
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780135558577
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780135558577
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780135558577

This page intentionally left blank

Core Java

Volume I: Fundamentals

Fourteenth Edition

Cay S. Horstmann

Cover image: emotionPicture/stock.adobe.com
Figure 1.1: Sourceforge
Figures 2.2, 3.2-3.5, 4.9, 5.4, 7.2, 10.5, 10.6, 11.1: Oracle Corporation
Figures 2.3-2.5, 12.2: Eclipse Foundation AISBL
Figure 4.2: Violet UML Editor

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of
any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

Please contact us with concerns about any potential bias at pearson.com/en-us/report-bias.html.

Author websites are not owned or managed by Pearson.

Visit us on the Web: informit.com

Library of Congress Control Number: 2025945021

Copyright © 2026 Pearson Education, Inc.
Hoboken, New Jersey

Portions copyright © 1996-2013 Oracle and/or its affiliates. All Rights Reserved.

Oracle America Inc. does not make any representations or warranties as to the accuracy, adequacy or completeness of any
information contained in this work, and is not responsible for any errors or omissions.

The views expressed in this book are those of the author and do not necessarily reflect the views of Oracle.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the
documents and related graphics published as part of the services for any purpose. All such documents and related
graphics are provided "as is" without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all
warranties and conditions with regard to this information, including all warranties and conditions of merchantability,
whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall
Microsoft and/or its respective suppliers be liable for any special, indirect or consequential damages or any damages
whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious
action, arising out of or in connection with the use or performance of information available from the services. The
documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes
are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or
changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be viewed in full
within the software version specified.

Microsoft® Windows®, and Microsoft Office® are registered trademarks of the Microsoft Corporation in the U.S.A. and
other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms and the
appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit pearson.com/en-
us/global-permission-granting.html.

ISBN-13: 978-0-13-555857-7
ISBN-10: 0-13-555857-3

Contents
Preface ..xiii
Acknowledgments .. xix
1. An Introduction to Java... 1

1.1. Java as a Programming Platform ... 1
1.2. The Java “White Paper” Buzzwords ... 2

1.2.1. Simple ... 2
1.2.2. Object-Oriented... 3
1.2.3. Distributed .. 3
1.2.4. Robust ... 3
1.2.5. Secure ... 4
1.2.6. Architecture-Neutral ... 4
1.2.7. Portable ... 5
1.2.8. Interpreted .. 5
1.2.9. High-Performance ... 5
1.2.10. Multithreaded.. 6
1.2.11. Dynamic... 6

1.3. Java Applets and the Internet .. 7
1.4. A Short History of Java .. 8
1.5. Common Misconceptions about Java ... 11

2. The Java Programming Environment ... 15
2.1. Installing the Java Development Kit .. 15

2.1.1. Downloading the JDK .. 15
2.1.2. Setting Up the JDK.. 16
2.1.3. Source Files and Documentation .. 18

2.2. Using the Command-Line Tools ... 18
2.3. Using an Integrated Development Environment ... 23
2.4. JShell .. 25

3. Fundamental Programming Structures in Java ... 29
3.1. A Simple Java Program .. 29
3.2. Comments .. 32
3.3. Data Types ... 33

3.3.1. Integer Types .. 33
3.3.2. Floating-Point Types.. 34
3.3.3. The char Type .. 36
3.3.4. Unicode and the char Type .. 37
3.3.5. The boolean Type.. 38

3.4. Variables and Constants... 39
3.4.1. Declaring Variables ... 39
3.4.2. Initializing Variables.. 40
3.4.3. Constants .. 41
3.4.4. Enumerated Types .. 42

3.5. Operators ... 42
3.5.1. Arithmetic Operators .. 42

iii

3.5.2. Mathematical Functions and Constants.. 43
3.5.3. Conversions between Numeric Types ... 45
3.5.4. Casts.. 46
3.5.5. Assignment.. 46
3.5.6. Increment and Decrement Operators ... 47
3.5.7. Relational and boolean Operators .. 48
3.5.8. The Conditional Operator.. 48
3.5.9. Switch Expressions ... 49
3.5.10. Bitwise Operators.. 50
3.5.11. Parentheses and Operator Hierarchy ... 51

3.6. Strings.. 52
3.6.1. Concatenation ... 53
3.6.2. Static and Instance Methods... 54
3.6.3. Indexes and Substrings ... 55
3.6.4. Strings Are Immutable .. 56
3.6.5. Testing Strings for Equality .. 57
3.6.6. Empty and Null Strings... 57
3.6.7. The String API ... 58
3.6.8. Reading the Online API Documentation.. 59
3.6.9. Building Strings .. 61
3.6.10. Text Blocks .. 64

3.7. Input and Output ... 66
3.7.1. Reading Input.. 66
3.7.2. Formatting Output .. 69

3.8. Control Flow .. 72
3.8.1. Block Scope... 72
3.8.2. Conditional Statements... 73
3.8.3. Loops ... 75
3.8.4. Determinate Loops .. 80
3.8.5. Multiple Selections with switch ... 83
3.8.6. Statements That Break Control Flow.. 87

3.9. Big Numbers .. 89
3.10. Arrays... 92

3.10.1. Declaring Arrays ... 92
3.10.2. Accessing Array Elements... 94
3.10.3. The “for each” Loop .. 94
3.10.4. Array Copying ... 95
3.10.5. Command-Line Arguments.. 96
3.10.6. Array Sorting... 97
3.10.7. Multidimensional Arrays ... 99
3.10.8. Ragged Arrays... 102

4. Objects and Classes ..107
4.1. Introduction to Object-Oriented Programming ... 107

4.1.1. Classes .. 108
4.1.2. Objects .. 109
4.1.3. Identifying Classes .. 109
4.1.4. Relationships between Classes ... 110

4.2. Using Predefined Classes .. 112
4.2.1. Objects and Object Variables .. 112
4.2.2. The LocalDate Class of the Java Library ... 115
4.2.3. Mutator and Accessor Methods .. 116

iv Contents

4.3. Defining Your Own Classes .. 120
4.3.1. An Employee Class ... 120
4.3.2. Dissecting the Employee Class .. 122
4.3.3. First Steps with Constructors ... 123
4.3.4. Declaring Local Variables with var.. 124
4.3.5. Working with null References ... 125
4.3.6. Implicit and Explicit Parameters... 126
4.3.7. Benefits of Encapsulation.. 127
4.3.8. Class-Based Access Privileges... 129
4.3.9. Private Methods .. 130
4.3.10. Final Instance Fields ... 130

4.4. Static Fields and Methods ... 131
4.4.1. Static Fields .. 131
4.4.2. Static Constants .. 132
4.4.3. Static Methods .. 133
4.4.4. Factory Methods.. 134
4.4.5. The main Method.. 134

4.5. Method Parameters.. 138
4.6. Object Construction ... 143

4.6.1. Overloading ... 143
4.6.2. Default Field Initialization .. 144
4.6.3. The Constructor with No Arguments .. 145
4.6.4. Explicit Field Initialization .. 146
4.6.5. Parameter Names.. 147
4.6.6. Calling Another Constructor ... 147
4.6.7. Initialization Blocks... 148
4.6.8. Static Initialization .. 149

4.7. Records .. 153
4.7.1. The Record Concept.. 154
4.7.2. Constructors: Canonical, Compact, and Custom 156

4.8. Packages .. 158
4.8.1. Encapsulation.. 158
4.8.2. Package Names ... 158
4.8.3. Class Importation .. 159
4.8.4. Module Imports ... 161
4.8.5. Static Imports.. 161
4.8.6. Addition of a Class into a Package .. 162
4.8.7. Compiling with Packages .. 164
4.8.8. Package Access ... 165
4.8.9. The Class Path... 166
4.8.10. Setting the Class Path ... 168

4.9. JAR Files... 169
4.9.1. Creating JAR files .. 170
4.9.2. The Manifest ... 171
4.9.3. Executable JAR Files ... 172
4.9.4. Multi-Release JAR Files... 172
4.9.5. A Note about Command-Line Options... 174

4.10. Documentation Comments... 175
4.10.1. Comment Insertion.. 175
4.10.2. Class Comments .. 176
4.10.3. Method Comments .. 177

Contents v

4.10.4. Field Comments .. 178
4.10.5. Package Comments ... 178
4.10.6. HTML Markup... 178
4.10.7. Links.. 179
4.10.8. General Comments.. 181
4.10.9. Code Snippets ... 181
4.10.10. Comment Extraction ... 182

4.11. Class Design Hints ... 183
5. Inheritance ...187

5.1. Classes, Superclasses, and Subclasses.. 187
5.1.1. Defining Subclasses .. 188
5.1.2. Overriding Methods .. 189
5.1.3. Subclass Constructors... 190
5.1.4. Inheritance Hierarchies .. 193
5.1.5. Polymorphism.. 194
5.1.6. Understanding Method Calls .. 196
5.1.7. Preventing Inheritance: Final Classes and Methods............................... 198
5.1.8. Casting .. 200
5.1.9. Pattern Matching for instanceof .. 202
5.1.10. Protected Access ... 205

5.2. Object: The Cosmic Superclass .. 205
5.2.1. Variables of Type Object .. 206
5.2.2. The equals Method... 206
5.2.3. Equality Testing and Inheritance .. 208
5.2.4. The hashCode Method.. 211
5.2.5. The toString Method.. 215

5.3. Generic Array Lists .. 221
5.3.1. Declaring Array Lists .. 222
5.3.2. Accessing Array List Elements.. 224
5.3.3. Compatibility between Typed and Raw Array Lists 227

5.4. Object Wrappers and Autoboxing .. 228
5.5. Methods with a Variable Number of Arguments ... 232
5.6. Abstract Classes... 233
5.7. Enumeration Classes ... 238
5.8. Sealed Classes ... 242
5.9. Pattern Matching ... 247

5.9.1. Null Handling .. 248
5.9.2. Guards ... 249
5.9.3. Exhaustiveness.. 249
5.9.4. Dominance... 251
5.9.5. Patterns and Constants ... 251
5.9.6. Variable Scope and Fallthrough .. 252

5.10. Reflection ... 254
5.10.1. The Class Class .. 255
5.10.2. A Primer on Declaring Exceptions .. 257
5.10.3. Resources .. 258
5.10.4. Using Reflection to Analyze the Capabilities of Classes 260
5.10.5. Using Reflection to Analyze Objects at Runtime................................... 266
5.10.6. Using Reflection to Write Generic Array Code 270
5.10.7. Invoking Arbitrary Methods and Constructors 273

5.11. Design Hints for Inheritance ... 277

vi Contents

6. Interfaces, Lambda Expressions, and Inner Classes ..281
6.1. Interfaces ... 281

6.1.1. The Interface Concept... 282
6.1.2. Properties of Interfaces... 288
6.1.3. Interfaces and Abstract Classes.. 289
6.1.4. Static and Private Methods ... 291
6.1.5. Default Methods.. 291
6.1.6. Resolving Default Method Conflicts.. 292
6.1.7. Interfaces and Callbacks... 294
6.1.8. The Comparator Interface .. 296
6.1.9. Object Cloning... 298

6.2. Lambda Expressions .. 304
6.2.1. Why Lambdas? .. 304
6.2.2. The Syntax of Lambda Expressions .. 305
6.2.3. Functional Interfaces .. 307
6.2.4. Function Types .. 308
6.2.5. Method References ... 310
6.2.6. Constructor References .. 313
6.2.7. Variable Scope... 314
6.2.8. Lambda Expressions and this ... 316
6.2.9. Processing Lambda Expressions ... 317
6.2.10. Creating Comparators... 321

6.3. Inner Classes ... 322
6.3.1. Use of an Inner Class to Access Object State ... 323
6.3.2. Special Syntax Rules for Inner Classes... 326
6.3.3. Are Inner Classes Useful? Actually Necessary? Secure? 327
6.3.4. Local Inner Classes ... 328
6.3.5. Accessing Variables from Outer Methods ... 329
6.3.6. Anonymous Inner Classes ... 330
6.3.7. Static Classes .. 334
6.3.8. Nested Records ... 337

6.4. Service Loaders ... 338
6.5. Proxies ... 340

6.5.1. When to Use Proxies ... 340
6.5.2. Creating Proxy Objects ... 341
6.5.3. Properties of Proxy Classes... 344

7. Exceptions, Assertions, and Logging..347
7.1. Dealing with Errors.. 348

7.1.1. The Classification of Exceptions ... 349
7.1.2. Declaring Checked Exceptions.. 351
7.1.3. How to Throw an Exception .. 353
7.1.4. Creating Exception Classes... 354

7.2. Catching Exceptions .. 355
7.2.1. Catching an Exception .. 355
7.2.2. Catching Multiple Exceptions ... 357
7.2.3. Rethrowing and Chaining Exceptions ... 358
7.2.4. The finally Clause... 360
7.2.5. The try-with-Resources Statement.. 362
7.2.6. Analyzing Stack Trace Elements... 364

7.3. Tips for Using Exceptions .. 367

Contents vii

7.4. Using Assertions .. 370
7.4.1. The Assertion Concept .. 370
7.4.2. Assertion Enabling and Disabling ... 371
7.4.3. Using Assertions for Parameter Checking .. 373
7.4.4. Using Assertions for Documenting Assumptions 374

7.5. Logging .. 375
7.5.1. Should You Use the Java Logging Framework? 375
7.5.2. Logging 101 .. 376
7.5.3. The Platform Logging API ... 377
7.5.4. Logging Configuration .. 378
7.5.5. Log Handlers... 379
7.5.6. Filters and Formatters .. 382
7.5.7. A Logging Recipe .. 383

7.6. Debugging Tips .. 388
8. Generic Programming ...395

8.1. Type Parameters .. 395
8.1.1. The Advantage of Generic Programming .. 395
8.1.2. Who Wants to Be a Generic Programmer?.. 397
8.1.3. Defining a Simple Generic Class ... 397
8.1.4. Generic Methods ... 399
8.1.5. Bounds for Type Variables... 401
8.1.6. Generic Exceptions ... 403

8.2. Generic Code and the Virtual Machine.. 404
8.2.1. Type Erasure ... 404
8.2.2. Translating Generic Expressions .. 405
8.2.3. Translating Generic Methods.. 406
8.2.4. Calling Legacy Code.. 408

8.3. Inheritance Rules for Generic Types ... 409
8.4. Wildcard Types .. 410

8.4.1. The Wildcard Concept ... 410
8.4.2. Supertype Bounds for Wildcards... 412
8.4.3. Unbounded Wildcards ... 415
8.4.4. Wildcard Capture .. 415

8.5. Restrictions and Limitations .. 418
8.5.1. Type Parameters Cannot Be Instantiated with Primitive Types 418
8.5.2. Casts Only Work with Raw Types.. 418
8.5.3. You Cannot Create Arrays of Parameterized Types 419
8.5.4. Varargs Warnings .. 420
8.5.5. Generic Varargs Do Not Spread Primitive Arrays................................... 421
8.5.6. You Cannot Instantiate Type Variables ... 422
8.5.7. You Cannot Construct a Generic Array ... 423
8.5.8. Type Variables Are Not Valid in Static Contexts of Generic Classes 424
8.5.9. You Can Defeat Checked Exception Checking .. 425
8.5.10. Beware of Clashes after Erasure... 426
8.5.11. Type Inference in Generic Record Patterns is Limited 427

8.6. Reflection and Generics ... 429
8.6.1. The Generic Class Class... 429
8.6.2. Using Class<T> Parameters for Type Matching.. 430
8.6.3. Generic Type Information in the Virtual Machine 431
8.6.4. Type Literals ... 434

viii Contents

9. Collections..439
9.1. The Java Collections Framework ... 439

9.1.1. Separating Collection Interfaces and Implementation 440
9.1.2. The Collection Interface .. 442
9.1.3. Iterators .. 442
9.1.4. Generic Utility Methods .. 445

9.2. Interfaces in the Collections Framework... 448
9.3. Concrete Collections.. 451

9.3.1. Linked Lists ... 453
9.3.2. Array Lists ... 461
9.3.3. Hash Sets .. 461
9.3.4. Tree Sets ... 465
9.3.5. Queues and Deques... 468
9.3.6. Priority Queues ... 470

9.4. Maps .. 471
9.4.1. Basic Map Operations ... 471
9.4.2. Updating Map Entries ... 474
9.4.3. Map Views ... 476
9.4.4. Weak Hash Maps... 478
9.4.5. Linked Hash Sets and Maps.. 478
9.4.6. Enumeration Sets and Maps ... 480
9.4.7. Identity Hash Maps ... 481

9.5. Copies and Views ... 483
9.5.1. Small Collections... 483
9.5.2. Unmodifiable Copies and Views.. 485
9.5.3. Subranges ... 487
9.5.4. Sets From Boolean-Valued Maps... 487
9.5.5. Reversed Views ... 488
9.5.6. Checked Views .. 488
9.5.7. Synchronized Views .. 489
9.5.8. A Note on Optional Operations ... 489

9.6. Algorithms.. 493
9.6.1. Why Generic Algorithms?.. 493
9.6.2. Sorting and Shuffling .. 495
9.6.3. Binary Search.. 497
9.6.4. Simple Algorithms... 499
9.6.5. Bulk Operations... 501
9.6.6. Converting between Collections and Arrays... 502
9.6.7. Writing Your Own Algorithms ... 502

9.7. Legacy Collections ... 504
9.7.1. The Hashtable Class.. 504
9.7.2. Enumerations .. 504
9.7.3. Property Maps... 505
9.7.4. System Properties ... 508
9.7.5. Stacks .. 510
9.7.6. Bit Sets .. 510

10. Concurrency ...515
10.1. Running Threads.. 515
10.2. Thread States... 520

10.2.1. New Threads ... 521
10.2.2. Runnable Threads ... 521

Contents ix

10.2.3. Blocked and Waiting Threads.. 521
10.2.4. Terminated Threads .. 522

10.3. Thread Properties .. 523
10.3.1. Virtual Threads.. 523
10.3.2. Thread Interruption .. 524
10.3.3. Daemon Threads ... 527
10.3.4. Thread Names and Ids .. 527
10.3.5. Handlers for Uncaught Exceptions ... 528
10.3.6. Thread Priorities ... 529
10.3.7. Thread Factories and Builders .. 530

10.4. Coordinating Tasks .. 531
10.4.1. Callables and Futures ... 531
10.4.2. Executor Services.. 534
10.4.3. Invoking a Group of Tasks... 537
10.4.4. Thread-Local Variables.. 542
10.4.5. Scoped Values ... 543
10.4.6. The Fork-Join Framework.. 545

10.5. Synchronization ... 547
10.5.1. An Example of a Race Condition ... 548
10.5.2. The Race Condition Explained .. 550
10.5.3. Lock Objects.. 551
10.5.4. Condition Objects.. 554
10.5.5. Deadlocks .. 559
10.5.6. The synchronized Keyword.. 561
10.5.7. Synchronized Blocks ... 565
10.5.8. The Monitor Concept .. 567
10.5.9. Volatile Fields .. 568
10.5.10. Final Fields.. 569
10.5.11. Atomics.. 570
10.5.12. On-Demand Initialization .. 572
10.5.13. Safe Publication .. 573
10.5.14. Sharing with Thread-Local Variables .. 573

10.6. Thread-Safe Collections ... 574
10.6.1. Blocking Queues.. 575
10.6.2. Efficient Maps, Sets, and Queues ... 580
10.6.3. Atomic Update of Map Entries .. 582
10.6.4. Bulk Operations on Concurrent Hash Maps ... 585
10.6.5. Concurrent Set Views.. 587
10.6.6. Copy on Write Arrays .. 587
10.6.7. Parallel Array Algorithms.. 587
10.6.8. Older Thread-Safe Collections .. 588

10.7. Asynchronous Computations ... 589
10.7.1. Completable Futures... 589
10.7.2. Composing Completable Futures .. 591
10.7.3. Long-Running Tasks in User Interface Callbacks 597

10.8. Processes ... 603
10.8.1. Building a Process... 603
10.8.2. Running a Process... 605
10.8.3. Process Handles .. 607

x Contents

11. Annotations ..611
11.1. Using Annotations.. 611

11.1.1. Annotation Elements ... 612
11.1.2. Multiple and Repeated Annotations.. 613
11.1.3. Annotating Declarations.. 613
11.1.4. Annotating Type Uses ... 614
11.1.5. Receiver Parameters ... 615

11.2. Defining Annotations ... 616
11.3. Annotations in the Java API ... 619

11.3.1. Annotations for Compilation ... 620
11.3.2. Meta-Annotations .. 621

11.4. Processing Annotations at Runtime... 623
11.5. Source-Level Annotation Processing ... 627

11.5.1. Annotation Processors... 627
11.5.2. The Language Model API .. 628
11.5.3. Using Annotations to Generate Source Code.. 628

11.6. Bytecode Engineering.. 632
11.6.1. Modifying Class Files .. 633
11.6.2. Modifying Bytecodes at Load Time ... 638

12. The Java Platform Module System ..641
12.1. The Module Concept .. 641
12.2. Naming Modules.. 642
12.3. The Modular “Hello, World!” Program .. 643
12.4. Requiring Modules... 645
12.5. Exporting Packages ... 646
12.6. Modular JARs ... 649
12.7. Modules and Reflective Access.. 651
12.8. Automatic Modules .. 654
12.9. The Unnamed Module.. 656
12.10. Command-Line Flags for Migration... 657
12.11. Transitive and Static Requirements .. 658
12.12. Importing Modules... 659
12.13. Qualified Exporting and Opening .. 660
12.14. Service Loading ... 661
12.15. Tools for Working with Modules .. 663

Appendix..667
Index ... 671

Contents xi

This page intentionally left blank

Preface
To the Reader
In late 1995, the Java programming language burst onto the Internet scene and gained instant
celebrity status. The promise of Java technology was that it would become the universal glue that
connects users with information wherever it comes from—web servers, databases, information
providers, or any other imaginable source. Indeed, Java is in a unique position to fulfill this
promise. It is an extremely solidly engineered language that has gained wide acceptance. Its
built-in security and safety features are reassuring both to programmers and to the users of Java
programs. Java has built-in support for advanced programming tasks, such as network
programming, database connectivity, and concurrency.

Since 1995, over twenty revisions of the Java Development Kit have been released. The
Application Programming Interface (API) has grown from about a hundred to over 4,000 classes.
The API now spans such diverse areas as concurrent programming, collections, user interface
construction, database management, internationalization, security, and XML processing.

The book that you are reading right now is the first volume of the fourteenth edition of Core Java.
Each edition closely followed a release of the Java Development Kit, and each time, I rewrote the
book to take advantage of the newest Java features. This edition has been updated to reflect the
features of Java 25.

As with the previous editions, this book still targets serious programmers who want to put Java to
work on real projects. I think of you, the reader, as a programmer with a solid background in a
programming language other than Java. I assume that you don’t like books filled with toy
examples (such as toasters, zoo animals, or “nervous text”). You won’t find any of these in the
book. My goal is to enable you to fully understand the Java language and library, not to give you
an illusion of understanding.

In this book, you will find lots of sample code demonstrating almost every language and library
feature. The sample programs are purposefully simple to focus on the major points, but, for the
most part, they aren’t fake and they don’t cut corners. They should make good starting points for
your own code.

I assume you are willing, even eager, to learn about all the features that the Java language puts at
your disposal. In this volume, you will find a detailed treatment of

▪ Object-oriented programming
▪ Reflection and proxies
▪ Interfaces and inner classes
▪ Exception handling
▪ Generic programming
▪ The collections framework
▪ Concurrency
▪ Annotations

xiii

▪ The Java platform module system

With the explosive growth of the Java class library, a one-volume treatment of all the features of
Java that serious programmers need to know is simply not possible. Hence, the book is broken up
into two volumes. This first volume concentrates on the fundamental concepts of the Java
language. The second volume, Core Java, Volume II: Advanced Features, goes further into the
most important libraries.

For twelve editions, user interface programming was considered fundamental, but the time has
come to recognize that it is no more, and to move it into the second volume. That volume includes
detailed discussions of these topics:

▪ The Stream API
▪ File processing and regular expressions
▪ Databases
▪ XML processing
▪ Scripting and Compiling APIs
▪ Internationalization
▪ Network programming
▪ Graphical user interface design
▪ Graphics programming
▪ Foreign functions and memory

When writing a book, errors and inaccuracies are inevitable. I’d very much like to know about
them. But, of course, I’d prefer to learn about each of them only once. You will find a list of
frequently asked questions and bug fixes at https://horstmann.com/corejava. Strategically placed at
the end of the errata page (to encourage you to read through it first) is a form you can use to
report bugs and suggest improvements. Please don’t be disappointed if I don’t answer every
query or don’t get back to you immediately. I do read all e-mails and appreciate your input to
make future editions of this book clearer and more informative.

A Tour of This Book
Chapter 1 gives an overview of the capabilities of Java that set it apart from other programming
languages. The chapter explains what the designers of the language set out to do and to what
extent they succeeded. A short history of Java follows, detailing how Java came into being and
how it has evolved.

In Chapter 2, you will see how to download and install the JDK and the program examples for
this book. Then I’ll guide you through compiling and running a console application and a
graphical application. You will see how to use the plain JDK, a Java IDE, and the JShell tool.

Chapter 3 starts the discussion of the Java language. In this chapter, I cover the basics:
variables, loops, and simple functions. If you are a C or C++ programmer, this is smooth sailing
because the syntax for these language features is essentially the same as in C. If you come from a
non-C background such as Visual Basic, you will want to read this chapter carefully.

Object-oriented programming (OOP) is now in the mainstream of programming practice, and Java
is an object-oriented programming language. Chapter 4 introduces encapsulation, the first of
two fundamental building blocks of object orientation, and the Java language mechanism to
implement it—that is, classes and methods. In addition to the rules of the Java language, you will

xiv Preface

https://horstmann.com/corejava

also find advice on sound OOP design. Finally, I cover the marvelous javadoc tool that formats your
code comments as a set of hyperlinked web pages. If you are familiar with C++, you can browse
through this chapter quickly. Programmers coming from a non-object-oriented background should
expect to spend some time mastering the OOP concepts before going further with Java.

Classes and encapsulation are only one part of the OOP story, and Chapter 5 introduces the
other—namely, inheritance. Inheritance lets you take an existing class and modify it according to
your needs. This is a fundamental technique for programming in Java. The inheritance mechanism
in Java is quite similar to that in C++. Once again, C++ programmers can focus on the
differences between the languages.

Chapter 6 shows you how to use Java’s notion of an interface. Interfaces let you go beyond the
simple inheritance model of Chapter 5. Mastering interfaces allows you to have full access to the
power of Java’s completely object-oriented approach to programming. After covering interfaces, I
move on to lambda expressions, a concise way for expressing a block of code that can be
executed at a later point in time. I then explain a useful technical feature of Java called inner
classes.

Chapter 7 discusses exception handling—Java’s robust mechanism to deal with the fact that bad
things can happen to good programs. Exceptions give you an efficient way of separating the
normal processing code from the error handling. Of course, even after hardening your program
by handling all exceptional conditions, it still might fail to work as expected. Then the chapter
moves on to logging. In the final part of this chapter, I give you a number of useful debugging
tips.

Chapter 8 gives an overview of generic programming. Generic programming makes your
programs easier to read and safer. I show you how to use strong typing and remove unsightly and
unsafe casts, and how to deal with the complexities that arise from the need to stay compatible
with older versions of Java.

The topic of Chapter 9 is the collections framework of the Java platform. Whenever you want to
collect multiple objects and retrieve them later, you should use a collection that is best suited for
your circumstances, instead of just tossing the elements into an array. This chapter shows you
how to take advantage of the standard collections that are prebuilt for your use.

Chapter 10 covers concurrency, which enables you to program tasks to be done in parallel. This
is an important and exciting application of Java technology in an era where processors have
multiple cores that you want to keep busy.

In Chapter 11, you will learn about annotations, which allow you to add arbitrary information
(sometimes called metadata) to a Java program. We show you how annotation processors can
harvest these annotations at the source or class file level, and how annotations can be used to
influence the behavior of classes at runtime. Annotations are only useful with tools, and we hope
that our discussion will help you select useful annotation processing tools for your needs.

In Chapter 12, you will learn about the Java Platform Module System that facilitates an orderly
evolution of the Java platform and core libraries. This module system provides encapsulation for
packages and a mechanism for describing module requirements. You will learn the properties of
modules so that you can decide whether to use them in your own applications. Even if you decide
not to, you need to know the new rules so that you can interact with the Java platform and other
modularized libraries.

Preface xv

The Appendix lists the reserved words of the Java language.

Conventions
As is common in many computer books, I use monospace type to represent computer code.

Note: Notes are tagged with “note” icons that look like this.

Tip: Tips are tagged with “tip” icons that look like this.

Caution: When there is danger ahead, I warn you with a “caution” icon.

Preview: Preview features that are slated to become a part of the language or API in the
future are labeled with this icon.

Java comes with a large programming library, or Application Programming Interface (API). When
using an API call for the first time, I add a short summary description at the end of the section.
These descriptions are a bit more informal but, hopefully, also a little more informative than those
in the official online API documentation. The names of interfaces are in italics, just like in the
official documentation. The number after a class, interface, or method name is the JDK version in
which the feature was introduced, as shown in the following example:

java.lang.IO 25

▪ println(Object obj)
Converts the object to a string and prints it on the console, followed by a line separator.

Programs whose source code is on the book’s companion web site are presented as listings, for
instance:

Listing 1.1: NotHelloWorld.java

1 void main() {
2 IO.println("We will not use 'Hello, World!'");
3 }

xvi Preface

Sample Code
The web site for this book at https://horstmann.com/corejava contains all sample code from the
book. See Chapter 2 for more information on installing the Java Development Kit and the sample
code.

Preface xvii

https://horstmann.com/corejava

This page intentionally left blank

Acknowledgments
Writing a book is always a monumental effort, and rewriting it doesn’t seem to be much easier,
especially with the continuous change in Java technology. Making a book a reality takes many
dedicated people, and it is my great pleasure to acknowledge the contributions of the entire Core
Java team.

My thanks go to my editor, Harry Misthos, and to Julie Nahil from Pearson for steering the book
through the production process. I wrote the book using HTML and CSS, and Prince
(https://princexml.com) turned it into PDF—a workflow that I highly recommend.

Thanks to the many readers of earlier editions who reported errors and made lots of thoughtful
suggestions for improvement. I am particularly grateful to the excellent reviewing team who went
over the manuscript with an amazing eye for detail and saved me from many embarrassing
errors.

