testability (DFT)
DFY. See design-for-yield (DFY)
diagnostics, pattern
diagnostic network analysis, 666–667
diagnostic pattern-to-fault correlation, 668–670
 overview of, 665–666
 test response compaction, 670–672
dictionary, fault, 668
dies
die thermal maps, 502, 507
 failing, 672, 675
difference checking, 214
diffusion current, 578
direct aggressor coupling, 477, 493
direct release (ASIC), 510–512
directed acyclic graphs (DAGs), 302
directed testcases, 263
direction, noise, 485
dishing, 148
dissipation, power, 245–247, 497–500, 507
DoF (depth-of-focus), 155–156
dogbone topology, 153
domains, 3–4
clock, 110–113
power domain constraints, 105–107
dominant signals, 664
don’t-care modeling, 236–239
DRAM (dynamic RAM), 579
DRC. See design rule checking (DRC)
drift current, 578
drive strength, 22–24
driving point admittance, 444
DRM. See design rule manual (DRM)
dummy gates, 84
dummy shapes, 40, 52–53
dummy transistors, 34
DUT (device under test), 263, 571
DVFS (dynamic voltage, frequency scaling), 341
dynamic P/G voltage drop analysis
analysis results, 521–522
global and partition-level models for, 519–521
global power delivery frequency response, 523
matrix solution, 516–519
P/G rail capacitance, 514–515
simultaneous switching output (SSO) analysis, 523–526
dynamic power grid voltage analysis, 431–433
dynamic RAM (DRAM), 579
dynamic voltage frequency scaling (DVFS), 101, 341
boost/throttle modes, 422–423
noise analysis and, 491–492
shmoo plots for, 697

early mode, 321–322
ECC (error correcting code), 587–588
ECOs. See engineering change orders (ECOs)
EDA. See electronic design automation (EDA)
EDC (error detection and correction), 70–71
EDT (embedded deterministic test), 653
effective capacitance (C_{eff}), 116, 326–328, 374–375, 443–446
effective slew, 430
e-fuse array repair, 182
electric fields, 535
electrical abstracts, 214–216
electrical analysis. See also layout parasitic extraction (LPE); soft error rate (SER)
chip electrical analysis, 97–101

electromigration (EM) reliability analysis.
See electromigration (EM)
electrostatic discharge (ESD) checking
electrical overstress (EOS), 576
ESD protection circuits, 572–576
overview of, 568–571
noise analysis. See noise analysis
power analysis. See power analysis
power rail voltage drop analysis. See power rail voltage drop analysis
routing optimization, 389–393
electromigration, 392–393
noise optimization, 391
power optimization, 391–392
timing optimization, 390
for signoff flow, 160–163
SleepFET power rail analysis
I^2R voltage drop effect, 559–560
sleep-to-active state transition, 561–562
substrate noise injection
analog IP tests, 563–564
I/O pad circuit design, 564–565
latchup analysis, 562–563
latchup qualification, 565–567
overview of, 562–563
timing analysis
cell delay calculation, 443–446
cell delay models, 241–245
electrical design checks, 452–453
interconnect delay calculation, 446–451
static timing analysis (STA), 453–469
electrical analysis flow status, 188–189
electrical overstress (EOS), 158, 576
electrical rule checking (ERC), 157–160, 616–618
electrostatic discharge (ESD) protection, 158–159
voltage-dependent design rule checks, 159–160
electromigration (EM), 82–83, 437
bidirectional DC current density (j_{AC}), 539–540
Black’s equation, 537–538
Blech length, 538, 557
cell-level, 549–551
for clocks, 551
design robustness and reliability, 529
detailed routing and, 392–393
electric fields, 535
electron momentum transfer, 535
EM failure, 542–544
extraction model, 544–545
failure in time (FIT) rate, 533–534
flowcharts for, 556
healing factor, 538
introduction to, 529
mean time to failure (MTTF), 529
median time to failure (MTTF), 530, 532
metal grains, 536
metal hillocks, 536
metallurgy and, 557
nucleation, 535
peak current density (jPEAK), 541–542
power rail electromigration analysis (powerEM), 545–548
resistive fails, 557
signal interconnect electromigration analysis (sigEM), 548–555
sum of failure rates, 534–535
thermal gradients, 535
thermomigration, 535
unidirectional DC current density (jDC), 539–540
voids, 535
wearout region, 530, 533
wire temperature increase due to resistive Joule heating (J_RMS), 540–541
electron momentum transfer, 535
Electronic Design Automation (EDA)
EDA platform, 2
EDA reference flow, 2–5
EDA tool evaluation, 3
methodology managers, 165–168
release flow management, 165–168
electronic design automation (EDA), 2. See also simulation
flow scripts, 2
platforms, 2
vendor placement tools, 367–369
electrostatic discharge (ESD) checking, 158–159, 568–571, 700
electrical overstress (EOS), 576
ESD clamp circuit, 572–576
Elmore delay, 366, 375, 446–451
EM. See electromigration (EM)
embedded deterministic test (EDT), 653
embedded macro test, 134, 460
emerging technologies, 705–710
emulation (simulation acceleration), 268–272, 274
end point detect, 662
end-of-life circuit parameter drift, 251–253
engineering change orders (ECOs)
design version management, 602–604
equivalency verification, 599–600
overview of, 595–597
physical design updates, 597
HDL model hierarchy, 598
metal fill, 597–598, 606
post-silicon cells for, 600–602
post-tapeout, 688–689
project tapeout planning, 603–604
SoC ECO mode
chip finishing, 148–149
functional model updates, 143–144
netlist updates, 145–148
engineering teams, 211–212
EOF (end-of-life) circuit parameter drift, 251–253
EOS (electrical overstress), 158, 576
equivalency verification
array equivalence verification, 310–313, 314
with array repair, 314–315
combinational logic cone analysis, 305–306
data structures for, 315
engineering change orders (ECOs) and, 599–600
functional and test-mode equivalence verification, 309–310
inverse equivalent, 304
model input assertions for, 306–307
RTL combination model equivalency, 301–302
sequential logic equivalency, 307–309
state mapping for, 302–304
summary of, 313–314
equivalent faults, 626
equivalent NAND logic gates, 13–14
ERC (electrical rule checking), 157–160, 616–618
electrostatic discharge (ESD) protection, 158–159
voltage-dependent design rule checks, 159–160
error correcting code (ECC), 587–588
derror detection and correction (EDC), 70–71
derror injection testcases, 267
ersors. See also soft error rate (SER)
capture/recovery, 179
DRC (design rule checking), 156–157
layout-versus-schematic netlist checking (LVS), 616
multi-bit, 584–589
circuit optimizations, 585–587
process optimizations, 584–589
system design optimizations, 587–589
soft, 69–70, 163
ESD checking. See electrostatic discharge (ESD) checking
ESD clamp circuit, 572–576
ETM (extracted timing model), 215
Euler method, 516–517
EUV (extreme ultraviolet), 54
event monitors, 132
event queue, 259–261
event trace logging, 288–289
event-driven simulation, 259–261
breakpoints, 261
event queue, 259–261
executable specification, 264
expression coverage, 291–292
extracted timing model (ETM), 215
extraction. See layout parasitic extraction (LPE)
extraction model (electromigration), 544–545
expressed ultraviolet (EUV), 54

