
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780135667361
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780135667361
https://plusone.google.com/share?url=http://www.informit.com/title/9780135667361
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780135667361
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780135667361/Free-Sample-Chapter

Praise for Managing the Unmanageable: Rules,
Tools, and Insights for Managing Software People
and Teams

Over 50 five-star reviews on Amazon.com (U.S.)!

“Lichty and Mantle have assembled a guide that will help you hire, motivate, and
mentor a software development team that functions at the highest level. Their rules
of thumb and coaching advice form a great blueprint for new and experienced
software engineering managers alike.”

—TOM CONRAD, CTO, Pandora

“I wish I’d had this material available years ago. I see lots and lots of ‘meat’ in here
that I’ll use over and over again as I try to become a better manager. The writing
style is right on, and I love the personal anecdotes.”

—STEVE JOHNSON, Senior Architect, Inlet Digital

“Managing the Unmanageable is a well-written, must-have reference book for
anyone serious about building sustainable software teams that consistently deliver
high-quality solutions that meet expectations. It is loaded with incredibly useful and
practical tips and tricks to deal with real-life situations commonly encountered by
software managers anywhere in the world. It tearlessly peels back the onion layers
of the process of managing software developers—whether a handful of co-located
programmers or thousands dispersed across the world—through a balance of
battle-tested approaches and keen understanding of the various personalities and
backgrounds of software team members. Finally, a book on software engineering that
focuses on the manager’s dilemma of making a team of programmers work efficiently
together. Every single software manager should have it on their bookshelf.”

—PHAC LE TUAN, CTO, Reepeet, and CEO, PaceWorks

“Becoming a great engineering leader requires more than technical know-how; Ron and
Mickey’s book provides a practical cookbook for the important softer side of engineering
leadership, which can be applied to any software development organization.”

—PAUL MELMON, VP of Engineering, NICE Systems

http://Amazon.com

“EXCELLENT. Well-structured, logical, filled with great personal color and many
little gems. You guys have done a great job here. Terrific balance between theory and
practice, rich with info.”

—JOE KLEINSCHMIDT, CEO, Obindo, former CTO, Leverage Software

“I started reading the nuggets section and it took fewer than four pages to improve
my thinking. What struck me about the nuggets was that I could sense the genesis
of this book: two masters of their craft learning from each other. Most books feel
like a teacher describing a sterile version of what ‘ought to be done’ that leaves you
wondering, ‘Will this work in the “real world”?’ Reading the nuggets felt like the
sort of guidance that I would get from a trusted mentora—a mentor who I not only
trusted, but one who trusted me to take the wisdom, understand its limits, and apply
it correctly. It’s concentrated like a Reader’s Digest for technical management
wisdom.”

—MIKE FAUZY, CTO, FauzyLogic

“Managing the Unmanageable is a great collection of sometimes-obvious and
sometimes-not-obvious guidance for software managers. I wish that I had had
this book when I first started managing teams, and it still is illuminating. For
programmers who step into management, the hardest thing is to learn the soft skills.
Ron and Mickey do a great job of illustrating not just the why but also the how.”

—BILL HOFMANN, VP of Engineering, Klamr.to

“Unique dialogue around the human aspects of software development that is very
much overdue.”

—MARK FRIEDMAN, CEO and founder, Greenaxle Solutions

“The advice provided herein about what to do on a new employee’s first day of work
seems unique and very helpful!”

—STEVEN FLANNES, PhD, author, People Skills 3.0: Next-Generation Leadership
Skills for Project Success

“I just wish that I had this book when I started as a first-time manager five
years ago!”

—KINNAR VORA, VP, Product Development and Operations, Sequoia Retail Systems

“The book provides insight to a unique group of people: programmers. Companies
around the planet have struggled and are still struggling with how to best develop
software products. Managing programmers is at the heart of developing software
products successfully. Many project and organization leaders are ill-equipped to
deal with programmers and software development in general. I think this book can
bring insight to leaders of software organizations and help them understand and
even get inside the head of programmers and therefore be more effective leaders.”

—MICHAEL MAITLAND, CEO (geek-in-charge), WhereTheGeeksRoam

“I have enjoyed reading the book very much, and I wish I had it ten years ago—
probably would have saved me from making certain mistakes. A lot of what I read
is not new to me, but I have never seen so much relevant material assembled in one
place. This book was just what I needed. I already feel that I’ve benefited from it.”

—DAVID VYDRA, Continuous Delivery Advocate and Software Craftsman, TestDriven.com

“I found the book very helpful. It heightened my sensitivity to my staff, even having
managed for decades.”

—MARGO KANNENBERG, Assistant Director, Application Development, HighWire Press

“Mickey was my manager in my first role as programming manager. His real-world,
pragmatic, hands-on guidance was a profound positive influence on everything I’ve
ever done with management since. His is still my go-to advice as I develop and
mentor managers. I’m pleased that he’s taken the time to canonize it in this book so
that many more new and experienced managers can benefit from it.”

—H. B. SIEGEL, Director, Amazon.com

“Mantle and Lichty cut through abstract principles and present proven techniques
that can increase the effectiveness of software development organizations. This
book deserves a place on the real (or virtual) bookshelf of every software manager
who wants to build an outstanding development team and create a culture where
everyone enjoys coming to work. It’s especially valuable in telling managers what
not to do, and how to address the inevitable problems that affect all organizations.”

—ANTHONY I. (TONY) WASSERMAN, Professor of Software Management Practice,
Carnegie Mellon University—Silicon Valley; ACM Fellow; and IEEE Life Fellow

http://TestDriven.com
http://Amazon.com

“Mickey was there on Long Island in the mid-1970s when the group now known as
Pixar first formed, delivering successful software products then, and was still doing
so, as manager, almost two decades later at Pixar itself. He knows what he’s talking
about.”

—ALVY RAY SMITH, cofounder of Pixar

“Ron and Mickey clearly understand how important it is for programmers to work
on projects that make a difference and how essential it is for managers to create and
foster a unique and innovative culture.”

—KATHY BALDANZA, VPE, Perforce Software

“This book is a treasure trove of real-world experiences that will make you a more
effective software development manager.”

—CHRIS RICHARDSON, founder of the original CloudFoundry.com, and author of POJOs in Action

http://CloudFoundry.com

Managing the Unmanageable

Second Edition

This page intentionally left blank

Managing the Unmanageable
Rules, Tools, and Insights for Managing
Software People and Teams

Second Edition

MICKEY W. MANTLE

RON LICHTY

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.

Microsoft and/or its respective suppliers make no representations about the suitability of the infor-
mation contained in the documents and related graphics published as part of the services for any
purpose. All such documents and related graphics are provided “as is” without warranty of any kind.
Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to
this information, including all warranties and conditions of merchantability, whether express, implied
or statutory, fitness for a particular purpose, title and non-infringement. In no event shall Microsoft
and/or its respective suppliers be liable for any special, indirect or consequential damages or any
damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negli-
gence or other tortious action, arising out of or in connection with the use or performance of informa-
tion available from the services.

The documents and related graphics contained herein could include technical inaccuracies or
typographical errors. Changes are periodically added to the information herein. Microsoft and/
or its respective suppliers may make improvements and/or changes in the product(s) and/or the
program(s) described herein at any time. Partial screen shots may be viewed in full within the soft-
ware version specified.

Microsoft® Windows®, Microsoft Excel®, and Microsoft Office® are registered trademarks of the Micro-
soft Corporation in the U.S.A. and other countries. This book is not sponsored or endorsed by or affili-
ated with the Microsoft Corporation.

Cover photo by Vasilius/Shutterstock
Figures 5.1, 7.7, 7.8: Photos by Mickey W. Mantle
Figure 9.2: Photo by Ron Lichty
Cohn, Mike, Succeeding with Agile, 1st Ed., © 2010. Reprinted and Electronically reproduced by permission
of Pearson Education, Inc., New York, NY
Figures 5.2, 9.3, 9.4, 9.5, 9.6: Screenshots of Microsoft Excel © Microsoft 2019

The authors and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business, train-
ing goals, marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2019948418

Copyright © 2020 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or trans-
mission in any form or by any means, electronic, mechanical, photocopying, recording, or like-
wise. For information regarding permissions, request forms and the appropriate contacts within
the Pearson Education Global Rights & Permissions Department, please visit www.pearson
.com/permissions.

ISBN-13: 978-0-13-566736-1
ISBN-10: 0-13-566736-4

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearson.com/permissions
http://www.pearson.com/permissions

To programmers everywhere, and particularly those
I’ve managed, who really make things happen

but rarely wind up in the limelight

—Mickey

To my children, Jean and Mike, who provided
my best management training and who remain

a source of insight, inspiration, and delight

—Ron

This page intentionally left blank

xi

Contents

Preface . xxiii

About the Authors . xxxi

Chapter 1 Why Programmers Seem Unmanageable 1

What Do Programmers Do? . 3

Why Is Becoming a Successful Programming Manager Hard? . . . 7

Chapter 2 Understanding Programmers . 11

Programming Disciplines . 12

Embedded and IoT Programmers . 13

Frontend Programmers . 13

Backend Programmers . 14

Database Programmers . 14

Web Developers and Other Scripters . 16

Fullstack Programmers . 17

DevOps . 17

DevSecOps . 19

Types of Programmers . 19

System Engineers/Architects . 20

Systems Programmers . 20

Application Programmers . 21

Not Really Programmers . 22

Domain Expertise . 22

Programmer Job Requirements and Abilities 23

Proximity and Relationship . 27

xii Contents

In-House Employees . 28

Geographically Distant Employees . 29

Contractors . 30

Contracted Managed Teams and Outsourcing Companies . . 30

Generational Styles . 31

Personality Styles . 34

Left-Brain versus Right-Brain People . 36

Night versus Morning People . 37

Cowboys versus Farmers . 38

Heroes . 39

Introverts . 39

Cynics . 40

Jerks . 40

Summary . 41

Tools . 41

Chapter 3 Finding and Hiring Great Programmers 43

Determining What Kind of Programmer to Hire 45

Writing the Job Description . 47

Selling the Hire . 53

Recruiting Full-Time Employees (FTEs) . 54

Always Be Recruiting . 55

Budgeting for Recruiting . 56

Recruiter Case Study . 58

Employee Referrals . 59

Effective Recruiting . 61

Recruiting Tips . 62

Recruiting Contractors . 64

Reviewing Résumés . 65

Narrowing the Field . 67

Preparing to Interview . 68

 Contents xiii

Interviewing . 75

Making the Decision to Hire a Programmer 79

Making the Right Offer to a Programmer 83

Follow Up until the Programmer Accepts 89

Summary . 90

Tools . 90

Chapter 4 Getting New Programmers Started Off Right 91

Get Them on Board Early . 92

Preparing for Their Arrival . 93

First-Day Musts . 94

Introductions . 98

Ensuring Success . 100

Initial Expectations . 102

Summary . 105

Tools . 105

Chapter 5 Becoming an Effective Programming Manager:
Managing Down . 107

Earning Technical Respect . 108

Hire Great Programmers . 113

Turbocharge the Team You Have . 113

Manage Types of Programmers Differently 114

Facilitation . 119

Dashboards . 120

Protect Your Team . 120

Judging and Improving Performance . 122

Setting Objectives . 123

Performance Reviews . 126

Anniversary Date Performance Reviews 127

Focal Point Performance Reviews . 127

Performance Review Process . 128

xiv Contents

Contractors: No Performance Reviews Necessary 129

Know When to Cut Your Losses . 131

Exit Checklist . 133

Organizational Thinking . 134

Staffing . 134

Full-Time versus Contractors . 134

In-House versus Offshore Contractors 137

Organizing . 140

Office-Based versus Virtual Teams 140

Programmer Teams—Small versus Large Teams 143

Managing Larger Organizations . 145

Functional Programming Departments 148

Cross-Functional Teams . 149

Agile Teams . 150

Troubleshooting a Dysfunctional Organization 151

Deliver Results and Celebrate Success . 152

Summary . 153

Tools . 153

Chapter 6 Becoming an Effective Programming Manager:
Managing Up, Out, and Yourself . 155

Managing Up . 156

Understand Your Boss . 156

Package Your Communications . 158

Understand Your Boss’s Boss . 159

Timing . 160

Be a Model Employee . 160

Bottom Line . 162

Managing Out . 162

Collaborating within Your Department 162

Understand Other Departments . 163

Leverage Important Support Functions 165

 Contents xv

Human Resources (HR) . 166

Finance and Managing Budgets . 167

Headcount . 168

Consultants and Contractors . 168

Equipment and Tools . 168

Travel and Training . 169

Legal . 170

Managing Outside the Company . 171

Customers . 172

Technology Providers . 172

Technology Innovators and Work Disruptors 173

Tools Vendors and Suppliers . 174

Government, Trade, and International Standards
Organizations . 174

Industry Consortiums . 175

Professional Organizations . 175

University Educators . 176

Local Connections . 177

Bottom Line . 178

Managing Yourself . 178

Personal Style . 179

Appropriate Appearance . 179

Work Ethic . 180

Know Your Staff . 181

Time and Priority Management . 182

Communications Management . 184

Management Practices . 188

Pay Attention to the Person . 188

Listen Reflectively . 189

Break Down Barriers to Communication 189

Understand What Is Really Important 189

Make Progress Every Day . 191

xvi Contents

Be Part of the Solution, Not Part of the Problem 191

Follow-Up Management . 192

Daily Task List . 192

Action Items . 193

Reminders . 194

Find a Mentor . 194

Bottom Line . 195

Summary . 196

Tools . 196

RULES OF THUMB AND NUGGETS OF WISDOM 197

 The Challenges of Managing . 201

 Managing People . 229

 Managing Teams to Deliver Successfully . 263

Chapter 7 Motivating Programmers . 289

Motivational Theories . 289

Maslow’s Hierarchy of Needs . 290

McGregor’s X-Y Theory . 291

Herzberg’s Motivation and Hygiene Factors 293

Motivational Factors as Applied to Programmers 295

Putting Theory into Practice . 300

Foundational Factors—Causes of Dissatisfaction
(When Lacking) . 301

Respect for Supervisor . 301

Gain Technical Respect . 301

Respect Others . 301

Establish Your Culture . 303

Lead by Example . 303

Help Solve Technical Problems . 303

Manage and Coach . 304

 Contents xvii

Focus on Your People . 305

Having Fun . 306

Learning and Growing . 308

Good Working Conditions . 309

Make the Workplace a Good Place to Work 309

“No Jerks” Rule . 311

Be Flexible . 311

Feed Your Team . 313

Sane Company Policies and Administration 315

Communicate . 315

Protect Your Staff from Organizational Distraction 317

Protect Your Staff from Bad Organization
Communication and Policies . 318

Ethical Management . 318

Be Ethical and Professional at All Times 318

Be Fair . 320

Compensate Fairly . 320

Promote Appropriately . 322

Key Motivating Factors . 324

Making a Difference in the World . 324

Learning and Growing . 325

Toys and Technology . 328

Recognition and Praise . 328

Having Fun with Your Staff . 330

Upside . 331

Personal Commitment . 333

Technology Offense and Defense . 336

Understanding Your Programmers’ Motivations Begins
on Day One . 337

Summary . 339

Tools . 339

xviii Contents

Chapter 8 Establishing a Successful Programming Culture 341

Defining “Successful” . 342

The Programming Culture . 342

Company Culture . 343

Leveraging the Complexity of Your Company’s Culture . . 344

Walling Off Your Company’s Culture 345

What Part Does Technology Play in Your Company? 346

What Drives Your Company? . 348

Characteristics of a Successful Programming Culture 350

Mutual Respect . 351

Innovation . 351

Standards . 353

Delivery . 354

Communication . 355

Communication among Virtual Teams 356

Fairness . 358

Empowerment . 359

Professionalism . 361

No Jerks and Bozos . 361

Excellence . 362

Programming Excellence . 363

Teamwork and Collaboration . 363

Passion . 364

Customer Focus . 364

Learning . 366

Environment . 366

Summary . 368

Tools . 369

Chapter 9 Managing Successful Software Delivery 371

Inspire Purpose . 372

Define “Success” . 374

Recognize Nonnegotiable Dates . 376

Plan for Rewards . 377

Demand Clear Requirements . 378

Collaborate to Prioritize Requirements 382

Limit Requirements to “What,” Not “How” 386

Seek to Delight Customers . 388

Define “Done” . 389

Ballpark the Effort Required . 391

Estimation: No One-Size-Fits-All . 398

Ensure There’s Appropriate Architecture and Design 399

How Much Design Is Enough? . 401

Value Proofs of Concept, Prototypes, and Spikes 402

Hold Design Reviews . 403

Support the Work . 404

You Need a Plan . 407

Determine the Pace of the Project . 409

Set Agreed-Upon Milestones . 410

Ensure Everyone Is Communicating . 411

Keep Focus on the Mission . 414

Remove Impediments . 415

Ensure That Agreed-Upon Standards and
Requirements Are Met . 416

Leverage Test-Driven Development . 418

Insist on Code Reviews . 419

Ship It/Go Live! . 420

No New Features . 420

Run the Product . 421

Be Prepared to Declare Success and Start on the
Point Release . 422

Know When to Cut Your Losses . 423

OEM and International Versions . 425

 Contents xix

xx Contents

Wrap Up . 425

Celebrate . 425

Retrospect . 427

Share . 430

Refactor . 430

Point Releases . 431

Summary . 431

Tools . 431

Chapter 10 If You Are Agile, What Do Managers Do? 433

Why Managers May Feel Left Out . 434

How Agile Changes Managers’ Roles . 436

There Are Management Roles in Agile . 438

How Agile Organizational Restructuring Also
Changes Managers’ Roles . 442

Ten Critical Roles for Agile Managers . 443

1. Foster an Agile Culture . 444

2. Embrace Agile Values . 446

3. Coach and Mentor Good Agile Practices 450

Enable Self-Organizing Teams . 450

Ensure Communication . 451

Embrace Change . 452

Set Quality Expectations . 452

Foster Continuous Improvement . 453

Apply Timeboxing . 454

4. Dispel Myths about Agile . 454

Myth: Agile Is about Practices . 454

Myth: Agile Is What Developers Do 455

Myth: Agile Means Product Owners Do Less 457

Myth: Agile Has No Rigor . 458

Myth: Agile Teams Cannot Supply Estimates 458

Myth: Agile Has No Architecture . 460

Myth: Agile Means We Don’t Need Roadmaps 461

5. Be Mindful of Agile Patterns and Antipatterns 461

Support Agile Success Patterns . 462

Recognizing Agile Antipatterns Is Equally Important . . . 463

6. Lead Technical Communities of Practice
That Span Scrum Teams . 466

7. Remove Impediments . 468

8. Counsel and Coach . 469

9. Hire . 470

10. Fire . 471

Summary . 472

Tools . 473

TOOLS . 475

Index . 479

 Contents xxi

This page intentionally left blank

Preface

All too often, software development is deemed unmanageable. The
news abounds with stories of software projects that have run ridiculously
over schedule and budget. While strides made in formalizing the practice
of software development have improved the situation, they have not solved
the problem. Given that our craft has amassed over 60 years of experience
and our industry has spent enormous numbers of hours and dollars/yen/
won/yuan/rupees/euros trying to bring this discipline under control, how
can it be that software development remains so unmanageable?

In this book we answer that persistent question with a simple obser-
vation: You first must learn the craft of managing programmers and soft-
ware teams. That is, you must learn to understand your people—how to
hire them, motivate them, and lead them to develop and deliver great prod-
ucts. Based on our own experience, and that of effective managers we have
known in virtually every type of software business, we aim here to show
you how. Combined, we have spent over 80 years working on and deliver-
ing a wide spectrum of software programs and projects—over 65 of those
years managing the programmers and teams that delivered them. We hope
that this book will help you avoid many of the mistakes we have made,
as well as leverage for your own success the insights and skills we have
learned.

Early in our careers as programmers, we both read Fred Brooks’s 1975
book The Mythical Man-Month. An instant classic among programmers, it
is full of wisdom still relevant today and is widely regarded as a defini-
tive work in the art of software management. Like many others who read it,
we found the most memorable parts to be Brooks’s one-line nuggets of
wisdom, such as “Adding manpower to a late software project makes it later.”
We can’t recall the number of times we’ve used this quote when managing

xxiii

software projects. The desire to find other such memorable rules of thumb1
was the inspiration and driving force behind the writing of this book.

We were already seasoned managers when, as friends, we began meeting
regularly to compare notes on our current work and software development
challenges. We found ourselves getting help from each other and sharing
an occasional nugget of wisdom or rule of thumb, which we would then
take back to our jobs, integrate into our management approach, and share
with our teams. We gleaned rules and nuggets from the books we read and
the Web sites we surfed, but we never found a collection of them specific
to managing programmers and teams developing software. Eventually our
own desire to have such a collection led to our decision to write this book.

A broader perspective emerged as we began writing and talked to man-
agers, directors, and CTOs. It became clear that we could draw from the
breadth of our industry experience to offer considerably more than the rules
of thumb we’d collected. We could also share the tools2 we’d developed and
the insights we’d gleaned from working in start-ups and in organizations of
every size.

There are certainly areas we haven’t touched in our careers—domains
such as large-scale government contracting and defense systems. But our
experience is relevant to most companies developing software today, includ-
ing those companies whose managers are working on the edge of innova-
tion. That latter group tends to be young and is seldom offered any formal
management training or organizational support—or has time for it anyway.
Unfortunately, that’s how all too many managers learn today: on the job.

We wanted to write a book that could be a mentor of sorts for program-
ming managers—a book filled with insights, stories, and guidance gained
from years of learning the hard way how to do it successfully.

We realized we could also share the tools we have developed over the
years that make managing easier—tools such as job descriptions, rankings
spreadsheets, project workbooks, team technology inventories, programmer
first-day schedule templates, and hiring checklists. They can save managers
many hours developing tools from scratch when they find themselves work-
ing in organizations that are too immature to provide their people with the
tools they need (all too common, unfortunately, in the fast-moving world of

 1. See the 300 Rules of Thumb and Nuggets of Wisdom in what one reviewer called the “soft,
creamy center” of this book.

 2. See the tools for each chapter in the Tools section at the end of the book.

xxiv Preface

software development). These are the tools we wished we’d had when we
first started managing.

We wondered if there needed to be another book about software devel-
opment. Surely—with no end of books, articles, and Web sites about engi-
neering software, managing process, and managing projects—some number
of gifted engineering managers must have shared their secrets. Yet we found
scant more examples focused on managing programmers and software
development teams than we had when we began our careers.

There is no methodology for newly anointed development managers
charged with managing, leading, guiding, and reviewing the performance
of a team of programmers—often, the teams they were on just days before.
There are no off-the-shelf approaches. Unlike project managers, who devote
hours and hours of study toward certification in their chosen career path,
development managers often win their management roles primarily from
having been stellar coders while displaying a modicum of people skills.

Among the books we did find, none contained the kinds of behind-the-
scenes stories and anecdotes we have incorporated into this book—stories
and anecdotes that speak directly to how to handle specific situations that
managers face.

Organization of the Book

In the chapters of this book we share our hard-won experience gained from
programming, managing, and delivering software spanning two managerial
lifetimes of companies and situations. We have distilled our insights into ten
chapters sprinkled with anecdotes from our experience, as well as Rules of
Thumb and Nuggets of Wisdom collected from others.

Chapter 1 reviews why programmers are special when it comes to man-
aging them as individuals and managing them as teams. It’s thinking about
the qualities that characterize programmers that makes it obvious why you
can’t just pick up any book on management to start managing a team of
programmers.

Chapter 2 provides a number of lenses through which to view the pro-
grammers on your teams that will help you see the individuality each of
them brings—and inform your managing each of them uniquely.

Chapter 3 is a step-by-step guide to finding, recruiting, and hiring great
programmers. Early readers of this chapter found themselves tearing it out
of the manuscript to use separately. You may, too, but you’ll leverage it best

 Preface xxv

from the context of the prior two chapters—knowing just who it is you’re
 hiring—and from incorporating culture and motivation from Chapters 7
and 8.