Reviewers of this and earlier editions include Chuck Allison (Utah Valley University), Lance
Andersen (Oracle), Gail Anderson (Anderson Software Group), Paul Anderson (Anderson Software
Group), Alan Bateman (Oracle), Alec Beaton (IBM), Cliff Berg, Andrew Binstock (Oracle), Joshua
Bloch, David Brown, Brian Burkhalter (Oracle), Corky Cartwright, Hillmer Chona, Frank Cohen
(PushToTest), Chris Crane (devXsolution), Joe Darcy (Oracle), Nicholas J. De Lillo (Manhattan
College), Rakesh Dhoopar (Oracle), Ahmad R. Elkomey, Hanno Embregts (Info Support), Robert
Evans (Senior Staff, The Johns Hopkins University Applied Physics Lab), David Geary (Clarity
Training), Jim Gish (Oracle), Brian Goetz (Oracle), Angela Gordon, Dan Gordon (Electric Cloud),
Rob Gordon, John Gray (University of Hartford), Cameron Gregory (olabs.com), Andrzej Grzesik,
Marty Hall, Majid Hameed, Vincent Hardy (Adobe Systems), Dan Harkey (San Jose State
University), Steve Haines, William Higgins (IBM), Marc Hoffmann (mtrail), Vladimir Ivanovic
(PointBase), Jerry Jackson (CA Technologies), Josh Juneau, Heinz Kabutz (The Java Specialists’
Newsletter, https://javaspecialists.eu), Stepan V. Kalinin (I-Teco/Servionica LTD), Tim Kimmet
(Walmart), John Kostaras, Jerzy Krolak, Chris Laffra, Charlie Lai (Apple), Angelika Langer, Jeff
Langr (Langr Software Solutions), Doug Langston, Hang Lau (McGill University), Mark Lawrence,
Doug Lea (SUNY Oswego), Jason Lee (IBM), Gregory Longshore, Bob Lynch (Lynch Associates),
Michael McMahon (Oracle), Rustam Mehmandarov, Philip Milne (consultant), Mark Morrissey
(The Oregon Graduate Institute), Maurice Naftalin, Mahesh Neelakanta (Florida Atlantic
University), José Paumard (Oracle), Hao Pham, Paul Philion, Blake Ragsdell, Ylber Ramadani
(Ryerson University), Stuart Reges (University of Arizona), Simon Ritter (Azul Systems), Rich
Rosen (Interactive Data Corporation), Peter Sanders (ESSI University, Nice, France), Dr. Paul
Sanghera (San Jose State University and Brooks College), Naoto Sato (Oracle), Paul Sevinc
(Teamup AG), Devang Shah (Sun Microsystems), Yoshiki Shibata, Richard Slywczak (NASA/Glenn
Research Center), Bradley A. Smith, Steven Stelting (Oracle), Christopher Taylor, Luke Taylor
(Valtech), George Thiruvathukal, Kim Topley (StreamingEdge), Janet Traub, Henri Tremblay, Paul
Tyma (consultant), Christian Ullenboom, Peter van der Linden, Joe Wang (Oracle), Sven
Woltmann, Burt Walsh, Dan Xu (Oracle), and John Zavgren (Oracle).

Finally, a warm thank you to my coauthor of earlier editions, Gary Cornell, and to Greg Doench
who was my editor for almost thirty years.

xix

https://princexml.com/
https://javaspecialists.eu/

Cay Horstmann
Düsseldorf, Germany
September 2025

xx Acknowledgments

Fundamental
Programming
Structures in Java
At this point, you should have successfully installed the JDK and executed the sample programs
from Chapter 2. It’s time to start programming. This chapter shows you how the basic
programming concepts such as data types, branches, and loops are implemented in Java.

3.1. A Simple Java Program
Let’s look more closely at one of the simplest Java programs you can have—one that merely prints
a message to console:

void main() {
IO.println("We will not use 'Hello, World!'");

}

First and foremost, Java is case sensitive. If you made any mistakes in capitalization (such as
typing Main instead of main), the program will not run.

The program declares a method called main. The term “method” is Java-speak for a function—a
block of code that carries out a specific task. You must have a main method in every program. You
can, of course, add your own methods and call them from the main method.

Notice the braces { } in the source code. In Java, as in C/C++, braces are used to form a group of
statements (called a block). In Java, the code for any method must be started by an opening brace
{ and ended by a closing brace }.

Chapter 3

29

Brace styles have inspired an inordinate amount of useless controversy. This book follows a
compact style that is common among Java programmers, sometimes called the “Kernighan and
Ritche” style. In other styles, matching braces line up. As whitespace is irrelevant to the Java
compiler, you can use whatever brace style you like.

The main method calls another method, called println, defined in the IO class. You will learn a lot
more about classes in the next chapter. For now, think of a class as a container for the program
logic that defines the behavior of an application. Classes are the building blocks with which all
Java applications are built.

In fact, everything in a Java program lives inside a class, even our main method. It is placed inside
a class whose name is the name of the file, without the extension. If we place the code in a file
named FirstSample.java, main is a method of a class FirstSample.

The standard naming convention (used in the name FirstSample) is that class names are nouns
that start with an uppercase letter. If a name consists of multiple words, use an initial uppercase
letter in each of the words. This use of uppercase letters in the middle of a name is sometimes
called “camel case” or, self-referentially, “CamelCase.”

Note: Prior to Java 25, you had to explicitly declare the class containing the main method.
This is no longer necessary.

It used to be a requirement to declare the main method as

public static void main(String[] args)

You will learn in Chapter 4 what the keywords public and static mean. The String[] args
parameter holds command line arguments—see Section 3.10.5.

Moreover, Java 25 introduced the IO class to simplify console input and output. Previously,
you had to use the special System.out object, which was yet another concept that was
confusing to beginners.

To run any of the programs in this chapter with an older version of Java, do the following:

1. Place all code inside a class whose name equals the file name, without the
extension.

2. Declare main in the old style.
3. Replace IO.println with System.out.println

For example:

public class FirstSample {
public static void main(String[] args) {

System.out.println("We will not use 'Hello, World!'");
}

}

30 Chapter 3 ▪ Fundamental Programming Structures in Java

Note: Version 1.0 of the Java Language Specification decreed that the main method must be
declared public, static, and void. (The Java Language Specification is the official document
that describes the Java language. You can view or download it from https://docs.oracle.com/
javase/specs.)

However, early versions of the Java launcher were willing to execute Java programs even
when the main method was not public. A programmer filed a bug report. To see it, visit
https://bugs.openjdk.org/browse/JDK-4252539. In 1999, that bug was marked as “closed, will
not be fixed.” An engineer added an explanation that the Java Virtual Machine
Specification does not mandate that main is public and that “fixing it will cause potential
troubles.” In the end, sanity prevailed. As of Java 1.4, the Java launcher enforces that the
main method is public, as intended in the language specification. That behavior was in place
until Java 25, which allows other forms of the main method.

It is remarkable that the bug reports and their resolutions have been available for anyone
to scrutinize for as long as Java existed, even before it became open source.

Now turn your attention to the contents inside the braces of the main method,

IO.println("We will not use 'Hello, World!'");

This is the body of the method. The body of most methods contains multiple statements, but here
we have just one. As with most programming languages, you can think of Java statements as
sentences of the language. In Java, every statement must end with a semicolon. In particular,
carriage returns do not mark the end of a statement, so statements can span multiple lines if
need be.

Here, we are calling the println method that is declared in a class called IO. Notice the period
that separates the name of the IO class and the println method.

The println method receives a string argument. The method displays the string argument on the
console. It then terminates the output line, so that each call to println displays its output on a
new line. Notice that Java, like C/C++, uses double quotes to delimit strings. (You can find more
information about strings later in this chapter.)

Methods in Java, like functions in any programming language, can use zero, one, or more
arguments, which are enclosed in parentheses. Even if a method has no arguments, you must still
use empty parentheses. For example, a variant of the println method with no arguments just
prints a blank line. You invoke it with the call

IO.println();

Note: The IO class also has a print method that doesn’t add a newline character to the
output. For example, IO.print("Hello") prints Hello without a newline. The next output
appears immediately after the letter o.

You compile the file with the command

3.1 ▪ A Simple Java Program 31

https://docs.oracle.com/javase/specs
https://docs.oracle.com/javase/specs
https://bugs.openjdk.org/browse/JDK-4252539

You run the sample program with this command:

java FirstSample.java

When the program executes, it simply displays the string We will not use 'Hello, World!' on the
console.

If you intend to run a program multiple times, it is more efficient to compile it first:

javac FirstSample.java

You end up with a file containing the bytecodes for this class. These are instructions for the Java
virtual machine. The Java compiler names the bytecode file FirstSample.class and stores it in the
same directory as the source file. Whenever you want to launch the program, issue the following
command:

java FirstSample

Remember to leave off the .class extension.

When you use

java ClassName

to run a compiled program, the Java virtual machine is launched, and execution starts with the
code in the main method of the class you indicate.

3.2. Comments
Comments in Java, as in most programming languages, do not show up in the executable
program. Thus, you can add as many comments as needed without fear of bloating the code. Java
has three ways of marking comments. The most common form is a //. Use this for a comment that
runs from the // to the end of the line.

IO.println("We will not use 'Hello, World!'"); // is this too cute?

When longer comments are needed, you can mark each line with a //, or you can use the /* and
*/ comment delimiters that let you block off a longer comment.

Finally, a third kind of comment is used to generate documentation automatically. This comment
uses a /** to start and a */ to end. You can see this type of comment in Listing 3.1. For more on
this type of comment and on automatic documentation generation, see Chapter 4.

Listing 3.1: FirstSample.java

1 /**
2 * This is the first sample program in Core Java Chapter 3
3 */
4 void main() {
5 IO.println("We will not use 'Hello, World!'");
6 }

32 Chapter 3 ▪ Fundamental Programming Structures in Java

Caution: /* */ comments do not nest in Java. That is, you might not be able to deactivate
code simply by surrounding it with /* and */ because the code you want to deactivate
might itself contain a */ delimiter.

3.3. Data Types
Java is a strongly typed language. This means that every variable must have a declared type.
There are eight primitive types in Java. Four of them are integer types; two are floating-point
number types; one is the character type char, used for UTF-16 code units in the Unicode encoding
scheme (see Section 3.3.3); and one is a boolean type for truth values.

Note: Java has an arbitrary-precision arithmetic package. However, “big numbers,” as they
are called, are Java objects and not a primitive Java type. You will see how to use them
later in this chapter.

3.3.1. Integer Types
The integer types are for numbers without fractional parts. Negative values are allowed. Java
provides the four integer types shown in Table 3.1.

Table 3.1: Java Integer Types

Type Storage
Requirement Range (Inclusive)

byte 1 byte –128 to 127

short 2 bytes –32,768 to 32,767

int 4 bytes –2,147,483,648 to 2,147,483,647 (just over 2 billion)

long 8 bytes –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

In most situations, the int type is the most practical. If you want to represent the number of
inhabitants of our planet, you’ll need to resort to a long. The byte and short types are mainly
intended for specialized applications, such as low-level file handling, or for large arrays when
storage space is at a premium.

Under Java, the ranges of the integer types do not depend on the machine on which you will be
running the Java code. This alleviates a major pain for the programmer who wants to move
software from one platform to another, or even between operating systems on the same platform.
In contrast, C and C++ programs use the most efficient integer type for each processor. As a
result, a C program that runs well on a 32-bit processor may exhibit integer overflow on a 16-bit
system. Since Java programs must run with the same results on all machines, the ranges for the
various types are fixed.

3.3 ▪ Data Types 33

Long integer numbers have a suffix L or l (for example, 4000000000L). Hexadecimal numbers have a
prefix 0x or 0X (for example, 0xCAFE). Octal numbers have a prefix 0 (for example, 010 is
8)—naturally, this can be confusing, and few programmers use octal constants.

You can write numbers in binary, with a prefix 0b or 0B. For example, 0b1001 is 9. You can add
underscores to number literals, such as 1_000_000 (or 0b1111_0100_0010_0100_0000) to denote one
million. The underscores are for human eyes only. The Java compiler simply removes them.

Note: In C and C++, the sizes of types such as int and long depend on the target platform.
On a 32-bit processor, integers have 4 bytes, but on a 64-bit processor they may have 4
bytes or 8 bytes. These differences make it challenging to write cross-platform programs.
In Java, the sizes of all numeric types are platform-independent.

Note that Java does not have any unsigned versions of the int, long, short, or byte types.

Note: If you work with integer values that can never be negative and you really need an
additional bit, you can, with some care, interpret signed integer values as unsigned. For
example, instead of having a byte value b represent the range from –128 to 127, you may
want a range from 0 to 255. You can store it in a byte. Due to the nature of binary
arithmetic, addition, subtraction, and multiplication will work provided they don’t overflow.
For other operations, call Byte.toUnsignedInt(b) to get an int value between 0 and 255, then
process the integer value and cast back to byte. The Integer and Long classes have methods
for unsigned division and remainder.

3.3.2. Floating-Point Types
The floating-point types denote numbers with fractional parts. The two floating-point types are
shown in Table 3.2.

Table 3.2: Floating-Point Types

Type Storage
Requirement Range

float 4 bytes Approximately ±3.40282347×1038 (6–7 significant
decimal digits)

double 8 bytes Approximately ±1.79769313486231570×10308 (15
significant decimal digits)

The name double refers to the fact that these numbers have twice the precision of the float type.
(Some people call these double-precision numbers.) The limited precision of float (6-7 significant
digits) is simply not sufficient for many situations. Use float values only when you work with a
library that requires them, or when you need to store a very large number of them.

34 Chapter 3 ▪ Fundamental Programming Structures in Java

Java 20 adds a couple of methods (Float.floatToFloat16 and Float.float16toFloat) for storing “half-
precision” 16-bit floating-point numbers in short values. These are used for implementating
neural networks.

Numbers of type float have a suffix F or f (for example, 3.14F). Floating-point numbers without an
F suffix (such as 3.14) are always considered to be of type double. You can optionally supply the D
or d suffix (for example, 3.14D).

An E or e denotes a decimal exponent. For example, 1.729E3 is the same as 1729.

Note: You can specify floating-point literals in hexadecimal. For example, 0.125 = 2–3 can
be written as 0x1.0p-3. In hexadecimal notation, you use a p, not an e, to denote the
exponent. (An e is a hexadecimal digit.) Note that the mantissa is written in hexadecimal
and the exponent in decimal. The base of the exponent is 2, not 10.

All floating-point computations follow the IEEE 754 specification. In particular, there are three
special floating-point values to denote overflows and errors:

▪ Positive infinity
▪ Negative infinity
▪ NaN (not a number)

For example, the result of dividing a positive floating-point number by 0 is positive infinity.
Dividing 0.0 by 0 or the square root of a negative number yields NaN.

Note: The constants Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY, and Double.NaN (as
well as corresponding Float constants) represent these special values, but they are rarely
used in practice. In particular, you cannot test

if (x == Double.NaN) // is never true

to check whether a particular result equals Double.NaN. All “not a number” values are
considered distinct. However, you can use the Double.isNaN method:

if (Double.isNaN(x)) // check whether x is "not a number"

Note: There are both positive and negative floating-point zeroes, 0.0 and -0.0, but you
can’t tell them apart with ==. To check whether a value is negative zero, use this test:

if (Double.compare(x, -0.0) == 0)

Caution: Floating-point numbers are not suitable for financial calculations in which
roundoff errors cannot be tolerated. For example, the command IO.println(2.0 - 1.1) prints
0.8999999999999999, not 0.9 as you would expect. Such roundoff errors are caused by the fact
that floating-point numbers are represented in the binary number system. There is no

3.3 ▪ Data Types 35

precise binary representation of the fraction 9/10, just as there is no accurate
representation of the fraction 1/3 in the decimal system. If you need precise numerical
computations without roundoff errors, use the BigDecimal class, which is introduced later in
this chapter.

3.3.3. The char Type
The char type was originally intended to describe individual characters. However, this is no longer
the case. Nowadays, some Unicode characters can be described with one char value, and other
Unicode characters require two char values. Read the next section for the gory details.

Literal values of type char are enclosed in single quotes. For example, 'A' is a character constant
with value 65. It is different from "A", a string containing a single character. Values of type char
can be expressed as hexadecimal values that run from \u0000 to \uFFFF.

Besides the \u escape sequences, there are several escape sequences for special characters, as
shown in Table 3.3. You can use these escape sequences inside quoted character literals and
strings, such as '\u005B' or "Hello\n". The \u escape sequence (but none of the other escape
sequences) can even be used outside quoted character constants and strings. For example,

void main()\u007BIO.println("Hello, World!");\u007D

is perfectly legal—\u007B and \u007D are the encodings for { and }.

Table 3.3: Escape Sequences for Special Characters

Escape
Sequence Name Unicode

Value

\b Backspace \u0008

\t Tab \u0009

\n Line feed \u000a

\r Carriage return \u000d

\f Form feed \u000c

\" Double quote \u0022

\' Single quote \u0027

\\ Backslash \u005c

\s Space. Used in text blocks to retain trailing
whitespace. \u0020

\newline In text blocks only: Join this line with the next —

36 Chapter 3 ▪ Fundamental Programming Structures in Java

Caution: Unicode escape sequences are processed before the code is parsed. For example,
"\u0022+\u0022" is not a string consisting of a plus sign surrounded by quotation marks
(U+0022). Instead, the \u0022 are converted into " before parsing, yielding ""+"", or an
empty string.

Even more insidiously, you must beware of \u inside comments. The comment

// \u000A is a newline

yields a syntax error since \u000A is replaced with a newline when the program is read.
Similarly, a comment

// look inside c:\users

yields a syntax error because the \u is not followed by four hex digits.

Note: You can have any number of u in a Unicode escape sequence: \u00E9 and \uuu00E9
both denote the character é. There is a reason for this oddity. Consider a programmer
happily coding in Unicode who is forced, for some archaic reason, to check in code as
ASCII only. A conversion tool can turn any character > U+007F into a Unicode escape and
add a u to every existing Unicode escape. That makes the conversion reversible. For
example, \uD800 é is turned into \uuD800 \u00E9 and can be converted back to \uD800 é.

3.3.4. Unicode and the char Type
To fully understand the char type, you have to know about the Unicode encoding scheme. Before
Unicode, there were many different character encoding standards: ASCII in the United States,
ISO 8859-1 for Western European languages, KOI-8 for Russian, GB18030 and BIG-5 for Chinese,
and so on. This caused two problems. First, a particular code value corresponds to different
letters in the different encoding schemes. Second, the encodings for languages with large
character sets have variable length: Some common characters are encoded as single bytes, others
require two or more bytes.

Unicode was designed to solve both problems. When the unification effort started in the 1980s, a
fixed 2-byte code was more than sufficient to encode all characters used in all languages in the
world, with room to spare for future expansion—or so everyone thought at the time. In 1991,
Unicode 1.0 was released, using slightly less than half of the available 65,536 code values. Java
was designed from the ground up to use 16-bit Unicode characters, which was a major advance
over other programming languages that used 8-bit characters.

Unfortunately, over time, the inevitable happened. Unicode grew beyond 65,536 characters,
primarily due to the addition of a very large set of ideographs used for Chinese, Japanese, and
Korean. Now, the 16-bit char type is insufficient to describe all Unicode characters.

We need a bit of terminology to explain how this problem is resolved in Java. A code point is an
integer value associated with a character in an encoding scheme. In the Unicode standard, code
points are written in hexadecimal and prefixed with U+, such as U+0041 for the code point of the
Latin letter A. Unicode has code points that are grouped into 17 code planes, each holding 65536

3.3 ▪ Data Types 37

characters. The first code plane, called the basic multilingual plane, consists of the “classic”
Unicode characters with code points U+0000 to U+FFFF. Sixteen additional planes, with code
points U+10000 to U+10FFFF, hold many more characters called supplementary characters.

How a Unicode code point (that is, an integer ranging from 0 to hexadecimal 10FFFF) is
represented in bits depends on the character encoding. You could encode each character as a
sequence of 21 bits, but that is impractical for computer hardware. The UTF-32 encoding simply
places each code point into 32 bits, where the top 11 bits are zero. That is rather wasteful. The
most common encoding on the Internet is UTF-8, using between one and four bytes per character.
See Chapter 2 of Volume II for details of that encoding.

Java strings use the UTF-16 encoding. It encodes all Unicode code points in a variable-length
code of 16-bit units, called code units. The characters in the basic multilingual plane are encoded
as a single code unit. All other characters are encoded as consecutive pairs of code units. Each of
the code units in such an encoding pair falls into a range of 2048 unused values of the basic
multilingual plane, called the surrogates area ('\uD800' to '\uDBFF' for the first code unit, '\uDC00'
to '\uDFFF' for the second code unit). This is rather clever, because you can immediately tell
whether a code unit encodes a single character or it is the first or second part of a supplementary
character. For example, the beer mug emoji 🍺 has code point U+1F37A and is encoded by the
two code units '\uD83C' and '\uDF7A'. (See https://tools.ietf.org/html/rfc2781 for a description of
the encoding algorithm.) Each code unit is stored as a char value. The details are not important.
All you need to know is that a single Unicode character may require one or two char values.

You cannot ignore characters with code units above U+FFFF. Your customers may well write in a
language where these characters are needed, or they may be fond of putting emojis such as 🍺
into their messages.

Nowadays, Unicode has become so complex that even code points no longer correspond to what a
human viewer would perceive as a single character or symbol. This happens with languages
whose characters are made from smaller building blocks, with emojis that can have modifiers for
gender and skin tone, and with an ever-growing number of other compositions.

Consider the pirate flag 🏴‍☠. You perceive a single symbol: the flag. However, this symbol is
composed of four Unicode code points: U+1F3F4 (waving black flag), U+200D (zero width
joiner), U+2620 (skull and crossbones), and U+FE0F (variation selector-16). In Java, you need
five char values to represent the flag: two char for the first code point, and one each for the other
three.

In summary, a visible character or symbol is encoded as a sequence of some number of char
values, and there is almost never a need to look at the individual values. Always work with strings
(see Section 3.6) and don’t worry about their representation as char sequences.

3.3.5. The boolean Type
The boolean type has two values, false and true. It is used for evaluating logical conditions. You
cannot convert between integers and boolean values.

Note: In languages such as C++ and JavaScript, other values, such as numbers and even
strings, can be used in place of boolean values. The value 0 is equivalent to the bool value

38 Chapter 3 ▪ Fundamental Programming Structures in Java

https://tools.ietf.org/html/rfc2781

false, and a nonzero value is equivalent to true. This is not the case in Java. Thus, Java
programmers are shielded from accidents such as

if (x = 0) // oops... meant x == 0

In C++ and JavaScript, this test compiles and runs, always evaluating to false. In Java, the
test does not compile because the integer expression x = 0 cannot be converted to a boolean
value.

3.4. Variables and Constants
As in every programming language, variables are used to store values. Constants are variables
whose values don’t change. In the following sections, you will learn how to declare variables and
constants.

3.4.1. Declaring Variables
In Java, every variable has a type. You declare a variable by placing the type first, followed by the
name of the variable. Here are some examples:

double salary;
int vacationDays;
long earthPopulation;
boolean done;

Notice the semicolon at the end of each declaration. The semicolon is necessary because a
declaration is a complete Java statement, which must end in a semicolon.

The identifier for a variable name (as well as for other names) is made up of letters, digits,
currency symbols, and “punctuation connectors.” The first character cannot be a digit.

Symbols like '+' or '©' cannot be used inside variable names, nor can spaces. Letter case is
significant: main and Main are distinct identifiers. The length of an identifier is essentially
unlimited.

The terms “letter,” “digit,” and “currency symbol” are much broader in Java than in most
languages. A letter is any Unicode character that denotes a letter in a language. For example,
German users can use umlauts such as ä in variable names; Greek speakers could use a π.
Similarly, digits are 0–9 and any Unicode characters that denote a digit. Currency symbols are $, €,
¥, and so on. Punctuation connectors include the underscore character _, a “wavy low line”﹏,
and a few others. In practice, most programmers stick to A-Z, a-z, 0-9, and the underscore _.

Tip: If you are really curious as to what Unicode characters can be used in identifiers, you
can use the isJavaIdentifierStart and isJavaIdentifierPart methods in the Character class to
check.

3.4 ▪ Variables and Constants 39

Tip: Even though $ is a valid character in an identifier, you should not use it in your own
code. It is intended for names that are generated by the Java compiler and other tools.

You also cannot use a Java keyword such as class as a variable name.

Underscores can be parts of identifiers. This is common for constant names, such as
Double.POSITIVE_INFINITY. However, a single underscore _ is a keyword.

Note: As of Java 21, a single underscore _ denotes a variable that is syntactially required
but never used. You will see examples in Chapters 6 and 7.

You can declare multiple variables on a single line:

int i, j; // both are integers

I don’t recommend this style. If you declare each variable separately, your programs are easier to
read.

Note: As you saw, names are case sensitive, for example, hireday and hireDay are two
separate names. In general, you should not have two names that only differ in their letter
case. However, sometimes it is difficult to come up with a good name for a variable. Many
programmers then give the variable the same name as the type, for example

Box box; // "Box" is the type and "box" is the variable name

Other programmers prefer to use an “a” prefix for the variable:

Box aBox;

3.4.2. Initializing Variables
After you declare a variable, you must explicitly initialize it by means of an assignment
statement—you can never use the value of an uninitialized variable. For example, the Java
compiler flags the following sequence of statements as an error:

int vacationDays;
IO.println(vacationDays); // ERROR--variable not initialized

You assign to a previously declared variable by using the variable name on the left, an equal sign
(=), and then some Java expression with an appropriate value on the right.

int vacationDays;
vacationDays = 12;

You can both declare and initialize a variable on the same line. For example:

40 Chapter 3 ▪ Fundamental Programming Structures in Java

int vacationDays = 12;

Finally, in Java you can put declarations anywhere in your code. For example, the following is
valid code in Java:

double salary = 65000.0;
IO.println(salary);
int vacationDays = 12; // OK to declare a variable here

In Java, it is considered good style to declare variables as closely as possible to the point where
they are first used.

Note: You do not need to declare the types of local variables if they can be inferred from
the initial value. Simply use the keyword var instead of the type:

var vacationDays = 12; // vacationDays is an int
var greeting = "Hello"; // greeting is a String

This is not too important for number and string types, but, as you will see in the next
chapter, this feature can make the declaration of objects less verbose.

3.4.3. Constants
In Java, you use the keyword final to denote a constant. For example:

void main() {
final double CM_PER_INCH = 2.54;
double paperWidth = 8.5;
double paperHeight = 11;
IO.println("Paper size in centimeters: "

+ paperWidth * CM_PER_INCH + " by " + paperHeight * CM_PER_INCH);
}

The keyword final indicates that you can assign to the variable once, and then its value is set
once and for all. It is customary to name constants in all uppercase.

It is probably more common in Java to create a constant so it’s available to all methods of a class:

final double CM_PER_INCH = 2.54;

void main() {
double paperWidth = 8.5;
double paperHeight = 11;
IO.println("Paper size in centimeters: "

+ paperWidth * CM_PER_INCH + " by " + paperHeight * CM_PER_INCH);
}

// CM_PER_INCH also accessible in other methods

3.4 ▪ Variables and Constants 41

You will see in Chapter 4 how a class can declare constants that are usable in other classes. For
example, the Math class declares a constant PI that you can use as Math.PI.

Caution: Some coding style guides state that uppercase letters should only be used for
class constants, not local ones. If you need to follow such a style guide, and you have a
local constant, decide what is more important to you—the fact that it is local (and
lowercase), or that it is visibly a constant (in uppercase).

Note: const is a Java keyword, but it is not currently used for anything. You must use final
for a constant.

3.4.4. Enumerated Types
Sometimes, a variable should only hold a restricted set of values. For example, you may sell
clothes or pizza in four sizes: small, medium, large, and extra large. Of course, you could encode
these sizes as integers 1, 2, 3, 4 or characters S, M, L, and X. But that is an error-prone setup. It is
too easy for a variable to hold a wrong value (such as 0 or m).

You can define your own enumerated type whenever such a situation arises. An enumerated type
has a finite number of named values. For example,

enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE };

Now you can declare variables of this type:

Size s = Size.MEDIUM;

A variable of type Size can hold only one of the values listed in the type declaration, or the special
value null that indicates that the variable is not set to any value at all. (See Chapter 4 for more
information about null.)

Enumerated types are discussed in greater detail in Chapter 5.

3.5. Operators
Operators are used to combine values. As you will see in the following sections, Java has a rich
set of arithmetic and logical operators and mathematical functions.

3.5.1. Arithmetic Operators
The usual arithmetic operators +, -, *, and / are used in Java for addition, subtraction,
multiplication, and division.

The / operator denotes integer division if both operands are integers, and floating-point division
otherwise. Integer division by 0 raises an exception, whereas floating-point division by 0 yields an
infinite or NaN result.

42 Chapter 3 ▪ Fundamental Programming Structures in Java

Integer remainder (sometimes called modulus) is denoted by %. For example, 15 / 2 is 7, 15 % 2 is
1, and 15.0 / 2 is 7.5.

Caution: When one of the operands of % is negative, so is the result. For example, n % 2 is 0
if n is even, 1 if n is odd and positive, and -1 if n is odd and negative. Why? When the first
computers were built, someone had to make rules for how integer remainder should work
for negative operands. Mathematicians had known the optimal (or “Euclidean”) rule for a
few hundred years: always leave the remainder ≥ 0. But, rather than open a math
textbook, those pioneers came up with rules that seemed reasonable but are actually
inconvenient.

Consider this problem. You compute the position of the hour hand of a clock. An
adjustment is applied, and you want to normalize to a number between 0 and 11. That is
easy: (position + adjustment) % 12. But what if the adjustment is negative? Then you might
get a negative number. So you have to introduce a branch, or use ((position + adjustment) %
12 + 12) % 12. Either way, it is a hassle.

A better remedy is to use the floorMod method: Math.floorMod(position + adjustment, 12)
always yields a value between 0 and 11. Unfortunately, floorMod still gives negative
remainders for negative divisors, but that situation doesn’t often occur in practice.

Note: One of the stated goals of the Java programming language is portability. A
computation should yield the same results no matter which virtual machine executes it. For
that reason, the Java 1.0 language specification requires adherence to the IEEE 754
standard for 32- and 64-bit floating-point numbers. However, for many years, Intel
processors used “extended” 80-bit floating-point registers for 64-bit floating-point
operations, occasionally yielding more accurate but non-standard results.

