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Foreword

In the late 1500s, a road was built encircling the island on which I now live. Well, not 
a road exactly, but more of a modest walking path, serving to connect the many 
small farming and fishing villages that flourished at that time. But, times change, and 
with the arrival of the whaling boats and the missionaries and the plantation owners 
in the 1800s, there was a clear economic incentive to reduce the friction of travel and 
to increase the capacity of transport. As such, using that original path as its architec-
tural foundation, a wider road was built to accommodate horses and trains and the 
emerging motor car. Times changed yet again, and World War II necessitated yet 
wider and stronger roads, but—not surprisingly—corners were cut owing to the 
expediency of conflict. After the war, when the whalers, missionaries, plantation 
owners, and sailors were but an historical memory, that road remained, but now 
served to accommodate the cars of visitors who were arriving in alarmingly increas-
ing numbers. Money for infrastructure being what it is, a new road was planned, but 
only partly built. The cost of maintaining the old parts of the road cut into the funds 
for building the new parts; but then, this is the nature of all systems. Even now, times 
change, and this time it is climate change, manifesting itself in the rise of the ocean 
and projected to reach three feet within the century. Already the ocean is encroaching 
on that ancient path and beginning to inundate the road in ways that make its 
replacement inevitable and urgent.

Software-intensive systems are a lot like that: Foundations are laid, corners are cut 
for any number of reasons that seem defensible at the time; but in the fullness of 
time, the relentless accretion of code over months, years, and even decades quickly 
turns every successful project into a legacy one. It is fascinating to watch young com-
panies that grew quickly, unfettered by legacy code, suddenly wake up one day and 
realize that developing long-lived, quality software-intensive systems is hard.

What you have before you is an incredibly wise and useful book. Philippe, Ipek, 
Robert, and the other contributors have considerable real-world experience in deliv-
ering quality systems that matter, and their expertise shines through in these pages. 
Here you will learn what technical debt is, what is it not, how to manage it, and how 
to pay it down in responsible ways.



Forewordxiv

This is a book I wish I had when I was just beginning my career; but then, it 
couldn’t have been written until now. The authors present a myriad of case studies, 
born from years of their experience, and offer a multitude of actionable insights for 
how to apply it to your project. Read this book carefully. Read it again. There’s use-
ful information on every page which, quite honestly, will change the way you 
approach technical debt in good and proper ways.

—Grady Booch
IBM Fellow

January 2019



Preface

Philippe: I ran into technical debt long before I had a name for it. In 1980, I was 
working at Alcatel on some peripheral device, and the code had to fit in 8 kilobytes 
(kB) of ROM (Read-Only Memory). With the deadline to “burn” the ROMs 
approaching, we did a lot of damage to the code to make it fit, thinking, “Oh, for the 
next release we’ll have 16 kB available, we’ll make it right…” We did get 16 kB of 
ROM for the next release, but we never, ever fixed all the abominable things we had to 
do to the source code because the deadline for the next product was, again, too close. 
New programmers coming on board would say, “Wow, this is ugly, brain-damaged, 
awful. How did you end up writing such bad code?” Colleagues would reply, “Oh, 
yes, go ask Philippe, he’ll explain why it’s like that. At least, on the bright side, it 
does the job and passes all the tests. So, fix that code at your own risk.”

Robert: With the advent of agile practice, I was interested in hearing stories from 
developers about how it scales. Two projects in different organizations at the time 
were adopting agile and had recognized the importance of an end-to-end perfor-
mance requirement. The demos for the minimal viable product were an unquestion-
able success. It just so happened that in each case, the demo sparked a new 
high-volume bandwidth requirement. One project was able to take the new require-
ment in stride while the other project “hit the wall,” as Philippe would say. The archi-
tecture and supporting processes were not sufficiently flexible to allow the project to 
quickly adapt. This got me thinking about the choices that developers make to pro-
duce more features or to invest in architecture and infrastructure.

Ipek: I believe software engineering is first an economic activity. While in principle 
budget, schedule, and other business concerns should drive your design choices, that 
has not been my experience in many of the systems I worked on. A package routing 
system, let us call it the GIS-X, is a canonical example. I was part of the team that 
conducted an architectural evaluation of the system in 2007. The development team 
was tasked to incorporate advanced geographic information processing to GIS-X to 
optimize driving routes. As the schedule realities started to take priority, each of the 
five development teams working on the project started diverging from the design. 
Among several other technical issues, one key mistake the organization made was 
not assigning an architecture owner to keep the design, business, and resource con-
straints in check.

xv
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Around 2005–2008 the concept of technical debt started to emerge, in the form of 
myriads of blog entries, mostly in the agile process community. We realized that 
developers understood technical debt very well, even when they were not calling it 
that, but the business side of their organizations had little insight and saw it as very 
similar to defects. The three of us met several times around that time, and we initially 
worked on developing a little game about hard choices to help software teams get a 
better feeling for what technical debt is about. As we found more people both in 
industry and academia willing to understand more about this strange concept that 
did not fit very well in any software engineering narrative, we started in 2010 organ-
izing a series of workshops on Managing Technical Debt, initially sponsored by the 
Software Engineering Institute (SEI), to explore more thoroughly the concept. We’ve 
had one workshop a year since. They have grown in importance and are now a series 
of annual TechDebt conferences.

