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Praise for Managing the Unmanageable: Rules,  
Tools, and Insights for Managing Software People 
and Teams

Over 50 five-star reviews on Amazon.com (U.S.)!

“Lichty and Mantle have assembled a guide that will help you hire, motivate, and 
mentor a software development team that functions at the highest level. Their rules 
of thumb and coaching advice form a great blueprint for new and experienced 
software engineering managers alike.”

—TOM CONRAD, CTO, Pandora

“I wish I’d had this material available years ago. I see lots and lots of ‘meat’ in here 
that I’ll use over and over again as I try to become a better manager. The writing 
style is right on, and I love the personal anecdotes.”

—STEVE JOHNSON, Senior Architect, Inlet Digital

“Managing the Unmanageable is a well-written, must-have reference book for 
anyone serious about building sustainable software teams that consistently deliver 
high-quality solutions that meet expectations. It is loaded with incredibly useful and 
practical tips and tricks to deal with real-life situations commonly encountered by 
software managers anywhere in the world. It tearlessly peels back the onion layers 
of the process of managing software developers—whether a handful of co-located 
programmers or thousands dispersed across the world—through a balance of 
battle-tested approaches and keen understanding of the various personalities and 
backgrounds of software team members. Finally, a book on software engineering that 
focuses on the manager’s dilemma of making a team of programmers work efficiently 
together. Every single software manager should have it on their bookshelf.”

—PHAC LE TUAN, CTO, Reepeet, and CEO, PaceWorks

“Becoming a great engineering leader requires more than technical know-how; Ron and 
Mickey’s book provides a practical cookbook for the important softer side of engineering 
leadership, which can be applied to any software development organization.”

—PAUL MELMON, VP of Engineering, NICE Systems

http://Amazon.com


“EXCELLENT. Well-structured, logical, filled with great personal color and many 
little gems. You guys have done a great job here. Terrific balance between theory and 
practice, rich with info.”

—JOE KLEINSCHMIDT, CEO, Obindo, former CTO, Leverage Software

“I started reading the nuggets section and it took fewer than four pages to improve 
my thinking. What struck me about the nuggets was that I could sense the genesis 
of this book: two masters of their craft learning from each other. Most books feel 
like a teacher describing a sterile version of what ‘ought to be done’ that leaves you 
wondering, ‘Will this work in the “real world”?’ Reading the nuggets felt like the 
sort of guidance that I would get from a trusted mentora—a mentor who I not only 
trusted, but one who trusted me to take the wisdom, understand its limits, and apply 
it correctly. It’s concentrated like a Reader’s Digest for technical management 
wisdom.”

—MIKE FAUZY, CTO, FauzyLogic

“Managing the Unmanageable is a great collection of sometimes-obvious and 
sometimes-not-obvious guidance for software managers. I wish that I had had 
this book when I first started managing teams, and it still is illuminating. For 
programmers who step into management, the hardest thing is to learn the soft skills. 
Ron and Mickey do a great job of illustrating not just the why but also the how.”

—BILL HOFMANN, VP of Engineering, Klamr.to

“Unique dialogue around the human aspects of software development that is very 
much overdue.”

—MARK FRIEDMAN, CEO and founder, Greenaxle Solutions

“The advice provided herein about what to do on a new employee’s first day of work 
seems unique and very helpful!”

—STEVEN FLANNES, PhD, author, People Skills 3.0: Next-Generation Leadership  
Skills for Project Success

“I just wish that I had this book when I started as a first-time manager five 
years ago!”

—KINNAR VORA, VP, Product Development and Operations, Sequoia Retail Systems



“The book provides insight to a unique group of people: programmers. Companies 
around the planet have struggled and are still struggling with how to best develop 
software products. Managing programmers is at the heart of developing software 
products successfully. Many project and organization leaders are ill-equipped to 
deal with programmers and software development in general. I think this book can 
bring insight to leaders of software organizations and help them understand and 
even get inside the head of programmers and therefore be more effective leaders.”

—MICHAEL MAITLAND, CEO (geek-in-charge), WhereTheGeeksRoam

“I have enjoyed reading the book very much, and I wish I had it ten years ago—
probably would have saved me from making certain mistakes. A lot of what I read 
is not new to me, but I have never seen so much relevant material assembled in one 
place. This book was just what I needed. I already feel that I’ve benefited from it.”

—DAVID VYDRA, Continuous Delivery Advocate and Software Craftsman, TestDriven.com

“I found the book very helpful. It heightened my sensitivity to my staff, even having 
managed for decades.”

—MARGO KANNENBERG, Assistant Director, Application Development, HighWire Press

“Mickey was my manager in my first role as programming manager. His real-world, 
pragmatic, hands-on guidance was a profound positive influence on everything I’ve 
ever done with management since. His is still my go-to advice as I develop and 
mentor managers. I’m pleased that he’s taken the time to canonize it in this book so 
that many more new and experienced managers can benefit from it.”

—H. B. SIEGEL, Director, Amazon.com

“Mantle and Lichty cut through abstract principles and present proven techniques 
that can increase the effectiveness of software development organizations. This 
book deserves a place on the real (or virtual) bookshelf of every software manager 
who wants to build an outstanding development team and create a culture where 
everyone enjoys coming to work. It’s especially valuable in telling managers what 
not to do, and how to address the inevitable problems that affect all organizations.”

—ANTHONY I. (TONY) WASSERMAN, Professor of Software Management Practice, 
Carnegie Mellon University—Silicon Valley; ACM Fellow; and IEEE Life Fellow

http://TestDriven.com
http://Amazon.com


“Mickey was there on Long Island in the mid-1970s when the group now known as 
Pixar first formed, delivering successful software products then, and was still doing 
so, as manager, almost two decades later at Pixar itself. He knows what he’s talking 
about.”

—ALVY RAY SMITH, cofounder of Pixar

“Ron and Mickey clearly understand how important it is for programmers to work 
on projects that make a difference and how essential it is for managers to create and 
foster a unique and innovative culture.”

—KATHY BALDANZA, VPE, Perforce Software

“This book is a treasure trove of real-world experiences that will make you a more 
effective software development manager.”

—CHRIS RICHARDSON, founder of the original CloudFoundry.com, and author of POJOs in Action

http://CloudFoundry.com
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To programmers everywhere, and particularly those  
I’ve managed, who really make things happen  

but rarely wind up in the limelight

—Mickey

To my children, Jean and Mike, who provided  
my best management training and who remain  

a source of insight, inspiration, and delight

—Ron
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Preface

All too often, software development is deemed unmanageable. The 
news abounds with stories of software projects that have run ridiculously 
over schedule and budget. While strides made in formalizing the practice 
of software development have improved the situation, they have not solved 
the problem. Given that our craft has amassed over 60 years of experience 
and our industry has spent enormous numbers of hours and dollars/yen/
won/yuan/rupees/euros trying to bring this discipline under control, how 
can it be that software development remains so unmanageable?

In this book we answer that persistent question with a simple obser-
vation: You first must learn the craft of managing programmers and soft-
ware teams. That is, you must learn to understand your people—how to 
hire them, motivate them, and lead them to develop and deliver great prod-
ucts. Based on our own experience, and that of effective managers we have 
known in virtually every type of software business, we aim here to show 
you how. Combined, we have spent over 80 years working on and deliver-
ing a wide spectrum of software programs and projects—over 65 of those 
years managing the programmers and teams that delivered them. We hope 
that this book will help you avoid many of the mistakes we have made, 
as well as leverage for your own success the insights and skills we have 
learned.

Early in our careers as programmers, we both read Fred Brooks’s 1975 
book The Mythical Man-Month. An instant classic among programmers, it 
is full of wisdom still relevant today and is widely regarded as a defini-
tive work in the art of software management. Like many others who read it,  
we found the most memorable parts to be Brooks’s one-line nuggets of 
wisdom, such as “Adding manpower to a late software project makes it later.” 
We can’t recall the number of times we’ve used this quote when managing 
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software projects. The desire to find other such memorable rules of thumb1 
was the inspiration and driving force behind the writing of this book.

We were already seasoned managers when, as friends, we began meeting 
regularly to compare notes on our current work and software development 
challenges. We found ourselves getting help from each other and sharing 
an occasional nugget of wisdom or rule of thumb, which we would then 
take back to our jobs, integrate into our management approach, and share 
with our teams. We gleaned rules and nuggets from the books we read and 
the Web sites we surfed, but we never found a collection of them specific 
to managing programmers and teams developing software. Eventually our 
own desire to have such a collection led to our decision to write this book.

A broader perspective emerged as we began writing and talked to man-
agers, directors, and CTOs. It became clear that we could draw from the 
breadth of our industry experience to offer considerably more than the rules 
of thumb we’d collected. We could also share the tools2 we’d developed and 
the insights we’d gleaned from working in start-ups and in organizations of 
every size.

There are certainly areas we haven’t touched in our careers—domains 
such as large-scale government contracting and defense systems. But our 
experience is relevant to most companies developing software today, includ-
ing those companies whose managers are working on the edge of innova-
tion. That latter group tends to be young and is seldom offered any formal 
management training or organizational support—or has time for it anyway. 
Unfortunately, that’s how all too many managers learn today: on the job.

We wanted to write a book that could be a mentor of sorts for program-
ming managers—a book filled with insights, stories, and guidance gained 
from years of learning the hard way how to do it successfully.

We realized we could also share the tools we have developed over the 
years that make managing easier—tools such as job descriptions, rankings 
spreadsheets, project workbooks, team technology inventories, programmer 
first-day schedule templates, and hiring checklists. They can save managers 
many hours developing tools from scratch when they find themselves work-
ing in organizations that are too immature to provide their people with the 
tools they need (all too common, unfortunately, in the fast-moving world of 

 1. See the 300 Rules of Thumb and Nuggets of Wisdom in what one reviewer called the “soft, 
creamy center” of this book.

 2. See the tools for each chapter in the Tools section at the end of the book.
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software development). These are the tools we wished we’d had when we 
first started managing.

We wondered if there needed to be another book about software devel-
opment. Surely—with no end of books, articles, and Web sites about engi-
neering software, managing process, and managing projects—some number 
of gifted engineering managers must have shared their secrets. Yet we found 
scant more examples focused on managing programmers and software 
development teams than we had when we began our careers.

There is no methodology for newly anointed development managers 
charged with managing, leading, guiding, and reviewing the performance 
of a team of programmers—often, the teams they were on just days before. 
There are no off-the-shelf approaches. Unlike project managers, who devote 
hours and hours of study toward certification in their chosen career path, 
development managers often win their management roles primarily from 
having been stellar coders while displaying a modicum of people skills.

Among the books we did find, none contained the kinds of behind-the-
scenes stories and anecdotes we have incorporated into this book—stories 
and anecdotes that speak directly to how to handle specific situations that 
managers face.

Organization of the Book

In the chapters of this book we share our hard-won experience gained from 
programming, managing, and delivering software spanning two managerial 
lifetimes of companies and situations. We have distilled our insights into ten 
chapters sprinkled with anecdotes from our experience, as well as Rules of 
Thumb and Nuggets of Wisdom collected from others.

Chapter 1 reviews why programmers are special when it comes to man-
aging them as individuals and managing them as teams. It’s thinking about 
the qualities that characterize programmers that makes it obvious why you 
can’t just pick up any book on management to start managing a team of 
programmers.

Chapter 2 provides a number of lenses through which to view the pro-
grammers on your teams that will help you see the individuality each of 
them brings—and inform your managing each of them uniquely.

Chapter 3 is a step-by-step guide to finding, recruiting, and hiring great 
programmers. Early readers of this chapter found themselves tearing it out 
of the manuscript to use separately. You may, too, but you’ll leverage it best 
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from the context of the prior two chapters—knowing just who it is you’re 
 hiring—and from incorporating culture and motivation from Chapters 7 
and 8.

Chapter 4 counsels how to keep candidates’ enthusiasm between “yes” 
and start; prevent “buyer’s remorse”; and, when they do arrive, integrate 
them quickly, effectively, and productively into your processes and prac-
tices. New managers tend to think their recruiting role is finished when a 
candidate accepts an offer, but too many have learned otherwise when a 
candidate failed to show up for their first day, floundered in fusing with the 
team, or never became productive.

Chapter 5 walks through the core of management—managing down. 
These are the mechanics and how-to of the day-to-day with your team, the 
tasks and interactions to successfully manage programmers.

Chapter 6 addresses the fact that success as a programming manager also 
demands that you become skillful at managing up—managing your boss 
(and possibly his boss); managing out—managing your relationships with 
your peers, leveraging other departments or folks within your company, 
and marshaling external resources and relationships; and finally managing 
yourself—your priorities, your style, your time, your growth, your life.

