
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780135645932
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780135645932
https://plusone.google.com/share?url=http://www.informit.com/title/9780135645932
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780135645932
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780135645932/Free-Sample-Chapter

Managing Technical Debt

Managing Technical Debt

Reducing Friction in Software Development

Philippe Kruchten
Robert Nord
Ipek Ozkaya

Executive Editor
Kim Spenceley

Development Editor
Kiran Kumar Panigrahi

Managing Editor
Sandra Schroeder

Senior Project Editor
Lori Lyons

Copy Editor
Catherine D. Wilson

Indexer
Ken Johnson

Proofreader
Abigail Manheim

Cover Designer
Chuti Prasertsith

Compositor
codeMantra

The SEI Series in Software Engineering

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

No warranty. This Carnegie Mellon University and Software Engineering Institute
material is furnished on an “as-is” basis. Carnegie Mellon University makes no warranties
of any kind, either expressed or implied, as to any matter including, but not limited to,
warranty of fitness for purpose or merchantability, exclusivity, or results obtained from
use of the material. Carnegie Mellon University does not make any warranty of any kind
with respect to freedom from patent, trademark, or copyright infringement.

Special permission to reproduce portions of the texts and images was granted by the
Software Engineering Institute.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling,
Carnegie Mellon, CERT, and CERT Coordination Center are registered in the U.S.
Patent and Trademark Office by Carnegie Mellon University.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com
or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2019931698

Copyright © 2019 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must
be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request
forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-564593-2
ISBN-10: 0-13-564593-X

1 19

mailto:at$$$corpsales@pearsoned.com
mailto:contact$$$governmentsales@pearsoned.com.
mailto:contact$$$intlcs@pearson.com.
http://informit.com/aw
http://www.pearsoned.com/permissions/

To Sylvie, Nicolas, Alice, Zoé, Harmonie,
Claire, and Henri

—PK

To Victoria and Richard
—RN

To Ibrahim, Zeynep, and Zehra
—IO

vi

Contents at a Glance

Foreword . xiii

Preface . xv

Acknowledgments . xix

About the Authors . xxi

About the Contributors . xxiii

Acronyms . xxv

SEI Figures for Managing Technical Debt .xxvii

Part I: Exploring the Technical Debt Landscape 1

Chapter 1: Friction in Software Development . 3

Chapter 2: What Is Technical Debt? . 19

Chapter 3: Moons of Saturn—The Crucial Role of Context 37

Part II: Analyzing Technical Debt . 49

Chapter 4: Recognizing Technical Debt . 51

Chapter 5: Technical Debt and the Source Code . 65

Chapter 6: Technical Debt and Architecture . 83

Chapter 7: Technical Debt and Production . 103

Part III: Deciding What Technical Debt to Fix 115

Chapter 8: Costing the Technical Debt . 117

Chapter 9: Servicing the Technical Debt . 131

Contents at a Glance vii

Part IV: Managing Technical Debt Tactically
and Strategically . 149

Chapter 10: What Causes Technical Debt? . 151

Chapter 11: Technical Debt Credit Check . 167

Chapter 12: Avoiding Unintentional Debt . 179

Chapter 13: Living with Your Technical Debt . 195

Glossary . 207

References . 209

Index . 217

This page intentionally left blank

Contents

Foreword . xiii

Preface . xv

Acknowledgments . xix

About the Authors . xxi

About the Contributors . xxiii

Acronyms . xxv

SEI Figures for Managing Technical Debt .xxvii

Part I: Exploring the Technical Debt Landscape 1

Chapter 1: Friction in Software Development . 3

The Promise of Managing Technical Debt . 3
Technical Debt A-B-C . 5
Examples of Technical Debt . 6
Your Own Story About Technical Debt? . 11
Who Is This Book For? . 12
Principles of Technical Debt Management . 13
Navigating the Concepts of the Book . 14
What Can You Do Today? . 16
For Further Reading . 17

Chapter 2: What Is Technical Debt? . 19

Mapping the Territory . 19
The Technical Debt Landscape . 20
Technical Debt Items: Artifacts, Causes, and Consequences 22
Principal and Interest . 24
Cost and Value . 27
Potential Debt versus Actual Debt . 32
The Technical Debt Timeline . 33
What Can You Do Today? . 35
For Further Reading . 35

ix

Contentsx

Chapter 3: Moons of Saturn—The Crucial Role of Context 37

“It Depends…” . 37
Three Case Studies: Moons of Saturn . 39
Technical Debt in Context . 44
What Can You Do Today? . 48
For Further Reading . 48

Part II: Analyzing Technical Debt . 49

Chapter 4: Recognizing Technical Debt . 51

Where Does It Hurt? . 51
What Are the Visible Consequences of Technical Debt? 54
Writing a Technical Debt Description . 55
Understanding the Business Context for Assessing Technical Debt . . . 58
Assessing Artifacts Across the Technical Debt Landscape 60
What Can You Do Today? . 63
For Further Reading . 64

Chapter 5: Technical Debt and the Source Code . 65

Looking for the Magic Wand . 65
Understand Key Business Goals . 68
Identify Questions About the Source Code . 70
Define the Observable Measurement Criteria . 72
Select and Apply an Analysis Tool . 75
Document the Technical Debt Items . 76
Then Iterate . 78
What Happens Next? . 79
What Can You Do Today? . 80
For Further Reading . 81

Chapter 6: Technical Debt and Architecture . 83

Beyond the Code . 83
Ask the Designers . 86
Examine the Architecture . 89
Examine the Code to Get Insight into the Architecture 93
The Case of Technical Debt in the Architecture of Phoebe 94
What Can You Do Today? . 101
For Further Reading . 101

Contents xi

Chapter 7: Technical Debt and Production . 103

Beyond the Architecture, the Design, and the Code 103
Build and Integration Debt . 106
Testing Debt . 109
Infrastructure Debt . 110
The Case of Technical Debt in the Production of Phoebe 110
What Can You Do Today? . 113
For Further Reading . 113

Part III: Deciding What Technical Debt to Fix 115

Chapter 8: Costing the Technical Debt . 117

Shining an Economic Spotlight on Technical Debt 117
Refine the Technical Debt Description . 119
Calculate the Cost of Remediation . 121
Calculate the Recurring Interest . 122
Compare Cost and Benefit . 123
Manage Technical Debt Items Collectively . 127
What Can You Do Today? . 129
For Further Reading . 130

Chapter 9: Servicing the Technical Debt . 131

Weighing the Costs and Benefits . 131
Paths for Servicing Technical Debt . 136
The Release Pipeline . 142
The Business Case for Technical Debt as an Investment 143
What Can You Do Today? . 146
For Further Reading . 147

Part IV: Managing Technical Debt Tactically
and Strategically . 149

Chapter 10: What Causes Technical Debt? . 151

The Perplexing Art of Identifying What Causes Debt 151
The Roots of Technical Debt . 153
What Causes Technical Debt? . 154
Causes Rooted in the Business . 155
Causes Arising from Change in Context . 157
Causes Associated with the Development Process 159
Causes Arising from People and Team . 162

Contentsxii

To Conclude . 165
What Can You Do Today? . 165
For Further Reading . 166

Chapter 11: Technical Debt Credit Check . 167

Identifying Causes: Technical Debt Credit Check 167
Four Focus Areas for Understanding the State of a Project 170
Diagnosing the Causes of Technical Debt in Phoebe 172
Diagnosing the Causes of Technical Debt in Tethys 174
What Can You Do Today? . 177
For Further Reading . 178

Chapter 12: Avoiding Unintentional Debt . 179

Software Engineering in a Nutshell . 179
Code Quality and Unintentional Technical Debt 180
Architecture, Production, and Unintentional Technical Debt 185
What Can You Do Today? . 193
For Further Reading . 193

Chapter 13: Living with Your Technical Debt . 195

Your Technical Debt Toolbox . 195
On the Three Moons of Saturn… . 201
Technical Debt and Software Development . 204
Finale . 205

Glossary . 207

References . 209

Index . 217

http://informit.com
http://informit.com/register

xiii

Foreword

In the late 1500s, a road was built encircling the island on which I now live. Well, not
a road exactly, but more of a modest walking path, serving to connect the many
small farming and fishing villages that flourished at that time. But, times change, and
with the arrival of the whaling boats and the missionaries and the plantation owners
in the 1800s, there was a clear economic incentive to reduce the friction of travel and
to increase the capacity of transport. As such, using that original path as its architec-
tural foundation, a wider road was built to accommodate horses and trains and the
emerging motor car. Times changed yet again, and World War II necessitated yet
wider and stronger roads, but—not surprisingly—corners were cut owing to the
expediency of conflict. After the war, when the whalers, missionaries, plantation
owners, and sailors were but an historical memory, that road remained, but now
served to accommodate the cars of visitors who were arriving in alarmingly increas-
ing numbers. Money for infrastructure being what it is, a new road was planned, but
only partly built. The cost of maintaining the old parts of the road cut into the funds
for building the new parts; but then, this is the nature of all systems. Even now, times
change, and this time it is climate change, manifesting itself in the rise of the ocean
and projected to reach three feet within the century. Already the ocean is encroaching
on that ancient path and beginning to inundate the road in ways that make its
replacement inevitable and urgent.

Software-intensive systems are a lot like that: Foundations are laid, corners are cut
for any number of reasons that seem defensible at the time; but in the fullness of
time, the relentless accretion of code over months, years, and even decades quickly
turns every successful project into a legacy one. It is fascinating to watch young com-
panies that grew quickly, unfettered by legacy code, suddenly wake up one day and
realize that developing long-lived, quality software-intensive systems is hard.

What you have before you is an incredibly wise and useful book. Philippe, Ipek,
Robert, and the other contributors have considerable real-world experience in deliv-
ering quality systems that matter, and their expertise shines through in these pages.
Here you will learn what technical debt is, what is it not, how to manage it, and how
to pay it down in responsible ways.

Forewordxiv

This is a book I wish I had when I was just beginning my career; but then, it
couldn’t have been written until now. The authors present a myriad of case studies,
born from years of their experience, and offer a multitude of actionable insights for
how to apply it to your project. Read this book carefully. Read it again. There’s use-
ful information on every page which, quite honestly, will change the way you
approach technical debt in good and proper ways.

—Grady Booch
IBM Fellow

January 2019

Preface

Philippe: I ran into technical debt long before I had a name for it. In 1980, I was
working at Alcatel on some peripheral device, and the code had to fit in 8 kilobytes
(kB) of ROM (Read-Only Memory). With the deadline to “burn” the ROMs
approaching, we did a lot of damage to the code to make it fit, thinking, “Oh, for the
next release we’ll have 16 kB available, we’ll make it right…” We did get 16 kB of
ROM for the next release, but we never, ever fixed all the abominable things we had to
do to the source code because the deadline for the next product was, again, too close.
New programmers coming on board would say, “Wow, this is ugly, brain-damaged,
awful. How did you end up writing such bad code?” Colleagues would reply, “Oh,
yes, go ask Philippe, he’ll explain why it’s like that. At least, on the bright side, it
does the job and passes all the tests. So, fix that code at your own risk.”

Robert: With the advent of agile practice, I was interested in hearing stories from
developers about how it scales. Two projects in different organizations at the time
were adopting agile and had recognized the importance of an end-to-end perfor-
mance requirement. The demos for the minimal viable product were an unquestion-
able success. It just so happened that in each case, the demo sparked a new
high-volume bandwidth requirement. One project was able to take the new require-
ment in stride while the other project “hit the wall,” as Philippe would say. The archi-
tecture and supporting processes were not sufficiently flexible to allow the project to
quickly adapt. This got me thinking about the choices that developers make to pro-
duce more features or to invest in architecture and infrastructure.