The three of us wrote papers together and made presentations—short ones, long 
ones—to diverse audiences all around the world. Our varied views started to con-
verge in 2015, and this is when we thought of writing a book about technical debt. It 
proved to be still a bit of a moving target.

We interacted with many people over the past eight years or so, and the book you 
have in hand is the result of these collaborations with hundreds of people. With their 
help, we made great strides in understanding the phenomenon behind the simple 
metaphor of technical debt. We think we now better understand where technical 
debt comes from, what consequences it has on software-intensive development pro-
jects, and what form this technical debt actually takes. We now say with certainty 
that all systems have technical debt, and managing technical debt is a key software 
engineering practice to master for any software endeavor to succeed. We’ve heard 
how different organizations cope with it. We looked at and tried tools promising to 
perform miracles with technical debt. We also understood the limits of the simple 
financial metaphor: We realize now that technical debt is not quite like your house 
mortgage.

This book is intended for the many practitioners who’ve heard the term and those 
who think that it may have some relevance in their context. Hopefully it will give you 
tools to analyze your own situation and put names on events and artifacts you are 
confronted with. 

This is not a scientific treatise, full of data and statistics. There are other venues 
for this. But we will give you concrete examples that you can relate to. It is also illus-
trated with stories that some of our friends from our industry have contributed, tell-
ing you their experience of technical debt in their own words.

Philippe: I now see that my 1980s story about 8 kB of ROM is a very clear-cut case 
of technical debt, triggered by pure schedule pressure, with severe consequences on 
the maintainability of this small piece of code. I attended the 1992 OOPSLA 
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conference in Vancouver where Ward Cunningham used the term “technical debt” 
for the first time. At last I had a name for it.

Robert: Reflecting on the two projects adopting agile, I first approached the prob-
lem thinking that architecture infrastructure needed to be equally visible as features 
in the product backlog. That gave me some, but not all, the tools I needed to under-
stand the choice in selecting one or the other. I now see that adding technical debt 
items to the backlog brings visibility to the long-term consequences of the choices as 
they are made together with more needed tools to strategically plan and monitor 
those choices as technical debt.

Ipek: A few months ago in one of the software architecture courses I teach at the 
Software Engineering Institute (SEI), an attendee approached me to ask if I had ever 
worked on the GIS-X system. He happened to be one of the engineering managers 
on the team. He recalled our recommendations and in reflection reassured me that 
while at the time we did not phrase our findings using the words, we were spot on 
that the technical debt they had resulted in the project being canceled. A full circle 
moment. 

It does not stop here. Now you will have to share with us and the community your 
stories about technical debt. This book is not the end…only a start.

Philippe Kruchten, Vancouver
Robert Nord, Pittsburgh 
Ipek Ozkaya, Pittsburgh
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Chapter 1

Friction in Software 
Development

There is still much friction in the process of  crafting complex software; the 
goal of  creating quality software in a repeatable and sustainable manner 
remains elusive to many organizations, especially those who are driven to 
develop in Internet time.

—Grady Booch

Is the productivity of your software organization going down? Is your code base 
harder and harder to evolve every week? Is the morale of your team declining? As 
with many other successful software endeavors, you are probably suffering from the 
inability to manage friction in your software development and may have a pervasive 
case of technical debt.

Why should you care about technical debt? How does it manifest itself? How is it 
different from software quality? In this chapter, we introduce the metaphor of tech-
nical debt and present typical situations where it exists.

The Promise of Managing Technical Debt

Understanding and managing technical debt is an attractive goal for many organiza-
tions. Proactively managing technical debt promises to give organizations the ability 
to control the cost of change in a way that integrates technical decision making and 
software economics seamlessly with software engineering delivery.

The term technical debt is not new. Ward Cunningham introduced it in 1992 to 
communicate the delicate balance between speed and rework in pursuit of delivering 
functioning quality software. And the concepts it encompasses are not new either. 
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Ever since we started creating software products, we have been grappling with this 
issue under other names: software maintenance, software evolution, software aging, 
software decay, software system reengineering, and so on.