In an interlude called Rules of Thumb and Nuggets of Wisdom, inserted 
between Chapters 6 and 7, we’ve collected hundreds of, well, rules of thumb 
and nuggets of wisdom that have proven valuable to us over the years, 
denoted by lightly shaded pages for ease of access. We collected them from 
a broad cross section of programmers, development managers, and software 
luminaries.3 The wisdom drawn from these adages, used judiciously, can 
help you make a point, win an argument, reframe a conversation, or defuse 
a tense discussion with a bit of humor that still drives your position home.

Chapter 7 turns the focus back to the team and the critical task of moti-
vating programmers to accomplish great feats and deliver difficult proj-
ects. The chapter opens with grounding in the motivational theories of 
Maslow, McGregor, and Herzberg. The differentiation of motivators from 
demotivators— they are very different, contrary to popular thinking—was 

 3. If we have misattributed a rule of thumb or quote, we apologize in advance (and please let 
us know). Some of them are available only through word of mouth or indirect sources, mak-
ing completely accurate attribution almost impossible. The titles given in the attributions are 
those for which the person is best known or, in many cases, their title when we knew them 
and heard their insights directly.
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essential to our own managerial growth. Given that each programmer is 
unique, there’s no motivational silver bullet, but our framework can help 
you think about ways to motivate—and how to recognize and avoid the pot-
holes that demotivate—your team.

Chapter 8 provides context to think about your corporate culture and 
about how you can create the development subculture you need for success 
within even the most toxic of corporate cultures. Too few managers realize 
their critical role in creating a team culture that supports success. Chapters 
5 and 6 cover the mechanics basic to managing, but Chapters 7 and 8 cover 
the two subtle sets of soft skills that can differentiate your management and 
help pave your way to success.

Chapter 9 returns to basics. The eight preceding chapters ultimately point 
to this objective: delivering software successfully. This chapter is not about 
project management but about the role seldom addressed: the team manag-
er’s essential role in delivery, even in agile environments. Success depends 
on synthesizing all the skills and efforts outlined in the previous chapters, as 
well as a mindset that is all its own.

Chapter 10 expands on the topic of agile development that is sprinkled 
throughout the book and answers the important question of what the role of 
a manager is when a company transitions to self-directed agile teams.

The Tools section provides a collection of useful tools, among them 
checklists, forms, reports, and so on, that we devised to aid our efforts to 
recruit, hire, and effectively manage and motivate programmers to deliver 
quality software successfully. We’re certain they will aid your efforts as well 
and save you the time of having to create them anew. These tools are avail-
able online at www.managingtheunmanageable.net/tools.html.

Use This Book as a Reference

Many of the readers of the first edition of this book told us that they not only 
read the book but, more importantly, also used it as a reference that they 
turned to whenever they found themselves confronted with a management 
problem. We originally intended it for exactly this purpose, so we are glad to 
see that some have embraced it as we intended. We encourage you to pull it 
off your bookshelf when you wonder, What would Mickey or Ron do now?, and 
look in the detailed table of contents or in the carefully constructed index to 
find the section or sections that might apply to your problem. It’s like having 
a personal mentor, always available to help.
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Lessons Learned

Programmers and software teams need not be unmanageable, but it takes 
talented managers who are dedicated to doing the hard work of managing 
seemingly unmanageable personalities to succeed. We can certainly affirm 
that writing this—and the rules, tools, and conversations we shared as we 
transformed our thinking into words—made both of us better managers, 
made our jobs easier, made our teams happier, and made our projects more 
successful. We hope the rules, tools, and insights we have provided in this 
book will make your jobs easier, as well.

Remember: Managing the Unmanageable comes in three parts. You can forge 
straight ahead into the chapters. Or you can dip into the Rules of Thumb 
and Nuggets of Wisdom, which appear as an interlude between Chapters 6 
and 7. And at any time you can look through the tools, summarized in the 
Tools section at the back of the book, for extra resources.
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3
Finding and Hiring 
Great Programmers

There are many programmers. However, there are not that many great 
programmers.

“Exceptional engineers are more likely than non-exceptional engineers to main-
tain a ‘big picture,’ have a bias for action, be driven by a sense of mission, 
exhibit and articulate strong convictions, play a pro-active role with manage-
ment, and help other engineers,” said an insightful 1993 study of software 
engineers.1

Frederick Brooks in his classic work The Mythical Man-Month2 cited a 
study3 from 25 years earlier that showed, among programmers with two 
years’ experience and similar training, that the best professional program-
mers are ten times as productive as the poorest of them. The researchers had 
started out to determine if changing from punch cards to interactive pro-
gramming would make a productivity difference, only to find their results 
overwhelmed by the productivity differences among individuals. They 
found 20:1 differences in initial coding time, 5:1 differences in code size (!), 
and 25:1 differences in debugging time!

 1. Richard Turley and James Bieman, Competencies of Exceptional and Non-Exceptional Software 
Engineers (Colorado State University, 1993).

 2. Brooks, The Mythical Man-Month, Anniversary Edition (Addison-Wesley, 1995).

 3. H. Sackman, W. J. Erikson, and E. E. Grant, “Exploratory Experimental Studies Comparing 
Online and Offline Programming Performance,” CACM, January 1968.
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Barry Boehm, 20 years later, reported a 25:1 difference between the most 
and least productive software developers and a 10:1 difference in the num-
ber of bugs they generated.4 In 2000, Boehm and coauthors updated their 
study to examine teams and concluded that teams of experienced top-tier 
programmers could be expected to be 5.3 times more productive than teams 
of inexperienced bottom-tier programmers.5

Good programmers are up to 30 times better than medio-
cre programmers, according to “individual differences” 
research. Given that their pay is never commensurate, 
they are the biggest bargains in the software field.

—ROBERT L. GLASS, Software Practitioner, 
Pioneer, and Author6

While there are some IT organizations that pride themselves on hiring 
“ordinary” programmers, there are few product companies and professional 
services organizations where you can be successful managing a software 
team without the ability to staff some part of your team with “great” ones. 
It’s no wonder, given the kinds of people programmers can be, that finding 
and identifying exceptional programmers can be a challenge.

The single most important job of a programming man-
ager is to hire the right people.

Hiring is far and away the most difficult-to-undo decision that managers 
make. Being successful at staffing will ease the rest of your job. The worst of 
unsuccessful hires can cast a plague upon your team for months, undermine 
your leadership, incite dissension and strife, delay or derail your deliver-
ables, and in these ways and in every other way demotivate and demoralize 
your entire organization. Not to mention how hard it is to get rid of under-
performers and other bad hires.

 4. Barry Boehm, “Understanding and Controlling Software Costs,” IEEE Transactions on 
Software Engineering, October 1988.

 5. Barry Boehm, Chris Abts, A. Winsor Brown, Sunita Chulani, and Bradford Clark, Software 
Cost Estimation with Cocomo II (Addison-Wesley, 2000).

 6. Glass, “Frequently Forgotten Fundamental Facts about Software Engineering,” IEEE 
Software 18, no. 3 (2001): 112–13.
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If you’re hiring not only programmers but also managers of program-
mers, remember the rule Ron heard at Apple and Mickey heard directly 
from Steve Jobs:

A’s hire A’s. B’s hire C’s.

—STEVE JOBS

Steve’s point was to emphasize how essential it is to hire top-notch man-
agers, for the combinatorial effect they have as they make hires.

We’ve both been fooled. Ron had already been hiring for a decade when 
he interviewed a manager he was convinced would be a stellar contributor 
to his organization: “I was certain, given how well he talked the talk, that 
this was a guy who would really deliver. I called two of his references, and 
both shared stories and anecdotes that convinced me he’d walked the talk 
many a time before.7 My interview team was unanimous in making a ‘hire’ 
recommendation. It was a time when I’d inherited a bad apple or two, but 
I’d never hired one. Until then. I realized it fast and I acted quickly to com-
municate the change I wanted to see in his behavior. Luckily, when I called 
him into my office, not even two months on the job, for a change-or-leave 
meeting, it was he who opened the conversation: He didn’t feel like he fit; 
he was giving notice; he needed to leave. I was lucky.”

While it can happen, we’ve figured out a few principles that have 
resulted in the vast majority of our hires being good ones.

Determining What Kind of Programmer to Hire

It all starts with knowing whom you want to hire. You’re hiring not just a 
programmer, but also someone to fill a role and a need in your organization.

We outlined in Chapter 2 how to build a job description for the kinds 
and levels of programmers you need in your organization. But those are 
generic descriptions.

For individual hires, only by consciously thinking through the skill sets, 
values, ethics, and orientation you need are you likely to hire the right pro-
grammers for the slots you need to fill out your team.

 7. “You can’t just talk the talk and walk the walk; you’ve got to walk the talk.” This frequent 
theme of Cecil Williams, renowned pastor of San Francisco’s Glide Memorial Church, 
I realized later, turns out to be the very definition of integrity.
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Think through whether your focus will be on experience, or on energy 
and passion.

Do you need

• A programmer who can mentor the team in best practices?
• A coder with a mind wired to ferret out the gnarliest design flaw?
• A designer who can sense the big picture and envision how your require-

ments can be broken up into modules and components?
• A developer who is comfortable being proactive and collaborative with 

management?

Or do you need

• To churn out thousands of lines of code in short order?
• To prototype features important to your customers that your veteran 

programmers blow off as “fluff”?
• The flexibility and speed to iterate routines over and over as their essence 

becomes clear?

These are not mutually exclusive sets of characteristics. But the former 
type of programmer is more likely highly experienced. And the latter type is 
more likely a fresh, passionate one. Be conscious of which you need.

When it comes to getting things done, we need fewer 
architects and more bricklayers.

—COLLEEN C. BARRETT, President and 
Corporate Secretary of Southwest Airlines

You also need to know whether you are better off with a full-time 
employee or a contractor.

Do you need

• A programmer for the long term?
• A fully integrated member of the development team?
• A developer with an evolving set of skills and tools whom you expect 

(and are willing) to train and grow over time, as needs or technologies 
change?
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Or do you need

• A highly developed set of specialized skills and tools now?
• To fill a short-term need?

The former is likely an employee; the latter, a contractor.
Finally, will you consider distant candidates, either to move them to 

your location or to have them work remotely? Are you unable to find the 
candidates you want in the local pool, or is the skill set you need so rare 
that there is no pool of candidates, short of thinking regionally or nation-
ally? Can you afford to pay moving costs? Or are you up to managing a 
geographically distributed team?

Distributed development can be made to work, but a distrib-
uted team will never perform as well as a collocated team.

—MIKE COHN, Agile and Scrum Thought Leader8

If so, you’re likely to find yourself conducting some or all of your inter-
views by phone or videoconference. Conversely, you can leverage national 
trade shows and conferences to meet and recruit programmers who are 
uniquely qualified.

While at Apple, Ron frequently sought out hires at the Applefest and 
MacWorld and OOPSLA conferences. After giving a talk one year, he was 
approached by a programmer with laryngitis who was madly scribbling 
messages on pages of a 3” × 5” pad to communicate his interest in Apple. 
It was an odd approach, but he soon became a stellar Apple hire.

Writing the Job Description

Your hiring effort begins with writing a job description suitable for posting. 
Keep in mind that the objective of this description is to attract the largest 
number of qualified candidates—it’s a marketing brochure for the position. 
It should be specific about what you’re looking for to discourage the unquali-
fied, broad where you’re open to a wider set of talents, and persuasive about 

 8. Mike Cohn, Succeeding with Agile: Software Development Using Scrum (Addison-Wesley, 
2010), p. 387.
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the company as a great place to work and the position as an ideal opportu-
nity for your kind of programmer, highlighting the social significance, career 
visibility, and lasting value of the contribution the right candidate can make.

In a small company, writing job descriptions will likely fall to you. In 
medium-size and larger companies, the staffing or HR organization will pre-
pare these, but you should plan to collaborate on or edit them if not outright 
provide all or most of the job description and requirements. Unless you 
actually write the posting and are certain it will be run verbatim, it’s wise 
to ask to be included in a review cycle. We have seen job postings (some 
of them appearing in expensive display advertising space in Sunday news-
papers) that are inadequate and sometimes downright embarrassing due 
to rewrites of requirements and use of maddeningly ancient boilerplate by 
well- meaning but nontechnical recruiters.

If you’re writing the posting yourself, you’re probably thinking you’ll 
draw it from the internal job description; we showed you a sample in 
 Chapter 2. But that’s really barely a start. It lacks both job-specific detail and 
the sparkle to attract candidates.

Your internal job description is only the starting place 
for your external posting. Buff it up, add spice, make it 
appealing.