Ipek: I believe software engineering is first an economic activity. While in principle
budget, schedule, and other business concerns should drive your design choices, that
has not been my experience in many of the systems I worked on. A package routing
system, let us call it the GIS-X, is a canonical example. I was part of the team that
conducted an architectural evaluation of the system in 2007. The development team
was tasked to incorporate advanced geographic information processing to GIS-X to
optimize driving routes. As the schedule realities started to take priority, each of the
five development teams working on the project started diverging from the design.
Among several other technical issues, one key mistake the organization made was
not assigning an architecture owner to keep the design, business, and resource con-
straints in check.

xv

Prefacexvi

Around 2005–2008 the concept of technical debt started to emerge, in the form of
myriads of blog entries, mostly in the agile process community. We realized that
developers understood technical debt very well, even when they were not calling it
that, but the business side of their organizations had little insight and saw it as very
similar to defects. The three of us met several times around that time, and we initially
worked on developing a little game about hard choices to help software teams get a
better feeling for what technical debt is about. As we found more people both in
industry and academia willing to understand more about this strange concept that
did not fit very well in any software engineering narrative, we started in 2010 organ-
izing a series of workshops on Managing Technical Debt, initially sponsored by the
Software Engineering Institute (SEI), to explore more thoroughly the concept. We’ve
had one workshop a year since. They have grown in importance and are now a series
of annual TechDebt conferences.

The three of us wrote papers together and made presentations—short ones, long
ones—to diverse audiences all around the world. Our varied views started to con-
verge in 2015, and this is when we thought of writing a book about technical debt. It
proved to be still a bit of a moving target.

We interacted with many people over the past eight years or so, and the book you
have in hand is the result of these collaborations with hundreds of people. With their
help, we made great strides in understanding the phenomenon behind the simple
metaphor of technical debt. We think we now better understand where technical
debt comes from, what consequences it has on software-intensive development pro-
jects, and what form this technical debt actually takes. We now say with certainty
that all systems have technical debt, and managing technical debt is a key software
engineering practice to master for any software endeavor to succeed. We’ve heard
how different organizations cope with it. We looked at and tried tools promising to
perform miracles with technical debt. We also understood the limits of the simple
financial metaphor: We realize now that technical debt is not quite like your house
mortgage.

This book is intended for the many practitioners who’ve heard the term and those
who think that it may have some relevance in their context. Hopefully it will give you
tools to analyze your own situation and put names on events and artifacts you are
confronted with.

This is not a scientific treatise, full of data and statistics. There are other venues
for this. But we will give you concrete examples that you can relate to. It is also illus-
trated with stories that some of our friends from our industry have contributed, tell-
ing you their experience of technical debt in their own words.

Philippe: I now see that my 1980s story about 8 kB of ROM is a very clear-cut case
of technical debt, triggered by pure schedule pressure, with severe consequences on
the maintainability of this small piece of code. I attended the 1992 OOPSLA

Preface xvii

conference in Vancouver where Ward Cunningham used the term “technical debt”
for the first time. At last I had a name for it.

Robert: Reflecting on the two projects adopting agile, I first approached the prob-
lem thinking that architecture infrastructure needed to be equally visible as features
in the product backlog. That gave me some, but not all, the tools I needed to under-
stand the choice in selecting one or the other. I now see that adding technical debt
items to the backlog brings visibility to the long-term consequences of the choices as
they are made together with more needed tools to strategically plan and monitor
those choices as technical debt.

Ipek: A few months ago in one of the software architecture courses I teach at the
Software Engineering Institute (SEI), an attendee approached me to ask if I had ever
worked on the GIS-X system. He happened to be one of the engineering managers
on the team. He recalled our recommendations and in reflection reassured me that
while at the time we did not phrase our findings using the words, we were spot on
that the technical debt they had resulted in the project being canceled. A full circle
moment.

It does not stop here. Now you will have to share with us and the community your
stories about technical debt. This book is not the end…only a start.

Philippe Kruchten, Vancouver
Robert Nord, Pittsburgh
Ipek Ozkaya, Pittsburgh

This page intentionally left blank

xix

Acknowledgments

Many colleagues attended the Managing Technical Debt (MTD) workshops over the
years that provided an opportunity to exchange ideas and improve practice. The idea
of the technical debt landscape grew out of a working session at the Third Interna-
tional Workshop on Technical Debt at the International Conference on Software
Engineering (ICSE) in Zurich in 2012. A week-long Dagstuhl Seminar on Managing
Technical Debt in Software Engineering in 2016 produced a consensus definition for
technical debt, a draft conceptual model, and a research roadmap. Paris Avgeriou
and Carolyn Seaman, early pioneers in managing technical debt, joined us in organ-
izing events and guiding the community. Tom Zimmermann provided generous sup-
port from ICSE as the MTD workshop series transformed into a conference. He
helped make the inaugural edition of the TechDebt Conference in 2018 a success
where researchers, practitioners, and tool vendors could explore theoretical and
practical techniques that manage technical debt.

We are grateful to Robert Eisenberg, Michael Keeling, Ben Northrop, Linda
Northrop, Eltjo Poort, and Eoin Woods, who shared their experience and wisdom in
the form of sidebars. We also appreciate the software engineers, developers, project
managers, and people on the business side of the organization for sharing their sto-
ries and practices from the trenches.

Special thanks to Len Bass and Hasan Yasar, who contributed their expertise to
the chapter on technical debt and production. Kevin Sullivan presented the net pre-
sent value (NPV) and real options example at our very first workshop on technical
debt in 2010, and Steve McConnell refined it in subsequent discussions.

Thanks go to the experts for their thorough and helpful reviews of different drafts
of the manuscript that helped make this a better book. These include Paris Avgeriou,
Felix Bachmann, Len Bass, Stephany Bellomo, Robert Eisenberg, Neil Ernst, George
Fairbanks, Shane Hastie, James Ivers, Clemente Izurieta, Rick Kazman, Nicolas
Kruchten, Jean-Louis Letouzey, Ben Northrop, Linda Northrop, Eltjo Poort, Chris
Richardson, Walker Royce, Carolyn Seaman, Eoin Woods, and Hasan Yasar.

At the SEI, James Ivers, head of the SEI’s Architecture Practices initiative, pro-
vided steady and persistent support for this effort. The SEI has been involved in tech-
nical debt research for many years, and the work of our colleagues helped shape our
thinking on the topic with contributions from Felix Bachmann, Stephany Bellomo,
Nanette Brown, Neil Ernst, Ian Gorton, Rick Kazman, Zach Kurtz, and Forrest

Acknowledgmentsxx

Shull. Linda Northrop led the SEI program that was instrumental in the develop-
ment of the field of software architecture and in influencing our ideas about architec-
ture in the technical debt landscape. She was also our mentor throughout the journey.
Jim Over, Anita Carleton, and Paul Nielsen supported transitioning the work in
managing technical debt to practice, including this book. Thanks to Kurt Hess for
working with us to transform many of the concepts into the figures that illustrate the
book. Tamara Marshall-Keim was invaluable in helping us untangle and clearly com-
municate complex concepts. Her knowledge of the domain and editing expertise
made significant improvements to the content of the book.

At the University of British Columbia, we thank graduate students Erin Lim, Ke
Dai, and Jen Tsu Hsu, who went boldly into the wild world of software and system
development and investigated what technical debt actually looked like. And more
recently another student, Mike Marinescu, helped us with the book production.

At Pearson Education, Kim Spenceley and Chris Guzikowski provided guidance
and support. Our thanks also go to our copy editor, Kitty Wilson, production editor,
Lori Lyons, and the team of production professionals.

Finally, we thank our families and friends for their encouragement and support.

xxi

About the Authors

Philippe Kruchten is a professor of software engineering at the University of British
Columbia in Vancouver, Canada. He joined academia in 2004, after a 30+-year
career in industry, where he worked mostly with large software-intensive systems
design in the domains of telecommunication, defense, aerospace, and transportation.
Some of his experience in software development is embodied in the Rational Unified
Process (RUP), whose development he directed from 1995 until 2003. He’s the author
or co-author of Rational Unified Process: An Introduction (Addison-Wesley, 1998),
RUP Made Easy: A Practitioner’s Guide (Addison-Wesley, 2003), and Software Engi-
neering with UPEDU (Addison-Wesley, 2003), as well as earlier books about pro-
gramming in Pascal and Ada. He received a doctoral degree in information systems
(1986) and a mechanical engineering degree (1975) from French engineering schools.

Robert Nord is a principal researcher at the Carnegie Mellon University Software
Engineering Institute, where he works to develop and communicate effective meth-
ods and practices for agile at scale, software architecture, and managing technical
debt. He is coauthor of the practitioner-oriented books Applied Software Architec-
ture (Addison-Wesley, 2000) and Documenting Software Architectures: Views and
Beyond (Addison-Wesley, 2011) and lectures on architecture-centric approaches. He
received a PhD in computer science from Carnegie Mellon University and is a distin-
guished member of the ACM.

Ipek Ozkaya is a principal researcher at the Carnegie Mellon University Software
Engineering Institute. Her primary work includes developing techniques for improv-
ing software development efficiency and system evolution, with an emphasis on soft-
ware architecture practices, software economics, agile development, and managing
technical debt in complex, large-scale software-intensive systems. In addition, as
part of her responsibilities, she works with government and industry organizations
to improve their software architecture practices. She received a PhD in Computa-
tional Design from Carnegie Mellon University. Ozkaya is a senior member of IEEE
and the 2019–2021 editor-in-chief of IEEE Software magazine.

This page intentionally left blank

About the Contributors

Robert Eisenberg is a retired Lockheed Martin Fellow with more than 30 years of
experience in the full lifecycle development of large-scale software systems. His areas
of expertise include software methodologies and processes, schedule and earned
value management, agile transformation, and technical debt management. He led
the Lockheed Martin corporate initiative on the development of practices and meth-
ods for managing technical debt and assisted many programs in their application.
Robert also led the Lockheed Martin Space Systems business area initiative to
develop and implement new business models and practices based on lean and agile
principles. He has presented at multiple workshops and conferences on both techni-
cal debt management and agile methods, practices, and transformation. Robert
received an MS in computer science from the University of Virginia and a BS in com-
puter science from the University of Delaware.

Michael Keeling is a professional software engineer and the author of Design It!
From Programmer to Software Architect (Pragmatic Bookshelf, 2017). Keeling cur-
rently works at LendingHome and has also worked at IBM, Vivisimo, BuzzHoney,
and Black Knight Technology. Keeling has an MS degree in software engineering
from Carnegie Mellon University and a BS degree in computer science from the
College of William and Mary. Contact him via Twitter @michaelkeeling or his website,
https://www.neverletdown.net.

Ben Northrop is the founder of Highline Solutions, a Pittsburgh-based digital consul-
tancy focused on the architecture, development, and deployment of large-scale cus-
tom software systems. In his 20 years of experience, Ben has helped to build dozens of
systems across a number of industries, including transportation, finance, telecommu-
nications, higher education, and retail. He holds two degrees from Carnegie Mellon
University: a BS in Information and Decision Systems and an MS in Logic, Computation,
and Methodology. His writing can be found at www.bennorthrop.com.

Linda Northrop has more than 45 years of experience in the software development
field as a practitioner, researcher, manager, consultant, author, speaker, and educa-
tor. She is a Fellow at Carnegie Mellon University’s Software Engineering Institute

xxiii

https://www.neverletdown.net
http://www.bennorthrop.com

About the Contributorsxxiv

(SEI). Under her leadership, the SEI developed software architecture and product line
methods and a series of highly acclaimed books and courses that are used world-
wide. Northrop also co-authored Software Product Lines: Practices and Patterns
(Addison-Wesley, 2002). She led a cross-disciplinary, national research group on
ultra-large-scale systems that resulted in the book Ultra-Large-Scale Systems: The
Software Challenge of the Future. Her current professional interests are software
architecture, ultra-large-scale systems, and software innovations to aid children with
different abilities. Find Linda Northrop at http://www.sei.cmu.edu/about/people/
profile.cfm?id=northrop_13182.