F
fabrication technology. See also FinFET devices
back-end-of-line (BEOL) process, 46–50
bulk CMOS devices. See CMOS devices, bulk
CMOS devices
chip thermal management, 101–104
clock domains, 110–113
chip-package co-design
chip electrical analysis, 97–101
chip-package model analysis, 96–97
early chip-package floorplanning, 95–96
overview of, 94
clock gating, 107–109
design rule manual (DRM), 50–59
chemical-mechanical polishing (CMP), 51
center of mass, 53
cut masks, 54–59
dummy shapes, 52–53
layer data, 54–59
line segment orientations, 53–54
metal spacing, 52
multipatterning, 54–59
pitch, 51
front-end-of-line (FEOL), 46–50, 679–680
fully depleted silicon-on-insulator (FD-SOI), 71–74
half nodes, 46
operating modes, 86–89
power domain constraints, 105–107
process, voltage, and temperature (PVT) corners, 86–89
process migration
overview of, 92–93
parameterized layout cells (pCells), 93
relative cell placement, 94
process retargeting
overview of, 92–93
parameterized layout cells (pCells), 93
relative cell placement, 94
process variants, 47–48
process variation-aware design
array design, 91–92
best-case (BC) process, 89–90
high-sigma Monte Carlo, 92–93
worst-case (WC) process, 89–90
scaling factor, 44–45
second sourcing, 47
self-aligned, quad-patterning (SAQP), 59
self-aligned double patterning (SADP), 57–58
shrink nodes, 46
temperature sensing, 102–104
VLSI process nodes, 44–45
failing dies, 672, 675
failure, electromigration, 542–544
failure in time (FIT) rate, 533–534
failure rate
definition of, 531
EM failure, 542–544
failure in time (FIT) rate, 533–534
mean time to failure (MTTF), 529
median time to failure (MTTF), 530, 532
sum of failure rates, 534–535
false paths, 323, 458–459, 472
Fast Signal Database (FSDB), 19
fatal assertions, 132
fault diagnosis, 38
bridging faults, 164, 388, 664–665
definition of, 634
delay adjust, 164
delay faults
definition of, 659
gross delay fault, 627–628, 661–662
hold latches, 660–661
internal cell delay faults, 662–664
launch-from-shift, 660
path delay faults, 662
detectable faults, 631
equivalent faults, 626
fault dictionary, 668–670
injected faults, 626
node transition faults, 662
parametric faults and tests, 629–631
simulation, 627, 674
stuck-at faults, 626–629
undetectable faults, 631
FD-SOI, 502–504
feature creep, 694–695
feedback tap, 647
FEOL (front-end-of-line), 46–50, 679–680
FET channel, 60–61
FIB (focused ion beam), 672
field-programmable gate arrays (FPGAs), 272–273
files
 power intent specification, 104
 register, 198
techfiles, 40
trace, 233, 298–299
filler cells, 368
FinFET devices
 advantages of, 78–80
 characteristics of, 77–78
 constraints, 80–83
 design methodology, 83–85
 electromigration, 82–83, 392–393
 foundry interface release tapeout options,
 681–682
 overview of, 74–77
 self-heating, 82–83, 253, 502–504
 snapback mode, 574
 thermal resistance, 82–83
finite state machines (FSMs), 198–199, 294
firm IP, 32, 208
first-pass design, 35
fishbone topology, 350
FIT (failure in time), 533–534
fixed P/G grids, 510–511
flightlines, 95
flip-flop cells, 424
flip/mirror placement, 137–138
floating random walk (FRW), 406, 442
floorplanning, 141
 concept of, 363–365
 early chip-package floorplanning, 95–96
 floorplan channels, 363
 optimization decisions, 113–114
 pin assignment, 114–119
flop test, 429
flop/register values, 179
flow scripts, 2
FO4 delay, 329–330
focused ion beam (FIB), 672
forbidden pitches, 191, 394–395
formal equivalency verification
 array equivalence verification, 310–313, 314
 with array repair, 314–315
 combinational logic cone analysis, 305
 data structures for, 315
 functional and test-mode equivalence
 verification, 309–310
 inverse equivalent, 304
 model input assertions for, 306–307
 RTL combination model equivalency, 301–302
 sequential logic equivalency, 307–309
 state mapping for, 302–304
 summary of, 313–314
forward propagation, 626, 674
FPGAs (field-programmable gate arrays), 272–273
fracturing, 433–434
frequency, 296–297
front-end-of-line (FEOL), 46–50, 679–680
frozen design database
 overview of, 42
 signoff flow. See signoff flow
text analysis for, 163–165
FRW (floating random walk), 406, 442
FSDB (Fast Signal Database), 19
FSMs (finite state machines), 198–199, 294
cellular size reduction, 160–161
full-sleep power state, 106
fully depleted silicon-on-insulator (FD-SOI), 71–74
functional equivalence verification, 309–310
functional exclusions, noise analysis, 485–486
functional modeling, 143–144
 behavioral modeling. See behavioral modeling
 initialization, 235
 netlists, 145–148, 234–235
 overview of, 223
 register-transfer level (RTL) modeling,
 232–234
test model views, 235–236
X- and don’t-care modeling, 236–239
functional simulation
 delay-based, 474
 with low-effort synthesis (LES) model,
 358–359
functional validation
 behavioral co-simulation, 275
 event trace logging, 288–289
 hardware-accelerated simulation, 267–268
 emulation, 268–272, 274
 prototyping, 272–274
 production test patterns, 284–288
 resource planning, 281–284
 simulation model statement coverage. See
 simulation model statement coverage
 simulation throughput, 281–284
 software simulation
 event-driven, 259–261
 HDL source/configuration cross-reference, 262
 interactive mode, 261
 waveform display, 261
 status, 187–188
 switching activity factor estimates, 296–297
 switch-level simulation, 276
 symbolic simulation, 277–281
testbench development. See testbenches
functions, loopback, 135
Index

fuses
 e-fuses, 182
 soft fuses, 182

G
 galloping patterns, 675
 gate array cells, 35–36
 gate length bias, 681
 gate line edge roughness (LER). See line edge roughness (LER)
 gate pitch, 68
 gates, equivalent NAND logic, 13–14
 GDS (Graphic Database System), 19
 GDS-II (graphic design system representation), 683
 general purpose I/O cells (GPIO), 26, 164
 generators, array, 31
 glitch power, 467
 global clock (grid, H-tree), 124–126, 350, 501–502
 global model for dynamic I*R analysis, 519–521
 global net design planning, 494
 global n-sigma variation models, 461
 global power, 523, 614–615
 global repeater insertion, 474
 global routing, 122–124, 378–383
 glue logic, 6, 8–11, 216–218
 GPIOs (general-purpose I/O cells), 26, 164
 GPUs (graphics/image processing units), 29
 gradients, thermal, 535
 grains, 536
 graph-based timing analysis, 472
 Graphic Database System (GDS), 19
 graphic design system representation (GDS-II), 683
 graphics/image processing units (GPUs), 29
 gray box extraction, 162
 gray box layout cells, 162
 grids, clock, 125
 gross delay fault, 627–628, 661–662
 guard rings, 69–70, 563–564