For example, while “Programmer 3” may be a fitting title within your 
organization, you’ll need one that is both more meaningful and more 
descriptive of the background and technology experience you’re looking 
for candidates to have. The other key qualifier that most job seekers use to 
determine if a job might be a fit is location. “San Francisco Bay Area” is 
much too general; in a good economy, a programmer trying to minimize the 
commute will skip right by your listing rather than try to figure out where 
in the 100-plus-mile Bay Area the job actually is. Be specific.

That will lead to titles such as

• Entry-Level Ruby on Rails Programmer—SF Peninsula
• Experienced Full Stack Programmer—Cambridge
• Oracle Programmer with BI Experience—South Bay (SF)
• Java Architect—Denver
• Support Engineer, .Net/Sharepoint—Vancouver
• Principal Programmer, Engines Team, Search Technologies—Austin
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(The latter title, since it doesn’t specify C++ or Java or Python, might 
be for a role where you’re much more concerned about finding a candidate 
with strength in algorithms, data structures, and system software internals 
than with specific language or platform experience.)

If telecommuting three days a week is possible, the top of the listing is 
the place to put that, as the example in Figure 3.1 shows.

Now come the key elements of your job posting. The first is a brief sum-
mary of the company and its product(s) with your focus on why a program-
mer would want to join you there. This paragraph is about selling, so if 
you’re not used to writing compelling copy, get one of your sales or market-
ing colleagues to help.

Next is a job description that is specific to the job for which you’re  hiring. 
Here again, the internal job descriptions in Chapter 2 are too general for 
recruiting purposes. What coding, design, and architecture do you need this 
programmer to create? What special technical skills and knowledge do you 
need? What best practices experience do you expect as a minimum qualifica-
tion? Are you looking for someone to lead or mentor other programmers, 
or give them technical direction? Do you need a communicator who can 
collaborate with your business partner? A technical guru who can translate 
business requirements into technical ones, or even directly into architecture? 
A mathematical wizard who can turn business requirements into complex 
analytical algorithms? A UI designer who from business requirements can 
conjure up a brilliant UI that users just intuit?

Now you’re ready to describe the skills you’re looking for. This is the 
time to describe the language and platform experience you need, in detail, 
along with the level of skill and knowledge you expect. You should also be 
specific about the experience you need candidates to have with leadership, 
management, project management, communication, analysis, design, archi-
tecture, and coding. Are you hoping for a programmer who takes direction 
and just codes? Or a programmer who gives direction? How many years 
of experience? Education? (There is no consensus regarding the extent to 
which education is a predictor of programmer success, so we would not rec-
ommend making a degree an absolute requirement short of some statutory 
requirement or some organizational quirk that would make lack of a degree 
a predictor of failure.)

Sometimes follow-through, attention to detail, and a sense of ownership 
can be more important than specific skills. Don’t ignore these “soft skills” 
when crafting your job descriptions and during the interview.
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Telecommuting?

Specific location

Not equity only

The product,
company, and
opportunity:
sales!   

Company
culture:
more sales!  

• Provide technical team leadership, direction, and
mentoring to the small, existing remote program-
ming team.

• Form the nucleus of a second Bay Area develop-
ment team.

Specifically,
what the
person you
hire will
do . . .    

PRINCIPAL PROGRAMMER, .NET

San Francisco/Oakland/ Berkeley

       Forensic Logic, Inc. (www.forensiclogic.com), is
an early-stage, growth-oriented company looking for
a highly productive senior developer with the abil-
ity to lead a team and set its technical direction based
on tons of experience designing, coding, and scaling
.Net and SQL Server high-volume Web and analytics
applications.
       Forensic Logic develops Web-based applications
that provide law enforcement agencies with tools that
facilitate increased officer safety, early detection of
crime trends, and interagency search capabilities. The
successful candidate will have a unique opportunity
to work with massive data sets, both structured and
unstructured, and extensive association, geospatial,
timeline, and pattern analysis and visualization, and
application of matching and ranking algorithms for
solving crimes. The position will provide a growth
opportunity to the right individual who will be part
of a great team of talented and motivated coworkers.
      Forensic Logic’s culture values respect, teamwork,
and collaboration in achieving leading-edge function-
ality balanced with high usability.   
      
JOB DESCRIPTION

(Note: significant telecommuting opportunity if desired)

Competitive salary, benefits, and options

Figure 3.1 Sample job description (continued next page)

http://www.forensiclogic.com
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Specifically,
the skills you
require  

Specifically,
what the
person you
hire will
do . . .    

•

•

Lead the team’s implementation of best practices.

Lead periodic rapid refactorings that keep the
application code fresh, flexible, and reusable.

•

REQUIRED SKILLS

Strong Web application architecture and design
skills

•

In-depth knowledge of Microsoft .Net and SQL
Server

Fast, clean, efficient code implementation
•

3+ years’ experience designing, developing, and
scaling high-volume Web applications on .Net
and SQL Server platforms

•

• Leadership and mentorship of other developers,
junior and senior alike
Team orientation; ability to participate in lively
engineering debate, making a strong case for well-
considered opinions, while listening to, appreciating,
and critiquing the opinions of peers

•

Ability to analyze and improve the scalability and
performance of high-volume, information-rich
Web applications

•

•
Strong customer empathy and customer experi-
ence sensitivity

•

8+ years’ programming experience

Must be highly self-motivated, ambitious, flexible,
self-sufficient, and high-energy

•

Apply incisive design and exceptional coding skill
to knocking features off the products’ extensive
and growing features list.

Help define team development and engineering
best practices.

Strong verbal and written communication skills

Figure 3.1 Sample job description (continued next page)
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EXPERIENCE WITH ANY OF THE 
FOLLOWING A PLUS:

Located adjacent to BART in the heart of the San
Francisco Bay Area.

www.ForensicLogic.com

Some (but not extensive) travel will be required.

Send résumés to:

No phone calls

Principals only

Ron Lichty
VP, Products and Engineering
Forensic Logic, Inc.
RLichty@ForensicLogic.com

Algorithmic design and implementation; reason-
ing through algorithmic trade-o�s

•

Search/information retrieval•
Analytics, data warehousing, and business
intelligence

•

Information visualization•
Web services•

The skills you
consider a
bonus  

Travel?

Location

Contact
information 

Figure 3.1 Sample job description

I emphasize communication, collaboration, energy, 
potential.

—MARK HIMELSTEIN, Interim VP of 
Engineering, San Francisco Bay Area

Divide skills into “required”—what you absolutely won’t hire  without—
and those that you would really consider a bonus in a candidate who has 
the required skill set.

Also consider whether travel will be required. Disclosing it here will 
increase your chances for a good fit long-term.

http://www.ForensicLogic.com
mailto:RLichty@ForensicLogic.com
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Finally, don’t forget to give candidates a way to contact you—an e-mail 
address, usually, as well as your Web address.

Selling the Hire

Are you budgeted for another programmer? No? Then you’re going to have 
to sell your management on why you need to hire. In most cases, that means 
making a business case.

Think through your need thoroughly first. Do you need the new per-
son because the team is missing a specific expertise? Can you change tech-
nologies to mitigate the need or to make the resource easier to find? With 
the hybridization of applications—programs have not only become systems 
made up of multiple objects, components, and services, but of multiple 
 languages—you don’t have to convert your entire application. Some years 
ago, one of our colleagues stopped battling Ruby’s scalability constraints by 
sectioning off the critical area and recoding it in Scala. Another got around 
a display-layer bottleneck of scarce XSLT gurus by layering PHP Drupal 
on top.

When the expertise seems truly needed, you can make your case visually 
by taking a census of your team members and an inventory of their skills 
and presenting compelling visuals of your existing expertise against the 
expertise required by your customers, your products, or your marketplace.

On the other hand, perhaps there simply seems to be too much work. Be 
wary if that’s a short-term need: Remember the Mythical Man-Month rule of 
thumb that adding resources to a late project will make it later. Your man-
agement may remember it if you don’t, even if they’re not reluctant to fund 
a hire.

Prepare to show that you have thought through every alternative to hir-
ing. Instead of hiring, can you carve off a piece of functionality and have it 
programmed out of house/offshore to the lowest bidder? Can you convert 
your process to agile and your product managers to Software by Numbers9 
to focus on limiting development to a smaller but earlier initial release of 

 9. Mark Denne and Jane Cleland-Huang, Software by Numbers: Low-Risk, High-Return 
Development (Prentice Hall, 2003). This book introduced Minimum Marketable Features 
(MMFs) and an Incremental Funding Methodology (IFM) based on the notion that software 
is never complete, and it showed how to prioritize a project based on return so that it can 
become self-funding earlier.



54 3. Finding and Hiring Great Programmers

just the highest-return features using the team you already have? Can you 
improve productivity and throughput by improving your team’s processes?

Often enough, even with those analyses, you come up short and need 
to pitch resources. When Ron was faced at one firm with having a team of 
30 programmers—a fifth of the firm’s heads—and yet short what he needed 
to deliver customers’ work, he helped make his case by drawing a new orga-
nization chart based on customers. The chart was, for the first time, visual 
evidence that once each of the most influential customers had been assigned 
the dedicated programmers its work deserved; the remaining customers 
were left without any. In another case, he gathered statistics of incoming 
requests for work and projects completed and graphed the rapidly growing 
backlog of work requests.

Regardless of the analysis, you may run up against the hard fact that your 
budget (or the department’s budget or the company’s budget) will not let you 
add headcount. To get the resource you need, you’ll have to lay off someone 
or terminate a poor performer. If you’re doing the right thing for your team 
and your project and your company, you’ll likely sooner or later be faced 
with making tough decisions like this one to get the resource(s) you need.

Recruiting Full-Time Employees (FTEs)

Now that you can describe the type of employee you’re looking for, you 
need to think through where you are going to find candidates and how 
much you can spend to do so.

You may luck out. If you’re in a large organization, there may be a pro-
grammer in another part of the company with an established reputation 
who wants to work for you. As with any other candidate, express enthu-
siasm while privately checking the facts, verifying the person’s reputation, 
and satisfying yourself that their credentials and qualifications apply to and 
are a fit with your project and your needs.

Be aware that most large organizations have an established process for 
employees to check out opportunities elsewhere in the company. There may 
be requirements that they spend a year in the job into which they were hired 
before they’re eligible to move. They may be required to give a heads-up 
to their current manager before talking to you. Or they may be allowed to 
talk with you informally about what you have available but be required to 
post a form to HR before they can apply. They may be required to resolve 
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issues with their current organization before being allowed to look outside 
it. You as a hiring manager may have constraints. There may be rules to pre-
vent or at least discourage the “cool” projects from “raiding” more mundane 
ones. Or conversely you may be expected to consider internal candidates 
first. These are questions only HR can answer definitively, and you should 
always ask.

At Fujitsu, Ron found a “diamond in the rough” programmer in the 
quality assurance (QA) organization and worked with the business unit’s 
executive director and his peer to ascertain the tester’s interest in develop-
ment and then to transition him gently. That and some mentoring made him 
a stellar hire.

Always Be Recruiting

To start your recruiting, post positions on your own Web site. Include not 
only the active positions you are recruiting to fill, but also positions for 
which you always seem to need new talent. “At Gracenote,” says Mickey, 
“we were always looking for Oracle database developers and embedded 
programmers. So we continued to collect résumés and review them even if 
we did not have positions open. If we saw a bona fide superstar, we would 
bring the person in to interview and make the case for increasing headcount 
(which is always easier if you’ve found a bona fide superstar candidate).”

When Ron first went to Razorfish, his teams were working with almost 
every technology but Microsoft’s. “I didn’t even have a folder set up for 
Microsoft coders when an information architect from upstairs came by to 
give me a résumé of a guy she’d worked with before, a .Net senior coder. 
I took a look at the résumé and knew I couldn’t use him—and I sure didn’t 
anticipate that changing—but I also knew if I ever did need a C# program-
mer, I was looking at the résumé of one I’d want. It doesn’t happen like this 
often, but a few weeks later one of our clients asked us to help them solve 
problems with one of their C# apps! I sure felt lucky.”

Mickey has numerous examples of interviewing candidates but not 
having the right position for them at the time. One example comes from 
Brøderbund: “I interviewed a guy who was not right for the job we were 
recruiting to fill, but I liked him and stayed in touch with him occasion-
ally. Almost three years later the right position opened up and he was hired 
almost immediately. He turned out to be a superstar and was well worth the 
patience and waiting for the right position to open up.”
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By thinking of recruiting not as a series of one-time challenges but as 
ongoing relationship building, you’ll add value to your network in the short 
term and your recruiting in the long term. You should always be recruiting!