Chapter 4 counsels how to keep candidates’ enthusiasm between “yes”
and start; prevent “buyer’s remorse”; and, when they do arrive, integrate
them quickly, effectively, and productively into your processes and prac-
tices. New managers tend to think their recruiting role is finished when a
candidate accepts an offer, but too many have learned otherwise when a
candidate failed to show up for their first day, floundered in fusing with the
team, or never became productive.

Chapter 5 walks through the core of management—managing down.
These are the mechanics and how-to of the day-to-day with your team, the
tasks and interactions to successfully manage programmers.

Chapter 6 addresses the fact that success as a programming manager also
demands that you become skillful at managing up—managing your boss
(and possibly his boss); managing out—managing your relationships with
your peers, leveraging other departments or folks within your company,
and marshaling external resources and relationships; and finally managing
yourself—your priorities, your style, your time, your growth, your life.

In an interlude called Rules of Thumb and Nuggets of Wisdom, inserted
between Chapters 6 and 7, we’ve collected hundreds of, well, rules of thumb
and nuggets of wisdom that have proven valuable to us over the years,
denoted by lightly shaded pages for ease of access. We collected them from
a broad cross section of programmers, development managers, and software
luminaries.3 The wisdom drawn from these adages, used judiciously, can
help you make a point, win an argument, reframe a conversation, or defuse
a tense discussion with a bit of humor that still drives your position home.

Chapter 7 turns the focus back to the team and the critical task of moti-
vating programmers to accomplish great feats and deliver difficult proj-
ects. The chapter opens with grounding in the motivational theories of
Maslow, McGregor, and Herzberg. The differentiation of motivators from
demotivators— they are very different, contrary to popular thinking—was

 3. If we have misattributed a rule of thumb or quote, we apologize in advance (and please let
us know). Some of them are available only through word of mouth or indirect sources, mak-
ing completely accurate attribution almost impossible. The titles given in the attributions are
those for which the person is best known or, in many cases, their title when we knew them
and heard their insights directly.

xxvi Preface

essential to our own managerial growth. Given that each programmer is
unique, there’s no motivational silver bullet, but our framework can help
you think about ways to motivate—and how to recognize and avoid the pot-
holes that demotivate—your team.

Chapter 8 provides context to think about your corporate culture and
about how you can create the development subculture you need for success
within even the most toxic of corporate cultures. Too few managers realize
their critical role in creating a team culture that supports success. Chapters
5 and 6 cover the mechanics basic to managing, but Chapters 7 and 8 cover
the two subtle sets of soft skills that can differentiate your management and
help pave your way to success.

Chapter 9 returns to basics. The eight preceding chapters ultimately point
to this objective: delivering software successfully. This chapter is not about
project management but about the role seldom addressed: the team manag-
er’s essential role in delivery, even in agile environments. Success depends
on synthesizing all the skills and efforts outlined in the previous chapters, as
well as a mindset that is all its own.

Chapter 10 expands on the topic of agile development that is sprinkled
throughout the book and answers the important question of what the role of
a manager is when a company transitions to self-directed agile teams.

The Tools section provides a collection of useful tools, among them
checklists, forms, reports, and so on, that we devised to aid our efforts to
recruit, hire, and effectively manage and motivate programmers to deliver
quality software successfully. We’re certain they will aid your efforts as well
and save you the time of having to create them anew. These tools are avail-
able online at www.managingtheunmanageable.net/tools.html.

Use This Book as a Reference

Many of the readers of the first edition of this book told us that they not only
read the book but, more importantly, also used it as a reference that they
turned to whenever they found themselves confronted with a management
problem. We originally intended it for exactly this purpose, so we are glad to
see that some have embraced it as we intended. We encourage you to pull it
off your bookshelf when you wonder, What would Mickey or Ron do now?, and
look in the detailed table of contents or in the carefully constructed index to
find the section or sections that might apply to your problem. It’s like having
a personal mentor, always available to help.

 Preface xxvii

http://www.managingtheunmanageable.net/tools.html

xxviii Preface

Lessons Learned

Programmers and software teams need not be unmanageable, but it takes
talented managers who are dedicated to doing the hard work of managing
seemingly unmanageable personalities to succeed. We can certainly affirm
that writing this—and the rules, tools, and conversations we shared as we
transformed our thinking into words—made both of us better managers,
made our jobs easier, made our teams happier, and made our projects more
successful. We hope the rules, tools, and insights we have provided in this
book will make your jobs easier, as well.

Remember: Managing the Unmanageable comes in three parts. You can forge
straight ahead into the chapters. Or you can dip into the Rules of Thumb
and Nuggets of Wisdom, which appear as an interlude between Chapters 6
and 7. And at any time you can look through the tools, summarized in the
Tools section at the back of the book, for extra resources.

Acknowledgments

There are many people to thank who have helped us write this book. First
and foremost, we want to thank our wives for encouraging us in our efforts
to draft, redraft, and craft this book. Without their patience, help, and advice
this book would not have been possible. Second, we want to thank Peter
Gordon and Kim (Boedigheimer) Spenceley of Addison-Wesley for their
continued support and advice over the years and for having faith that the
work we would create was worth their time and energy to help make it
 happen. Peter’s advice on organizing the book was especially helpful in
the late stages. Kim bravely brought us into the multimedia world, signing
us up to, in 2017, transform these words into video training as LiveLessons:
Managing Software People and Teams.4 And many thanks to Haze Humbert,
editor for this second edition.

Next, we must thank the many originators of the rules of thumb that we
have included in this work. The sage wisdom that they repeatedly imparted
was the primary motivation for this book, and we marvel at the depth of
insight that can be conveyed in so few words.

 4. www.managingtheunmanageable.net/video.html.

http://www.managingtheunmanageable.net/video.html

We must also thank the many reviewers who spent considerable time
and effort to provide detailed feedback that helped guide us to revise and
improve our writing over the years. Among them were Brad Appleton,
Carol Hoover, Carrie Butler, Clark Dodsworth, Daniel J. Paulish, David
Vydra, Dr. Dinesh Kulkarni, George Ludwig, Harinath V. Thummalapalli,
Jean Doyle, Joe Kleinschmidt, Kinnar Vora, Margo Kannenberg, Mark Fried-
man, Michael Maitland, Patrick Bailey, Rama Chetlapalli, Stefano Pacifico,
Steve Johnson, Steven Flannes, and others who remained anonymous to
us. We are grateful to Niel Nickolaisen, Rich Mironov, Cathy Simpson, Ed
Burnett, Travis Klinker, Rob Parker, John Colton, Scott Henderson, Matthew
Leeds, Anthony Moisant, and Thomas Barton for their insights into the new
material in this second edition. Thanks to Marty Brounstein for clarity on his
intervention technique. Special thanks to Georgia McNamara, who showed
us the way through the vagaries of the English language to rid this writing
of unintended male-gender references and make it as friendly to all as we
had originally wanted; we are so, so appreciative. This work is definitely
better because of all of their thoughtful feedback.

Figure 10.1 was created using the people artwork designed by rawpixel.
com/Freepik. Figures 10.7 and 10.8 are courtesy of agilemanifesto.org.

Finally, we would like to thank the legions of programmers, managers,
and executives with whom we have worked in all the various companies
throughout our careers. It is because of them, and the experiences we gained
working with them, that this book is possible.

Mickey W. Mantle
Ron Lichty
October 2019

 Preface xxix

http://rawpixel.com/Freepik
http://rawpixel.com/Freepik
http://agilemanifesto.org

This page intentionally left blank

About the Authors

Mickey and Ron’s software careers have spanned systems software,
2-D and 3-D graphics, multimedia, interface development, shrink-wrapped
products, software-as-a-service, embedded devices, IT, Internet applications,
mobile apps, professional services, and data warehousing and analytics. In
recent years, they have taken on advising organizations in making software
development more effective, stepped into interim and fractional VP Engi-
neering roles, and trained and coached teams and executives in agile and
in scrum. But they have seldom found the problems that plague software
development to be domain or channel specific, and while problems have
certainly been unique to organizations, they have nonetheless had much
more in common than not.

Mickey W. Mantle

Mickey has been developing
software for 50 years, creating
hardware and software products
and managing development teams.
After graduating from the Uni-
versity of Utah (where he was
contemporary with computer
industry notables such as the
founders of WordPerfect, Silicon
Graphics, Netscape, Adobe Sys-
tems, and Pixar), Mickey was
hired for his first programming
job in 1971, developing the over-
all control software and real-time
robotic controls for a six-acre
aircraft rework facility for the

xxxi

Author photo by Thomas De Lora

xxxii About the Authors

U.S. Navy at Kenway Engineering (later Eaton-Kenway). He thereafter
joined 3-D computer graphics pioneer Evans & Sutherland (E&S), where
he coauthored the original 3-D graphics library that paved the way for
Silicon Graphics’s GL. At E&S he was a contributor to many notable
computer graphics products and first started managing programmers and
programming teams.

After leaving E&S in 1984, Mickey joined Formative Technologies, a
spin-off from Carnegie Mellon University, where he worked with the indus-
try’s first workstations (PERQ and Sun Microsystems) dealing with large-
scale bit-mapped graphics for mapping and CAD applications. But his heart
was in 3-D graphics, and he was hired by Pixar shortly after it was bought
by Steve Jobs and spun out of Lucasfilm Ltd. in 1986. At Pixar, Mickey man-
aged the development of all of the software for its external products, includ-
ing the Pixar Image Computer, the Pixar Medical Imaging System, and
RenderMan. RenderMan is the gold standard of 3-D photorealistic rendering
software and by 2019 had been used on 27 of the 30 films to win the Acad-
emy Award for Best Visual Effects over the past 30 years.

Mickey left Pixar in 1991, as its focus shifted to making feature-length
3-D animated films and away from external software products, and joined
Brøderbund Software as Vice President of Engineering/CTO. At Brøderbund
he managed a vast development organization, including applications and
systems programming, art and animation, sound design and music compo-
sition, and quality assurance that produced numerous award-winning PC/
Mac games such as Where in the World Is Carmen Sandiego?, Kid Pix, Myst,
and Living Books.

In late 1997 Mickey joined International Microcomputer Software, Inc.,
as Vice President of R&D/CTO, where he managed on-site and offshore
development and support for numerous Windows/Mac applications such as
MasterClips and professional-level products such as TurboCAD.

In 1999 Mickey joined Gracenote, where he was Senior Vice President of
Development. (Since 2008 Gracenote has been a wholly owned subsidiary
of Sony, Tribune Media, and most recently Nielsen—the global measure-
ment and data analytics company.) At Gracenote he managed all develop-
ment, operations, and professional services associated with the pioneering
Web-based CDDB music information service that provides metadata and
cover art to digital music player applications such as iTunes as well as hun-
dreds of consumer electronics products. Gracenote’s products utilize tech-
nology ranging from Web services and relational databases to embedded
systems and mobile applications, giving Mickey a unique perspective on

the wide-ranging needs of the various types of software developed today.
Mickey retired from Gracenote in 2011 to finish the first edition of this book
and develop mobile, tablet, Windows, and macOS applications at his com-
pany Wanderful, Inc. He also consults with a variety of companies and
organizations about effectively leading and managing technical people and
teams.

Mickey’s experience includes directing R&D teams around the world
and managing multidisciplinary teams working 24/7 to deliver successful
products. With experience in selecting, establishing, and managing offshore
development organizations in India, Russia, Canada, Japan, and Korea, he
brings insight into the challenges of managing software development using
diverse staff and teams that are hours and oceans apart.

Ron Lichty

Ron has been developing software
for over 35 years, 30 of them as a
Development Manager, Director of
Engineering, and Vice President of
Engineering in organizations rang-
ing from tiny start-ups to Fortune
500 companies. This followed his
first career as a writer in New York,
Wyoming, and California, dur-
ing which he wrote hundreds of
articles, published scores of photo-
graphs, and authored two books.

His software development career
began at Softwest in the heart of
California’s Silicon Valley, coding
word-processing products, program-
ming compiler code generators,
crafting embedded microcontroller
devices such as SmartCard–based postage meters and magnetic-keycard hotel
locking systems (in the ’80s!), and designing and developing the computer ani-
mation demo that Apple used to launch and promote a new line of personal
computers. He was awarded software patents for compression algorithms and
wrote two widely used programming texts.

 About the Authors xxxiii

Author photo by Tammy Baker

xxxiv About the Authors

Ron cut his teeth as a manager when Apple recruited him, in 1988, to
create a product-management group for a line of its software development
tools. He twice, at Apple, returned to programming, only to be made a man-
ager, before he embraced management to lead the Finder and Applications
teams, managing development of Apple’s “special sauce,” its user interface.

In 1994 Berkeley Systems recruited Ron to direct development of the
then most widely used consumer software in the world, the After Dark
screen saver line, to make engineering predictable and repeatable for the
seven development teams creating its entertainment products. Brought
into Fujitsu to make sense of its long-overdue WorldsAway entertainment
product, he lopped off six months of overengineering to take it live in just
11 weeks.

Ron then led software development of the first investor tools on
Schwab.com, part of remaking a bricks-and-mortar discount brokerage into
the premier name in online financial services. He was promoted to Schwab
Vice President and was recognized as Schwab’s Technologist of the Year
while leading his CIO’s three-year technology transformation across every
business unit from any-language-goes to a single, cost-effective platform
companywide.

Since Schwab, he has been a Vice President of Engineering and Vice
President of Products both as an employee and as a consultant, and he has
continued to focus on making software development “hum.” He headed
technology for the California offices of Avenue A | Razorfish, the largest
Internet professional services organization in the world; products and devel-
opment for Forensic Logic, the crime detection and prevention company;
development for Socialtext, the first commercial wiki company; engineering
of the consumer ZoneAlarm line for Check Point; and product development
for Stanford’s HighWire Press, the largest Internet provider for scholarly
publishing.

Ron left Stanford in early 2012 to finish the first edition of this book and
launch a consulting practice to take on interim VP Engineering roles and to
advise and coach engineering and product leaders both about role effective-
ness and about making their organizations hum. In consulting engagements
in the United States, Canada, Europe, and Asia, he has helped development
teams overcome roadblocks, embrace agile, untangle organizational knots,
and become more productive.

http://Schwab.com

In his continued search for effective best practices, Ron coauthors the
periodic Study of Product Team Performance. His developer conference and
professional group talks and webinars include facing down the challenges
of implementing agile and scrum; the critical roles managers play whose
teams have gone agile; the importance of user groups, teamwork, and com-
munity in software development; and transforming software development
from chaos to clarity. He has been an adviser to a half-dozen start-ups. He
cochairs the Silicon Valley Engineering Leadership Community1 and previ-
ously cochaired SVForum’s Emerging Technology Special Interest Group
(SIG); cofounded SVForum’s Software Architecture SIG; cochaired EBIG’s
Software Development Best Practices SIG; and served on the board of SVFo-
rum, Silicon Valley’s largest and oldest developer organization.

 1. www.meetup.com/SV-ELC/.

 About the Authors xxxv

http://www.meetup.com/SV-ELC/

This page intentionally left blank

43

3
Finding and Hiring
Great Programmers

There are many programmers. However, there are not that many great
programmers.

“Exceptional engineers are more likely than non-exceptional engineers to main-
tain a ‘big picture,’ have a bias for action, be driven by a sense of mission,
exhibit and articulate strong convictions, play a pro-active role with manage-
ment, and help other engineers,” said an insightful 1993 study of software
engineers.1

Frederick Brooks in his classic work The Mythical Man-Month2 cited a
study3 from 25 years earlier that showed, among programmers with two
years’ experience and similar training, that the best professional program-
mers are ten times as productive as the poorest of them. The researchers had
started out to determine if changing from punch cards to interactive pro-
gramming would make a productivity difference, only to find their results
overwhelmed by the productivity differences among individuals. They
found 20:1 differences in initial coding time, 5:1 differences in code size (!),
and 25:1 differences in debugging time!

 1. Richard Turley and James Bieman, Competencies of Exceptional and Non-Exceptional Software
Engineers (Colorado State University, 1993).

 2. Brooks, The Mythical Man-Month, Anniversary Edition (Addison-Wesley, 1995).

 3. H. Sackman, W. J. Erikson, and E. E. Grant, “Exploratory Experimental Studies Comparing
Online and Offline Programming Performance,” CACM, January 1968.

44 3. Finding and Hiring Great Programmers

Barry Boehm, 20 years later, reported a 25:1 difference between the most
and least productive software developers and a 10:1 difference in the num-
ber of bugs they generated.4 In 2000, Boehm and coauthors updated their
study to examine teams and concluded that teams of experienced top-tier
programmers could be expected to be 5.3 times more productive than teams
of inexperienced bottom-tier programmers.5

Good programmers are up to 30 times better than medio-
cre programmers, according to “individual differences”
research. Given that their pay is never commensurate,
they are the biggest bargains in the software field.

—ROBERT L. GLASS, Software Practitioner,
Pioneer, and Author6

While there are some IT organizations that pride themselves on hiring
“ordinary” programmers, there are few product companies and professional
services organizations where you can be successful managing a software
team without the ability to staff some part of your team with “great” ones.
It’s no wonder, given the kinds of people programmers can be, that finding
and identifying exceptional programmers can be a challenge.

The single most important job of a programming man-
ager is to hire the right people.

Hiring is far and away the most difficult-to-undo decision that managers
make. Being successful at staffing will ease the rest of your job. The worst of
unsuccessful hires can cast a plague upon your team for months, undermine
your leadership, incite dissension and strife, delay or derail your deliver-
ables, and in these ways and in every other way demotivate and demoralize
your entire organization. Not to mention how hard it is to get rid of under-
performers and other bad hires.

 4. Barry Boehm, “Understanding and Controlling Software Costs,” IEEE Transactions on
Software Engineering, October 1988.

 5. Barry Boehm, Chris Abts, A. Winsor Brown, Sunita Chulani, and Bradford Clark, Software
Cost Estimation with Cocomo II (Addison-Wesley, 2000).

 6. Glass, “Frequently Forgotten Fundamental Facts about Software Engineering,” IEEE
Software 18, no. 3 (2001): 112–13.

 Determining What Kind of Programmer to Hire 45

If you’re hiring not only programmers but also managers of program-
mers, remember the rule Ron heard at Apple and Mickey heard directly
from Steve Jobs:

A’s hire A’s. B’s hire C’s.

—STEVE JOBS

Steve’s point was to emphasize how essential it is to hire top-notch man-
agers, for the combinatorial effect they have as they make hires.

We’ve both been fooled. Ron had already been hiring for a decade when
he interviewed a manager he was convinced would be a stellar contributor
to his organization: “I was certain, given how well he talked the talk, that
this was a guy who would really deliver. I called two of his references, and
both shared stories and anecdotes that convinced me he’d walked the talk
many a time before.7 My interview team was unanimous in making a ‘hire’
recommendation. It was a time when I’d inherited a bad apple or two, but
I’d never hired one. Until then. I realized it fast and I acted quickly to com-
municate the change I wanted to see in his behavior. Luckily, when I called
him into my office, not even two months on the job, for a change-or-leave
meeting, it was he who opened the conversation: He didn’t feel like he fit;
he was giving notice; he needed to leave. I was lucky.”

While it can happen, we’ve figured out a few principles that have
resulted in the vast majority of our hires being good ones.

Determining What Kind of Programmer to Hire

It all starts with knowing whom you want to hire. You’re hiring not just a
programmer, but also someone to fill a role and a need in your organization.

We outlined in Chapter 2 how to build a job description for the kinds
and levels of programmers you need in your organization. But those are
generic descriptions.

For individual hires, only by consciously thinking through the skill sets,
values, ethics, and orientation you need are you likely to hire the right pro-
grammers for the slots you need to fill out your team.

 7. “You can’t just talk the talk and walk the walk; you’ve got to walk the talk.” This frequent
theme of Cecil Williams, renowned pastor of San Francisco’s Glide Memorial Church,
I realized later, turns out to be the very definition of integrity.

46 3. Finding and Hiring Great Programmers

Think through whether your focus will be on experience, or on energy
and passion.

Do you need

• A programmer who can mentor the team in best practices?
• A coder with a mind wired to ferret out the gnarliest design flaw?
• A designer who can sense the big picture and envision how your require-

ments can be broken up into modules and components?
• A developer who is comfortable being proactive and collaborative with

management?

Or do you need

• To churn out thousands of lines of code in short order?
• To prototype features important to your customers that your veteran

programmers blow off as “fluff”?
• The flexibility and speed to iterate routines over and over as their essence

becomes clear?

These are not mutually exclusive sets of characteristics. But the former
type of programmer is more likely highly experienced. And the latter type is
more likely a fresh, passionate one. Be conscious of which you need.

When it comes to getting things done, we need fewer
architects and more bricklayers.

—COLLEEN C. BARRETT, President and
Corporate Secretary of Southwest Airlines

You also need to know whether you are better off with a full-time
employee or a contractor.

Do you need

• A programmer for the long term?
• A fully integrated member of the development team?
• A developer with an evolving set of skills and tools whom you expect

(and are willing) to train and grow over time, as needs or technologies
change?

 Writing the Job Description 47

Or do you need

• A highly developed set of specialized skills and tools now?
• To fill a short-term need?

The former is likely an employee; the latter, a contractor.
Finally, will you consider distant candidates, either to move them to

your location or to have them work remotely? Are you unable to find the
candidates you want in the local pool, or is the skill set you need so rare
that there is no pool of candidates, short of thinking regionally or nation-
ally? Can you afford to pay moving costs? Or are you up to managing a
geographically distributed team?

Distributed development can be made to work, but a distrib-
uted team will never perform as well as a collocated team.

—MIKE COHN, Agile and Scrum Thought Leader8

If so, you’re likely to find yourself conducting some or all of your inter-
views by phone or videoconference. Conversely, you can leverage national
trade shows and conferences to meet and recruit programmers who are
uniquely qualified.

While at Apple, Ron frequently sought out hires at the Applefest and
MacWorld and OOPSLA conferences. After giving a talk one year, he was
approached by a programmer with laryngitis who was madly scribbling
messages on pages of a 3” × 5” pad to communicate his interest in Apple.
It was an odd approach, but he soon became a stellar Apple hire.

Writing the Job Description

Your hiring effort begins with writing a job description suitable for posting.
Keep in mind that the objective of this description is to attract the largest
number of qualified candidates—it’s a marketing brochure for the position.
It should be specific about what you’re looking for to discourage the unquali-
fied, broad where you’re open to a wider set of talents, and persuasive about

 8. Mike Cohn, Succeeding with Agile: Software Development Using Scrum (Addison-Wesley,
2010), p. 387.

48 3. Finding and Hiring Great Programmers

the company as a great place to work and the position as an ideal opportu-
nity for your kind of programmer, highlighting the social significance, career
visibility, and lasting value of the contribution the right candidate can make.

In a small company, writing job descriptions will likely fall to you. In
medium-size and larger companies, the staffing or HR organization will pre-
pare these, but you should plan to collaborate on or edit them if not outright
provide all or most of the job description and requirements. Unless you
actually write the posting and are certain it will be run verbatim, it’s wise
to ask to be included in a review cycle. We have seen job postings (some
of them appearing in expensive display advertising space in Sunday news-
papers) that are inadequate and sometimes downright embarrassing due
to rewrites of requirements and use of maddeningly ancient boilerplate by
well- meaning but nontechnical recruiters.

If you’re writing the posting yourself, you’re probably thinking you’ll
draw it from the internal job description; we showed you a sample in
 Chapter 2. But that’s really barely a start. It lacks both job-specific detail and
the sparkle to attract candidates.

Your internal job description is only the starting place
for your external posting. Buff it up, add spice, make it
appealing.

For example, while “Programmer 3” may be a fitting title within your
organization, you’ll need one that is both more meaningful and more
descriptive of the background and technology experience you’re looking
for candidates to have. The other key qualifier that most job seekers use to
determine if a job might be a fit is location. “San Francisco Bay Area” is
much too general; in a good economy, a programmer trying to minimize the
commute will skip right by your listing rather than try to figure out where
in the 100-plus-mile Bay Area the job actually is. Be specific.