To get the standard results on those processors was slower. As a pragmatic compromise,
Java 1.2 allowed extended precision for intermediate computations. The keyword was
introduced to force portable results. Modern processors can carry out 64-bit arithmetic
efficiently. As of Java 17, the virtual machine is again required to use standard 64-bit
arithmetic, and the keyword is now obsolete.

3.5.2. Mathematical Functions and Constants
The Math class contains an assortment of mathematical functions that you may occasionally need,
depending on the kind of programming that you do.

To take the square root of a number, use the sqrt method:

double x = 4;
double y = Math.sqrt(x);
IO.println(y); // prints 2.0

The Java programming language has no operator for raising a quantity to a power: You must use
the pow method in the Math class. The statement

double y = Math.pow(x, a);

3.5 ▪ Operators 43

sets y to be x raised to the power a (xa). The pow method’s arguments are both of type double, and it
returns a double as well.

The Math class supplies the usual trigonometric functions:

Math.sin
Math.cos
Math.tan
Math.atan
Math.atan2

and the exponential function with its inverse, the natural logarithm, as well as the decimal
logarithm:

Math.exp
Math.log
Math.log10

Java 21 adds a method Math.clamp that forces a number to fit within given bounds. For example:

Math.clamp(-1, 0, 10) // too small, yields lower bound 0
Math.clamp(11, 0, 10) // too large, yields upper bound 10
Math.clamp(3, 0, 10) // within bounds, yields value 3

Finally, three constants denote the closest possible approximations to the mathematical constants
π, τ = 2π, and e:

Math.PI
Math.TAU
Math.E

Tip: You can avoid the Math prefix for the mathematical methods and constants by adding
the following line to the top of your source file:

import static java.lang.Math.*;

For example:

IO.println("The square root of π is " + sqrt(PI));

Static imports are covered in Chapter 4.

Note: The methods in the Math class use the routines in the computer’s floating-point unit
for fastest performance. If completely predictable results are more important than
performance, use the StrictMath class instead. It implements the algorithms from the
“Freely Distributable Math Library” (https://www.netlib.org/fdlibm), guaranteeing identical
results on all platforms.

44 Chapter 3 ▪ Fundamental Programming Structures in Java

https://www.netlib.org/fdlibm

Note: The Math class provides several methods to make integer arithmetic safer. The
mathematical operators quietly return wrong results when a computation overflows. For
example, one billion times three (1000000000 * 3) evaluates to -1294967296 because the
largest int value is just over two billion. If you call Math.multiplyExact(1000000000, 3)
instead, an exception is generated. You can catch that exception or let the program
terminate rather than quietly continue with a wrong result. There are additional methods,
including addExact, subtractExact, incrementExact, decrementExact, negateExact, absExact,
powExact, all with arguments of type int and long.

3.5.3. Conversions between Numeric Types
It is often necessary to convert from one numeric type to another. Figure 3.1 shows the legal
conversions.

byte short

double

int

char

float

long

Figure 3.1: Legal conversions between numeric types

The six solid arrows in Figure 3.1 denote conversions without information loss. The three dotted
arrows denote conversions that may lose precision. For example, a large integer such as 123456789
has more digits than the float type can represent. When the integer is converted to a float, the
resulting value has the correct magnitude but loses some precision.

int n = 123456789;
float f = n; // f is 1.23456792E8

When two values are combined with a binary operator (such as n + f where n is an integer and f
is a floating-point value), both operands are converted to a common type before the operation is
carried out.

▪ If either of the operands is of type double, the other one will be converted to a double.
▪ Otherwise, if either of the operands is of type float, the other one will be converted to a

float.
▪ Otherwise, if either of the operands is of type long, the other one will be converted to a

long.
▪ Otherwise, both operands will be converted to an int.

3.5 ▪ Operators 45

3.5.4. Casts
In the preceding section, you saw that int values are automatically converted to double values
when necessary. On the other hand, there are obviously times when you want to consider a double
as an integer. Numeric conversions are possible in Java, but of course information may be lost.
Conversions in which loss of information is possible are done by means of casts. The syntax for
casting is to give the target type in parentheses, followed by the variable name. For example:

double x = 9.997;
int nx = (int) x;

Now, the variable nx has the value 9 because casting a floating-point value to an integer discards
the fractional part.

If you want to round a floating-point number to the nearest integer (which in most cases is a more
useful operation), use the Math.round method:

double x = 9.997;
int nx = (int) Math.round(x);

Now the variable nx has the value 10. You still need to use the cast (int) when you call round. The
reason is that the return value of the round method is a long, and a long can only be assigned to an
int with an explicit cast because there is the possibility of information loss.

Caution: If you try to cast a number of one type to another that is out of range for the
target type, the result will be a truncated number that has a different value. For example,
(byte) 300 is actually 44.

Preview: Safe casts are a preview feature of Java 25. The syntax is as follows:

if (n instanceof byte b) . . .

If n fits into a byte without loss, then b is set to (byte) n.

3.5.5. Assignment
There is a convenient shortcut for using binary operators in an assignment. For example, the
compound assignment operator

x += 4;

is equivalent to

x = x + 4;

(In general, place the operator to the left of the = sign, such as *= or %=.)

46 Chapter 3 ▪ Fundamental Programming Structures in Java

Caution: If a compound assignment operator yields a value whose type is different from
that of the left-hand side, then it is coerced to fit. For example, if x is an int, then the
statement

x += 3.5;

is valid. It sets x to (int)(x + 3.5), that is, x + 3, with no warning!

As of Java 20, you get a warning if you compile with the -Xlint:lossy-conversions command
line option, like this:

javac -Xlint:lossy-conversions MyProg.java

Note that in Java, an assignment is an expression. That is, it has a value—namely, the value that is
being assigned. You can use that value—for example, to assign it to another variable. Consider
these statements:

int x = 1;
int y = x += 4;

The value of x += 4 is 5, since that’s the value that is being assigned to x. Next, that value is
assigned to y.

Many programmers find such nested assignments confusing and prefer to write them more
clearly, like this:

int x = 1;
x += 4;
int y = x;

3.5.6. Increment and Decrement Operators
Programmers, of course, know that one of the most common operations with a numeric variable is
to add or subtract 1. Java, following in the footsteps of C and C++, has both increment and
decrement operators: n++ adds 1 to the current value of the variable n, and n-- subtracts 1 from it.
For example, the code

int n = 12;
n++;

changes n to 13. Since these operators change the value of a variable, they cannot be applied to
numbers themselves. For example, 4++ is not a legal statement.

There are two forms of these operators; you’ve just seen the postfix form of the operator that is
placed after the operand. There is also a prefix form, ++n. Both change the value of the variable by
1. The difference between the two appears only when they are used inside expressions. The prefix
form does the addition first; the postfix form evaluates to the old value of the variable.

3.5 ▪ Operators 47

int m = 7;
int n = 7;
int a = 2 * ++m; // now a is 16, m is 8
int b = 2 * n++; // now b is 14, n is 8

Many programmers find this behavior confusing. In Java, using ++ inside expressions is
uncommon.

3.5.7. Relational and boolean Operators
Java has the full complement of relational operators. To test for equality, use a double equal sign,
==. For example, the value of

3 == 7

is false.

Use a != for inequality. For example, the value of

3 != 7

is true.

Finally, you have the usual < (less than), > (greater than), <= (less than or equal), and >= (greater
than or equal) operators.

Java, following C++, uses && for the logical “and” operator and || for the logical “or” operator. As
you can easily remember from the != operator, the exclamation point ! is the logical negation
operator. The && and || operators are evaluated in “short-circuit” fashion: The second operand is
not evaluated if the first operand already determines the value. If you combine two expressions
with the && operator,

expression1 && expression2

and the truth value of the first expression has been determined to be false, then it is impossible
for the result to be true. Thus, the value for the second expression is not calculated. This behavior
can be exploited to avoid errors. For example, in the expression

x != 0 && 1 / x > x + y // no division by 0

the second operand is never evaluated if x equals zero. Thus, 1 / x is not computed if x is zero,
and no divide-by-zero error can occur.

Similarly, the value of expression1 || expression2 is automatically true if the first expression is
true, without evaluating the second expression.

3.5.8. The Conditional Operator
Java provides the conditional ?: operator that selects a value, depending on a Boolean expression.
The expression

48 Chapter 3 ▪ Fundamental Programming Structures in Java

condition ? expression1 : expression2

evaluates to the first expression if the condition is true, and to the second expression otherwise.
For example,

x < y ? x : y

gives the smaller of x and y.

3.5.9. Switch Expressions
If you need to choose among more than two values, then you can use a switch expression, which
was introduced in Java 14. It looks like this:

String seasonName = switch (seasonCode) {
case 0 -> "Spring";
case 1 -> "Summer";
case 2 -> "Fall";
case 3 -> "Winter";
default -> "???";

};

The expression following the switch keyword is called the selector expression, and its value is the
selector. For now, we only consider selectors and case labels that are numbers, strings, or
constants of an enumerated type. In Chapter 5, you will see how to use switch expressions with
other types for pattern matching.

Note: The switch expression, like every expression, has a value. Note the -> arrow
preceding the value in each branch.

Note: As of Java 14, there are four forms of switch. This section focuses on the most useful
one. See Section 3.8.5 for a thorough discussion of all forms of switch expressions and
statements.

Preview: As a preview feature since Java 23, the switch selector can have type float,
double, long, or boolean. These selector types were previously invalid.

A case label must be a compile-time constant whose type matches the selector type. You can
provide multiple labels for each case, separated by commas:

int numLetters = switch (seasonName) {
case "Spring", "Summer", "Winter" -> 6;
case "Fall" -> 4;
default -> -1;

};

3.5 ▪ Operators 49

When you use the switch expression with enumerated constants, you need not supply the name of
the enumeration in each label—it is deduced from the switch value. For example:

enum Size { SMALL, MEDIUM, LARGE, EXTRA_LARGE };
. . .
Size itemSize = . . .;
String label = switch (itemSize) {

case SMALL -> "S"; // no need to use Size.SMALL
case MEDIUM -> "M";
case LARGE -> "L";
case EXTRA_LARGE -> "XL";

};

In the example, it was legal to omit the default since there was a case for each possible value.

Caution: When the selector is an enum, and you don’t have cases for all constants, you need
a default. A switch expression with a numeric or String selector must always have a default.

Caution: If the selector is null, a NullPointerException is thrown. If you want to avoid this
possibility, add a case null, like this:

String label = switch (itemSize) {
. . .
case null -> "???";

};

This is a feature of Java 21. Note that default does not match null!

3.5.10. Bitwise Operators
For any of the integer types, you have operators that can work directly with the bits that make up
the integers. This means that you can use masking techniques to get at individual bits in a
number. The bitwise operators are

& ("and") | ("or") ^ ("xor") ~ ("not")

These operators work on bit patterns. For example, if n is an integer variable, then

int fourthBitFromRight = (n & 0b1000) / 0b1000;

gives you a 1 if the fourth bit from the right in the binary representation of n is 1, and 0 otherwise.
Using & with the appropriate power of 2 lets you mask out all but a single bit.

Note: When applied to boolean values, the & and | operators yield a boolean value. These
operators are similar to the && and || operators, except that the & and | operators are not

50 Chapter 3 ▪ Fundamental Programming Structures in Java

evaluated in “short-circuit” fashion—that is, both operands are evaluated before the result
is computed.

There are also >> and << operators which shift a bit pattern right or left. These operators are
convenient when you need to build up bit patterns to do bit masking:

int fourthBitFromRight = (n & (1 << 3)) >> 3;

Finally, a >>> operator fills the top bits with zero, unlike >> which extends the sign bit into the top
bits. There is no <<< operator.

Caution: The right-hand operand of the shift operators is reduced modulo 32 (unless the
left-hand operand is a long, in which case the right-hand operand is reduced modulo 64).
For example, the value of 1 << 35 is the same as 1 << 3 or 8.

Note: In C and C++, there is no guarantee as to whether >> performs an arithmetic shift
(extending the sign bit) or a logical shift (filling in with zeroes). Implementors are free to
choose whichever is more efficient. That means the >> operator may yield implementation-
dependent results for negative numbers. Java removes that uncertainty.

Note: The Integer class has a number of methods for bit-level operations. For example,
Integer.bitCount(n) yields the number of bits that are 1 in the binary representation of n,
and Integer.reverse(n) yields the number obtained by reversing the bits of n. Not many
programmers need bit-level operations, but if you do, have a look at the Integer class to see
whether there is a method for the task that you need to accomplish.

3.5.11. Parentheses and Operator Hierarchy
Table 3.4 shows the precedence of operators. If no parentheses are used, operations are
performed in the hierarchical order indicated. Operators on the same level are processed from
left to right, except for those that are right-associative, as indicated in the table. For example, &&
has a higher precedence than ||, so the expression

a && b || c

means

(a && b) || c

Since += associates right to left, the expression

a += b += c

means

a += (b += c)

3.5 ▪ Operators 51

That is, the value of b += c (which is the value of b after the addition) is added to a.

Table 3.4: Operator Precedence

Operators Associativity

[] . () (method call) Left to right

! ~ ++ -- + (unary) - (unary) () (cast) new Right to left

* / % Left to right

+ - Left to right

<< >> >>> Left to right

< <= > >= instanceof Left to right

== != Left to right

& Left to right

^ Left to right

| Left to right

&& Left to right

|| Left to right

?: Right to left

= += -= *= /= %= &= |= ^= <<= >>= >>>= Right to left

Note: Some programming languages (such as C++ and JavaScript) have a comma
operator that evaluates one expression (only for its side effect), then another. Java does not
have such an operator. However, you can use a comma-separated list of expressions in the
first and third slot of a for statement (see Section 3.8.4).

3.6. Strings
Conceptually, Java strings are sequences of Unicode characters. As you have seen in
Section 3.3.4, the concept of what exactly a character is has become complicated. And the
encoding of the characters into char values has also become complicated.

However, most of the time, you don’t care. You get strings from string literals or from methods,
and you operate on them with methods of the String class. The following sections cover the
details.

52 Chapter 3 ▪ Fundamental Programming Structures in Java

Note: You have already seen string literals such as "Hello, World!", which are instances of
the String class.

To include “complicated” characters in string literals, be sure that you use the UTF-8
encoding for source files (which is the default for most IDEs). Then you can just paste them
from web pages, and produce string literals such as "Ahoy 🏴‍☠".

In the past, programmers were more concerned that their collaborators might use a
different file encoding, and instead provided escape sequences for the UTF-16 encoding:
"Ahoy \uD83C\uDFF4\u200D\u2620\uFE0F".

3.6.1. Concatenation
Java, like most programming languages, allows you to use + to join (concatenate) two strings.

String expletive = "Expletive";
String PG13 = "deleted";
String message = expletive + PG13;

The preceding code sets the variable message to the string "Expletivedeleted". (Note the lack of a
space between the words: The + operator joins two strings in the order received, exactly as they
are given.)

When you concatenate a string with a value that is not a string, the latter is converted to a string.
For example,

int age = 13;
String rating = "PG" + age;

sets rating to the string "PG13".

This feature is commonly used in output statements. For example,

IO.println("The answer is " + answer);

is perfectly acceptable and prints what you would expect (and with correct spacing because of
the space after the word is).

Caution: Beware of string concatenations with expressions that have a + operator, such as:

int age = 42;
String output = "Next year, you'll be " + age + 1 + "."; // ERROR

Because the + operators are evaluated from left to right, the result is "Next year, you'll be
421.". The remedy is to use parentheses:

String output = "Next year, you'll be " + (age + 1) + "."; // OK

3.6 ▪ Strings 53

Caution: Concatenation only works with strings, not char literals. For example, the
expression ':' + 8080 is not a string, but the integer 8138. (The colon character has
Unicode value 58.)

If you need to put multiple strings together, separated by a delimiter, use the join method:

String all = String.join(" / ", "S", "M", "L", "XL");
// all is the string "S / M / L / XL"

The repeat method produces a string that repeats a given string a number of times:

String repeated = "Java".repeat(3); // repeated is "JavaJavaJava"

3.6.2. Static and Instance Methods
At the end of the preceding section, you saw two methods of the String class, join and repeat.
There is a crucial difference between these two methods. When you call

String all = String.join(" / ", "S", "M", "L", "XL");

you provide all arguments that the method needs inside the parentheses. Contrast this with the
call

String repeated = "Java".repeat(3);

To compute the repetition of a string, two pieces of information are required: the string itself, and
the number of times that it should be repeated.

Note that the string is written before the name of the method, with a dot (.) separating the two.
The repeat method is an example of an instance method. As you will see in Chapter 4, an instance
method has one special argument; in this case, a string. That value precedes the method name.
Supplementary arguments are provided after the method name in parentheses.

The String.join method, on the other hand, is a static method. It doesn’t have a special argument.
The dot serves a different function, separating the name of the class in which the method is
declared from the method name.

To tell the two apart, locate the dot. Is it preceded by a value (such as the string "Java")? Then
you are looking at the call to an instance method. Or is it preceded by the name of a class (such
as String)? Then it is a static method.

Many of the methods that you have seen so far, including IO.println, Integer.parseInt, and
Math.sqrt, are static methods. However, as you learn more about Java, you will mostly use instance
methods.

Note: The choice between static and instance methods may feel arbitrary at times. For
example, why do we call Integer.parseInt("42") and not "42".parseInt()? The designers of

54 Chapter 3 ▪ Fundamental Programming Structures in Java

the Java API had to decide. They preferred that the conversion of strings to integers should
the responsibility of the Integer class, and not the String class.

3.6.3. Indexes and Substrings
Java strings are sequences of char values. As you saw in Section 3.3.4, the char data type is used
for representing Unicode code points in the UTF-16 encoding. Some characters can be
represented with a single char value, but many characters and symbols require more than one
char value.

Note: The virtual machine is not required to store strings as sequences of char values. For
efficiency, strings that hold only single-byte code units store byte sequences, and all others
char sequences. This is an implementation detail that has changed in the past and may
again change in the future.

The length instance method yields the number of char values required for a given string. For
example:

String greeting = "Ahoy 🏴‍☠";
int n = greeting.length(); // is 10

The call s.charAt(n) returns the char value at position n, where n is between 0 and s.length() – 1.
(Like C and C++, Java counts positions in a string starting with 0.) For example:

char first = greeting.charAt(0); // first is 65 or 'A'
char last = greeting.charAt(9); // last is 65039

However, these calls are not very useful. The last char value is just a part of the flag symbol, and
you won’t generally care what these values are.

Still, you sometimes need to know where a substring is located in a string. Use the indexOf
method:

String sub = " ";
int start = greeting.indexOf(sub); // 4

As it happens, the position or index of the space is 4, but the exact value doesn’t matter. It
depends on the characters preceding the substring, and the number of char values needed to
encode each of them. Always treat an index as an opaque number, not the count of perceived
characters preceding it.

You can compute where the next character starts:

int nextStart = start + sub.length(); // 5

The string " " has length 1, but do not hard-code the length of a string. Always use the length
method instead.

3.6 ▪ Strings 55

You can extract a substring from a larger string with the substring method of the String class. For
example,

String greeting = "Hello, World!";
int a = greeting.indexOf(",") + 2; // 7
int b = greeting.indexOf("!"); // 12
String s = greeting.substring(a, b);

creates a string consisting of the characters "World".

The second argument of substring is the first position that you do not want to copy. In our case,
we copy everything from the beginning up to, but not including, the comma.

Note that the string s.substring(a, b) always has length b − a. For example, the substring "World"
has length 12 − 7 = 5.

3.6.4. Strings Are Immutable
The String class gives no methods that let you change a character in an existing string. If you
want to turn greeting into "Help!", you cannot directly change the last positions of greeting into 'p'
and '!'. If you are a C programmer, this can make you feel pretty helpless. How are we going to
modify the string? In Java, it is quite easy: Concatenate the substring that you want to keep with
the characters that you want to replace.

String greeting = "Hello";
int n = greeting.indexOf("lo");
greeting = greeting.substring(0, n) + "p!";

This declaration changes the current value of the greeting variable to "Help!".

Since you cannot change the individual characters in a Java string, the documentation refers to
the objects of the String class as immutable. Just as the number 3 is always 3, the string "Hello"
will always contain the code-unit sequence for the characters H, e, l, l, o. You cannot change these
values. Yet you can, as you just saw, change the contents of the string variable greeting and make
it refer to a different string, just as you can make a numeric variable currently holding the value 3
hold the value 4.

Isn’t that a lot less efficient? It would seem simpler to change the characters than to build up a
whole new string from scratch. Well, yes and no. Indeed, it is some amount of work to generate a
new string that holds the concatenation of "Hel" and "p!". But immutable strings have one great
advantage: The compiler can arrange that strings are shared.

To understand how this works, think of the various strings as sitting in a common pool. String
variables then point to locations in the pool. If you copy a string variable, both the original and
the copy share the same characters.

Overall, the designers of Java decided that the efficiency of sharing outweighs the inefficiency of
string creation. Look at your own programs; most of the time, you probably don’t change
strings—you just compare them. (There is one common exception—assembling strings from
individual characters or from shorter strings that come from the keyboard or a file. For these
situations, Java provides a separate class—see Section 3.6.9.)

56 Chapter 3 ▪ Fundamental Programming Structures in Java

3.6.5. Testing Strings for Equality
To test whether two strings are equal, use the equals method. The expression

s.equals(t)

returns true if the strings s and t are equal, false otherwise. Note that s and t can be string
variables or string literals. For example, the expression

"Hello".equals(greeting)

is perfectly legal. To test whether two strings are identical except for the upper/lowercase letter
distinction, use the equalsIgnoreCase method.

"Hello".equalsIgnoreCase("hello")

Do not use the == operator to test whether two strings are equal! It only determines whether or
not the strings are stored in the same location. Sure, if strings are in the same location, they must
be equal. But it is entirely possible to store multiple copies of identical strings in different places.

String greeting = "Hello"; // initialize greeting to a string
greeting == "Hello" // true
greeting.substring(0, greeting.indexOf("l")) == "He" // false
greeting.substring(0, greeting.indexOf("l")).equals("He") // true

If the virtual machine always arranges for equal strings to be shared, then you could use the ==
operator for testing equality. But only string literals are shared, not strings that are computed at
runtime. Therefore, never use == to compare strings. Always use equals instead.

Caution: In most programming languages, such as Python, JavaScript, or C++, the ==
operator compares strings by their content. If you come from one of those languages, be
particularly careful about string comparisons.

3.6.6. Empty and Null Strings
The empty string "" is a string of length 0. You can test whether a string is empty by calling

if (str.length() == 0)

or

if (str.equals(""))

or , for optimum efficiency

if (str.isEmpty())

An empty string is a Java object which holds the string length (namely, 0) and an empty contents.
However, a String variable can also hold a special value, called null, that indicates that no object
is currently associated with the variable. To test whether a string is null, use

3.6 ▪ Strings 57

if (str == null)

Sometimes, you need to test that a string is neither null nor empty. Then use

if (str != null && str.length() != 0)

You need to test that str is not null first. As you will see in Chapter 4, it is an error to invoke a
method on a null value.

3.6.7. The String API
The String class in Java contains close to 100 methods. The following API note summarizes the
most useful ones.

These API notes, found throughout the book, will help you understand the Java Application
Programming Interface (API). Each API note starts with the name of a class, such as
java.lang.String. (The significance of the so-called package name java.lang is explained in Chapter
4.) The class name is followed by the names, explanations, and parameter descriptions of one or
more methods. A parameter variable of a method is the variable that receives a method
argument. For example, as you will see in the first API note below, the charAt method has a
parameter called index of type int. If you call the method, you supply an argument of that type,
such as str.charAt(0).

The API notes do not list all methods of a particular class but present the most commonly used
ones in a concise form. For a full listing, consult the online documentation (see Section 3.6.8).

The number following the class name is the JDK version number in which it was introduced. If a
method has been added later, it has a separate version number.

java.lang.String 1.0

▪ char charAt(int index)
returns the code unit at the specified location. You probably don’t want to call this method
unless you are interested in low-level code units.

▪ int length()
returns the number of code units of the string.

▪ boolean equals(Object other)
returns true if the string equals other.

▪ boolean equalsIgnoreCase(String other)
returns true if the string equals other, except for upper/lowercase distinction.

▪ int compareTo(String other)
returns a negative value if the string comes before other in dictionary order, a positive value
if the string comes after other in dictionary order, or 0 if the strings are equal.

▪ boolean isEmpty() 6
boolean isBlank() 11
return true if the string is empty or consists of whitespace.

▪ boolean startsWith(String prefix)
▪ boolean endsWith(String suffix)

return true if the string starts with prefix or ends with suffix.

58 Chapter 3 ▪ Fundamental Programming Structures in Java

▪ int indexOf(String str)
▪ int indexOf(String str, int fromIndex)
▪ int indexOf(String str, int fromIndex, int toIndex) 21

return the start of the first substring equal to the string str, starting at index 0 or at
fromIndex, and ending at the end of the string or at toIndex. Return -1 if str does not occur in
this string or the specified substring.

▪ int lastIndexOf(String str)
▪ int lastIndexOf(String str, int fromIndex)

return the start of the last substring equal to the string str, starting at the end of the string
or at fromIndex, or -1 if str does not occur.

▪ String replace(CharSequence oldString, CharSequence newString)
returns a new string that is obtained by replacing all substrings matching oldString in the
string with the string newString. You can supply String or StringBuilder arguments for the
CharSequence parameters.

▪ String substring(int beginIndex)
▪ String substring(int beginIndex, int endIndex)

return a new string consisting of all code units from beginIndex until the end of the string or
until endIndex– 1.

▪ String toLowerCase()
▪ String toUpperCase()

return a new string containing all characters in the original string, with uppercase
characters converted to lowercase, or lowercase characters converted to uppercase.

▪ String strip() 11
String stripLeading() 11
String stripTrailing() 11
return a new string by eliminating leading and trailing, or just leading or trailing whitespace
in the original string. Use these methods instead of the archaic trim method that eliminates
characters ≤ U+0020.

▪ String join(CharSequence delimiter, CharSequence... elements) 8
returns a new string joining all elements with the given delimiter.

▪ String repeat(int count) 11
returns a string that repeats this string count times.

Note: In the API notes, there are a few parameters of type CharSequence. This is an interface
type to which all strings belong. You will learn about interface types in Chapter 6. For now,
you just need to know that you can pass arguments of type String whenever you see a
CharSequence parameter.

3.6.8. Reading the Online API Documentation
As you just saw, the String class has lots of methods. Furthermore, there are thousands of classes
in the standard libraries, with many more methods. It is plainly impossible to remember all useful
classes and methods. Therefore, it is essential that you become familiar with the online API
documentation that lets you look up all classes and methods in the standard library. You can
download the API documentation from Oracle and save it locally, or you can point your browser to
https://docs.oracle.com/en/java/javase/25/docs/api.

3.6 ▪ Strings 59

https://docs.oracle.com/en/java/javase/25/docs/api

The API documentation has a search box (see Figure 3.2). Older versions have frames with lists of
packages and classes. You can still get those lists by clicking on the Frames menu item. For
example, to get more information on the methods of the String class, type “String” into the search
box and select the type java.lang.String, or locate the link in the frame with class names and click
it. You get the class description, as shown in Figure 3.3.

Figure 3.2: The Java API documentation

When you scroll down, you reach a summary of all methods, sorted in alphabetical order (see
Figure 3.4). Click on any method name for a detailed description of that method (see Figure 3.5).
For example, if you click on the compareToIgnoreCase link, you’ll get the description of the
compareToIgnoreCase method.

Tip: If you have not already done so, download the JDK documentation, as described in
Chapter 2. Bookmark the index.html page of the documentation in your browser right now!

You can also add a new search engine to your browser with the query string

https://docs.oracle.com/en/java/javase/25/docs/api/search.html?q=%s

60 Chapter 3 ▪ Fundamental Programming Structures in Java

Figure 3.3: Class description for the String class

3.6.9. Building Strings
Occasionally, you need to build up strings from shorter strings, such as keystrokes or words from
a file. It would be inefficient to use string concatenation for this purpose. Every time you
concatenate strings, a new String object is constructed. This is time consuming and wastes
memory. Using the StringBuilder class avoids this problem.

Follow these steps if you need to build a string from many small pieces. First, construct an empty
string builder:

StringBuilder builder = new StringBuilder();

You can also provide initial content:

StringBuilder builder = new StringBuilder("INVOICE\n");

Each time you need to add another part, call the append method.

builder.append(str); // appends a string
builder.appendCodePoint(cp); // appends a single code point

The latter method is occasionally useful when you need to compute a code point. Here is an
example. Flag emojis are made up of two code points, each in the range between 127462

3.6 ▪ Strings 61

Figure 3.4: Method summary of the String class

(regional indicator symbol letter A) to 127487 (regional indicator symbol letter Z). Now suppose
you have a country string such as "IT". Then you can compute the code points as follows:

final int REGIONAL_INDICATOR_SYMBOL_LETTER_A = 127462;
String country = . . .;
builder.appendCodePoint(country.charAt(0) - 'A' + REGIONAL_INDICATOR_SYMBOL_LETTER_A);
builder.appendCodePoint(country.charAt(1) - 'A' + REGIONAL_INDICATOR_SYMBOL_LETTER_A);

When you are done building the string, call the toString method. You will get a String object with
the character sequence contained in the builder.

String completedString = builder.toString();

Cleverly, the StringBuilder methods return the builder object, so that you can chain multiple
method calls:

String completedString = new StringBuilder()
.append(str)
.appendCodePoint(cp)
.toString();

62 Chapter 3 ▪ Fundamental Programming Structures in Java

Figure 3.5: Detailed description of a String method

The String class doesn’t have a method to reverse the Unicode characters of a string, but
StringBuilder does. To reverse a string, use this code snippet:

String reversed = new StringBuilder(original).reverse().toString();

Caution: Reversing works correctly for characters that are encoded with two char values,
but it fails when a symbol is composed of multiple code points. For example, reversing a
string containing the pirate flag described in Section 3.3.4 does not preserve the flag.

Note: The legacy StringBuffer class is less efficient than StringBuilder, but it allows
multiple threads to add or remove characters. If all string editing happens in a single
thread (which is usually the case), you should use StringBuilder. The APIs of both classes
are identical.

The following API notes contain the most important methods for the StringBuilder class.

java.lang.StringBuilder 5.0

▪ StringBuilder()
▪ StringBuilder(CharSequence seq)

constructs an empty string builder, or one with the given initial content.