You should always be thinking about building a network 
of possible employees and referrers and staying in touch; 
the person who turns you down this year may be next 
year’s awesome hire. And the candidate you would think 
would never come and join your company may have 
their own perspective, or may refer a friend.

—TIM DIERKS, Programmer, CTO, and VP of 
Engineering, Apple, Google, and elsewhere

If you’re at a start-up, you may find that your own network, your list 
of potential candidates, and referrals from your colleagues are all you have 
to work with. You can make some great hires with nothing more; you’ll just 
have to work your limited paths harder.

Budgeting for Recruiting

One of the first things to know about hiring is how much you can spend to 
find candidates. Marketing costs to attract and recruit full-time employees 
can include

• Paying commissions to headhunters
• Engaging an internal recruiter or retaining an external one for this or a 

group of hires
• Paying employees bonuses for making successful referrals
• Paying to list your position online with the likes of LinkedIn
• Organizing a special recruiting event, perhaps around the time and loca-

tion of a conference focused on a key technology in which you need 
expertise

• Paying to fly in remote candidates to interview (and potentially pay-
ing for moving expenses to relocate them, should you decide to go that 
route)

For any given hire, large companies will likely set strict limits on what 
avenues you can pursue and how much you can spend (mitigated some-
times by providing recruiters in-house and by letting you recruit from those 
already part of your organization—lateral hires). Smaller companies may 
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be more flexible with outside recruiting resources and dollars. Early-stage 
start-ups may give you no budget whatsoever.

Resolve the headhunter question first. If you’re in a rush to hire, or 
you’re anxious to increase the certainty of making a hire, particularly in a 
fast economy, working with two or three effective headhunters can vastly 
improve your candidate pool.

There are lots of mediocre recruiters. The recruiter you want is one with 
whom you can do a quick mind-meld, one who will almost instantly under-
stand your needs and mirror them back to you first verbally and then in the 
form of perfect candidates.

The cost of using headhunters—you don’t pay “contingency recruiters” 
unless you hire a candidate whom you had not previously contacted regard-
ing a specific position—is usually a percentage of the new hire’s first-year 
salary. The percentage was once 15 percent, but these days it is seldom less 
than 20, and 25 percent is not uncommon.

Companies of any size will have their own standard contract stipulat-
ing the conditions under which candidates are presented and commissions 
are earned, including an absolute ceiling on the commission percentage. Just 
make sure you have a contract in place with a recruiter before you accept 
résumés or interview any of the recruiter’s candidates—or risk heartbreak 
when your HR department tells you that you can’t hire the perfect candidate 
whom you just had 12 people invest their time interviewing because the 
recruiter won’t meet your company’s terms.

Beware: There are some less-than-ethical recruiters. Look to engage only 
exceptional recruiters with absolute integrity.

Avoid boiler-room operations. These are people who would, but for the 
fortuitous offer of a job in recruiting, be calling you at home during din-
nertime to sell you carpets or drapery cleaning or credit repair. When they 
interrupt you with phone calls at work, they’re no less annoying. Some of 
them will lie and tell you that your colleague “Bob” (pick a name in your 
organization they just heard) pointed them to you. Some of them will lie and 
tell you they have a “perfect candidate” with the very set of skills you’re 
looking for and a pedigree so perfect any manager would leap to hire the 
candidate. On the flip side, programmers get calls about “perfect jobs” that 
may or may not exist and soon realize the “recruiters” cold-calling them 
don’t know anything.

The worst for you—worse even than being unable to shake a recruiter 
who hounds you with phone calls—is the recruiter who “introduces” a 
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candidate to whom your organization is already talking, then accuses you of 
lying and threatens to sue you for a commission.

You can mostly avoid the bad apples and find stellar recruiters by rely-
ing on recommendations from other managers and being nothing more than 
polite to the cold callers.

Ron’s feeling is that no interruption by an unsolicited recruiter on the 
telephone is acceptable. He is civil and asks them to e-mail him. He keeps 
expecting this to change, but so far it hasn’t: The boiler-room operators never, 
ever e-mail. Their game is a telephone game. He won’t hear from them for 
a month or more, when they phone again. He is always very cordial (until 
they try to keep him on the phone instead of listening to how he wants 
to communicate with them). He tells them he loves to communicate with 
recruiters—which generally truly throws them off their spiel—then after a 
pause says, “But until I get to know them, I only want to communicate via 
e-mail.” They pester him with questions, to each of which he replies, “I’ll 
look for your e-mail.” And after a few of those, he says goodbye and hangs 
up the phone.

There are, of course, the rare real recruiters who cold-call, but they will 
be more than willing to contact you however you want. From them you’ll 
see e-mails and candidates and interaction on your terms. And some of them 
will make it onto your personal list of preferred recruiters.

Recruiter Case Study

In late 2009, Elaine Wherry, one of the cofounders of Meebo, created a ficti-
tious online persona, a JavaScript developer at her company. The fictitious 
programmer launched his own Web site, LinkedIn profile, and Facebook 
page. She was fishing for recruiters, hoping her persona would show her 
who were the best. Over the next 18 months, as her fictitious developer 
received 237 e-mails from 180 recruiters and 195 companies, she unexpect-
edly stumbled upon some great insights about recruiting.

Elaine was looking for prize JavaScript superstars; she needed to double 
the size of her team. She had already tried all the guerrilla recruiting tac-
tics she could think of. She had placed Google AdWords (to pretty much no 
effect); embedded a “secretjobs” e-mail address into the gnarliest source code 
on her company’s site to snare anyone daring enough to read it; put logo’d 
T-shirts on students’ chairs during Stanford finals for the classes likeliest to 
deliver her talent; set up a jobs page chat widget (which she described as 
“useful”); devised JavaScript blog puzzlers and bingo; networked at Java-
Script meetups; set up a résumé spider engine; spoke at events; participated 
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in Stanford’s computer science classes; advertised in student newspapers; 
and placed Twitter keywords. And she created a map of the JavaScript com-
munity that proved useful to her recruiters. But when all that wasn’t enough, 
she hit on creating the persona—a honeypot she hoped would attract recruit-
ers who would be best able to find and deliver the coders she needed.

Initially, she gave her persona a guy’s name, a great résumé, and a good 
blog but got nothing for two months. Then she filled out a profile for him on 
LinkedIn—and was flooded. What she learned was that despite what every 
recruiter told her about how broadly they looked, by 2009 recruiters were 
relying almost exclusively on LinkedIn. So she began turning over rocks for 
non-LinkedIn-listed programmers.

When she found that her competition for the coders she wanted was not 
just the big guys—Google and Amazon and Apple and their ilk—but pre-
dominantly the midsize and smaller companies, she began working harder 
to differentiate her company from the rest.

She found that every single recruiter her company had ever employed 
who was no longer contractually prevented from doing so tried to recruit 
away her “programmer”—and realized how important it is to keep your 
prized programmers happy: free food, great people to work with, and inter-
esting stuff to work on.

When she realized how poorly prepared most recruiters were—how 
many were shotgunning impersonal, canned e-mails—she made sure her 
own recruiters were armed with her company’s mission statement, had 
specifics about the role being recruited for, and referred to something in 
candidates’ profiles and on their blogs that made them a good fit for the 
job requirements. Realizing how few stellar recruiters she came across, she 
determined to treat her few good ones like gems.10

Employee Referrals

While we think you should make your initial decisions with respect to recruit-
ers right away, in our opinion the number-one source of candidates (and in a 
start-up with limited funding, virtually your only source) is employee refer-
rals. With referrals, you’re leveraging the people you already have in your 
organization to recommend their friends and former colleagues. Every study 
we’ve seen supports our experience: Good people recommend other good 

 10. Elaine Wherry shared her lessons learned in her Silicon Valley Code Camp 2011 session, 
“Winning the Engineering Talent War Online,” and later in her blog at www.elainewherry.
com/2012/06/26/the-recruiter-honeypot.

http://www.elainewherry.com/2012/06/26/the-recruiter-honeypot
http://www.elainewherry.com/2012/06/26/the-recruiter-honeypot
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people. And you get a built-in reference, usually with contact information 
for other former colleagues who will vouch for the candidate as well.

If your current employees are happy, they will refer 
other great employees to you. So make your place a 
desirable place to work—including offices for program-
mers, good leadership, and perks.

—GREGORY CLOSE, Manager, Project Manager, 
and Start-up Founder, San Francisco Bay Area

It would be nice to think that your entire organization would recruit 
their friends to your team every time you have an opening. But the fact is 
that people can be hesitant to solicit their friends; however, that can be over-
come with money. You can expect to pay a headhunter a big commission 
to find a candidate who will be less predictable than the ones your own 
employees will recommend. If you were to offer a bonus of just half that for 
employee referrals ($10,000 for a $100,000 hire, say), employees would feel 
richly rewarded and highly motivated. Justified as they would be, we have 
never, ever seen referral bonuses that high. Nor have we seen a single study 
quantifying the difference between $2,000 and $500 bonuses, both of which 
are common. But we do know referral bonuses work.

By the way, hiring managers are a special case when it comes to 
employee referrals. In every program we’ve seen, as the hiring manager you 
are not eligible for referral bonuses; you are expected to lure former employ-
ees from your network to your current team. It’s not uncommon for manag-
ers to be asked, when interviewing, about their networks of programmers 
and their ability to hire from their own pool. Like many job expectations, 
doing so is not bonusable.

It is important to keep in touch with peers and former employees. In 
fact, a large number of employers, possibly a majority, would not hire you 
if they knew you hadn’t stayed networked with the best of the developers 
with whom you’ve worked throughout your career. That said, don’t solicit 
developers from the last company you worked for. Even if you didn’t sign 
a nonsolicitation agreement, it’s bad form. But stay in touch, connect with 
your former colleagues on LinkedIn, be friendly, let everyone know where 
you are, and let them contact you. That is OK. So is nonspecific recruiting 
like posting an update on your LinkedIn profile and other social networks 
to broadcast your need.

One note of caution: While the rule is that good people recommend 
good people, always, always, always listen to your “gut.” Ron recalls, 
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“I  progressed through one employee’s referrals from one of my best hires 
to one of my worst. My employee had been stellar at his job, so when he 
told me that his referral candidate was even better, I was skeptical; but after 
interviews I thought she would at least be good. She was better. She knocked 
my socks off. So when I next needed a hire and the guy had another ‘even 
better than me’ candidate, I ignored the odd feeling in my gut and chose 
his candidate over another that my team and my gut really liked. My entire 
group suffered when he turned out not to be stellar—and in fact was not 
even competent; it was a month of pain until he made it easy for me and left 
the company.” The rule of thumb: Trust your gut about the candidate, not 
about the referrer.

One more note of caution: You must avoid cronyism and the appearance 
of cronyism. Your job is to make great hires of people who are a superb fit, 
not to hire a team of your friends. Your hires should be the best candidates. 
Yes, that’s a subjective decision, and you’re the one making the decision, and 
you have experience with your candidates that no one else in the organiza-
tion has, and all that is worth something. But if you have a history with a 
candidate, you should be explicit about communicating why that candidate 
is your choice; you should share the experience you had with the individual 
that makes you confident he is the right hire, especially in the face of a com-
peting candidate who interviewed well. As always, communication is your 
“job one” as a manager, and maintaining interpersonal trust is essential.

Effective Recruiting

Our experience with advertising tech jobs in print media has been to do it 
rarely, only when the company has a large number of positions to fill, ide-
ally when the number is large enough that it leads you to hold a recruit-
ing event (perhaps in connection with a tech conference nearby) so that the 
advertising can focus on getting candidates to the recruiting event.

One way to be cost-effective with your recruiting budget, if you have 
time, is to tier your efforts. Give employees a two-week lead to bring in 
candidates (and you might make the bonus higher for candidates they bring 
in during that initial period, possibly saving you the additional work of the 
next steps). During that time, scare up candidates yourself from your own 
network of former employees and colleagues.

Simultaneously post your job on your company’s Web site to ensure 
that candidates can get a clear idea of what you’re looking for and can feel 
confident in approaching you. If your company uses an applicant tracking 
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system such as Greenhouse or Lever, you will post your job via that tool. 
Since smart candidates have learned to set triggers on such tools to notify 
them when an appropriate job has been posted, you may find you get trac-
tion from this move alone.

After two weeks, turn the recruiting over to your internal staffing depart-
ment recruiters; if they’re any good, the number of résumés you will now 
have to read will multiply fourfold if not tenfold. Simultaneously, brain-
storm professional organizations, meetups, and social-media professional 
groups to which you can post your need, some of which might additionally 
have job boards that you can leverage.

If you still aren’t finding your hire, advertise on low-cost classified net-
works such as Craig’s List, AngelList, Indeed, and LinkedIn. Your résumé 
reading list should increase again.