H
 half-node process shrink, 46
 half-rule cell layout spacing, 23–24
 hard IP, 30–31, 136–140, 208, 353
 hardware attach interface, 273
 hardware description language (HDL) modeling, 32, 223. See also cell and IP modeling
 concurrent sequential process (CSP), 223, 319
 delta delay, 225
 engineering change orders (ECOs) and, 598
 immediate assignment, 225
 levels of HDL modeling, 319–320
 module (Verilog), 19, 32
 preprocessors, 361
 source/configuration cross-reference, 262
 statements
 assertion, 238–239
 immediate assignment, 225
 wait, 223
 truth tables, 360–361
 VHDL (VHSIC Hardware Description Language), 19, 32
 hardware-accelerated simulation, 268
 emulation, 268–272, 274
 prototyping, 272–274
 HAST (highly accelerated temperature/humidity stress test), 700
 hazard rate, 531
 HBM (human-body model), 158, 568
 HDL. See hardware description language (HDL) modeling
 healing factor, 538
 HFNS (high-fan-out net synthesis), 335–339
 hierarchical extraction of IP macros, 410–411
 hierarchical testing, 658–659
 hierarchy, logical and physical
 automated test pattern generation (ATPG), 208–211
 block-based design, 202
 logic synthesis, 203–204
 low-effort synthesis (LES), 204–205
 physical design, 205–206
 correspondence points, 6–8, 193–196
 difference checking, 214
 electrical abstracts, 214–216
 floorplanning, 363–365
 glue logic, 216–218
 hierarchical units, 207–208
 impact of changes to, 212–214
 logic equivalency checking (LEC) flow, 193–195
 logical-to-physical correspondence, 193–196
 non-technical issues, 211–212
 SRAM memory arrays, 197
 array compilers, 197
 dataflow and control flow, 198–202
 methodology flows, 197–198
 register files, 198
 high-fan-out net synthesis (HFNS), 335–339
 highly accelerated temperature/humidity stress test (HAST), 700
high-sigma Monte Carlo, 92–93, 255
high-temperature operating life (HTOL) testing, 698–699, 703
high-up victim noise transients, 487–488, 493
hillocks, 536
hold latches, 660–661
hold time fixes, 401
hold time padding, 362
hold timing optimization, 348–349, 362
hot carrier effect, 252
hot lot fabrication scheduling, 43–44
hot spots, 206–207, 359, 496
HTOL (high-temperature operating life) testing, 698–699, 703
H-tree clock distribution, 124–125, 350
human-body model (HBM), 158, 568

I
I*R voltage drop effect, 483–484, 559–560
IBIS (I/O Buffer Information Specification) model, 576, 591
ICG (integrated clock gate), 107–109, 332
icicle topology, 153
IEEE (Institute of Electrical and Electronics Engineers), 19
IEEE JTAG 1149. See boundary scan
IEEE P1500. See wrap test
ignore lists, 615
ILM (interface-level model), 161, 215
ILT (inverse lithography technology), 154, 191
immediate assignment, 225
impact ionization, 573
importance sampling, 255
incremental recalculation, 337
inductance
 inductance extraction, 408
 partial, 515
industry standards, 19
inertial signal delay, 468–469
infant fail, 165, 208–211, 532
inferred state, 229–230
initialization, 228, 235
injected faults, 626
input pin noise characterization, 426–430
Institute of Electrical and Electronics Engineers (IEEE), 19
instruction set architecture (ISA), 132
integrated clock gate (ICG), 107–109, 332
integration, physical, 141–143
integration snapshots, 142, 174
intellectual property (IP). See also cell and IP modeling
 backfill cells
 abstracts, 38–39
 gate array cells, 35–36
 model constraints, 39–40
 model properties, 39–40
 overview of, 33–34
 process design kit (PDK), 40–42
 standard cell logic, 36–37
 views, 38–39
 black box IP, 152
design methodology
 built-in self-test (BIST), 134–136
 logic validation, 131–132
 performance model, 132–133
 physical model, 136–140
 test models, 134–136
 wrap test architecture, 134–136
design validation
 logic synthesis model, 133–134
 test patterns, 134–136
firm IP, 32, 208
general-purpose I/Os (GPIOs), 26
hard IP, 30–31, 208
macro-cells, 26–29
macros, hierarchical extraction of, 410–411
soft IP, 32, 207
standard cells, 21–25
suppliers, 20
templates, 21
intelligent fill, 608
interactive mode, 261
interconnect delay calculation, 446–451
interconnect extraction
 coupling capacitance, 435–436
 k-factor multiplier for coupling capacitance, 435–436
 overview of, 433–434
 parasitic netlist reduction, 436–437
 resistivity, 435
interface-level model (ILM), 161, 215
inter-level metal dielectrics, 129
internal cell delay faults, 662–664
International Technology Roadmap for Semiconductors (ITRS), 44
interoperable PDK format (iPDK), 40–41
interposer, 101
inter-symbol interference (ISI), 97–98
inverse equivalent, 304
inverse lithography technology (ILT), 154, 191
inversion
 temperature, 86–87
 weak vs. strong, 61
I/O boundary scans, 209
I/O Buffer Information Specification (IBIS) model, 576, 591
I/O electrical measurement tests, 180
I/O pad circuit design, 563–565
IOGND, 564
Ioff versus Ioff curve, 24–25
IOVDD, 564
IP. See intellectual property (IP)
iPDK (interoperable PDK format), 40–41
ISA (instruction set architecture), 132
ISI (inter-symbol interference), 97–98
isolation values, 341
issues tracking, 187
iterative optimization, 368–369
ITRS (International Technology Roadmap for Semiconductors), 44

J
JEDEC (Joint Electron Device Engineering Council), 565–567, 699
jogs, 122
Joint Electron Device Engineering Council (JEDEC), 565–567

K
k-factor multiplier for coupling capacitance, 435–436
Kirchhoff’s current law (KCL), 513

L
large-scale integration (LSI), 13
laser cuts, 672
latchup, 69–70
definition of, 562–563
I/O pad circuit design, 563–565
qualification, 565–567
late mode, 321–322
launch-from-shift, 660
layer data, 54–59
layout parasitic extraction (LPE)
boundary element method (BEM), 406, 442
cell- and transistor-level parasitic modeling.
See transistor-level parasitic modeling
decoupling capacitance, 431–433
extraction methodology, 409–411
floating random walk (FRW), 406, 442
inductance extraction, 408
interconnect extraction
coupling capacitance, 435–436
k-factor multiplier for coupling capacitance, 435–436
overview of, 433–434
parasitic netlist reduction, 436–437
resistivity, 435
overview of, 405–407
RLC modeling, 439
“selected net” extraction, 438–439
via/contact resistance, 442
layout-dependent effects (LDEs), 136, 414–417
layout-versus-schematic netlist checking (LVS), 150–151, 600, 610–612, 665
device width, representation of, 612–613
error debugging, 616
global power connections, 614–615
miscellaneous layout cells, 615–616
series connection equivalence, 613–614
stop lists, 610
LBIST. See logic built-in self-test (LBIST)
LDD (lightly doped drain), 64
LDEs (layout-dependent effects), 136, 414–417
leakage power improvement at constant performance, 25
LEC (logic equivalency checking) flow, 193–195
LER (line edge roughness), 78
LES. See low-effort synthesis (LES)
LET (linear energy transfer), 581–583
level shifter cells, 341
levelization, 233
LFSR (linear feedback shift register), 646–648
libraries. See cell library models
lightly doped drain (LDD), 64
line edge roughness (LER), 78
line extensions past vias, 395–396
line segment orientations, 53–54
linear energy transfer (LET), 581–583
linear feedback shift register (LFSR), 646–648
lining, 185
lithography process checking (LPC), 154–155, 618–620
local clock distribution, 124–126
local decoupling capacitance, 34
local n-sigma variation models, 461
logging, event trace, 288–289
logic built-in self-test (LBIST), 163–164
compaction, 649–650
hierarchical testing, 658–659
overview of, 645
pattern generation, 645–648
pseudo-random pattern generation (PRPG), 650–652
test compression, 652–658
X-values in fault simulation, 650
logic equivalency, 301–302