Eltjo R. Poort leads the architecture practice at CGI in the Netherlands. In his
30-year career in the software industry, he has fulfilled many engineering and project
management roles. In the 1990s, he oversaw the implementation of the first SMS text
messaging systems in the United States. In the past decade, he has produced various
publications on improving architecting practices, including his PhD thesis in 2012.
Eltjo is best known for his work on risk- and cost-driven architecture, a set of princi-
ples and practices for agile solution architecting, for which he received the Linda
Northrop Software Architecture Award in 2016. His solution architecture blog can
be found at eltjopoort.nl. In his spare time, Eltjo plays the violin in Symfonieorkest
Nijmegen. Eltjo is a member of the IFIP Working Group 2.11 on Software
Architecture.

Eoin Woods is the CTO of Endava, a technology company that delivers projects in
the areas of digital, agile, and automation. Prior to joining Endava, Eoin worked in
the software engineering industry for 20 years, developing system software products
and complex applications in the capital markets domain. His main technical inter-
ests are software architecture, distributed systems, and computer security. He is edi-
tor of the IEEE Software “Pragmatic Architect” column, co-authored the well-known
software architecture book Software Systems Architecture (Addison-Wesley, 2011),
and received the 2018 Linda M. Northrop Award for Software Architecture, awarded
by the SEI at Carnegie Mellon University. Eoin can be contacted via his website, at
www.eoinwoods.info.

http://www.sei.cmu.edu/about/people/profile.cfm?id=northrop_13182
http://www.sei.cmu.edu/about/people/profile.cfm?id=northrop_13182
http://eltjopoort.nl
http://www.eoinwoods.info

Acronyms

5W Five Ws: Who, What, Where, When, Why

A2DAM Agile Alliance Debt Analysis Method

AADL Architecture Analysis and Design Language

ADL Architecture Description Language

ALM Application Lifecycle Management

API Application Programming Interface

ATAM Architecture Tradeoff Analysis Method

CISQ Consortium for IT Software Quality

CVE Common Vulnerabilities and Exposures

CWE Common Weakness Enumeration

DB Database

FLOSS Free, Libre, Open-Source Software

FTE Full-time Equivalent

I18N Internationalization

IRAD Independent Research and Development

ISO International Organization for Standardization

L10N Localization

MVP Minimum Viable Product

NPV Net Present Value

OMG Object Management Group

ROI Return On Investment

SaaS Software as a Service

SAFe® Scaled Agile Framework®

SLOC Source Lines of Code

SOA Service-Oriented Architecture

SQALE Software Quality Assessment based on Lifecycle Expectations

SysML Systems Modeling Language

UML Unified Modeling Language

UX User Experience

xxv

This page intentionally left blank

xxvii

SEI Figures for Managing
Technical Debt

Special permission to reproduce portions of the following texts and images was
granted by the Software Engineering Institute:

Chapter Page
Number

Figure
Number

Description

1 Page 14 P1-1 Principle 1: Technical debt reifies an abstract
concept

Page 15 F1-1 Major concepts of technical debt

2 Page 20 F2-1 Technical Debt Landscape

Page 24 C2-A Solution U is cheaper than V

Page 25 C2-B W over V is cheaper than W over U

Page 26 C2-C Pay interest, or repay the principal

Page 27 C2-D Pay more interest, or repay the higher principal

Page 32 P2-2 Principle 2: If you do not incur any form of
interest, then you probably do not have actual
technical debt

Page 33 2-2 Technical Debt Timeline

3 Page 37 F3-1 “It depends”: The many factors of context

Page 45 P3-3 Principle 3: All Systems Have Technical Debt

4 Page 53 F4-1 Timeline: Reaching the awareness point

Page 55 P4-4 Technical debt must trace to the system

Page 60 F4-2 Identifying technical debt items

Page 63 F4-3 The four things to do in development product
backlog

5 Page 66 F5-1 Results of the code analysis for Phoebe

Page 67 P5-5 Technical debt is not synonymous with bad
quality

SEI Figures for Managing Technical Debtxxviii

6 Page 86 P6-6 Architecture technical debt has the highest cost
of ownership

Page 98 F6-1 Exploring the cause-and-effect relationships
underlying the problem of unexpected crashes

7 Page 104 F7-1 Code release pipeline

Page 107 P7-7 Principle 7: All code matters!

8 Page 118 F8-1 Timeline: Reaching the tipping point

Page 124 P8-8 Technical debt has no absolute measure—neither
for principal nor interest

Page 128 F8-2 Grooming the product backlog

9 Page 132 F9-1 Timeline: Reaching the remediation point

Page 134 C9-Sidebar Risk exposure and opportunity cost

Page 139 P9-9 Principle 9: Technical debt depends on the future
evolution of the system

Page 142 F9-2 Release planning

Page 144 F9-3 NPV of alphaPlus

Page 145 F9-4 NPV of alphaPlus with technical debt

Page 145 F9-5 NPV of alphaPlus with technical debt repayment

Page 146 F9-6 Real options: The decision to add features or
refactor

10 Page 153 F10-1 The occurrence of technical debt on our timeline

Page 154 F10-2 Main causes of technical debt

11 Page 173 F11-1 Scorecard for causes of technical debt in the
Phoebe project

Page 175 F11-2 Scorecard for causes of technical debt in the
Tethys project

Page 177 F11-3 Tethys and the technical debt timeline

12 No figures

13 Page 196 F13-1 Timeline for an organization incurring
unintentional technical debt

Page 205 F13-2 Timeline for a technical debt-aware organization

(SEI trademarks used in this book are registered trademarks of Carnegie Mellon
University.)

Chapter 1: Friction in Software Development

Chapter 2: What Is Technical Debt?

Chapter 3: Moons of Saturn—The Crucial Role of Context

PART I

Exploring the Technical Debt
Landscape

This page intentionally left blank

3

Chapter 1

Friction in Software
Development

There is still much friction in the process of crafting complex software; the
goal of creating quality software in a repeatable and sustainable manner
remains elusive to many organizations, especially those who are driven to
develop in Internet time.

—Grady Booch

Is the productivity of your software organization going down? Is your code base
harder and harder to evolve every week? Is the morale of your team declining? As
with many other successful software endeavors, you are probably suffering from the
inability to manage friction in your software development and may have a pervasive
case of technical debt.

Why should you care about technical debt? How does it manifest itself? How is it
different from software quality? In this chapter, we introduce the metaphor of tech-
nical debt and present typical situations where it exists.

The Promise of Managing Technical Debt

Understanding and managing technical debt is an attractive goal for many organiza-
tions. Proactively managing technical debt promises to give organizations the ability
to control the cost of change in a way that integrates technical decision making and
software economics seamlessly with software engineering delivery.

The term technical debt is not new. Ward Cunningham introduced it in 1992 to
communicate the delicate balance between speed and rework in pursuit of delivering
functioning quality software. And the concepts it encompasses are not new either.

Chapter 1 Friction in Software Development4

Ever since we started creating software products, we have been grappling with this
issue under other names: software maintenance, software evolution, software aging,
software decay, software system reengineering, and so on.

You can think of technical debt as an analogy with friction in mechanical devices;
the more friction a device experiences due to wear and tear, lack of lubrication, or bad
design, the harder it is to move the device, and the more energy you have to apply to get
the original effect. At the same time, friction is a necessary condition of mechanical parts
working together. You cannot eliminate it completely; you can only reduce its impact.

Slowly, over the past ten years, many large companies whose livelihoods depend on
software have realized that technical debt, under this or any other name, is very real
and crippling their ability to satisfy customer desires. Technical debt has started to
translate into financial impact. At some point in the past, companies may have made a
trade-off to take on technical debt to deliver quickly or scale quickly, threw more peo-
ple at the problem when the debt mounted, and never reduced or managed the debt.
It is not a proper debt, from an accounting perspective, but the specter of huge costs
somewhere on the path ahead will negatively affect the company’s financial bottom
line. Government organizations that are large buyers of software also now realize that
focusing only on initial development cost obscures the full cost of the software; they
have begun to demand justification of all lifecycle costs from the software industry.

Technical debt is pervasive: It affects all aspects of software engineering, from
requirements handling to design, code writing, the tools used for analyzing and
modifying code, and deployment to the user base. The friction caused by technical
debt is even apparent in the management of software development organizations, in
the social aspect of software engineering. Technical debt is the mirror image of soft-
ware technical sustainability; Becker and colleagues (2015) described technical debt
as “the longevity of information, systems, and infrastructure and their adequate
evolution with changing surrounding conditions. It includes maintenance, innova-
tion, obsolescence, data integrity, etc.” And it relates to the wider concern of sustain-
ability in the software industry—not only in the environmental sense but also in the
social and technical senses.

Progress on managing technical debt has been piecewise, and the workforce
tends to devalue this type of debt. So it remains a problem. Why do we think that
understanding and managing the problem as technical debt will have a different out-
come? Software engineering as a discipline is at a unique point at which several sub-
disciplines have matured to be part of the answer to the technical debt question.
For example, program analysis techniques, although not new, have recently become
sophisticated enough to be useful in industrial development environments. So,
they’re positioned to play a role in identifying technical debt in a way they weren’t
a few years ago. DevOps tooling environments that incorporate operations and
development further allow developers to analyze their code, locate issues before they

Technical Debt A-B-C 5

become debt, and implement a faster development lifecycle. Developers also now
have the vocabulary to talk about technical debt as part of their software develop-
ment process and practices.

The technical debt concept resonates well with developers, as they look for a well-
defined approach to help understand the complex dependencies between software
artifacts, development teams, and decision makers and how to balance short-term
needs to keep the software product running with long-term changes to keep the
product viable for decades. In this way, technical debt can also be seen as a kind of
strategic investment and a way to mitigate risk.

Technical Debt A-B-C

Many practitioners today see technical debt as a somewhat evasive term to designate
poor internal code quality. This is only partly true. In this book, we will show that
technical debt may often have less to do with intrinsic code quality than with design
strategy implemented over time. Technical debt may accrue at the level of overall
system design or system architecture, even in systems with great code quality. It may
also result from external events not under the control of the designers and imple-
menters of the system.

This book is dedicated to defining principles and practices for managing technical
debt—defining it, dissecting it, providing examples to study it from various angles,
and suggesting techniques to manage it. Our definition of technical debt is as follows:

In software-intensive systems, technical debt consists of design or implementation

constructs that are expedient in the short term but that set up a technical context that can

make a future change more costly or impossible. Technical debt is a contingent liability

whose impact is limited to internal system qualities— primarily, but not only, maintainability

and evolvability.

We like this definition because it does not fall into the trap of considering only
the financial metaphor implied by the term debt. Although the metaphor carries an
interesting financial analogy, technical debt in software is not quite like a variable-
rate mortgage or an auto loan. It begins and accumulates in development artifacts
such as design decisions and code.

Technical debt also has a contingent aspect that depends on something else that
might or might not happen: How much technical debt you need to worry about
depends on how you want the system to evolve. We like that this definition does not
include defects in functionality (faults and failures) or external quality deficiencies
(serviceability), as lumping together defects and technical debt muddies the water.
System qualities, or quality attributes, are properties of a system used to indicate

Chapter 1 Friction in Software Development6

how well the system satisfies the needs of its stakeholders. The focus on internal qual-
ity is the lens through which these deficiencies are seen from the viewpoint of the cost
of change. Technical debt makes the system less maintainable and more difficult to
evolve.

Technical debt is not a new concept. It is related to what practitioners have for
decades been calling software evolution and software maintenance, and it has
plagued the industry ever since developers first produced valuable software that
they did not plan to throw away or replace with new software but instead wanted to
evolve or simply maintain over time. The difference today is the increasing awareness
that technical debt, if not managed well, will bankrupt the software development
industry. Practitioners today have no choice but to treat technical debt management
as one of the core software engineering practices.

While technical debt can have dire consequences, it is not always as ominous as
it may sound. You can look at it as part of an overall investment strategy, a strategic
software design choice. If you find yourself spending all your time dealing with debt
or you reach the point where you cannot repay it, you have incurred bad debt. When
you borrow or leverage time and effort that you can and will repay in the future, you
may have incurred good debt. If the software product is successful, this strategy can
provide you with greater returns than if you had remained debt free. In addition, you
might also have the option to simply walk away from your debt if the software is not
successful. This dual nature of technical debt—both good and bad—makes grap-
pling with it a bit confusing for many practitioners.