Finally, go to a few contingency headhunters. If they’re good, your 
résumé pile will grow by only a small number, but the candidates will be 
perfect and you’ll owe the recruiter a lot of money. (If your organization has 
a lot of money and little time, skip directly from employee referrals, head 
start or not, to headhunters.) If you find yourself working with a headhunter 
who doesn’t “get” what you’re looking for—who sends you one inappropri-
ate résumé after another—drop that recruiter. Your time is too valuable.

Recruiting Tips

There are a few other items to pay heed to when recruiting full-time 
employees.

First, given that your most important jobs are to recruit and retain 
the right people, the staffing and HR departments are the most important 
groups in your company to bond with. Staffing will play more of a role in 
your success than any other group. Make internal recruiters your friends. 
Their care and feeding should be a top priority for you.

The typical staffing department is wildly understaffed. And with your 
technical positions to fill, you’re at an additional disadvantage, since 95 per-
cent of recruiters barely have a technical bone in their bodies, truly struggle 
to make sense of your list of required skill sets, and don’t really understand 
the people you’re looking for (even if they’re good at finding them!). Inter-
nal recruiters are typically either touchy-feely HR people who happen to 
demonstrate a bent for external networking, or marketing people who wish 
their colleagues would stop typecasting them as HR people. Either way, 
they have little in common with you.
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Make it your mission to make these people your friends. Drop by. Be a 
friendly face; bring them a smile, coffee, a stuffed animal, or perhaps food 
(but not to recruiters who are dieting); learn to explain what you’re looking 
for in their lingo; ask about their kids and their hobbies and their interests; 
help them to figure out where to look for the candidates you’re seeking; 
review résumés with them to show them the words and phrases that jump 
out at you (both positive and negative). If they ask you for anything, get 
it to them by return mail. If they give you résumés to review, return them 
within hours, commented and prioritized by desirability against your 
 criteria. Don’t ever make them track you down. Make their job easier in 
every way. Be their best friend. Figure out how to genuinely like them, and 
they’ll like you back.

Don’t ever assume, when you don’t hear from them, that they’re work-
ing on your hire. Ask them how it’s going. Ask if there’s anything you can do 
to help, or if there’s any additional information you can supply that would 
help. Follow these suggestions, and you’ll be one of their favorite managers.

Staffing may be located elsewhere. Find excuses to wander by. Schwab’s 
staffing department was on the same floor as its cafeteria, making it easy for 
Ron to drop by before or after lunch, or when visiting the vending machines 
at snack time. At Razorfish, Ron formed deeper bonds with the team upstairs 
when his recruiter was relocated to an office there. It worked. His job requi-
sitions got the attention they needed.

Mickey has used contract recruiters quite successfully at Brøderbund 
and Gracenote: “When I had a bubble of critical positions to fill, I worked 
with HR to bring in a contract recruiter who can focus on those positions. 
Contract recruiters work for a lower fixed fee or on an hourly basis, which 
can greatly reduce the recruiting costs and result in more progress by focus-
ing strictly on the critical positions. Like programmers, you can sometimes 
find contract recruiters who are passionate about their areas of interest. You 
can work closely with these contract recruiters to make sure they thoroughly 
understand the ideal candidate profiles and the critical skill sets, and they 
work very closely with hiring managers to optimize their time by present-
ing only highly qualified candidates. At Brøderbund we had one contract 
recruiter who became a specialist in locating great multimedia talent. He 
immersed himself in the technologies and prowled the technical forums and 
special-interest groups looking for talented individuals. He became almost 
obsessive about looking for and being successful at finding talent. I saw him 
a few years ago at a SIGGRAPH trade show where he was working for Intel 
recruiting 3-D graphics specialists and still obsessed by his mission. He was 
a special recruiter.”
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Finding such passionate recruiters is hard, but when you do, your life 
will be easier and your recruiting almost a pleasure.

There’s another class of headhunters besides those who work on com-
mission, but they mostly don’t apply to you. Retained recruiters are ones 
you retain and pay regardless of whether they find the candidate you hire. 
Retained recruiters mostly work on senior and executive management posi-
tions, where they specialize in having senior-level networks they can access to 
find candidates. Sometimes they specialize in or undertake searches in secrecy, 
to avoid putting the word on the street that someone senior is being replaced. 
For programmers, though, you’ll almost always pay recruiters a commission 
only if they find the right candidate for you—a contingency search.

Recruiting Contractors

Recruiting contractors is different from recruiting employees.
A large organization may well have a list of six, eight, or ten “preferred 

vendors” of contractors through which you will be required to hire contrac-
tors. One or more of them will be designated as “pass-through” vendors; 
should you find independent contractors you want to bring in, you’ll typi-
cally be required to bring them in through one of the pass-through vendors, 
which will provide payroll services and bill you enough more to pay taxes 
and take a cut themselves.

If you’re lucky enough to have this system in place and enforced in your 
company, your phone won’t ring except with legitimate business. You’ll 
never be plagued by the swarm of job shops trying to be the one to find 
you contractors. On the other hand, there goes your largest source of free 
lunches and presents at Christmas. The real downside is that you’ll have to 
leave behind the contractor recruiters who have served you so well in the 
past and whom you have long cultivated to bring you great people (and buy 
you lunches).

If you don’t have a preferred vendor system in your company, ask your 
programming manager peers and colleagues for referrals of good contractor 
houses and recruiters to work with.

Go out of your way to find a “boutique” contracting house that you can 
trust to find especially skilled contractors when you need them. Mickey says: 
“While at Gracenote I found a contract house that always seemed to find 
exactly the right ‘specialty’ contractor when I needed one. They had access 
to a network of contractors and had them categorized very well, because 
they found me a contractor in Seattle, a contractor in Toronto, and many 
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local to the Bay Area with exactly the specific skills I was looking for at the 
time. These skills were not simply programming skills; they were as exotic 
as experience with Japanese and Korean Morphological Text Matching, or 
experience in implementing UPnP servers (when the technology was first 
emerging), and others. I was amazed at how quickly they could respond to 
my seemingly exotic requests for contractors.”

Preferred or no, cultivate those relationships. You want these folks to see 
your needs as their top priority and to think of you when their best people 
become available.

Of course, the best place to look for contract talent is within your own 
network. LinkedIn provides instantaneous and always updated access to 
your network, though it is no real substitute for a carefully cultivated data-
base of your contacts that you maintain throughout the years.

Mickey uses LinkedIn for his close set of personal contacts (hundreds, 
not thousands), but also an address book application that has the ability to 
store preset fields as well as free-form data that is word indexed.  He uses 
this program religiously to maintain all his contacts, including those whom 
he would not dream of inviting into his personal LinkedIn network. “This 
has been one of my best weapons in accelerating the recruiting process for 
employees and contractors.”

Reviewing Résumés

If you’re lucky, all that recruiting will result in a flood of résumés. But how 
do you identify the potential stars in a stack of résumés?

Reading résumés is an art. You need to look for your requirements 
expressed in someone else’s words. You need to read between the lines. You 
need to connect the dots. You need to read the words and imagine the activi-
ties the candidate would have had to undertake to be able to write those 
words. You need to think through whether the range of experiences candi-
dates have had will have readied them for your company and your position.

College degrees don’t impress me, and lack of school 
doesn’t scare me (see: Jobs, Steve, and Gates, Bill). At 
some point, when a person is far enough removed from 
school, the degree is all but meaningless. Experience is 
what matters most.

—ERIC MULLER, Software Architect and VP 
of Technology, San Francisco Bay Area
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Pretty soon, you have to make a value judgment regarding what require-
ments are truly required, how experienced a candidate really has to be with 
each of those technologies, how many applications you need to see, and how 
big they need to be to prove a candidate truly has the skills you’re looking for.

I assume that a good candidate rewrites their résumé and 
cover letter after reading my Web site. Checking them 
out on LinkedIn tells me what their résumé really says.

—BRUCE ROSENBLUM, CEO of Inera, former VP 
of Software Development at Turning Point

If you’re seeking arcane and unusual skills, the pickings may turn out to 
be scarce. You’ll have to decide whether to redouble or rethink your recruit-
ing efforts in order to find the candidates you need or to scale back your 
expectations and plan to train. Keep in mind that though you can train 
FTEs, you should expect contractors to have each and every skill you need, 
coming in the door.

I want people who can write, because we spend a lot of 
time writing to each other. We’re writing e-mail or docu-
mentation. We’re writing plans. We’re writing specifica-
tions. I want to know that the people on my team are capa-
ble of doing that, and that turns out to be a really difficult 
skill. So I would actually rather see people start as English 
majors than as math majors to get into programming.

—DOUGLAS CROCKFORD, Inventor of JSON, 
Software Architect, and Entrepreneur11

As you read résumés, jot notes on your copy (not on an original, since 
you want other interviewers to reach their own conclusions, not base their 
judgments on yours). Highlight the skills and tools you’re looking for, where 
they appear. Draw arrows to gaps in employment history, so you can follow 
up with a question. Circle spelling errors, bad grammar, and sloppy format-
ting; you may end up making a decision between two candidates based on 
knowing that one can write well enough that you won’t have to review every 
word. Note where candidates have changed jobs frequently; if you’re look-
ing for someone to stay on your team long-term, you may need to formulate 

 11. Quoted in Peter Seibel, Coders at Work: Reflections on the Craft of Programming (Apress, 2009), 
p. 124.
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a question that elicits why a candidate jumped around. And write questions 
on the résumé as you’re reading it (e.g., “What was your role in this accom-
plishment?” “What part of this project did you do?” “Why were you at this 
company for such a short time?” “What was the result of this effort for the 
company?” “What was the most difficult aspect of implementing this tech-
nology?” “What technologies and tools did you use on this project?” “What 
language did you write this in?” “What was the toughest challenge you 
overcame on this project?” “How did you learn this new skill?”).

I often look for people that have done a lot of stuff on 
their own that wasn’t asked of them. Not just their 
school project or just what their previous employer had 
them do. Somebody who was passionate about something 
and had some side project. How did they maintain it and 
how serious did they get with it? Or do they do a lot of 
quick hacks and abandon them?

—BRAD FITZPATRICK, Founder of LiveJournal 
and Chief Architect at Six Apart12

Résumé reading is a skill in which new managers will find it helpful to 
be mentored. Ask around to identify experienced and talented interviewers 
and hiring managers. Ask if you can help them read résumés for their next 
hire. Few managers will turn down that offer since even those skilled at it 
find reading résumés a thankless, but critical, chore.

You will find the résumé-reading checklist in the Tools section useful.

Narrowing the Field

In a slow economy or if you’re hiring into a hot company, you may still have 
more candidates than you can interview.

IQ-like questions and quizzes are stupid.

—DAVE WILSON, Software Architect,  
San Francisco Bay Area

One way to narrow the field is to send candidates a programming chal-
lenge. Work with your team to identify a coding challenge that requires 

 12. Seibel, Coders at Work, p. 77.
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skills consistent with your team’s needs, has a correct answer, and should be 
able to be coded in a reasonable amount of time. Ask candidates to send you 
their answer and their code. Or leverage a platform like HackerRank that is 
purpose-built for this use.

When you get results, interview the candidates who submitted correct 
answers and whose code shows the kind of thinking, rigor, and documenta-
tion you expect.

A suggestion worth pursuing is to do the hands-on programming chal-
lenge live using WebEx, IM, or a Web site like typewith.me or sync.in that 
allows you as the interviewer to watch the remote candidate type. Even bet-
ter, if you leverage pair programming to any extent on your team, is to pair 
one of your team with the candidate. It will give you a virtual hands-on feel 
for candidates before bringing them in for in-person interviews.

What ultimately narrows the field for us is simple: careful screening.

Preparing to Interview

Once you’ve got candidates who look like they might be a fit, it’s time to 
interview.

The first interview is by phone, a screening interview. You need to 
find out

• If the candidate is still interested
• Whether the candidate is interviewing with other companies (and what 

the time frame is with those companies, whether the candidate already 
has other offers, is considering them seriously, and when a decision 
must be made)

• What kind of job the candidate is looking for
• What the candidate considers to be their areas of expertise
• What compensation is expected
• Why the candidate is looking for another job
• The candidate’s availability to start working for you
• Whether the candidate is willing to commute to your location if working 

in your offices is a requirement

Ask candidates to describe in detail what they have worked on, both 
for you to gain confidence that they actually did what they said, but also to 
know that they can explain what they have done and what they know. Drill 
down into one or two of the accomplishments they cite to confirm that they 
have the skills you need.

http://sync.in
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I avoid prima donnas. One candidate told me he only 
needed to work two days per week because he could do 
in 16 hours what everyone else would do in 40. No, 
thank you.