Index 723
combinational logic cone analysis, 305–306
logic cone, 194, 301–302, 305–306
logic equivalency checking (LEC) flow, 193–195
logic path depth, 147
logic synthesis
block size and, 203–204
clock tree synthesis (CTS), 350–353
hard IP macros, 353
hardware description language modeling, 319–320, 360–361
high-fan-out net synthesis (HFNS), 335–339
hold timing optimization, 348–349, 362
IP design methodology, 133–134
low-effort synthesis (LES), 204–205, 345, 354–356
design for testability analysis, 356–357
functional simulation, 358–359
path length-based model analysis, 357–358
performance optimization, 343–345
physically aware, 324–325
post-synthesis netlist characteristics, 339–340
power format file, 340–343
power optimization, 345–348
signal repowering
balanced repowering trees, 335–336
buffering networks, 336–339
technology mapping to cell library, 328–335
timing constraints
effective capacitance (C_{eff}), 326–328
generation and verification of, 320–326
total capacitance (C_{total}), 326–328
logical hierarchy. See hierarchy, logical and physical
logical macros, 27–29
logically symmetric inputs, 424
loopback functions, 135
low V_t (LVT) cells, 334–335
low-down victim noise transients, 487–488, 493
low-effort synthesis (LES), 204–205, 345, 354–356
design for testability analysis, 356–357
functional simulation, 358–359
path length-based model analysis, 357–358
low-temperature operating life (LTOL) stress testing, 699
low-V_t (LVT), 344
LPC (lithography process checking), 154–155, 618–620
LPE. See layout parasitic extraction (LPE)
LSI (large-scale integration), 13
LVS. See layout-versus-schematic netlist checking (LVS)
LVT (low V_t) cells, 334–335, 344
M
machine model (MM), 568
macro isolation, 639
macro-cells, 26–29
macros, logical, 27–29
main configuration (DDM), 173–174
Manhattan routing, 122
manufacturing release, preparation for
DRC waivers, 620–621
engineering change orders (ECOs)
design version management, 602–604
equivalency verification, 599–600
overview of, 595–597
physical design updates, 597–598
post-silicon cells for, 600–602
project tapeout planning, 603–604
physical design verification
design rule checking (DRC), 607–610
electrical rule checking (ERC), 616–618
job execution, 622–623
layout-versus-schematic netlist checking (LVS), 610–616
lithography process checking (LPC), 618–620
post-silicon debug
low-temperature operating life (LTOL) stress testing, 699
shmoo plots, 695–698
systematic test fails, 693–695
product qualification
highly accelerated temperature/humidity stress test (HAST), 700
high-temperature operating life (HTOL) testing, 698–699, 703
part sampling, 700–701
thermal cycling qualification testing, 700
tapeout
foundry interface release tapeout options, 678–684
project tapeout planning, 603–604, 689–691
tapeout checklist, 677, 684–689
maps
cell, 203
die thermal, 502, 507
route blockage maps, 22
state, 302–304
synthesis mapping, 32
thermal maps, 253
marching patterns, 675
mask houses, 154
masking factors, 584
maximum likelihood, 181
Maxwell's equations, 405–406
MBIST (memory built-in self-test), 163–164, 209, 638–645
MCMM (multi-corner multi-mode) analysis, 74, 88–89, 322
mean time to failure (MTTF), 529
median time to failure (MTTF), 530, 532
medium-scale integration (MSI), 13
memory array coverage, 292–293
memory array fault models, 674–675
memory built-in self-test (MBIST), 163–164, 209, 638–645
MEOL (middle-end-of-line), 679–680
merge operations, 173
metadata, 171
metal antennas, 396
metal cladding, 435
metal fill, 597–598, 606
metal grains, 536
metal hillocks, 536
metal personalization, 35
metal slots, 148–149
metal spacing, 52
metal trim masks. See cut masks
metal-insulator-metal (MIM), 50, 121, 522
metallization stack, 15, 31, 48–50, 176, 383–387
metal-oxide-semiconductor field-effect transistors (MOSFET), 59
metastability, 112, 130
methodology checks
electrical analysis flow status, 188–189
functional validation status, 187
overview of, 186
physical verification status, 188
tapeout audits, 189–190
testability status, 187–188
methodology flows, 1–6
methodology managers, 142, 165–168, 186, 677
middle-end-of-line (MEOL), 679–680
mid-life kickers, 697–698
migration, process
overview of, 92–93
parameterized layout cells (pCells), 93
relative cell placement, 94
MIM (metal-insulator-metal), 50, 121, 522
MIS (multiple-input switching), 244, 423–424
MISR (multiple-input signature register), 649–652
MM (machine model), 568
mock physical tapeouts, 621
model constraints, 39–40
model managers, 267–268
model order reduction (MOR) algorithms, 489–490
model properties, 39–40
model reduction, 374
model-based lithography process checking (LPC), 155
modeling. See cell and IP modeling; cell-level parasitic modeling; register-transfer level (RTL) modeling
moment matching algorithm, 489–490
moments of the transfer function, 448–451
Monte Carlo sampling, 92–93, 243–244, 255
Moore’s law, 44
MOR (model order reduction) algorithms, 489–490
MPW (multi-project wafer), 44
MSI (medium-scale integration), 13
MTTF (mean time to failure), 529
MTTF (median time to failure), 530, 532
multi-bit errors, 584–589
circuit optimizations, 585–587
process optimizations, 584–589
system design optimizations, 587–589
multi-corner multi-mode (MCMM) analysis, 74, 88–89, 322
multi-corner optimization, 401
multi-cycle paths, 322, 458
multipatterning, 54–59, 376–377
cyclic decomposition error, 56
tapeout options, 678–679
multiple-input signature register (MISR), 649–652
multiple-input switching (MIS), 244, 423–424
multiplexing logic (MUX) cells, 329–330
multi-project wafer (MPW), 44
MUX (multiplexing logic) cells, 329–330
N
names, cell instance, 339–340
natural yield, 645
NBTI (negative bias temperature instability), 252
NDR (non-default rule), 114
negative bias temperature instability (NBTI), 252
netlists, 8
definition of, 234–235
ECO mode netlist updates, 145–148
power and ground netlist (PG netlist), 151, 614–615
schematic/circuit, 140
nFET devices, 59, 251–253, 497
NIC (noise immunity curve), 479, 493
NLDM (Non-Linear Delay Model) tables, 419–421, 443
nodes
half, 46
nodal analysis formulation, 513
node transition faults, 662
process, 44–45
process variants, 47–48
raised source/drain, 67
second sourcing, 47
shrink, 46
noise analysis
 aggressors, 477
 aggressor/victim model, 476–480
 block-level, 493–494
cell input pin noise sensitivity, 247–249
detailed routing and, 391
direct aggressor coupling assumption, 477, 493
 functional exclusions, 485–486
global net design planning and, 494
 introduction to, 475–476
 IP characterization data, 494
 moment matching algorithm, 489–490
noise direction models, 485
noise immunity curve (NIC), 479, 493
noise impact on delay
 I*R voltage drop effect, 483–484
 modeling, 481
 static timing analysis, 482–483
 parallel run length, 475–476
 sensitivity windows, 487
 small aggressor considerations, 485
 template-based model, 490–491
timing windows, 479, 482, 486–488
 victim low-down and high-up noise transients, 487–488, 493
 victim nets, 477, 488–491
 noise direction models, 485
 noise immunity curve (NIC), 479, 493
 non-blocking, 227
 non-default rule (NDR), 114
Non-Linear Delay Model (NLDL) tables, 419–421, 443
 non-orthogonal routes, 394–395
 non-recurring expense (NRE), 42–44, 689–690
 n-Sigma characterization, 241–245, 255
nucleation, 535
n-well, 59–60
O
 OASIS (Open Artwork System Interchange Standard), 19, 683
 on-chip variation (OCV), 243, 630
 OPAL (Open Pattern Analysis for Layout), 191
 OPC (optical proximity correction), 618
 Open Artwork System Interchange Standard (OASIS), 19, 683
 Open Pattern Analysis for Layout (OPAL), 191
 operating modes, 86–89
 optical proximity correction (OPC), 618
 optimizations. See also soft error rate (SER) design, 185–186