That will lead to titles such as

• Entry-Level Ruby on Rails Programmer—SF Peninsula
• Experienced Full Stack Programmer—Cambridge
• Oracle Programmer with BI Experience—South Bay (SF)
• Java Architect—Denver
• Support Engineer, .Net/Sharepoint—Vancouver
• Principal Programmer, Engines Team, Search Technologies—Austin

 Writing the Job Description 49

(The latter title, since it doesn’t specify C++ or Java or Python, might
be for a role where you’re much more concerned about finding a candidate
with strength in algorithms, data structures, and system software internals
than with specific language or platform experience.)

If telecommuting three days a week is possible, the top of the listing is
the place to put that, as the example in Figure 3.1 shows.

Now come the key elements of your job posting. The first is a brief sum-
mary of the company and its product(s) with your focus on why a program-
mer would want to join you there. This paragraph is about selling, so if
you’re not used to writing compelling copy, get one of your sales or market-
ing colleagues to help.

Next is a job description that is specific to the job for which you’re hiring.
Here again, the internal job descriptions in Chapter 2 are too general for
recruiting purposes. What coding, design, and architecture do you need this
programmer to create? What special technical skills and knowledge do you
need? What best practices experience do you expect as a minimum qualifica-
tion? Are you looking for someone to lead or mentor other programmers,
or give them technical direction? Do you need a communicator who can
collaborate with your business partner? A technical guru who can translate
business requirements into technical ones, or even directly into architecture?
A mathematical wizard who can turn business requirements into complex
analytical algorithms? A UI designer who from business requirements can
conjure up a brilliant UI that users just intuit?

Now you’re ready to describe the skills you’re looking for. This is the
time to describe the language and platform experience you need, in detail,
along with the level of skill and knowledge you expect. You should also be
specific about the experience you need candidates to have with leadership,
management, project management, communication, analysis, design, archi-
tecture, and coding. Are you hoping for a programmer who takes direction
and just codes? Or a programmer who gives direction? How many years
of experience? Education? (There is no consensus regarding the extent to
which education is a predictor of programmer success, so we would not rec-
ommend making a degree an absolute requirement short of some statutory
requirement or some organizational quirk that would make lack of a degree
a predictor of failure.)

Sometimes follow-through, attention to detail, and a sense of ownership
can be more important than specific skills. Don’t ignore these “soft skills”
when crafting your job descriptions and during the interview.

50 3. Finding and Hiring Great Programmers

Telecommuting?

Specific location

Not equity only

The product,
company, and
opportunity:
sales!

Company
culture:
more sales!

• Provide technical team leadership, direction, and
mentoring to the small, existing remote program-
ming team.

• Form the nucleus of a second Bay Area develop-
ment team.

Specifically,
what the
person you
hire will
do . . .

PRINCIPAL PROGRAMMER, .NET

San Francisco/Oakland/ Berkeley

 Forensic Logic, Inc. (www.forensiclogic.com), is
an early-stage, growth-oriented company looking for
a highly productive senior developer with the abil-
ity to lead a team and set its technical direction based
on tons of experience designing, coding, and scaling
.Net and SQL Server high-volume Web and analytics
applications.
 Forensic Logic develops Web-based applications
that provide law enforcement agencies with tools that
facilitate increased officer safety, early detection of
crime trends, and interagency search capabilities. The
successful candidate will have a unique opportunity
to work with massive data sets, both structured and
unstructured, and extensive association, geospatial,
timeline, and pattern analysis and visualization, and
application of matching and ranking algorithms for
solving crimes. The position will provide a growth
opportunity to the right individual who will be part
of a great team of talented and motivated coworkers.
 Forensic Logic’s culture values respect, teamwork,
and collaboration in achieving leading-edge function-
ality balanced with high usability.

JOB DESCRIPTION

(Note: significant telecommuting opportunity if desired)

Competitive salary, benefits, and options

Figure 3.1 Sample job description (continued next page)

http://www.forensiclogic.com

 Writing the Job Description 51

Specifically,
the skills you
require

Specifically,
what the
person you
hire will
do . . .

•

•

Lead the team’s implementation of best practices.

Lead periodic rapid refactorings that keep the
application code fresh, flexible, and reusable.

•

REQUIRED SKILLS

Strong Web application architecture and design
skills

•

In-depth knowledge of Microsoft .Net and SQL
Server

Fast, clean, efficient code implementation
•

3+ years’ experience designing, developing, and
scaling high-volume Web applications on .Net
and SQL Server platforms

•

• Leadership and mentorship of other developers,
junior and senior alike
Team orientation; ability to participate in lively
engineering debate, making a strong case for well-
considered opinions, while listening to, appreciating,
and critiquing the opinions of peers

•

Ability to analyze and improve the scalability and
performance of high-volume, information-rich
Web applications

•

•
Strong customer empathy and customer experi-
ence sensitivity

•

8+ years’ programming experience

Must be highly self-motivated, ambitious, flexible,
self-sufficient, and high-energy

•

Apply incisive design and exceptional coding skill
to knocking features off the products’ extensive
and growing features list.

Help define team development and engineering
best practices.

Strong verbal and written communication skills

Figure 3.1 Sample job description (continued next page)

52 3. Finding and Hiring Great Programmers

EXPERIENCE WITH ANY OF THE
FOLLOWING A PLUS:

Located adjacent to BART in the heart of the San
Francisco Bay Area.

www.ForensicLogic.com

Some (but not extensive) travel will be required.

Send résumés to:

No phone calls

Principals only

Ron Lichty
VP, Products and Engineering
Forensic Logic, Inc.
RLichty@ForensicLogic.com

Algorithmic design and implementation; reason-
ing through algorithmic trade-o�s

•

Search/information retrieval•
Analytics, data warehousing, and business
intelligence

•

Information visualization•
Web services•

The skills you
consider a
bonus

Travel?

Location

Contact
information

Figure 3.1 Sample job description

I emphasize communication, collaboration, energy,
potential.

—MARK HIMELSTEIN, Interim VP of
Engineering, San Francisco Bay Area

Divide skills into “required”—what you absolutely won’t hire without—
and those that you would really consider a bonus in a candidate who has
the required skill set.

Also consider whether travel will be required. Disclosing it here will
increase your chances for a good fit long-term.

http://www.ForensicLogic.com
mailto:RLichty@ForensicLogic.com

 Selling the Hire 53

Finally, don’t forget to give candidates a way to contact you—an e-mail
address, usually, as well as your Web address.

Selling the Hire

Are you budgeted for another programmer? No? Then you’re going to have
to sell your management on why you need to hire. In most cases, that means
making a business case.

Think through your need thoroughly first. Do you need the new per-
son because the team is missing a specific expertise? Can you change tech-
nologies to mitigate the need or to make the resource easier to find? With
the hybridization of applications—programs have not only become systems
made up of multiple objects, components, and services, but of multiple
 languages—you don’t have to convert your entire application. Some years
ago, one of our colleagues stopped battling Ruby’s scalability constraints by
sectioning off the critical area and recoding it in Scala. Another got around
a display-layer bottleneck of scarce XSLT gurus by layering PHP Drupal
on top.

When the expertise seems truly needed, you can make your case visually
by taking a census of your team members and an inventory of their skills
and presenting compelling visuals of your existing expertise against the
expertise required by your customers, your products, or your marketplace.

On the other hand, perhaps there simply seems to be too much work. Be
wary if that’s a short-term need: Remember the Mythical Man-Month rule of
thumb that adding resources to a late project will make it later. Your man-
agement may remember it if you don’t, even if they’re not reluctant to fund
a hire.

Prepare to show that you have thought through every alternative to hir-
ing. Instead of hiring, can you carve off a piece of functionality and have it
programmed out of house/offshore to the lowest bidder? Can you convert
your process to agile and your product managers to Software by Numbers9
to focus on limiting development to a smaller but earlier initial release of

 9. Mark Denne and Jane Cleland-Huang, Software by Numbers: Low-Risk, High-Return
Development (Prentice Hall, 2003). This book introduced Minimum Marketable Features
(MMFs) and an Incremental Funding Methodology (IFM) based on the notion that software
is never complete, and it showed how to prioritize a project based on return so that it can
become self-funding earlier.

54 3. Finding and Hiring Great Programmers

just the highest-return features using the team you already have? Can you
improve productivity and throughput by improving your team’s processes?

Often enough, even with those analyses, you come up short and need
to pitch resources. When Ron was faced at one firm with having a team of
30 programmers—a fifth of the firm’s heads—and yet short what he needed
to deliver customers’ work, he helped make his case by drawing a new orga-
nization chart based on customers. The chart was, for the first time, visual
evidence that once each of the most influential customers had been assigned
the dedicated programmers its work deserved; the remaining customers
were left without any. In another case, he gathered statistics of incoming
requests for work and projects completed and graphed the rapidly growing
backlog of work requests.

Regardless of the analysis, you may run up against the hard fact that your
budget (or the department’s budget or the company’s budget) will not let you
add headcount. To get the resource you need, you’ll have to lay off someone
or terminate a poor performer. If you’re doing the right thing for your team
and your project and your company, you’ll likely sooner or later be faced
with making tough decisions like this one to get the resource(s) you need.

Recruiting Full-Time Employees (FTEs)

Now that you can describe the type of employee you’re looking for, you
need to think through where you are going to find candidates and how
much you can spend to do so.

You may luck out. If you’re in a large organization, there may be a pro-
grammer in another part of the company with an established reputation
who wants to work for you. As with any other candidate, express enthu-
siasm while privately checking the facts, verifying the person’s reputation,
and satisfying yourself that their credentials and qualifications apply to and
are a fit with your project and your needs.

Be aware that most large organizations have an established process for
employees to check out opportunities elsewhere in the company. There may
be requirements that they spend a year in the job into which they were hired
before they’re eligible to move. They may be required to give a heads-up
to their current manager before talking to you. Or they may be allowed to
talk with you informally about what you have available but be required to
post a form to HR before they can apply. They may be required to resolve

 Recruiting Full-Time Employees (FTEs) 55

issues with their current organization before being allowed to look outside
it. You as a hiring manager may have constraints. There may be rules to pre-
vent or at least discourage the “cool” projects from “raiding” more mundane
ones. Or conversely you may be expected to consider internal candidates
first. These are questions only HR can answer definitively, and you should
always ask.

At Fujitsu, Ron found a “diamond in the rough” programmer in the
quality assurance (QA) organization and worked with the business unit’s
executive director and his peer to ascertain the tester’s interest in develop-
ment and then to transition him gently. That and some mentoring made him
a stellar hire.

Always Be Recruiting

To start your recruiting, post positions on your own Web site. Include not
only the active positions you are recruiting to fill, but also positions for
which you always seem to need new talent. “At Gracenote,” says Mickey,
“we were always looking for Oracle database developers and embedded
programmers. So we continued to collect résumés and review them even if
we did not have positions open. If we saw a bona fide superstar, we would
bring the person in to interview and make the case for increasing headcount
(which is always easier if you’ve found a bona fide superstar candidate).”

When Ron first went to Razorfish, his teams were working with almost
every technology but Microsoft’s. “I didn’t even have a folder set up for
Microsoft coders when an information architect from upstairs came by to
give me a résumé of a guy she’d worked with before, a .Net senior coder.
I took a look at the résumé and knew I couldn’t use him—and I sure didn’t
anticipate that changing—but I also knew if I ever did need a C# program-
mer, I was looking at the résumé of one I’d want. It doesn’t happen like this
often, but a few weeks later one of our clients asked us to help them solve
problems with one of their C# apps! I sure felt lucky.”

Mickey has numerous examples of interviewing candidates but not
having the right position for them at the time. One example comes from
Brøderbund: “I interviewed a guy who was not right for the job we were
recruiting to fill, but I liked him and stayed in touch with him occasion-
ally. Almost three years later the right position opened up and he was hired
almost immediately. He turned out to be a superstar and was well worth the
patience and waiting for the right position to open up.”

56 3. Finding and Hiring Great Programmers

By thinking of recruiting not as a series of one-time challenges but as
ongoing relationship building, you’ll add value to your network in the short
term and your recruiting in the long term. You should always be recruiting!

You should always be thinking about building a network
of possible employees and referrers and staying in touch;
the person who turns you down this year may be next
year’s awesome hire. And the candidate you would think
would never come and join your company may have
their own perspective, or may refer a friend.

—TIM DIERKS, Programmer, CTO, and VP of
Engineering, Apple, Google, and elsewhere

If you’re at a start-up, you may find that your own network, your list
of potential candidates, and referrals from your colleagues are all you have
to work with. You can make some great hires with nothing more; you’ll just
have to work your limited paths harder.

Budgeting for Recruiting

One of the first things to know about hiring is how much you can spend to
find candidates. Marketing costs to attract and recruit full-time employees
can include

• Paying commissions to headhunters
• Engaging an internal recruiter or retaining an external one for this or a

group of hires
• Paying employees bonuses for making successful referrals
• Paying to list your position online with the likes of LinkedIn
• Organizing a special recruiting event, perhaps around the time and loca-

tion of a conference focused on a key technology in which you need
expertise

• Paying to fly in remote candidates to interview (and potentially pay-
ing for moving expenses to relocate them, should you decide to go that
route)

For any given hire, large companies will likely set strict limits on what
avenues you can pursue and how much you can spend (mitigated some-
times by providing recruiters in-house and by letting you recruit from those
already part of your organization—lateral hires). Smaller companies may

 Recruiting Full-Time Employees (FTEs) 57

be more flexible with outside recruiting resources and dollars. Early-stage
start-ups may give you no budget whatsoever.

Resolve the headhunter question first. If you’re in a rush to hire, or
you’re anxious to increase the certainty of making a hire, particularly in a
fast economy, working with two or three effective headhunters can vastly
improve your candidate pool.

There are lots of mediocre recruiters. The recruiter you want is one with
whom you can do a quick mind-meld, one who will almost instantly under-
stand your needs and mirror them back to you first verbally and then in the
form of perfect candidates.

The cost of using headhunters—you don’t pay “contingency recruiters”
unless you hire a candidate whom you had not previously contacted regard-
ing a specific position—is usually a percentage of the new hire’s first-year
salary. The percentage was once 15 percent, but these days it is seldom less
than 20, and 25 percent is not uncommon.

Companies of any size will have their own standard contract stipulat-
ing the conditions under which candidates are presented and commissions
are earned, including an absolute ceiling on the commission percentage. Just
make sure you have a contract in place with a recruiter before you accept
résumés or interview any of the recruiter’s candidates—or risk heartbreak
when your HR department tells you that you can’t hire the perfect candidate
whom you just had 12 people invest their time interviewing because the
recruiter won’t meet your company’s terms.

Beware: There are some less-than-ethical recruiters. Look to engage only
exceptional recruiters with absolute integrity.

Avoid boiler-room operations. These are people who would, but for the
fortuitous offer of a job in recruiting, be calling you at home during din-
nertime to sell you carpets or drapery cleaning or credit repair. When they
interrupt you with phone calls at work, they’re no less annoying. Some of
them will lie and tell you that your colleague “Bob” (pick a name in your
organization they just heard) pointed them to you. Some of them will lie and
tell you they have a “perfect candidate” with the very set of skills you’re
looking for and a pedigree so perfect any manager would leap to hire the
candidate. On the flip side, programmers get calls about “perfect jobs” that
may or may not exist and soon realize the “recruiters” cold-calling them
don’t know anything.

The worst for you—worse even than being unable to shake a recruiter
who hounds you with phone calls—is the recruiter who “introduces” a

58 3. Finding and Hiring Great Programmers

candidate to whom your organization is already talking, then accuses you of
lying and threatens to sue you for a commission.

You can mostly avoid the bad apples and find stellar recruiters by rely-
ing on recommendations from other managers and being nothing more than
polite to the cold callers.

Ron’s feeling is that no interruption by an unsolicited recruiter on the
telephone is acceptable. He is civil and asks them to e-mail him. He keeps
expecting this to change, but so far it hasn’t: The boiler-room operators never,
ever e-mail. Their game is a telephone game. He won’t hear from them for
a month or more, when they phone again. He is always very cordial (until
they try to keep him on the phone instead of listening to how he wants
to communicate with them). He tells them he loves to communicate with
recruiters—which generally truly throws them off their spiel—then after a
pause says, “But until I get to know them, I only want to communicate via
e-mail.” They pester him with questions, to each of which he replies, “I’ll
look for your e-mail.” And after a few of those, he says goodbye and hangs
up the phone.

There are, of course, the rare real recruiters who cold-call, but they will
be more than willing to contact you however you want. From them you’ll
see e-mails and candidates and interaction on your terms. And some of them
will make it onto your personal list of preferred recruiters.

Recruiter Case Study

In late 2009, Elaine Wherry, one of the cofounders of Meebo, created a ficti-
tious online persona, a JavaScript developer at her company. The fictitious
programmer launched his own Web site, LinkedIn profile, and Facebook
page. She was fishing for recruiters, hoping her persona would show her
who were the best. Over the next 18 months, as her fictitious developer
received 237 e-mails from 180 recruiters and 195 companies, she unexpect-
edly stumbled upon some great insights about recruiting.

Elaine was looking for prize JavaScript superstars; she needed to double
the size of her team. She had already tried all the guerrilla recruiting tac-
tics she could think of. She had placed Google AdWords (to pretty much no
effect); embedded a “secretjobs” e-mail address into the gnarliest source code
on her company’s site to snare anyone daring enough to read it; put logo’d
T-shirts on students’ chairs during Stanford finals for the classes likeliest to
deliver her talent; set up a jobs page chat widget (which she described as
“useful”); devised JavaScript blog puzzlers and bingo; networked at Java-
Script meetups; set up a résumé spider engine; spoke at events; participated

 Recruiting Full-Time Employees (FTEs) 59

in Stanford’s computer science classes; advertised in student newspapers;
and placed Twitter keywords. And she created a map of the JavaScript com-
munity that proved useful to her recruiters. But when all that wasn’t enough,
she hit on creating the persona—a honeypot she hoped would attract recruit-
ers who would be best able to find and deliver the coders she needed.

Initially, she gave her persona a guy’s name, a great résumé, and a good
blog but got nothing for two months. Then she filled out a profile for him on
LinkedIn—and was flooded. What she learned was that despite what every
recruiter told her about how broadly they looked, by 2009 recruiters were
relying almost exclusively on LinkedIn. So she began turning over rocks for
non-LinkedIn-listed programmers.

When she found that her competition for the coders she wanted was not
just the big guys—Google and Amazon and Apple and their ilk—but pre-
dominantly the midsize and smaller companies, she began working harder
to differentiate her company from the rest.

She found that every single recruiter her company had ever employed
who was no longer contractually prevented from doing so tried to recruit
away her “programmer”—and realized how important it is to keep your
prized programmers happy: free food, great people to work with, and inter-
esting stuff to work on.

When she realized how poorly prepared most recruiters were—how
many were shotgunning impersonal, canned e-mails—she made sure her
own recruiters were armed with her company’s mission statement, had
specifics about the role being recruited for, and referred to something in
candidates’ profiles and on their blogs that made them a good fit for the
job requirements. Realizing how few stellar recruiters she came across, she
determined to treat her few good ones like gems.10

Employee Referrals

While we think you should make your initial decisions with respect to recruit-
ers right away, in our opinion the number-one source of candidates (and in a
start-up with limited funding, virtually your only source) is employee refer-
rals. With referrals, you’re leveraging the people you already have in your
organization to recommend their friends and former colleagues. Every study
we’ve seen supports our experience: Good people recommend other good

 10. Elaine Wherry shared her lessons learned in her Silicon Valley Code Camp 2011 session,
“Winning the Engineering Talent War Online,” and later in her blog at www.elainewherry.
com/2012/06/26/the-recruiter-honeypot.

http://www.elainewherry.com/2012/06/26/the-recruiter-honeypot
http://www.elainewherry.com/2012/06/26/the-recruiter-honeypot

60 3. Finding and Hiring Great Programmers

people. And you get a built-in reference, usually with contact information
for other former colleagues who will vouch for the candidate as well.

If your current employees are happy, they will refer
other great employees to you. So make your place a
desirable place to work—including offices for program-
mers, good leadership, and perks.

—GREGORY CLOSE, Manager, Project Manager,
and Start-up Founder, San Francisco Bay Area

It would be nice to think that your entire organization would recruit
their friends to your team every time you have an opening. But the fact is
that people can be hesitant to solicit their friends; however, that can be over-
come with money. You can expect to pay a headhunter a big commission
to find a candidate who will be less predictable than the ones your own
employees will recommend. If you were to offer a bonus of just half that for
employee referrals ($10,000 for a $100,000 hire, say), employees would feel
richly rewarded and highly motivated. Justified as they would be, we have
never, ever seen referral bonuses that high. Nor have we seen a single study
quantifying the difference between $2,000 and $500 bonuses, both of which
are common. But we do know referral bonuses work.

By the way, hiring managers are a special case when it comes to
employee referrals. In every program we’ve seen, as the hiring manager you
are not eligible for referral bonuses; you are expected to lure former employ-
ees from your network to your current team. It’s not uncommon for manag-
ers to be asked, when interviewing, about their networks of programmers
and their ability to hire from their own pool. Like many job expectations,
doing so is not bonusable.

It is important to keep in touch with peers and former employees. In
fact, a large number of employers, possibly a majority, would not hire you
if they knew you hadn’t stayed networked with the best of the developers
with whom you’ve worked throughout your career. That said, don’t solicit
developers from the last company you worked for. Even if you didn’t sign
a nonsolicitation agreement, it’s bad form. But stay in touch, connect with
your former colleagues on LinkedIn, be friendly, let everyone know where
you are, and let them contact you. That is OK. So is nonspecific recruiting
like posting an update on your LinkedIn profile and other social networks
to broadcast your need.

One note of caution: While the rule is that good people recommend
good people, always, always, always listen to your “gut.” Ron recalls,

 Recruiting Full-Time Employees (FTEs) 61

“I progressed through one employee’s referrals from one of my best hires
to one of my worst. My employee had been stellar at his job, so when he
told me that his referral candidate was even better, I was skeptical; but after
interviews I thought she would at least be good. She was better. She knocked
my socks off. So when I next needed a hire and the guy had another ‘even
better than me’ candidate, I ignored the odd feeling in my gut and chose
his candidate over another that my team and my gut really liked. My entire
group suffered when he turned out not to be stellar—and in fact was not
even competent; it was a month of pain until he made it easy for me and left
the company.” The rule of thumb: Trust your gut about the candidate, not
about the referrer.

One more note of caution: You must avoid cronyism and the appearance
of cronyism. Your job is to make great hires of people who are a superb fit,
not to hire a team of your friends. Your hires should be the best candidates.
Yes, that’s a subjective decision, and you’re the one making the decision, and
you have experience with your candidates that no one else in the organiza-
tion has, and all that is worth something. But if you have a history with a
candidate, you should be explicit about communicating why that candidate
is your choice; you should share the experience you had with the individual
that makes you confident he is the right hire, especially in the face of a com-
peting candidate who interviewed well. As always, communication is your
“job one” as a manager, and maintaining interpersonal trust is essential.

Effective Recruiting

Our experience with advertising tech jobs in print media has been to do it
rarely, only when the company has a large number of positions to fill, ide-
ally when the number is large enough that it leads you to hold a recruit-
ing event (perhaps in connection with a tech conference nearby) so that the
advertising can focus on getting candidates to the recruiting event.

One way to be cost-effective with your recruiting budget, if you have
time, is to tier your efforts. Give employees a two-week lead to bring in
candidates (and you might make the bonus higher for candidates they bring
in during that initial period, possibly saving you the additional work of the
next steps). During that time, scare up candidates yourself from your own
network of former employees and colleagues.

Simultaneously post your job on your company’s Web site to ensure
that candidates can get a clear idea of what you’re looking for and can feel
confident in approaching you. If your company uses an applicant tracking

62 3. Finding and Hiring Great Programmers

system such as Greenhouse or Lever, you will post your job via that tool.
Since smart candidates have learned to set triggers on such tools to notify
them when an appropriate job has been posted, you may find you get trac-
tion from this move alone.

After two weeks, turn the recruiting over to your internal staffing depart-
ment recruiters; if they’re any good, the number of résumés you will now
have to read will multiply fourfold if not tenfold. Simultaneously, brain-
storm professional organizations, meetups, and social-media professional
groups to which you can post your need, some of which might additionally
have job boards that you can leverage.