You can think of technical debt as an analogy with friction in mechanical devices; 
the more friction a device experiences due to wear and tear, lack of lubrication, or bad 
design, the harder it is to move the device, and the more energy you have to apply to get 
the original effect. At the same time, friction is a necessary condition of mechanical parts 
working together. You cannot eliminate it completely; you can only reduce its impact.

Slowly, over the past ten years, many large companies whose livelihoods depend on 
software have realized that technical debt, under this or any other name, is very real 
and crippling their ability to satisfy customer desires. Technical debt has started to 
translate into financial impact. At some point in the past, companies may have made a 
trade-off to take on technical debt to deliver quickly or scale quickly, threw more peo-
ple at the problem when the debt mounted, and never reduced or managed the debt. 
It is not a proper debt, from an accounting perspective, but the specter of huge costs 
somewhere on the path ahead will negatively affect the company’s financial bottom 
line. Government organizations that are large buyers of software also now realize that 
focusing only on initial development cost obscures the full cost of the software; they 
have begun to demand justification of all lifecycle costs from the software industry.

Technical debt is pervasive: It affects all aspects of software engineering, from 
requirements handling to design, code writing, the tools used for analyzing and 
modifying code, and deployment to the user base. The friction caused by technical 
debt is even apparent in the management of software development organizations, in 
the social aspect of software engineering. Technical debt is the mirror image of soft-
ware technical sustainability; Becker and colleagues (2015) described technical debt 
as “the longevity of information, systems, and infrastructure and their adequate 
evolution with changing surrounding conditions. It includes maintenance, innova-
tion, obsolescence, data integrity, etc.” And it relates to the wider concern of sustain-
ability in the software industry—not only in the environmental sense but also in the 
social and technical senses.

Progress on managing technical debt has been piecewise, and the workforce 
tends to devalue this type of debt. So it remains a problem. Why do we think that 
understanding and managing the problem as technical debt will have a different out-
come? Software engineering as a discipline is at a unique point at which several sub-
disciplines have matured to be part of the answer to the technical debt question. 
For example, program analysis techniques, although not new, have recently become 
sophisticated enough to be useful in industrial development environments. So, 
they’re positioned to play a role in identifying technical debt in a way they weren’t 
a few years ago. DevOps tooling environments that incorporate operations and 
development further allow developers to analyze their code, locate issues before they 
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become debt, and implement a faster development lifecycle. Developers also now 
have the vocabulary to talk about technical debt as part of their software develop-
ment process and practices.

The technical debt concept resonates well with developers, as they look for a well-
defined approach to help understand the complex dependencies between software 
artifacts, development teams, and decision makers and how to balance short-term 
needs to keep the software product running with long-term changes to keep the 
product viable for decades. In this way, technical debt can also be seen as a kind of 
strategic investment and a way to mitigate risk.

Technical Debt A-B-C

Many practitioners today see technical debt as a somewhat evasive term to designate 
poor internal code quality. This is only partly true. In this book, we will show that 
technical debt may often have less to do with intrinsic code quality than with design 
strategy implemented over time. Technical debt may accrue at the level of overall 
system design or system architecture, even in systems with great code quality. It may 
also result from external events not under the control of the designers and imple-
menters of the system.

This book is dedicated to defining principles and practices for managing technical 
debt—defining it, dissecting it, providing examples to study it from various angles, 
and suggesting techniques to manage it. Our definition of technical debt is as follows:

In software-intensive systems, technical debt consists of design or implementation 

constructs that are expedient in the short term but that set up a technical context that can 

make a future change more costly or impossible. Technical debt is a contingent liability 

whose impact is limited to internal system qualities— primarily, but not only, maintainability 

and evolvability.

We like this definition because it does not fall into the trap of considering only 
the financial metaphor implied by the term debt. Although the metaphor carries an 
interesting financial analogy, technical debt in software is not quite like a variable-
rate mortgage or an auto loan. It begins and accumulates in development artifacts 
such as design decisions and code.

Technical debt also has a contingent aspect that depends on something else that 
might or might not happen: How much technical debt you need to worry about 
depends on how you want the system to evolve. We like that this definition does not 
include defects in functionality (faults and failures) or external quality deficiencies 
(serviceability), as lumping together defects and technical debt muddies the water. 
System qualities, or quality attributes, are properties of a system used to indicate 
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how well the system satisfies the needs of its stakeholders. The focus on internal qual-
ity is the lens through which these deficiencies are seen from the viewpoint of the cost 
of change. Technical debt makes the system less maintainable and more difficult to 
evolve.

Technical debt is not a new concept. It is related to what practitioners have for 
decades been calling software evolution and software maintenance, and it has 
plagued the industry ever since developers first produced valuable software that 
they did not plan to throw away or replace with new software but instead wanted to 
evolve or simply maintain over time. The difference today is the increasing awareness 
that technical debt, if not managed well, will bankrupt the software development 
industry. Practitioners today have no choice but to treat technical debt management 
as one of the core software engineering practices.