 IP design methodology, 132–133
 iterative, 368–369
 logic synthesis, 343–345
 hold timing optimization, 348–349, 362
 performance optimization, 343–345
 power format file, 340–343
 power optimization, 345–348
 routing, 387–389
 design-for-yield (DFY) optimizations, 395–399
 electrical analysis optimizations, 389–393
 multi-corner optimization, 401
 non-orthogonal routes, 394–395
 route segment and via topologies, 388–389
 orientation, cell, 240
 package substrate data release, 692
 out-of-range delay calculation, 422
 outputs, registered, 473
 outsourced assembly and test (OSAT), 18, 692
 overdrive, 422–423
 overflows, 33, 292–293, 382
 overlay cell, 161
 P
 package substrate data release, 692
 parallel run length (PRL), 52, 475–476
 parameter drift, 251–253
 parameter sampling, 255
 parameterized layout cells (pCells), 92–93
 parametric faults and tests, 629–631
 parasitic extraction. See layout parasitic extraction (LPE)
 parasitic interconnect estimation, 366–367
 parasitic netlist reduction, 436–437
 part sampling, 700–701
 partial inductance, 515
 partition-level model for dynamic I*R analysis, 519–521
 partners, trusted, 136
 path coverage, 293
 path delay faults, 662
 path length-based model analysis, 357–358
 path-based timing analysis, 472
 paths, false. See false paths
 paths, multi-cycle, 458
 pattern diagnostics, 665–666
power, performance, and area (PPA), 14–15
power abstract, 97
power analysis
 cell model characterization data, 245–247
design-for-power feedback from, 504–505
device self-heat models, 502–504
die thermal maps, 502, 507
global clock power dissipation, 501–502
hot spots, 496
introduction to, 495–497
IP power models, 501–502
peak power calculation, 500–501
power dissipation, 296–297, 497–500, 507
power stressmark testcases, 496, 506
PVT corners, 500, 503–504, 506
summary of, 505–506
switching factors, 495
temperature inversion, 501
power and ground (P/G) distribution rails
ASIC (application-specific integrated circuit)
direct release, 510–512
conservative versus aggressive P/G grid design, 510
dynamic P/G voltage drop analysis, 513–526
sleepFET devices, 512
static I*R rail analysis, 512–513
power distribution network (PDN), 34, 175–177, 509.
See also power rail voltage drop analysis
power domain, 105–107, 206–207
power format description, 40
power format file, 340–343
power grid, 119–122
 power grid admittance matrix, 516–519
 power grid conductance matrix, 516–519
power intent files, 104, 340–343
power management integrated circuit (PMIC), 101
power map abstract, 96
power optimization
detailed routing and, 391–392
ECO mode netlist updates, 145–148
logic synthesis, 345–348
power rail electromigration analysis (powerEM), 545–548
power rail voltage drop analysis, 509
ASIC (application-specific integrated circuit)
direct release, 510–512
conservative versus aggressive P/G grid design, 510
dynamic P/G voltage drop analysis
 analysis results, 521–522
global and partition-level models for, 519–521
global power delivery frequency response, 523
matrix solution, 516–519
P/G rail capacitance, 514–515
simultaneous switching output (SSO) analysis, 523–526
sleepFET devices, 512
static I*R rail analysis, 512–513
power state sequence validation, 266
powerEM, 545–548
power-gating design, 365
power-state leakage, 499
PPA (power, performance, and area), 14–15
pragmas, 133
preprocessors, 361
pressure cooker test (PCT), 700
PRIMA calculation, 375
printed circuit boards (PCBs), 15–16
PRL (parallel run length), 52, 475–476
process, voltage, and temperature (PVT) corners, 86–89, 321, 500, 503–504, 506
process design kit (PDK), 18, 40–42
process migration, 92–93
parameterized layout cells (pCells), 93
relative cell placement, 94
process nodes, 44–45
process retargeting, 92–93
parameterized layout cells (pCells), 93
relative cell placement, 94
process variation-aware design
 array design, 91–92
 best-case (BC) process, 89–90
 high-sigma Monte Carlo, 92–93
 worst-case (WC) process, 89–90
process windows, 620
product qualification
 highly accelerated temperature/humidity stress test (HAST), 700
 high-temperature operating life (HTOL) testing, 698–699, 703
 part sampling, 700–701
 thermal cycling qualification testing, 700
 production test patterns, validation of, 284–288
 project scoreboards, 677
Property Specification Language (PSL), 265, 299
prototyping (simulation acceleration), 272–274, 299
PRPG (pseudo-random testcase pattern generator), 282–283, 650–652
pseudo-logical gate, 664
pseudo-random pattern generation (PRPG), 282–283, 632, 650–652
PSL (Property Specification Language), 265, 299
PSRO (performance-sensing ring oscillator), 525–526, 629, 697
PSS (Portable Test and Stimulus Standard), 299
PVT (process, voltage, and temperature) corners, 86–89, 321, 500, 503–504, 506
Q
Qcrit, 580–581
quality of results (QoR), 185, 191
R
raised source/drain nodes, 67
random pattern resistant fault, 648
random sampling, 255
random testcase generation, 263–264
range, 582
RAT (required arrival time), 455
RDL (redistribution layer), 395
RDRs (recommended design rules), 152–153
recognition operations, 409
recommended design rules (RDRs), 152–153
redistribution layer (RDL), 395
redundant vias, 396
reference EDA tools, 40–41
reference flows, 168–169
register files, 198
registered input/output pins, 473
register-transfer level (RTL) modeling, 133, 232–234, 302–306
design optimization, 185–186
linting, 185
netlist signal name correspondence, 339–340
power stressmark testcases, 496, 506
PVT corners, 86–89, 321, 500, 503–504, 506
RTL combination model equivalency, 301–302
of scans, 285–288
simulation model statement coverage
analog mixed-signal coverage, 294–295
bad machine path coverage, 294
expression and conditional coverage, 291–292
finite state machine (FSM) coverage, 294
memory array coverage, 292–293
model coverage analysis, 290–291
path coverage, 293
signal toggle activity, 291
strengths and weaknesses of, 295–296
regression, 281
relative cell placement, 27, 94, 200–201, 325
release flow management, 165–168
release gate, 263
reliability function, 531
Rent’s Rule, 203, 219
reporting, 460–461, 472–473
required arrival time (RAT), 455
required time, 147
reset, 179, 265–266
resistance increase, 543
resistive fails, 557
resistive Joule heating, 540–541
resistive shielding, 326, 375
resolution function, 227
resource planning, 281–284
return current loop, 439
ring-oscillator frequency variation, 102
rip-up and re-route, 141–142, 399
river routes, 394–395
RLC modeling, 439
robust design, 529
routing, 122, 373–374
blockages, 137, 377
C effective model reduction for delay calculation, 374–375
congestion, 33
cut masks, 378
design-for-yield (DFY) optimizations, 395–399
antenna diode insertion, 396–399
line extensions past vias, 395–396
redundant vias, 396
wire spreading, 395
detailed, 378–383
device-level placement, 400–401
DRC rule complexity, 375–376
electrical analysis optimizations, 389–393
electromigration, 392–393
noise optimization, 391
power optimization, 391–392
timing optimization, 390
estimates, 383
global, 122–124, 378–383
hold time fixes, 401
Manhattan, 122
metallization stack, 383–387
multi-corner optimization, 401
multipatterning, 376–377
non-default rule (NDR), 114
non-orthogonal routes, 394–395
overflows, 382
pillars, 377
rip-up and re-route, 399
route blockage maps, 22
route segment and via topologies, 387–389
“balanced” routing, 388
route shielding, 388
via optimizations, 388–389
topology of, 388–389
via pillars, 389
route segments, 387–389
router shielding, 388
via optimizations, 388–389
via pillars, 389
route segments, 387–389
router shielding, 388
via optimizations, 388–389
via pillars, 389
track jobs, 122
RTL. See register-transfer level (RTL) modeling runset, 40, 607