3.6 ▪ Strings 63

▪ int length()
returns the number of code units of the builder or buffer.

▪ StringBuilder append(String str)
appends a string and returns the string builder.

▪ StringBuilder appendCodePoint(int cp)
appends a code point, converting it into one or two code units, and returns this.

▪ StringBuilder insert(int offset, String str)
inserts a string at position offset and returns the string builder.

▪ StringBuilder delete(int startIndex, int endIndex)
deletes the code units with offsets startIndex to endIndex– 1 and returns the string builder.

▪ StringBuilder repeat(CharSequence cs, int count) 21
Appends count copies of cs and returns the string builder.

▪ StringBuilder reverse()
Reverses the code points in this string builder and returns the builder.

▪ String toString()
returns a string with the same data as the builder or buffer contents.

3.6.10. Text Blocks
The text block feature, added in Java 15, makes it easy to provide string literals that span
multiple lines. A text block starts with """, followed by a line feed. The block ends with another
""":

String greeting = """
Hello
World
""";

A text block is easier to read and write than the equivalent string literal:

"Hello\nWorld\n"

This string contains two \n: one after Hello and one after World. The newline after the opening """
is not included in the string literal.

If you don’t want a newline after the last line, put the closing """ immediately after the last
character:

String prompt = """
Hello, my name is Hal.
Please enter your name:""";

Text blocks are particularly suited for including code in some other language, such as SQL or
HTML. You can just paste it between the triple quotes:

String html = """
<div class="Warning">

Beware of those who say "Hello" to the world
</div>
""";

64 Chapter 3 ▪ Fundamental Programming Structures in Java

All escape sequences from regular strings work the same way in text blocks.

Note that you don’t have to use escape sequences with the quotation marks around Hello. There
are just two situations where you need to use the \" escape sequence in a text block:

▪ If the text block ends in a quotation mark
▪ If the text block contains a sequence of three or more quotation marks

Unfortunately, you still need the escape sequence \\ to denote a backslash in a text block.

There is one escape sequence that only works in text blocks. A \ directly before the end of a line
joins this line and the next. For example,

"""
Hello, my name is Hal. \
Please enter your name:""";

is the same as

"Hello, my name is Hal. Please enter your name:"

Line endings are normalized by removing trailing whitespace and changing any Windows line
endings (\r\n) to simple newlines (\n). If you need to preserve trailing spaces, turn the last one
into a \s escape. In fact, that’s what you probably want for prompt strings. The following string
ends in a space:

"""
Hello, my name is Hal. \
Please enter your name:\s""";

The story is more complex for leading whitespace. Consider a typical variable declaration that is
indented from the left margin. You can indent the text block as well:

String html = """
<div class="Warning">

Beware of those who say "Hello" to the world
</div>
""";

The indentation that is common to all lines in the text block is subtracted. The actual string is

"<div class=\"Warning\">\n Beware of those who say \"Hello\" to the world\n</div>\n"

Note that there are no indentations in the first and third lines.

You can always avoid this indentation stripping by having no whitespace in the last line, before
the closing """. But many programmers seem to find that it looks neater when text blocks are
indented. Your IDE may cheerfully offer to indent all text blocks, using tabs or spaces.

Java wisely does not prescribe the width of a tab. The whitespace prefix has to match exactly for
all lines in the text block.

3.6 ▪ Strings 65

Entirely blank lines are not considered when stripping common indentation. However, the
whitespace before the closing """ is significant. Be sure to indent to the end of the whitespace
that you want to have stripped.

Caution: Be careful about mixed tabs and spaces in indentations. An overlooked space can
easily yield a wrongly indented string.

Tip: If a text block contains code that isn’t Java, you may actually prefer to place it at the
left margin. It stands out from the Java code, and you have more room for long lines.

3.7. Input and Output
To make our example programs more interesting, we want to accept input and properly format
the program output. Of course, modern programs use a GUI for collecting user input. However,
programming such an interface requires more tools and techniques than we have at our disposal
at this time. Our first order of business is to become more familiar with the Java programming
language, so we use the humble console for input and output.

3.7.1. Reading Input
You saw that it is easy to print output to the console window just by calling IO.println. Reading
from the console is just as simple.

The readln method reads one line of input and returns it as a string value. You can optionally pass
a prompt string as an argument.

String name = IO.readln("What is your name? ");

To read an integer, use the Integer.parseInt method to convert the entered string into an integer.

int age = Integer.parseInt(IO.readln("How old are you? "));

Similarly, the parseDouble method converts a string to a floating-point number.

double rate = Double.parseDouble(IO.readln("Interest rate: "));

The program in Listing 3.2 asks for the user’s name and age and then prints a message like

Hello, Cay. Next year, you'll be 65.

Listing 3.2: InputDemo.java

1 /**
2 * This program demonstrates console input.
3 */
4 void main() {
5 // get first input

66 Chapter 3 ▪ Fundamental Programming Structures in Java

6 String name = IO.readln("What is your name? ");
7
8 // get second input
9 int age = Integer.parseInt(IO.readln("How old are you? "));

10
11 // display output on console
12 IO.println("Hello, " + name + ". Next year, you'll be " + (age + 1) + ".");
13 }

Caution: If you run this program from a Windows terminal, special characters in your
name may not show up correctly. By default, Windows terminals use an archaic character
encoding. To fix this, switch the terminal to the UTF-8 encoding, by issuing the following
command prior to running the program:

chcp 65001

Then, if you use Java 18 or above, all will be well. With older versions of Java, run the
program as:

java -Dfile.encoding=utf-8 InputDemo

If you use a development environment, you should not have to worry about this issue.

Note: Prior to Java 25, reading console input was not so easy. To use an older version of
Java, make these adaptations:

First first construct a Scanner object that is attached to System.in:

Scanner in = new Scanner(System.in);

(Objects, constructors, and the new operator are discussed in detail in Chapter 4.)

The nextLine method reads a line of input.

System.out.print("What is your name? ");
String name = in.nextLine();

To read an integer, use the nextInt method.

System.out.print("How old are you? ");
int age = in.nextInt();

Similarly, the nextDouble method reads the next floating-point number.

Finally, include the line

import java.util.Scanner;

at the beginning of the program, to tell the compiler that the Scanner class is defined in the
java.util package. Packages and import directives are covered in more detail in Chapter 4.

3.7 ▪ Input and Output 67

Caution: The parseInt and parseDouble methods are not intended for parsing user input,
and IO.println is not intended for presenting numbers to a general audience. They use the
number format for decimal Java literals. That’s ok for sample programs in a programming
book. However, most users expect to see the decimal digits and separators to which they
are accustomed.

To parse human input, use the nextInt and nextDouble methods of the Scanner class. For
output, use the formatted method that you will see in Section 3.7.2. These methods use the
number format of the host system.

Note: The IO.readLine method is not suitable for reading a password from a console since
the input is plainly visible to anyone. Use the readPassword method of the Console class to
read a password while hiding the user input:

String username = System.console().readLine("User name: ");
char[] passwd = System.console().readPassword("Password: ");
. . .
Arrays.fill(passwd, '*');

For security reasons, the password is returned in an array of characters rather than a
string. After you are done processing the password, you should immediately overwrite the
array elements with a filler value.

java.lang.IO 25

▪ println(Object obj)
Converts the object to a string and prints it on the console, followed by a line separator.

▪ print(Object ob)
Converts the object to a string and prints it on the console without a line separator.

▪ println()
Prints a line separator.

▪ String readln(String prompt)
Prints a prompt on the console and returns one line of user input.

▪ String readln()
Returns one line of user input without printing a prompt.

java.util.Scanner 5.0

▪ Scanner(InputStream in)
constructs a Scanner object from the given input stream.

▪ String nextLine()
reads the next line of input.

▪ String next()
reads the next word of input (delimited by whitespace).

68 Chapter 3 ▪ Fundamental Programming Structures in Java

▪ int nextInt()
▪ double nextDouble()

read and convert the next character sequence that represents an integer or floating-point
number.

▪ boolean hasNext()
tests whether there is another word in the input.

▪ boolean hasNextInt()
▪ boolean hasNextDouble()

test whether the next character sequence represents an integer or floating-point number.

java.lang.System 1.0

▪ static Console console() 6
returns a Console object for interacting with the user through a console window if such
interaction is possible, null otherwise. A Console object is available for any program that is
launched in a console window. Otherwise, the availability is system-dependent.

java.io.Console 6

▪ char[] readPassword(String prompt, Object... args)
▪ String readLine(String prompt, Object... args)

display the prompt and read the user input until the end of the input line. The optional args
parameters are used to supply formatting arguments, as described in the next section.

3.7.2. Formatting Output
You can print a number x to the console with the statement IO.print(x). That command will print x
with the maximum number of nonzero digits for that type. For example,

double x = 10000.0 / 3.0;
IO.print(x);

prints

3333.3333333333335

That is a problem if you want to display, for example, dollars and cents.

The remedy is the formatted method, which follows the venerable conventions from the C library.
For example, the call

IO.print("%8.2f".formatted(x));

prints x with a field width of 8 characters and a precision of 2 characters. That is, the printout
contains a leading space and the seven characters

3333.33

3.7 ▪ Input and Output 69

You can supply multiple arguments to formatted. For example:

IO.print("Hello, %s. Next year, you'll be %d.".formatted(name, age + 1));

Each of the format specifiers that start with a % character is replaced with the corresponding
argument. The conversion character that ends a format specifier indicates the type of the value to
be formatted: f is a floating-point number, s a string, and d a decimal integer. Table 3.5 shows all
conversion characters.

The uppercase variants produce uppercase letters. For example, "%8.2E" formats 3333.33 as
3.33E+03, with an uppercase E.

Table 3.5: Conversions for formatted

Conversion
Character Type Example

d Decimal integer 159

x or X Hexadecimal integer. For more control over hexadecimal
formatting, use the HexFormat class. 9f

o Octal integer 237

f or F Fixed-point floating-point 15.9

e or E Exponential floating-point 1.59e+01

g or G General floating-point (the shorter of e and f) —

a or A Hexadecimal floating-point 0x1.fccdp3

s or S String Hello

c or C Character H

b or B boolean true

h or H Hash code 42628b2

tx or Tx Legacy date and time formatting. Use the java.time
classes instead—see Chapter 6 of Volume II. —

% The percent symbol %

n The platform-dependent line separator —

Note: You can use the s conversion to format arbitrary objects. If an arbitrary object
implements the Formattable interface, the object’s formatTo method is invoked. Otherwise,
the toString method is invoked to turn the object into a string. The toString method is
discussed in Chapter 5 and interfaces in Chapter 6.

70 Chapter 3 ▪ Fundamental Programming Structures in Java

In addition, you can specify flags that control the appearance of the formatted output. Table 3.6
shows all flags. For example, the comma flag adds group separators. That is,

IO.println("%,.2f".formatted(10000.0 / 3.0));

prints

3,333.33

You can use multiple flags, for example "%,(.2f" to use group separators and enclose negative
numbers in parentheses.

Table 3.6: Flags for printf

Flag Purpose Example

+ Prints sign for positive and negative numbers. +3333.33

space Adds a space before positive numbers. |
3333.33|

0 Adds leading zeroes. 003333.33

- Left-justifies field. |3333.33
|

(Encloses negative numbers in parentheses. (3333.33)

, Adds group separators. 3,333.33

(for f
format) Always includes a decimal point. 3,333.

(for x
or o
format)

Adds 0x or 0 prefix. 0xcafe

$
Specifies the index of the argument to be formatted. For
example, %1$d %1$x prints the first argument in decimal and
hexadecimal.

159 9F

<
Formats the same value as the previous specification. For
example, %d %<x prints the same number in decimal and
hexadecimal.

159 9F

Figure 3.6 shows a syntax diagram for format specifiers.

Note: Formatting is locale-specific. For example, in Germany, the group separator is a
period, not a comma. On a computer with a German locale, the call

3.7 ▪ Input and Output 71

format-specifier:

precisionwidthflag
%

$

t

.

Figure 3.6: Format specifier syntax

double x = 10000.0 / 3.0;
IO.print("%8.2f".formatted(x));

yields the output

3333,33

This locale-specific behavior is normally what you want when you communicate with users.
However, if you produce a file that is later consumed by a computer program, you may
need to choose a fixed locale for the output. Specify the locale as the first argument to the
static format method of the String class:

IO.print(String.format(Locale.US, "%8.2f", x));

3.8. Control Flow
Java, like any programming language, supports both conditional statements and loops to
determine control flow. I will start with the conditional statements, then move on to loops, to end
with a thorough discussion of the four forms of switch.

Note: The Java control flow constructs are similar to those in C, C++, or JavaScript. There
is no goto, but there is a “labeled” version of break that you can use to break out of a nested
loop (where, in C, you perhaps would have used a goto). Finally, there is a variant of the for
loop that is similar to the range-based for loop in C++ and the for of loop in JavaScript.

3.8.1. Block Scope
Before learning about control structures, you need to know more about blocks.

A block, or compound statement, consists of a number of Java statements, surrounded by a pair of
braces. Blocks define the scope of your variables. A block can be nested inside another block.
Here is a block that is nested inside the block of the main method:

void main() {
int n;
. . .
{

int k;

72 Chapter 3 ▪ Fundamental Programming Structures in Java

. . .
} // k is only defined up to here

}

You may not declare identically named local variables in two nested blocks. For example, the
following is an error and will not compile:

void main() {
int n;
. . .
{

int k;
int n; // ERROR--can't redeclare n in inner block
. . .

}
}

Note: In many programming languages, it is possible to redefine a variable inside a nested
block. The inner definition then shadows the outer one. This can be a source of
programming errors; hence, Java does not allow it.

3.8.2. Conditional Statements
The conditional statement in Java has the form

if (condition) statement

The condition must be surrounded by parentheses.

In Java, as in most programming languages, you will often want to execute multiple statements
when a single condition is true. In this case, use a block statement that takes the form

{
statement1
statement2
. . .

}

For example:

if (yourSales >= target) {
performance = "Satisfactory";
bonus = 100;

}

In this code all the statements surrounded by the braces will be executed when yourSales is
greater than or equal to target (see Figure 3.7).

3.8 ▪ Control Flow 73

yourSales target
NO

YES

bonus=100

performance
=“Satisfactory”

Figure 3.7: Flowchart for the if statement

Note: A block (sometimes called a compound statement) enables you to have more than
one (simple) statement in any Java programming structure that otherwise allows for a
single (simple) statement.

The more general conditional in Java looks like this (see Figure 3.8):

if (condition) statement1 else statement2

For example:

if (yourSales >= target) {
performance = "Satisfactory";
bonus = 100 + 0.01 * (yourSales - target);

}
else {

performance = "Unsatisfactory";
bonus = 0;

}

The else part is always optional. An else groups with the closest if. Thus, in the statement

if (x <= 0) if (x == 0) sign = 0; else sign = -1;

the else belongs to the second if. Of course, it is a good idea to use braces to clarify this code:

74 Chapter 3 ▪ Fundamental Programming Structures in Java

YES

performance
=“Unsatisfactory”

bonus=0

performance
=“Satisfactory”

bonus=
100+0.01*

(yourSales–target)

yourSales target NO

Figure 3.8: Flowchart for the if/else statement

if (x <= 0) { if (x == 0) sign = 0; else sign = -1; }

Repeated if . . . else if . . . alternatives are common (see Figure 3.9). For example:

if (yourSales >= 2 * target) {
performance = "Excellent";
bonus = 1000;

}
else if (yourSales >= 1.5 * target) {

performance = "Fine";
bonus = 500;

}
else if (yourSales >= target) {

performance = "Satisfactory";
bonus = 100;

}
else {

IO.println("You're fired");
}

3.8.3. Loops
The while loop executes a statement (which may be a block statement) while a condition is true.
The general form is

while (condition) statement

3.8 ▪ Control Flow 75

bonus=100performance
=“Satisfactory”

YES

YES

NO

NO

NO

YES

yourSales ≥ 2*target

yourSales ≥ 1.5*target

yourSales ≥ target

performance
=“Fine”

performance
=“Excellent”

bonus=500

bonus=1000

Print
“You’re fired”

Figure 3.9: Flowchart for the if/else if (multiple branches)

The while loop will never execute if the condition is false at the outset (see Figure 3.10).

The program in Listing 3.3 determines how long it will take to save a specific amount of money
for your well-earned retirement, assuming you deposit the same amount of money per year and
the money earns a specified interest rate.

In the example, we are incrementing a counter and updating the amount currently accumulated
in the body of the loop until the total exceeds the targeted amount.

while (balance < goal) {
balance += payment;
double interest = balance * interestRate / 100;
balance += interest;
years++;

}
IO.println(years + " years.");

76 Chapter 3 ▪ Fundamental Programming Structures in Java

NO

YES

Print years

update
balance

balance < goal

years++

Figure 3.10: Flowchart for the while statement

(Don’t rely on this program to plan for your retirement. It lacks a few niceties such as inflation
and your life expectancy.)

A while loop tests at the top. Therefore, the code in the block might never be executed. If you
want to make sure a block is executed at least once, you need to move the test to the bottom,
using the do/while loop. Its syntax looks like this:

do statement while (condition);

This loop executes the statement (which is typically a block) and only then tests the condition. If
it’s true, it repeats the statement and retests the condition, and so on. The code in Listing 3.4
computes the new balance in your retirement account and then asks if you are ready to retire:

do {
balance += payment;
double interest = balance * interestRate / 100;
balance += interest;
years++;

3.8 ▪ Control Flow 77

// print current balance
. . .
// ask if ready to retire and get input
. . .

} while (input.equals("N"));

As long as the user answers "N", the loop is repeated (see Figure 3.11). This program is a good
example of a loop that needs to be entered at least once, because the user needs to see the
balance before deciding whether it is sufficient for retirement.

update
balance

YES

NO

print balance
ask “Ready
to retire?

(Y/N)”

read
input

input=“N”

Figure 3.11: Flowchart for the do/while statement

Listing 3.3: Retirement.java

1 /**
2 * This program demonstrates a <code>while</code> loop.
3 */
4 void main() {
5 // read inputs
6 double goal = Double.parseDouble(IO.readln("How much money do you need to retire? "));

78 Chapter 3 ▪ Fundamental Programming Structures in Java

7 double payment
8 = Double.parseDouble(IO.readln("How much money will you contribute every year? "));
9 double interestRate = Double.parseDouble(IO.readln("Interest rate in %: "));

10
11 double balance = 0;
12 int years = 0;
13
14 // update account balance while goal isn't reached
15 while (balance < goal) {
16 // add this year's payment and interest
17
18 balance += payment;
19 double interest = balance * interestRate / 100;
20 balance += interest;
21 years++;
22 }
23
24 IO.println("You can retire in " + years + " years.");
25 }

Listing 3.4: Retirement2.java

1 /**
2 * This program demonstrates a <code>do/while</code> loop.
3 */
4 void main() {
5 double payment = Double.parseDouble(
6 IO.readln("How much money will you contribute every year? "));
7 double interestRate = Double.parseDouble(IO.readln("Interest rate in %: "));
8
9 double balance = 0;

10 int year = 0;
11
12 String input;
13
14 // update account balance while user isn't ready to retire
15 do {
16 // add this year's payment and interest
17 balance += payment;
18 double interest = balance * interestRate / 100;
19 balance += interest;
20
21 year++;
22
23 // print current balance
24 IO.println("After year %d, your balance is %,.2f".formatted(year,
25 balance));
26
27 // ask if ready to retire and get input
28 input = IO.readln("Ready to retire? (Y/N) ");
29 }
30 while (input.equals("N"));
31 }

3.8 ▪ Control Flow 79

3.8.4. Determinate Loops
The for loop is a general construct to support iteration controlled by a counter or similar variable
that is updated after every iteration. As Figure 3.12 shows, the following loop prints the numbers
from 1 to 10 on the screen:

for (int i = 1; i <= 10; i++)
IO.println(i);

The first slot of the for statement usually holds the counter initialization. The second slot gives
the condition that will be tested before each new pass through the loop, and the third slot
specifies how to update the counter.

Print i

YES

i = 1

NO

i + +

i 10

Figure 3.12: Flowchart for the for statement

Although Java, like C++, allows almost any expression in the various slots of a for loop, it is an
unwritten rule of good taste that the three slots should only initialize, test, and update the same
counter variable. One can write very obscure loops by disregarding this rule.

Even within the bounds of good taste, much is possible. For example, you can have loops that
count down:

80 Chapter 3 ▪ Fundamental Programming Structures in Java

for (int i = 10; i > 0; i--)
IO.println("Counting down . . . " + i);

IO.println("Blastoff!");

Caution: Be careful with testing for equality of floating-point numbers in loops. A for loop
like this one

for (double x = 0; x != 10; x += 0.1) . . .

might never end. Because of roundoff errors, the final value might not be reached exactly.
In this example, x jumps from 9.99999999999998 to 10.09999999999998 because there is no
exact binary representation for 0.1.

When you declare a variable in the first slot of the for statement, the scope of that variable
extends until the end of the body of the for loop.

for (int i = 1; i <= 10; i++) {
. . .

}
// i no longer defined here

In particular, if you define a variable inside a for statement, you cannot use its value outside the
loop. Therefore, if you wish to use the final value of a loop counter outside the for loop, be sure to
declare it outside the loop header.

int i;
for (i = 1; i <= 10; i++) {

. . .
}
// i is still defined here

On the other hand, you can define variables with the same name in separate for loops:

for (int i = 1; i <= 10; i++) {
. . .

}
. . .
for (int i = 11; i <= 20; i++) { // OK to define another variable named i

. . .
}

A for loop is merely a convenient shortcut for a while loop. For example,

for (i = 10; i > 0; i--)
IO.println("Counting down . . . " + i);

can be rewritten as follows:

3.8 ▪ Control Flow 81

i = 10;
while (i > 0) {

IO.println("Counting down . . . " + i);
i--;

}

The first slot of a for loop can declare multiple variables, provided they are of the same type. And
the third slot can contain multiple comma-separated expressions:

for (int i = 1, j = 10; i <= 10; i++, j--) { . . . }

While technically legal, this stretches the intuitive meaning of the for loop, and you should
consider a while loop instead.

Listing 3.5 shows a typical example of a for loop.

The program computes the odds of winning a lottery. For example, if you must pick six numbers
from the numbers 1 to 50 to win, then there are (50 × 49 × 48 × 47 × 46 × 45)/(1 × 2 × 3 × 4 ×
5 × 6) possible outcomes, so your chance is 1 in 15,890,700. Good luck!

In general, if you pick k numbers out of n, there are

n × (n − 1) × (n − 2) × ⋯ × (n − k + 1)
1 × 2 × 3 × 4 × ⋯ × k

possible outcomes. The following for loop computes this value:

int lotteryOdds = 1;
for (int i = 1; i <= k; i++)

lotteryOdds = lotteryOdds * (n - i + 1) / i;

Note: Section 3.10.3 describes the “generalized for loop” (also called “for each” loop) that
makes it convenient to visit all elements of an array or collection.

Listing 3.5: LotteryOdds.java

1 /**
2 * This program demonstrates a <code>for</code> loop.
3 */
4 void main() {
5 int k = Integer.parseInt(IO.readln("How many numbers do you need to draw? "));
6 int n = Integer.parseInt(IO.readln("What is the highest number you can draw? "));
7
8 // Binomial coefficient n*(n-1)*(n-2)*...*(n-k+1)/(1*2*3*...*k)
9

10 int lotteryOdds = 1;
11 for (int i = 1; i <= k; i++)
12 lotteryOdds = lotteryOdds * (n - i + 1) / i;

82 Chapter 3 ▪ Fundamental Programming Structures in Java

13
14 IO.println("Your odds are 1 in " + lotteryOdds + ". Good luck!");
15 }

3.8.5. Multiple Selections with switch
The if/else construct can be cumbersome when you have to deal with multiple alternatives for the
same expression. The switch statement makes this easier, particularly with the form that has been
introduced in Java 14.

For example, if you set up a menu system with four alternatives like that in Figure 3.13, you could
use code that looks like this:

int choice = Integer.parseInt(IO.readln("Select an option (1, 2, 3, 4) "));
switch (choice) {

case 1 ->
. . .

case 2 ->
. . .

case 3 ->
. . .

case 4 ->
. . .

default ->
IO.println("Bad input");

}

Note the similarity to the switch expressions that you saw in Section 3.5.9. Unlike a switch
expression, a switch statement has no value. Each case carries out an action.

The “classic” form of the switch statement, which dates all the way back to the C language, has
been supported since Java 1.0. It has the form:

int choice = . . .;
switch (choice) {

case 1:
. . .
break;

case 2:
. . .
break;

case 3:
. . .
break;

case 4:
. . .
break;

default:
IO.println("Bad input");

}

3.8 ▪ Control Flow 83

YES

YES

YES

. . .

. . .

. . .YES
choice = 1

NO

choice = 2

NO

choice = 3

NO

choice = 4

NO

(default)
bad input

. . .

Figure 3.13: Flowchart for the switch statement

Execution starts at the case label that matches the value on which the selection is performed and
continues until the next break or the end of the switch. If none of the case labels match, then the
default clause is executed, if it is present.

84 Chapter 3 ▪ Fundamental Programming Structures in Java

Caution: It is possible for multiple alternatives to be triggered. If you forget to add a break
at the end of an alternative, execution falls through to the next alternative! This behavior is
plainly dangerous and a common cause for errors.

To detect such problems, compile your code with the -Xlint:fallthrough option. Then the
compiler will issue a warning whenever an alternative does not end with a break statement.

If you actually want to use the fallthrough behavior, tag the surrounding method with the
annotation @SuppressWarnings("fallthrough"). Then no warnings will be generated for that
method. (An annotation is a mechanism for supplying information to the compiler or a tool
that processes Java source or class files. Volume II has an in-depth coverage of
annotations.)

For symmetry, Java 14 also introduced a switch expression with fallthrough, for a total of four
forms of switch. Table 3.7 shows them all.

Table 3.7: The four forms of switch

Expression Statement

No
Fallthrough

int numLetters = switch (seasonName) {
case "Spring" -> {

IO.println("spring time!");
yield 6;

}
case "Summer", "Winter" -> 6;
case "Fall" -> 4;
default -> -1;

};

switch (seasonName) {
case "Spring" -> {

IO.println("spring time!");
numLetters = 6;

}
case "Summer", "Winter" ->

numLetters = 6;
case "Fall" ->

numLetters = 4;
default ->

numLetters = -1;
}

Fallthrough

int numLetters = switch (seasonName) {
case "Spring":

IO.println("spring time!");
case "Summer", "Winter":

yield 6;
case "Fall":

yield 4;
default:

yield -1;
};

switch (seasonName) {
case "Spring":

IO.println("spring time!");
case "Summer", "Winter":

numLetters = 6;
break;

case "Fall":
numLetters = 4;
break;

default:
numLetters = -1;

}

In the fallthrough variants, each case ends with a colon. If the cases end with arrows ->, then
there is no fallthrough. You can’t mix colons and arrows in a single switch statement.

3.8 ▪ Control Flow 85

Each branch of a switch expression must yield a value. Most commonly, each value follows an ->
arrow:

case "Summer", "Winter" -> 6;

If you cannot compute the result in a single expression, use braces and a yield statement. Like
break, it terminates execution. Unlike break, it also yields a value—the value of the expression:

case "Spring" -> {
IO.println("spring time!");
yield 6;

}

Note: It is legal to throw an exception in a branch of a switch expression. For example:

default -> throw new IllegalArgumentException("Not a valid season");

Exceptions are covered in detail in Chapter 7.

Caution: The point of a switch expression is to produce a value (or to fail with an
exception). You are not allowed to "jump out":

default -> { return -1; } // ERROR

Specifically, you cannot use return, break, or continue statements in a switch expression.
(See Section 3.8.6 for the latter two.)

With so many variations of switch, which one should you choose?

1. Avoid the fallthrough forms. It is very uncommon to need fallthrough.
2. Prefer switch expressions over statements.

For example, consider:

switch (seasonName) {
case "Spring", "Summer", "Winter":

numLetters = 6;
break;

case "Fall":
numLetters = 4;
break;

default:
numLetters = -1;

}

Since every case ends with a break, there is no need to use the fallthrough form. The following is
an improvement:

86 Chapter 3 ▪ Fundamental Programming Structures in Java

switch (seasonName) {
case "Spring", "Summer", "Winter" ->

numLetters = 6;
case "Fall" ->

numLetters = 4;
default ->

numLetters = -1;
}

Now note that each branch assigns a value to the same variable. It is much more elegant to use a
switch expression here:

numLetters = switch (seasonName) {
case "Spring", "Summer", "Winter" -> 6
case "Fall" -> 4
default -> -1

};

3.8.6. Statements That Break Control Flow
Although the designers of Java kept goto as a keyword, they decided not to include it in the
language. In general, goto statements are considered poor style. Some programmers feel the
anti-goto forces have gone too far (see, for example, the famous article of Donald Knuth called
“Structured Programming with goto statements”). They argue that unrestricted use of goto is
error-prone but that an occasional jump out of a loop is beneficial. The Java designers agreed and
even added a new statement, the labeled break, to support this programming style.

Let us first look at the unlabeled break statement. The same break statement that you use to exit a
switch statement can also be used to break out of a loop. For example:

while (years <= 100) {
balance += payment;
double interest = balance * interestRate / 100;
balance += interest;
if (balance >= goal) break;
years++;

}

Now the loop is exited if either years > 100 occurs at the top of the loop or balance >= goal occurs
in the middle of the loop. Of course, you could have computed the same value for years without a
break, like this:

while (years <= 100 && balance < goal) {
balance += payment;
double interest = balance * interestRate / 100;
balance += interest;

if (balance < goal) years++;
}

3.8 ▪ Control Flow 87

But note that the test balance < goal is repeated twice in this version. To avoid this repeated test,
some programmers prefer the break statement.

The labeled break statement lets you break out of multiple nested loops. Occasionally something
weird happens inside a deeply nested loop. In that case, you may want to break completely out of
all the nested loops. It is inconvenient to program that simply by adding extra conditions to the
various loop tests.

Here’s an example that shows the labeled break statement at work. Notice that the label must
precede the outermost loop out of which you want to break. It also must be followed by a colon.

int n;
read_data:
while (. . .) { // this loop statement is tagged with the label

. . .
for (. . .) { // this inner loop is not labeled

IO.print();
n = Integer.parseInt(IO.readln("Enter a number >= 0: "));
if (n < 0) { // should never happen—can't go on
break read_data; // break out of read_data loop

}
. . .