While technical debt can have dire consequences, it is not always as ominous as 
it may sound. You can look at it as part of an overall investment strategy, a strategic 
software design choice. If you find yourself spending all your time dealing with debt 
or you reach the point where you cannot repay it, you have incurred bad debt. When 
you borrow or leverage time and effort that you can and will repay in the future, you 
may have incurred good debt. If the software product is successful, this strategy can 
provide you with greater returns than if you had remained debt free. In addition, you 
might also have the option to simply walk away from your debt if the software is not 
successful. This dual nature of technical debt—both good and bad—makes grap-
pling with it a bit confusing for many practitioners.

We will return to the financial metaphor later to investigate whether there are 
some software equivalencies to the financial ideas of principal, interest, repayment, 
and even bankruptcy.

Examples of Technical Debt

To illustrate our definition, we offer a few stories about technical debt in software 
development projects. You will see organizations struggling with their technical debt 
and software development teams failing to strategize about it.

Quick-and-Dirty if-then-else
A company in Canada developed a good product for its local customers. Based on local 

success, the company decided to extend the market to the rest of Canada and immediately 

faced a new challenge: addressing the 20% of Canada that uses the French language in 

most aspects of life. The developers labored for a week to produce a French version of the 

product, planting a global flag for French = Yes or No as well as hundreds of if-then-else 

statements all over the code. A product demo went smoothly, and they got the sale!



Examples of Technical Debt 7

Then, a month later, on a trip to Japan, a salesperson proudly boasted that the software 

was multilingual, returned to Canada with a potential order, and assumed that a Japanese 

version was only one week of work away. Now the decision not to use a more sophisticated 

strategy—such as externalizing all the text strings and using an internationalization 

package—was badly hurting the developers. They would not only have to select and 

implement a scalable and maintainable strategy but also have to undo all the quick-and-

dirty if-then-else statements.

For the Canadian company, the decision to use if-then-else statements spread the change 
throughout the code, but it was a necessary quick-and-dirty solution from a business 
perspective to get a quick sale. Doing the right thing at that stage would have postponed 
the delivery of the system and likely lost them the deal. So even though the resulting 
code was ugly—as well as hard to modify and evolve—it was the right decision. Now, 
would you continue down that path and add another layer of if-then-else for each lan-
guage? Or would you rethink the strategy and decide to repay the original technical 
debt? Inserting the Japanese version of the quick fix, with its issues of character sets and 
vertical text, would be too much of a burden and a subsequent maintenance issue. You 
may argue that a good designer would have set up provisions for internationalization 
and localization right at the outset, but this is easy to say in hindsight; the demands and 
constraints at the beginning of development for this small venture were quite different, 
focused on the main features, and didn’t foresee the need for a multilingual feature.

Hitting the Wall
Two large global financial institutions merged. As a result, two IT systems essential to their 

business had to merge. The management of the new company determined that a duct-tape 

and rubber-band system, mixing the two systems in some kind of chimera, would not work. 

They decided to build a support system from scratch, using more recent technologies and, in 

some ways, walking away from years of accumulated technical debt in the original systems.

The company organized a team to build the new replacement system. They progressed rapidly 

because the first major release was to provide an exact replacement of the existing systems. 

In a few months, they accumulated a lot of code that performed well in demos for each one-

week “sprint” (or iteration). But nobody thought about the architecture of the system; everyone 

focused on creating more and more features for the demo. Finally, some harder issues of 

scalability, data management, distribution of the system, and security began to surface, and 

the team discovered that refactoring the mass of code already produced to address these 

issues was rapidly leading them to a complete stop. They hit the wall, as marathon runners 

would say. They had lots of code but no explicit architecture. In six months, the organization 

had accumulated a massive amount of technical debt that brought them to a standstill.

The situation here is very different from the first case. This was not an issue of code 
quality. It was an issue of foresight. The development team neglected to consider archi-
tectural and technology selection issues or learn from the two existing systems at 
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appropriate times during development; the team did not need to do all of that up front, 
but it needed to do it early enough not to burden the project downstream. Refactoring 
is valuable, but it has limits. The development team had to throw away large portions 
of the existing code weeks after its original production. Although the organization 
hoped to eliminate technical debt when it decided to implement a brand-new system 
after the merger, it failed to incorporate eliminating technical debt into the project 
management strategy for the new system. Ignorance is bliss—but only for a while.

Crumbling Under the Load
A successful company in the maritime equipment industry successfully evolved its products 

for 16 years, in the process amassing 3 million lines of code. Over these 16 years, the 

company launched many different products, all under warranty or maintenance contracts; 

new technologies evolved; staff turned over; and new competitors entered the industry.