If you still aren’t finding your hire, advertise on low-cost classified net-
works such as Craig’s List, AngelList, Indeed, and LinkedIn. Your résumé
reading list should increase again.

Finally, go to a few contingency headhunters. If they’re good, your
résumé pile will grow by only a small number, but the candidates will be
perfect and you’ll owe the recruiter a lot of money. (If your organization has
a lot of money and little time, skip directly from employee referrals, head
start or not, to headhunters.) If you find yourself working with a headhunter
who doesn’t “get” what you’re looking for—who sends you one inappropri-
ate résumé after another—drop that recruiter. Your time is too valuable.

Recruiting Tips

There are a few other items to pay heed to when recruiting full-time
employees.

First, given that your most important jobs are to recruit and retain
the right people, the staffing and HR departments are the most important
groups in your company to bond with. Staffing will play more of a role in
your success than any other group. Make internal recruiters your friends.
Their care and feeding should be a top priority for you.

The typical staffing department is wildly understaffed. And with your
technical positions to fill, you’re at an additional disadvantage, since 95 per-
cent of recruiters barely have a technical bone in their bodies, truly struggle
to make sense of your list of required skill sets, and don’t really understand
the people you’re looking for (even if they’re good at finding them!). Inter-
nal recruiters are typically either touchy-feely HR people who happen to
demonstrate a bent for external networking, or marketing people who wish
their colleagues would stop typecasting them as HR people. Either way,
they have little in common with you.

 Recruiting Full-Time Employees (FTEs) 63

Make it your mission to make these people your friends. Drop by. Be a
friendly face; bring them a smile, coffee, a stuffed animal, or perhaps food
(but not to recruiters who are dieting); learn to explain what you’re looking
for in their lingo; ask about their kids and their hobbies and their interests;
help them to figure out where to look for the candidates you’re seeking;
review résumés with them to show them the words and phrases that jump
out at you (both positive and negative). If they ask you for anything, get
it to them by return mail. If they give you résumés to review, return them
within hours, commented and prioritized by desirability against your
 criteria. Don’t ever make them track you down. Make their job easier in
every way. Be their best friend. Figure out how to genuinely like them, and
they’ll like you back.

Don’t ever assume, when you don’t hear from them, that they’re work-
ing on your hire. Ask them how it’s going. Ask if there’s anything you can do
to help, or if there’s any additional information you can supply that would
help. Follow these suggestions, and you’ll be one of their favorite managers.

Staffing may be located elsewhere. Find excuses to wander by. Schwab’s
staffing department was on the same floor as its cafeteria, making it easy for
Ron to drop by before or after lunch, or when visiting the vending machines
at snack time. At Razorfish, Ron formed deeper bonds with the team upstairs
when his recruiter was relocated to an office there. It worked. His job requi-
sitions got the attention they needed.

Mickey has used contract recruiters quite successfully at Brøderbund
and Gracenote: “When I had a bubble of critical positions to fill, I worked
with HR to bring in a contract recruiter who can focus on those positions.
Contract recruiters work for a lower fixed fee or on an hourly basis, which
can greatly reduce the recruiting costs and result in more progress by focus-
ing strictly on the critical positions. Like programmers, you can sometimes
find contract recruiters who are passionate about their areas of interest. You
can work closely with these contract recruiters to make sure they thoroughly
understand the ideal candidate profiles and the critical skill sets, and they
work very closely with hiring managers to optimize their time by present-
ing only highly qualified candidates. At Brøderbund we had one contract
recruiter who became a specialist in locating great multimedia talent. He
immersed himself in the technologies and prowled the technical forums and
special-interest groups looking for talented individuals. He became almost
obsessive about looking for and being successful at finding talent. I saw him
a few years ago at a SIGGRAPH trade show where he was working for Intel
recruiting 3-D graphics specialists and still obsessed by his mission. He was
a special recruiter.”

64 3. Finding and Hiring Great Programmers

Finding such passionate recruiters is hard, but when you do, your life
will be easier and your recruiting almost a pleasure.

There’s another class of headhunters besides those who work on com-
mission, but they mostly don’t apply to you. Retained recruiters are ones
you retain and pay regardless of whether they find the candidate you hire.
Retained recruiters mostly work on senior and executive management posi-
tions, where they specialize in having senior-level networks they can access to
find candidates. Sometimes they specialize in or undertake searches in secrecy,
to avoid putting the word on the street that someone senior is being replaced.
For programmers, though, you’ll almost always pay recruiters a commission
only if they find the right candidate for you—a contingency search.

Recruiting Contractors

Recruiting contractors is different from recruiting employees.
A large organization may well have a list of six, eight, or ten “preferred

vendors” of contractors through which you will be required to hire contrac-
tors. One or more of them will be designated as “pass-through” vendors;
should you find independent contractors you want to bring in, you’ll typi-
cally be required to bring them in through one of the pass-through vendors,
which will provide payroll services and bill you enough more to pay taxes
and take a cut themselves.

If you’re lucky enough to have this system in place and enforced in your
company, your phone won’t ring except with legitimate business. You’ll
never be plagued by the swarm of job shops trying to be the one to find
you contractors. On the other hand, there goes your largest source of free
lunches and presents at Christmas. The real downside is that you’ll have to
leave behind the contractor recruiters who have served you so well in the
past and whom you have long cultivated to bring you great people (and buy
you lunches).

If you don’t have a preferred vendor system in your company, ask your
programming manager peers and colleagues for referrals of good contractor
houses and recruiters to work with.

Go out of your way to find a “boutique” contracting house that you can
trust to find especially skilled contractors when you need them. Mickey says:
“While at Gracenote I found a contract house that always seemed to find
exactly the right ‘specialty’ contractor when I needed one. They had access
to a network of contractors and had them categorized very well, because
they found me a contractor in Seattle, a contractor in Toronto, and many

 Reviewing Résumés 65

local to the Bay Area with exactly the specific skills I was looking for at the
time. These skills were not simply programming skills; they were as exotic
as experience with Japanese and Korean Morphological Text Matching, or
experience in implementing UPnP servers (when the technology was first
emerging), and others. I was amazed at how quickly they could respond to
my seemingly exotic requests for contractors.”

Preferred or no, cultivate those relationships. You want these folks to see
your needs as their top priority and to think of you when their best people
become available.

Of course, the best place to look for contract talent is within your own
network. LinkedIn provides instantaneous and always updated access to
your network, though it is no real substitute for a carefully cultivated data-
base of your contacts that you maintain throughout the years.

Mickey uses LinkedIn for his close set of personal contacts (hundreds,
not thousands), but also an address book application that has the ability to
store preset fields as well as free-form data that is word indexed. He uses
this program religiously to maintain all his contacts, including those whom
he would not dream of inviting into his personal LinkedIn network. “This
has been one of my best weapons in accelerating the recruiting process for
employees and contractors.”

Reviewing Résumés

If you’re lucky, all that recruiting will result in a flood of résumés. But how
do you identify the potential stars in a stack of résumés?

Reading résumés is an art. You need to look for your requirements
expressed in someone else’s words. You need to read between the lines. You
need to connect the dots. You need to read the words and imagine the activi-
ties the candidate would have had to undertake to be able to write those
words. You need to think through whether the range of experiences candi-
dates have had will have readied them for your company and your position.

College degrees don’t impress me, and lack of school
doesn’t scare me (see: Jobs, Steve, and Gates, Bill). At
some point, when a person is far enough removed from
school, the degree is all but meaningless. Experience is
what matters most.

—ERIC MULLER, Software Architect and VP
of Technology, San Francisco Bay Area

66 3. Finding and Hiring Great Programmers

Pretty soon, you have to make a value judgment regarding what require-
ments are truly required, how experienced a candidate really has to be with
each of those technologies, how many applications you need to see, and how
big they need to be to prove a candidate truly has the skills you’re looking for.

I assume that a good candidate rewrites their résumé and
cover letter after reading my Web site. Checking them
out on LinkedIn tells me what their résumé really says.

—BRUCE ROSENBLUM, CEO of Inera, former VP
of Software Development at Turning Point

If you’re seeking arcane and unusual skills, the pickings may turn out to
be scarce. You’ll have to decide whether to redouble or rethink your recruit-
ing efforts in order to find the candidates you need or to scale back your
expectations and plan to train. Keep in mind that though you can train
FTEs, you should expect contractors to have each and every skill you need,
coming in the door.

I want people who can write, because we spend a lot of
time writing to each other. We’re writing e-mail or docu-
mentation. We’re writing plans. We’re writing specifica-
tions. I want to know that the people on my team are capa-
ble of doing that, and that turns out to be a really difficult
skill. So I would actually rather see people start as English
majors than as math majors to get into programming.

—DOUGLAS CROCKFORD, Inventor of JSON,
Software Architect, and Entrepreneur11

As you read résumés, jot notes on your copy (not on an original, since
you want other interviewers to reach their own conclusions, not base their
judgments on yours). Highlight the skills and tools you’re looking for, where
they appear. Draw arrows to gaps in employment history, so you can follow
up with a question. Circle spelling errors, bad grammar, and sloppy format-
ting; you may end up making a decision between two candidates based on
knowing that one can write well enough that you won’t have to review every
word. Note where candidates have changed jobs frequently; if you’re look-
ing for someone to stay on your team long-term, you may need to formulate

 11. Quoted in Peter Seibel, Coders at Work: Reflections on the Craft of Programming (Apress, 2009),
p. 124.

 Narrowing the Field 67

a question that elicits why a candidate jumped around. And write questions
on the résumé as you’re reading it (e.g., “What was your role in this accom-
plishment?” “What part of this project did you do?” “Why were you at this
company for such a short time?” “What was the result of this effort for the
company?” “What was the most difficult aspect of implementing this tech-
nology?” “What technologies and tools did you use on this project?” “What
language did you write this in?” “What was the toughest challenge you
overcame on this project?” “How did you learn this new skill?”).

I often look for people that have done a lot of stuff on
their own that wasn’t asked of them. Not just their
school project or just what their previous employer had
them do. Somebody who was passionate about something
and had some side project. How did they maintain it and
how serious did they get with it? Or do they do a lot of
quick hacks and abandon them?

—BRAD FITZPATRICK, Founder of LiveJournal
and Chief Architect at Six Apart12

Résumé reading is a skill in which new managers will find it helpful to
be mentored. Ask around to identify experienced and talented interviewers
and hiring managers. Ask if you can help them read résumés for their next
hire. Few managers will turn down that offer since even those skilled at it
find reading résumés a thankless, but critical, chore.

You will find the résumé-reading checklist in the Tools section useful.

Narrowing the Field

In a slow economy or if you’re hiring into a hot company, you may still have
more candidates than you can interview.

IQ-like questions and quizzes are stupid.

—DAVE WILSON, Software Architect,
San Francisco Bay Area

One way to narrow the field is to send candidates a programming chal-
lenge. Work with your team to identify a coding challenge that requires

 12. Seibel, Coders at Work, p. 77.

68 3. Finding and Hiring Great Programmers

skills consistent with your team’s needs, has a correct answer, and should be
able to be coded in a reasonable amount of time. Ask candidates to send you
their answer and their code. Or leverage a platform like HackerRank that is
purpose-built for this use.

When you get results, interview the candidates who submitted correct
answers and whose code shows the kind of thinking, rigor, and documenta-
tion you expect.

A suggestion worth pursuing is to do the hands-on programming chal-
lenge live using WebEx, IM, or a Web site like typewith.me or sync.in that
allows you as the interviewer to watch the remote candidate type. Even bet-
ter, if you leverage pair programming to any extent on your team, is to pair
one of your team with the candidate. It will give you a virtual hands-on feel
for candidates before bringing them in for in-person interviews.

What ultimately narrows the field for us is simple: careful screening.

Preparing to Interview

Once you’ve got candidates who look like they might be a fit, it’s time to
interview.

The first interview is by phone, a screening interview. You need to
find out

• If the candidate is still interested
• Whether the candidate is interviewing with other companies (and what

the time frame is with those companies, whether the candidate already
has other offers, is considering them seriously, and when a decision
must be made)

• What kind of job the candidate is looking for
• What the candidate considers to be their areas of expertise
• What compensation is expected
• Why the candidate is looking for another job
• The candidate’s availability to start working for you
• Whether the candidate is willing to commute to your location if working

in your offices is a requirement

Ask candidates to describe in detail what they have worked on, both
for you to gain confidence that they actually did what they said, but also to
know that they can explain what they have done and what they know. Drill
down into one or two of the accomplishments they cite to confirm that they
have the skills you need.

http://sync.in

 Preparing to Interview 69

I avoid prima donnas. One candidate told me he only
needed to work two days per week because he could do
in 16 hours what everyone else would do in 40. No,
thank you.

—BRUCE ROSENBLUM

For a highly specialized technical position, you may want to choose a
highly technical team member to conduct a second screening to test expert
knowledge the candidate claims to have and that you need.

Once you confirm that candidates are credible—that they appear to
meet all your criteria—you’ll assemble an interview team. Then bring in two
or three leading candidates for one or more rounds of interviews with your
team, your colleagues, and perhaps your boss.

The job description you prepared earlier, such as our sample one in
 Figure 3.1, should provide all the criteria you’ll use to qualify a candidate and
measure one against another. The challenge is to remember to test every can-
didate against all those criteria, and then keep track of how the candidates
stack up against them and each other. Mickey long ago came up with the
spreadsheet format in Figure 3.2 to help him do that. Enter your criteria into a
similar spreadsheet to keep track of your candidates and their qualifications.

Plan a strategy for who will pursue which skills and qualities, and addi-
tionally who will help you sell the candidate on joining the company. (It
works both ways.)

The interviewers you assemble may include

• You
• Your HR or staffing person
• Programmers who are the technical leadership on your team
• Programmers from related teams with whom your hire will need to

interface
• Your UI designer
• The product manager
• The project manager
• Another development manager or two (particularly if you’re green at

hiring; another manager’s observations and feedback can help you with
what to look for and how to look for it)

• Others in the business from whom the programmer will get require-
ments or collaborate around product and support issues

• Your boss (or even your boss’s boss)

70 3. Finding and Hiring Great Programmers

Principal Programmer
Interview Summary

Bill
Smith

Cathy
Llu

Arnold
 Lai

Lucy
Miller

Andy
Jones

Received résumé on

Phone screen on

First interview round on

On time, early, or late?

Second interview round on

On time, early, or late?

Bachelor’s Degree (optional)

Minimum 8 years programming
experience

Wrote first program ever in (year,
language)

Wrote first professional program in

Experience with what languages

Experience with what databases

Minimum 3 years .Net programming
experience

Wrote first .Net program in

Most recently wrote for .Net in

Minimum 3 years SQL Server program-
ming experience

Wrote first SQL Server program in

Most recently wrote for SQL Server
v. (???) in (year)

Web application architecture and design
skills?

Ability to analyze & improve scalability
and performance

Experience scaling high-volume,
information-rich Web apps

Fast, clean, efficient coder?

Refactoring skills

Has defined development and engineer-
ing best practices

Experience leading and mentoring other
developers

Figure 3.2 Principal programmer interview summary
(continued next page)

 Preparing to Interview 71

Principal Programmer
Interview Summary

Bill
Smith

Cathy
Llu

Arnold
Lai

Lucy
Miller

Andy
Jones

Communicates designs effectively

Listens

Critiques others’ designs

Writing skills

Customer Experience empathy/
awareness/design sense

Intangible qualities

Energy

Flexibility

Self-direction

Smart

Articulate

Passionate

Fit in with team

Overall desire to work at our company

Experience w/algorithmic design, coding,
trade-offs

Search/information retrieval

Analytics, data warehousing, and busi-
ness intelligence

Information visualization

Web services

Sent us a follow-up thank you?

Figure 3.2 Principal programmer interview summary

In one company, Ron’s CEO asked to interview every candidate to
whom Ron thought he would want to make an offer (provided the CEO’s
travel plans or other conflicts did not hold up the hiring process); he wanted
a head start with new hires for his goal to know everyone in the company,
considered it a “touch test” to build confidence in his senior managers’ hir-
ing IQs, and offered the gift of his time to assist with the sometimes chal-
lenging task of luring highly qualified developers who were choosing
among competing offers.

On the other hand, earlier in his career at a much larger company, Ron’s
midlevel boss gave him carte blanche to hire without the boss interviewing
a single candidate. At a third company, not only his boss but also his boss’s

72 3. Finding and Hiring Great Programmers

boss were on the interview schedule. You’ll likely have managers of every
stripe as well, but if they interview, they’ll almost always want to be last to
do so; most will want to see just the “keepers.”

Mickey and Ron would both rather have more interviewers than fewer.
When hiring FTEs, Ron typically selects two teams of four to five interview-
ers for a first and second round of 45- to 60-minute one-on-one interviews.
Get to know how long your interviewers prefer for an interview. Some will
be like Ron, who wants a full hour with candidates, whether his or another
manager’s candidates; others are happy with 30 minutes and uncomfortable
with even five minutes longer than their requested time.

Programmers are critical interviewers. They will have to work and team
with the new person. They also likely know the skills and experience that
are needed or missing better than anyone. But programmers are also gener-
ally the least prepared to interview. You need to spend time with new inter-
viewers to go through the technical and team qualities you want candidates
to bring. Then you can work together on questions and exercises they can
pose that will help reveal the candidate’s facility.

Assign areas of focus for your interview team members: the various
technical skills you need; analytical, problem-solving, communication, and
interpersonal skills; and résumé red flags and omissions. Make sure you
have interviewers who will ask technical questions that demand technical
answers. Divide up the candidate’s projects and companies among your
interviewers, so that someone digs into the details of each one. And divide
up the qualities you’re looking for, both to ensure that among your team
someone is pursuing understanding of that quality as well as to avoid a day
of interviews where everyone asks the same questions. A wiki page or other
collaborative online space is perfect for letting your team sign up for those
areas about which they feel most competent or most passionate.

All that preparation will help ensure that your interviewers are pre-
pared. Too many interviewers in too many companies read a résumé five
minutes before the person comes in—or on their walk to the lobby to pick
up the candidate—and end up contributing a fraction of the thoughtful,
in-depth understanding that a well-grounded, well-thought-out interview
should produce. The entire interviewing team must be clear on the need for
this hire, with whom the new hire will work, and what the new employee
will be tasked to contribute. Then each interviewer can create initial specific
questions, using the résumé to guide further questions when probing into
the candidate’s experience and background. Interview training is something
that is not often given to employees, but the cost of hiring the wrong people
far outweighs that time and effort.

 Preparing to Interview 73

When you’re hiring programmers, you have to get at their ability to
code. It’s essential to answer questions that elicit a picture of their under-
standing of programming. It’s critical that you ask them to do some design
and to write some code.

I have had a couple of profound wake-up-call cases lately
that pointed out how important it is to ask a program-
mer candidate to write code. In both cases, we had can-
didates whom we considered to be A or A+ level matches
to what we were looking for. They’d had all the right
experience, listed just the right skills for the job, seemed
to have the right people skills, and genuinely seemed like
nice and well-rounded individuals. But then, almost as
a formality, we asked them to write some code. The term
deer in the headlights best describes the result. Both
these guys fell flat on their faces. We couldn’t believe it.
They did so badly that it caused a stir throughout our
whole department and led to multiple discussions about
how this could have happened. Long story short: What
we learned was that asking candidates to write code and
to answer questions about code is absolutely critical.

—STEVE JOHNSON, VP of R&D

Encourage candidates to bring a portfolio of projects—documentation
they’ve written, designs they’ve created, samples of their work, and even
demos on their laptops or online that demonstrate their prowess.

I invite the candidate to bring in a piece of code he’s
really proud of and walk us through it. I’m looking for
quality of presentation . . . how effectively they can com-
municate, that’s a skill that I’m hiring for.

—DOUGLAS CROCKFORD13

Ask a candidate to bring along some of their source code.
Inspect their code, and you’ll know if they are any good.

 13. Quoted in Seibel, Coders at Work, p. 129.

74 3. Finding and Hiring Great Programmers

Then ask the candidate to show you an app that they
built. Evaluate the user experience.

—DAVE WILSON

Sometimes doing this can have unexpected effects. Ron’s youngest hire
was, at Apple, an intern just out of high school. Ron had heard, through
a connection, about the young programmer’s prowess but wasn’t sure his
team would embrace a high school kid. As it turned out, the young pro-
grammer brought in samples of random-dot wall-eyed auto-stereograms; he
had read about the technique of hiding 3-D scenes in images that at first
glance appear to be nothing but random dots, and he’d figured out how to
reverse-engineer a program to create them. As Ron watched his team squint
wall-eyed at the samples pinned to the team wall, willing the 3-D images to
emerge, he knew he had a fit.

Pair programming for half an hour during an interview
will save everyone’s time.

—DAVID VYDRA, Continuous Delivery Advocate
and Software Craftsman, TestDriven.com

As you set up a morning or afternoon or day of interviews, you need to
plan for someone to be the first to greet the candidate, and someone to see
them out. As the hiring manager, you’re a strong candidate to fill at least one
of those roles. Taking the closing role can be a great opportunity to debrief
candidates on their perceptions of your company and your team, try to correct
any misperceptions, and send the candidate off with a positive impression.

Ron also tries to have a trusted strong interviewer lead off—and report
back at once if the candidate seems at all a bad fit. There’s no use wasting
the candidate’s or the team’s time further if you determine up front that the
match isn’t there.

If possible, take the candidate and at least part of your team to lunch.
The interactions you’ll see will be priceless for making a decision about
whether the candidate has “team fit.”

Mark Himelstein, an Interim VP of Engineering in the San Francisco Bay
Area, prepares his interviewing teams by going over

• What the person is being hired for
• Issues/areas to be covered (making sure that someone is covering the

basics)
• How to sell the company consistently

http://TestDriven.com

 Interviewing 75

He notes, regarding selling the company, “I have used role-play to teach
developers how to sell the company consistently. We agree on the point I
want each to make, then I have them use that point to sell the company to
a colleague in 120 seconds. I have the team offer critiques to their peers on
how to improve the pitch.”

Finally, do candidates a favor by presenting them with an interview
schedule when they arrive that includes times and interviewers with their
titles and (should the candidate want to follow up) e-mail addresses. Having
your greeter not only present it but draw a verbal picture of the interviews
ahead and who the interviewers are will put your candidate at ease and get
logistics out of the way so that you can all focus on fit.

Take a look at the sample interview schedule in the Tools section.

Interviewing

Take notes! Walk into interviews prepared to take notes on what candidates
say. It’s amazing how a series of candidates will blur together without notes
to tell them apart.

Make time before the interview to prepare your questions. Write them
down. Carry them into the room with you.

Make eye contact (and make sure the candidate can make eye contact
with you). Make note of what candidates communicate nonverbally; how
they comport themselves; whether they’re on time, early, or late; and after-
ward whether they send a thank-you. And make notes about what your
team members, colleagues, and boss have to say about the candidates.

At the same time, don’t be so busy writing down what candidates say
that you don’t notice who they are.

Ron makes it a practice never to interview a programmer in a room
that doesn’t have a whiteboard; he looks for candidates’ willingness, even
eagerness, to get up and explain to him how they approached a problem
they faced in a previous company, to explain the architecture and design of
one or another of their previous projects, or how they would face one of his
team’s problems now. It can help differentiate the talkers from the doers.

I like to talk about design patterns, like how would you
design something. Candidates should be able to identify
all the parts of objects. For example, if you were design-
ing a game of blackjack, you have cards, hands, and

76 3. Finding and Hiring Great Programmers

players. They should be able to identify properties of
these objects and their relationships. When would they
use inheritance? When would they use “is-a” versus
“has-a” relationships? There may be more than one cor-
rect answer, but the approach should be workable. I find
I am usually willing to give answers and instruct so
that it is not a “gotcha” interview, but more of a con-
versation. The goal is to determine how well we work
together on a problem.