}
}
// this statement is executed immediately after the labeled break

if (n < 0) { // check for bad situation
// deal with bad situation

}
else {

// carry out normal processing
}

If there is a bad input, the labeled break moves past the end of the labeled block. As with any use
of the break statement, you then need to test whether the loop exited normally or as a result of a
break.

Note: Curiously, you can apply a label to any statement, even an if statement or a block
statement, like this:

label: {
. . .
if (condition) break label; // exits block
. . .

}
// jumps here when the break statement executes

Thus, if you are lusting after a goto and you can place a block that ends just before the
place to which you want to jump, you can use a break statement! Naturally, I don’t

88 Chapter 3 ▪ Fundamental Programming Structures in Java

recommend this approach. Note, however, that you can only jump out of a block, never into
a block.

Finally, there is a continue statement that, like the break statement, breaks the regular flow of
control. The continue statement transfers control to the header of the innermost enclosing loop.
Here is an example:

while (sum < goal) {
n = Integer.parseInt(IO.readln("Enter a number: "));
if (n < 0) continue;
sum += n; // not executed if n < 0

}

If n < 0, then the continue statement jumps immediately to the loop header, skipping the
remainder of the current iteration.

If the continue statement is used in a for loop, it jumps to the “update” part of the for loop. For
example:

for (count = 1; count <= 100; count++) {
n = Integer.parseInt(IO.readln("Enter a number, -1 to quit: "));
if (n < 0) continue;
sum += n; // not executed if n < 0

}

If n < 0, then the continue statement jumps to the count++ statement.

There is also a labeled form of the continue statement that jumps to the header of the loop with
the matching label.

Tip: Many programmers find the break and continue statements confusing. These
statements are entirely optional—you can always express the same logic without them.
None of the programs in this book use break or continue.

3.9. Big Numbers
If the precision of the basic integer and floating-point types is not sufficient, you can turn to a
couple of handy classes in the java.math package: BigInteger and BigDecimal. These are classes for
manipulating numbers with an arbitrarily long sequence of digits. The BigInteger class
implements arbitrary-precision integer arithmetic, and BigDecimal does the same for floating-point
numbers.

Use the static valueOf method to turn an ordinary number into a big number:

BigInteger a = BigInteger.valueOf(100);

For longer numbers, use a constructor with a string argument:

3.9 ▪ Big Numbers 89

BigInteger reallyBig
= new BigInteger("222232244629420445529739893461909967206666939096499764990979600");

There are also constants BigInteger.ZERO, BigInteger.ONE, BigInteger.TWO, and BigInteger.TEN.

Caution: Always construct BigDecimal objects from integers or strings. Avoid the
constructor BigDecimal(double) that is inherently prone to roundoff. For example, new
BigDecimal(0.1) has digits

0.1000000000000000055511151231257827021181583404541015625

Unfortunately, you cannot use the familiar mathematical operators such as + and * to combine big
numbers. Instead, you must use methods such as add and multiply in the big number classes.

BigInteger c = a.add(b); // c = a + b
BigInteger d = c.multiply(b.add(BigInteger.valueOf(2))); // d = c * (b + 2)

Note: Java has no programmable operator overloading. There was no way for the
programmers of the BigInteger class to redefine the + and * operators to give the add and
multiply operations of the BigInteger classes. The language designers did overload the +
operator to denote concatenation of strings. They chose not to overload other operators,
and they did not give Java programmers the opportunity to overload operators in their own
classes.

Note: In Java 19, the BigInteger class provides a parallelMultiply method that yields the
same result as multiply but can potentially compute the result faster by using multiple
processor cores. Use this method if you have to do a lot of multiplications and you know
that your application does not need the CPU resources for other computations.

Listing 3.6 shows a modification of the lottery odds program of Listing 3.5, updated to work with
big numbers. For example, if you are invited to participate in a lottery in which you need to pick
60 numbers out of a possible 490 numbers, you can use this program to tell you your odds of
winning. They are 1 in
716395843461995557415116222540092933411717612789263493493351013459481104668848. Good luck!

The program in Listing 3.5 computed the statement

lotteryOdds = lotteryOdds * (n - i + 1) / i;

When big integers are used for lotteryOdds and n, the equivalent statement becomes

lotteryOdds = lotteryOdds
.multiply(n.subtract(BigInteger.valueOf(i - 1)))
.divide(BigInteger.valueOf(i));

90 Chapter 3 ▪ Fundamental Programming Structures in Java

Note: To run this program with a version prior to Java 25, add the line

import java.math.BigInteger;

to the top of the program, in addition to the general modifications described in the notes in
Section 3.1 and Section 3.7.1.

Listing 3.6: BigIntegerDemo.java

1 /**
2 * This program uses big numbers to compute the odds of winning the grand prize
3 * in a lottery.
4 */
5 void main() {
6 IO.print("How many numbers do you need to draw? ");
7 int k = Integer.parseInt(IO.readln());
8
9 IO.print("What is the highest number you can draw? ");

10 BigInteger n = new BigInteger(IO.readln());
11
12 // Binomial coefficient n*(n-1)*(n-2)*...*(n-k+1)/(1*2*3*...*k)
13
14 BigInteger lotteryOdds = BigInteger.ONE;
15
16 for (int i = 1; i <= k; i++)
17 lotteryOdds = lotteryOdds
18 .multiply(n.subtract(BigInteger.valueOf(i - 1)))
19 .divide(BigInteger.valueOf(i));
20
21 IO.println("Your odds are 1 in " + lotteryOdds + " Good luck!");
22 }

java.math.BigInteger 1.1

▪ BigInteger add(BigInteger other)
▪ BigInteger subtract(BigInteger other)
▪ BigInteger multiply(BigInteger other)
▪ BigInteger divide(BigInteger other)
▪ BigInteger mod(BigInteger other)
▪ BigInteger pow(int exponent)

return the sum, difference, product, quotient, remainder, and power of this big integer and
other.

▪ BigInteger sqrt() 9
yields the square root of this BigInteger.

▪ int compareTo(BigInteger other)
returns 0 if this big integer equals other, a negative result if this big integer is less than
other, and a positive result otherwise.

▪ static BigInteger valueOf(long x)
returns a big integer whose value equals x.

3.9 ▪ Big Numbers 91

java.math.BigDecimal 1.1

▪ BigDecimal(String digits)
constructs a big decimal with the given digits.

▪ BigDecimal add(BigDecimal other)
▪ BigDecimal subtract(BigDecimal other)
▪ BigDecimal multiply(BigDecimal other)
▪ BigDecimal divide(BigDecimal other) 5.0
▪ BigDecimal divide(BigDecimal other, RoundingMode mode) 5.0

return the sum, difference, product, or quotient of this big decimal and other. The first divide
method throws an exception if the quotient does not have a finite decimal expansion. To
obtain a rounded result, use the second method. The mode RoundingMode.HALF_UP is the
rounding mode that you learned in school: round down the digits 0 to 4, round up the digits
5 to 9. It is appropriate for routine calculations. See the API documentation for other
rounding modes.

▪ int compareTo(BigDecimal other)
returns 0 if this big decimal equals other, a negative result if this big decimal is less than
other, and a positive result otherwise.

3.10. Arrays
Arrays hold sequences of values of the same type. In the following sections, you will see how to
work with arrays in Java.

3.10.1. Declaring Arrays
Declare an array variable by specifying the array type—which is the element type followed by
[]—and the array variable name. For example, here is the declaration of an array a of integers:

int[] a;

However, this statement only declares the variable a. It does not yet initialize a with an actual
array. Use the new operator to create the array.

int[] a = new int[100]; // or var a = new int[100];

This statement declares and initializes an array of 100 integers.

The array length need not be a constant: new int[n] creates an array of length n.

Once you create an array, you cannot change its length (although you can, of course, change an
individual array element). If you frequently need to expand the length of arrays while your
program is running, you should use array lists, which are covered in Chapter 5.

The type of an array variable does not include the length. For example, the variable a in the
preceding example has type int[] and can be set to an int array of any length.

Note: You can define an array variable either as

92 Chapter 3 ▪ Fundamental Programming Structures in Java

int[] a;

or as

int a[];

Most Java programmers prefer the former style because it neatly separates the type int[]
(integer array) from the variable name.

Java has a shortcut for creating an array object and supplying initial values:

int[] smallPrimes = { 2, 3, 5, 7, 11, 13 };

Notice that you do not use new with this syntax, and you don’t specify the length.

A comma after the last value is allowed, which can be convenient for an array to which you keep
adding values over time:

String[] authors = {
"James Gosling",
"Bill Joy",
"Guy Steele",
// add more names here and put a comma after each name

};

You can declare an anonymous array:

new int[] { 17, 19, 23, 29, 31, 37 }

This expression allocates a new array and fills it with the values inside the braces. It counts the
number of initial values and sets the array length accordingly. You can use this syntax to
reinitialize an array without creating a new variable. For example,

smallPrimes = new int[] { 17, 19, 23, 29, 31, 37 };

is shorthand for

int[] anonymous = { 17, 19, 23, 29, 31, 37 };
smallPrimes = anonymous;

Note: It is legal to have arrays of length 0. Such an array can be useful if you write a
method that computes an array result and the result happens to be empty. Construct an
array of length 0 as

new elementType[0]

or

new elementType[] {}

3.10 ▪ Arrays 93

Note that an array of length 0 is not the same as null.

3.10.2. Accessing Array Elements
You access each individual element of an array through an integer index, using the bracket
operator. For example, if a is an array of integers, then a[i] is the element with index i in the
array.

The array elements are numbered starting from 0. The last valid index is one less than the length.
In the example below, the index values range from 0 to 99. Once the array is created, you can fill
the elements in an array, for example, by using a loop:

int[] a = new int[100];
for (int i = 0; i < 100; i++)

a[i] = i; // fills the array with numbers 0 to 99

When you create an array of numbers, all elements are initialized with zero. Arrays of boolean are
initialized with false. Arrays of objects are initialized with the special value null, which indicates
that they do not (yet) hold any objects. This can be surprising for beginners. For example,

String[] names = new String[10];

creates an array of ten strings, all of which are null. If you want the array to hold empty strings,
you must supply them:

for (int i = 0; i < 10; i++) names[i] = "";

Caution: If you construct an array with 100 elements and then try to access the element
a[100] (or any other index outside the range from 0 to 99), an “array index out of bounds”
exception will occur.

To find the number of elements of an array, use array.length. For example:

for (int i = 0; i < a.length; i++)
IO.println(a[i]);

3.10.3. The “for each” Loop
Java has a powerful looping construct that allows you to loop through each element in an array
(or any other collection of elements) without having to fuss with index values.

The enhanced for loop

for (variable : collection) statement

sets the given variable to each element of the collection and then executes the statement (which,
of course, may be a block). The collection expression must be an array or an object of a class that

94 Chapter 3 ▪ Fundamental Programming Structures in Java

implements the Iterable interface, such as ArrayList. Array lists are covered in Chapter 5 and the
Iterable interface in Chapter 9.

For example,

for (int element : a)
IO.println(element);

prints each element of the array a on a separate line.

You should read this loop as “for each element in a.” The designers of the Java language
considered using keywords, such as foreach and in. But this loop was a late addition to the Java
language, and in the end nobody wanted to break the old code that already contained methods or
variables with these names (such as System.in).

Of course, you could achieve the same effect with a traditional for loop:

for (int i = 0; i < a.length; i++)
IO.println(a[i]);

However, the “for each” loop is more concise and less error-prone, as you don’t have to worry
about those pesky start and end index values.

Note: The loop variable of the “for each” loop traverses the elements of the array, not the
index values.

The “for each” loop is a pleasant improvement over the traditional loop if you need to process all
elements in a collection. However, there are still plenty of opportunities to use the traditional for
loop. For example, you might not want to traverse the entire collection, or you may need the
index value inside the loop.

Tip: There is an even easier way to print all values of an array, using the toString method
of the Arrays class. The call Arrays.toString(a) returns a string containing the array
elements, enclosed in brackets and separated by commas, such as "[2, 3, 5, 7, 11, 13]".
To print the array, simply call

IO.println(Arrays.toString(a));

3.10.4. Array Copying
You can copy one array variable into another, but then both variables refer to the same array:

int[] luckyNumbers = smallPrimes;
luckyNumbers[5] = 12; // now smallPrimes[5] is also 12

Figure 3.14 shows the result.

3.10 ▪ Arrays 95

smallPrimes =

luckyNumbers =

2
3
5
7
11
12

Figure 3.14: Copying an array variable

If you actually want to copy all values of one array into a new array, use the copyOf method in the
Arrays class:

int[] copiedLuckyNumbers = Arrays.copyOf(luckyNumbers, luckyNumbers.length);

The second argument is the length of the new array. A common use of this method is to increase
the length of an array:

luckyNumbers = Arrays.copyOf(luckyNumbers, 2 * luckyNumbers.length);

The additional elements are filled with 0 if the array contains numbers, false if the array contains
boolean values. Conversely, if the length is less than the length of the original array, only the initial
values are copied.

Note: As in Python and JavaScript, Java arrays are allocated on the heap. This is quite
different from a C array or C++ vector on the stack. If you come from C or C++, you
should think of a Java arrays as a pointer to an array allocated on the heap. That is,

int[] a = new int[100]; // Java

is not the same as

int a[100]; // C++

but rather

int* a = new int[100]; // C++

3.10.5. Command-Line Arguments
If you want to process arguments that a user of your program specified on the command line,
your main method needs a parameter that is an array of strings.

For example, consider this program in a file Message.java:

void main(String[] args) {
IO.print(switch (args[0])) {

case "-a" -> "🏴‍☠";
case "-b" -> "🍺";
case "-h" -> "Hello,";

96 Chapter 3 ▪ Fundamental Programming Structures in Java

default -> args[0];
}
IO.print(" " + args[1]);
IO.println("!");

}

If the program is called as

java Message.java -h World

or

javac Message.java
java Message -h World

then args[0] is the string "-h", and args[1] is "World".

Note: Unlike in Python or C, the name of the program is not stored in the array of
command-line arguments. When you start up a program as

java Message.java -h World

from the command line, then the args array does not contain java or "Message.java".

3.10.6. Array Sorting
To sort an array of numbers, you can use one of the sort methods in the Arrays class:

int[] a = new int[10000];
. . .
Arrays.sort(a)

This method uses a tuned version of the QuickSort algorithm that is claimed to be very efficient
on most data sets. The Arrays class provides several other convenience methods for arrays that
are included in the API notes at the end of this section.

The program in Listing 3.7 puts arrays to work. This program draws a random combination of
numbers for a lottery game. For example, if you play a “choose 6 numbers from 49” lottery, the
program might print this:

Bet the following combination. It'll make you rich!
4
7
8
19
30
44

To select such a random set of numbers, first fill an array numbers with the values 1, 2, . . ., n:

3.10 ▪ Arrays 97

int[] numbers = new int[n];
for (int i = 0; i < numbers.length; i++)

numbers[i] = i + 1;

A second array holds the numbers to be drawn:

int[] result = new int[k];

Now draw k numbers. The Math.random method returns a random floating-point number that is
between 0 (inclusive) and 1 (exclusive). Multiplying the result with n yields a random number
between 0 and n – 1.

int r = (int) (Math.random() * n);

Set the ith result to be the number at that index. Initially, that is just r + 1, but as you’ll see
presently, the contents of the numbers array are changed after each draw.

result[i] = numbers[r];

Now, you must be sure never to draw that number again—all lottery numbers must be distinct.
Therefore, overwrite numbers[r] with the last number in the array and reduce n by 1.

numbers[r] = numbers[n - 1];
n--;

The point is that in each draw we pick an index, not the actual value. The index points into an
array that contains the values that have not yet been drawn.

After drawing k lottery numbers, sort the result array for a more pleasing output:

Arrays.sort(result);
for (int r : result)

IO.println(r);

Listing 3.7: LotteryDrawing.java

1 /**
2 * This program demonstrates array manipulation.
3 */
4 void main() {
5 int k = Integer.parseInt(IO.readln("How many numbers do you need to draw? "));
6 int n = Integer.parseInt(IO.readln("What is the highest number you can draw? "));
7
8 // fill an array with numbers 1 2 3 . . . n
9 int[] numbers = new int[n];

10 for (int i = 0; i < numbers.length; i++)
11 numbers[i] = i + 1;
12
13 // draw k numbers and put them into a second array
14 int[] result = new int[k];
15 for (int i = 0; i < result.length; i++) {
16 // make a random index between 0 and n - 1
17 int r = (int) (Math.random() * n);

98 Chapter 3 ▪ Fundamental Programming Structures in Java

18
19 // pick the element at the random location
20 result[i] = numbers[r];
21
22 // move the last element into the random location
23 numbers[r] = numbers[n - 1];
24 n--;
25 }
26
27 // print the sorted array
28 Arrays.sort(result);
29 IO.println("Bet the following combination. It'll make you rich!");
30 for (int r : result)
31 IO.println(r);
32 }

java.util.Arrays 1.2

▪ static String toString(T[] a) 5.0
returns a string with the elements of a, enclosed in brackets and delimited by commas. In
this and the following methods, the component type T of the array can be int, long, short,
char, byte, boolean, float, or double.

▪ static T[] copyOf(T[] a, int end) 6
▪ static T[] copyOfRange(T[] a, int start, int end) 6

return an array of the same type as a, of length either end or end–start, filled with the values
of a. If end is larger than a.length, the result is padded with 0 or false values.

▪ static void sort(T[] a)
sorts the array, using a tuned QuickSort algorithm.

▪ static void fill(T[] a, T v)
sets all elements of the array to v.

▪ static boolean equals(T[] a, T[] b)
returns true if the arrays have the same length and if the elements at corresponding indexes
match.

3.10.7. Multidimensional Arrays
Multidimensional arrays use more than one index to access array elements. They are used for
tables and other more complex arrangements. You can safely skip this section until you have a
need for this storage mechanism.

Suppose you want to make a table of numbers that shows how much an investment of $10,000
will grow under different interest rate scenarios in which interest is paid annually and reinvested.

5% 6% 7% 8% 9% 10%
10000.00 10000.00 10000.00 10000.00 10000.00 10000.00
10500.00 10600.00 10700.00 10800.00 10900.00 11000.00
11025.00 11236.00 11449.00 11664.00 11881.00 12100.00
11576.25 11910.16 12250.43 12597.12 12950.29 13310.00
12155.06 12624.77 13107.96 13604.89 14115.82 14641.00
12762.82 13382.26 14025.52 14693.28 15386.24 16105.10
13400.96 14185.19 15007.30 15868.74 16771.00 17715.61

3.10 ▪ Arrays 99

14071.00 15036.30 16057.81 17138.24 18280.39 19487.17
14774.55 15938.48 17181.86 18509.30 19925.63 21435.89
15513.28 16894.79 18384.59 19990.05 21718.93 23579.48

You can store this information in a two-dimensional array named balances.

Declaring a two-dimensional array in Java is simple enough. For example:

double[][] balances;

You cannot use the array until you initialize it. In this case, you can do the initialization as follows:

balances = new double[NYEARS][NRATES];

In other cases, if you know the array elements, you can use a shorthand notation for initializing a
multidimensional array without a call to new. For example:

int[][] magicSquare = {
{ 16, 3, 2, 13 },
{ 5, 10, 11, 8 },
{ 9, 6, 7, 12 },
{ 4, 15, 14, 1 }

};

Once the array is initialized, you can access individual elements by supplying two pairs of
brackets—for example, balances[i][j].

The example program stores a one-dimensional array interestRates of interest rates and a two-
dimensional array balances of account balances, one for each year and interest rate. Initialize the
first row of the array with the initial balance:

for (int j = 0; j < balances[0].length; j++)
balances[0][j] = 10000;

Then compute the other rows, as follows:

for (int i = 1; i < balances.length; i++) {
for (int j = 0; j < balances[i].length; j++) {

double oldBalance = balances[i - 1][j];
double interest = . . .;
balances[i][j] = oldBalance + interest;

}
}

Listing 3.8 shows the full program. In this program, you can see how to use multiple methods.
The main method calls a printTable method that prints the table of balances.

Note: A “for each” loop does not automatically loop through all elements in a two-
dimensional array. Instead, it loops through the rows, which are themselves one-

100 Chapter 3 ▪ Fundamental Programming Structures in Java

dimensional arrays. To visit all elements of a two-dimensional array a, nest two loops, like
this:

for (double[] row : values)
for (double value : row)

do something with value

Tip: To print out a quick-and-dirty list of the elements of a two-dimensional array, call

IO.println(Arrays.deepToString(a));

The output is formatted like this:

[[16, 3, 2, 13], [5, 10, 11, 8], [9, 6, 7, 12], [4, 15, 14, 1]]

Listing 3.8: CompoundInterest.java

1 /**
2 * This program shows how to store tabular data in a 2D array.
3 */
4 void main() {
5 final double STARTRATE = 5;
6 final int NRATES = 6;
7 final int NYEARS = 10;
8
9 // set interest rates to 5 . . . 10%

10 double[] interestRates = new double[NRATES];
11 for (int j = 0; j < interestRates.length; j++)
12 interestRates[j] = (STARTRATE + j) / 100.0;
13
14 double[][] balances = new double[NYEARS][NRATES];
15
16 // set initial balances to 10000
17 for (int j = 0; j < balances[0].length; j++)
18 balances[0][j] = 10000;
19
20 // compute interest for future years
21 for (int i = 1; i < balances.length; i++) {
22 for (int j = 0; j < balances[i].length; j++) {
23 // get last year's balances from previous row
24 double oldBalance = balances[i - 1][j];
25
26 // compute interest
27 double interest = oldBalance * interestRates[j];
28
29 // compute this year's balances
30 balances[i][j] = oldBalance + interest;
31 }
32 }
33
34 printTable(interestRates, balances);
35 }

3.10 ▪ Arrays 101

36
37 void printTable(double[] headers, double[][] values) {
38 for (double header : headers) {
39 IO.print("%10.2f".formatted(header));
40 }
41 IO.println();
42 IO.println("-".repeat(10 * headers.length));
43 // print balance table
44 for (double[] row : values) {
45 // print table row
46 for (double value : row)
47 IO.print("%10.2f".formatted(value));
48
49 IO.println();
50 }
51 }

3.10.8. Ragged Arrays
So far, what you have seen is not too different from other programming languages. But there is
actually something subtle going on behind the scenes that you can sometimes turn to your
advantage: Java has no multidimensional arrays at all, only one-dimensional arrays.
Multidimensional arrays are faked as “arrays of arrays.”

For example, the balances array in the preceding example is actually an array that contains ten
elements, each of which is an array of six floating-point numbers (Figure 3.15).

balances = 10000.0
10000.0
10000.0
10000.0
10000.0
10000.0

11000.0
11100.0
11200.0
11300.0
11400.0

balances[1] =

balances[1][2] =

.

.

.
23579.48
25580.37
27730.79
30040.42
32519.49
35178.76

11500.0

Figure 3.15: A two-dimensional array

102 Chapter 3 ▪ Fundamental Programming Structures in Java

The expression balances[i] refers to the ith subarray—that is, the ith row of the table. It is itself
an array, and balances[i][j] refers to the jth element of that array.

Since rows of arrays are individually accessible, you can actually swap them!

double[] temp = balances[i];
balances[i] = balances[i + 1];
balances[i + 1] = temp;

Note that the number of rows and columns is not a part of the type of an array variable. The
variable balances has type double[][]: an array of double arrays.

Therefore, you can make “ragged” arrays—that is, arrays in which different rows have different
lengths. Here is the standard example. Let us make an array in which the element at row i and
column j equals the number of possible outcomes of a “choose j numbers from i numbers”
lottery.

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

As j can never be larger than i, the matrix is triangular. The ith row has i + 1 elements. (It is OK
to choose 0 elements; there is one way to make such a choice.) To build this ragged array, first
allocate the array holding the rows:

final int NMAX = 10;
int[][] odds = new int[NMAX + 1][];

Next, allocate the rows:

for (int n = 0; n <= NMAX; n++)
odds[n] = new int[n + 1];

Now that the array is allocated, you can access the elements in the normal way, provided you do
not overstep the bounds:

for (int n = 0; n < odds.length; n++) {
for (int k = 0; k < odds[n].length; k++) {

// compute lotteryOdds
. . .
odds[n][k] = lotteryOdds;

}
}

Listing 3.9 gives the complete program.

3.10 ▪ Arrays 103

Note: Just as with one-dimensional arrays, it is legal to construct multi-dimensional arrays
where a dimension is zero. For example,

new int[3][0]

has three rows, each of which happen to have length zero. In contrast,

new int[0][3]

has no rows. The row length is immaterial, since no rows are actually allocated. In other
words, new int[0][3], new int[0][4], and new int[0][] are all the same.

Note: The Java declaration

double[][] balances = new double[10][6]; // Java

is very different from declaring a two-dimensional array in C or C++.

double balances[10][6]; // C/C++

The latter declares a contiguous block of 60 floating-point numbers on the stack. In Java,
each row is stored separately on the heap, as you have seen in Figure 3.15.

Listing 3.9: LotteryArray.java

1 /**
2 * This program demonstrates a triangular array.
3 */
4 void main() {
5 final int NMAX = 10;
6
7 // allocate triangular array
8 int[][] odds = new int[NMAX + 1][];
9 for (int n = 0; n <= NMAX; n++)

10 odds[n] = new int[n + 1];
11
12 // fill triangular array
13 for (int n = 0; n < odds.length; n++)
14 for (int k = 0; k < odds[n].length; k++) {
15 /*
16 * compute binomial coefficient
17 * n*(n-1)*(n-2)*...*(n-k+1)/(1*2*3*...*k)
18 */
19 int lotteryOdds = 1;
20 for (int i = 1; i <= k; i++)
21 lotteryOdds = lotteryOdds * (n - i + 1) / i;
22
23 odds[n][k] = lotteryOdds;
24 }
25

104 Chapter 3 ▪ Fundamental Programming Structures in Java

26 // print triangular array
27 for (int[] row : odds) {
28 for (int odd : row)
29 IO.print("%4d".formatted(odd));
30 IO.println();
31 }
32 }

You have now seen the fundamental programming structures of the Java language. The next
chapter covers object-oriented programming in Java.