We will return to the financial metaphor later to investigate whether there are
some software equivalencies to the financial ideas of principal, interest, repayment,
and even bankruptcy.

Examples of Technical Debt

To illustrate our definition, we offer a few stories about technical debt in software
development projects. You will see organizations struggling with their technical debt
and software development teams failing to strategize about it.

Quick-and-Dirty if-then-else
A company in Canada developed a good product for its local customers. Based on local

success, the company decided to extend the market to the rest of Canada and immediately

faced a new challenge: addressing the 20% of Canada that uses the French language in

most aspects of life. The developers labored for a week to produce a French version of the

product, planting a global flag for French = Yes or No as well as hundreds of if-then-else

statements all over the code. A product demo went smoothly, and they got the sale!

Examples of Technical Debt 7

Then, a month later, on a trip to Japan, a salesperson proudly boasted that the software

was multilingual, returned to Canada with a potential order, and assumed that a Japanese

version was only one week of work away. Now the decision not to use a more sophisticated

strategy—such as externalizing all the text strings and using an internationalization

package—was badly hurting the developers. They would not only have to select and

implement a scalable and maintainable strategy but also have to undo all the quick-and-

dirty if-then-else statements.

For the Canadian company, the decision to use if-then-else statements spread the change
throughout the code, but it was a necessary quick-and-dirty solution from a business
perspective to get a quick sale. Doing the right thing at that stage would have postponed
the delivery of the system and likely lost them the deal. So even though the resulting
code was ugly—as well as hard to modify and evolve—it was the right decision. Now,
would you continue down that path and add another layer of if-then-else for each lan-
guage? Or would you rethink the strategy and decide to repay the original technical
debt? Inserting the Japanese version of the quick fix, with its issues of character sets and
vertical text, would be too much of a burden and a subsequent maintenance issue. You
may argue that a good designer would have set up provisions for internationalization
and localization right at the outset, but this is easy to say in hindsight; the demands and
constraints at the beginning of development for this small venture were quite different,
focused on the main features, and didn’t foresee the need for a multilingual feature.

Hitting the Wall
Two large global financial institutions merged. As a result, two IT systems essential to their

business had to merge. The management of the new company determined that a duct-tape

and rubber-band system, mixing the two systems in some kind of chimera, would not work.

They decided to build a support system from scratch, using more recent technologies and, in

some ways, walking away from years of accumulated technical debt in the original systems.

The company organized a team to build the new replacement system. They progressed rapidly

because the first major release was to provide an exact replacement of the existing systems.

In a few months, they accumulated a lot of code that performed well in demos for each one-

week “sprint” (or iteration). But nobody thought about the architecture of the system; everyone

focused on creating more and more features for the demo. Finally, some harder issues of

scalability, data management, distribution of the system, and security began to surface, and

the team discovered that refactoring the mass of code already produced to address these

issues was rapidly leading them to a complete stop. They hit the wall, as marathon runners

would say. They had lots of code but no explicit architecture. In six months, the organization

had accumulated a massive amount of technical debt that brought them to a standstill.

The situation here is very different from the first case. This was not an issue of code
quality. It was an issue of foresight. The development team neglected to consider archi-
tectural and technology selection issues or learn from the two existing systems at

Chapter 1 Friction in Software Development8

appropriate times during development; the team did not need to do all of that up front,
but it needed to do it early enough not to burden the project downstream. Refactoring
is valuable, but it has limits. The development team had to throw away large portions
of the existing code weeks after its original production. Although the organization
hoped to eliminate technical debt when it decided to implement a brand-new system
after the merger, it failed to incorporate eliminating technical debt into the project
management strategy for the new system. Ignorance is bliss—but only for a while.

Crumbling Under the Load
A successful company in the maritime equipment industry successfully evolved its products

for 16 years, in the process amassing 3 million lines of code. Over these 16 years, the

company launched many different products, all under warranty or maintenance contracts;

new technologies evolved; staff turned over; and new competitors entered the industry.

The company’s products were hard to evolve. Small changes or additions led to large

amounts of work in regression testing with the existing products, and much of the testing

had to be done manually, over several days per release. Small changes often broke the

code, for reasons unsuspected by the new members of the development team, because

many of the design and program choices were not documented.

In the case of the maritime equipment company, there was no single cause of techni-
cal debt. There were hundreds of causes: code imperfections, tricks, and worka-
rounds, compounded by no usable documentation and little automated testing.
While the development team dreams of a complete rewrite, the economic situation
does not allow delaying new releases or new products or abandoning support for
older products. Some intermediate strategy must be implemented.

Death by a Thousand Cuts
One IT-service organization landed several major contracts. Some of this new business

allowed the organization to grow its offshore development businesses and enter emerging

software development markets. For several years, the organization experienced a hiring boom.

The IT-service projects were similar in nature, and the organization assumed that its new

developers were interchangeable across projects. The project managers thought, “The task

is customization of the same or similar software, so how different could it be?” But in some

cases, the new employees lacked the right skills or knowledge about the packages used.

In other cases, time and revenue-growth pressures pushed them to skip testing the code

thoroughly or fail to think through their designs. They also did not put in the time to create

common application programming interfaces (APIs). The hiring boom created unstable

teams, with new members introduced almost every month. It even became an internal joke:

“Get a bunch of online Java and Microsoft certifications, and you are a senior developer

here.” In no time, the project managers lost control of the schedule as well as the number of

defects introduced into the system.

Examples of Technical Debt 9

This IT-service organization provides another example in which there is no single
source of technical debt. We call this “death by a thousand cuts” because a pervasive
lack of competence can result in many small, avoidable coding issues that are never
caught. Lack of organizational competency—as in the case of this IT-service organ-
ization—easily activates a number of cascading effects. The unplanned and unman-
aged hiring boom, the missed opportunity to enforce commonality across the
products, and the limited testing all contributed to the accumulating technical debt.

Tactical Investment
A five-person company developed a web application in the urban transportation domain,

targeted at users of buses and trains. In this relatively new and rapidly evolving domain,

the targeted users could not really tell the company what they would need. “I’ll know it

when I see it” was the general response. So, the company developed a “minimum viable

product” (MVP) with some core functionality and little underlying sophistication. Members

of the company beta-tested it with about 100 users in one city. They had to “pivot” several

times until they found their niche, at which point they invested heavily in building the right

infrastructure for a product that would be able to support millions of simultaneous users and

adapt to dozens of situations and cities.

The initial shortcuts that members of this small company took and the high-level
rudimentary infrastructure they initially developed are examples of technical debt
wisely assumed. The company borrowed the time it would have spent on the com-
plete definition and implementation of the infrastructure to deliver early. This
allowed it to complete an MVP months earlier than traditional development prac-
tices, which put the infrastructure first, would have allowed. Moreover, the com-
pany learned useful lessons about the key issues (which did not necessarily match
its initial assumptions) of reliability, fault tolerance, adaptability, and portability.
Building in these quality attributes up front would have created massive rework
once the developers understood more completely what their users needed.

All along, members of this company were aware of the deliberate shortcuts they
were taking and their consequences on future development. From the perspective of
their angel investors, these were good strategies for risk management; if the com-
pany found no traction in the market, the developers could stop development early
and minimize cost before the company made massive financial investments. Man-
agement also made it very clear to everyone, internal and external, that the shortcuts
were temporary solutions so that no one would be tempted to keep them, painfully
patched, as part of the permanent solution. In this manner, taking on technical debt
was a wise investment that paid off. The company repaid the “borrowed time,” but it
could also have walked away from the project.

Chapter 1 Friction in Software Development10

In all these examples, the current state of the software carries code that works, but
it makes further evolutions harder. The debt was induced by lack of foresight, time
constraints, significant changes in requirements, or changes in the business context.

Software Crisis Redux

You have likely seen the symptoms and heard stories of technical debt
similar to those just shared: teams spending almost all of their time fixing
defects and continuously slipping on deadlines for shipping new technol-
ogy; teams discovering incompatibilities despite continuous integration
efforts and spending time on out-of-cycle rework; recurring user complaints
about functionality that appears to be already fixed several times; outdated
technology and platforms requiring convoluted workarounds and present-
ing challenges for upgrading; and a team admitting that the solution it had a
year ago to make the system work is not good enough anymore. For organi-
zations that want to sustain continuous growth and revenue, these are prob-
lems. And for some companies, these problems look like an impending new
software crisis.

Ever since the famous 1969 NATO Software Engineering Conference her-
alded the birth of software engineering, the industry has been in a constant
state of crisis. In his 1972 ACM Turing Award Lecture, the software pioneer
Edsger Dijkstra said, “But in the next decades something completely different
happened: more powerful machines became available, not just an order of
magnitude more powerful, even several orders of magnitude more powerful.
But instead of finding ourselves in the state of eternal bliss of all program-
ming problems solved, we found ourselves up to our necks in the software
crisis! How come?”

The software crisis took root and grew. In 1994 Wayt Gibbs wrote in Sci-
entific American that “despite 50 years of progress, the software industry
remains years—perhaps decades—short of the mature engineering discipline
needed to meet the demands of an information-age society.”

Fast-forward to today. After a series of breathtaking innovations—including
new technologies, new tools, and the software development workforce
increasing tenfold—the software industry is still in crisis. But now the nature
of the issues has shifted. The industry is crushed under the mass of existing
software, which consumes more than half of the available software devel-
opment workforce. Data analysis organizations estimate that the global

Your Own Story About Technical Debt? 11

maintenance backlogs for information technology software amount to $1
trillion of technical debt. Government budgets struggle with legacy code
built on top of poorly designed architectural foundations and outdated tech-
nology. Globally, software practitioners grasp the impact of technical debt
and know how systems acquired their debt but fail to recognize managing
technical debt as an essential aspect of running a successful software organi-
zation and developing successful software-enabled products. The problem is
not new, but the industry is feeling it more acutely now than it has in the past.

Software development is an industry, and it can be sustained as an indus-
trial activity only if it is economically viable. As more and more software is
being developed, its long-term sustainment becomes less and less viable. Mar-
kets demand new applications and systems—and they demand them very rap-
idly. Some of these applications are ephemeral and have shelf lives of a few
months or years, but some—the most successful ones and usually the largest
ones—must be maintained for many years or for decades.

Today this is the biggest hurdle in software engineering: How should a
development organization cope with this rapidly expanding software base
while keeping it secure, running with up-to-date technology, and meeting its
business and user goals in an economically viable way?

 Your Own Story About Technical Debt?

Now that we have given you a taste of the various flavors of technical debt, maybe
you can identify with some of the stories: “Oh, yes, we have some of this here, too!”
or “Now this thing we suffer from has a name: technical debt!” You could add your
own development (or horror) story here. Over the past few years, the authors of this
book have heard similar stories from dozens of companies. These organizations
became mired in technical debt from different paths, with different concerns and dif-
ferent consequences. We have heard enough of these stories to classify them into
awareness levels about technical debt:

 • Level 1: Some companies have told us they had never heard the term or the
concept technical debt, but it was not difficult for them to see that part of their
problem is some form of technical debt.

 • Level 2: Some companies have heard of the concept, have seen blog posts on
the topic, and can provide examples of their technical debt, but they do not

Chapter 1 Friction in Software Development12

know how to move from understanding the concept of technical debt to opera-
tionally managing it in their organization.

 • Level 3: In some organizations, development teams are aware that they have
incurred technical debt, but they do not know how to get the management
or business side of the company to acknowledge its existence or do anything
about it.

 • Level 4: Some organizations know how to make technical debt visible, and
they have some limited team-level strategies to better manage it, but they lack
analytical tools to help them decide what to do about technical debt and which
part of it to address first.