—PAUL OSSENBRUGGEN, Senior Staff Developer

You’re going to want to know the answers to questions like these:

• What aspects of your last job did you most like?
• What were your colleagues and your management like?
• Tell me about some of the things you and your supervisor disagreed

about.
• What led you to leave the companies you previously worked for?
• What attracts you to our company?
• Why are you looking for another job now?
• What do you want to get out of your job?

Learn to ask questions that are open-ended—that candidates can’t answer
with a yes or no—like these:

• Tell me about. . .
• How were you able to accomplish . . . ?
• What was your role in . . . ?
• If you had led the development effort on that project, what would you

have done differently?
• What best practices are you most fond of?
• What are your strongest technical strengths?
• What are your strongest nontechnical strengths?
• If you think of the fabric of programming as triangular, with the points

representing design, coding, and debugging, tell me about the part of
the fabric on which you would most like to spend your time.

• Where would you place yourself on a continuum where one end is
developing gnarly algorithms and the other is developing customer-
focused UI?

 Interviewing 77

• Imagine a line. One end is leadership. On the other is teamwork that’s
so fully collaborative that leadership is totally shared and no one on the
team would be able to identify a leader. Where on that line would you
place yourself?

• How would your manager describe you?
• Tell me about your comfort level with asking for assistance from others.
• Where do you fall on a continuum that ranges from highly structured,

where your tasks are spelled out completely, to one that is entirely free-
form and you have to make decisions, often without having all the
information you’d like?

• How do you like to be managed?

Ask for examples:

• Think of a time when you knew you could not make a deadline. What
did you do?

• What was the most interesting problem you faced in a former project?
How did you solve it?

• Tell me about a time when you. . .
• Give me an example that illustrates your leadership style.
• Think for a minute about the most stressful situations you’ve been in

at work and tell me about the one you think was most stressful of all.
What did you do to deal with it?

• Have there been times when you needed to formulate a new solution?
Tell me about that time, and about what you devised.

• Tell me about a best practice you played a role in getting your team to
adopt.

• Describe a time when you displayed extraordinary initiative.
• Have you worked with a UI designer [product manager, business ana-

lyst . . .] to translate customer needs into technical requirements? Tell me
about that collaboration.

• Tell me about a time when your manager was annoyed with you or with
your role on the team. How did you respond?

• Think about the teams you’ve been part of and tell me about a peak
teamwork experience. What contributed to making that memorable?

• What have you done when you’ve had far too many tasks assigned to
you than you can handle? When that’s been the situation and you could
see yet another task coming your way, what did you do?

• Tell me about a time when you successfully persuaded your manager or
your team to adopt your position.

78 3. Finding and Hiring Great Programmers

• How have you handled making formal presentations in front of large
and small groups? Tell me what that was like.

• Have you had to present technical solutions to highly nontechnical audi-
ences? How did that go?

• Describe a time when you advocated creating a better customer
experience.

• Describe a situation in which you had to tear down code and redesign
and recode from the ground up.

I’m no longer a full-time developer and my skills have got-
ten a little rusty. When I’m interviewing someone, I focus
on basic concepts. If I can stump them, they are done.

—ERIC MULLER

Get candidates to give you details. What role did they play in the proj-
ects they cite on their résumés? Get them to tell you how they accomplished
the achievements they claim. Ask them about the most difficult problems
they had to solve in accomplishing them, and ask them to walk you through
their solutions.

I have always found that getting candidates to talk about
a project they have done in detail brings me the best
info: how well they communicate, what roles they actu-
ally had, do they have a big picture about what they did,
do they really understand the technical details.

—MARK HIMELSTEIN

Think of a problem situation that vexed a team you’ve managed (and
would be appropriate for candidates to solve) and ask them to suggest how
to solve it.

But don’t ask leading questions. Do truly make your questions open-
ended; give candidates room to answer as they think appropriate.

Ron writes questions with the intent not only to understand what candi-
dates know and how they think, but to learn something from each and every
candidate that he has the opportunity to interview, no matter for what job.
“We’re interviewing these candidates because we think they can bring some-
thing to our company. My attitude is to figure out what they know that I don’t
(yet), and to start learning from them. Sometimes it’s technical; other times it’s

 Making the Decision to Hire a Programmer 79

how other companies or managers have handled challenges or, from college
hires, how the computer science curriculum is being taught these days.”

If I can’t learn something significant from a candidate in
an hour’s interview, it’s almost certain I will decline to
hire the person.

There are also key logistical questions you’ll want to ask:

• What will commuting to our offices from where you live be like for you?
• How much travel do you like (and how does that fit with the amount of

travel I foresee in the job)?
• What are your compensation expectations?

One final note on preparing questions: Keep them legal. Your questions should
never in any way suggest or encourage candidates to tell you about their

• Marital status
• Parental status
• Age (particularly whether 40 or over, but don’t go there with anyone)
• Current salary or compensation (at least in some parts of the United

States and the world)
• Ethnicity or nationality
• Disability or perceived disability
• Religion
• Sexual orientation

Making the Decision to Hire a Programmer

As each round of interviews completes, get timely feedback. Our experi-
ence is, unfortunately, that you will likely have to remind (even hound) your
interviewers to give you their feedback. You need to get it the same day, at
the latest the next day, while it’s fresh and memorable, and also because, if
you like the candidate, you want to take action, whether to bring the candi-
date back for another round of interviews or to make an offer.

Debriefing your interviewers, as a team, is critical: Not
only is it an opportunity for you to understand the
team’s perspective, but for them, observing how others

80 3. Finding and Hiring Great Programmers

can perceive different aspects of the candidate can help
each team member improve their interviewing skills.

—PHAC LE TUAN, VP of Engineering and CEO,
Silicon Valley

Ask your team to look for indicators and for red flags. An indicator might
be a candidate who has programmed in a lot of languages. It’s a rule of thumb:
The more languages, the better the programmer. On the other hand, red flags
might be that the candidate arrived late for the interview, took a call during
the interview, never seemed to establish eye contact, was sharply critical of
former managers and former companies, arrived knowing nothing about your
company or your products, was unable to explain a previous design, didn’t
show interest in the work you do, didn’t share anything from which you
could learn, or didn’t follow up with a note or e-mailed thank-you.

Will the candidate be able not only to contribute to the current need, but
can you anticipate their skill set contributing for years to come? Make sure
you’re not hiring a narrow fit for a short-term task that, when complete, will
leave you with a long-term problem requiring that you either train or terminate.

Weight the feedback from your interviewers. Some interviewers’ feed-
back is worth a lot more, whether because they know the technical hiring
requirements cold, or because they have proven themselves to have a great
feel for hiring, or for one of a dozen other reasons. Think about the weight-
ing before you hear the feedback.

If you’re dithering, don’t hire them.

—STEVE BURBECK, Manager at Apple, IBM, a small
wholesale company, two start-ups, and a research institute

While dismissing candidates as not appropriate is easy, making a deci-
sion to hire is often difficult. Be clear with your interviewing team that the
decision will be yours. (Actually, it will likely be yours in concert with your
boss and HR.) It is not a consensus decision.

Sooner or later, you’ll find yourself convinced that you have a stellar
candidate, and every interviewer is on board but one—an interviewer who
is adamant that hiring the candidate would be a mistake. Listen carefully to
that person’s feedback; it’s possible the feedback is dead-on. It’s also possi-
ble the interviewer is not looking at the same criteria you are. If you make it
clear you’re taking input (not looking for consensus), and you bring all your
reflective listening skills to bear so that the person feels heard, you’re likely

 Making the Decision to Hire a Programmer 81

on solid ground to hire the candidate based on all your other feedback that
says “stellar.” On the other hand, if the interviewer, or worse, your entire
interview team, gets it in their heads that it’s a consensus decision, you’ll
never break a meeting deadlock without bad feelings, very possibly not only
from the one person who demurs but from the team as a whole.

A quick meeting of all interviewers can be useful; a discussion can
prompt memories and ahas that had been only subconscious. But meetings
can also communicate to interviewers that they have more say than they do.
And going on the record with one’s input can make it more difficult for an
interviewer to give you the power to make your own decision. These days
Ron tends to get feedback one-on-one with each interviewer, ideally in per-
son or by e-mail or phone.

You need to learn not only to listen to others who interviewed, but to
trust your gut about what you heard and saw. At one company, Ron let his
team talk him into hiring a candidate when all his internal signals were say-
ing no. The candidate, who wanted onto the team for all the wrong reasons,
turned out to be mediocre. While she in fact made some good project contri-
butions, she never really fit in with the rest of the team and was at the top of
the layoff list when times turned bad.

Ron made the first hiring decisions of his career at Apple, at a time when
the company couldn’t interview and hire fast enough. So it was memorable
when CEO John Sculley, speaking to a full auditorium of Apple managers,
urged everyone to hire carefully. His sage advice: “Hire people you want to
sit next to, both tomorrow and a year from now.”

Different organizations have different customs and practices around
hiring. When Steve Jobs’s NeXT Computer company hired technical staff,
the decision to hire someone had to be unanimous; every person who
interviewed the candidate had to agree that the candidate should be hired
or they would pass (thumbs-up or thumbs-down). This led to some very
intense interviews, and many of those who were hired survived grueling
programming problems, one-on-five interviews, and a process that lasted
many hours. The approach led to a team of extremely bright and talented
members—but they were not that diverse. Make sure you clearly under-
stand the culture you are working to staff.

To help you understand other hiring cultures, we suggest that you
research some of the top technology companies to get some insight into how
they work. Try Googling “interviewing at” and you’ll get suggestions for
several companies to review. There are some very interesting stories about
interviewing experiences you can easily access online. Don’t feel compelled

82 3. Finding and Hiring Great Programmers

to copy them, but learn from the good and the bad that are painted in these
stories to help mold your own hiring culture.

Call references.

With a candidate chosen, it’s time to check references. Ask the candi-
date to provide you with a list of references you can call. You’re going to
ask for at least two peers and two former managers, with phone numbers
and e-mail addresses. If you’re hiring a manager, also ask for two former
employees. Pick and choose to call at least one from each category.

To the candidate’s list you’ll add your own “back-channel” references.
The candidate presumably listed colleagues who will all deliver praise and
recommendations. What you’re looking for are random others to corrobo-
rate that feedback but also to fill in gaps. You may know someone or have
a teammate who worked at a company at the same time the candidate did.
The shortest route these days is to search LinkedIn to identify whom you
know who worked there when the candidate did.

Never be satisfied talking only with the references your
candidate supplies. If they’re a friend of the candidate,
they often won’t mention the candidate’s faults—and
everyone has them. Find an independent source—someone
you know who has worked with the candidate as a peer as
well as someone who managed or worked for them.

—DAVE CURBOW, User Experience Architect, Cisco

HR may volunteer to take care of reference checking, but you should
always have at least two or three of the conversations yourself. After intro-
ducing yourself, begin by asking how and when the reference worked with
the candidate.

Like interview questions, the best reference-check questions are open-
ended. You want to know about the work that candidates did and about
their skills, teamwork and collaboration, work habits, initiative, thorough-
ness, follow-through, reliability, need for supervision, ability to learn,
strengths and weaknesses, and values and ethics. Ask for examples. Get the
reference to be descriptive, to draw verbal pictures for you. Ask about any
red flags that came up for you or your interviewers. Ask references where
they would rank the candidate with the others on their team. Describe the
job you’re hiring for, and ask references whether they think the candidate is

 Making the Right Offer to a Programmer 83

a fit. Ask former managers if they would hire the candidate again, former
teammates if they would gladly work with the candidate again.

We suggest you use a reference checklist like the one we’ve provided in
the Tools section.

Making the Right Offer to a Programmer

Making the right offer to a programmer starts with timeliness. Every day
lost is an opportunity for your candidate to discover, interview with, and
receive an offer from another shop. During the dot-com hiring frenzy, every
hour lost was an hour risked.

Don’t be hasty but be quick.
But how do you know what offer to make? Determining the right offer

starts early in the interview process with the question, “What are your com-
pensation expectations?”

Even if it’s legal where you live to ask candidates for their last salary—
and it’s not legal in a rapidly growing number of places—that information is
less useful than it looks at first glance. Past salary equates with neither pres-
ent value to you and your team nor market expectations. A candidate’s last
salary might have been exorbitant; salaries required to lure top program-
mers at the peak of the dot-com boom were downright unrealistic just a few
months later, after the bust. Or it might be drastically below market; a pro-
grammer hired just before boom times probably didn’t get raises to match
the salaries of developers hired later. A programmer working for a strug-
gling start-up may not have had a raise for years. Or a female or minority
programmer may have suffered from recent—or even long-ago—wage gaps.

Salary compression is a fact of life. Don’t let it make you
miss a candidate.

—MARK HIMELSTEIN

Most programmers know if their last salary was out of line. In the post-
boom-time case, they may respond to the question of expectations with a
number or a range considerably lower than their last salary. In the second,
third, and fourth examples, their expectations may justifiably be a big incre-
ment from what their previous company got away with paying.

You need to be prepared, from the moment you begin recruiting, to know
what range you can afford to pay. Be prepared, when you ask a candidate

84 3. Finding and Hiring Great Programmers

for their expectations, to get a reply that is a request for the range you expect
to pay. You need to know the answer to that question.

You may hear expectations that are out of your range. Or in sharing
your range, you may hear back that your candidate was expecting more. Be
frank: “Our base salary ranges just don’t go that high. We can offer <options,
bonus opportunity, special benefits>, but not that kind of base salary.” If you
end up cutting the phone screening short, you’ll have saved your interview-
ing team a lot of time, trouble, and false hopes and given yourself back a
little time you can use to scout for other candidates.

Be aware, though, that while you’ll run across an occasional candidate
with an inflated sense of self-worth, more often you’re getting a signal. It
may be that you’ve overshot and are interviewing a candidate much more
qualified than you need. On the other hand, you may be hearing a signal that
salaries have moved. If the latter is the case, as you hear high expectations
from subsequent candidates, you may kick yourself for dismissing the first.

Compensation is not just a salary number but a package. While some
candidates won’t lower their base salary expectations even for a great pack-
age that includes outstanding options, exceptional bonus potential, unusual
and special benefits, or the like, some will. If you’re excited about hiring
them, then sell them on the company, the position, your team, and your
package.

Every programmer’s motivation is different.

If candidates are wary about telling you their compensation expecta-
tions, give them some time to think about it. Let it go during the interview,
but follow up afterward if you’re interested in pursuing them for your
 position. If you don’t, you could end up negotiating with yourself by put-
ting an offer on the table that is inappropriate—either too low or too high. In
either case, you’re now at a disadvantage in formulating the right offer for
the candidate. Make sure you get wary candidates to clearly state their com-
pensation expectations and consciously decide they are acceptable before
moving forward in the hiring process.

Once you know what they expect and that it’s a match for your range—
and once all the feedback from interviewers and references has led you to
want to hire—you need to think through a specific number and package. If
the candidate’s expectations are low, you may be tempted to make a lowball
offer. We think you’ll regret it.

We think your salary number has to be in line with the going rate in
the market. The last thing you want is for a candidate—realizing, just after

 Making the Right Offer to a Programmer 85

arriving, that many if not most companies are paying a lot more—to keep
their pipeline of job opportunities open, leading to a departure for a bet-
ter one after only a short time on your team. If possible, work with your
HR department to verify your target number with an industry standard sal-
ary survey service such as Radford Surveys.14 Radford, and other similar
services, provide benchmark data comparing companies situated similarly
to your own. This will help you determine if you are paying competitive
market rates for the new hire and provide the ammunition you may need
to help convince your management to hire someone for more than what is
budgeted for the position.

We think your salary number also has to be in line with salaries you’re
already paying comparable programmers on your team and across your
company. You can exhort your team all you want to keep their salary num-
bers to themselves, but sooner or later they’ll all know what the others are
making. Bad inequities will lead, at that point, to carping, bitterness, dis-
gust, and an exodus of your best people.

I’d rather do big bonuses than out-of-range salaries.

—MARK HIMELSTEIN

However, sometimes you need to bring in a programmer who doesn’t
fit your current internal equity. You hate to do it, but you may choose to
because you need the programmer desperately, or because your program-
ming staff, in general, is paid below market rates. By bringing someone in
above your internal equity rankings, you have ammunition to bring to HR
and your management to try to increase the salaries of the top performers
on the staff you already have. This is a painful tactic, but it’s sometimes nec-
essary to satisfy your short-term hiring needs.

The one exception where equity can be less of an issue is with geograph-
ically dispersed teams, since salary decisions may have been made based on
geographical differences in both market and cost of living. You can get an
idea of how to derive geographical equity—how to come up with a salary
number for the same person in different locales—by using the research data
at www.salary.com.

At some point you may find yourself hounded by management or HR
to bring contractors on board as employees, a challenge made especially

 14. Radford is a market leader in compensation intelligence: https://radford.aon.com/surveys.

http://www.salary.com
https://radford.aon.com/surveys

86 3. Finding and Hiring Great Programmers

difficult by compensation numbers. Contractors’ hourly net is almost always
higher than the salary you could equitably pay them, and often more than
the salary and benefits put together. And if they have figured out a way
to make their benefits work (e.g., getting benefits through their spouse’s
employer), such that they don’t need those that come with an employee
offer, converting them to employeehood becomes monetarily nearly impos-
sible. On the other hand, contractors often face corporate policies, put in
place to avoid tax and legal problems, that decree they can consult for only a
limited period (e.g., six months or a year), then must be gone for six months
to reestablish eligibility. If they like you and your team and your work, they
may be willing to talk, at that point, about conversion.

Ron had one contractor who wanted $10,000 in salary above the rest
of the company’s programmers at his level. The company’s pay system
required breadth to qualify for the next software development grade, but
like many contractors his skill set was narrow and vertical. Ron created a
win-win by formulating a package (which required his getting sign-off all
the way to the general manager) including

• A salary at grade level
• A guaranteed $10,000 in training over the next 12 months that could

be used only for coursework in related technologies that the company
needed and would also broaden the contractor’s narrow skill set to a
much more versatile and valuable one

• A promise to provide him with mentoring support from one of the
team’s most senior architects

• A promise to evaluate him, in 12 months, for possible promotion to the
higher grade and a possible $10,000 raise to go with it

Complicated as that was (and hard as it was to get HR to go along,
which was where selling it to the general manager came in), it reduced
Ron’s personnel budget, extended the programmer’s tenure, motivated the
new employee both to deliver and to expand his skills, and gave Ron a pro-
ductive, valuable resource on the team who was gratified at the investment
being made in him and on his behalf—for less than he would have cost as a
contractor.

You’ll forget what you gave them in ten minutes so
don’t get too worried.

—MARK HIMELSTEIN

 Making the Right Offer to a Programmer 87

Once he has a salary number, Ron will sometimes test it: “I need some-
one to start Monday. It’s difficult adjusting an offer later—I need to have an
offer that I know you would accept before I go to get it approved. If I were
able to get you an offer by Thursday of $xx,000 in base salary, along with
n-thousand options and the opportunity to make a 20 percent increment
over your base in bonuses, would you accept it and start Monday?”

Questions like that will help you understand what a winning offer looks
like, typically clue you in about competing interviews and offers, and often
begin to build commitment on the part of the candidate—get them practiced
in saying yes.

Before making and writing up the offer, you’ll want to think about a
start date. If the candidate is working, it will almost certainly be at least two
weeks after giving notice. If you have flexibility, you may want to give can-
didates an opportunity to take a week or two between jobs. They’ll come to
you fresher, happier, and less needy.

Ready to make the offer? You’ll actually make it in two ways: first ver-
bally, followed by a written offer.

Staffing and HR organizations are often in the habit of making the verbal
offer themselves, but we suggest you volunteer to present it. In our experi-
ence, managers who ask for the task are seldom refused. From the stand-
point of selling the candidate on taking the offer, unless your staffing person
is an exceptional salesperson, we think the implied relationship of having
the hiring manager present the offer makes the stronger sell. (There is also
an argument to be made for having your boss make the offer, if your boss
is willing; candidates are, in general, impressed that someone senior would
know who they are and call to urge them to take your company’s offer.)

Your goal, the moment you have the offer approved and have mentally
rehearsed your pitch at least once, is to reach the candidate voice to voice.
“I have exciting news. I’m calling to make you an offer to join <our com-
pany> as a Senior Software Engineer for Database Development. The salary
is the one we discussed, $xx,000 annually. You’ll have an n percent bonus
potential. And you will be awarded n-thousand stock options, 25 percent
of which will vest after the first year, with vesting monthly thereafter. In
addition, you’ll get <a few great/unexpected/unusual benefits>. Will you
accept? Can we set your start date for <date>?”

If you hear hesitation, try to find out what the objection is and resolve it.
If you’ve done your homework well and have a good read on what really

motivates the candidate and have made that part of the offer, you should get

88 3. Finding and Hiring Great Programmers

an acceptance without hesitation. However, some candidates always want to
push the envelope by asking for more—even if you’ve met the compensa-
tion requirements they asked for when you had that discussion. When they
hesitate or ask for more, don’t get flustered. It is part of the hiring process.
Take your time and determine what their objections to your offer really are
and how deeply seated they are. Rarely, if ever, should you counter imme-
diately with more than your standing offer. Mickey says: “Rarely is the hes-
itation really about money at this point. Often it is about the job title, or
another desire that the candidate has surfaced since you verbally sounded
out the offer. Title, office space, additional training, ability to attend techni-
cal conferences, and permission to work at home (at least occasionally) have
all come up as I’ve presented offers over the years. The key is to stop and
get the person to fully articulate these concerns; then you can see if you can
address them.”

Ron has promised unofficial days off (provided he is not reorg’d away
from being the candidate’s manager) when a candidate asked for vacation
days that had already been set aside at the candidate’s current employer.
He has gone back through the approval process with a changed offer due
to a just-arrived competing offer. He has clarified that telecommuting two
or three days per week was absolutely acceptable (with the proviso of good
communication, availability, and productivity). He has clarified to a known
stellar candidate that starting at a later hour to accommodate a combined
train/bike commute was perfectly acceptable. He has responded to ques-
tions about child care and flexibility for sick kids. He has reassured candi-
dates that the job was not a dead end and has explained the opportunities
for transfer and promotion that it could afford.

Many candidates will ask for a few days or even a week or more to
consider your offer. It’s seldom the answer you want to hear, but it is reason-
able. Know beforehand how long you’re willing to give them. Once you’ve
arrived at a date, enter it into the written offer as the candidate’s deadline to
respond. And then stay in touch during that time.

Invite candidates with pending offers to team events, connect them to
people on your team, and make them feel welcome and like they’re already
team members. Have someone senior—CEO, CTO, VP of Engineering—
make a special call to the candidates to sell them on the position and the
company and really connect with them, if possible. Often these calls are an
opportunity to paint a more strategic picture of positions and how they fit
into the organization and the company’s goals. Help candidates understand
why each position you offer is the best they could ever encounter!

 Follow Up until the Programmer Accepts 89

We recommend that you try all of these things before considering sweet-
ening the offer in any way. If you can do creative things that do not add
to inequities for your staff, do that. One-time hire-on bonuses are often the
easiest. Such one-time actions can be effective at handling salary issues with-
out causing internal inequity problems, but they may not address the fun-
damental issue (too low a starting salary). In such cases you may reach an
impasse and the candidate may not, in the end, accept the offer. You have to
know how far you can and will go to make the hire and stick by that, even
at the risk of losing a potential new hire. Sometimes you’ve just got to let go.

Benefits questions will likely come up. Let your staffing or HR organiza-
tion answer them. Those people are far more versed in the intricacies (and
the questions candidates ask about them) than you will ever be. Make sure
your benefits package includes links to all online benefits information that is
available externally.

The written offer will be drafted by HR and will include salary and ben-
efits information, a limit on how long the offer is good, and a proposed start
date. Make sure you get a copy, preferably to quickly review and approve
before it is FedExed to the candidate. With the offer should go a confiden-
tiality agreement (which should include a nondisclosure agreement, along
with the caveat that the company will own any inventions created at work),
forms, and collateral that portrays the company as the terrific place to work
that it is.

Follow Up until the Programmer Accepts

Sending candidates a signed offer letter in a FedEx package for them to sign
and return speaks volumes to how important the candidates are to you and
how important getting the offer in their hands is. Often the letter will have
been sent out in e-mail already, so this may seem like a needless expense.
But you want to make sure candidates realize that you want their commit-
ment to coming on board as soon as possible, and that your organization
doesn’t cut corners.