3.10 ▪ Arrays 105

This page intentionally left blank

Index
Symbols
! operator 48, 52
!= operator 48, 52, 81
""". . .""" (triple quotes, for text blocks) 64
". . ." (single quotes, for strings) 31
(number sign)

in JavaDoc hyperlinks 179
printf flag 71

$ (dollar sign)
delimiter, for inner classes 327
in variable names 40
printf flag 71

% (percent sign)
arithmetic operator 42, 52
conversion character 70

& (ampersand)
bitwise operator 50, 52
in bounding types 402
in reference parameters (C++) 142

&& operator 48, 52
> (right angle bracket)

in shell syntax 390
relational operator 48, 52

>& (shell syntax) 390
>>, >>> operators 51, 52
>= operator 48, 52
< (left angle bracket)

printf flag 71
relational operator 48, 52

<< operator 51, 52
<. . .> (angle brackets) 222, 398
<= operator 48, 52
', " (single, double quote), escape sequences for 36
((left parenthesis) 71

printf flag 71
(. . .) (parentheses)

empty, in method calls 31
for casts 46, 52, 201
for operator hierarchy 51

* (asterisk)
arithmetic operator 42, 52
for annotation processors 627
in class path 167
in imports 159

+ (plus sign)
arithmetic operator 42, 45, 52
for objects and strings 53, 216
printf flag 71

++ operator 47, 52
, (comma)

operator (C++) 52
printf flag 71

- (minus sign)
arithmetic operator 42, 52

printf flag 71
-> operator

in lambda expressions 305
in switch expressions 85

-- operator 47, 52
. (period) 167
... (ellipsis) 232
.class extension 31
.exe extension 172
/ (slash) 42, 52
/* . . . */ comments 32
/** . . . */ (Javadoc comment delimiters) 32, 175, 176
// comments 32
0, 0b, 0B, 0x, 0X prefixes (in integers) 34
0, printf flag 71
2> (shell syntax) 390
: (colon)

in assertions 371
in class path (UNIX) 167
inheritance token (C++) 188

:: (C++ operator) 310
; (semicolon)

in class path (Windows) 167
in statements 31, 39

= operator 40, 46
== operator 48, 52

for class objects 256
for enumerated types 239
for floating-point numbers 81
for identity hash maps 481
for strings 57
wrappers and 229

? (question mark)
for wildcard types 410

?: operator 48, 52
with pattern matching 203

@ (at sign) 176
in java command-line options 657

@author
JavaDoc tag 181

@Deprecated annotation 620
@deprecated JavaDoc tag 620
@Documented annotation 620, 621
@FunctionalInterface annotation 320, 620, 621
@Generated annotation 620, 621
@index

JavaDoc tag 181
@Inherited annotation 620, 621
@link

JavaDoc tag 180
@LogEntry annotation 633
@NonNull annotation 614
@Override annotation 211, 619, 620
@param

JavaDoc tag 177

671

@Persistent annotation 622
@Property annotation 630
@Repeatable annotation 620, 622, 623
@RepeatedTest annotation 613
@Retention annotation 617, 620
@return

JavaDoc tag 177
@SafeVarargs annotation 420, 620, 621
@see

JavaDoc tag 179, 180
@Serial annotation 619, 621
@since

JavaDoc tag 181
@SuppressWarnings annotation 85, 228, 408, 420, 425, 620,

621
@Target annotation 617, 620
@Test annotation 612, 616, 617
@throws

JavaDoc tag 177
@version

JavaDoc tag 181, 182
[. . .] (brackets)

empty, in generics 399
for arrays 94

\ (backslash)
escape sequence for 36
in text blocks 65

\b (backslash character literal) 36
\f (form feed character literal) 36
\n (newline character literal) 36, 64
\r (carriage return character literal) 36
\s (space character literal) 36, 65
\t (tab character literal) 36
\u (Unicode character literal) 36, 37
^ (caret) 50, 52, 305
_ (underscore)

as a reserved word 670
delimiter, in number literals 34

{. . .} (braces)
double, in inner classes 332
for blocks 29, 31, 72
for enumerated type 42
in annotation elements 613
in lambda expressions 305

| operator 50, 52
|| operator 48, 52
~ operator 50, 52
🍺 38

A
A, a conversion characters 70
Abstract classes 233

extending 235
interfaces and 282, 289
no instantiating for 235
object variables of 235

abstract keyword 233, 667
Abstract methods 234

in functional interfaces 307
AbstractCollection class 292, 446, 457
AbstractProcessor class 627
acceptEither method 593, 594
Access modifiers

checking 260
final 41, 130, 198, 288, 329, 569
private 123, 165, 324
protected 205, 277, 302
public 31, 122, 165, 282, 283
public static final 289
redundant 289
static 131

accessFlags method
of Constructor 265
of Field 265
of Method 265

AccessibleObject class 270
canAccess method 270
setAccessible method 267, 270
trySetAccessible method 270

Accessor methods 116, 127, 128, 412
accumulate method

of LongAccumulator 571
accumulateAndGet method

of AtomicXxx 571
ActionListener interface

actionPerformed method 294, 295, 304, 323, 324, 328,
330
implementing 308

ActiveX 4
add method

of ArrayList 222, 224, 227
of BigDecimal 92
of BigInteger 91
of BlockingQueue 575, 576
of Collection 442, 446, 447, 449
of GregorianCalendar 117
of HashSet 463
of List 449, 460
of ListIterator 454, 456, 460
of LongAdder 571
of Queue 469
of Set 450

addAll method
of ArrayList 397
of Collection 446, 447
of Collections 500
of List 460

addExact method 45
addFirst method

of LinkedList 461
of SequencedCollection 469

Addition 42, 52
for different numeric types 45
for objects and strings 53, 216

addLast method
of LinkedList 461
of SequencedCollection 469

addSuppressed method 363
of Throwable 366

Adobe Flash 8
Agent code 638, 639
Aggregation 110
Algorithms 107

for binary search 497
for shuffling 496
for sorting 495
QuickSort 97, 495

672 Index

simple, in the Java Collections Framework 499
writing 502

Algorithms + Data Structures = Programs (Wirth) 107
Algorithms in C++ (Sedgewick) 495
allOf method

of CompletableFuture 593, 594
of EnumSet 482

allProcesses method 607
of ProcessHandle 609

Amazon 15
and method

of BitSet 511
andNot method

of BitSet 511
Andreessen, Mark 8
Android 13, 598
AnnotatedConstruct interface 628
AnnotatedElement interface 624, 626

getAnnotation method 626
getAnnotation, getAnnotationsByType methods 625
getAnnotations method 626
getAnnotationsByType method 626
getDeclaredAnnotations method 626
isAnnotationPresent method 626

Annotation interface 619
annotationType method 619
equals method 619
extending 619
hashCode method 619
toString method 619

Annotation interfaces 616
Annotation processors 627

at bytecode level 632
Annotations 408

accessing 618
applicability of 620
container 623, 624
declaration 613
documented 620, 621
generating source code with 628
inherited 620, 621, 624
key/value pairs in 612, 618
meta 617, 623
modifiers and 615
multiple 613
processing

at runtime 623
source-level 627

repeatable 613, 620, 622, 623, 624
standard 619
type use 614

annotationType method
of Annotation 619

Anonymous arrays 93
Anonymous inner classes 330
Antisymmetry rule 288
anyOf method 593

of CompletableFuture 594
Apache

Commons CSV library 654, 655
append method

of StringBuilder 61, 64
appendCodePoint method

of StringBuilder 64

Applets 7, 12
running in a browser 7

Application Programming Interfaces (APIs), online
documentation for 58, 59

Applications
compiling/launching from the command line 19, 31
debugging 20, 348
executing

without a separate Java runtime 664
extensible 197
for different Java releases 172
localizing 112, 259
managing in JVM 391
monitoring 638, 639
responsive 597
terminating 125
testing 370

applyToEither method 593, 594
Arguments 31

string 31
variable number of 232

arguments method
of ProcessHandle.Info 610

Arguments. See Parameters
Arithmetic operators 42

accuracy of 43
autoboxing with 229
combining with assignment 46
precedence of 52

Array class 270, 273
get method 273
getLength method 271, 273
getXxx method 273
newInstance method 271, 273
set method 273
setXxx method 273

Array lists 461
anonymous 332
capacity of 223
elements of

accessing 224
adding 222, 225
removing 226
traversing 226

generic 221
raw vs. typed 227

Array variables 92
ArrayBlockingQueue class 576, 579

Constructor 579
ArrayDeque class 468, 470

as a concrete collection type 451
Constructor 470

ArrayIndexOutOfBoundsException class 94, 350, 352
ArrayList class 94, 221, 224, 227, 395, 453

add method 222, 224, 227
addAll method 397
ArrayList<E> method 224
as a concrete collection type 451
declaring with var 222
ensureCapacity method 223, 224
get method 227
get, set methods 224
iterating over 443
remove method 226, 227

Index 673

removeIf method 309
set method 227
size method 224
size, trimToSize methods 223
synchronized 589
toArray method 424
trimToSize method 224

ArrayList<E> method
of ArrayList 224

Arrays 94
annotating 614
anonymous 93
circular 442
cloning 302
converting to collections 502
copying 95

on write 587
creating 92
elements of

computing in parallel 588
numbering 94
remembering types of 195
removing from the middle 453
traversing 94, 100

equality testing for 210, 211
generic methods for 270
hash codes of 213
in command-line arguments 96
initializing 93, 94
length of 94

equal to 0 93
increasing 96

multidimensional 99, 103, 210, 217
not of generic types 314, 409, 419, 423
of integers 217
of subclass/superclass references 195
of wildcard types 419
out-of-bounds access in 350
parallel operations on 587
printing 101, 217
ragged 102
size of 223, 271

setting at runtime 221
sorting 97, 285, 587

Arrays class 99, 211, 215, 287, 492, 498
asList method 492
binarySearch method 342, 498
copyOf method 95, 99, 270
copyOfRange method 99
deepEquals method 210
deepToString method 101, 217
equals method 99, 210, 211
fill method 99
hashCode method 213, 215
parallelXxx methods 587
sort method 97, 99, 283, 285, 287, 304, 308
toString method 95, 99

ArrayStoreException class 195, 410, 419, 421
arrayType method 271

of Class 273
ASCII 37
asIterator method 505

of Enumeration 505
asList method

of Arrays 492
assert keyword 370, 667
Assertions 370

checking 614
checking parameters with 373
defined 370
documenting assumptions with 374
enabling/disabling 371, 372

Assignment 40, 46
Asynchronous computations 589
Asynchronous methods 531
AsyncTask class (Android) 598
atan, atan2 methods

of Math 44
Atomic operations 570

client-side locking for 566
in concurrent hash maps 582
performance of 571

AtomicType classes 570
@author 182
Autoboxing 228
AutoCloseable interface 362

close method 362, 363
await method 521

of Condition 555, 558
awaitTermination method

of ExecutorService 537
Azul 15

B
B, b conversion characters 70
Base classes. See Superclasses
BASE64Encoder class 647
Basic multilingual planes 37
Batch files 168
Beans class 171
beep method

of Toolkit 296
BiConsumer interface 318
BiFunction interface 308, 318
BIG-5 37
BigDecimal class 89, 92

add method 92
compareTo method 92
Constructor 92
divide method 92
multiply method 92
subtract method 92

BigInteger class 89, 91
add method 91
compareTo method 91
divide method 91
mod method 91
multiply method 91
pow method 91
sqrt method 91
subtract method 91
valueOf method 89, 91

Binary search 497
BinaryOperator interface 318
binarySearch method

of Arrays 342, 498
of Collections 497, 498

674 Index

BiPredicate interface 318
Bit masks 51
Bit sets 510
BitSet class 439, 510, 511

and method 511
andNot method 511
cardinality method 511
clear method 511
Constructor 511
get method 511
length method 511
or method 511
set method 511
size method 511
stream method 511
xor method 511

Bitwise operators 50, 52
Blank lines, printing 31
Blocking queues 575
BlockingDeque interface 580

offerFirst method 580
offerLast method 580
pollFirst method 580
pollLast method 580
putFirst method 580
putLast method 580
takeFirst method 580
takeLast method 580

BlockingQueue interface 579
add, element, peek, remove methods 575, 576
offer method 579
offer, poll, put, take methods 575, 576
poll method 579
put method 579
take method 579

Blocks 29, 31, 72
nested 72
synchronized 565

Boolean class 215, 509
converting from boolean 228
getBoolean method 509
hashCode method 215

boolean operators 48, 52
boolean type 38, 667

default initialization of 144
formatting output for 70

Bounded collections 442
Brace style

Kernighan and Ritchie 30
break keyword 84, 89, 667

labeled/unlabeled 87, 88
not allowed in switch expressions 86

Bridge methods 406, 407, 427
Buckets (of hash tables) 462
Bulk operations 501
Byte class 215

converting from byte 228
hashCode method 215
toUnsignedInt method 34

byte type 33, 667
Bytecode files 31
Bytecodes

engineering 632
at load time 638, 639

C
C

assert macro in 371
function pointers in 273
integer types in 5, 34

C# 6
polymorphism in 200
useful features of 9

C++
#include in 160
>> operator in 51
, (comma) operator in 52
algorithms in 494
arrays in 96, 104
boolean values in 38
classes in 322
dynamic binding in 192
dynamic casts in 202
exceptions in 350, 353, 354
for loop in 80
function pointers in 273
inheritance in 188, 194, 290
integer types in 5, 33, 34
iterators as parameters in 505
methods in

accessor 117
default 292
destructor 145

namespace directive in 160
NULL pointer in 114
object pointers in 114
operator overloading in 90
passing parameters in 140, 142
performance of, compared to Java 512
polymorphism in 200
protected modifier in 205
pure virtual functions (= 0) in 235
range-based for loop in 72
references in 114
Standard Template Library in 439, 443
syntax of 2
templates in 9, 404
type parameters in 400
using directive in 160
variables in

redefining in nested blocks 73
vector template in 223

C, c conversion characters 70
CachedRowSetImpl class 647
Calendar class 115

get/setTime methods 198
Calendars

displaying 117, 119
vs. time measurement 115

Call by reference 138
Call by value 138
call method

of Callable 533
of ScopedValue.Carrier 545

Callable interface 533, 538
call method 531, 533
wrapper for 533

Callables 531

Index 675

Callbacks 294
CamelCase 30
canAccess method

of AccessibleObject 270
Cancel 536
cancel method 532

of Future 533, 599
CancellationException class 599
cardinality method

of BitSet 511
Carriage return character 36
case keyword 49, 83, 667
cast method

of Class 430
Casts 46, 200

annotating 615
bad 350
checking before attempting 201

catch keyword 355, 667
annotating parameters of 613

ceiling method
of NavigableSet 468

char type 36, 667
Character class 215

converting from char 228
hashCode method 215
isJavaIdentifierXxx methods 39

Characters
escape sequences for 36
exotic 38
formatting output for 70

charAt method 55
of String 58

CharSequence interface 59, 290
Checked exceptions 255, 258

applicability of 369
declaring 351
suppressing with generics 425

Checked views 488
checkedCollection method

of Collections 491
checkedList method

of Collections 491
checkedMap method

of Collections 491
checkedNavigableMap method

of Collections 491
checkedNavigableSet method

of Collections 491
checkedQueue method

of Collections 491
checkedSet method

of Collections 491
checkedSortedMap method

of Collections 491
checkedSortedSet method

of Collections 491
Checker Framework 614
checkFromIndexSize, checkFromToIndex, checkIndex methods

of Objects 370
Child classes. See Subclasses
children method

of ProcessHandle 607, 609
ChronoLocalDate 414

Church, Alonzo 305
Circular arrays 442
Clark, Jim 8
Class class 221, 255, 257, 260, 264, 270, 273, 430, 437

arrayType method 271, 273
cast method 430
forName method 255, 257
getClass method 255
getComponentType method 271, 273
getConstructor method 257, 430
getConstructors method 261, 265
getDeclaredConstructor method 430
getDeclaredConstructors method 261, 265
getDeclaredField method 270
getDeclaredFields method 264, 270
getDeclaredMethods method 261, 264, 274
getEnumConstants method 430
getField method 270
getFields method 264, 270
getFields, getDeclaredFields methods 261, 267
getGenericInterfaces method 437
getGenericSuperclass method 437
getImage method 258
getMethod method 274
getMethods method 261, 264
getName method 221, 255, 256
getPackageName method 265
getRecordComponents method 265
getResource method 260
getResource, getResourceAsStream methods 258, 259
getResourceAsStream method 260, 653
getSuperclass method 221, 430
getTypeParameters method 437
isArray method 273
isEnum method 265
isInterface method 265
isRecord method 265
newInstance method 257, 430

Class constants 41
Class declarations

annotations in 613, 621
Class diagrams 111
Class file API 632
Class files 162, 166

compiling 31
format of 632
locating 167, 168
modifying 633
transformers for 638

class keyword 667
implicitly declared 135

Class literals
no annotations for 615

Class loaders 341, 371
Class path 166, 169
Class wins rule 294
Class<T> parameters 430
ClassCastException class 201, 271, 288, 410, 424, 430, 488
Classes 108, 187

abstract 233, 282, 289
access privileges for 129
adding to packages 162
capabilities of 260
companion 291, 292

676 Index

constructors for 122
defining 120

at runtime 340
deprecated 620
designing 109, 183
documentation comments for 175, 180
encapsulation of 108, 109, 127, 641
extending 109
final 198, 302
generic 221, 222, 397, 410, 422, 429, 432
immutable 130, 154, 278
implementing multiple interfaces 289, 290
importing 159
inner 322
instances of 108, 112
legacy 154
loading 391
names of 158, 184

full package 159
nested 615
number of basic types in 183
objects of, at runtime 266
package scope of 165
parameters in 126
predefined 112
private methods in 130
protected 205
public 159, 175
relationships between 110
sealed 242
sharing, among programs 166
wrapper 228

ClassLoader class 375
clearAssertionStatus method 375
setClassAssertionStatus method 375
setDefaultAssertionStatus method 375
setPackageAssertionStatus method 375

CLASSPATH 168, 169
clear method

of BitSet 511
of Collection 446, 447

clearAssertionStatus method
of ClassLoader 375

Client-side locking 565, 566
clone method

of array types 302
of Object 129, 298, 307

Cloneable interface 298
CloneNotSupportedException class 301, 302
close method

of AutoCloseable 362, 363
of Closeable 362
of ExecutorService 537
of Handler 387

Closures 315
Code errors 348
Code generator tools 621
Code planes 37
Code points, code units 37, 55
Collection interface 442, 447, 449, 457, 500

add method 442, 446, 447, 449
addAll method 446, 447
clear method 446, 447
contains method 447

contains, containsAll methods 446, 457
containsAll method 447
equals method 446
generic 445
implementing 292
isEmpty method 292, 446, 447
iterator method 442, 447
remove method 446, 447
removeAll method 446, 447
removeIf method 447, 500
retain method 446
retainAll method 447
size method 446, 447
stream method 292
toArray method 225, 446, 447, 502

Collections class 439, 490, 496, 497, 498, 500, 505, 589
addAll method 500
algorithms for 493
binarySearch method 497, 498
bounded 442
bulk operations in 501
checkedCollection method 491
checkedList method 491
checkedMap method 491
checkedNavigableMap method 491
checkedNavigableSet method 491
checkedQueue method 491
checkedSet method 491
checkedSortedMap method 491
checkedSortedSet method 491
concrete 451
concurrent modifications of 457
converting to arrays 502
copy method 500
debugging 457
disjoint method 500
elements of

inserting 449
maximum 493
removing 444
traversing 443

emptyEnumeration method 492
emptyIterator method 492
emptyList method 492
emptyListIterator method 492
emptyMap method 492
emptyNavigableMap method 492
emptyNavigableSet method 492
emptySet method 492
emptySortedMap method 492
emptySortedSet method 492
enumeration method 505
fill method 500
frequency method 500
indexOfSubList method 500
interfaces for 439
lastIndexOfSubList method 500
legacy 504
list method 505
max method 500
min method 500
mutable 484
nCopies method 484, 491
newSetFromMap method 490

Index 677

ordered 449, 454
performance of 449, 463
replaceAll method 500
reverse method 500
rotate method 500
searching in 497
shuffle method 496, 497
singleton method 492
singletonList method 492
sort method 495, 497
sorted 465
swap method 500
synchronizedCollection method 491, 589
synchronizedCollection methods 489
synchronizedList method 491, 589
synchronizedMap method 491, 589
synchronizedNavigableMap method 491
synchronizedNavigableSet method 491
synchronizedSet method 491, 589
synchronizedSortedMap method 491, 589
synchronizedSortedSet method 491, 589
thread-safe 489, 574
unmodifiableCollection method 491
unmodifiableCollection methods 485, 486
unmodifiableList method 491
unmodifiableMap method 491
unmodifiableNavigableMap method 491
unmodifiableNavigableSet method 491
unmodifiableSequencedCollection method 491
unmodifiableSequencedMap method 491
unmodifiableSequencedSet method 491
unmodifiableSet method 491
unmodifiableSortedMap method 491
unmodifiableSortedSet method 491
using for method parameters 503

Command line
arguments in 96
compiling/launching from 19, 31

command method
of ProcessHandle.Info 610

commandLine method
of ProcessHandle.Info 610

Comments 32
automatic documentation and 32, 175
blocks of 32
not nesting 33
to the end of line 32

Commons CSV library 654, 655
Compact compilation unit 135
Compact source file 161
Companion classes 291, 292
Comparable interface 282, 287, 342, 401, 402, 463, 495

compareTo method 282, 287, 401, 413
Comparator interface 296, 304, 321, 495, 497

chaining comparators in 321
comparing method 321
lambda expressions and 307
naturalOrder method 321
nullFirst/Last methods 321
reversed method 497
reversed, reverseOrder methods 322, 495
reverseOrder method 497
thenComparing method 321

comparator method

of SortedMap 474
of SortedSet 468

compare method
of Double 287
of Integer 287

compare method (integer types) 308
compareAndSet method 570
compareTo method

in subclasses 288
of BigDecimal 92
of BigInteger 91
of Comparable 282, 287, 401, 413
of Enum 242
of String 58

Compilation unit
compact 135

Compiler
autoboxing in 230
bridge methods in 406
command-line options of 391
creating bytecode files in 31
deducting method types in 400
enforcing throws specifiers in 356
error messages in 352
just-in-time 4, 5, 12, 200, 512
launching 19
optimizing method calls in 6, 200
overloading resolution in 196
shared strings in 56, 57
translating typed array lists in 228
type parameters in 396
warnings in 85, 228
whitespace in 30

CompletableFuture class 591
acceptEither method 593, 594
allOf, anyOf methods 593, 594
applyToEither method 593, 594
exceptionally, exceptionallyCompose methods 593
handle method 593
orTimeout method 593
runAfterXxx methods 593, 594
thenAccept, thenAcceptBoth, thenCombine, thenRun methods

593
thenApply, thenApplyAsync, thenCompose methods 592, 593
whenComplete method 593

CompletionStage interface 595
Components (of records) 154
Computations

asynchronous 589
performance of 43, 44
truncated 43

compute method
of Map 475

compute, computeIfXxx methods
of ConcurrentHashMap 583

computeIfAbsent method
of Map 476

computeIfPresent method
of Map 476

Concrete collections 451
Concrete methods 234
Concurrent hash maps

atomic updates in 582
bulk operations on 585

678 Index

efficiency of 581
size of 580
vs. synchronization wrappers 589

Concurrent modification detection 457
Concurrent programming 6, 515, 606

records in 155
synchronization in 547

Concurrent sets 587
ConcurrentHashMap class 580, 581

atomic updates in 582
compute, computeIfXxx methods 583
forEach method 585
forEach, forEachXxx methods 586
get method 582
keySet, newKeySet methods 587
mappingCount method 580
merge method 583
organizing buckets as trees in 581
put, putIfAbsent methods 582
reduce, reduceXxx methods 585, 586
replace method 582
search, searchXxx methods 585, 586
V> method 581

ConcurrentLinkedQueue class 580, 581
ConcurrentLinkedQueue<E> method 581

ConcurrentLinkedQueue<E> method
of ConcurrentLinkedQueue 581

ConcurrentModificationException class 456, 457, 580, 589
ConcurrentSkipListMap class 582

V> method 582
ConcurrentSkipListMap/Set classes 580
ConcurrentSkipListSet class 581

ConcurrentSkipListSet<E> method 581
ConcurrentSkipListSet<E> method

of ConcurrentSkipListSet 581
Condition interface 558, 561

await method 521, 558
signal method 558
signal, signalAll methods 560
signalAll method 558
vs. synchronization methods 563

Condition objects 554
Condition variables 554
Conditional operator 48

with pattern matching 203
Conditional statements 73
Configuration files

editing 378
Console class 68, 69

printing output to 29, 69
reading input from 66
readLine method 69
readPassword method 69

console method
of System 69

ConsoleHandler class 379, 382, 387
Constructor 387

const keyword 42, 667
Constants 41

documentation comments for 178
names of 41
public 132
static 132

Constructor class 257, 260, 265

accessFlags method 265
getDeclaringClass method 265
getExceptionTypes method 265
getModifiers method 265
getModifiers, getName methods 260
getName method 265
getParameterTypes method 265
getReturnType method 265
newInstance method 257

Constructor expressions 422
Constructor references 313

annotating 615
Constructors 122, 124, 143

annotating 613, 615
calling another constructor in 147
canonical, compact, custom 156
defined 112
documentation comments for 175
field initialization in 144, 146
final 260
initialization blocks in 148
names of 112, 123
no-argument 145, 191, 339
overloading 143
parameter names in 147
private 260
protected 175
public 175, 260
with super keyword 191

Consumer interface 318
Consumer threads 575
contains method

of Collection 446, 447, 457
of HashSet 463

containsAll method 446, 457
of Collection 447

containsKey method
of Map 473

containsValue method
of Map 473

Context
early execution 148

continue keyword 89, 667
not allowed in switch expressions 86

Control flow 72
block scope 72
breaking 87
conditional statements 73
loops 75

determinate 80
“for each” 94

multiple selections 83
Conversion characters 70
Coordinated Universal Time (UTC) 115
Copies 483

unmodifiable 485
copy method

of Collections 500
copyOf method

of Arrays 95, 99, 270
of EnumSet 482
of List 490
of List, Map, Set 485
of Map 490

Index 679

of Map.Entry 478
of Set 490

copyOfRange method
of Arrays 99

CopyOnWriteArrayList class 587, 589
CopyOnWriteArraySet class 587
CORBA 642
Cornell, Gary 1
Corruption of data 548, 551
cos method

of Math 44
Count of Monte Cristo, The (Dumas) 598, 600
Covariant return types 407
CSV files 654, 655
Ctrl+\, for thread dump 560
Ctrl+C, for program termination 548, 557
current method

of ProcessHandle 607, 609
of ThreadLocalRandom 574

currentThread method 524
of Thread 527

D
d conversion character 70
D, d suffixes (for double numbers) 35
daemon method

of Thread.Builder.OfPlatform 531
Daemon threads 527
Data types 33

boolean type 38
casting between 46
char type 36
conversions between 45, 200
floating-point 34
integer 33

Databases 611
DataFlavor class 642
Date and time

formatting output for 70
hash codes for 213
no built-in types for 112

Date class 115
getDay/Month/Year methods (deprecated) 116
toString method 113

Deadlocks 556, 559
Debugging 6, 388

collections 457
debuggers for 388
generic types 488
GUI programs 355
including class names in 333
messages for 354
reflection for 267
trapping program errors in a file for 390
when running applications in terminal window 20

Decrement operators 47
decrementExact method 45
Deep copies 299
deepEquals method 210
deepToString method 101, 217
Default for annotation element 618
default keyword 84, 291, 667

sealed classes and 244

Default methods 291
conflicts in 292

Deferred execution 317
delete method

of StringBuilder 64
Dependence 110
Deprecated methods 116
Deque interface 468, 469

offerFirst method 469
offerLast method 469
peekFirst method 469
peekLast method 469
pollFirst method 469
pollLast method 469

Deques 468
Derived classes. See Subclasses
descendants method

of ProcessHandle 607, 609
destroy method

of Process 609
destroy, destroyForcibly methods

of Process 606
destroyForcibly method

of Process 609
Determinate loops 80
Development environments

choosing 18
in terminal window 20
integrated 23

Device errors 348
Diamond syntax 222
Digital signatures 4
Directories

working, for a process 604
directory method

of ProcessBuilder 604, 608
disjoint method

of Collections 500
divide method

of BigDecimal 92
of BigInteger 91

Division 42
do/while loop 77, 78, 667
Documentation comments 32, 175

extracting 182
for fields 178
for methods 177
for packages 178
general 181
HTML markup in 178
hyperlinks in 180
inserting 175
links to other files in 180
overview 183

doInBackground method 598, 599
of SwingWorker 603

Double brace initialization 332
Double class 215, 287

compare method 287
converting from double 228
hashCode method 215
parseDouble method 66
POSITIVE_INFINITY, NEGATIVE_INFINITY, NaN constants 35

double type 34, 667

680 Index

arithmetic computations with 43
converting to other numeric types 45

Double-precision numbers 34
DoubleAccumulator, DoubleAdder classes 572
Doubly linked lists 453
Dynamic binding 192, 196
Dynamic languages 6

E
E

of Math 44
E, e conversion characters 35, 70
Early construction context 148
Eclipse 23, 388

Adoptium 15
configuring projects in 24
IDE 649
imports in 160
running source files in 25
Yasson framework 653

Effectively final variables 363
Eiffel programming language 290
Element interface 628
element method

of BlockingQueue 575, 576
of Queue 469

Elements 612
else if 75, 76
else keyword 74, 667
Emoji characters 38
emptyEnumeration method

of Collections 492
emptyIterator method

of Collections 492
emptyList method

of Collections 492
emptyListIterator method

of Collections 492
emptyMap method

of Collections 492
emptyNavigableMap method

of Collections 492
emptyNavigableSet method

of Collections 492
emptySet method

of Collections 492
emptySortedMap method

of Collections 492
emptySortedSet method

of Collections 492
EmptyStackException class 368, 369
Encapsulation 108, 109, 641

benefits of 127
compile-time 657
protected instance fields and 277

endsWith method
of String 58

ensureCapacity method 223
of ArrayList 224

Enterprise Edition 9
entry method

of Map 484, 490
EntryLogger 638

EntryLoggingAgent.mf 638
entrySet method 476

of Map 477
Enum class 238, 242

compareTo method 242
name method 242
ordinal method 242
toString, valueOf methods 239
valueOf method 242

enum keyword 42, 667
Enumerated types 42

equality testing for 239
in switch statement 50

Enumeration interface 439, 504, 505
asIterator method 505
hasMoreElements method 505
hasMoreElements, nextElement methods 443, 504
nextElement method 505

Enumeration maps/sets 480
enumeration method

of Collections 505
Enumerations 238

always final 200
annotating 613
declared inside a class 338
implementing interfaces 289
legacy 504

EnumMap class 480, 482
as a concrete collection type 451
Constructor 482

EnumSet class 480, 482
allOf method 482
as a concrete collection type 451
copyOf method 482
noneOf method 482
of method 482
range method 482

environment method
of ProcessBuilder 609

Environment variables, modifying 605
EOFException class 353
Epoch 115
Equals 294

hashCode method and 212, 214
implementing 210
inheritance and 208
of proxy classes 344
of records 154, 208
redefining 212, 214
wrappers and 229

equals method
of Annotation 619
of Arrays 99, 210, 211
of Collection 446
of Object 206, 220, 486
of Objects 211
of Set 450
of String 57, 58

equalsIgnoreCase method 57
of String 58

Error class 349
Errors

checking, in mutator methods 128
code 348

Index 681

device 348
internal 349, 352, 373
messages for 357
physical limitations 348
user input 348

Escape sequences 36
Exception class 350, 366

Constructor 366
Exception handlers 257, 348
Exception specification 351
exceptionally, exceptionallyCompose methods

of CompletableFuture 593
exceptionally, exceptionallyCompose methods

(CompletableFuture) 593
exceptionNow method

of Future 533
Exceptions 349

annotating 615
ArrayIndexOutOfBoundsException 94, 350, 352
ArrayStoreException 195, 410, 419, 421
CancellationException 599
catching 125, 257, 301, 352, 355
changing type of 358
checked 255, 258, 350, 353, 367, 369
ClassCastException 201, 271, 288, 410, 424, 430, 488
CloneNotSupportedException 301, 302
ConcurrentModificationException 456, 457, 580, 589
creating classes for 353, 354
documentation comments for 177
EmptyStackException 368, 369
EOFException 353
FileNotFoundException 351, 352
finally clause in 360
generics in 425
hierarchy of 349, 369
IllegalAccessException 266
IllegalStateException 444, 575
InaccessibleObjectException 267
InterruptedException 516, 524, 532
InvocationTargetException 257
IOException 351, 353, 356, 362
logging 383
micromanaging 368
NoSuchElementException 442
NullPointerException 125, 126, 230, 313, 350, 369, 370
NumberFormatException 369
out-of-bounds 370
propagating 356, 369
rethrowing and chaining 358, 390
RuntimeException 350, 369
ServletException 358
squelching 369
stack trace for 364
“throw early, catch late” 370
throwing 257, 353
TimeoutException 532
tips for using 367
type variables in 403
uncaught 390, 522, 528
unchecked 258, 350, 352, 369
unexpected 383
UnsupportedOperationException 477, 486, 489
variables for, implicitly final 358
vs. simple tests 367

wrapping 359
exec method

of Runtime 603
Executable class 274
Executable JAR files 172
ExecutableElement interface 628
Execute 598
execute method

of SwingWorker 603
ExecutorCompletionService class 538, 542

Constructor 542
poll method 542
submit method 542
take method 542

Executors class 534, 537
groups of tasks, controlling 537
newCachedThreadPool method 537
newFixedThreadPool method 537
newSingleThreadExecutor method 537
newThreadPerTaskExecutor method 537
newVirtualThreadPerTaskExecutor method 537

Executors class, newXxx methods 534
ExecutorService interface 537, 542

awaitTermination method 537
close method 537
invokeAll method 542
invokeAny method 542
invokeAny/All methods 538
shutdown method 536, 537
shutdownNow method 536, 537
submit method 535, 537

exitValue method 606
of Process 609

exp method
of Math 44

Explicit parameters 126
Exploratory programming 5
exports keyword 646, 648, 649, 660, 668
Expressions 47
extends keyword 187, 401, 402, 668