 • Level 5: We have not heard from many organizations that respond, “Thank
you, all the technical debt is under control.” If this describes your organiza-
tion, we would love to hear from you about your successful software product.

This feels a bit like the levels of a “TDMM”—Technical Debt Maturity Model—
doesn’t it? Regardless of the level you feel you’re at, this book has something for you.

Who Is This Book For?

There are many books and tools that can help you understand how to analyze
your software. And there are yet other books that can help you adopt new technol-
ogy for building microservices, migration to the cloud, front-end web develop-
ment, and real-time system development. There are also many good books that
walk through different aspects of software development, such as software code
quality, software design patterns, software architecture, continuous integration,
DevOps, and so on. The list is long. But there exists little practical guidance on
demystifying how to recognize technical debt, how to communicate it, and how to
proactively manage it in a software development organization. This book fills
that gap.

We address the roles involved in managing technical debt in a software develop-
ment organization, from developers and testers to technical leads, architects, user
experience (UX) designers, and business analysts. We also address the relationship of
technical debt to the management of organizations and the business leaders.

People close to the code should understand how technical debt manifests itself,
what form it takes in the code, and the tools and techniques they can use to identify,
inventory, and manage technical debt. This is the inside-out perspective.

People facing the customers—the business side of the organization, such as prod-
uct definition, sales, support, and the C-level executives—should understand how

Principles of Technical Debt Management 13

schedule pressure and changes of direction (product “pivot”) drive the accumulation
of technical debt. They should be especially conscious of how much the organization
should “invest” in technical debt, without repayment, and for how long. This is the
outside-in perspective.

Both sides of the software development organization—technical and code-facing
or business and customer-facing—should understand the reasoning and decision
processes that lead to incurring technical debt and how the consequences of debt
result in reduced capacity. They should also understand the decision processes
involved in paying back technical debt and getting development back on track.
These decisions are not merely technical. For sure, technical debt is embedded
in the code base and a few connected artifacts. But its roots and its consequences
are at the business level. All involved should understand that managing technical
debt requires the business and technical sides of the organization to work together.

Principles of Technical Debt Management

As we progress through the book, we will identify a small number of key software
engineering principles that express universal truths related to technical debt. They
are rooted in our experience with technical debt in industry and government soft-
ware projects, and they are accepted or at least acceptable by the software engineer-
ing community. The nine software engineering principles follow:

Principle 1: Technical debt reifies an abstract concept.
Principle 2: If you do not incur any form of interest, then you probably

do not have actual technical debt.
Principle 3: All systems have technical debt.
Principle 4: Technical debt must trace to the system.
Principle 5: Technical debt is not synonymous with bad quality.
Principle 6: Architecture technical debt has the highest cost of ownership.
Principle 7: All code matters!
Principle 8: Technical debt has no absolute measure—neither for principal

nor interest.
Principle 9: Technical debt depends on the future evolution of the system.

Here is our first principle.

Chapter 1 Friction in Software Development14

We’ll introduce more principles in the following chapters, and you will find them
summarized in the final chapter of the book.

Navigating the Concepts of the Book

The goal for this book is to provide practical information that will jump-start your
ability to manage technical debt. The chapters that follow inform the basic steps of
technical debt management: become aware of the concept, assess the software devel-
opment state for potential causes of technical debt, build a registry of technical debt,
decide what to fix (and what not to fix), and take action during release planning. The

Principle 1: Technical Debt Reifies an Abstract Concept

TECHNICAL DEBT PRACTICE

TD

Technical debt is a useful rhetorical concept for fostering dialogue between
business and technical people in a software development organization. On one
hand, technical people do not always appreciate the value of shorter time to
market, quick delivery, and rapid tactical changes of direction; on the other
hand, business people do not always realize the dramatic impact some earlier
design decisions can make in a software project and the costs they can lead
to downstream. By identifying concrete items of technical debt, considering
their impact over time, evaluating the lifecycle costs associated with them,
and introducing mechanisms for expressing technical debt and estimating its
impact, an organization can help everyone better understand the pains of soft-
ware evolution and make the economic consequences more real and tangible.
Then both technical and business people can plan how to reduce technical debt
just as they plan new features, fix defects, and construct architectural elements.

Navigating the Concepts of the Book 15

steps draw on the seven interrelated concepts shown in Figure 1.1 that are the basis
for managing technical debt.

This book organizes the chapters into four parts.
In Part I, “Exploring the Technical Debt Landscape”—Chapters 1, “Friction in

Software Development,” 2, “What Is Technical Debt?,” and 3, “Moons of Saturn—
The Crucial Role of Context”—we define technical debt and explain what is not
technical debt. We introduce a conceptual model of technical debt and definitions
and principles that we use throughout the book. We want to make technical debt an
objective, tangible thing that can be described, inventoried, classified, and measured.
To do this, we introduce the concept of the technical debt item—a single element of
technical debt—something that can be clearly identified in the code or in some of the
accompanying development artifacts, such as a design document, build script, test
suite, user’s guide, and so on. To keep with the financial metaphor, the cost impact
of a technical debt item is composed of principal and interest. The principal is the
cost savings gained by taking some initial expedient approach or shortcut in devel-
opment—or what it would cost now to develop a different or better solution. The
interest is the cost that adds up as time passes. There is recurring interest: additional
cost incurred by the project in the presence of technical debt due to reduced produc-
tivity, induced defects, loss of quality, and problems with maintainability. And there is
accruing interest: the additional cost of developing new software depending on not-
quite-right code; evolvability is affected. These technical debt items are part of a tech-
nical debt timeline, during which they appear, get processed, and maybe disappear.

In Part II, “Analyzing Technical Debt”—Chapters 4, “Recognizing Technical
Debt,” 5, “Technical Debt and the Source Code,” 6, “Technical Debt and Architec-
ture,” and 7, “Technical Debt and Production”—we cover how to associate with a
technical debt item some useful information that will help you reason about it, assess
it, and make decisions. You will learn how to trace an item to its causes and its conse-
quences. The causes of a technical debt item are the processes, decisions, action, lack
of action, or events that trigger the existence of a technical debt item. The conse-
quences of technical debt items are many: They affect the value of the system and the
cost (past, present, and future), directly or through schedule delays or future loss of
quality. These causes and consequences are not likely to be in the code; they surface

• Technical debt landscape

• Technical debt timeline

• Technical debt item

• Software development artifacts

• Causes and consequences

• Principal and interest

• Opportunity and liability

Figure 1.1 Major concepts of technical debt

Chapter 1 Friction in Software Development16

in the processes and the environment of the project—for example, in the sales or the
cost of support. Then we cover how to recognize technical debt and how technical
debt manifests itself in source code, in the overall architecture of the system, and in
the production infrastructure and delivery process. As you study technical debt more
deeply, you’ll notice that it takes different forms, and your map of the technical debt
territory will expand to include this variety in the technical debt landscape.

In Part III, “Deciding What Technical Debt to Fix”—Chapters 8, “Costing the
Technical Debt,” and 9, “Servicing the Technical Debt”—we cover how to estimate
the cost of technical debt items and decide what to fix. Decision making about the
evolution of the system in most cases is driven by economic considerations, such
as return on investment (for example, how much should you invest in the effort of
software development in a given direction, and for what benefits?). For the technical
debt items, we will consider principal and interest and associate elements of cost to
reveal information about the resources to spend on remediation and the resulting
cost savings of reducing recurring interest. We then revisit the technical debt items in
the registry collectively and use information about the technical debt timeline to help
determine which technical debt items should be paid off or serviced in some other
way to ease the burden of technical debt: eliminate it, reduce it, mitigate it, or avoid
it. We show how to make these decisions about technical debt reduction in the con-
text of a business case that considers risk liability and opportunity cost.

In Part IV, “Managing Technical Debt Tactically and Strategically”—Chapters 10,
“What Causes Technical Debt?,” 11, “Technical Debt Credit Check,” 12, “Avoiding
Unintentional Debt,” and 13, “Living with Your Technical Debt”—we provide guid-
ance on how to manage technical debt. A key aspect of a successful technical debt man-
agement strategy is to recognize the causes in order to prevent future occurrences of
technical debt items. Causes can be many, and they can be related to the business, the
development process, how the team is organized, or the context of the project, to list a
few. We present the Technical Debt Credit Check, which will help identify root causes
of technical debt that show the need for software engineering practices that any team
should incorporate into its software development activities to minimize the introduc-
tion of unintentional technical debt. The principles and practices you will have learned
along the way make up a technical debt toolbox to assist you in managing technical debt.

At the end of each chapter, we recommend activities that you can do today and
further reading related to the concepts, techniques, and ideas we discuss.

What Can You Do Today?

Apply the first principal by putting a name to your technical debt. Commit to apply-
ing a few basic techniques to your normal development practices as you read each
chapter and continue to improve over time.

For Further Reading 17

For Further Reading

The seminal paper that brought us the debt metaphor is the often-cited OOPSLA
1992 experience report, “The WyCash Portfolio Management System,” by Ward
Cunningham.

Steve McConnell (2007) provided one of the simplest and most accessible definitions
of technical debt: “a design or construction approach that is expedient in the short term
but that creates a technical context in which the same work will cost more to do later
than it would cost to do now.” Our current definition of technical debt was devised in a
week-long workshop in Dagstuhl, Germany, in April 2016 (Avgeriou et al. 2016).

The software crisis was well described in 1994 by Wayt Gibbs, who interviewed
many software pioneers and practitioners in industrial organizations, including
Larry Druffel, Vic Basili, Brad Cox, and Bill Curtis.

A must-read is Fred Brooks’ “No Silver Bullet” paper (Brooks 1986), which is also
a chapter in the 10th anniversary edition of his famous book The Mythical Man-
Month (Brooks 1995). Brooks reminds us that “There is no single development,
in either technology or management technique, which by itself promises even one
order-of-magnitude improvement within a decade in productivity, in reliability, in
simplicity.”

A durable software engineering principle should be a simple statement that
expresses some universal truth; is “actionable” (that is, worded in a prescriptive man-
ner); is independent of specific tools or tool vendors, techniques, or practices; can
be tested in practice, where we can observe its consequences; and does not merely
express a compromise between two alternatives. There are two classic books on soft-
ware engineering principles: 201 Principles of Software Development by Alan M.
Davis (1995) and Facts and Fallacies of Software Engineering by Robert L. Glass
(2003). In “Agile Principles as Software Engineering Principles,” Norman Séguin
(2012) did a thorough analysis of what constitutes a good software engineering prin-
ciple—as opposed to a mere aphorism, wish, or platitude—and he debunked a few
myths about principles.