The company’s products were hard to evolve. Small changes or additions led to large 

amounts of work in regression testing with the existing products, and much of the testing 

had to be done manually, over several days per release. Small changes often broke the 

code, for reasons unsuspected by the new members of the development team, because 

many of the design and program choices were not documented.

In the case of the maritime equipment company, there was no single cause of techni-
cal debt. There were hundreds of causes: code imperfections, tricks, and worka-
rounds, compounded by no usable documentation and little automated testing. 
While the development team dreams of a complete rewrite, the economic situation 
does not allow delaying new releases or new products or abandoning support for 
older products. Some intermediate strategy must be implemented.

Death by a Thousand Cuts
One IT-service organization landed several major contracts. Some of this new business 

allowed the organization to grow its offshore development businesses and enter emerging 

software development markets. For several years, the organization experienced a hiring boom.

The IT-service projects were similar in nature, and the organization assumed that its new 

developers were interchangeable across projects. The project managers thought, “The task 

is customization of the same or similar software, so how different could it be?” But in some 

cases, the new employees lacked the right skills or knowledge about the packages used. 

In other cases, time and revenue-growth pressures pushed them to skip testing the code 

thoroughly or fail to think through their designs. They also did not put in the time to create 

common application programming interfaces (APIs). The hiring boom created unstable 

teams, with new members introduced almost every month. It even became an internal joke: 

“Get a bunch of online Java and Microsoft certifications, and you are a senior developer 

here.” In no time, the project managers lost control of the schedule as well as the number of 

defects introduced into the system.
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This IT-service organization provides another example in which there is no single 
source of technical debt. We call this “death by a thousand cuts” because a pervasive 
lack of competence can result in many small, avoidable coding issues that are never 
caught. Lack of organizational competency—as in the case of this IT-service organ-
ization—easily activates a number of cascading effects. The unplanned and unman-
aged hiring boom, the missed opportunity to enforce commonality across the 
products, and the limited testing all contributed to the accumulating technical debt.

Tactical Investment
A five-person company developed a web application in the urban transportation domain, 

targeted at users of buses and trains. In this relatively new and rapidly evolving domain, 

the targeted users could not really tell the company what they would need. “I’ll know it 

when I see it” was the general response. So, the company developed a “minimum viable 

product” (MVP) with some core functionality and little underlying sophistication. Members 

of the company beta-tested it with about 100 users in one city. They had to “pivot” several 

times until they found their niche, at which point they invested heavily in building the right 

infrastructure for a product that would be able to support millions of simultaneous users and 

adapt to dozens of situations and cities.

The initial shortcuts that members of this small company took and the high-level 
rudimentary infrastructure they initially developed are examples of technical debt 
wisely assumed. The company borrowed the time it would have spent on the com-
plete definition and implementation of the infrastructure to deliver early. This 
allowed it to complete an MVP months earlier than traditional development prac-
tices, which put the infrastructure first, would have allowed. Moreover, the com-
pany learned useful lessons about the key issues (which did not necessarily match 
its initial assumptions) of reliability, fault tolerance, adaptability, and portability. 
Building in these quality attributes up front would have created massive rework 
once the developers understood more completely what their users needed.

All along, members of this company were aware of the deliberate shortcuts they 
were taking and their consequences on future development. From the perspective of 
their angel investors, these were good strategies for risk management; if the com-
pany found no traction in the market, the developers could stop development early 
and minimize cost before the company made massive financial investments. Man-
agement also made it very clear to everyone, internal and external, that the shortcuts 
were temporary solutions so that no one would be tempted to keep them, painfully 
patched, as part of the permanent solution. In this manner, taking on technical debt 
was a wise investment that paid off. The company repaid the “borrowed time,” but it 
could also have walked away from the project.
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In all these examples, the current state of the software carries code that works, but 
it makes further evolutions harder. The debt was induced by lack of foresight, time 
constraints, significant changes in requirements, or changes in the business context.

Software Crisis Redux

You have likely seen the symptoms and heard stories of technical debt 
similar to those just shared: teams spending almost all of their time fixing 
defects and continuously slipping on deadlines for shipping new technol-
ogy; teams discovering incompatibilities despite continuous integration 
efforts and spending time on out-of-cycle rework; recurring user complaints 
about functionality that appears to be already fixed several times; outdated 
technology and platforms requiring convoluted workarounds and present-
ing challenges for upgrading; and a team admitting that the solution it had a 
year ago to make the system work is not good enough anymore. For organi-
zations that want to sustain continuous growth and revenue, these are prob-
lems. And for some companies, these problems look like an impending new 
software crisis.