S
SADP (self-aligned, double-patterning), 57–58
SAIF (Switching Activity Interchange Format), 299
SAQP (self-aligned, quad-patterning), 59, 130
scaled-sigma sampling, 255
scaling factor, 44–45
scan boundary, 180, 635
RTL modeling of, 285–288
scan chains, 179
scan dumps, 695
scanning electron microscopy (SEM), 703
schematic/circuit netlist, 140
SCORE (silicon-controlled rectifier), 69–70
scribe channels, 124
SDKs (software development kits), 30
second sourcing, 47
second-pass design, 35, 43
segments, route, 387–389
“selected net” extraction, 438–439
self-aligned, double-patterning (SADP), 57–58
self-aligned, quad-patterning (SAQP), 59, 130
self-aligned contacts, 130
self-heating, 82–83, 253, 502–504
SEM (scanning electron microscopy), 703
Seidenberg Equipment and Materials International (SEMI), 19
semiconductor foundries, 18. See also fabrication
technology
semi-custom designs, 17
sensitivity analysis, 181, 487
sequential cells, modeling for, 249–251
sequential circuit characterization, 424–425
sequential logic equivalency, 307–309
SER. See soft error rate (SER)
serial shift-register scan chain, 632
series connection equivalence, 613–614
setup and hold time definition, 38, 130
SEU (single-event upset), 70–71
severity parameters, 238
shallow trench oxide isolation (STI), 59–60
shielding
resistive, 326, 375
route, 388
shipped project quality level (SPQL), 164–165
shmoo plots, 695–698
short channel Vt effect, 347
shrink nodes, 46
shuttles, 44
sidewall coupling capacitance, 374–375
sidewall spacers, 57
signal interconnect electromigration analysis (sigEM), 548–555
signal repowering
balanced repowering trees, 335–336
buffering networks, 336–339
signal toggle activity, 291
signature registers, 209–210
signatures, 641
signoff flow, 42
definition of, 149–150
design rule checking (DRC), 152
design-for-manufacturability (DFM), 153–156
chemical-mechanical polishing (CMP)
analysis, 155–156
lithography process checking (LPC), 154–155
design-for-yield (DFY), 153
DRC errors/waivers, 156–157
EDA DFM services, 156
electrical analysis flows for, 160–163
electrical rule checking (ERC), 157–160
electrostatic discharge (ESD) protection,
158–159
voltage-dependent design rule checks,
158–160
layout-versus-schematic netlist checking (LVS),
150–151
recommended design rules (RDRs), 152–153
test analysis for, 163–165
silicon-controlled rectifier (SCR), 69–70
silicon-on-insulator processes, 253
simulation. See also fault diagnosis; testbenches
behavioral co-simulation, 275
event trace logging, 288–289
hardware-accelerated, 268
emulation, 268–272, 274
prototyping, 272–274
Portable Test and Stimulus Standard (PSS), 299
resource planning, 281–284
software
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>delay-based functional simulation, 474</td>
</tr>
<tr>
<td>event-driven, 259–261</td>
</tr>
<tr>
<td>HDL source/configuration cross-reference, 262</td>
</tr>
<tr>
<td>interactive mode, 261</td>
</tr>
<tr>
<td>waveform display, 261</td>
</tr>
<tr>
<td>switch-level, 276</td>
</tr>
<tr>
<td>symbolic, 277–281</td>
</tr>
<tr>
<td>throughput, 281–284</td>
</tr>
<tr>
<td>time, 225–226</td>
</tr>
<tr>
<td>simulation model statement coverage</td>
</tr>
<tr>
<td>analog mixed-signal coverage, 294–295</td>
</tr>
<tr>
<td>bad machine path coverage, 294</td>
</tr>
<tr>
<td>expression and conditional coverage, 291–292</td>
</tr>
<tr>
<td>finite state machine (FSM) coverage, 294</td>
</tr>
<tr>
<td>memory array coverage, 292–293</td>
</tr>
<tr>
<td>model coverage analysis, 290–291</td>
</tr>
<tr>
<td>path coverage, 293</td>
</tr>
<tr>
<td>signal toggle activity, 291</td>
</tr>
<tr>
<td>strengths and weaknesses of, 295–296</td>
</tr>
<tr>
<td>Simulation Program with Integrated Circuit Emphasis (SPICE), 19</td>
</tr>
<tr>
<td>simultaneous switching output (SSO), 98, 523–526</td>
</tr>
<tr>
<td>sinkless pins, 143</td>
</tr>
<tr>
<td>skew management, 124–126</td>
</tr>
<tr>
<td>slack, timing, 454–457</td>
</tr>
<tr>
<td>sleep mode, 87</td>
</tr>
<tr>
<td>sleepFET devices, 106, 341</td>
</tr>
<tr>
<td>I*R voltage drop effect, 559–560</td>
</tr>
<tr>
<td>power rail voltage drop analysis, 512</td>
</tr>
<tr>
<td>sleep-to-active state transition, 561–562</td>
</tr>
<tr>
<td>substrate noise injection, 562–563</td>
</tr>
<tr>
<td>sleep-to-active state transition, 561–562</td>
</tr>
<tr>
<td>slots, 148–149</td>
</tr>
<tr>
<td>small aggressors, 485</td>
</tr>
<tr>
<td>small-scale integration (SSI), 13</td>
</tr>
<tr>
<td>SMO (source-mask optimization), 618</td>
</tr>
<tr>
<td>SMT (surface-mount technology), 94</td>
</tr>
<tr>
<td>snapback mode, 574</td>
</tr>
<tr>
<td>snapshots, 142, 174</td>
</tr>
<tr>
<td>SoC. See System-on-Chip (SoC)</td>
</tr>
<tr>
<td>soft error rate (SER), 69–70, 163, 529–530, 576–577</td>
</tr>
<tr>
<td>alpha particles, 577–578</td>
</tr>
<tr>
<td>circuit optimizations, 585–587</td>
</tr>
<tr>
<td>combinational logic, 584</td>
</tr>
<tr>
<td>cosmic rays, 578</td>
</tr>
<tr>
<td>flops, 584</td>
</tr>
<tr>
<td>linear energy transfer (LET), 581–583</td>
</tr>
<tr>
<td>multi-bit errors, 584–589</td>
</tr>
<tr>
<td>circuit optimizations, 585–587</td>
</tr>
<tr>
<td>process optimizations, 584–589</td>
</tr>
<tr>
<td>system design optimizations, 587–589</td>
</tr>
<tr>
<td>process optimizations, 584–589</td>
</tr>
<tr>
<td>Q_{crit}, 580–581</td>