Also, since there is a FedEx tracking number, you can use that informa-
tion to time your follow-up with the candidate to make sure the offer was
received (you’ll know it was delivered), and make sure that there are no
other questions or issues. Use this as an opportunity to make sure the can-
didate is excited about joining you for the position they verbally accepted.
Keep following up until your offer is finally accepted (or rejected).

90 3. Finding and Hiring Great Programmers

The next chapter will elaborate on more follow-up activity, even after an
offer has been accepted.

Summary

Hiring is one of the most important jobs, if not the most important job,
you’ll do as a programming manager. It needs to be treated with both care
and purpose. Just as in a project, you’re unlikely to get it right without get-
ting good requirements down first. In fact, for critical positions or in a hot
hiring climate you’ll need to treat it like a project, setting short deadlines for
yourself for each step: identifying candidates, phone screening them, mov-
ing them along or rejecting them, interviewing them face-to-face, making a
decision, and presenting your offer. Leverage your team and your network
to bring in prequalified candidates. Choose your interviewing team with
care. Mete out assignments—interviewing objectives—to each member of
the team, and make sure they understand how important you think their
participation is to hiring the right person.

And remember that while hiring is an event, recruiting is a part of your
job you should always have turned “on.”

Tools

We have prepared a number of tools to assist you in managing your team.
The spreadsheets and Word documents provide full examples you can eas-
ily adapt for your organization. See the Tools section, after the chapters, for
the link to the Tools Web site, from which you can download the following
tools:

• Sample job description
• Résumé-reading checklist
• Candidate-screening spreadsheet
• Sample interview schedule
• Sample interview questions
• Sample interview summary
• Reference checklist
• Hiring checklist

479

Index

A

Accept Software, 271, 416
Accomplice, 277
Accountability

agile manager’s role in, 433
agile teams focused on, 390, 412
micromanagement is not, 229, 360
quality and, 452

ACM (Association for Computing
Machinery), 2n2, 175, 277, 288n54, 361,
392n10

Action items, 193–194
Adair, Red, 220
Adams, Scott, 108
Address books, for contractors, 135–136
Adkins, Lyssa, 305
Administration, sane, 315–318
Adobe Systems, 11, xxxi
Agendas, 139–140, 317, 463
Agile. See also Scrum

architecture and design, 399–404
ballpark effort required and, 391–398
benefits of methodologies, 337
capitalization opportunities, 169, 456n17,

456n18
championing, 435
communication and, 411–413
defining done and, 389–391, 452, 462
delivery and, 371–372
doing vs. being, 450, 454–455
estimation, 398, 462, 465
managers and. See Agile managers
organizational support for, 134
practices, 434–436, 447, 449–454

requirements and, 381–386
Ron Lichty and, xxxiv
rules of thumb, 202, 278, 281–285
selling the hire and, 53
teams, 150–151, 350, 434–436, 440–443,

450–454
Agile Alliance, 436, 456
Agile Estimating and Planning (Cohn), 280
Agile Leadership Network (ALN).

See also BayALN (Bay Area Agile
Leadership Network), 202, 377

Agile Learning Labs, 278
Agile managers

changed roles of, 438–444
coach/counsel, 469–470
coach/mentor good practices,

450–454
dispel agile myths, 454–466
embrace agile values, 446–450
fire problem employees, 471
foster agile culture, 444–446
hiring process, 470–471
lead technical communities, 466–468
may feel left out, 434–436
overview of, 433–434
remove impediments, 415–416, 468–469
summary, 472
tools, 473
transition from waterfall, 433, 439

Agile Manifesto, 444, 446–447
Agile Testing (Crispin & Gregory), 232
Allen, David, 193
ALN (Agile Leadership Network). See also

BayALN (Bay Area Agile Leadership
Network), 202, 377

480 Index

Alpha, 410–411
Amazon, 13, 15–16, 59, 172, 215, 330, 394n13,

459n19
American National Standards Institute

(ANSI), 175
Ananthapadmanabhan, Pradeep, 265
Anderson, John, 239
Android, 13–14, 21, 25, 172, 215
Anniversary date performance reviews, 127
ANSI (American National Standards

Institute), 175
Antipatterns, recognizing agile, 463–466
Appearance and dress, 179–180, 311–312
Apple

delivery, 373, 385, 388–389, 413, 415, 416,
426

hiring practices, 45, 47, 56, 59, 74, 80–81,
101–102

management, 110–111, 118, 121, 158, 164,
172, 176, 203, 204

motivation, 305, 307, 310, 316, 324–325,
336

programming culture, 343–344, 347, 349,
359, 363, 368

Ron Lichty and, xxxiii, xxxiv
rules of thumb, 214, 221, 223, 250, 257,

267
understanding programmers, 13, 21, 39

Application programmers, 21, 114, 116, 148
Approachability, 194, 334–335
Approvals, 88, 103
Architecture. See also Design

appropriate design and, 399–404, 460–461
database, 16
dispelling myth about agile, 460–461
emergent design minimizes waste,

399–401, 462
interviewing and, 70, 75
job description and, 49, 51
leveraging failed project, 424
overarchitecture, 399–401
rules of thumb, 242, 252
system engineers/architects and, 20

Aristotle, 188
Armour, Phillip, 145, 288
Armstrong, Andrew, 241
Art of Computer Programming, The (Knuth),

109n3, 238, 263, 286n49
Art of Human-Computer Interface Design,

The (Laurel), 286n50

Artz, Benjamin, 108
Association for Computing Machinery

(ACM), 2n2, 175, 237n15, 277, 288n54,
361, 392n10

Atari, 266
Atkins, David, 227
Atkinson, Bill, 250
Attitude, professional, 319
Auzenne, Michael, 231
Avenue A | Razorfish, xxxiv
AWS, Amazon, 172

B

Baby Boomers, 31–32
Baby steps, 204–205, 275
Back-channel references, 146
Backend programmers, 14–15, 21, 24, 475
Backlog of work, agile, 382–386, 407–409,

457, 462–463
Balanchine, George, 285
Ballmer, Steve, 20
Ballpark effort required, 391–398, 410–411,

458–459
Balsamiq Mockups, 403
Barrett, Colleen C., 46, 252
Barton, Bob, 20
BayALN (Bay Area Agile Leadership

Network), 202n4, 209, 232, 265, 273,
279, 286, 409

Beautiful Code (Oram and Wilson), 270
Beck, Kent, 284, 354, 402
Behavioral problems, 122, 361–362, 471
Behind Closed Doors (Rothman & Derby),

231n2
Bell Labs, 227, 277, 392
Benefits

contractors and, 130, 135–136
full-time employees and, 134–135
in-house employees and, 28
job descriptions and, 50
making right offer, 84, 86–87, 89
motivation and, 337
rules of thumb, 210–211, 226, 251, 284

Bennis, Warren, 320
Bentley, Jon, 277, 392n10
Berard, Edward V., 269
Berezin, Tanya, 265, 349
Berkeley Systems, 110, 261, 325, 349, 430,

xxxiv

 Index 481

Bester, Dirk, 100, 221
Beta, 410–411
Beyond Software Architecture

(Hohmann), 243
Big data, 15, 286
Big Query, 15
Bit rot, 273
Bittner, Kurt, 270
Blue Shield of California, 247
Bockman, Steve, 394, 459
Boehm, Barry, 44
Boiler-room operators, 57–58
Bona fides, technical respect, 109–110
Bonuses. See also Rewards

motivation and, 85, 87, 166, 299, 319, 322,
330, 332

one-time hiring and, 89
planning for, 377–378
referral, 56, 60
rules of thumb, 212

Bosses. See Managing up
Bozos, 40, 361–362, 363
Brady, Sheila, 204
Brandon, Dick, 241
Brenner, Claudia, 241
Brøderbund Software, 40, 55, 63, 98, 114–115,

118, 129, 148, 149, 150, 157, 164, 166,
170n5, 178, 272, 306–307, 314, 316,
325, 336, 346, 349, 355, 411, 424, xxxii

Brooks, Frederick P., Jr., 3–4, 43, 145, 233,
268, 270, 274–275, 280, 288, 375, 380,
393, 397–398

Brountstein, Marty, 131, 362n7, 471
Browser compatibility issues, 16
Bryant, Paul “Bear,” 329
Buddy, first-day, 94, 96–97, 105, 476
Budgets. See also Salaries

consulting, 168
cutting your losses, 423–424, 427
delivery and, 371–372, 375
equipment, 168–169, 328
finance department and, 167–170
having fun and, 307
hiring and, 113
independent contractors and, 135, 168
managing, 472
poor performers and, 132–133
project success and, 375
recruiting and, 56–58
removing impediments and, 468

rewards and, 378
rules of thumb for, 223
travel, 139, 141–142, 169–170, 227

Burbeck, Steve, 80, 102, 221, 260
Burroughs 5000, 20n2
Bushnell, Nolan, 266
Byte Works, 227

C

Cagan, Marty, 273, 386, 408, 409
Calendars, 21, 93, 104, 182, 185–186, 192–194,

392–393
Calomeni, Mark, 271, 416
Campos, Marilson, 123, 250, 281, 451
Candy jar, 101
Capability Maturity Model Integration

(CMMI), 2
Capitalization, 169, 456n17, 456n18
Captive offshore contractors, 131
Card walls, 457
CardScan, 135
Career ladders, 27
Carey, Tom, 366
Cargill, Tom, 277, 392
Carlston, Doug, 346
Carmel, Erran, 138, 227
The Cathedral & the Bazaar (Raymond), 233
Catherine the Great, 208, 329
Catmull, Ed, 264, 426
Celebrations. See also Fun, 152–153, 165, 307,

425–426
Certification, 2, 6, 110, 361, xxv
Certified Software Development Professional

(CSDP) certification, 6n6
Change, 202, 326, 452
Character, professionalism and, 319
Charles Schwab, 22, 63, 121, 149, 161, 182,

203, 205, 207, 223, 240, 241, 247, 266,
307, 316, 323, 325, 336, 343–344, 347,
348, 353, 373, 375, 423–424, 430, xxxiv

Check-ins, 354, 390, 413, 418–421, 432, 478
Check Point, 142, 421, xxxiv
Cheng, Jerry, 216
Chrysler, 287, 305, 400
CI/CD (continuous integration/continuous

deployment), 18
Cisco, 2n2, 82, 220
Clark, Kim B., 469
Cleland-Huang, Jane, 53, 383n6, 400

482 Index

Client programmers, 13
Close, Gregory, 60, 213, 220,

221, 310
Cloud services, 172
Cloud-based database systems, 15
CMMI (Capability Maturity Model

Integration), 2
CMU, 244
Coaching

defining done, 389, 452
good practices, 450–454
managing, 115, 147, 304–306, 443, 446,

451, 469–470
programming culture and, 361–362

Code Complete (McConnell), 183, 203,
274n23

Code Project Daily Insider, 112
Code reviews, 354, 390, 419–421,

432, 478
CodeCollaborator, 419
Coders at Work (Seibel), 66n11, 67n12, 73n13,

215n18, 218n20, 218n21, 236n14,
243n25, 245, 253n35, 263n2, 280n36

Cohesion, 373
Cohn, Mike, 47, 139, 145, 209, 214, 224–225,

226–227, 252–253, 279–280, 283–284,
287–288, 418, 435, 445, 450, 472

Collaboration
agile manager hiring for ability in,

470–471
communication and, 355–356
company culture and, 310, 344
within department, 162–163
emphasizing, 216
fairness and, 320, 343
prioritizing requirements and, 382–386,

408–409
programming culture and, 355–356,

363–364, 417
relationships with other departments,

163–164
requirements prioritization, 382–386,

408–409
rules of thumb, 216, 240
teamwork and, 363–364, 413, 452

Collective code ownership, 252
Collins, Jim, 342
Colocation, 142, 144, 226, 368, 382
Commissions, headhunter, 56–58, 60, 64
Common sense, 206, 281, 291

Communication
with bosses, 156–162
check-in meetings and, 413, 419–421
continuous, 451–452
cultural barriers to, 139
development plan and, 411–413
effective, 315–317
emphasizing, 52
expectations of new hires, 102–104
facilitation and, 119
geographically distant employees and,

29, 88, 103, 134, 138
hiring and, 470–471
knowing requirements and, 379–382
listening skills and, 189, 268, 388, 470
management, 184–192, 451
motivation and, 304–308
night people and, 37
offshore contractors and, 138–140
packaging your, 158–159
performance measurement and, 131–133
programming culture and, 355–358
project requirements and, 315
protecting staff from bad, 122, 318
rules of thumb, 240
rules of thumb on, 209–210, 216, 224–225,

226–227, 240, 268
stand-up meetings, 356, 412, 414, 420
team size and, 144–145
virtual teams and, 141–143, 356–358

Communities of practice, agile, 466–468
Comp time, 312–313
Company culture, 343–346
Compatibility, backward and forward, 172
Compensation. See also Benefits; Bonuses;

Salaries
contractors and, 30, 129–130
cross-functional teams and, 150
fairness and, 298, 300–301, 320–322
flexibility and, 311
in-house employees and, 28
human resources and, 166
interviewing and, 68, 79, 83–89
motivation and, 8, 308, 326, 337–338
programming levels and, 23–25
rules of thumb, 210–212, 262
upside and, 331–333

Competency, professionalism and, 319
Competition versus team mentality, 103, 346
Complexity, 198, 222–223, 230–231, 235–236,

267, 344–345

 Index 483

Computer Information Systems (Weinberg), 235
Conduct, professionalism and, 319
Conferences, 47, 56, 61, 110, 112, 138, 143,

163–164, 176, 224, 259, 327, 336,
361, 366

Congratulating your team, 152, 385
Construx Software, 183, 203
Consultants, budget for, 168
Contingent rewards, 125, 299
Continuous improvement

fostering, 453
retrospection and. See Retrospection

Continuous integration/continuous
deployment (CI/CD), 18

Contract recruiters, 63
Contracted managed teams, 28, 30–31
Contractors

budgets and, 168, 223, 239
conversion of, 86
description of, 30
full-time employees versus, 30, 134–136
hiring, 47
in-house, 137–140
offshore, 131, 134, 137–141,

224–225, 227
performance and, 129–131
recruiting, 64–65
rules of thumb on, 223
services agencies and, 130

Contracts, 136, 164, 171, 239
Contracts, verbal, 223
Conway, Melvin, 243
Conway’s Law, 243
Cook, Scott, 258
Core hours, 37–38, 103
Counseling, 469–470
Cowboys versus farmers, 38–39
Craftsperson, 6
Cray Research, 233, 355
Cray, Seymour, 233, 355
Credibility, 110, 126, 202, 277, 361
Crisis, 266
Crispin, Lisa, 232
Crockford, Douglas, 66, 73, 218, 245, 253
Cronyism, 61
Cross-functional teams, 149–150, 165,

440–443
CSDP (Certified Software Development

Professional) certification, 6n6

Csikszentmihalyi, Mihaly, 256
Cultural differences, 29, 139, 228
Culture, company

agile manager role, 444–446
drivers of, 348–349
dysfunctional, 151–152
leveraging complexity of, 344–345
overview of, 343–344
perception of technology in, 346–348
walling off, 345

Culture, programming
characteristics of, 350–351
collaboration and, 355–356, 363–364
communication and, 355–358
company culture and, 343–349
customer focus and, 364–366
delivery and, 354
empowerment and, 359–360
environment and, 366–368
establishing, 342–343
excellence and, 362–363
fairness and, 358–359
foundational factors for, 303–304
innovation and, 352–354
jerks and, 361–362
learning and, 361, 366
mutual respect and, 351
overview of, 350–351
passion and, 364
professionalism and, 361
rewarding, 259
standards and, 353–354
team mentality and, 363–364
tools for, 369

Cunningham, Ward, 402
Curbow, Dave, 82, 220
Customer(s)

agile success patterns and, 462
feedback, 164, 431, 439
focus on, 51, 54, 325, 349, 364–366, 388,

453
project management and, 172, 194
quality and, 271, 416–417, 453
rules of thumb, 232, 248, 259–260, 265,

270–273
satisfaction, 51, 164, 172, 272, 388–389,

416–417, 453
Cutler, Dave, 20, 115–116
Cynics/cynicism, 34, 40, 151, 311, 362

484 Index

D

Daily task list/to do list, 182–184,
191–193

Daniels, Russ, 235
Dashboards, 120
Data Structures and Program Design (Kruse),

231n5
Data warehouse database programmers, 15
Database management systems (DBMS),

117–118
Database programmers, 12, 14–16, 116–118,

475
Databases, relational, 116, xxxii
Davis, Rebecca, 261
DBMS (database management systems),

117–118
De Pillis, Emmeline, 226
Deadlines, 158, 247, 375–382
Death March (Yourdon), 261n51, 262n52
Debugging, 26, 270, 280, 287, 356, 368, 380,

382, 417
Decision making, 219, 242
Degrees

technical respect and, 110–111
value of, 65, 215

Dejarlais, Natalie, 193, 247
Delegation

essence of, 446
inverted pyramid and, 190
to managers, 147
meeting management and, 186, 317, 326
of reports, 158
rules of thumb, 230
time management and, 182

Delivery
agile team and, 263–288, 371–372
architecture and design, 399–404
ballpark effort required, 391–398
culture of, 354
defining done, 389–391, 452, 462
defining success, 374–378
inspiration and, 372–374
managers’ role in, 371–372, 438, 443
overview of, 371–372
requirements definition, 378–389
rules of thumb, 263–288, 374, 377
ship it/go live, 420–425
supporting the work, 404–420
when to halt project, 423–425
wrap up, 425–431

DeMarco, Tom, 257, 267, 270, 276, 284
Deming, W. Edwards, 249
Demotivators, 318, 320, 399, xxvi
Denne, Mark, 53n9, 383n6, 400
Depreciation, 169
Derby, Esther, 231, 450
Design. See also Architecture

architecture and, 399–404, 460–461
before coding, 7
communication and, 356
company culture and, 347
delivery and, 347, 384–385, 398–404
documentation, 399, 401, 461
emergent, 462
functional programming departments

and, 148
geographically distant employees and,

137, 142, 144
hiring practices and, 49–52, 70–71, 73,

75–78
management by walking around and,

333
motivation and, 310, 333–334
planning, 408
rules of thumb, 217, 232, 238, 242–243,

246, 268–269, 271, 286–287
standards, 353
troubleshooting dysfunction, 152
types of programmers and, 20–21
UI (user interface), 118
UX (user experience), 14

Design documents, 401, 461
Design patterns, 75–76, 217
Design reviews, 366, 390, 403–404
Designated Responsible Individual (DRI),

tasks, 267
DesignMind, 275
Deutsch, Haim, 282
Development cycle, 420
Device drivers, 20–21
DevOps, 12, 17–19
DevSecOps, 12, 19
DevTools, 16
Diagrams, use case, 390, 404
Dibble, David, 121, 182, 203,

240, 316
Dierks, Tim, 56, 214
Difficult employees. See Handling the Difficult

Employee (Brounstein); Problem
employees

Dilbert, 108, 167

 Index 485

Disciplines, programming, 11–19
Dismissal, 125, 131–133, 153
Dissatisfaction

foundational factors and, 301–323
motivational factors and, 324–332,

337–338
Distance, offshore contractors and, 138–140
Distinguished engineer, 259
Distractions, 317–318, 336, 415–416, 453
Distributed teams, 47, 226, 269, 358, 396
Divinski, Jane, 245–246
DOCTOR script, 236
Doctorow, Cory, 184
Document templates, 478
Documentation

agile values and, 454–455
design, 399, 401, 461
requirements, 381, 399, 457, 460
rules of thumb, 218, 241, 247, 269, 270,

278
standards and, 353
templates, 478
updating in slack times, 430
virtual teams and, 357

Domain expertise, 11, 22
Done, definition of, 278, 389–391, 452–453,

462, 478
Downtime, 18–19, 312
Dr. Dobb’s Journal, 224n24
Dreaming in Code (Rosenberg), 237n17,

239n21, 250, 251n32, 265n5, 268n10,
271n18

Dreamweaver, 16
Dress, 179–180, 311–312
DRI (Designated Responsible Individual),

tasks, 267
Drive (Pink), 125, 210n15, 260n49, 299–300
Drivers of your company, 348–349
Drucker, Peter, 133, 157, 201, 231, 249
Duhigg, Charles, 351
Dunkin’ Donuts, 282
Dynamics of Software Development (McCarthy

and Gilbert), 151, 242, 244, 277n29
Dysfunctional organizations, 151–152, 254

E

E-mail. See also Communication,
186–187, 196, 227, 357, 393, 413, 477

E&S (Evans & Sutherland), 5, 29, 39,
109–110, 172, 205, 225, 307, 331, 348,
359, xxxii

Eagleson’s Law, 5, 241
Early Availability (or Beta), 410–411
East Bay Innovation Group, 112, 214, 229,

235n13, 246, 270, 272n19, xxxiv
Eastman, Jack, 430
Eaton-Kenway, xxxi
Eckel, Bruce, 238
Economy

domain expertise and, 22
Gen Zers and new world, 34
headhunters and, 57
hiring freezes in slow, 113–114
hiring great programmers and, 48
narrowing field in slow, 67–68

Education, 325–327
Educators, 176–177
Effectiveness, 464
Efficiency, 464
Elateral, 285
ELIZA, 236
Elsevier, 223
Embedded programmers, 12–13, 55, 177
Emergent design, 460, 462
Empowerment, 119, 190, 292, 304, 359–360, 438
End game, running, 421
Engage, 258, 309
Engineers, 2n2, 20, 43–44, 204, 235, 258, 259,

262, 386
Enough Rope to Shoot Yourself in the Foot

(Holub), 242
Enron, 343–344
Environment. See also Work environment, 8,

366–368
Epictetus, 239
Equipment budgets, 168–169
Ericsson, K. Anders, 231
Essays on Object-Oriented Software Engineering

(Berard), 269n14
Estimates

agile teams and, 458–459, 462, 465
agreed-upon milestones and, 410–411
ballpark effort and, 391–398
high technical debt and, 409
no one size fits all, 398
recognizing agile antipatterns, 465
relative sizing, 248, 383, 394–397,

407–408, 449, 459, 462, 465

486 Index

rules of thumb, 248, 273, 278–280, 283,
286, 393–398

in units of time, 465
Ethical management, 298, 300, 318–324
Ethics, recruiters and, 57–58
Evaluating Project Decisions (Hoover,

Rosso-Llopart & Taran), 278–279, 391
Evans & Sutherland (E&S), 5, 29, 39,

109–110, 172, 205, 225, 307, 331, 348,
359, xxxii

Evans, David C. See also Evans & Sutherland
(E&S), 29, 225

Evans, Jon, 215
Evernote, 135
Excel, 404–407, 431–432, 465
Excellence, 123, 299, 319, 362–363
Exit checklist, 133
Expectations

agile managers and, 438
exceeding, 91
of excellence, 299, 319, 322, 342, 351
new hires and, 79, 83–84, 98, 102–104
quality, 452–453

Experience
rules of thumb for, 214–215
sample job description, 52

Extreme Programming (XP), 284, 354, 402
Extroverts, 189, 235
Eyes, David, 223

F

Facebook, 11
Face-to-face communication, 137–138,

142–143, 169, 213, 225
Facilitation, 119–120
Failures

finding humor in, 330
learning from, 258, 453
noble, 353
responsibility for, 319
unrealistic schedules and, 410
wrong requirements and, 258, 378–379

Fairness
compensation and, 320–322
culture of, 358–359
as foundational factor, 343
overview of, 320
professionalism and, 319–320
rules of thumb, 210

Farmers, cowboys versus, 38–39
Favoritism, 319
Features

agile and user, 442n2
architecture and, 460–461
customer value and, 291, 371
estimating project, 392, 394, 397
focus on mission versus, 414
good design and, 400
minimum marketable, 383, 442
no new, 420–422
overarchitecting for, 399, 460, 465
prioritizing, 352, 376–377, 382–383, 407–409
quality versus, 271, 416
rules of thumb, 374
sizing project, 394–395
success patterns and, 462
technical debt and, 409
user stories and, 462