Ever since the famous 1969 NATO Software Engineering Conference her-
alded the birth of software engineering, the industry has been in a constant 
state of crisis. In his 1972 ACM Turing Award Lecture, the software pioneer 
Edsger Dijkstra said, “But in the next decades something completely different 
happened: more powerful machines became available, not just an order of 
magnitude more powerful, even several orders of magnitude more powerful. 
But instead of finding ourselves in the state of eternal bliss of all program-
ming problems solved, we found ourselves up to our necks in the software 
crisis! How come?”

The software crisis took root and grew. In 1994 Wayt Gibbs wrote in Sci-
entific American that “despite 50 years of progress, the software industry 
remains years—perhaps decades—short of the mature engineering discipline 
needed to meet the demands of an information-age society.”

Fast-forward to today. After a series of breathtaking innovations—including 
new technologies, new tools, and the software development workforce 
increasing tenfold—the software industry is still in crisis. But now the nature 
of the issues has shifted. The industry is crushed under the mass of existing 
software, which consumes more than half of the available software devel-
opment workforce. Data analysis organizations estimate that the global 
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maintenance backlogs for information technology software amount to $1 
trillion of technical debt. Government budgets struggle with legacy code 
built on top of poorly designed architectural foundations and outdated tech-
nology. Globally, software practitioners grasp the impact of technical debt 
and know how systems acquired their debt but fail to recognize managing 
technical debt as an essential aspect of running a successful software organi-
zation and developing successful software-enabled products. The problem is 
not new, but the industry is feeling it more acutely now than it has in the past.

Software development is an industry, and it can be sustained as an indus-
trial activity only if it is economically viable. As more and more software is 
being developed, its long-term sustainment becomes less and less viable. Mar-
kets demand new applications and systems—and they demand them very rap-
idly. Some of these applications are ephemeral and have shelf lives of a few 
months or years, but some—the most successful ones and usually the largest 
ones—must be maintained for many years or for decades.

Today this is the biggest hurdle in software engineering: How should a 
development organization cope with this rapidly expanding software base 
while keeping it secure, running with up-to-date technology, and meeting its 
business and user goals in an economically viable way?

 Your Own Story About Technical Debt?

Now that we have given you a taste of the various flavors of technical debt, maybe 
you can identify with some of the stories: “Oh, yes, we have some of this here, too!” 
or “Now this thing we suffer from has a name: technical debt!” You could add your 
own development (or horror) story here. Over the past few years, the authors of this 
book have heard similar stories from dozens of companies. These organizations 
became mired in technical debt from different paths, with different concerns and dif-
ferent consequences. We have heard enough of these stories to classify them into 
awareness levels about technical debt:

 • Level 1: Some companies have told us they had never heard the term or the 
concept technical debt, but it was not difficult for them to see that part of their 
problem is some form of technical debt.

 • Level 2: Some companies have heard of the concept, have seen blog posts on 
the topic, and can provide examples of their technical debt, but they do not 
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know how to move from understanding the concept of technical debt to opera-
tionally managing it in their organization.

 • Level 3: In some organizations, development teams are aware that they have 
incurred technical debt, but they do not know how to get the management 
or business side of the company to acknowledge its existence or do anything 
about it.

 • Level 4: Some organizations know how to make technical debt visible, and 
they have some limited team-level strategies to better manage it, but they lack 
analytical tools to help them decide what to do about technical debt and which 
part of it to address first.

 • Level 5: We have not heard from many organizations that respond, “Thank 
you, all the technical debt is under control.” If this describes your organiza-
tion, we would love to hear from you about your successful software product.

This feels a bit like the levels of a “TDMM”—Technical Debt Maturity Model—
doesn’t it? Regardless of the level you feel you’re at, this book has something for you.

Who Is This Book For?

There are many books and tools that can help you understand how to analyze 
your software. And there are yet other books that can help you adopt new technol-
ogy for building microservices, migration to the cloud, front-end web develop-
ment, and real-time system development. There are also many good books that 
walk through different aspects of software development, such as software code 
quality, software design patterns, software architecture, continuous integration, 
DevOps, and so on. The list is long. But there exists little practical guidance on 
demystifying how to recognize technical debt, how to communicate it, and how to 
proactively manage it in a software development organization. This book fills 
that gap.

We address the roles involved in managing technical debt in a software develop-
ment organization, from developers and testers to technical leads, architects, user 
experience (UX) designers, and business analysts. We also address the relationship of 
technical debt to the management of organizations and the business leaders.

People close to the code should understand how technical debt manifests itself, 
what form it takes in the code, and the tools and techniques they can use to identify, 
inventory, and manage technical debt. This is the inside-out perspective.

People facing the customers—the business side of the organization, such as prod-
uct definition, sales, support, and the C-level executives—should understand how 
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schedule pressure and changes of direction (product “pivot”) drive the accumulation 
of technical debt. They should be especially conscious of how much the organization 
should “invest” in technical debt, without repayment, and for how long. This is the 
outside-in perspective.