</tr>
<tr>
<td>SER diagnosis, 579–580</td>
</tr>
<tr>
<td>system design optimizations, 587–589</td>
</tr>
<tr>
<td>soft fuses, 182</td>
</tr>
<tr>
<td>soft IP, 32, 207</td>
</tr>
<tr>
<td>software development kits (SDKs), 30</td>
</tr>
<tr>
<td>software simulation</td>
</tr>
<tr>
<td>delay-based functional simulation, 474</td>
</tr>
<tr>
<td>event-driven, 259–261</td>
</tr>
<tr>
<td>HDL source/configuration cross-reference, 262</td>
</tr>
<tr>
<td>interactive mode, 261</td>
</tr>
<tr>
<td>waveform display, 261</td>
</tr>
<tr>
<td>sourceless pins, 143</td>
</tr>
<tr>
<td>source-mask optimization (SMO), 618</td>
</tr>
<tr>
<td>spacer dielectric, 67–71</td>
</tr>
<tr>
<td>spare logic cells, 600–602</td>
</tr>
<tr>
<td>SPEF (Standard Parasitic Exchange Format), 19</td>
</tr>
<tr>
<td>SPICE (Simulation Program with Integrated Circuit Emphasis), 19</td>
</tr>
<tr>
<td>split lot processing, 43</td>
</tr>
<tr>
<td>SPQL (shipped project quality level), 164–165</td>
</tr>
<tr>
<td>SRAs (sub-resolution assist features), 618</td>
</tr>
<tr>
<td>SRAM bit cell design, 197</td>
</tr>
<tr>
<td>array compilers, 197</td>
</tr>
<tr>
<td>methodology flows, 197–198</td>
</tr>
<tr>
<td>register files, 198</td>
</tr>
<tr>
<td>SSI (small-scale integration), 13</td>
</tr>
<tr>
<td>SSO (simultaneous switching output), 98, 523–526</td>
</tr>
<tr>
<td>STA. See static timing analysis (STA)</td>
</tr>
<tr>
<td>stacked via topologies, 375–376</td>
</tr>
<tr>
<td>standard cells</td>
</tr>
<tr>
<td>drive strength, 22–24</td>
</tr>
<tr>
<td>layout of, 21–22</td>
</tr>
<tr>
<td>logic, 36–37</td>
</tr>
<tr>
<td>threshold voltage, 24–25</td>
</tr>
<tr>
<td>Standard Parasitic Exchange Format (SPEF), 19</td>
</tr>
<tr>
<td>standard V_t (SVT) cells, 334–335</td>
</tr>
<tr>
<td>state mapping, 302–304</td>
</tr>
<tr>
<td>state-dependent delays, 420–421, 459</td>
</tr>
<tr>
<td>statements</td>
</tr>
<tr>
<td>assertion, 132, 238–239</td>
</tr>
<tr>
<td>immediate assignment, 225</td>
</tr>
<tr>
<td>wait, 223</td>
</tr>
<tr>
<td>states</td>
</tr>
<tr>
<td>inferred, 229–230</td>
</tr>
<tr>
<td>trap, 252</td>
</tr>
<tr>
<td>static I*R power grid voltage analysis, 483–484, 512–513</td>
</tr>
<tr>
<td>static leakage tests, 180</td>
</tr>
<tr>
<td>static noise analysis. See noise analysis</td>
</tr>
</tbody>
</table>
static timing analysis (STA). See timing, static timing analysis (STA)
Steiner tree route, 122, 379
stepping window, 608
STI (shallow trench oxide isolation), 59–60
stop lists, 610
stopping power, 581
straggle, 582
streamed layout data, 683
stress testing
 burn-in, 104, 208–211, 625–626, 703
 highly accelerated temperature/humidity stress test (HAST), 700
 high-temperature operating life (HTOL), 698–699, 703
 low-temperature operating life (LTOL), 699
strong inversion, 61
structural cell-level netlists, 319
stuck-at fault, 241, 626–629
sub-resolution assist features (SRAFs), 618
substrate noise injection, 562–563
 analog IP tests, 563–564
 I/O pad circuit design, 563–565
 latchup analysis, 562–563
 latchup qualification, 565–567
subthreshold leakage currents, 62–63
 subthreshold current sensors, 102
 subthreshold slope, 72, 76–77, 79–80
sum of failure rates, 534–535
surface-mount technology (SMT), 94
survival function, 531, 533
sustaining voltage, 564
SVT (standard Vt) cells, 334–335
swaps, cell, 203
switching activity factor estimates, 296–297
Switching Activity Interchange Format (SAIF), 299
switching factors, 495
switch-level simulation, 276
symbolic simulation, 277–281
synthesis, 8
 clock tree synthesis (CTS), 336
 high-fan-out net synthesis (HFNS), 335–339
 logic. See logic synthesis
 mapping, 32
 pragmas, 133
 test insertion, 134
System Verilog, 19, 32
systematic test fails, 693–695
SystemC, 254
System-on-Chip (SoC), 17–21, 212–214.
 See also design implementation; electrical analysis; formal equivalency verification
error capture/recovery, 179
hierarchy, logical and physical. See hierarchy, logical and physical
physical design methodology
 chip finishing, 148–149
 ECO mode, 143–148
 floorplanning, 141
 physical integration, 141–143
 signoff flow, 149–165
reset, 179
Tapeout, 42–44
foundry interface release tapeout options
 back-end-of-line (BEOL) layer data, 679–680
 cut metal masks, 682–684
 FinFET data, 681–682
 front-end-of-line (FEOL) layer data, 679–680
 multipatterning decomposition color assignment, 678–679
 tapeout data volume, 680–681
 mock physical tapeouts, 621
 planning, 603–604
 project tapeout planning, 603–604, 689–691
 tapeout audits, 189–190
 tapeout checklist, 677
 overview of, 684–685
 post-tapeout engineering change orders (ECOs), 688–689
 tapeout waivers, 685–688
 tapeout signoff, 42
TAT (turnaround time), 600
techfiles, 40
technology mapping to cell library, 328–335
TEM (transmission electron microscopy), 703
temperature inversion, 86–87, 501
temperature sensing, 102–104
template (standard cell design image), 21
template-based model, 21
template-based noise analysis, 490–491
test compression, 209–210, 652–658
test escape, 164–165, 625
test insertion, 134
test models, 134–136, 235–236
test modes, 88
test pattern diagnostics
 automated test pattern generation (ATPG) limitations, 208–211
 IP design methodology, 134–136
 ordering, 179–182
 overview of, 197
 pattern generation, 179–182
test syndrome, 669