217

Index

A

A2DAM (Agile Alliance Debt Analysis
Model), 130

abstract concept (Principle 1), technical
debt reifies, 14, 16

accidental database debt, 90
accruing

additional technical debt versus
repaying debt, 25–26

interest on technical debt, 25, 27–29
ACM Turing Award Lecture (1972),

software crisis, 10
action, taking (technical debt toolbox/

process), 196, 200–201
actual technical debt

potential technical debt versus, 32,
33, 138, 140

servicing technical debt, 138, 140
adapters and architectural debt, 97
additional technical debt, accruing

versus repaying debt, 25–26
age of system (context of software

development), 38
agile practices, managing technical debt

at scale, 190–193
all code matters (Principle 7), 107, 206
all systems have technical debt

(Principle 3), 45, 152, 158,
180, 206

amnesty of debt (write offs), 141

analytic models, architectural debt
analysis, 89

analyzing architectural debt, 89, 90
analytic models, 89
checklists, 89
Phoebe case study, 97–98
prototypes/simulations, 89
scenario-based analysis, 89
thought experiments/reflective

questions, 89
analyzing source code

analysis tools, 74–76
Automated Technical Debt Measure

specification, 74–75
business goals, 68

examples of, 68–69
identifying questions about

source code, 70–72
mapping, 69

code inspections, 74
code smells, 66
documenting technical debt items,

76–78
driving analysis questions, 70–72
observable measurement criteria,

72–74
pain points

business goals and pain points,
68–69, 70–72

identifying questions about
source code, 70–72

Index218

analyzing source code (continued)
peer reviews, 74
Phoebe case study, 65–69

analysis tools, 75–76
documenting technical debt

items, 76–78
identifying questions about

source code, 70–72
iterations of analysis, 78–79
observable measurement criteria,

72–74
questions about source code,

identifying, 70–72
refactoring source code, 79–80
SonarQube static analyzer, 75–76
static analyzers, 65–66, 74–75
symptom measures, 72–73
Technical Debt Credit Checks, 66,

68–70
Tricorder static analyzer, 75

Angular, opportunities and risk, 47
AngularJS, opportunities and risk, 47
architectural debt. See also database

debt
adapters and, 97
analysis tools/techniques, 84, 89, 90

analytic models, 89
checklists, 89
Phoebe case study, 97–98
prototypes/simulations, 89
scenario-based analysis, 89
thought experiments/reflective

questions, 89
architectural technical debt has the

highest cost of ownership
(Principle 6), 86, 180

business goals and, 95–96
code analysis, 93–94
concerns/questions, 95–96

conventions (design), 84
designers and, 84, 86–88
documenting, 98–99
gateways and, 97
intentional versus unintentional

debt, 84
measurement criteria, defining,

96–97
modifiability and, 96
modularity and, 83
Phoebe case study, 85, 94–95

analysis tools/techniques, 97–98
business goals and, 95–96
concerns/questions, 95–96
defining measurement criteria,

96–97
documenting debt, 98–99
servicing debt, 98–99

quality attributes/requirements,
84–85

remediating technical debt,
121–122

security and, 96–97
servicing, 98–99
symptoms of technical debt,

84–85
technological gaps, 84, 96

architectural technical debt has the
highest cost of ownership
(Principle 6), 86, 180

architectures
architectural runways, 186
assessing technical debt, 61
context of software development, 38
lack of, example, 7
landscape of technical debt, 21
software engineering practices,

managing technical debt, 185

Index 219

production infrastructure/
architecture alignment, 187

quality attributes/requirements,
185–186

release planning, 186–187
software/system architecture

documents, 188
Technical Debt Credit Check, 171

artifacts
system artifacts, causes of technical

debt versus, 152
technical debt items, 22

assessing
information (technical debt toolbox/

process), 195, 197–198
technical debt

architectures, 61
business context and, 58–60
production, 61–62
source code, 60–61

assignees/reporters (writing technical
debt descriptions), source code
analysis, 57, 58, 77

Atlas case study, 40–42
build and integration debt, 111
causes of technical debt, identifying,

156, 163
chain of causes/effects, 52–53
comparing case studies, 44
contrasting case studies, 40–41
costing technical debt, 117–119
feature delivery versus servicing

technical debt, 139–140
investment, technical debt as,

143–145
production debt, 105
refactoring code, 184
servicing technical debt,

139–140
mitigating risk, 140–141

technical debt as investment,
143–145

technical debt toolbox/process, 202
testing debt, 112

Automated Technical Debt Measure
specification, 74–75

automation
build and integration debt, 107
test automation, development

process-related causes of
technical debt, 160–162

awareness (technical debt toolbox/
process), 195, 196–197

awareness (timeline of technical debt),
33, 53–54

awareness levels of technical debt,
11–12

B

backlogs, 62–63, 127–129
balance and database performance, 91
bankruptcy, declaring, 141
becoming aware (technical debt

toolbox/process), 195, 196–197
benefit/cost comparisons

costing technical debt, 123
servicing technical debt, 131–132,

139–140
Booch, Grady, 3
build and integration debt, 106

automation, 107
build times, improving, 111
continuous integration, 107

building technical debt registries, 195,
198–199

business context
assessing technical debt, 58–60
changes to (causes of technical

debt), 157

Index220

business goals
architectural debt analysis, 95–96
source code analysis, 68

examples of business goals, 68–69
identifying questions about

source code, 70–72
business models (context of software

development), 38
business vision (Technical Debt Credit

Check), 170
business-related causes of technical

debt, 155
misaligned business goals, 156
requirements shortfall, 156–157
time/cost pressure, 155–156

C

calculating recurring debt, 122–123
case studies, 39–40

Atlas case study, 40–42
causes of technical debt,

identifying, 156, 163
chain of causes/effects, 52–53
comparing case studies, 44
contrasting case studies, 40–41
costing technical debt, 117–119
feature delivery versus servicing

technical debt, 139–140
mitigating risk, 140–141
production debt, 105
refactoring code, 184
servicing technical debt, 139–141,

143–145
technical debt as investment,

143–145
technical debt toolbox/process,

202
contrasting, 40–41
Phoebe case study, 40, 42–43

architectural debt, 85, 94–99
building technical debt registries,

135–136
causes of technical debt,

diagnosing with Technical
Debt Credit Check, 172–173

causes of technical debt,
identifying, 156, 157–158

code quality/standards, 181–183
comparing case studies, 44
contrasting case studies, 40–41
costing technical debt, 119–120,

124–125
duplicate code, handling, 78
mitigating risk, 143
production debt, 105, 110–113
release pipeline, 143
servicing technical debt, 143
source code analysis, 65–69, 77,

78–79
technical debt toolbox/process,

202–203
Tethys case study, 40, 43–44

causes of technical debt,
diagnosing with Technical
Debt Credit Check, 174–177

causes of technical debt,
identifying, 156–157,
160, 164

comparing case studies, 44
contrasting case studies, 40–41
costing technical debt, 127
production debt, 105
technical debt toolbox/process,

203–204
causes of technical debt, 22–23,

151–153
business-related causes, 155

misaligned business goals, 156

Index 221

requirements shortfall, 156–157
time/cost pressure, 155–156

changes in context, 157
business context, 157
evolution, 158–159
technology changes, 157–158

development process-related
causes, 159
ineffective documentation,

159–160
misaligned processes, 162
test automation, 160–162

diagnosing with Technical Debt
Credit Check
Phoebe case study, 172–173
Tethys case study, 174–177

intentional debt, 153–154
main causes of technical debt,

154–155
software development, 152
system artifacts versus causes, 152
team/personnel-related causes,

162–163
distributed teams/personnel, 164
inexperienced teams/personnel,

163–164
undedicated teams/personnel,

164–165
unintentional debt, 153

chain of causes/effects, recognizing
technical debt, 51–54

change (context of software
development),
rate of, 38

changes in context, causes of technical
debt, 157

business context, 157
evolution, 158–159
technology changes, 157–158

checklists, architectural debt analysis,
89

code. See also source code
code inspections (source code

analysis), 74
code smells, 20

Phoebe case study, 66
servicing technical debt, 137

dirty code and technical debt,
125–126

maintainable code, 183–184
quality/standards, avoiding

unintentional debt, 180–183
refactoring code, 184
secure coding, 180–183
spaghetti code, 65–66, 69, 71, 76,

78–79, 91
collective management of technical

debt items, 127–129
conformance/lightweight analysis

(software engineering practices),
managing technical debt,
189–190

consequences (writing technical debt
descriptions), 57, 58

build and integration debt, 111
source code analysis, 77
testing debt, 112

consequences of technical debt, 23, 51,
52, 53, 54–55

Consortium for IT Quality, Automated
Technical Debt Measure
specification, 74–75

context (business) and assessing
technical debt, 58–60, 157

context, changes in (causes of technical
debt), 157

business context, 157
evolution, 158–159
technology changes, 157–158

Index222

context of software development, 37
age of system, 38
architectures, 38
business models, 38
case studies

comparing, 44
contrasting, 40–41

criticality, 39
factors of, 37–39
governance, 39
rate of change, 38
size, 38

KSLOC, 40, 41
MSLOC, 41

team distribution, 38
technical debt and, 44–45, 48

continuous deployment, 104–105
continuous integration, 104–105, 107
contractors, collective management of

technical debt items, 127
conventions (design) and architectural

debt, 84
cost/time pressure, causes of technical

debt, 155–156
costing technical debt, 27

A2DAM, 130
Atlas case study, 117–119
backlogs, grooming, 127–129
benefit/cost comparisons, 123
collective management of technical

debt items, 127–129
current principal, 118
function points, 130
hidden dependencies, 127–128
object points, 130
Phoebe case study, 119–120, 124–125
post facto measurements, 130
recurring interest, calculating,

122–123

refining technical debt descriptions,
119–120

remediating technical debt,
121–122

ROI, 118, 123–125
story points, 130
technical debt has no absolute

measure—neither for principal
nor interest (Principle 8), 124

Tethys case study, 127
tipping points, 118
tool-supported analysis, 123, 130
total effort, 118
use-case points, 130

costs of opportunity, 133, 134–135
Credit Checks, 167, 177, 197, 204

architectures, 171
business vision, 170
causes of technical debt, diagnosing,

172–177
conducting

process of, 169
when to conduct, 168–169

development processes, 171–172
goal of, 167–168
inputs, 169
organizational culture/processes,

172
output from (scorecards), 170
Phoebe case study, 66, 172–173
purpose of, 168
scorecards, 170
team/personnel, 168
Tethys case study, 174–177

criticality (context of software
development), 39

current principal, costing technical
debt, 118

Index 223

CVE (Common Vulnerabilities and
Exposures) database, secure
coding, 183

CWE (Common Weakness
Enumeration) database, secure
coding, 183

D

database debt. See also architectural
debt, 90

accidental database debt, 90
avoiding debt, 92–93
database models and, 92
database performance and balance,

91
intentional database debt, 90
NoSQL databases, 92
query performance, 91
relational databases and, 91–92
schema structure duplication,

90–91
spaghetti code, 91
strings, 91

debt amnesty (write offs), 141
deciding what to fix (technical debt

toolbox/process), 196, 199–200
decision-making process, treating

technical debt, 25–26
defects and technical debt, 21–22
delivering features versus servicing

technical debt, 139–140
dependencies (hidden), costing

technical debt, 127–128
deployment (continuous), 104–105
descriptions of technical debt, writing,

55–58, 63–64
consequences, 57, 58, 77
name field, 57

remediation approaches, 57, 58, 77
reporters/assignees, 57, 58, 77
summaries, 57, 58, 77

designers and architectural debt, 84
analysis tools/techniques, 89, 90

analytic models, 89
checklists, 89
prototypes/simulations, 89
scenario-based analysis, 89
thought experiments/reflective

questions, 89
interviewing designers to determine

debt, 86–88
development processes

causes of technical debt, 159
ineffective documentation,

159–160
misaligned processes, 162
test automation, 160–162

Technical Debt Credit Check,
171–172

development teams, collective
management of technical debt
items, 127

DevOps, 104, 108–109
diagnosing causes of technical debt

with Technical Debt Credit
Check

Phoebe case study, 172–173
Tethys case study, 174–177

Dijkstra, Edsger, 10
dirty code and technical debt, 125–126
distributed teams/personnel

causes of technical debt, 164
context of software development, 38

documenting
architectural debt, 98–99
build and integration debt, 111

Index224

documenting (continued)
ineffective documentation,

development process-related
causes of technical debt, 159–160

software engineering practices,
managing technical debt, 188

software/system architecture
documents, 188

technical debt items (source code
analysis), 76–78

testing debt, 111–112
version control, 188
write-only documents, 188

driving analysis questions, 70–72
duplicate code, handling, 78

E

effects/causes (recognizing technical
debt), chain of, 51–54

effort (total), costing technical debt,
118

Eisenberg, Robert, 190–193
evolution, causes of technical debt,

158–159
exposure to risk, 133–134, 135
external quality (low), technical debt

and, 21–22

F

FBCB2 (Force XXI Battle Command
Brigade and Below),
opportunities and risk, 46–47

feature delivery versus servicing
technical debt, 139–140

fixes, deciding on (technical debt
toolbox/process), 196, 199–200

forecasting, value of technical debt, 29
Fortify security scanning tool, 182–183
function points, costing technical debt,