Feed your team, motivation, 313–314
Feedback

alpha/beta software and, 411
customer, 164, 431, 439
in-house employees and, 28
interviewing and, 69, 79–84, 146
lessons learned and, 427–429
from peers, 412
performance, 119, 122–131
prioritizing requirements and,

383, 407
Feinsmith, Jason, 277
Finance department, 167–170, 456, 456n18
Finder, 21, 102, 110–111, 368, 373, xxxiv
Fire TV, Apple TV, 13
Firing. See also Problem employees

HR department and, 133, 164
intervention as first step before, 131–133,

362, 471
technical direction does not

include, 148
termination and exit checklist,

133, 477
First Data, 203
First days as manager, 102
First impressions, 91
Fitzpatrick, Brad, 67
Fitzpatrick. Brad, 215
Fitzpatrick, Brad, 236, 280
Flat organizations, 149
Flexibility

contractors and, 130, 135

 Index 487

creativity and, 166, 311–313, 385
cross-functional teams and, 150
project success and, 374

Flon, Lawrence, 244
Flon’s axiom, 244
Focal point performance reviews, 127
Focus, 392–393, 453–454, 465, 469
Fog Creek Software, 232
Folkman, Joe, 156
Follow-up management, 192–194, 360
Food. See also Celebrations; Fun

Maslow’s theory and, 290–291
motivation and, 310, 313–314
recruiting and, 59, 63
rules of thumb, 264
work environment and, 368

Forecasting, human resources and, 167
Forensic Logic, 50, 53, 116, 142, xxxiv
Formative Technologies, xxxii
Formatting markup, 16
Foundational factors

ethical management, 317–324
having fun, 306–308
Herzberg’s theory and, 293–295
learning and growing, 308
list of, 295
motivational theories, 289–295
respect for supervisor, 301–306
sane policies and administration,

315–318
working conditions, 309–315

Fowler, Martin, 224
Frameworks, 17
Franklin, Benjamin, 198, 375
Friday beer bashes, 164
Friedman, Mark, 178, 214
Frontend programmer, 12–14, 21, 23–27,

475
Fujitsu, 5, 55, 350, 366, 378, 413, 422, 426,

xxxiv
Full-time employees, 46–47, 54–65,

134–143
Fuller, Thomas, 198
Fullstack programmer, 12, 17
Fun. See also Celebrations, 306–308, 310,

330–333, 368, 415–416
Functional programming departments,

148–149, 440, 442
Furumo, Kimberley, 226
Fylstra, Dan, 352

G

Gale, Thomas C., 287, 400
Galen, Robert “Bob,” 281
Gantt charts, 397–398
Garage Technology Ventures, 345
Gates, Bill, 11, 65, 109, 215, 260, 343
General Availability, 410–411
Generation X, 31–32
Generation Y, 31–34
Generation Z, 31–34
Generational styles, 12, 31, 34
Geographically distant employees

assessing needs and, 98
communications and, 103, 134, 138,

140–143, 356–358
flexible working hours and, 312
offshore contractors and, 137–140
overview of, 29–30
rules of thumb, 226
salaries and, 86, 130–131

George, John-Alistair, 219
Gerstner, Lou, 445n5
GetLighthouse, 174, 317
Getting Things Done (Allen), 193n11
Ginnebaugh, Mark, 275
Girard, Bernard, 260n50
GitPrime, 120
Gladwell, Malcolm, 231
Glass, Robert L., 44, 222–223, 237, 251,

253–254
Global Software Teams (Carmel), 138n19,

227n32
Goal-setting, rules of thumb, 260
Gödel, Escher, Bach (Hofstader), 263n3,

410n21
Goethe, Johann Wolfgang von, 363
Golden Master, 410–411
Golden rule, 301
Golding, Martin, 287
Goldwyn, Sam, 223
Good Boss, Bad Boss (Sutton), 126, 129
Good to Great (Collins), 342n1
Goodall, Amanda, 108
Google, 15, 56, 58–59, 81–82, 172, 182,

214–215, 258–259, 280, 314, 351,
451

Google Way, The (Girard), 260n50
Gospel of Mark, 444

488 Index

Gracenote, 20, 55, 63, 65, 97, 99, 101, 117,
121, 123, 129, 136, 148, 177, 180, 189,
193–194, 307, 310, 312, 316, 323, 325,
328, 337, 357, 365, 404, 407, 423, xxxii,
xxxiii

Graicunas, V.A., 230
Graphical user interface (GUI)

tools, 22
Great programmers

examples of, 114–115
hiring. See also Hiring practices, 113–114,

153
limiting requirements, 387
musicians and, 37
“no jerks” rule and, 40
productivity of, 118–119
rewards and, 362–363
rules of thumb, 233, 237–238, 260
skills of, 6–7
as successful programming managers, 8
what it takes to become, 3

Green, Roedy, 234
GreenAxle Solutions, 214
Greening, Dan, 456n18
Greenleaf, Robert, 444
Gretzky, Wayne, 202
Groove, 267
Grosso, Bill, 258, 309
Grove, Andrew S., 201
Growing, learning and, 308–309, 325–327
Growth, career, 28, 94, 102, 104, 178, 306,

332, 468
GUI (graphical user interface) tools, 22
Guidelines, 27
GuideWire, 143, 224, 357

H

Hackman, Richard, 214
Handel, Mark, 227
Handling the Difficult Employee (Brounstein),

131n16, 362n7, 471n27
Hanratty, Patrick, 233
Happy hour, 153, 164–165
Hardison, Karin, 205
Headcount, budgets and, 168
Headhunters, 56–57, 60, 62, 64
Heisenberg principle, 248
Hendrickson, Elisabeth, 252
Henners, Noel, 416n24

Herbsleb, James, 227
Herding cats, 7–8
Heroes, 209, 350, 363–364, 434, 456, 466
Hertzfeld, Andy, 250
Herzberg, Frederick, 293–294, 469
Herzberg’s Motivation and Hygiene Factors,

293–300, 320, 469
Herzberg’s theory, 293–295
Hewlett, Bob, 333
Hierarchy of Needs, Maslow’s, 290–291,

300–301
High Output Management (Grove), 201n1
Highsmith, Jim, 209, 273, 279, 286, 409
HighWire Press, 208, 271, iii, xxxiv
Hill, Napoleon, 326
Himelstein, Mark, 52, 74–75, 78, 83, 85–86,

92, 101, 212–213, 216, 219, 221–222,
229, 284–285, 360

Hiring practices. See also Interviewing
agile manager and, 438, 470–471
communication and, 51–52, 61
decision to hire and, 79–83
economy and, 48, 57, 67
follow up, 89–90
great programmers. See Hiring practices
great programmers and, 43–45, 113–114
hiring managers and, 60, 63, 67, 74, 87,

146–147
importance of, 43–44
job descriptions and, 45–47
lateral hires, 56
making right offer, 83–89
motivations and, 337–338
narrowing field, 67–68
recruiting contractors, 64–65
recruiting full-time employees, 54–64
reference checks, 82–83
résumé reviewing, 65–67
rules of thumb, 211–216,

218–219, 221
selling the hire, 53–54
start date, 87, 89
tools for, 90
writing job description, 47–54

Hofmann, Bill, 246, ii
Hofstadter, Douglas R., 263, 410
Hohmann, Luke, 243
Holtz, Lou, 256
Holub, Allen, 242
Hoover, Carol L., 278–279, 391–392
Hopper, Grace, 3

 Index 489

Horstman, Mark, 231
Horton, David, 284
Hot rumors, 121–122, 291
Hours

avoiding burnout, 410, 414
avoiding wasted time, 185, 247, 276,

392–393
communicating to new hires, 103
feeding team during extra working,

313–315
flexible working, 135, 311–313
night versus morning people and, 37–38
offshore contractors and, 138
right programming tools saving, 368
setting for meetings, 137
testing versus coding, 274

Howard-Anderson, Bob, 245
HP, 235, 333, 379n4
HR. See Human Resources (HR)
HR paperwork, 97, 133
Hubel, David H., 36n10
Human Resources (HR). See also

Performance
consultants and contractors, 168
defined, 166–171
equipment and tools, 168–169
finance and managing budgets, 167–168
headcount, 168
legal, 170–171
leveraging support functions of, 165
overview of, 166–167
travel and training, 169–170

Human Side of Enterprise, The (McGregor),
291, 436

Humphrey, Watts, 277
Hygiene Factors, Herzberg’s Motivation and,

293–295

I

Iacocca, Lee, 305
IBM, 80, 102, 145, 180, 221, 241, 259, 270, 336,

349, 360–361, 388, 445n5
iData, 135
IEEE (Institute of Electrical and Electronics

Engineers), 6, 44n4, 110, 112, 175,
222n22, 361, iii

IFM (Incremental Funding Methodology),
53n9

IGDA (International Game Developers
Association), 112, 175

Impediments, removing, 412, 415–416,
468–469

Implicit mentoring, 195
Important, definition of, 183–184
Improvement, continuous, 453
In-house employees, 28–29
Incentives. See Compensation; Rewards
Incremental Funding Methodology (IFM),

53n9
Independent contractors, 30n6, 64, 130–131,

135–136
Industry consortiums, 175
Inequities, balancing, 323
Inera, 66, 213
Influence, 134
Innovation. See also East Bay Innovation

Group, 159, 173, 266, 349, 351–354,
430

Innovation Games (Hohmann), 243
Inspiration, 359–360, 372–374
Inspired (Cagan), 273, 386, 408n19, 409
Institute of Electrical and Electronics

Engineers (IEEE), 6, 44n4, 110, 112,
175, 222n22, 361, iii

Intel, 63, 173, 201
Intellectual property (IP), 164, 171, 354
Internal equity rankings, 85
International Game Developers Association

(IGDA), 112, 175
International Microcomputer Software, Inc.,

xxxii
International versions, 425
Internet of Things (IoT) programmers, 12–13
Interruptions. See also Distractions

agile antipatterns and, 465
Interviewing

code samples and, 73
feedback from, 79–82
hiring decisions and, 79–83
hiring managers and, 74
preparing for, 68–75
process of, 75–79
rules of thumb for, 213, 215–219, 264
sample questions for, 76–79
schedule for, 75
summary form for, 70–71
team, 69, 71–72, 79–83
tools for, 90

490 Index

Intrinsic motivation, 299–300
Introverts, 39–40, 189, 235
Intuit, 35, 258, 265, 349
Intuition, 23, 35, 229
Inverted pyramid, 190
iOS, 13, 21, 172
IoT (Internet of Things) programmers, 12–13
IP (intellectual property), 164, 171, 354
iPad tablet, 388–389
Iron triangle, 374–375
Iteration, 270
Ivarsson, Anders, 466n22

J

Jain, Prateek, 27n5
James, Geoffrey, 37, 234
JavaScript, 16, 58–59, 245
Jelli Crowdsourced Radio, 207
Jerks, 40, 311, 361–362
Jesus, Gospel of Mark, 444
Job descriptions

development of, 24–27
hiring programmers, 45–47
interviewing and, 69–71
promotions and, 323
sample, 45–53
writing, 47–49

Job requirements and abilities, 23–27
Jobs, Steve, 37, 65, 214–215, 324–325,

343–344, 426, xxxii
Joel on Software blog, 232
Johnson, Steve, xxix
Jordan, Michael, 202
Journey of the Software Professional

(Hohmann), 243
JSON, 218, 245
Jung, C. G., 35
JUnit, 284

K

Kaiser Permanente, 254
Kanter, Rosabeth Moss, 152
Kapor, Mitch, 239
Kawasaki, Guy, 345
Kay, Alan, 20
Keller, Dan, 353

Kennedy, President John F., 376
Kenobi, Obi-Wan, 173, 194, 229
Kenton, Jeff, 264, 314
Kenway Engineering, 39, 364, xxxi
Kerth, Norm, 427
Key motivating factors

having fun with your staff, 330–331
learning and growing, 325–327
making a difference, 324–325, 373
recognition and praise, 328–330
toys and technology, 328
upside, 331–333

Kinemo International, 204
Kleinschmidt, Joseph, 167, 240, 272, 275, 286,

318, 453
Kniberg, Henrik, 453n16, 466
Knuth, Donald, 109n3, 238, 263, 286
Kouzes, Jim, 156
Kraft Foods, 157, 346
Krampe, Ralf Th., 231
Kruse, Robert L., 231

L

LaFleur, Ron, 267
Langley, Bill, 266
Language barriers, 139
Lao-Tzu, 190, 444n3
Larsen, Diana, 468, 472
Lassiter, John, 109n5
Latta, John, 444
Laurel, Brenda, 286n50
Leadership

of change, 207
by example, 303
motivation and, 310, 320, 334
professionalism and, 361
servant, 437, 444–446

Leadership Challenge, The (Kouzes and
Posner), 156

Leading Out Loud (Pearce), 202
Lean-Agile Software Development (Shalloway,

Beaver, and Trott), 445n5
Learning and growing, 298, 300, 308–309,

325–327, 366, 403–404, 408, 453
Lefkof, Alan, 360, 445
Left-brain versus right-brain people, 36–37
Legal department, 30, 171
Lenin, Vladimir, 230

 Index 491

Lessons-learned meetings. See Retrospection
Leverage Software, 167, 240, 318, 453, ii
Levy, Steven, 234
Lichty, Ron, 8n11, 209, 223, 239, 246, 261,

276, xxxiii–xxxv
Lift Framework, 235
Linder, Doug, 233
Lines of code, 46, 249–250
LinkedIn

contractors and, 65, 135
recruiting and, 56, 58–60, 62, 66, 178, 220
reference checks and, 82, 146

Linux, 13–14, 238, 268
Lisa, 347
Listening skills

coaching and, 304
delighting customers and, 388
management practices and, 188–192
mutual respect and, 351
rules of thumb, 207–208, 268
self-organizing teams and, 51, 470

Little Prince, The (Saint-Exupéry), 257, 372
LiveJournal, 215
Living Books, 115
Local connections, 171, 177–178
Lockheed Martin Astronautics, 416n24
Loggly, 208
Lotus Notes, 267
Lucasfilm Ltd., 109n5, 214, xxxii
Lucasfilm/LucasArts, 245
Lunde’s Law, 243

M

Machiavelli, Niccolo, 210
Macintosh, 110, 250, 347, 373
MacOS, 13–14, 21, 25, 114, 172
Macromedia Director, 424
Mah, Juanita, 259
Maintenance code, 423
Mak, Ron, 270, 365, 385
Making a difference in the world, 7, 300,

324–325, 359, 364, 373
Management by walking around (MBWA),

333–334
Management, leadership versus, 320
Manager Tools LLC, 231
Management training, 8

Managing down. See also Organizational
thinking

current team and, 113–120
dashboards, 120
dismissals and, 131–133
facilitation and, 119–120
hiring great programmers and, 113
overview of, 107
performance and, 122–131
protection and, 120–122
success, 152–153
technical respect and, 108–113
tools, 153, 477
types of programmers and, 114–119

Managing for the Future (Drucker), 231
Managing out

budgets, managing expenses and,
167–170

collaboration within department and,
162–163

customers and, 171
human resources actions, 166–167
important support functions, 165–171
industry consortiums and, 175
legal oversight, 170–171
local connections and, 177–178
outside the company, 171–174
overview of, 162
professional organizations and, 175–176
standards organizations and, 174–175
technology innovators, 173
technology providers and, 172–173
tools vendors, suppliers and, 174
travel and training, 169–170
understanding other departments and,

163–165
university educators and, 176–177

Managing, rules of thumb
challenges of, 201–228
people, 229–262
teams to deliver successfully, 263–288

Managing the Dream (Bennis), 320
Managing up, 156–162, 454, 477
Managing yourself

bottom line, 195
communications management and,

184–188
follow-up management and, 192–194
management practices, 188–192
mentor and, 194–195

492 Index

overview of, 178–179
personal management style and, 179–182
time and priority management and,

182–184
tools, 196

Mantle, Mickey W., 211–212, 225, 228, 255,
xxxi–xxxiii

Mars Climate Orbiter craft, 416n24
Marshall, Robert, 241, 353
Martin, Neil, 285
Maslow’s Hierarchy of Needs, 290–291, 471
Matrixed teams, 149–150, 440–443
Mausner, B., 293
Mayer, Tobias, 276, 283
MBTI (Myers-Briggs Type Indicator)

personality inventory, 35
MBWA (management by walking around),

333–334
McBreen, Pete, 6n6
McCarthy, Jim, 151, 242–243, 254, 277
McCloud, Scott, 403
McConnell, Steve, 183, 203, 274, 279
McGregor, Douglas, 209, 291, 436–437
McGregor’s X-Y Theory

motivation and, 291–292
servant leadership in agile and, 436–437,

444
McKinney, Greg, 247
Mead, Margaret, 324
Meads, Jon, 417
Meebo, 58, 213
Meetings

check-in, 354, 390, 413, 418–421
communication via, 316–317
estimation for, 392–393
one-on-one, 189, 231, 306, 317
retrospective, 258, 427, 463–464
rules of thumb, 203, 221, 231, 246–247
stand-up, 284, 356, 407, 412, 414, 420,

449–451, 463–464
team, 374

Melmon, Paul, 217, i
Mentoring

agile manager role in, 443, 469–470
finding, 194–195
first-day musts and, 86
good practices, 450–454
identifying, 222
junior programmers, 419
making right offer and, 86

manager role as, 443
rule and nuggets from, 199–200
rules of thumb, 222
solving technical problems and, 304
success and, 8–9
using this book as, xxvii
writing job description and, 49–51

Metrics
defining success, 374
performance, 128–129, 210
productivity, 248–251, 458
programming culture and, 343
rules of thumb, 248–249
success and key, 371–372, 374–376
team size and, 287

Micromanagement
agile versus, 433, 446, 465
rules of thumb, 229–230, 258, 360
Theory Y management vs., 437

Microsoft, 2n2, 11, 20, 172, 225, 253, 267, 275,
336, 465

Milestones, 116, 130, 133, 165, 264, 266,
272, 307, 310, 313, 318, 320, 322, 325,
329–330, 334–335, 377–378, 410–411

Millennials, 31–34
Miller, Ade, 142, 225, 269
Minimum Marketable Features (MMFs),

53n9, 372, 383, 400
Miro, 396
Mission, 43, 315, 342, 348, 359, 373–374, 377,

414–415, 417
MMFs (Minimum Marketable Features),

53n9, 372, 383, 400
Mockus, Audris, 227
Mohawk (most heinous applications writing

kit), 114
Money, as ineffective motivator, 7, 88, 92,

125, 299
Morning people, night versus, 37–38
Motivation. See also Foundational factors

foundational factors and, 293, 298–301
key motivating factors and, 324–333
personal commitment and, 333–335
removing impediments and,

468–469
rules of thumb, 206, 256–257, 260
technology offense/defense and, 336–337

Motivation and Personality (Maslow), 290
Motivation-hygiene theory, Herzberg’s, 293
Motivation to Work, The (Herzberg), 293

 Index 493

Motivational factors, 295–301, 324–333
Motivational theories, 289–295
Mouse nuts (budget numbers), 223
Muller, Eric, 65, 78, 215
Multitasking, 469
Mural, 396
Musicians, 36–37
Mutual respect, 351
Myers-Briggs Type Indicator (MBTI)

personality inventory, 35
Myers, Rob, 276
Mythical Man-Month, The (Brooks), 3, 43, 53,

145, 268n12, 270n17, 274n22, 275n24,
280n34, 288n57, 375n2, 393n11, 415,
xxiii

Myths about agile, 454–461

N

NASA, 270, 272, 365, 385, 416, 460
NDAs (nondisclosure agreements), 171
Needs, Maslow’s Hierarchy of, 290–291, 471
Nelson, Ted, 286
Net App, 117
Netopia, 360, 445
Netscape, 243, 273, xxxi
Networking. See also LinkedIn; Managing

out, 62, 110, 175–177, 326–327
Neumann, John von, 392
New hires

on-boarding and, 92–93, 100, 221–222
first day and, 94–98
initial expectations and, 102–105
introductions and, 98–99
performance objectives, 123–125
preparing for arrival, 93–94
rules of thumb, 211, 213–221, 227
success and, 100–101
tools, 105
welcoming, 92, 96

NeXT Computer, 81, 426
Night versus morning people, 37–38
Ninety-Ninety Rule, 277, 392n10
Nintendo, 13
Nisbet, Jim, 208
No Asshole Rule, The (Sutton), 311
“No jerks” rule, 311
Noble failures, 353
Node, 16

Nondisclosure agreements (NDAs), 171
Nonnegotiable dates, delivery and,

376–377
Novell, 259

O

Obi-Wan Kenobi, 173, 194, 229
Object-oriented programming, 20n2, 269,

373, 398, 402
Objectives, performance, 123–125
O’Brien, Larry, 238
ODBC (Open Database Connectivity), 15
ODBC (Open Database Connectivity)

interface access, 15
OEM, 425
Offer

following up on, 89–90
making right, 83–89

Office-based versus virtual teams. See also
Geographically distant employees

in-house employees, 28–29
overview of, 140–143
rules of thumb, 224–225

Offshore contractors
captive, 131, 134
issues with, 137–140
rules of thumb, 224–225, 227
virtual teams versus, 141

OLTP (online transaction processing)
database programmers, 15

On-boarding
early, 92–93
hiring, 470
importance of, 101
rules of thumb, 221–222
simplicity of, 100

One-on-ones, 39–40, 72, 81, 94, 122, 126, 142,
157, 174, 188–189, 231, 304–305, 317,
333, 335, 338, 366, 392, 415, 424

100 Questions to Ask Your Software
Organization (Himelstein), 229

OneNote, 135
Open Database Connectivity (ODBC), 15
Open Source Applications Foundation

(OSAF), 239
Open Source Initiative, 243
Optimizations, database, 116
Oracle, 15, 55, 99, 337

494 Index

Order of magnitude, 7, 116, 118–119, 251,
357, 359

Ordered backlog, 407–409, 457, 462–463
Org chart, 163
Organization of book, xxv–xxvii
Organizational structure, 140–145, 148–151,

440–443
Organizational thinking

agile manager role in, 438
Agile teams and, 150–151
cross-functional teams and, 149–150,

440–443
functional programming departments

and, 147–148, 440, 442
larger organizations and, 145–147
myth that agile is what developers do,

455–457
office-based versus virtual teams and,

140–143
overview of, 134
programmer teams, small versus large,

143–145
staffing, 134–140
troubleshooting dysfunction and, 151–152

OSAF (Open Source Applications
Foundation), 239

Osborne, Adam, 208
Osborne Computers, 208
Ossenbruggen, Paul, 76, 217
Oswald, Andrew J., 108
Outsourcing companies, 30–31
Overarchitecting, 399–401, 460–461, 465
Overtime, 261–262, 312
Ozzie, Ray, 267

P

Pace, project, 103, 264, 409–410
Packard, Dave, 333
Pair programming, 68, 74, 144, 218, 390
Parekh, Jateen, 181, 207
Passion, 71–72, 188, 215, 217, 364
Patents, 39, 110–111, 171
Patterns, agile success, 462–463
Patton, George S., 360
Pearce, Terry, 202
People

focusing on your, 305–306
left-brain versus right-brain, 36–37

night versus morning, 37–38
rules of thumb, 229–262
skills, 8, 73, ii, xxv

Peopleware (DeMarco), 257
Pepsi, 324
Perceiving/judging, 35
Perception, 38, 74, 156, 358–359
Performance

agile antipatterns and, 466
agile success patterns and, 462
contractors and, 129–131
dismissals and, 131–133
exit checklist, 133
human resources and, 166, 466
judging and improving, 122–123
objectives and, 123–126
outstanding, 24, 109, 299, 321–322, 330
reviews, 104, 126–131, 150, 166, 456, 477
rules of thumb, 210, 246
waterfall versus agile and, 447–450

Performance plan, 132
Perl, 16
Perlis, Alan J., 237
Perry, DeWayne, 227
Personal commitment, 333–335
Personal style, 179–182
Personality styles

cowboys versus farmers, 38–39
cynics, 40
heroes, 39
introverts, 39–40
jerks, 40
left-brain versus right-brain

people, 36–37
night versus morning people, 37–38
understanding programmers, 12, 34–35

Peters, Tom, 177n7, 256n43, 350
PHB (Pointy-Haired Boss) stigma, 108, 167
PHP, 16, 53
Picture System graphics library project, 109
Pink, Daniel H., 125, 210, 260, 299
Pixar, 109–110, 172, 176, 214, 264, 307, 312,

325, 419, 425–426, iv, xxxii
Pixton, Pollyanna, 202, 265, 377
Planning

code reviews and, 419–420
communication and, 411–413
milestones and, 410–411
mission and, 414–415
overview of, 407–409

 Index 495

project pace and, 409–410, 458–459, 462
removing impediments, 415–416
standards and requirements, 416–418
test-driven development and, 418–419

Planning Poker, 394, 459
Platt, Dave, 236
Play, importance of, 306–308
PlayStation, 13–14
PLC (product development lifecycle), 407
Please Understand Me (Keirsey and Bates), 35
Point releases, 337
Pointy-Haired Boss (PHB) stigma, 108, 167
Policies, sane company, 315–318
Pollak, David, 235
Poor Richard’s Almanack (Franklin), 198
Postmortem. See Retrospection
Potshots, protecting staff from, 122
Practical Estimation (Bockman), 394n13, 459n19
Practices, agile, 434–436, 447, 449, 450–454
Praise, 208, 298, 302, 322, 328–330
PRDs (product requirements documents).