—BRUCE ROSENBLUM

For a highly specialized technical position, you may want to choose a 
highly technical team member to conduct a second screening to test expert 
knowledge the candidate claims to have and that you need.

Once you confirm that candidates are credible—that they appear to 
meet all your criteria—you’ll assemble an interview team. Then bring in two 
or three leading candidates for one or more rounds of interviews with your 
team, your colleagues, and perhaps your boss.

The job description you prepared earlier, such as our sample one in 
 Figure 3.1, should provide all the criteria you’ll use to qualify a candidate and 
measure one against another. The challenge is to remember to test every can-
didate against all those criteria, and then keep track of how the candidates 
stack up against them and each other. Mickey long ago came up with the 
spreadsheet format in Figure 3.2 to help him do that. Enter your criteria into a 
similar spreadsheet to keep track of your candidates and their qualifications.

Plan a strategy for who will pursue which skills and qualities, and addi-
tionally who will help you sell the candidate on joining the company. (It 
works both ways.)

The interviewers you assemble may include

• You
• Your HR or staffing person
• Programmers who are the technical leadership on your team
• Programmers from related teams with whom your hire will need to 

interface
• Your UI designer
• The product manager
• The project manager
• Another development manager or two (particularly if you’re green at 

hiring; another manager’s observations and feedback can help you with 
what to look for and how to look for it)

• Others in the business from whom the programmer will get require-
ments or collaborate around product and support issues

• Your boss (or even your boss’s boss)
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Principal Programmer
Interview Summary

Bill
Smith

Cathy
Llu

Arnold
 Lai

Lucy
Miller

Andy
Jones

Received résumé on

Phone screen on

First interview round on

On time, early, or late? 

Second interview round on

On time, early, or late? 

Bachelor’s Degree (optional) 

Minimum 8 years programming
experience 

Wrote first program ever in (year,
language)  

Wrote first professional program in

Experience with what languages

Experience with what databases

Minimum 3 years .Net programming
experience 

Wrote first .Net program in

Most recently wrote for .Net in

Minimum 3 years SQL Server program-
ming experience

Wrote first SQL Server program in

Most recently wrote for SQL Server
v. (???) in (year)  

Web application architecture and design
skills?  

Ability to analyze & improve scalability
and performance 

Experience scaling high-volume,
information-rich Web apps 

Fast, clean, efficient coder? 

Refactoring skills

Has defined development and engineer-
ing best practices

Experience leading and mentoring other
developers

Figure 3.2 Principal programmer interview summary  
(continued next page)
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Principal Programmer
Interview Summary

Bill
Smith

Cathy
Llu

Arnold
Lai

Lucy
Miller

Andy
Jones

Communicates designs effectively

Listens

Critiques others’ designs

Writing skills

Customer Experience empathy/
awareness/design sense

Intangible qualities

Energy

Flexibility

Self-direction

Smart

Articulate

Passionate

Fit in with team

Overall desire to work at our company

Experience w/algorithmic design, coding,
trade-offs

Search/information retrieval

Analytics, data warehousing, and busi-
ness intelligence

Information visualization

Web services

Sent us a follow-up thank you? 

Figure 3.2 Principal programmer interview summary

In one company, Ron’s CEO asked to interview every candidate to 
whom Ron thought he would want to make an offer (provided the CEO’s 
travel plans or other conflicts did not hold up the hiring process); he wanted 
a head start with new hires for his goal to know everyone in the company, 
considered it a “touch test” to build confidence in his senior managers’ hir-
ing IQs, and offered the gift of his time to assist with the sometimes chal-
lenging task of luring highly qualified developers who were choosing 
among competing offers.

On the other hand, earlier in his career at a much larger company, Ron’s 
midlevel boss gave him carte blanche to hire without the boss interviewing 
a single candidate. At a third company, not only his boss but also his boss’s 
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boss were on the interview schedule. You’ll likely have managers of every 
stripe as well, but if they interview, they’ll almost always want to be last to 
do so; most will want to see just the “keepers.”

Mickey and Ron would both rather have more interviewers than fewer. 
When hiring FTEs, Ron typically selects two teams of four to five interview-
ers for a first and second round of 45- to 60-minute one-on-one interviews. 
Get to know how long your interviewers prefer for an interview. Some will 
be like Ron, who wants a full hour with candidates, whether his or another 
manager’s candidates; others are happy with 30 minutes and uncomfortable 
with even five minutes longer than their requested time.

Programmers are critical interviewers. They will have to work and team 
with the new person. They also likely know the skills and experience that 
are needed or missing better than anyone. But programmers are also gener-
ally the least prepared to interview. You need to spend time with new inter-
viewers to go through the technical and team qualities you want candidates 
to bring. Then you can work together on questions and exercises they can 
pose that will help reveal the candidate’s facility.

Assign areas of focus for your interview team members: the various 
technical skills you need; analytical, problem-solving, communication, and 
interpersonal skills; and résumé red flags and omissions. Make sure you 
have interviewers who will ask technical questions that demand technical 
answers. Divide up the candidate’s projects and companies among your 
interviewers, so that someone digs into the details of each one. And divide 
up the qualities you’re looking for, both to ensure that among your team 
someone is pursuing understanding of that quality as well as to avoid a day 
of interviews where everyone asks the same questions. A wiki page or other 
collaborative online space is perfect for letting your team sign up for those 
areas about which they feel most competent or most passionate.

All that preparation will help ensure that your interviewers are pre-
pared. Too many interviewers in too many companies read a résumé five 
minutes before the person comes in—or on their walk to the lobby to pick 
up the candidate—and end up contributing a fraction of the thoughtful, 
in-depth understanding that a well-grounded, well-thought-out interview 
should produce. The entire interviewing team must be clear on the need for 
this hire, with whom the new hire will work, and what the new employee 
will be tasked to contribute. Then each interviewer can create initial specific 
questions, using the résumé to guide further questions when probing into 
the candidate’s experience and background. Interview training is something 
that is not often given to employees, but the cost of hiring the wrong people 
far outweighs that time and effort.
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When you’re hiring programmers, you have to get at their ability to 
code. It’s essential to answer questions that elicit a picture of their under-
standing of programming. It’s critical that you ask them to do some design 
and to write some code.

I have had a couple of profound wake-up-call cases lately 
that pointed out how important it is to ask a program-
mer candidate to write code. In both cases, we had can-
didates whom we considered to be A or A+ level matches 
to what we were looking for. They’d had all the right 
experience, listed just the right skills for the job, seemed 
to have the right people skills, and genuinely seemed like 
nice and well-rounded individuals. But then, almost as 
a formality, we asked them to write some code. The term 
deer in the headlights best describes the result. Both 
these guys fell flat on their faces. We couldn’t believe it. 
They did so badly that it caused a stir throughout our 
whole department and led to multiple discussions about 
how this could have happened. Long story short: What 
we learned was that asking candidates to write code and 
to answer questions about code is absolutely critical.

—STEVE JOHNSON, VP of R&D

Encourage candidates to bring a portfolio of projects—documentation 
they’ve written, designs they’ve created, samples of their work, and even 
demos on their laptops or online that demonstrate their prowess.

I invite the candidate to bring in a piece of code he’s 
really proud of and walk us through it. I’m looking for 
quality of presentation . . . how effectively they can com-
municate, that’s a skill that I’m hiring for.

—DOUGLAS CROCKFORD13

Ask a candidate to bring along some of their source code. 
Inspect their code, and you’ll know if they are any good. 

 13. Quoted in Seibel, Coders at Work, p. 129.
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Then ask the candidate to show you an app that they 
built. Evaluate the user experience.

—DAVE WILSON

Sometimes doing this can have unexpected effects. Ron’s youngest hire 
was, at Apple, an intern just out of high school. Ron had heard, through 
a connection, about the young programmer’s prowess but wasn’t sure his 
team would embrace a high school kid. As it turned out, the young pro-
grammer brought in samples of random-dot wall-eyed auto-stereograms; he 
had read about the technique of hiding 3-D scenes in images that at first 
glance appear to be nothing but random dots, and he’d figured out how to 
reverse-engineer a program to create them. As Ron watched his team squint 
wall-eyed at the samples pinned to the team wall, willing the 3-D images to 
emerge, he knew he had a fit.

Pair programming for half an hour during an interview 
will save everyone’s time.

—DAVID VYDRA, Continuous Delivery Advocate 
and Software Craftsman, TestDriven.com

As you set up a morning or afternoon or day of interviews, you need to 
plan for someone to be the first to greet the candidate, and someone to see 
them out. As the hiring manager, you’re a strong candidate to fill at least one 
of those roles. Taking the closing role can be a great opportunity to debrief 
candidates on their perceptions of your company and your team, try to correct 
any misperceptions, and send the candidate off with a positive impression.

Ron also tries to have a trusted strong interviewer lead off—and report 
back at once if the candidate seems at all a bad fit. There’s no use wasting 
the candidate’s or the team’s time further if you determine up front that the 
match isn’t there.

If possible, take the candidate and at least part of your team to lunch. 
The interactions you’ll see will be priceless for making a decision about 
whether the candidate has “team fit.”

Mark Himelstein, an Interim VP of Engineering in the San Francisco Bay 
Area, prepares his interviewing teams by going over

• What the person is being hired for
• Issues/areas to be covered (making sure that someone is covering the 

basics)
• How to sell the company consistently

http://TestDriven.com
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He notes, regarding selling the company, “I have used role-play to teach 
developers how to sell the company consistently. We agree on the point I 
want each to make, then I have them use that point to sell the company to 
a colleague in 120 seconds. I have the team offer critiques to their peers on 
how to improve the pitch.”

Finally, do candidates a favor by presenting them with an interview 
schedule when they arrive that includes times and interviewers with their 
titles and (should the candidate want to follow up) e-mail addresses. Having 
your greeter not only present it but draw a verbal picture of the interviews 
ahead and who the interviewers are will put your candidate at ease and get 
logistics out of the way so that you can all focus on fit.

Take a look at the sample interview schedule in the Tools section.

Interviewing

Take notes! Walk into interviews prepared to take notes on what candidates 
say. It’s amazing how a series of candidates will blur together without notes 
to tell them apart.

Make time before the interview to prepare your questions. Write them 
down. Carry them into the room with you.

Make eye contact (and make sure the candidate can make eye contact 
with you). Make note of what candidates communicate nonverbally; how 
they comport themselves; whether they’re on time, early, or late; and after-
ward whether they send a thank-you. And make notes about what your 
team members, colleagues, and boss have to say about the candidates.

At the same time, don’t be so busy writing down what candidates say 
that you don’t notice who they are.

Ron makes it a practice never to interview a programmer in a room 
that doesn’t have a whiteboard; he looks for candidates’ willingness, even 
eagerness, to get up and explain to him how they approached a problem 
they faced in a previous company, to explain the architecture and design of 
one or another of their previous projects, or how they would face one of his 
team’s problems now. It can help differentiate the talkers from the doers.

I like to talk about design patterns, like how would you 
design something. Candidates should be able to identify 
all the parts of objects. For example, if you were design-
ing a game of blackjack, you have cards, hands, and 
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players. They should be able to identify properties of 
these objects and their relationships. When would they 
use inheritance? When would they use “is-a” versus 
“has-a” relationships? There may be more than one cor-
rect answer, but the approach should be workable. I find 
I am usually willing to give answers and instruct so 
that it is not a “gotcha” interview, but more of a con-
versation. The goal is to determine how well we work 
together on a problem.

—PAUL OSSENBRUGGEN, Senior Staff Developer

You’re going to want to know the answers to questions like these:

• What aspects of your last job did you most like?
• What were your colleagues and your management like?
• Tell me about some of the things you and your supervisor disagreed 

about.
• What led you to leave the companies you previously worked for?
• What attracts you to our company?
• Why are you looking for another job now?
• What do you want to get out of your job?

Learn to ask questions that are open-ended—that candidates can’t answer 
with a yes or no—like these:

• Tell me about. . .
• How were you able to accomplish . . . ?
• What was your role in . . . ?
• If you had led the development effort on that project, what would you 

have done differently?
• What best practices are you most fond of?
• What are your strongest technical strengths?
• What are your strongest nontechnical strengths?
• If you think of the fabric of programming as triangular, with the points 

representing design, coding, and debugging, tell me about the part of 
the fabric on which you would most like to spend your time.

• Where would you place yourself on a continuum where one end is 
developing gnarly algorithms and the other is developing customer-
focused UI?
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• Imagine a line. One end is leadership. On the other is teamwork that’s 
so fully collaborative that leadership is totally shared and no one on the 
team would be able to identify a leader. Where on that line would you 
place yourself?