130

G

gateways and architectural debt, 97
Gibbs, Wayt, 10
governance (context of software

development), 39
grooming product backlogs (costing

technical debt), 127–129

H

hidden dependencies, costing technical
debt, 127–128

I

IEEE 830–1998: Recommended Practice
for Software Requirements
Specifications, 185

incurring technical debt (Principle 2),
32, 206

inexperienced teams/personnel, causes
of technical debt, 163–164

infrastructure as code, 61–62, 105
infrastructure debt, 110, 121–122
initial technical debt, incurring, 24–25
inspecting code (source code analysis),

74
installment plans, repaying technical

debt, 30–31
integration (continuous), 104–105, 107
intentional debt, 90, 153–154
interest on technical debt, 24

accruing interest, 25–26
credit card example, 28–29
defined, 27

recurring interest, 28–29
costing technical debt, 122–123
defined, 27

repaying, 26–27
technical debt has no absolute

measure—neither for principal
nor interest (Principle 8), 124

Index 225

interns, collective management of
technical
debt items, 127

interviewing designers to determine
architectural debt, 86–88

investment
ROI, costing technical debt, 118,

123–125
technical debt as, 143–145

invisibility, landscape of technical
debt, 21

ISO/IEC 25000 standard, maintainable
coding, 183–184

iterations of source code analysis,
78–79

J – K

Keeling, Michael, 125–126
KSLOC, 40, 41

L

landscape of technical debt, 20
architectures, 21
invisibility, 21
production infrastructures, 21
source code, 20

levels of technical debt awareness,
11–12

lightweight analysis/conformance
(software engineering practices),
managing technical debt,
189–190

low external quality and technical debt,
21–22

M

maintainable code, 183–184
maintenance, single points of, 188

managing technical debt
causes of technical debt, identifying,

151–153
business-related causes, 155–157
changes in context, 157–159
development process-related

causes, 159–162
intentional debt, 153–154
main causes of technical debt,

154–155
software development, 152
system artifacts versus causes,

152
team/personnel-related causes,

162–165
unintentional debt, 153

collectively, 127–129
software development, 204–205
software engineering practices,

179–180, 193
agile practices, managing

technical debt at scale,
190–193

architectural development/design,
185–190

code quality/standards, 180–183
documentation, 188
lightweight analysis/

conformance, 189–190
maintainable code, 183–184
refactoring code, 184
secure code, 180–183

Technical Debt Credit Check,
167, 177
architectures, 171
business vision, 170
causes of technical debt,

diagnosing, 172–177
conducting, process of, 169

Index226

managing technical debt (continued)
conducting, when to conduct,

168–169
development processes, 171–172
goal of, 167–168
inputs, 169
organizational culture/processes,

172
output from (scorecards), 170
purpose of, 168
scorecards, 170
team/personnel, 168

technical debt toolbox/process, 195,
196
assessing information, 195,

197–198
Atlas case study, 202
becoming aware, 195, 196–197
building technical debt registries,

195, 198–199
deciding what to fix, 196,

199–200
Phoebe case study, 202–203
taking action, 196, 200–201
Tethys case study, 203–204

mandatory updates, 188
mapping, technical debt items, 22
misaligned business goals, causes of

technical debt, 156
misaligned processes, development

process-related causes of
technical debt, 162

mitigating risk, servicing technical
debt, 140–141, 143

MITRE Corporation, secure coding,
183

modifiability and architectural debt, 96
modularity and architectural debt, 83

monitoring (self), production
infrastructure/architecture
alignment, 187

MSLOC, 41

N

name field (writing technical debt
descriptions), 57

naming, technical debt, 16
NATO Software Engineering

Conference (1969), software
crisis, 10

negative values (risk mitigation),
140–141

Northrop, Ben, 30–31
Northrop, Linda, 46–48
NoSQL databases and technical debt,

92
NPV (Net Present Values), technical

debt as investment, 143–145

O

object points, costing technical debt,
130

observable measurement criteria
(source code analysis), 72–74

occurrence (timeline of technical
debt), 33

OMG (Object Management Group),
Automated Technical Debt
Measure specification, 74–75

Open Web Application Security, 183
opportunities and risk, 46–48
opportunity costs, 133, 134–135
optimizing value of technical debt, 29
organizational culture/processes

(Technical Debt Credit Check),
8–9, 172

Index 227

P

pain points, source code analysis,
68–72

parameterization, production
infrastructure/architecture
alignment, 187

peer reviews (source code analysis), 74
performance

database performance and balance,
91

query performance and database
debt, 91

personnel/teams
causes of technical debt, 162–163

distributed teams/personnel, 164
inexperienced teams/personnel,

163–165
contractors, collective management

of technical debt items, 127
interns, collective management of

technical debt items, 127
Technical Debt Credit Check,

168–169
Phoebe case study, 40, 42–43

architectural debt, 85, 94–95
analysis tools/techniques, 97–98
business goals and, 95–96
concerns/questions, 95–96
defining measurement criteria,

96–97
documenting debt, 98–99
servicing debt, 98–99

causes of technical debt
diagnosing with Technical Debt

Credit Check, 172–173
identifying, 156, 157–158

code quality/standards, 181–183
comparing case studies, 44

contrasting case studies, 40–41
costing technical debt, 119–120,

124–125
production debt, 105, 110–111
servicing technical debt

mitigating risk, 143
release pipeline, 143

source code analysis, 65–68
analysis tools, 75–76
business goals, 68–69
documenting technical debt

items, 76–78
duplicate code, handling, 78
identifying questions about

source code, 70–72
iterations of analysis, 78–79
observable measurement criteria,

72–74
technical debt registries, building,

135–136
technical debt toolbox/process,

202–203
planning releases, servicing technical

debt, 142–143
Poort, Eltjo R., 133
post facto costing of technical

debt, 130
potential technical debt

actual technical debt versus, 32, 33,
138, 140

misaligned business goals, 156
requirements shortfall, 156
servicing technical debt, 138, 140
time/cost pressure, 155

principal on technical debt
current principal, costing technical

debt, 118
defined, 24, 27
repaying, 25–26

Index228

principles of technical debt, 13
Principle 1: Technical debt reifies an

abstract concept, 14, 16, 206
Principle 2: If you do not incur

any form of interest, then you
probably do not have actual
technical debt, 32, 206

Principle 3: All systems have
technical debt, 45, 152, 158, 180,
206

Principle 4: Technical debt must
trace to the system, 55, 152, 206

Principle 5: Technical debt is not
synonymous with bad quality,
67, 180, 206

Principle 6: Architecture technical
debt has the highest cost of
ownership, 86, 180

Principle 7: All code matters, 107,
206

Principle 8: Technical debt has no
absolute measure—neither for
principal nor interest, 124, 206

Principle 9: Technical debt depends
on the future evolution of the
system, 139, 206

process misalignment, development
process-related causes of
technical debt, 162

product backlogs, grooming (costing
technical debt), 127–129

production
assessing technical debt, 61–62
production infrastructures

architecture alignment, 187
landscape of technical debt, 21

production debt
Atlas case study, 105
automation, 107

build and integration debt, 106–107,
111

continuous deployment, 104–105
continuous integration, 104–105,

107
DevOps, 104
infrastructure as code, 105
infrastructure debt, 110
Phoebe case study, 105, 110–113
release pipeline, 104–105
SaaS, 103–104
scripts, 105
servicing debt, 113
software, 105–106
testing debt, 109–110, 111–112
Tethys case study, 105

prototypes/simulations, architectural
debt analysis, 89

Q

quality of code, 67
Consortium for IT Quality, 74–75
unintentional debt, avoiding,

180–183
queries, database debt and query

performance, 91
questions about source code (source

code analysis), identifying, 70–72

R

rate of change (context of software
development), 38

recognizing technical debt, 51
business context and, 58–60
chain of causes/effects, 51–54
visible consequences of technical

debt, 54–55
writing technical debt descriptions,

55–58, 63–64

Index 229

consequences, 57, 58
name field, 57
remediation approaches, 57, 58
reporters/assignees, 57, 58
summaries, 57, 58

recurring interest
calculating, costing technical debt,

122–123
credit card example, 28–29
defined, 27

refactoring code, 79–80, 184
refining technical debt descriptions,

costing technical debt, 119–120
reflective questions/thought

experiments, architectural debt
analysis, 89

registries (technical debt), building,
195, 198–199

relational databases and technical debt,
91–92

release pipeline, 104–105, 142–143
release planning, architectural

development/design, 186–187
remediation

costing technical debt, 121–122
timeline of technical debt, 34

remediation approaches
ROI, building technical debt

registries, 135–136
writing technical debt descriptions,

57, 58
build and integration debt, 111
ROI, calculating (costing

technical debt), 123–125
source code analysis, 77
testing debt, 112

remediation points, servicing technical
debt, 132

repaying
interest on technical debt, 26–27

principal on technical debt, 25–26
technical debt

accruing additional debt versus
repaying debt, 25–26

installment plans, 30–31
reporters/assignees (writing technical

debt descriptions), 57, 58
build and integration debt, 111
source code analysis, 77
testing debt, 112

requirements
requirements shortfall, causes of

technical debt, 156–157
unimplemented requirements and

technical debt, 21–22
reviews (peer), source code analysis, 74
risk

exposure to, 133–134, 135
opportunities and, 46–48
mitigation, servicing technical debt,

140–141, 143
ROI (Return Of Investment)

costing technical debt, 118, 123
servicing technical debt, building

technical debt registries, 135–136
runways (architectural), 186

S

SaaS (Software as a Service), 103–104
SAFe (Scaled Agile Framework),

architectural runways, 186
scenario-based analysis, architectural

debt analysis, 89
schema structure duplication, 90–91
Scientific American, software crisis, 10
scorecards (Technical Debt Credit

Check), 170
scripts, 105
secure coding, 180–183
security and architectural debt, 96–97

Index230

SEI CERT Secure Coding Standards,
183

self-initiated version updating,
production infrastructure/
architecture alignment, 187

self-monitoring, production
infrastructure/architecture
alignment, 187

servicing technical debt
actual technical debt versus potential

technical debt, 138, 140
bankruptcy, declaring, 141
costs/benefits of, 131–132, 139–140
debt amnesty (write offs), 141
decision points, 138
feature delivery versus, 139–140
investment, technical debt as,

143–145
mitigating risk, 140–141, 143
opportunity costs, 133, 134–135
paths of servicing, 136–138

release pipeline, 142–143
technical debt as investment,

143–145
potential technical debt versus actual

technical debt, 138, 140
release pipeline, 142–143
remediation points, 132
risk exposure, 133–134, 135
technical debt registries, building,

135–136
technical debt depends on the future

evolution of the system (Principle 9),
139

tipping points, 132
simulations/prototypes, architectural

debt analysis, 89
single points of maintenance, 188

size (context of software development),
38

KSLOC, 40, 41
MSLOC, 41

software
automation, 107
build and integration debt, 106–107
continuous deployment, 104–105
continuous integration, 104–105, 107
crisis, 10–11
DevOps, 104
infrastructure debt, 110
production debt, 105–106
release pipeline, 104–105
SaaS, 103–104
scripts, 105
testing debt, 109–110

software development
backlogs, 62–63
causes of technical debt, identifying,

152
context of software development,

37
age of system, 38
architectures, 38
business models, 38
comparing case studies, 44
contrasting case studies, 40–41
criticality, 39
factors of, 37–39
governance, 39
rate of change, 38
size, 38
size, KSLOC, 40, 41
size, MSLOC, 41
team distribution, 38
technical debt and, 44–45, 48

technical debt and, 204–205

Index 231

software engineering practices,
managing technical debt,
179–180, 193

agile practices, managing technical
debt at scale, 190–193

architectural development/design,
185
production infrastructure/

architecture alignment, 187
quality attributes/requirements,

185–186
release planning, 186–187

code quality/standards, 180–183
documentation, 188
lightweight analysis/conformance,