F
F, f conversion characters 70
F, f suffixes (for float numbers) 35
factory method

of Thread.Builder 531
Factory methods 134
Fair locks 554
Fallthrough behavior 85
false literal 668
fdlibm library 44
Field class 260, 265, 270

accessFlags method 265
get method 266, 270
getDeclaringClass method 265
getExceptionTypes method 265
getModifiers method 265
getModifiers, getName methods 260
getName method 265
getParameterTypes method 265
getReturnType method 265
getType method 260
set method 270

682 Index

Fields
adding, in subclasses 190
annotating 613
default initialization of 144
documentation comments for 175, 178
final 132, 198
instance 108, 123, 127, 130, 146, 183
private 183, 189, 190
protected 175, 205, 277
public 175, 178
public static final 289
static 131, 149, 161, 424
volatile 568
with the null value 125

File handlers 380, 381
FileHandler class 380, 382, 387

Constructor 387
FileNotFoundException class 351, 352
Files class

reading
all words from 363
in a separate thread 598

fill method
of Arrays 99
of Collections 500

Filter class 382
Filter interface 388

isLoggable method 388
final keyword 41, 198, 668

checking 260
for fields in interfaces 289
for instance fields 130
for methods in superclass 288
for shared fields 569
inner classes and 329

finalize method
of Object 145

finally keyword 360, 668
return statements in 362
unlock operation in 552
without catch 361

Financial calculations 35
findFirst method

of ServiceLoader 340
first method

of SortedSet 468
First Person, Inc. 8
firstKey method

of SortedMap 474
Flags, for formatted output 71
Float class 215

converting from float 228
hashCode method 215
POSITIVE_INFINITY, NEGATIVE_INFINITY, NaN constants 35

float type 34, 668
converting to other numeric types 45

Floating-point numbers 34
arithmetic computations with 43
converting from/to integers 200
equality of 81
formatting output for 70
rounding 35, 46

floor method
of NavigableSet 468

floorMod method 43
flush method

of Handler 387
“for each” loop 95

for array lists 226
for collections 443, 589
for multidimensional arrays 100

for keyword 80, 668
comma-separated expressions in 52
defining variables inside 81
for collections 442

forEach method
of ConcurrentHashMap 585
of Map 473
of StackWalker 366

forEach, forEachXxx methods
of ConcurrentHashMap 586

forEachRemaining method 442
of Iterator 448

Fork-join framework 545
Form feed character 36
format method

of Formatter 388
Format specifiers 70, 72
formatMessage method

of Formatter 388
Formattable interface 70
formatted method

of String 69
Formatter class 382, 388

format method 388
formatMessage method 388
getHead method 388
getTail method 388

forName method 255
of Class 257

frequency method
of Collections 500

from method
of Random 153

Function interface 318, 320
Functional interfaces 307, 620, 621

abstract methods in 307
annotating 320
conversion to 308
generic 308
using supertype bounds in 414

Functions. See Methods
Future interface 533, 538

cancel method 533
cancel, get methods 532, 536, 599
exceptionNow method 533
get method 533
isCancelled method 533
isCancelled, isDone methods 532, 536
isDone method 533
resultNow method 533
state method 533

Futures 531
combining 593, 594
completable 591

FutureTask class 531, 534
Constructor 534

Index 683

G
G, g conversion characters 70
Garbage collection 114

hash maps and 478
GB18030 37
General Public License (GPL) 12
Generic programming 395

arrays and 314, 423
classes in 221, 222, 397

extending/implementing other generic classes 410
no throwing or catching instances of 403

collection interfaces in 502
converting to raw types 410
debugging 488
expressions in 405
in JVM 404, 431
inheritance rules for 409, 411
legacy code and 408
methods in 399, 406, 445
reflection and 429
required skill levels for 396
static fields or methods and 424
type erasure in 404, 418, 423

clashes after 426
type matching in 430
vs. inheritance 395
wildcard types in 410

Generic types
annotating 614

GenericArrayType interface 431, 432, 438
getGenericComponentType method 438

get method
of Array 273
of ArrayList 224, 227
of BitSet 511
of ConcurrentHashMap 582
of Field 266, 270
of Future 532, 533, 536, 599
of LinkedList 457
of List 449, 460
of LongAccumulator 571
of Map 449, 472, 473
of Paths 291
of ScopedValue 544
of ServiceLoader.Provider 339, 340
of ThreadLocal 543
of Vector 567

getAccessor method
of RecordComponent 266

getActualTypeArguments method
of ParameterizedType 438

getAndUpdate, getAndAccumulate methods
of AtomicXxx 571

getAnnotation method
of AnnotatedElement 626

getAnnotation, getAnnotationsByType methods
of AnnotatedConstruct 628
of AnnotatedElement 624, 625

getAnnotations method
of AnnotatedElement 626

getAnnotationsByType method
of AnnotatedElement 626

getBoolean method

of Boolean 509
getBounds method

of TypeVariable 437
getCause method

of Throwable 365
getClass method

of Class 255
of Object 220

getClassName method
of StackTraceElement 367
of StackWalker.StackFrame 366

getComponentType method 271
of Class 273

getConstructor method
of Class 257, 430

getConstructors method 261
of Class 265

getDay method
of Date 116

getDayOfMonth method
of LocalDate 116, 119

getDayOfWeek method
of LocalDate 119

getDeclaredAnnotations method
of AnnotatedElement 626

getDeclaredAnnotationXxx methods
of AnnotatedElement 624

getDeclaredConstructor method
of Class 430

getDeclaredConstructors method 261
of Class 265

getDeclaredField method
of Class 270

getDeclaredFields method 261, 267
of Class 264, 270

getDeclaredMethods method 261, 274
of Class 264

getDeclaringClass method
of Constructor 265
of Field 265
of Method 265
of StackWalker.StackFrame 367

getDefault method
of RandomGenerator 153

getDefaultToolkit method
of Toolkit 296

getDefaultUncaughtExceptionHandler method
of Thread 529

getElementsAnnotatedWith method 628
getEnclosedElements method 628
getEnumConstants method 430

of Class 430
getErrorStream method 604, 605

of Process 609
getExceptionTypes method

of Constructor 265
of Field 265
of Method 265

getField method
of Class 270

getFields method 261
of Class 264, 270

getFileName method
of StackTraceElement 367

684 Index

of StackWalker.StackFrame 366
getFilter method

of Handler 387
getFirst method

of LinkedList 461
of SequencedCollection 469

getFormatter method
of Handler 387

getGenericComponentType method
of GenericArrayType 438

getGenericInterfaces method
of Class 437

getGenericParameterTypes method
of Method 437

getGenericReturnType method
of Method 437

getGenericSuperclass method
of Class 437

getGlobal method 389
getHead method 382

of Formatter 388
getImage method

of Class 258
getInputStream method 604

of Process 609
getInstance method 364

of StackWalker 366
getInstant method

of LogRecord 388
getInteger method

of Integer 510
getKey method

of Map.Entry 478
getLast method

of LinkedList 461
of SequencedCollection 469

getLength method 271
of Array 273

getLevel method
of Handler 387
of LogRecord 387

getLineNumber method
of StackTraceElement 367
of StackWalker.StackFrame 366

getLogger method 378
of System 376

getLoggerName method
of LogRecord 387

getLong method
of Long 510

getLongThreadID method
of LogRecord 388

getLowerBounds method
of WildcardType 438

getMessage method
of LogRecord 387
of Throwable 355

getMethod method 274
getMethodName method

of StackTraceElement 367
of StackWalker.StackFrame 367

getMethods method 261
of Class 264

getMillis method

of LogRecord 388
getModifiers method

of Constructor 265
of Field 265
of java.lang.reflect.Member 260
of Method 265

getMonth method
of Date 116

getMonthValue method
of LocalDate 116, 119

getName method
of Class 221, 255, 256
of Constructor 265
of Field 265
of java.lang.reflect.Member 260
of Method 265
of RecordComponent 265
of System.Logger 386
of Thread 528
of TypeVariable 437

getOrDefault method
of Map 473

getOutputStream method 604
of Process 609

getOwnerType method
of ParameterizedType 438

getPackageName method
of Class 265

getParameters method
of LogRecord 388

getParameterTypes method
of Constructor 265
of Field 265
of Method 265

getProperties method 508
of System 508

getProperty method
of Properties 507
of System 509

getProxyClass method 345
of Proxy 345

getQualifiedName method 628
getRawType method

of ParameterizedType 438
getRecordComponents method

of Class 265
getResource method

of Class 260
getResource, getResourceAsStream methods

of Class 258, 259
getResourceAsStream method

of Class 260, 653
of Module 653

getResourceBundle method
of LogRecord 387

getResourceBundleName method
of LogRecord 387

getReturnType method
of Constructor 265
of Field 265
of Method 265

getSequenceNumber method
of LogRecord 388

getSimpleName method

Index 685

of Element 628
getSourceClassName method

of LogRecord 388
getSourceMethodName method

of LogRecord 388
getStackTrace method 364

of Throwable 366
getState method

of SwingWorker 603
of Thread 523

getSuperclass method
of Class 221, 430

getSuppressed method 363
of Throwable 366

getTail method 382
of Formatter 388

Getters/setters, generated automatically 630
getThrown method

of LogRecord 388
getTime method 198
getType method

of Field 260
of RecordComponent 265

getTypeParameters method
of Class 437
of Method 437

getUncaughtExceptionHandler method
of Thread 529

getUpperBounds method
of WildcardType 438

getValue method
of Map.Entry 478

getXxx method
of Array 273

getYear method
of Date 116
of LocalDate 116, 119

GMT (Greenwich Mean Time) 115
Goetz, Brian 515, 568
Gosling, James 8, 9
goto keyword 72, 87, 668
Graphical User Interface

debugging 355
long-running tasks in 597

Green project 8
GregorianCalendar class 117

add method 117
constructors for 115, 143

group method
of Thread.Builder.OfPlatform 531

GUI. See Graphical User Interface

H
H, h conversion characters 70
handle method

of CompletableFuture 593
Handler class 387

close method 387
flush method 387
getFilter method 387
getFormatter method 387
getLevel method 387
publish method 387

setFilter method 387
setFormatter method 387
setLevel method 387

Hansen, Per Brinch 567, 568
Hash codes 211, 461

default 212
formatting output for 70

Hash collisions 213, 462
Hash maps 471

concurrent 580
identity 481
linked 478
setting 471
vs. tree maps 471
weak 478

hash method
of Objects 213, 214

Hash sets 461
linked 478

Hash tables 461, 462
legacy 504
load factor of 463
rehashing 463

hashCode method 211
equals method and 212, 214
null-safe 213
of Annotation 619
of Arrays 213, 215
of Boolean 215
of Byte 215
of Character 215
of Double 215
of Float 215
of Integer 215
of LocalDate 213
of Long 215
of Object 214, 465
of Objects 213, 214
of proxy classes 344
of records 154, 214
of Set 450
of Short 215
of String 461

HashMap class 471, 473
as a concrete collection type 451
Constructor 473
newHashMap method 473

HashSet class 463, 465
add, contains methods 463
as a concrete collection type 451
Constructor 465
iterating over 443
newHashSet method 465

Hashtable class 439, 504, 588
as a concrete collection type 451
synchronized methods 504

hasMoreElements method 443, 504
of Enumeration 505

hasNext method
of Iterator 442, 443, 447
of Scanner 69

hasNextDouble method
of Scanner 69

hasNextInt method

686 Index

of Scanner 69
hasPrevious method 455

of ListIterator 460
“Has–a” relationship 110
headMap method

of NavigableMap 493
of SortedMap 487, 492

headSet method
of NavigableSet 487, 492
of SortedSet 487, 492

Heap 470
Helper methods 130, 291, 416
Hexadecimal numbers

formatting output for 70
prefix for 34

HexFormat class 70
higher method

of NavigableSet 468
Hoare, Tony 567
Hold count 553
HotJava browser 9
Hotspot just-in-time compiler 16, 512
HTML 9, 11

generating documentation in 630
in JavaDoc comments 178

I
Identifiers 667
Identity hash maps 481
identityHashCode method 481

of System 221, 483
IdentityHashMap class 481, 482

as a concrete collection type 451
Constructor 482

identityToString method
of Objects 221

IEEE 754 specification 35, 44
if keyword 73, 668
IllegalAccessException class 266
IllegalStateException class 444, 575
Immutable classes 130, 278
Implementations 440
implements keyword 283, 668
Implicit parameters 126

none, in static methods 133
state of 389

Implicitly declared class 135
import keyword 159, 668

no annotations for 615
InaccessibleObjectException class 267
increment method

of LongAdder 571
Increment operators 47
Incremental linking 5
incrementAndGet method 570
incrementExact method 45
Indentation, in text blocks 66
Index class 94
indexOf method

of List 460
of String 59

indexOfSubList method
of Collections 500

Inferred types 306
info method

of ProcessHandle 610
Information hiding. See Encapsulation
Inheritance 110, 187

design hints for 277
equality testing and 208
hierarchies of 193
multiple 194, 290
preventing 198
private fields and 189
vs. type parameters 395, 409

inheritIO method
of ProcessBuilder 608

initCause method
of Throwable 365

Initialization blocks 148
static 149

Inlining 6, 200
Inner classes 322

accessing object state with 323
anonymous 330
applicability of 327
defined 322
local 328
private 324
static 323, 334
syntax of 326
translated into regular classes 327
vs. lambda expressions 308

Input, reading 66
insert method

of StringBuilder 64
Instance field

declared with prefix 147
Instance fields 108

final 130
initializing 148, 183

explicit 146
names of 154
not present in interfaces 282, 289
private 123, 183
protected 277
shadowing 124, 147
values of 127, 128
volatile 568
vs. local variables 124, 127, 144

Instance method 54
instanceof keyword 52, 201, 210, 288, 668

annotating 615
pattern matching for 202

Instances 108
creating on the fly 257

Instrumentation API 638
int type 33, 668

converting to other numeric types 45
fixed size for 5
platform-independent 34

Integer class 215, 231, 287, 510
compare method 287, 308
converting from int 228
getInteger method 510
hashCode method 215
intValue method 231

Index 687

parseInt method 66, 230, 232
toString method 231
valueOf method 232

Integer types 33
arithmetic computations with 42
arrays of 217
computations of 45
converting from/to floating-point 200
formatting output for 70
no unsigned types in Java 34

Integrated Development Environment (IDE) 23
IntelliJ IDEA 23
@interface 616, 617, 618
interface keyword 282, 668
Interface types 441
Interface variables 288
Interfaces 281

abstract classes and 289
annotating 613, 615
binary- vs. source-compatible 292
callbacks and 294
constants in 289
declared inside a class 338
documentation comments for 175
evolution of 292
extending 288
for custom algorithms 502
functional 307, 620, 621
implementing 283, 288, 291
methods in

clashes between 293
nonabstract 307
private 291
static 291

no instance fields in 282, 289
properties of 288
public 175
sealed 289
tagging 300, 450
vs. implementations 440

Internal errors 349, 352, 373
Internationalization. See Localization
Internet Explorer 8
Interpreted languages 12
Interpreter 5
interrupt method

of Thread 524, 527
interrupted method

of Thread 526, 527
InterruptedException class 516, 524, 532
Intrinsic locks 561, 568, 569
Introduction to Algorithms (Cormen et al.) 465
intValue method

of Integer 231
Invocation handlers 340
InvocationHandler interface 340, 345

invoke method 345
invokeDefault method 345

InvocationTargetException class 257
invoke method

of InvocationHandler 340, 345
of Method 273, 276

invokeAll method
of ExecutorService 542

invokeAny method
of ExecutorService 542

invokeAny/All methods (ExecutorService) 538
invokeDefault method

of InvocationHandler 345
IO 31

print method 69
readln method 66

IO class 66, 68
print method 68
println method 68
readln method 68

IOException class 351, 353, 356, 362
isAbstract method

of Modifier 266
isAlive method 606

of Process 609
isAnnotationPresent method

of AnnotatedElement 626
isArray method

of Class 273
isBound method

of ScopedValue 545
isCancelled method

of Future 533
isCancelled, isDone methods

of Future 532
isCancelled, isDone methods (Future) 536
isDone method

of Future 533
isEmpty method

of Collection 292, 446, 447
of String 58

isEnum method
of Class 265

isFinal method 260
of Modifier 266

isInterface method
of Class 265
of Modifier 266

isInterrupted method 524
of Thread 527

isJavaIdentifierXxx methods
of Character 39

isLoggable method
of Filter 382, 388
of System.Logger 386

isNaN method 35
isNative method

of Modifier 266
isNativeMethod method

of StackTraceElement 367
of StackWalker.StackFrame 367

ISO 8601 format 621
ISO 8859-1 37, 506
isPrivate method

of Modifier 266
isPrivate, isProtected, isPublic methods

of Modifier 260
isProtected method

of Modifier 266
isProxyClass method 345

of Proxy 345
isPublic method

688 Index

of Modifier 266
isRecord method

of Class 265
isStatic method

of Modifier 266
isStrict method

of Modifier 266
isSynchronized method

of Modifier 266
isVirtual method

of Thread 524
isVolatile method

of Modifier 266
“Is–a” relationship 110, 194, 277
Iterable interface 94
Iterator interface 442, 447

“for each” loop 443
forEachRemaining method 442, 448
generic 445
hasNext method 442, 443, 447
next method 442, 445, 448
remove method 442, 444, 445, 448

iterator method
of Collection 442, 447
of ServiceLoader 340

Iterators 442
being between elements 444
weakly consistent 580

IzPack 172

J
J#, J++ programming languages 6
Jar 170, 649

command-line options of 170, 172, 174
Jar Bundler 172
JAR files 166, 169

analyzing dependencies of 663, 664
creating 170
executable 172
file resources in 653
in jre/lib/ext directory 169
manifest of 171, 654
META-INF/services directory 661
modular 649, 655
multi-release 172
resources and 258
scanning for deprecated elements 620

Java 19
--add-exports option 657
--add-opens option 657
--illegal-access option 657
--module, --module-path options 644
-javaagent option 638
architecture-neutral object file format of 4
as a programming platform 1
available under GPL 12
backward compatibility of 172, 203, 321, 395
basic syntax of 29, 120
case-sensitiveness of 29, 39, 504
command-line options of 174, 371
design of 2
documentation for 18
dynamic 6

history of 8
interpreter in 5
libraries in 3, 9, 11

installing 18
misconceptions about 11
networking capabilities of 3
no multiple inheritance in 290
no operator overloading in 90
no unsigned types in 34
reliability of 3
security of 4, 12
simplicity of 2, 305
strongly typed 33, 285
versions of 9, 10
vs. C++ 2, 512

Java bug parade 31
Java Collections Framework 439

algorithms in 493
converting to/from arrays in 502
copies and views in 483
interfaces in 448

vs. implementations 440
legacy classes in 504
operations in

bulk 501
optional 489

vs. traditional collections libraries 443
Java Concurrency in Practice (Goetz) 515
Java Development Kit (JDK) 4, 15

documentation in 59
downloading 15
installation of 15

default 170
obsolete features in 642
setting up 16

Java Language Specification 31
Java Memory Model and Thread Specification 568
Java Persistence Architecture 611
Java Platform Module System 641, 665

migration to 654, 658
Java Runtime Environment (JRE) 16
Java Virtual Machine (JVM) 5

generics in 404, 431
launching 19
managing applications in 391
method tables in 197
thread priority levels in 529
truncating computations in 43
watching class loading in 391

Java Virtual Machine Specification 31, 632
java.awt package 642
java.desktop module 658, 659
java.lang.annotation package 619
java.lang.Object class 109
java.lang.reflect package 260, 270
java.logging module 658
java.se module 659
java.util.Collections class 496
java.util.concurrent package 551

efficient collections in 580
java.util.concurrent.atomic package 570
java.util.function package 308
java.util.logging package 375, 378
java.util.Timer class 295

Index 689

Javac 19
-processor option 627
-XprintRounds option 630
current directory in 167

JavaDoc 175
command-line options of 182
comments in 175, 178

extracting 182
overview 183
redeclaring Object methods for 307

HTML markup in 178
including annotations in 621
links in 180
online documentation of 183

JavaFX 598
javafx.css.CssParser class 172
javan.log files 380
Javap 173, 327
JavaScript 13

for of loop in 72
javax.annotation package 619
javax.swing.Timer class 295
JAXB 652
JCommander 611
Jconsole 379, 391, 559, 560
Jdeprscan 620
Jdeps 663, 664
JEP 264 (platform logging API) 375
Jimage 665
Jlink 664
Jmod 665
JMOD files 665
Jmol applet 7
join method

of String 59
of Thread 521, 522, 523

JOptionPane class 296
showMessageDialog method 296

JShell 5, 25
JShell, loading modules into 651
JSlider class

setLabelTable method 408
JSON 242
JSON-B 652, 653
JUnit 611, 612
JUnit framework 389
Just-in-time compiler 4, 5, 12, 200, 512
JVM

specification for 632

K
Key/value pairs

in annotations 612, 618
keySet method

of ConcurrentHashMap 587
of Map 476, 477

Keywords 667
hyphenated 245
not used 42
redundant 289
reserved 40
restricted 667

Knuth, Donald 87

KOI-8 37

L
L, l suffixes (for long integers) 34
Lambda expressions 304

accessing variables in 314
annotating targets for 621
atomic updates with 570
capturing values by 315
for loggers 377
functional interfaces and 307
method references and 310
not for variables of type Object 308
parameter types of 306
processing 317
result type of 306
scope of 316
syntax of 305
this keyword in 316
vs. inner classes 308
vs. method references 313

Language model API 628
last method

of SortedSet 468
lastIndexOf method

of List 460
of String 59

lastIndexOfSubList method
of Collections 500

lastKey method
of SortedMap 474

Launch4J 172
Legacy classes 154

generics and 408
Legacy collections 504

bit sets 510
enumerations 504
hash tables 504
property maps 505
stacks 510

Length
of arrays 94

length method
of BitSet 511
of String 55, 57, 58
of StringBuilder 64

Line feed character
escape sequence for 36
in output 31, 64
in text blocks 64

Linked hash maps/sets 478
Linked lists 453

concurrent modifications of 457
doubly linked 453
printing 459
random access in 457, 494
removing elements from 454

LinkedBlockingDeque class 579
Constructor 579
LinkedBlockingQueue method 579

LinkedBlockingDeque method
of LinkedBlockingQueue 579

LinkedBlockingQueue class 576, 579

690 Index

Constructor 579
LinkedBlockingDeque method 579

LinkedBlockingQueue method
of LinkedBlockingDeque 579

LinkedHashMap class 478, 482
access vs. insertion order in 479
as a concrete collection type 451
Constructor 482
removeEldestEntry method 480, 482

LinkedHashSet class 478, 481
as a concrete collection type 451
Constructor 481

LinkedList class 454, 457, 460, 468
addFirst method 461
addLast method 461
as a concrete collection type 451
Constructor 460, 461
get method 457
getFirst method 461
getLast method 461
listIterator method 455
next/previousIndex methods 458
removeAll method 458
removeFirst method 461
removeLast method 461

Linux
IDEs for 23
JDK in 15
no thread priorities in OpenJDK VM for 529
paths in 167, 168
troubleshooting Java programs in 20

List class 449
add method 449
copyOf method 485
get method 449
of method 483, 502
remove method 449
set method 449
subList method 487

List interface 460, 490, 492, 497, 501
add method 460
addAll method 460
copyOf method 490
get method 460
indexOf method 460
lastIndexOf method 460
listIterator method 460
of method 490
remove method 460
replaceAll method 501
set method 460
sort method 497
subList method 492

list method
of Collections 505

ListIterator interface 457, 460
add method 454, 456, 460
hasPrevious method 455, 460
nextIndex method 460
previous method 455, 460
previousIndex method 460
remove method 456
set method 456, 460

listIterator method

of LinkedList 455
of List 460

Lists 449
modifiable/resizable 496
with given elements 483

load method
of Properties 506, 507
of ServiceLoader 340

Load time 638
Local inner classes 328

accessing variables from outer methods in 329
Local variables

annotating 408, 613, 614
vs. instance fields 124, 127, 144

LocalDate class 115, 119
getDayOfMonth method 119
getDayOfWeek method 119
getMonthValue method 119
getYear method 119
hashCode method 213
minusDays method 120
now method 119
now, of methods 115
of method 119
plusDays method 116, 120
processing arrays of 414

Locales 71
Localization 112, 258, 259
Lock interface 554, 558, 561

await method 555
lock method 554
newCondition method 555, 558
signal method 556
signalAll method 555
tryLock method 521
unlock method 552, 554
vs. synchronization methods 563

lock method
of Lock 554

Locks 551
client-side 566
condition objects for 554
deadlocks 556, 559
fair 554
hold count for 553
in synchronized blocks 565
intrinsic 561, 568, 569
not with try-with-resources statement 552
not wrapper objects for 230
reentrant 553

Log file pattern variables 381
Log handlers 379

filtering/formatting 382
Log messages, adding to classes 633
log method

of System.Logger 376, 386
log, log10 methods

of Math 44
Log4j 375
Logback 375
Logger class

getGlobal method 389
Loggers

filtering/formatting 382

Index 691

hierarchy of 379
naming 376

Logging 375
configuring 378, 379
including class names in 333
levels of 377, 379
messages for 217
recipe for 383

Logging proxy 389
Logical “and”, “or” 48
Logical conditions 38
LogRecord class 387

getInstant method 388
getLevel method 387
getLoggerName method 387
getLongThreadID method 388
getMessage method 387
getMillis method 388
getParameters method 388
getResourceBundle method 387
getResourceBundleName method 387
getSequenceNumber method 388
getSourceClassName method 388
getSourceMethodName method 388
getThrown method 388

Long class 215, 510
converting from long 228
getLong method 510
hashCode method 215

Long Term Support (LTS) 16
long type 33, 668

platform-independent 34
LongAccumulator class, methods of 571
LongAdder class 571, 583

add, increment, sum methods 571
Loops

break statements in 87
continue statements in 89
determinate (for) 80
“for each” 94
while 75

lower method
of NavigableSet 468

M
Mac OS X

executing JARs in 172
IDEs for 23
JDK in 15

main ,method
launching 32

main method 134
body of 29
not defined 150
separate for each class 389
String[] args parameter of 96

MANIFEST.MF 171
editing 171
newline characters in 172

Map interface 449, 473, 475, 477, 490
compute method 475
computeIfAbsent method 476
computeIfPresent method 476

containsKey method 473
containsValue method 473
copyOf method 485, 490
entry method 484, 490
entrySet method 476, 477
forEach method 473
get method 449, 472, 473
getOrDefault method 473
keySet method 476, 477
merge method 475
of method 483, 484, 490
ofEntries method 484, 490
put method 449, 472, 473
putAll method 473
putIfAbsent method 476
remove method 472
replaceAll method 476
values method 476, 478

Map.Entry interface 476, 478
copyOf method 478
getKey method 478
getValue method 478
setValue method 478

mappingCount method 580
Maps 471

adding/retrieving objects to/from 471
concurrent 580
garbage collecting 478
hash vs. tree 471
implementations for 471
keys for 472

enumerating 476
subranges of 487
with given key/value pairs 483

Marker interfaces 300
Math class 27, 43

E, PI static constants 44
floorMod method 43
log, log10 methods 44
pow method 43, 133
round method 46
sqrt method 43, 274, 275
trigonometric functions 44
xxxExact methods 45

max method
of Collections 500

MAX_PRIORITY field
of Thread 530

Maximum value, computing 398
merge method

of ConcurrentHashMap 583
of Map 475

Merge sort algorithm 495
Meta-annotations 617, 623
META-INF 171
META-INF/versions directory 172
Method class 260, 265, 276, 437

accessFlags method 265
getDeclaringClass method 265
getExceptionTypes method 265
getGenericParameterTypes method 437
getGenericReturnType method 437
getModifiers method 265
getModifiers, getName methods 260

692 Index

getName method 265
getParameterTypes method 265
getReturnType method 265
getTypeParameters method 437
instance 54
invoke method 273, 276
static 54
toString method 261

Method parameters. See Parameters
Method pointers 273, 274, 275
Method references 310

annotating 615
this, super parameters in 313
vs. lambda expressions 313

Method tables 197
MethodHandles class 654
Methods 108

abstract 234
in functional interfaces 307

accessor 116, 127, 128, 412
adding logging messages to 633
adding, in subclasses 190
annotating 613
applying to objects 113
asynchronous 531
body of 29, 31
bridge 406, 407, 427
calling by reference vs. by value 138
casting 200
chaining calls of 320
concrete 234
conflicts in 292
consistent 208
default 291
deprecated 116, 620
destructor 145
documentation comments for 175, 180
dynamic binding for 192, 196
error checking in 128
exception specification in 351
factory 134
final 196, 200, 260, 288
generic 399, 406, 445
getters/setters, generated automatically 630
helper 130, 416
inlining 6, 200
invoking 31, 273
mutator 116, 128, 412
names of 154, 184
overloading 144
overriding 189, 211, 278, 619, 620

exceptions and 352
return type and 406

package scope of 165
passing objects to 113
private 130, 196, 260, 291
protected 175, 205, 277, 302
public 175, 260, 283
reflexive 208
return type of 144, 196
signature of 144, 196
static 133, 161, 196, 424, 563

adding to interfaces 291
symmetric 208

tracing 341
transitive 208
used for serialization 619, 621
utility 291
varargs 232, 420
visibility of, in subclasses 198

Micro Edition 9
Microsoft

ActiveX 4
C# 6, 9, 200
Internet Explorer 8
J#, J++ 6
JDK in 15
.NET platform 4
Visual Basic 2, 112
Visual Studio 18

Microsoft Windows. See Windows operating system
min method

of Collections 500
MIN_PRIORITY field

of Thread 530
Minimum value, computing 398
minusDays method

of LocalDate 120
mod method

of BigInteger 91
Modifier class 266

isAbstract method 266
isFinal method 266
isInterface method 266
isNative method 266
isPrivate method 266
isProtected method 266
isPublic method 266
isStatic method 266
isStrict method 266
isSynchronized method 266
isVolatile method 266
isXxx methods 260
toString method 266

Module class
getResourceAsStream method 653

module keyword 644, 668
Module path 169
Module-info.class 650, 654
Module-info.java 643, 654
Modules 10, 166, 641, 665

accessing 651, 657
automatic 654, 657
declaration of 644
explicit 656
exporting packages 646
loading into JShell 651
migration to 654, 658
naming 642, 654
not passing access rights 645
open 653
opening packages in 653
packages with the same names in 649
qualified exports of 660
reading other modules 646
requiring 645
service implementations and 661
tools for 663