Both sides of the software development organization—technical and code-facing 
or business and customer-facing—should understand the reasoning and decision 
processes that lead to incurring technical debt and how the consequences of debt 
result in reduced capacity. They should also understand the decision processes 
involved in paying back technical debt and getting development back on track. 
These decisions are not merely technical. For sure, technical debt is embedded 
in the code base and a few connected artifacts. But its roots and its consequences 
are at the business level. All involved should understand that managing technical 
debt requires the business and technical sides of the organization to work together.

Principles of Technical Debt Management

As we progress through the book, we will identify a small number of key software 
engineering principles that express universal truths related to technical debt. They 
are rooted in our experience with technical debt in industry and government soft-
ware projects, and they are accepted or at least acceptable by the software engineer-
ing community. The nine software engineering principles follow:

Principle 1: Technical debt reifies an abstract concept.
Principle 2:  If you do not incur any form of interest, then you probably 

do not have actual  technical debt.
Principle 3: All systems have technical debt.
Principle 4: Technical debt must trace to the system.
Principle 5: Technical debt is not synonymous with bad quality.
Principle 6: Architecture technical debt has the highest cost of ownership.
Principle 7: All code matters!
Principle 8:  Technical debt has no absolute measure—neither for principal 

nor interest.
Principle 9:  Technical debt depends on the future evolution of the system.

Here is our first principle.  
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We’ll introduce more principles in the following chapters, and you will find them 
summarized in the final chapter of the book.

Navigating the Concepts of the Book

The goal for this book is to provide practical information that will jump-start your 
ability to manage technical debt. The chapters that follow inform the basic steps of 
technical debt management: become aware of the concept, assess the software devel-
opment state for potential causes of technical debt, build a registry of technical debt, 
decide what to fix (and what not to fix), and take action during release planning. The 

Principle 1: Technical Debt Reifies an Abstract Concept 

TECHNICAL DEBT PRACTICE

TD

Technical debt is a useful rhetorical concept for fostering dialogue between 
business and technical people in a software development organization. On one 
hand, technical people do not always appreciate the value of shorter time to 
market, quick delivery, and rapid tactical changes of direction; on the other 
hand, business people do not always realize the dramatic impact some earlier 
design decisions can make in a software project and the costs they can lead 
to downstream. By identifying concrete items of technical debt, considering 
their impact over time, evaluating the lifecycle costs associated with them, 
and introducing mechanisms for expressing technical debt and estimating its 
impact, an organization can help everyone better understand the pains of soft-
ware evolution and make the economic consequences more real and tangible. 
Then both technical and business people can plan how to reduce technical debt 
just as they plan new features, fix defects, and construct architectural elements.
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steps draw on the seven interrelated concepts shown in Figure 1.1 that are the basis 
for managing technical debt.  

This book organizes the chapters into four parts.
In Part I, “Exploring the Technical Debt Landscape”—Chapters 1, “Friction in 

Software Development,” 2, “What Is Technical Debt?,” and 3, “Moons of Saturn—
The Crucial Role of Context”—we define technical debt and explain what is not 
technical debt. We introduce a conceptual model of technical debt and definitions 
and principles that we use throughout the book. We want to make technical debt an 
objective, tangible thing that can be described, inventoried, classified, and measured. 
To do this, we introduce the concept of the technical debt item—a single element of 
technical debt—something that can be clearly identified in the code or in some of the 
accompanying development artifacts, such as a design document, build script, test 
suite, user’s guide, and so on. To keep with the financial metaphor, the cost impact 
of a technical debt item is composed of principal and interest. The principal is the 
cost savings gained by taking some initial expedient approach or shortcut in devel-
opment—or what it would cost now to develop a different or better solution. The 
interest is the cost that adds up as time passes. There is recurring interest: additional 
cost incurred by the project in the presence of technical debt due to reduced produc-
tivity, induced defects, loss of quality, and problems with maintainability. And there is 
accruing interest: the additional cost of developing new software depending on not-
quite-right code; evolvability is affected. These technical debt items are part of a tech-
nical debt timeline, during which they appear, get processed, and maybe disappear.