Testability, design for. See Design for Testability (DFT)

Testbenches, 30, 346

definition of, 259–260

Pseudo-random pattern generation (PRPG), 282–283

Stimulus development

assertion-based validation (ABV), 264–265

bad machine error injection testcases, 267
directed testcases, 263
model managers, 267–268

Power state sequence validation, 266

Power supply sequence validation, 266

random testcase generation, 263–264

direct validation, 265–266

transaction-based, 262

uninitialized signal propagation, 265–266

testcases

assertion-based validation (ABV), 264–265

bad machine error injection testcases, 267
definition of, 259–260
directed, 263
error injection testcases, 267
model managers, 267–268

Power state sequence validation, 266

Power supply sequence validation, 266

Pseudo-random pattern generation (PRPG), 282–283

random testcase generation, 263–264
direct validation, 265–266

transaction-based, 262

uninitialized signal propagation, 265–266

test-mode equivalence verification, 309–310

testpoints, 302
text analysis, 163–165

Thermal cycling qualification testing, 700

thermal gradients, 535

Thermal hot spots, 206–207

Thermal Interface Material layers (TIM), 502
thermal interface material (TIM), 96, 183

thermal management, 101–104

thermal maps, 253, 502, 507

thermal resistance, 82–83

thermal sensing, 206–207

thermal shock, 700

thermomigration, 535

thermsense, 102, 496

thick gate oxide devices, 26, 48

three-dimensional (3D) field-solver algorithms, 405–406

threshold voltage, 24–25, 67

throughput, 281–284

TIM (thermal interface material), 96, 183

time borrowing, 251

time to Profit (TTP), 691

timing analysis.

block-level timing constraint budgeting, 473–474
cell delay calculation, 241–245, 443–446
delay-based functional simulation, 468, 474
derating delay multipliers, 451, 462–466
electrical design checks, 452–453

graph- versus path-based, 472

interconnect delay calculation, 446–451

static timing analysis (STA), 424, 453–454, 482–483
delay adjust, 458–459
delay-based timing verification, 467–469
false paths, 458–459, 472
inertial signal delay, 468–469

pin constraints, 457

reporting, 460–461, 472–473
timing analysis modes, 459–460
timing “don’t care,” 458–459
timing slack, 454–457

transport signal delay, 468–469

variation-based timing, 461–466

timing constraints, 361, 457

effective capacitance \(C_{\text{eff}}\), 326–328

generation and verification of, 320–326
total capacitance \(C_{\text{total}}\), 326–328

timing optimization

buffering networks, 336–339
detailed routing and, 390

ECO mode netlist updates, 145–148

hold timing optimization, 348–349, 362
timing slack, 24, 335, 454–457

total negative slack (TNS), 188, 461

worst negative slack (WNS), 188, 461
timing windows, 479, 482–483, 486–488

TLP (transmission line pulse), 568–569

TMR (triple modular redundancy), 588

TNS (total negative slack), 188, 344–345, 461
tool evaluation, 169–170, 191–192

“top off” method, 652
top-level flat analysis, 214–216
total capacitance \(C_{\text{total}}\), 326–328

total negative slack (TNS), 188, 344–345, 461

trace files, 233, 298–299
trailblazing, 11, 170–171, 191–192

transaction-based testcases, 262

transfer function, 448–451

transfer gates, 329–330

transistor fingers, 22–23

transistor-level parasitic modeling, 411
cell characterization, 419–422
cell extraction, 411–413
cell power characterization, 430–431
extraction corners, 417–419
input pin noise characterization, 426–430
layout-dependent effects (LDEs), 414–417
logically symmetric inputs, 424
multiple-input switching (MIS), 423–424
out-of-range delay calculation, 422
sequential circuit characterization, 424–425
voltage values, 422–423
transition time, 61
transmission electron microscopy (TEM), 703
transmission line pulse (TLP), 568–569
transport signal delay, 468–469
trap states, 252
trench isolation, 585
triggering input, 69–70
triple modular redundancy (TMR), 588
triple-well process option, 49, 563
trusted partners, 136
truth tables, 360–361
TTP (Time to Profit), 691
turnaround time (TAT), 600
twin-well process, 585

U
UDP (user-defined primitive), 360
ultra-low-Vt (ULVT) cells, 344
unateness property, 454
underfill, 694
underflow, 292–293
undetectable faults, 631
unidirectional DC current density (JDC), 539–540
uninitialized signal propagation, 265–266
United States Department of Defense, 699
useful clock skew, 351
user-defined primitive (UDP), 360
U-value propagation, 185

V
vacancy, 535
Value Change Dump (VCD), 298
variation-based timing, 461–466
vectored data, 346
vectorless data, 346
Verilog, 19
very-large-scale integration (VLSI), 13–14
VHSIC Hardware Description Language (VHDL), 19, 32
via optimizations, 388–389
via pillars, 153, 389
via resistance, 442
via/contact resistance, 442
victim nets, 477, 488–491. See also noise analysis
viewports, 267
views, cell, 38–39
virtual filesystem interfaces, 171
VLSI (very-large-scale integration), 13–14
voids, 535
voltage. See electrical analysis
voltage regulator models (VRMs), 266
voltage-dependent design rule checks, 159–160

W
wafer probe-level testing, 44
wait statements, 223
waivers
DRC, 156–157, 620–621
tapeout, 685–688
waveform display, 261
WC (worst-case) process, 87, 89–90, 243
weak inversion, 61
wearout region, 530, 533
wire length, estimation of, 370–371
wire spreading, 395
wire temperature increase due to resistive Joule heating (JRMS), 540–541
wireload per fan-out estimates, 325
wiring tracks, 9
worst negative slack (WNS), 188, 344–345, 461
worst-case (WC) process, 87, 89–90, 243, 255
wrap test, 134–136, 163–164, 209, 635
wrong-way segments, 122, 380

X–Y–Z
yield, design for. See design-for-yield (DFY)
yield with repair, 645