• How would your manager describe you?
• Tell me about your comfort level with asking for assistance from others.
• Where do you fall on a continuum that ranges from highly structured, 

where your tasks are spelled out completely, to one that is entirely free-
form and you have to make decisions, often without having all the 
information you’d like?

• How do you like to be managed?

Ask for examples:

• Think of a time when you knew you could not make a deadline. What 
did you do?

• What was the most interesting problem you faced in a former project? 
How did you solve it?

• Tell me about a time when you. . .
• Give me an example that illustrates your leadership style.
• Think for a minute about the most stressful situations you’ve been in 

at work and tell me about the one you think was most stressful of all. 
What did you do to deal with it?

• Have there been times when you needed to formulate a new solution? 
Tell me about that time, and about what you devised.

• Tell me about a best practice you played a role in getting your team to 
adopt.

• Describe a time when you displayed extraordinary initiative.
• Have you worked with a UI designer [product manager, business ana-

lyst . . .] to translate customer needs into technical requirements? Tell me 
about that collaboration.

• Tell me about a time when your manager was annoyed with you or with 
your role on the team. How did you respond?

• Think about the teams you’ve been part of and tell me about a peak 
teamwork experience. What contributed to making that memorable?

• What have you done when you’ve had far too many tasks assigned to 
you than you can handle? When that’s been the situation and you could 
see yet another task coming your way, what did you do?

• Tell me about a time when you successfully persuaded your manager or 
your team to adopt your position.
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• How have you handled making formal presentations in front of large 
and small groups? Tell me what that was like.

• Have you had to present technical solutions to highly nontechnical audi-
ences? How did that go?

• Describe a time when you advocated creating a better customer 
experience.

• Describe a situation in which you had to tear down code and redesign 
and recode from the ground up.

I’m no longer a full-time developer and my skills have got-
ten a little rusty. When I’m interviewing someone, I focus 
on basic concepts. If I can stump them, they are done.

—ERIC MULLER

Get candidates to give you details. What role did they play in the proj-
ects they cite on their résumés? Get them to tell you how they accomplished 
the achievements they claim. Ask them about the most difficult problems 
they had to solve in accomplishing them, and ask them to walk you through 
their solutions.

I have always found that getting candidates to talk about 
a project they have done in detail brings me the best 
info: how well they communicate, what roles they actu-
ally had, do they have a big picture about what they did, 
do they really understand the technical details.

—MARK HIMELSTEIN

Think of a problem situation that vexed a team you’ve managed (and 
would be appropriate for candidates to solve) and ask them to suggest how 
to solve it.

But don’t ask leading questions. Do truly make your questions open-
ended; give candidates room to answer as they think appropriate.

Ron writes questions with the intent not only to understand what candi-
dates know and how they think, but to learn something from each and every 
candidate that he has the opportunity to interview, no matter for what job. 
“We’re interviewing these candidates because we think they can bring some-
thing to our company. My attitude is to figure out what they know that I don’t 
(yet), and to start learning from them. Sometimes it’s technical; other times it’s 
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how other companies or managers have handled challenges or, from college 
hires, how the computer science curriculum is being taught these days.”

If I can’t learn something significant from a candidate in 
an hour’s interview, it’s almost certain I will decline to 
hire the person.

There are also key logistical questions you’ll want to ask:

• What will commuting to our offices from where you live be like for you?
• How much travel do you like (and how does that fit with the amount of 

travel I foresee in the job)?
• What are your compensation expectations?

One final note on preparing questions: Keep them legal. Your questions should 
never in any way suggest or encourage candidates to tell you about their

• Marital status
• Parental status
• Age (particularly whether 40 or over, but don’t go there with anyone)
• Current salary or compensation (at least in some parts of the United 

States and the world)
• Ethnicity or nationality
• Disability or perceived disability
• Religion
• Sexual orientation

Making the Decision to Hire a Programmer

As each round of interviews completes, get timely feedback. Our experi-
ence is, unfortunately, that you will likely have to remind (even hound) your 
interviewers to give you their feedback. You need to get it the same day, at 
the latest the next day, while it’s fresh and memorable, and also because, if 
you like the candidate, you want to take action, whether to bring the candi-
date back for another round of interviews or to make an offer.

Debriefing your interviewers, as a team, is critical: Not 
only is it an opportunity for you to understand the 
team’s perspective, but for them, observing how others 
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can perceive different aspects of the candidate can help 
each team member improve their interviewing skills.

—PHAC LE TUAN, VP of Engineering and CEO,  
Silicon Valley

Ask your team to look for indicators and for red flags. An indicator might 
be a candidate who has programmed in a lot of languages. It’s a rule of thumb: 
The more languages, the better the programmer. On the other hand, red flags 
might be that the candidate arrived late for the interview, took a call during 
the interview, never seemed to establish eye contact, was sharply critical of 
former managers and former companies, arrived knowing nothing about your 
company or your products, was unable to explain a previous design, didn’t 
show interest in the work you do, didn’t share anything from which you 
could learn, or didn’t follow up with a note or e-mailed thank-you.

Will the candidate be able not only to contribute to the current need, but 
can you anticipate their skill set contributing for years to come? Make sure 
you’re not hiring a narrow fit for a short-term task that, when complete, will 
leave you with a long-term problem requiring that you either train or terminate.

Weight the feedback from your interviewers. Some interviewers’ feed-
back is worth a lot more, whether because they know the technical hiring 
requirements cold, or because they have proven themselves to have a great 
feel for hiring, or for one of a dozen other reasons. Think about the weight-
ing before you hear the feedback.

If you’re dithering, don’t hire them.

—STEVE BURBECK, Manager at Apple, IBM, a small 
wholesale company, two start-ups, and a research institute

While dismissing candidates as not appropriate is easy, making a deci-
sion to hire is often difficult. Be clear with your interviewing team that the 
decision will be yours. (Actually, it will likely be yours in concert with your 
boss and HR.) It is not a consensus decision.

Sooner or later, you’ll find yourself convinced that you have a stellar 
candidate, and every interviewer is on board but one—an interviewer who 
is adamant that hiring the candidate would be a mistake. Listen carefully to 
that person’s feedback; it’s possible the feedback is dead-on. It’s also possi-
ble the interviewer is not looking at the same criteria you are. If you make it 
clear you’re taking input (not looking for consensus), and you bring all your 
reflective listening skills to bear so that the person feels heard, you’re likely 
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on solid ground to hire the candidate based on all your other feedback that 
says “stellar.” On the other hand, if the interviewer, or worse, your entire 
interview team, gets it in their heads that it’s a consensus decision, you’ll 
never break a meeting deadlock without bad feelings, very possibly not only 
from the one person who demurs but from the team as a whole.

A quick meeting of all interviewers can be useful; a discussion can 
prompt memories and ahas that had been only subconscious. But meetings 
can also communicate to interviewers that they have more say than they do. 
And going on the record with one’s input can make it more difficult for an 
interviewer to give you the power to make your own decision. These days 
Ron tends to get feedback one-on-one with each interviewer, ideally in per-
son or by e-mail or phone.

You need to learn not only to listen to others who interviewed, but to 
trust your gut about what you heard and saw. At one company, Ron let his 
team talk him into hiring a candidate when all his internal signals were say-
ing no. The candidate, who wanted onto the team for all the wrong reasons, 
turned out to be mediocre. While she in fact made some good project contri-
butions, she never really fit in with the rest of the team and was at the top of 
the layoff list when times turned bad.

Ron made the first hiring decisions of his career at Apple, at a time when 
the company couldn’t interview and hire fast enough. So it was memorable 
when CEO John Sculley, speaking to a full auditorium of Apple managers, 
urged everyone to hire carefully. His sage advice: “Hire people you want to 
sit next to, both tomorrow and a year from now.”

Different organizations have different customs and practices around 
hiring. When Steve Jobs’s NeXT Computer company hired technical staff, 
the decision to hire someone had to be unanimous; every person who 
interviewed the candidate had to agree that the candidate should be hired 
or they would pass (thumbs-up or thumbs-down). This led to some very 
intense interviews, and many of those who were hired survived grueling 
programming problems, one-on-five interviews, and a process that lasted 
many hours. The approach led to a team of extremely bright and talented 
members—but they were not that diverse. Make sure you clearly under-
stand the culture you are working to staff.

To help you understand other hiring cultures, we suggest that you 
research some of the top technology companies to get some insight into how 
they work. Try Googling “interviewing at” and you’ll get suggestions for 
several companies to review. There are some very interesting stories about 
interviewing experiences you can easily access online. Don’t feel compelled 
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to copy them, but learn from the good and the bad that are painted in these 
stories to help mold your own hiring culture.

Call references.

With a candidate chosen, it’s time to check references. Ask the candi-
date to provide you with a list of references you can call. You’re going to 
ask for at least two peers and two former managers, with phone numbers 
and e-mail addresses. If you’re hiring a manager, also ask for two former 
employees. Pick and choose to call at least one from each category.

To the candidate’s list you’ll add your own “back-channel” references. 
The candidate presumably listed colleagues who will all deliver praise and 
recommendations. What you’re looking for are random others to corrobo-
rate that feedback but also to fill in gaps. You may know someone or have 
a teammate who worked at a company at the same time the candidate did. 
The shortest route these days is to search LinkedIn to identify whom you 
know who worked there when the candidate did.

Never be satisfied talking only with the references your 
candidate supplies. If they’re a friend of the candidate, 
they often won’t mention the candidate’s faults—and 
everyone has them. Find an independent source—someone 
you know who has worked with the candidate as a peer as 
well as someone who managed or worked for them.

—DAVE CURBOW, User Experience Architect, Cisco

HR may volunteer to take care of reference checking, but you should 
always have at least two or three of the conversations yourself. After intro-
ducing yourself, begin by asking how and when the reference worked with 
the candidate.

Like interview questions, the best reference-check questions are open-
ended. You want to know about the work that candidates did and about 
their skills, teamwork and collaboration, work habits, initiative, thorough-
ness, follow-through, reliability, need for supervision, ability to learn, 
strengths and weaknesses, and values and ethics. Ask for examples. Get the 
reference to be descriptive, to draw verbal pictures for you. Ask about any 
red flags that came up for you or your interviewers. Ask references where 
they would rank the candidate with the others on their team. Describe the 
job you’re hiring for, and ask references whether they think the candidate is 
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a fit. Ask former managers if they would hire the candidate again, former 
teammates if they would gladly work with the candidate again.

We suggest you use a reference checklist like the one we’ve provided in 
the Tools section.

Making the Right Offer to a Programmer

Making the right offer to a programmer starts with timeliness. Every day 
lost is an opportunity for your candidate to discover, interview with, and 
receive an offer from another shop. During the dot-com hiring frenzy, every 
hour lost was an hour risked.

Don’t be hasty but be quick.
But how do you know what offer to make? Determining the right offer 

starts early in the interview process with the question, “What are your com-
pensation expectations?” 

Even if it’s legal where you live to ask candidates for their last salary—
and it’s not legal in a rapidly growing number of places—that information is 
less useful than it looks at first glance. Past salary equates with neither pres-
ent value to you and your team nor market expectations. A candidate’s last 
salary might have been exorbitant; salaries required to lure top program-
mers at the peak of the dot-com boom were downright unrealistic just a few 
months later, after the bust. Or it might be drastically below market; a pro-
grammer hired just before boom times probably didn’t get raises to match 
the salaries of developers hired later. A programmer working for a strug-
gling start-up may not have had a raise for years. Or a female or minority 
programmer may have suffered from recent—or even long-ago—wage gaps.

Salary compression is a fact of life. Don’t let it make you 
miss a candidate.

—MARK HIMELSTEIN

Most programmers know if their last salary was out of line. In the post-
boom-time case, they may respond to the question of expectations with a 
number or a range considerably lower than their last salary. In the second, 
third, and fourth examples, their expectations may justifiably be a big incre-
ment from what their previous company got away with paying.

You need to be prepared, from the moment you begin recruiting, to know 
what range you can afford to pay. Be prepared, when you ask a candidate 
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for their expectations, to get a reply that is a request for the range you expect 
to pay. You need to know the answer to that question.

You may hear expectations that are out of your range. Or in sharing 
your range, you may hear back that your candidate was expecting more. Be 
frank: “Our base salary ranges just don’t go that high. We can offer <options, 
bonus opportunity, special benefits>, but not that kind of base salary.” If you 
end up cutting the phone screening short, you’ll have saved your interview-
ing team a lot of time, trouble, and false hopes and given yourself back a 
little time you can use to scout for other candidates. 