In Part II, “Analyzing Technical Debt”—Chapters 4, “Recognizing Technical 
Debt,” 5, “Technical Debt and the Source Code,” 6, “Technical Debt and Architec-
ture,” and 7, “Technical Debt and Production”—we cover how to associate with a 
technical debt item some useful information that will help you reason about it, assess 
it, and make decisions. You will learn how to trace an item to its causes and its conse-
quences. The causes of a technical debt item are the processes, decisions, action, lack 
of action, or events that trigger the existence of a technical debt item. The conse-
quences of technical debt items are many: They affect the value of the system and the 
cost (past, present, and future), directly or through schedule delays or future loss of 
quality. These causes and consequences are not likely to be in the code; they surface 

•  Technical debt landscape

•  Technical debt timeline 

•  Technical debt item

•  Software development artifacts

•  Causes and consequences

•  Principal and interest

•  Opportunity and liability

Figure 1.1 Major concepts of  technical debt
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in the processes and the environment of the project—for example, in the sales or the 
cost of support. Then we cover how to recognize technical debt and how technical 
debt manifests itself in source code, in the overall architecture of the system, and in 
the production infrastructure and delivery process. As you study technical debt more 
deeply, you’ll notice that it takes different forms, and your map of the technical debt 
territory will expand to include this variety in the technical debt landscape.

In Part III, “Deciding What Technical Debt to Fix”—Chapters 8, “Costing the 
Technical Debt,” and 9, “Servicing the Technical Debt”—we cover how to estimate 
the cost of technical debt items and decide what to fix. Decision making about the 
evolution of the system in most cases is driven by economic considerations, such 
as return on investment (for example, how much should you invest in the effort of 
software development in a given direction, and for what benefits?). For the technical 
debt items, we will consider principal and interest and associate elements of cost to 
reveal information about the resources to spend on remediation and the resulting 
cost savings of reducing recurring interest. We then revisit the technical debt items in 
the registry collectively and use information about the technical debt timeline to help 
determine which technical debt items should be paid off or serviced in some other 
way to ease the burden of technical debt: eliminate it, reduce it, mitigate it, or avoid 
it. We show how to make these decisions about technical debt reduction in the con-
text of a business case that considers risk liability and opportunity cost.

In Part IV, “Managing Technical Debt Tactically and Strategically”—Chapters 10, 
“What Causes Technical Debt?,” 11, “Technical Debt Credit Check,” 12, “Avoiding 
Unintentional Debt,” and 13, “Living with Your Technical Debt”—we provide guid-
ance on how to manage technical debt. A key aspect of a successful technical debt man-
agement strategy is to recognize the causes in order to prevent future occurrences of 
technical debt items. Causes can be many, and they can be related to the business, the 
development process, how the team is organized, or the context of the project, to list a 
few. We present the Technical Debt Credit Check, which will help identify root causes 
of technical debt that show the need for software engineering practices that any team 
should incorporate into its software development activities to minimize the introduc-
tion of unintentional technical debt. The principles and practices you will have learned 
along the way make up a technical debt toolbox to assist you in managing technical debt.

At the end of each chapter, we recommend activities that you can do today and 
further reading related to the concepts, techniques, and ideas we discuss.

What Can You Do Today?

Apply the first principal by putting a name to your technical debt. Commit to apply-
ing a few basic techniques to your normal development practices as you read each 
chapter and continue to improve over time.
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For Further Reading

The seminal paper that brought us the debt metaphor is the often-cited OOPSLA 
1992 experience report, “The WyCash Portfolio Management System,” by Ward 
Cunningham.

Steve McConnell (2007) provided one of the simplest and most accessible definitions 
of technical debt: “a design or construction approach that is expedient in the short term 
but that creates a technical context in which the same work will cost more to do later 
than it would cost to do now.” Our current definition of technical debt was devised in a 
week-long workshop in Dagstuhl, Germany, in April 2016 (Avgeriou et al. 2016).

The software crisis was well described in 1994 by Wayt Gibbs, who interviewed 
many software pioneers and practitioners in industrial organizations, including 
Larry Druffel, Vic Basili, Brad Cox, and Bill Curtis.

A must-read is Fred Brooks’ “No Silver Bullet” paper (Brooks 1986), which is also 
a chapter in the 10th anniversary edition of his famous book The Mythical Man-
Month (Brooks 1995). Brooks reminds us that “There is no single development, 
in either technology or management technique, which by itself promises even one 
order-of-magnitude improvement within a decade in productivity, in reliability, in 
simplicity.”

A durable software engineering principle should be a simple statement that 
expresses some universal truth; is “actionable” (that is, worded in a prescriptive man-
ner); is independent of specific tools or tool vendors, techniques, or practices; can 
be tested in practice, where we can observe its consequences; and does not merely 
express a compromise between two alternatives. There are two classic books on soft-
ware engineering principles: 201 Principles of  Software Development by Alan M. 
Davis (1995) and Facts and Fallacies of  Software Engineering by Robert L. Glass 
(2003). In “Agile Principles as Software Engineering Principles,” Norman Séguin 
(2012) did a thorough analysis of what constitutes a good software engineering prin-
ciple—as opposed to a mere aphorism, wish, or platitude—and he debunked a few 
myths about principles.
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