See also Requirements, 381
Predictability, 394–398, 458–459, 462
Presentations, communication and, 159
Priority, 62–63, 65, 100, 179, 182–184, 191,

204, 207, 226, 265, 271, 305–306,
317–318, 349, 357, 376, 382–386, 397,
407–408

Probationary period, 102, 123, 125, 221
Problem employees

demonstrating respect for, 302
engaging HR department for, 133, 164
firing. See also Firing, 471
intervention process for, 131–133, 362,

471
manager resolves team issues with, 438
rules of thumb, 264

Problems, solving, 161, 191–192, 204
Process Impact, 224
Product development lifecycle (PLC), 407
Product manager, 372
Product owner, 372, 383–384, 407–408,

457–458, 464–465
Product requirements documents (PRDs),

381
Productivity

great programmers and, 118–119
improving, 18, 43, 54, 132, 169, 174, 185,

193, 206, 259, 276, 310, 438, 447, 454,
456, 463, 466, 469

measuring, 88, 246, 248–251, 284,
312, 413, 458

personal, 193
variations in, 43, 54, 121, 143–144, 356,

359–362
Professional organizations, 62, 108, 171,

175–177, 361
Professionalism, 179–182, 318–320, 361
Profitability, waterfall versus agile, 448–449
Programmers. See also Great programmers

description of, 3–7
generational styles, 31, 34
hiring. See Hiring practices
job requirements and abilities, 23–27
managing, 7–9
personality styles, 34–40
proximity and relationship, 27–31
team size and, 143–145, 287–288
tools, 41
types of, 11–12, 19–22, 114–119

Programming challenge, hiring and, 67–68
Programming culture. See Culture,

programming
Programming disciplines, 11, 12–19
Programming languages, 16, 26, 49, 70, 80,

118, 236, 244
Programming levels, 23–25
Programming v. software engineering, 1
Progress

difficulty of measuring, 5–6, 119
making every day, 191
performance objectives and, 123–125, 191
project workbooks and, 404–407
rules of thumb, 202, 226, 245, 247, 250,

266, 273
Project Aristotle, 351, 451, 451n15
Project management

agile and, 412
canceling a project, 423–425
defining done, 389–391, 452, 462
defining requirements, 381
delivering the software. See Delivery
estimates and. See Estimates
executing the work, 371, 454
iron triangle and, 374–375
kicking off the plan, 310, 372–374
milestones, 310, 431
names and, 373–374
pacing, 103, 264, 409–410

496 Index

planning the work. See Planning
quality triangle and, 271
risks and, 258, 299, 323, 353, 384–386,

408–409, 421, 457
running the end game, 414
size, and effect on, 143–145
team size and, 143–145, 287–288
time and, 182–184, 192

Project names, 373–374
Project Retrospectives (Kerth), 427
Project workbook, 404–407, 427–429
Project Xanadu, 286
Promotions

helping boss succeed and, 160
hiring and, 27, 86, 88
HR guidelines and, 166
managing, 322–324
performance reviews and, 127
rules of thumb, 256, 259

Proofs of concept, 38, 401–403, 410
Protecting your staff, 120–122, 303, 317–318
Prototypes, 277, 401–403, 410–411
Proximity and relationship, 27–31
Psychological safety, 451–452
Putnam, Doug, 287
Python, 16

Q

Quality
agile manager and, 452–453
balanced against risk, 416–417
code reviews and, 419–421
declaring success/product release and,

422–423
design reviews and, 403–404
iron triangle and, 375
as little process as possible and, 274, 276
running product for, 421
standards/requirements for, 416–417
TDD for code, 418–419
test results indicating, 274
as top priority, 271

Quality triangle, 271
Quickdraw, 250

R

Radford Surveys, 23, 85, 321
Rampal, Jean-Pierre, 366

Random House, 115
Rapid Development (McConnell), 183, 203
Ratbert (evil HR Director) stigma, 167
Rational Software, 235
Raymond, Eric S., 233, 243
Razorfish, 55, 63, 94, 96, 97, 101, 265, xxxiv
Reagan, President Ronald, 230, 360, 445
RealtimeBoard, 396
Recognition and praise, 293, 298, 301, 322,

328–330
Recruiters

budgeting for, 56–58
case study, 58–59
contingency, 57, 62, 64
contract, 63
in-house, 56–57
retained, 56, 64
rule of thumb, 213

Recruiting
advertising and, 59
agile manager and, 438, 470
budgeting for, 56–58
contractors, 64–65
effective, 61–62
employee referrals and, 56, 59–61
full-time employees, 54–58
headhunters, 56–57
interns, 74
lateral hires, 56
LinkedIn and, 56, 58–60, 62, 66, 178, 220
managers, 146–147
narrowing the field, 67–68
as ongoing process, 55–56
pitching your team to candidates, 53–54
reviewing résumés, 65–66
rules of thumb, 221
staffing departments and, 62–63
tips for, 62–64
virtual teams and, 141

Redshift, 15–16
Reed, Pat, 456n17
Refactoring, 400, 430
Reference checks, 82–83, 146, 220
Referrals, employee, 56, 59–61, 62, 64
Relative sizing, 394–398, 407–409, 459, 465
Release Candidate, 410–411, 421
Reminders, calendar, 194
Remote workers, 68, 91, 134, 140, 143, 227,

357–358
RenderMan, 419, 425, xxxii

 Index 497

Requirements. See also User stories
agile antipatterns and, 464
agile product owners and, 457–458, 465
communicating, 224, 315
demanding clear, 378–382
documentation, 381, 399, 457, 460
job description and, 48–49
limiting to “what,” not “how”, 386–388
meeting agreed-upon, 416–417
percent delivered, 376
prioritizing, 382–386, 407–408
programmer job, 23–27
project success and, 374–376
résumés fitting your, 65–66
rules of thumb, 224, 252, 259, 269–270
standards, 353
turning customer needs into, 77

Requirements engineering, 224
Resignations, 92
Respect

as foundational factor, 343, 351
mutual, 301–302, 351, 363
rules of thumb, 202
for supervisor, 301–306
technical, 108–113, 301

Responsibility but no authority problem, 150
Restricted stock units (RSUs), 322
Résumés

personal achievements on, 111
reviewing, 65–66
rules of thumb, 219

Retrospection, 427–429, 463–464
Reviews, performance

contractors and, 129–131
framework for, 128–129
heavily matrixed teams and, 150
HR department and, 166
overview of, 126–127
process for new hires, 104
process of, 128–131
recognition for teamwork and, 456
timing of, 127
tools, 477

Revolutionizing Product Development
(Wheelwright and Clark), 469n24

Rewards. See also Bonuses; Compensation;
Salaries

database programmers and, 118
delivery date and, 377–378
heroes and, 363

managing up and, 162
motivation and, 299
programming culture and, 259, 363–364
promotions and, 322–324
rules of thumb, 209, 256, 259
toys as, 328

Right-brain people, left-brain versus, 36–37
Rigor, myth that agile has no, 458
Risk

as demotivator, 299
early resolution of, 457
failures and, 258
features and, 421
innovation and, 353
prioritizing mitigation of, 384–386, 408
promotions and, 323
risk-first development, 384, 408
technical debt and, 408–409

Roadmaps, 386, 454, 457, 461
RockYourRefund.com, 258
Rogers, Carl, 236
Rojas, Emilio, 210
Roles. See Agile managers
Roosevelt, Theodore, 220
Rosenberg, Scott, 237, 239, 250–251, 265, 268,

271, 274, 288, 398, 414
Rosenblum, Bruce, 66, 69, 213, 216, 220, 274,

275
Rosso-Llopart, Mel, 278–279, 391
Rothman, Johanna, 231
RSUs (restricted stock units), 322
Rule of 3, 207
Rule of Credibility, The, 277, 392n10
Rules of thumb

management challenges, 201–228
managing delivery, 263–288
managing people, 228–262
nuggets of wisdom and, 197–200

Rumors, 121–122, 291

S

Safety, psychological, 451–452
Saint-Exupéry, Antoine de, 242, 257, 372
Salaries

budgets and, 168
contractors and, 86, 130–131
determining offer of, 83–89
fairness and, 298, 300–301, 320–322, 359

498 Index

interviewing and, 79
motivation and, 337–338
performance reviews and, 127
programming levels and, 23n4, 24
rules of thumb, 210–212
upside and, 331–333

Samuel Goldwyn’s Law, 223
Scala, 53
Scaling teams, 440–443
Schedule. See Deadlines; Milestones
Schmidt, Eric, 259
Schwab. See Charles Schwab
Schwab, Chuck, 325, 343–344
Schweitzer, Albert, 207
Scope, 375–376
Scripters, 12, 16
Scripting tools, 16
Scrum. See also Agile

benefits of, 337
coaching, 305n8
communication and, 412–413
daily stand-ups, 412
effectiveness focus of, 464
embracing change, 452
information radiators, 412–413
manager role in, 434–436, 440–443
organizational restructuring and, 440–443
prioritization, iterative cycles and, 376
removing impediments, 415–416, 468–469
rules of thumb, 208, 226, 276
scope and, 377
self-organizing team in, 445–446,

450–451
sprints (iterations) in, 409–411, 462–463

Scrum Alliance, 450
Scrum masters

agile team health and, 372
antipattern of managers as, 463
organizational restructuring and, 443
recognizing agile antipatterns, 463
removing impediments, 412, 415–416,

468–469
rules of thumb, 255, 281, 282–283, 451

Sculley, John, 81, 324
SecDevOps developers, 19
Secrets of Consulting (Weinberg), 235
Security, DevSecOps and, 19
SEI (Software Engineering Institute), 2n2
Seibel, Peter. See Coders at Work (Seibel)
Self-actualization, 291, 471

Self-organizing teams, agile, 433–435, 443,
445–446, 450–451

Selling the hire, 53–54
Sensation/intuition, 35
Servant leadership, 434, 437, 444–446
Shafer, Dan, 271
Shalloway, Alan, 445
Share, wrap-up and, 430
Shaw, George Bernard, 188
Shinseki, Eric, 326
Siebel, Peter, 245
SIGCHI, 176
SIGGRAPH, 176
SIGPLAN, 237, 244
SIGs (Special Interest Groups), 112–113, 135,

178, 207, 214, 229, 246, 254, 270, 272,
274, 276–277, 285

Silicon Graphics, 348–349, xxxi, xxxii
Silicon Valley Engineering Leadership

Community, 451n14
Sims, Chris, 278
Six Apart, 67, 215
Sizing. See Relative sizing
Skilling, Jeffrey, 344
Skills

great programmers and, 6–7
inventory, 53, 105
writing job descriptions, 49, 51

Skywalker, Luke, 194
Slack (DeMarco), 257, 464
SLIP (Symmetric List Processor), 236
Smalltalk, 20n1
Smith, Alvy Ray, 426
Smith, David, 202
Snaking technique for estimating, 395–396,

410
Snowflake, 15
Socializing, 181, 351
Socialtext, 120, 141–142, 144, xxxiv
Software by Numbers (Denne and Cleland-

Huang), 53, 383
Software Cost Estimation with Cocomo II

(Boehm et al.), 44
Software Craftsmanship (McBreen), 6n6
Software engineering, 1–2, 6
Software Engineering Body of Knowledge

(SWEBOK), 6n6
Software Engineering Institute (SEI), 2n2
Software, intangible, 5
Software Practitioner, The, 223

 Index 499

Software Systems Architecture (Woods), 242
SolutionsIQ, 210
Sonic Solutions, 246
Sony, 97, 328
Southwest Airlines, 46, 252
Span of control, 147, 230
Special Interest Groups (SIGs), 112–113
Speer, Emily R., 202
Sperry, Roger W., 36
Spikes, 402
Spolsky, Joel, 232, 367
Sprints

agile success patterns and, 462–463
project pace and, 409–410, 459, 462

SQL statements, 15, 116
Srygley, Louis, 269
Staff

Agile teams, 150–151
communications and, 184–188
cross-functional teams, 149–150, 440–443
fulltime versus contractors, 134–136
functional programming departments,

148–149, 440, 442
in-house versus offshore contractors,

137–140
knowing your, 181–182
larger organizations and, 145–147
management practices, 188–192
office-based versus virtual teams,

140–143
programmer teams, 143–145

Stand-up meetings, 284, 356, 407, 412, 414,
420, 449–450, 451, 463–464

Standards
government/trade/international

organizations, 174–175
industry consortiums versus, 175
innovation and, 352
meeting agreed-upon, 353–354, 416–417
no required programmer, 2
planning for, 416–418
rules of thumb, 241

Status reports, 103, 119, 153, 246, 247, 404,
477

Steele, John, 254, 274, 276, 277
Stengel, Casey, 255
Steve Bockman method, 394–396
Stock options, 322, 331–333
Stories. See User stories
Story points, 395–397, 459

Study of Product Team Performance (Actuation
Consulting), 447–450

Style
management, 188–192
personal, 179–182

Succeeding with Agile (Cohn), 47, 139,
145, 209, 214, 224–227, 252–253, 280,
283–284, 287–288, 418, 435, 445,
450, 472

Success. See also Culture, programming
celebrating, 152–153
defining, 342, 374–376
releasing product and declaring, 422–423
rules of thumb, 202, 258

Sun Microsystems, 117–118, 237, xxxii
Superstar, 216
Supervisors, 293, 301–304
Suppliers, 117, 171, 174
Support functions, 165
Sutton, Robert, 126, 129, 311
SVForum, 112–113, 207, xxxv
SWEBOK (Software Engineering Body of

Knowledge), 6n6
Swihart, Tim, 126, 158, 161, 181, 203, 207, 305
Symmetric List Processor (SLIP), 236
Synergy, 462
System 7 Finder, 102, 368
System engineers/architects, 20
Systems programmers, 19, 20–21, 114–117,

466
Systems programmers, great, 5, 114–117

T

T-shirts, inspiration and, 310, 343–344,
373, 426

Taligent, 349
Tao of Programming, The (James), 37, 234
Tao Te Ching (Lao-Tzu), 444
Taran, Gil, 278–279, 391
Task breakdown, 123–126, 192–194
TDD (test-driven development), 18, 218, 253,

282, 284, 354, 398, 418–419
Team Estimation Game, 394, 459
Teams

agile, 150–151, 350, 356, 434–436, 440–443,
450–454, 471

cross-functional, 149–150, 434,
440–443

500 Index

defining done, 389–391, 452, 462, 478
estimating projects and features, 394–398,

458–459, 465
feature, 434, 440–443
ideal size, 442
inspiration and, 372–374
managing types differently, 114–119
meetings for input, 374
organizing programming, 140–145
programming culture and, 363–364
rules of thumb, 203, 207–210, 214,

216–219, 222, 224–227, 230, 232,
240, 243–244, 248, 252, 254, 257–258,
262–288

self-organizing, 433–435, 443, 445–446,
450–451

small versus large, 143–145, 287–288, 442
stable, 396, 462, 471
technical communities of practice in

agile, 466–468
turbocharging, 113–120
virtual, 140–143, 226, 312, 356–358

Teamwork, 344–345, 412, 451, 466
Technical backlog items, 408–409
Technical career ladder, 259
Technical debt, 273, 279, 345, 390, 408–409,

430
Technical presentations, 326
Technical problems, solving, 303–304
Technical respect, 108–113, 301–302
Technical societies and organizations, 110
Technology

innovators, 173
offense and defense, 336–337
providers, 172–173
role in programming culture, 346–348
rules of thumb, 349
standards, 174–175
technical trends and, 112

Termination, 133, 471
Terminology, programming v. software

engineering, 1
Tesch-Romer, Clemens, 231
Test-driven development (TDD), 18, 218,

253, 282, 284, 354, 398, 418–419
TestDriven.com, 74
Testing

allocating time for, 274, 283
automation, 275
quality and, 252, 274

rules of thumb on, 241, 252–254, 267, 272,
274–275, 278, 282–283, 286

standards/requirements and, 417
user, 118, 272, 365, 422

TestObsessed.com, 252
Text-matching algorithms, 117
Thanking your team, 152–153, 166, 181,

329–330, 334, 421, 424
The Prince (Machiavelli), 210
Theory X-Y, McGregor’s, 291, 436–437
Think and Grow Rich (Hill), 326
Thinking/feeling, 45
ThinkPad tablet, 388–389
Time

agile antipattern of estimating in units
of, 465

distance, culture and, 137–139
management and, 182–184, 192
task completion and, 283

Time zones, 29, 37n12, 137, 312
Timeboxing, agile and, 454
Timing, communication and, 160
Title inflation, 139
To do list/daily task list, 182–184, 191,

192–193
Tools (books), 403–405, xxii
Tools (software)

agile manager and, 469, 472–473
budgets and, 168–169
delivery and, 431–432
hiring, 90
managing down, 153
managing yourself, 196
new hires, 105
programming culture, 369
requirements and, 382
rules of thumb, 232
understanding programmer, 41
vendors/suppliers of, 174

Topakas, Nasos, 266, 269, 379–380
Torvalds, Linus, 238, 268
Toyota, 276
Toys and technology, 328, 368
Trade shows, 266, 327
Training, 8, 136, 222, 308–309, 434–435
Travel

budgeting for, 138–139, 141–142, 169–170
communication and, 164
rules of thumb on, 223, 227

 Index 501

Triangle
iron, 374–375
quality, 271

Trust
agile manager creates, 433
agile manager role in creating, 445–446
rules of thumb, 445–446
rules of thumb on, 229–230

Tuan, Phac Le, 80, 204, 208, 219, 362
Turning Feedback into Change! (Folkman), 156
Turning Point, 66, 213
Twitter, 33, 59, 184, 314
Two-Pass Relative Sizing

in agile, 394–396, 459
estimations and, 394–398, 458–459, 465

Types of programmers, 11, 19–22

U

UI (user interface)
design, 49, 69, 76–77, 116, 384–385, 388,

403, 414
developers, 13, 16, 21, 110–111, 118–119

Understanding Comics (McCloud), 403n18
University educators, 176–177
Unmanageable, 1, 9
Upside, as incentive tool, 331–333
Urgent, definition of, 183–184
Use cases, 390, 404
User interface. See UI (user interface)
User stories. See also Requirements

agile product owners and, 457
agile success patterns and, 462
detailing, 383–384
development plan and, 407–408
estimating projects and features, 395,

458–459
user requirements as, 383–384

V

Values
agile, 434–435, 446–450
company, 98, 103, 343–344

Van Vleck, Tom, 395
Velocity

agile practices and, 410, 449, 458–459, 462
agile success patterns and, 462
ballpark effort required and, 395–398,

458–459

estimating projects and features, 394–398
estimation by agile teams, 458–459,

462, 465
Vendors

innovation and, 352
learning from, 308
managing out and, 162–163
recruiting contractors from, 64
tool, 174

Virtual offices, 134, 144, 314–315
Virtual teams. See Geographically distant

employees
VisiCorp, 352
VMware, 259
Voltaire, 399
Volunteering, 157–158, 161, 176
Vora, Kinnar, 420
Vreeland, Diana, 363
Vydra, David, 74, 218

W

Wagile, 407
Walmart, 172, 272, 330
Walton, Sam, 172, 272, 330
Warning signs, 204
Warnock, John, 11, 110, 205
Waste

agile antipatterns and, 465
agile reducing, 456
architect to minimize, 399–400, 460
avoid time, 183, 185
emergent design to minimize, 462
emerging platforms and time, 173, 336
meetings and time, 392–393
requirements prioritization reducing,

383–384, 464
rules of thumb, 203, 219, 267, 276, 282
Two-Pass Relative Sizing reducing, 459
waterfall and, 448–449

Waterfall project management
communication and, 412
estimations, 391, 395, 398–399
inadequacy of, 380
managing in agile versus, 433–434,

438–439
organizational teams in agile versus,

440–443
pacing, 409

502 Index

performance, 447–450
status meetings and, 414
waste and, 448–449, 459
waterfall-agile development life cycles,

407
Web delivery, 423
WebLogic, 336
WebSphere, 336
Weighted scorecard, 375
Weinberg, Gerald M., 235
Weiss, Ray, 256
Weizenbaum, Joseph, 236
Welcome message, 92, 99
Welcome rituals, 92, 96–98, 165
West, Joel, 104, 222
Westerfield, Mike, 227
Wheelwright, Steven C., 469
Wherry, Elaine, 58–59, 213
Whiteboards, 75, 101, 141–142, 205, 217, 251,

310, 368, 401
Wiefling, Kimberly, 206, 209, 239, 266, 284
Wiegers, Karl E., 224
Wiesel, Torsten N., 36n10
Wikis, 141, 357, 404–405, 413, 419
Wilker, Harry, 272
Williams, Cecil, 45
Williams-Sonoma, 284
Wills, Graham, 227
Wilson, Dave, 67, 74, 215, 218–219, 240, 334
Wind, Sand and Stars (Saint-Exupèry), 242
Windows, 13–14, 20, 114–115, 172
Wired, 112
Wirth, Niklaus, 328
Woods, Eoin, 186, 242
Woods, John F., 224
Work disruptors, 244–245
Work environment

distractions and, 415
enhancing workplace, 309–310

feed your team and, 313–314
as foundational factor, 343
good working conditions, 309
having fun in, 306–308
importance of, 8
personal space and, 311–313
rules of thumb, 232
self-actualization and, 291
successful programming culture and,

342–346, 366–368
Work ethic, 140, 180–181, 303, 328
Workbook, project, 404–407, 427–429
Working conditions, 309–315
Workspaces, customizing, 312–313
Worsley, Andrew, 27n5
Wrap up, delivery and, 425–431
Wyckoff, Walt, 456n17
Wylie, David, 210

X

Xbox, 13–14, 115
Xerox, 388
XP (Extreme Programming), 284, 354, 402,

418
X-Y Theory. See McGregor’s X-Y Theory

Y

Yahoo! 203, 216
Young, Ted, 143, 252, 260, 283, 357
Yourdon, Ed, 261–262

Z

Zawinski, Jamie, 243, 263
Zorbathut, 258
Zuckerberg, Mark, 11

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	About the Authors
	Chapter 3 Finding and Hiring Great Programmers
	Determining What Kind of Programmer to Hire
	Writing the Job Description
	Selling the Hire
	Recruiting Full-Time Employees (FTEs)
	Always Be Recruiting
	Budgeting for Recruiting
	Recruiter Case Study
	Employee Referrals
	Effective Recruiting
	Recruiting Tips

	Recruiting Contractors
	Reviewing Résumés
	Narrowing the Field
	Preparing to Interview
	Interviewing
	Making the Decision to Hire a Programmer
	Making the Right Offer to a Programmer
	Follow Up until the Programmer Accepts
	Summary
	Tools

	TOOLS
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