Be aware, though, that while you’ll run across an occasional candidate 
with an inflated sense of self-worth, more often you’re getting a signal. It 
may be that you’ve overshot and are interviewing a candidate much more 
qualified than you need. On the other hand, you may be hearing a signal that 
salaries have moved. If the latter is the case, as you hear high expectations 
from subsequent candidates, you may kick yourself for dismissing the first.

Compensation is not just a salary number but a package. While some 
candidates won’t lower their base salary expectations even for a great pack-
age that includes outstanding options, exceptional bonus potential, unusual 
and special benefits, or the like, some will. If you’re excited about hiring 
them, then sell them on the company, the position, your team, and your 
package.

Every programmer’s motivation is different.

If candidates are wary about telling you their compensation expecta-
tions, give them some time to think about it. Let it go during the interview, 
but follow up afterward if you’re interested in pursuing them for your 
 position. If you don’t, you could end up negotiating with yourself by put-
ting an offer on the table that is inappropriate—either too low or too high. In 
either case, you’re now at a disadvantage in formulating the right offer for 
the candidate. Make sure you get wary candidates to clearly state their com-
pensation expectations and consciously decide they are acceptable before 
moving forward in the hiring process.

Once you know what they expect and that it’s a match for your range—
and once all the feedback from interviewers and references has led you to 
want to hire—you need to think through a specific number and package. If 
the candidate’s expectations are low, you may be tempted to make a lowball 
offer. We think you’ll regret it.

We think your salary number has to be in line with the going rate in 
the market. The last thing you want is for a candidate—realizing, just after 
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arriving, that many if not most companies are paying a lot more—to keep 
their pipeline of job opportunities open, leading to a departure for a bet-
ter one after only a short time on your team. If possible, work with your 
HR department to verify your target number with an industry standard sal-
ary survey service such as Radford Surveys.14 Radford, and other similar 
services, provide benchmark data comparing companies situated similarly 
to your own. This will help you determine if you are paying competitive 
market rates for the new hire and provide the ammunition you may need 
to help convince your management to hire someone for more than what is 
budgeted for the position.

We think your salary number also has to be in line with salaries you’re 
already paying comparable programmers on your team and across your 
company. You can exhort your team all you want to keep their salary num-
bers to themselves, but sooner or later they’ll all know what the others are 
making. Bad inequities will lead, at that point, to carping, bitterness, dis-
gust, and an exodus of your best people.

I’d rather do big bonuses than out-of-range salaries.

—MARK HIMELSTEIN

However, sometimes you need to bring in a programmer who doesn’t 
fit your current internal equity. You hate to do it, but you may choose to 
because you need the programmer desperately, or because your program-
ming staff, in general, is paid below market rates. By bringing someone in 
above your internal equity rankings, you have ammunition to bring to HR 
and your management to try to increase the salaries of the top performers 
on the staff you already have. This is a painful tactic, but it’s sometimes nec-
essary to satisfy your short-term hiring needs.

The one exception where equity can be less of an issue is with geograph-
ically dispersed teams, since salary decisions may have been made based on 
geographical differences in both market and cost of living. You can get an 
idea of how to derive geographical equity—how to come up with a salary 
number for the same person in different locales—by using the research data 
at www.salary.com.

At some point you may find yourself hounded by management or HR 
to bring contractors on board as employees, a challenge made especially 

 14. Radford is a market leader in compensation intelligence: https://radford.aon.com/surveys.

http://www.salary.com
https://radford.aon.com/surveys
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difficult by compensation numbers. Contractors’ hourly net is almost always 
higher than the salary you could equitably pay them, and often more than 
the salary and benefits put together. And if they have figured out a way 
to make their benefits work (e.g., getting benefits through their spouse’s 
employer), such that they don’t need those that come with an employee 
offer, converting them to employeehood becomes monetarily nearly impos-
sible. On the other hand, contractors often face corporate policies, put in 
place to avoid tax and legal problems, that decree they can consult for only a 
limited period (e.g., six months or a year), then must be gone for six months 
to reestablish eligibility. If they like you and your team and your work, they 
may be willing to talk, at that point, about conversion.

Ron had one contractor who wanted $10,000 in salary above the rest 
of the company’s programmers at his level. The company’s pay system 
required breadth to qualify for the next software development grade, but 
like many contractors his skill set was narrow and vertical. Ron created a 
win-win by formulating a package (which required his getting sign-off all 
the way to the general manager) including

• A salary at grade level
• A guaranteed $10,000 in training over the next 12 months that could 

be used only for coursework in related technologies that the company 
needed and would also broaden the contractor’s narrow skill set to a 
much more versatile and valuable one

• A promise to provide him with mentoring support from one of the 
team’s most senior architects

• A promise to evaluate him, in 12 months, for possible promotion to the 
higher grade and a possible $10,000 raise to go with it

Complicated as that was (and hard as it was to get HR to go along, 
which was where selling it to the general manager came in), it reduced 
Ron’s personnel budget, extended the programmer’s tenure, motivated the 
new employee both to deliver and to expand his skills, and gave Ron a pro-
ductive, valuable resource on the team who was gratified at the investment 
being made in him and on his behalf—for less than he would have cost as a 
contractor.

You’ll forget what you gave them in ten minutes so 
don’t get too worried.

—MARK HIMELSTEIN
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Once he has a salary number, Ron will sometimes test it: “I need some-
one to start Monday. It’s difficult adjusting an offer later—I need to have an 
offer that I know you would accept before I go to get it approved. If I were 
able to get you an offer by Thursday of $xx,000 in base salary, along with 
n-thousand options and the opportunity to make a 20 percent increment 
over your base in bonuses, would you accept it and start Monday?”

Questions like that will help you understand what a winning offer looks 
like, typically clue you in about competing interviews and offers, and often 
begin to build commitment on the part of the candidate—get them practiced 
in saying yes.

Before making and writing up the offer, you’ll want to think about a 
start date. If the candidate is working, it will almost certainly be at least two 
weeks after giving notice. If you have flexibility, you may want to give can-
didates an opportunity to take a week or two between jobs. They’ll come to 
you fresher, happier, and less needy.

Ready to make the offer? You’ll actually make it in two ways: first ver-
bally, followed by a written offer.

Staffing and HR organizations are often in the habit of making the verbal 
offer themselves, but we suggest you volunteer to present it. In our experi-
ence, managers who ask for the task are seldom refused. From the stand-
point of selling the candidate on taking the offer, unless your staffing person 
is an exceptional salesperson, we think the implied relationship of having 
the hiring manager present the offer makes the stronger sell. (There is also 
an argument to be made for having your boss make the offer, if your boss 
is willing; candidates are, in general, impressed that someone senior would 
know who they are and call to urge them to take your company’s offer.)

Your goal, the moment you have the offer approved and have mentally 
rehearsed your pitch at least once, is to reach the candidate voice to voice. 
“I have exciting news. I’m calling to make you an offer to join <our com-
pany> as a Senior Software Engineer for Database Development. The salary 
is the one we discussed, $xx,000 annually. You’ll have an n percent bonus 
potential. And you will be awarded n-thousand stock options, 25 percent 
of which will vest after the first year, with vesting monthly thereafter. In 
addition, you’ll get <a few great/unexpected/unusual benefits>. Will you 
accept? Can we set your start date for <date>?”

If you hear hesitation, try to find out what the objection is and resolve it.
If you’ve done your homework well and have a good read on what really 

motivates the candidate and have made that part of the offer, you should get 
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an acceptance without hesitation. However, some candidates always want to 
push the envelope by asking for more—even if you’ve met the compensa-
tion requirements they asked for when you had that  discussion. When they 
hesitate or ask for more, don’t get flustered. It is part of the hiring process. 
Take your time and determine what their objections to your offer really are 
and how deeply seated they are. Rarely, if ever, should you counter imme-
diately with more than your standing offer. Mickey says: “Rarely is the hes-
itation really about money at this point. Often it is about the job title, or 
another desire that the candidate has surfaced since you verbally sounded 
out the offer. Title, office space, additional training, ability to attend techni-
cal conferences, and permission to work at home (at least occasionally) have 
all come up as I’ve presented offers over the years. The key is to stop and 
get the person to fully articulate these concerns; then you can see if you can 
address them.”

Ron has promised unofficial days off (provided he is not reorg’d away 
from being the candidate’s manager) when a candidate asked for vacation 
days that had already been set aside at the candidate’s current employer. 
He has gone back through the approval process with a changed offer due 
to a just-arrived competing offer. He has clarified that telecommuting two 
or three days per week was absolutely acceptable (with the proviso of good 
communication, availability, and productivity). He has clarified to a known 
stellar candidate that starting at a later hour to accommodate a combined 
train/bike commute was perfectly acceptable. He has responded to ques-
tions about child care and flexibility for sick kids. He has reassured candi-
dates that the job was not a dead end and has explained the opportunities 
for transfer and promotion that it could afford.

Many candidates will ask for a few days or even a week or more to 
consider your offer. It’s seldom the answer you want to hear, but it is reason-
able. Know beforehand how long you’re willing to give them. Once you’ve 
arrived at a date, enter it into the written offer as the candidate’s deadline to 
respond. And then stay in touch during that time.

Invite candidates with pending offers to team events, connect them to 
people on your team, and make them feel welcome and like they’re already 
team members. Have someone senior—CEO, CTO, VP of Engineering—
make a special call to the candidates to sell them on the position and the 
company and really connect with them, if possible. Often these calls are an 
opportunity to paint a more strategic picture of positions and how they fit 
into the organization and the company’s goals. Help candidates understand 
why each position you offer is the best they could ever encounter!
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We recommend that you try all of these things before considering sweet-
ening the offer in any way. If you can do creative things that do not add 
to inequities for your staff, do that. One-time hire-on bonuses are often the 
easiest. Such one-time actions can be effective at handling salary issues with-
out causing internal inequity problems, but they may not address the fun-
damental issue (too low a starting salary). In such cases you may reach an 
impasse and the candidate may not, in the end, accept the offer. You have to 
know how far you can and will go to make the hire and stick by that, even 
at the risk of losing a potential new hire. Sometimes you’ve just got to let go.

Benefits questions will likely come up. Let your staffing or HR organiza-
tion answer them. Those people are far more versed in the intricacies (and 
the questions candidates ask about them) than you will ever be. Make sure 
your benefits package includes links to all online benefits information that is 
available externally.

The written offer will be drafted by HR and will include salary and ben-
efits information, a limit on how long the offer is good, and a proposed start 
date. Make sure you get a copy, preferably to quickly review and approve 
before it is FedExed to the candidate. With the offer should go a confiden-
tiality agreement (which should include a nondisclosure agreement, along 
with the caveat that the company will own any inventions created at work), 
forms, and collateral that portrays the company as the terrific place to work 
that it is.

Follow Up until the Programmer Accepts

Sending candidates a signed offer letter in a FedEx package for them to sign 
and return speaks volumes to how important the candidates are to you and 
how important getting the offer in their hands is. Often the letter will have 
been sent out in e-mail already, so this may seem like a needless expense. 
But you want to make sure candidates realize that you want their commit-
ment to coming on board as soon as possible, and that your organization 
doesn’t cut corners.

Also, since there is a FedEx tracking number, you can use that informa-
tion to time your follow-up with the candidate to make sure the offer was 
received (you’ll know it was delivered), and make sure that there are no 
other questions or issues. Use this as an opportunity to make sure the can-
didate is excited about joining you for the position they verbally accepted. 
Keep following up until your offer is finally accepted (or rejected).
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The next chapter will elaborate on more follow-up activity, even after an 
offer has been accepted.

Summary

Hiring is one of the most important jobs, if not the most important job, 
you’ll do as a programming manager. It needs to be treated with both care 
and purpose. Just as in a project, you’re unlikely to get it right without get-
ting good requirements down first. In fact, for critical positions or in a hot 
hiring climate you’ll need to treat it like a project, setting short deadlines for 
yourself for each step: identifying candidates, phone screening them, mov-
ing them along or rejecting them, interviewing them face-to-face, making a 
decision, and presenting your offer. Leverage your team and your network 
to bring in prequalified candidates. Choose your interviewing team with 
care. Mete out assignments—interviewing objectives—to each member of 
the team, and make sure they understand how important you think their 
participation is to hiring the right person.

And remember that while hiring is an event, recruiting is a part of your 
job you should always have turned “on.”

Tools

We have prepared a number of tools to assist you in managing your team. 
The spreadsheets and Word documents provide full examples you can eas-
ily adapt for your organization. See the Tools section, after the chapters, for 
the link to the Tools Web site, from which you can download the following 
tools:

• Sample job description
• Résumé-reading checklist
• Candidate-screening spreadsheet
• Sample interview schedule
• Sample interview questions
• Sample interview summary
• Reference checklist
• Hiring checklist
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