189–190
maintainable code, 183–184
refactoring code, 184
secure code, 180–183

software-intensive systems, technical
debt, 5

software/system architecture
documents, 188

SonarQube static analyzer, 75–76
source code. See also code

all code matters (Principle 7), 107
analysis

analysis tools, 74–76
Automated Technical Debt

Measure specification, 74–75
business goals, 68–69
code inspections, 74
code smells, 66
documenting technical debt

items, 76–78
driving analysis questions, 70–72
identifying questions about

source code, 70–72
iterations of analysis, 78–79

observable measurement criteria,
72–74

pain points, 68–69, 70–72
pain points, identifying questions

about source code, 70–72
peer reviews, 74
Phoebe case study, 65–69, 75–78
refactoring source code, 79–80
SonarQube static analyzer, 75–76
static analyzers, 65–66, 74–76
symptom measures, 72–73
Technical Debt Credit Checks,

66, 68–70
Tricorder static analyzer, 75

assessing technical debt, 60–61
code smells, 20, 66
duplicate code, handling, 78
landscape of technical debt, 20
pain points

business goals and pain points,
68–69, 70–72

identifying questions about
source code, 70–72

quality of code, 67
refactoring, 79–80
remediating technical debt, 121–122
spaghetti code, 65–66, 69, 71,

76, 78–79
technical debt is not synonymous

with bad quality (Principle 5), 67
spaghetti code, 65–66, 69, 71, 76,

78–79, 91
static analyzers (source code analysis),

74–75
Phoebe case study, 65–66
SonarQube static analyzer, 75–76
Tricorder static analyzer, 75

story points, costing technical
debt, 130

Index232

strings and database debt, 91
structures, schema structure

duplication, 90–91
summaries (writing technical debt

descriptions), 57, 58
build and integration debt,

production debt, 111
source code analysis, 77
testing debt, 112

symptom measures (source code
analysis), 72–73

symptoms of technical debt, 51, 52, 53,
84–85

system (context of software
development), age of, 38

system artifacts, causes of technical
debt versus, 152

T

tactical investment, 9
taking action (technical debt toolbox/

process), 196, 200–201
team distribution (context of software

development), 38
teams/personnel

causes of technical debt, 162–163
distributed teams/personnel, 164
inexperienced teams/personnel,

163–164
undedicated teams/personnel,

164–165
contractors, collective management

of technical debt items, 127
interns, collective management of

technical debt items, 127
Technical Debt Credit Check,

168–169
technical debt registries, building,

135–136

technical debt, 205–206
accruing additional debt versus

repaying debt, 25–26
actual technical debt versus

potential technical debt versus,
32, 33, 138, 140

servicing technical debt, 138, 140
amnesty of debt (write offs),

140–141
assessing

architectures, 61
business context and, 58–60
production, 61–62
source code, 60–61

awareness, 33, 53–54
awareness levels, 11–12
business-related causes, 155

misaligned business goals, 156
requirements shortfall, 156–157
time/cost pressure, 155–156

causes of technical debt, diagnosing
with Technical Debt Credit
Check
Phoebe case study, 172–173
Tethys case study, 174–177

causes of technical debt, identifying,
151–153
business-related causes, 155–157
changes in context, 157–159
development process-related

causes, 159–162
intentional debt, 153–154
main causes of technical debt,

154–155
software development, 152
system artifacts versus causes,

152
team/personnel-related causes,

162–165
unintentional debt, 153

Index 233

changes in context, causes of
technical debt, 157
business context, 157
evolution, 158–159
technology changes, 157–158

consequences of, 51, 52, 53
visible consequences, 54–55

context of software development,
44–45, 48

cost of, 27
costing

A2DAM, 130
Atlas case study, 117–119
benefit/cost comparisons, 123
calculating recurring debt,

122–123
collective management of

technical debt items, 127–129
current principal, 118
function points, 130
grooming product backlogs,

127–129
hidden dependencies, 127–128
object points, 130
Phoebe case study, 119–120,

124–125
post facto measurements, 130
refining technical debt

descriptions, 119–120
remediating technical debt,

121–122
ROI, 118, 123–125
story points, 130
technical debt has no absolute

measure—neither for principal
nor interest (Principle 8), 124

Tethys case study, 127
tipping points, 118
tool-supported analysis, 123, 130

total effort, 118
use-case points, 130

debt amnesty (write offs),
140–141

defects and, 21–22
defined, 3–4, 5–6, 19
development process-related causes,

159
ineffective documentation,

159–160
misaligned processes, 162
test automation, 160–162

DevOps and, 108–109
diagnosing with Technical Debt

Credit Check
Phoebe case study, 172–173
Tethys case study, 174–177

dirty code and, 125–126
examples of, 6–10
friction analogy, 4
initial debt, incurring, 24–25
interest

accruing, 25
accruing interest, 27, 28–29
recurring interest, 27, 28–29
repaying, 26–27

investment, technical debt as,
143–145

landscape of, 20
architectures, 21
invisibility, 21
production infrastructures, 21
source code, 20

low external quality and,
21–22

major concepts of, 15
naming, 16
occurrence, 33
pervasiveness of, 4

Index234

technical debt (continued)
potential technical debt

actual technical debt versus, 32,
33, 138, 140

misaligned business goals, 156
requirements shortfall, 156
servicing technical debt, 138, 140
time/cost pressure, 155

principal
defined, 27
repaying, 25–26

principles of, 13
all code matters (Principle 7),

107, 206
all systems have technical debt

(Principle 3), 45, 152, 158,
180, 206

architectural technical debt has
the highest cost of ownership
(Principle 6), 86, 180
incurring technical debt
(Principle 2), 32, 206

technical debt depends on the
future evolution of the system
(Principle 9), 139, 206

technical debt has no absolute
measure—neither for principal
nor interest (Principle 8), 124,
206

technical debt is not synonymous
with bad quality (Principle 5),
67, 180, 206

technical debt must trace to the
system (Principle 4), 55, 152,
206

technical debt reifies an abstract
concept (Principle 1), 14,
16, 206

recognizing, 51
business context and, 58–60

chain of causes/effects, 51–54
visible consequences of technical

debt, 54–55
writing technical debt

descriptions, 55–58, 63–64
remediation, 34
repaying

accruing additional debt versus
repaying debt, 25–26

installment plans, 30–31
interest on technical debt, 26–27

scope of, 4
servicing

actual technical debt versus
potential technical debt, 138,
140

building technical debt registries,
135–136

costs/benefits of, 131–132,
139–140

debt amnesty (write offs), 141
decision points, 138
declaring bankruptcy, 141
feature delivery versus, 139–140
mitigating risk, 140–141, 143
opportunity costs, 133, 134–135
paths of, 136–138, 142–145
potential technical debt versus

actual technical debt, 138, 140
release pipeline, 142–143
remediation points, 132
risk exposure, 133–134, 135
technical debt as investment,

143–145
technical debt depends on the

future evolution of the system
(Principle 9), 139

tipping points, 132
software development and, 204–205
software-intensive systems, 5

Index 235

symptoms of, 51, 52, 53, 84–85
teams/personnel-related causes,

162–163
distributed teams/personnel, 164
inexperienced teams/personnel,

163–164
undedicated teams/personnel,

164–165
timeline of, 33, 118–119
tipping point, 34
treating debt, decision-making

process, 25–26
unimplemented requirements and,

21–22
unintentional debt, timeline of

technical debt, 196
value of, 27, 29

defined, 29
forecasting, 29
optimizing, 29

visible consequences of technical
debt, 54–55

writing technical debt descriptions,
55–58, 63–64
consequences, 57, 58
name field, 57
remediation approaches, 57, 58
reporters/assignees, 57, 58
source code analysis, 76–78
summaries, 57, 58

Technical Debt Credit Check, 167,
177, 197, 204

architectures, 171
business vision, 170
causes of technical debt, diagnosing,

172–177
conducting

process of, 169
when to conduct, 168–169

development processes, 171–172

goal of, 167–168
inputs, 169
organizational culture/processes,

172
output from (scorecards), 170
Phoebe case study, 66, 172–173
purpose of, 168
scorecards, 170
team/personnel, 168
Tethys case study, 174–177

technical debt depends on the future
evolution of the system
(Principle 9), 139, 206

technical debt has no absolute
measure—neither for principal
nor interest (Principle 8), 124, 206

technical debt is not synonymous
with bad quality (Principle 5), 67,
180, 206

technical debt items, 53
artifacts, 22
causes, 22–23
consequences, 23
defined, 22
interest of, defined, 24
managing collectively, 127–129
mapping, 22
principle of, defined, 24

technical debt must trace to the system
(Principle 4), 55, 152, 206

technical debt registries, building, 195,
198–199

technical debt reifies an abstract
concept (Principle 1), 206

technical debt toolbox/process,
195, 196

assessing information, 195, 197–198
Atlas case study, 202
becoming aware, 195, 196–197

Index236

technical debt toolbox/process
(continued)

building technical debt registries,
195, 198–199

deciding what to fix, 196, 199–200
Phoebe case study, 202–203
taking action, 196, 200–201
Tethys case study, 203–204

technological gaps, 84, 96
technology changes, causes of technical

debt, 157–158
test automation, development process-

related causes of technical debt,
160–162

testing debt, 109–110, 111–112
Tethys case study, 40, 43–44

causes of technical debt
diagnosing with Technical Debt

Credit Check, 174–177
identifying, 156–157, 160, 164

comparing case studies, 44
contrasting case studies, 40–41
costing technical debt, 127
production debt, 105
technical debt toolbox/process,

203–204
thought experiments/reflective

questions, architectural debt
analysis, 89

time/cost pressure, causes of technical
debt, 155–156

timeline of technical debt, 33, 205
awareness, 33, 53–54
costing technical debt, 118–119
occurrence, 33
remediation, 34
source code analysis, business goals

and pain points, 68–69
tipping point, 34
unintentional debt, 196

tipping points, 34
costing technical debt, 118
servicing technical debt, 131–132

total effort, costing technical debt, 118
treating technical debt, decision-

making process, 25–26
Tricorder static analyzer, 75

U

undedicated teams/personnel, causes of
technical debt, 164–165

unimplemented requirements, technical
debt and, 21–22

unintentional debt, 153
avoiding with software engineering

practices, 179–180, 193
agile practices, managing

technical debt at scale,
190–193

architectural development/design,
185–190

code quality/standards, 180–183
documentation, 188
lightweight analysis/

conformance, 189–190
maintainable code, 183–184
refactoring code, 184
secure code, 180–183

timeline of technical debt, 196
updating

mandatory updates, 188
self-initiated version updating,

production infrastructure/
architecture alignment, 187

use-case points, costing technical debt,
130

V

value of technical debt, 27, 29
defined, 29

Index 237

forecasting, 29
optimizing, 29

version control, documenting, 188
version updating (self-initiated),

production infrastructure/
architecture alignment, 187

visible consequences of technical debt,
54–55

W

WIRE team, dirty code and technical
debt, 125–126

Woods, Eoin, 90–93
write-only documents, 188
writing off technical debt (debt

amnesty), 141
writing technical debt descriptions,

55–58, 63–64
build and integration debt, 111

consequences, 57, 58
build and integration debt, 111
source code analysis, 77
testing debt, 112

name field, 57
remediation approaches, 57, 58

build and integration debt, 111
source code analysis, 77
testing debt, 112

reporters/assignees, 57, 58, 77
summaries, 57, 58

build and integration debt, 111
source code analysis, 77
testing debt, 112

testing debt, 112

X – Y – Z

Y2K, opportunities and risk, 46

	Cover
	Title Page
	Copyright Page
	Contents at a Glance
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Authors
	About the Contributors
	Acronyms
	SEI Figures for Managing Technical Debt
	Part I: Exploring the Technical Debt Landscape
	Chapter 1: Friction in Software Development
	The Promise of Managing Technical Debt
	Technical Debt A-B-C
	Examples of Technical Debt
	Your Own Story About Technical Debt?
	Who Is This Book For?
	Principles of Technical Debt Management
	Navigating the Concepts of the Book
	What Can You Do Today?
	For Further Reading

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