Index 693

unnamed 267, 656
versioning 642, 644

Modulus 42
Monitor concept 567
Mosaic 8
Multi-release JARs 172
Multidimensional arrays 99, 103

printing 217
ragged 102

Multiple inheritance 290
not supported in Java 194

Multiple selections 83
Multiplication 42
multiply method

of BigDecimal 92
of BigInteger 91

multiplyExact method 45
Multitasking 515
Multithreading 6, 515

deadlocks in 556, 559
deferred execution in 317
performance and 571, 576
synchronization in 547
using pools for 534

Mutator methods 116, 412
error checking in 128

N
n conversion character 70
Name

qualified 158, 160, 339
simple 160

of enumeration 238
name method

of Enum 242
of Thread.Builder 531

NaN 35
native keyword 668
naturalOrder method 321
Naughton, Patrick 8, 9
NavigableMap interface 450, 493

headMap method 493
subMap method 493
tailMap method 493

NavigableSet interface 450, 467, 468, 492
ceiling method 468
floor method 468
headSet method 492
headSet, subSet, tailSet methods 487
higher method 468
lower method 468
pollFirst method 468
pollLast method 468
subSet method 492
tailSet method 492

nCopies method 484
of Collections 491

negateExact method 45
Negation operator 48
Negative infinity 35
Nested classes

annotating 615
.NET platform 4

NetBeans 23, 388
Netscape 8

LiveScript/JavaScript 13
Navigator browser 8

Networking 3
new keyword 52, 112, 123, 668

in constructor references 313
not for interfaces 288
return value of 114
with arrays 92
with generic classes 222
with threads 521

newCachedThreadPool method 534
of Executors 537

newCondition method 555
of Lock 558

newFixedThreadPool method 534
of Executors 537

newHashMap method
of HashMap 473

newHashSet method
of HashSet 465

newInstance method
of Array 271, 273
of Class 257, 430
of Constructor 257
of ScopedValue 544

newKeySet method 587
Newline. See Line feed character
newProxyInstance method 341, 345

of Proxy 345
newSetFromMap method

of Collections 490
newSingleThreadExecutor method

of Executors 537
newSingleThreadXxx methods

of Executors 534
newThread method

of ThreadFactory 530
newThreadPerTaskExecutor method

of Executors 537
newVirtualThreadPerTaskExecutor method

of Executors 537
next method

of Iterator 442, 445, 448
of Scanner 68

nextDouble method 67
of Scanner 69

nextElement method 443, 504
of Enumeration 505

nextIndex method
of LinkedList 458
of ListIterator 460

nextInt method
of RandomGenerator 151, 153
of Scanner 67, 69

nextLine method 67
of Scanner 68

No-argument constructors 145, 191, 339
non-sealed keyword 245, 668
noneOf method

of EnumSet 482
NORM_PRIORITY field

of Thread 530

694 Index

NoSuchElementException class 442
Notepad 20
notify method

of Object 565
notify, notifyAll methods

of Object 562
notifyAll method

of Object 565
now method

of LocalDate 115, 119
null literal 114, 668

as a reference 125
equality testing to 208

nullFirst/Last methods
of Comparator 321

NullPointerException class 50, 125, 126, 230, 313, 350,
369, 370

Number class 228
NumberFormat class 232

factory methods 134
parse method 232

NumberFormatException class 369
Numbers

floating-point 34, 46, 70, 81, 200
Java Virtual Machine (JVM)truncating computations in
43

generated random 574
hexadecimal 34, 70
octal 34, 70
prime 511
rounding 35, 46
unsigned 34

Numeric types
casting 46
comparing 48, 321
converting

to other numeric types 45, 200
to strings 230

default initialization of 144
fixed sizes for 5
precision of 69, 89
printing 69

O
o conversion character 70
Oak 8, 350
Object class 109, 205, 214, 220, 465, 565

clone method 129, 298, 307
equals method 206, 220, 294, 486
getClass method 220
hashCode method 212, 214, 465
no redefining for methods of 294
notify method 565
notify, notifyAll methods 562
notifyAll method 565
toString method 215, 220, 294, 307
wait method 521, 562, 565

Object references
as method parameters 139
converting 200
default initialization of 144
modifying 139

Object traversal algorithms 481

Object variables 235
in predefined classes 112
initializing 113
setting to null 114
vs. C++ object pointers 114
vs. objects 113

Object-oriented programming (OOP) 3, 107, 187
passing objects in 294
time measurement in 115
vs. procedural 107

Object-relational mappers 652
Objects 107, 109

analyzing at runtime 266
applying methods to 113
behavior of 109
cloning 298
comparing 288
concatenating with strings 216
constructing 108, 143
default hash codes of 212
destruction of 145
equality testing for 206, 256
finalize method of 145
identity of 109
implementing an interface 288
in predefined classes 112
initializing 113
intrinsic locks of 561
passing to methods 113
references to 114
runtime type identification of 255
serializing 481
sorting 283
state of 108, 109, 323
vs. object variables 113

Objects class 138, 211, 214, 221
checkXxx methods 370
equals method 211
hash method 214
hash, hashCode methods 213
hashCode method 214
identityToString method 221
requireNonNull method 126, 138, 370
requireNonNullElse method 126, 138
requireNonNullElseGet method 138

Octal numbers
formatting output for 70
prefix for 34

of method
of EnumSet 482
of List 490
of List, Map, Set 483, 502
of LocalDate 115, 119
of Map 490
of Path 291
of ProcessHandle 607, 609
of RandomGenerator 153
of Set 490

ofEntries method
of Map 484, 490

offer method
of BlockingQueue 575, 576, 579
of Queue 469

offerFirst method

Index 695

of BlockingDeque 580
of Deque 469

offerLast method
of BlockingDeque 580
of Deque 469

ofPlatform method
of Thread 531

ofVirtual method
of Thread 531

On-demand initialization 572
onExit method

of Process 609
Online documentation 58, 59, 175, 182
open keyword 653, 668
OpenJ9 just-in-time compiler 16
OpenJDK 15, 16
opens keyword 653, 660, 669
Operators

arithmetic 42
bitwise 50, 52
boolean 48
hierarchy of 51
increment/decrement 47
no overloading for 90
relational 48

Optional operations 489
or method

of BitSet 511
Oracle 9
Ordered collections 449, 454
ordinal method

of Enum 242
orElse method

of ScopedValue 544
org.omg.corba package 642
orTimeout method 593
OSGi platform 338
Out-of-bounds exceptions 370
Output

formatting 69
statements in 53

Overloading resolution 143, 196
overview.html file 183

P
p (hexadecimal floating-point literals) 35
package keyword 159, 162, 669
Package-info.java 178, 614
package.html file 178
Packages 158, 641

accessing 165
adding classes into 162
annotating 613, 614
documentation comments for 175, 178
exporting 646
hidden 649
importing 159
names of 158, 255
opening 653
split 650
unnamed 162, 165, 182, 372

Parallelism threshold 585
parallelXxx methods

of Arrays 587
Parameter variables

annotating 613
Parameterized types. See Type parameters
ParameterizedType interface 431, 432, 438

getActualTypeArguments method 438
getOwnerType method 438
getRawType method 438

Parameters 138
checking, with assertions 373
documentation comments for 177
explicit 126
implicit 126, 133, 389
modifying 139, 141
names of 147
using collection interfaces in 503
variable number of

passing generic types to 420
Parent classes. See Superclasses
parse method

of NumberFormat 232
parseDouble method

of Double 66
parseInt method 230

of Integer 66, 232
Pascal 8

compiled code in 4
passing parameters in 140

Passwords
reading from console 68

Path interface, of method 291
Paths class, get method 291
Pattern matching 202
Payne, Jonathan 9
peek method

of BlockingQueue 575, 576
of Queue 469
of Stack 510

peekFirst method
of Deque 469

peekLast method
of Deque 469

Performance 6
computations and 43, 44
JAR files and 166
measuring 511, 513
multithreading and 571, 576
of collections 449, 463, 581
of Java vs. C++ 512
of simple tests vs. catching exceptions 368

permits keyword 243, 289, 669
Physical limitations 348
PI

of Math 44, 132
Picocli 611
pid method

of ProcessHandle 610
Platform logging API 375, 379
plusDays method

of LocalDate 116, 120
Point class 153, 154
poll method

of BlockingQueue 575, 576, 579
of ExecutorCompletionService 542

696 Index

of Queue 469
pollFirst method

of BlockingDeque 580
of Deque 469
of NavigableSet 468

pollLast method
of BlockingDeque 580
of Deque 469
of NavigableSet 468

Polymorphism 192, 194, 244, 278
pop method

of Stack 510
Portability 5, 11, 43
Positive infinity 35
pow method

of BigInteger 91
of Math 43, 133

powExact method 45
Precision, of numbers 69
Preconditions 374
Predefined classes 112

mutator and accessor methods in 116
objects, object variables in 112

Predicate interface 309, 318
Prefix

of instance field name 147
premain method (Instrumentation API) 638
previous method

of ListIterator 455, 460
previousIndex method

of LinkedList 458
of ListIterator 460

Prime numbers 511
Primitive types 33

as method parameters 139
comparing 321
converting to objects 228
final fields of 130
not for type parameters 418
transforming hash map values to 586
values of, not object 206

Princeton University 4
print method

of IO 31, 68, 69
Print statements

for logging 375
Printf

arguments of 232
conversion characters for 70
flags for 71

println method
of IO 31, 68

printStackTrace method 364, 390
of Throwable 257

priority method
of Thread.Builder.OfPlatform 531

Priority queues 470
PriorityBlockingQueue class 576, 579

Constructor 579
PriorityQueue class 471

as a concrete collection type 451
Constructor 471

private keyword 123, 165, 324, 669
checking 260

for fields, in superclasses 190
for methods 130

Procedures 107
Process class 603, 609

destroy method 609
destroy, destroyForcibly methods 606
destroyForcibly method 609
exitValue method 606, 609
getErrorStream method 609
getInputStream method 609
getOutputStream method 609
getXxxStream methods 604, 605
isAlive method 606, 609
onExit method 609
supportsNormalTermination method 609
toHandle method 607, 609
waitFor method 606, 609

process method
of SwingWorker 598, 600, 603

ProcessBuilder class 603, 608
Constructor 608
directory method 604, 608
environment method 609
inheritIO method 608
redirectError method 608
redirectErrorStream method 608
redirectInput method 608
redirectOutput method 608
redirectXxx methods 604
start method 605, 609
startPipeline method 605, 609

Processes 603
building 603
killing 606
running 605

ProcessHandle interface 609
allProcesses method 607, 609
children method 609
children, descendants methods 607
current method 607, 609
descendants method 609
info method 610
of method 607, 609
pid method 610

ProcessHandle.Info interface 610
arguments method 610
command method 610
commandLine method 610
startInstant method 610
totalCpuDuration method 610
user method 610

Processor interface 627
Producer threads 575
Programs. See Applications
Prompt

readln method 66
Properties class 504, 507

Constructor 507
getProperty method 507
load method 506, 507
setProperty method 507
store method 506, 508
stringPropertyNames method 507

Property files

Index 697

generating 630
Property maps 505

reading/writing 506
protected keyword 205, 277, 302, 669
provides keyword 663, 669
Proxies 340

properties of 344
purposes of 341

Proxy class 344, 345
get/isProxyClass methods 345
getProxyClass method 345
isProxyClass method 345
newProxyInstance method 341, 345

public keyword 122, 165, 283, 669
checking 260
for fields in interfaces 289
for main method 31
not specified for interfaces 282

publish method
of Handler 387
of SwingWorker 598, 603

Pure virtual functions (C++) 235
push method

of Stack 510
put method

of BlockingQueue 575, 576, 579
of ConcurrentHashMap 582
of Map 449, 472, 473

putAll method
of Map 473

putFirst method
of BlockingDeque 580

putIfAbsent method
of ConcurrentHashMap 582
of Map 476

putLast method
of BlockingDeque 580

Q
Qualified exports 660
Qualified name 158, 160, 339
Queue class 468

implementing 440
Queue interface 469

add method 469
element method 469
offer method 469
peek method 469
poll method 469
remove method 469

Queues 440, 468
blocking 575
concurrent 580

QuickSort algorithm 97, 495

R
Race conditions 548, 551

and atomic operations 570
Ragged arrays 102
Random class 153

from method 153
thread-safe 574

RandomAccess interface 450, 496
RandomGenerator interface 153

getDefault method 153
nextInt method 151, 153
of method 153

range method
of EnumSet 482

Raw types 404
converting type parameters to 410
type inquiring at runtime 418

readLine method
of Console 69

readln method
of IO 66, 68

readPassword method
of Console 69

Receiver parameter 616
record keyword 669
RecordComponent class 265

getAccessor method 266
getName method 265
getType method 265

Records 153, 189
adding methods to 154
always final 200
declared inside a class 337
equals method of 208
hashCode method of 214
implementing interfaces 289
instance fields of 154, 155
toString method of 217

Rectangle class 466
Rectangles

comparing 466
Recursive computations 545
RecursiveAction, RecursiveTask classes 545
Red Hat 15
Red-black trees 465
redirectError method

of ProcessBuilder 608
redirectErrorStream method

of ProcessBuilder 608
redirectInput method

of ProcessBuilder 608
redirectOutput method

of ProcessBuilder 608
redirectXxx methods

of ProcessBuilder 604
reduce, reduceXxx methods

of ConcurrentHashMap 585, 586
Reentrant locks 553
ReentrantLock class 551, 554

Constructor 554
Reflection 187, 254

accessing
private members 651, 657

analyzing
classes 260
objects, at runtime 266

generics and 270, 429
overusing 278
processing annotations with 623

Reinhold, Mark 10
Relational operators 48, 52

698 Index

Relative resource names 258
remove method

of ArrayList 226, 227
of BlockingQueue 575, 576
of Collection 446, 447
of Iterator 442, 444, 445, 448
of List 449, 460
of ListIterator 456
of Map 472
of Queue 469
of ThreadLocal 543

removeAll method
of Collection 446, 447
of LinkedList 458

removeEldestEntry method 480
of LinkedHashMap 482

removeFirst method
of LinkedList 461
of SequencedCollection 469

removeIf method
of ArrayList 309
of Collection 447, 500

removeLast method
of LinkedList 461
of SequencedCollection 469

repeat method
of String 54, 59
of StringBuilder 64

REPL 25
replace method

of ConcurrentHashMap 582
of String 59

replaceAll method
of Collections 500
of List 501
of Map 476

requireNonNull method 126, 370
of Objects 138

requireNonNullElse method 126
of Objects 138

requireNonNullElseGet method
of Objects 138

requires keyword 645, 646, 648, 649, 654, 658
Reserved words. See Keywords
Resources 258

exhaustion of 349
in JAR files 653
localizing 258
names of 258

Restricted views 489
resultNow method

of Future 533
resume method

of Thread 523
retain method

of Collection 446
retainAll method

of Collection 447
return keyword 669

in finally blocks 362
in lambda expressions 305
not allowed in switch expressions 86

Return types 196
covariant 407

documentation comments for 177
for overridden methods 406

Return values 114
reverse method

of Collections 500
of StringBuilder 64

reversed method
of Comparator 497
of SequencedCollection 493
of SequencedMap 493
of SequencedSet 493

reversed, reverseOrder methods
of Comparator 495

reversed, reverseOrder methods
of Comparator 322

reverseOrder method
of Comparator 497

rotate method
of Collections 500

round method
of Math 46

RoundEnvironment interface 628
rt.jar file

no longer present 665
run method

of Runnable 520
of ScopedValue.Carrier 545
of Thread 517, 520

runAfterXxx methods
of CompletableFuture 593, 594

Runnable interface 318, 515, 520
lambda expressions and 307
run method 317, 520

Runtime class
analyzing objects at 266
creating classes at 340
exec method 603
setting the size of an array at 221
type identification at 201, 255, 418

Runtime image file 665
RuntimeException class 350, 366, 369

Constructor 366

S
S, s conversion characters 70
Scala programming language 292
Scanner class 68

Constructor 68
hasNext method 69
hasNextDouble method 69
hasNextInt method 69
next method 68
nextDouble method 69
nextInt method 69
nextLine method 68
nextXxx methods 67

ScopedValue class 544
get method 544
isBound method 545
newInstance method 544
orElse method 544
where method 545

ScopedValue.Carrier class 545

Index 699

ScopedValue.Carrier class, methods of 545
sealed keyword 243, 289, 669
search, searchXxx methods

of ConcurrentHashMap 585, 586
Security class 4, 12
SequencedCollection interface 469, 493

addFirst method 469
addLast method 469
getFirst method 469
getLast method 469
removeFirst method 469
removeLast method 469
reversed method 493

SequencedMap interface 493
reversed method 493

SequencedSet interface 493
reversed method 493

Serialization 481
Service loaders 338, 661
ServiceLoader class 338, 340, 661

findFirst method 340
iterator method 340
load method 340
stream method 339, 340

ServiceLoader.Provider interface 340
get method 340
type method 340

ServiceLoader.Provider interface, methods of 339
Services 338
ServletException 358
Servlets 358
Set interface 490

add, equals, hashCode, methods of 450
copyOf method 485, 490
of method 483, 490

set method
of Array 273
of ArrayList 224, 227
of BitSet 511
of Field 270
of List 449, 460
of ListIterator 456, 460
of ThreadLocal 543
of Vector 567

setAccessible method 267
of AccessibleObject 270

setClassAssertionStatus method
of ClassLoader 375

setDaemon method 527
of Thread 527

setDefaultAssertionStatus method
of ClassLoader 375

setDefaultUncaughtExceptionHandler method 390, 528
of Thread 529

setFilter method
of Handler 387

setFormatter method
of Handler 387

setLabelTable method 408
setLevel method

of Handler 387
setName method

of Thread 528
setOut method 132

setPackageAssertionStatus method
of ClassLoader 375

setPriority method
of Thread 530

setProperty method 378
of Properties 507

Sets 463
concurrent 580
intersecting 501
mutating elements of 464
subranges of 487
thread-safe 587
with given elements 483

setTime method 198
setUncaughtExceptionHandler method

of Thread 529
setValue method

of Map.Entry 478
setXxx method

of Array 273
Shallow copies 298, 301
Shell

scripts for, generating 630
scripts in 168

Shift operators 51
Short class 215

converting from short 228
hashCode method 215

short type 33, 669
showMessageDialog method

of JOptionPane 296
shuffle method

of Collections 496, 497
Shuffling 496
shutdown method

of ExecutorService 536, 537
shutdownNow method 536

of ExecutorService 537
Sieve of Eratosthenes benchmark 511, 513
signal method

of Condition 556, 558, 560
signalAll method 555, 560

of Condition 558
Signatures (of methods) 144, 196
Signatures. See Digital signatures
Simple name 160

of enumeration 238
sin method

of Math 44
singleton method

of Collections 492
singletonList method

of Collections 492
Size

of concurrent collections 580
size method

of ArrayList 223, 224
of BitSet 511
of Collection 446, 447

sleep method
of Thread 516, 520, 525

SLF4J 375
Smart cards 3
SOAP 642

700 Index

SocketHandler class 380
sort method

of Arrays 97, 99, 283, 285, 287, 304, 308
of Collections 495, 497
of List 497

SortedMap interface 450, 474, 492
comparator method 474
firstKey method 474
headMap method 492
headMap, subMap, tailMap methods 487
lastKey method 474
subMap method 492
tailMap method 492

SortedSet interface 450, 468, 492
comparator method 468
first method 468
headSet method 492
headSet, subSet, tailSet methods 487
last method 468
subSet method 492
tailSet method 492

Sorting
algorithms for 97, 495
arrays 97, 285
assertions for 373
order of 495
people, by name 321
strings by length 297, 304, 306

Source code, generating 620, 621, 628
Source file

compact 161
Source files 168

installing 18
running in Eclipse 25

Space. See Whitespace
Special characters 36
Split packages 650
sqrt method

of BigInteger 91
of Math 43, 274, 275

src.zip file 18
Stack class 439, 504, 510

peek method 510
pop method 510
push method 510

Stack trace 364, 559
no displaying to users 370

StackFrame
toString method 364

Stacks 510
stackSize method

of Thread.Builder.OfPlatform 531
StackTraceElement class 367

getClassName method 367
getFileName method 367
getLineNumber method 367
getMethodName method 367
isNativeMethod method 367
toString method 367

StackWalker class 364, 366
forEach method 366
getInstance method 364, 366
walk method 364, 366

StackWalker.StackFrame interface 366

getClassName method 366
getDeclaringClass method 367
getFileName method 366
getLineNumber method 366
getMethodName method 367
isNativeMethod method 367
toString method 367

Standard Edition 9, 16
Standard Java library

companion classes in 291
online API documentation for 58, 59, 175, 182

Standard Template Library (STL) 439, 443
start method

of ProcessBuilder 605, 609
of Thread 517, 520, 521
of Thread.Builder 531
of Timer 296

startInstant method
of ProcessHandle.Info 610

startPipeline method 605
of ProcessBuilder 609

startsWith method
of String 58

startVirtualThread method
of Thread 524

state method
of Future 533

Statements 31
conditional 73
in output 53

Static binding 196
Static constants 132

documentation comments for 178
Static fields 131

accessing, in static methods 133
importing 161
initializing 149
no type variables in 424

Static imports 161
static keyword 131, 659, 669

for fields in interfaces 289
Static method 54
Static methods 133

accessing static fields in 133
adding to interfaces 291
importing 161
no type variables in 424

Static nested classes 323, 334
Static variables 132
stop method

of Thread 523, 524
of Timer 296

store method
of Properties 506, 508

Stream interface, toArray method 314
stream method

of BitSet 511
of Collection 292
of ServiceLoader 339, 340

strictfp keyword 669
StrictMath class 44
String

formatted method 232
String class 52, 58

Index 701

charAt method 55, 58
compareTo method 58
endsWith method 58
equals method 58
equals, equalsIgnoreCase methods 57
equalsIgnoreCase method 58
hashCode method 211, 461
immutability of 56, 130, 198
implementing CharSequence 290
indexOf method 59, 144
isEmpty method 58
join method 59
lastIndexOf method 59
length method 55, 57, 58
repeat method 54, 59
replace method 59
startsWith method 58
strip method 59
substring method 56, 59, 487
toLowerCase method 59
toUpperCase method 59
transform method 320

StringBuffer class 63
StringBuilder class 61, 63

append method 61, 64
appendCodePoint method 64
Constructor 63
delete method 64
implementing CharSequence 290
insert method 64
length method 64
repeat method 64
reverse method 64
toString method 62, 64

stringPropertyNames method
of Properties 507

Strings 52
building 61
code points/code units of 55
comparing 297
concatenating 53

with objects 216
converting to numbers 230
empty 57
equality of 57
formatting output for 69
immutability of 56
length of 56, 57
null 57
shared, in compiler 56, 57
sorting by length 297, 304, 306
spanning multiple lines 64
substrings of 56
using ". . ." for 31

strip method
of String 59

Strongly typed languages 33, 285
Subclasses 187

adding fields/methods to 190
anonymous 332
cloning 302
comparing objects from 288
constructors for 190
defining 188

forbidding 243
inheriting annotations 620
method visibility in 198
no access to private fields of superclass 205
non-sealed 245
overriding superclass methods in 190

subList method
of List 487, 492

subMap method
of NavigableMap 493
of SortedMap 487, 492

submit method
of ExecutorCompletionService 542
of ExecutorService 535, 537

Subranges 487
subSet method

of NavigableSet 487, 492
of SortedSet 487, 492

Substitution principle 194
substring method

of String 56, 59, 487
subtract method

of BigDecimal 92
of BigInteger 91

subtractExact method 45
Subtraction 42
sum method

of LongAdder 571
Sun Microsystems 1, 4, 9, 12

HotJava browser 9
super keyword 190, 412, 413, 669

in method references 313
vs. this 190, 191

Superclass wins rule 293
Superclasses 187

accessing private fields of 190
annotating 615
common fields and methods in 235, 277
overriding methods of 211
throws specifiers in 352, 356

Supertype bounds 412
Supplier interface 318
supportsNormalTermination method

of Process 609
Surrogates area (Unicode) 37
suspend method

of Thread 523
swap method

of Collections 500
Swing 598
SwingWorker class 598, 603

doInBackground method 598, 599, 603
execute method 598, 603
getState method 603
process method 603
process, publish methods 598, 600
publish method 603

switch keyword 49, 83, 669
enumerated constants in 50
throwing exceptions in 86
value of 49
with fallthrough 85
with pattern matching 244

Synchronization 547

702 Index

condition objects for 554
final fields and 569
in Vector 461
lock objects for 551
monitor concept for 567
race conditions in 548, 551, 570
volatile fields and 568

Synchronization wrappers 588
Synchronized blocks 565
synchronized keyword 551, 561, 568, 669
Synchronized views 489
synchronizedCollection method

of Collections 491, 589
synchronizedCollection methods (Collections) 489
synchronizedList method

of Collections 491, 589
synchronizedMap method

of Collections 491, 589
synchronizedNavigableMap method

of Collections 491
synchronizedNavigableSet method

of Collections 491
synchronizedSet method

of Collections 491, 589
synchronizedSortedMap method

of Collections 491, 589
synchronizedSortedSet method

of Collections 491, 589
System class 69, 221, 483, 508

console method 69
getLogger method 376, 378
getProperties method 508
getProperty method 508, 509
identityHashCode method 221, 481, 483
setOut method 132
setProperty method 378

System.err 379, 390
System.in 66
System.Logger interface 376, 386

getName method 386
isLoggable method 386
log method 386

System.Logger.Level enumeration 377
System.Loggerlog method

log methodof System.Logger 376
System.out 132

T
T, t conversion characters 70
Tab completion 27
Tabs, in text blocks 65
Tagging interfaces 300, 450
tailMap method

of NavigableMap 493
of SortedMap 487, 492

tailSet method
of NavigableSet 487, 492
of SortedSet 487, 492

take method
of BlockingQueue 575, 576, 579
of ExecutorCompletionService 542

takeFirst method
of BlockingDeque 580

takeLast method
of BlockingDeque 580

tan method
of Math 44

tar command 170
Tasks

asynchronously running 531
controlling groups of 537
decoupling from mechanism of running 517
long-running 597
multiple 515
work stealing for 546

TAU
of Math 44

Terminal window 20
Text blocks 64
thenAccept, thenAcceptBoth, thenCombine methods

of CompletableFuture 593
thenApply, thenApplyAsync methods

of CompletableFuture 592, 593
thenComparing method 321
thenCompose method 593
thenRun method 593
this keyword 127, 147, 669

annotating 616
in body of constructor 147
in inner classes 326
in lambda expressions 316
in method references 313
vs. super 190, 191

Thread class 520, 521, 522, 524, 527, 528, 529, 530, 531
Constructor 520
currentThread method 524, 527
extending 517
getDefaultUncaughtExceptionHandler method 529
getName method 528
getState method 523
getUncaughtExceptionHandler method 529
interrupt method 527
interrupt, isInterrupted methods 524
interrupted method 526, 527
isInterrupted method 527
isVirtual method 524
join method 521, 522, 523
MAX_PRIORITY field 530
methods with timeout 521
MIN_PRIORITY field 530
NORM_PRIORITY field 530
ofPlatform method 531
ofVirtual method 531
resume method 523
run method 517, 520
setDaemon method 527
setDefaultUncaughtExceptionHandler method 390, 528,
529
setName method 528
setPriority method 530
setUncaughtExceptionHandler method 529
sleep method 516, 520, 525
start method 517, 520, 521
startVirtualThread method 524
stop method 523, 524
suspend method 523
threadId method 528

Index 703

yield method 521
Thread dump 560
Thread groups 529
Thread pools 534
Thread-safe collections 574

callables and futures 531
concurrent 580
copy on write arrays 587
synchronization wrappers 588

Thread.Builder interface 531
factory method 531
name method 531
start method 531
uncaughtExceptionHandler method 531
unstarted method 531

Thread.Builder.OfPlatform interface 531
daemon method 531
group method 531
priority method 531
stackSize method 531

Thread.UncaughtExceptionHandler interface 528, 529
uncaughtException method 529

ThreadFactory interface 530
newThread method 530

ThreadGroup class 529
uncaughtException method 529

threadId method
of Thread 528

ThreadLocal class 543, 574
get method 543
remove method 543
set method 543
withInitial method 574

ThreadLocalRandom class 574
current method 574

ThreadPoolExecutor class 534
Threads

accessing collections from 489, 574
blocked 521, 525
condition objects for 554
daemon 527
executing code in 317
idle 545
interrupting 524
listing all 560
locking 565
new 521
priorities of 529
producer/customer 575
runnable 521
states of 520
synchronizing 547
terminated 516, 522, 524
thread-local variables in 573
timed waiting 521
unblocking 556
uncaught exceptions in 528
waiting 521, 555
work stealing for 546
worker 597

throw keyword 353, 669
Throwable class 257, 349, 354, 365, 369

add/getSuppressed methods 363
addSuppressed method 366

Constructor 354, 355, 365
getCause method 365
getMessage method 355
getStackTrace method 364, 366
getSuppressed method 366
initCause method 365
printStackTrace method 257, 364, 390
toString method 354

throws keyword 258, 351, 670
Time measurement vs. calendars 115
Timed waiting threads 521
TimeoutException class 532, 593
Timer class 294, 296, 304

Constructor 296
start method 296
stop method 296

to keyword 670
toArray method

of ArrayList 424
of Collection 225, 446, 447, 502
of Stream 314

toHandle method 607
of Process 609

toLowerCase method
of String 59

Toolkit class 296
beep method 296
getDefaultToolkit method 296

toString method
adding to all classes 217
Formattable and 70
of Annotation 619
of Arrays 95, 99
of Date 113
of Enum 239
of Integer 231
of Modifier 261, 266
of Object 215, 220, 294
of proxy classes 344
of records 154, 217
of StackFrame 364
of StackTraceElement 367
of StackWalker.StackFrame 367
of StringBuilder 62, 64
of Throwable 354
redeclaring 307
working with any class 267, 268

Total ordering 466
totalCpuDuration method

of ProcessHandle.Info 610
toUnsignedInt method 34
toUpperCase method

of String 59
TraceHandler 341
transfer method

of TransferQueue 580
TransferQueue interface 576, 580

transfer method 580
tryTransfer method 580

Transform 320
transform method

of String 320
transient keyword 670
transitive keyword 658, 659, 670

704 Index

Tree maps 471
Tree sets 465

red-black 465
total ordering of 466
vs. priority queues 470

TreeMap class 450, 471, 474
as a concrete collection type 451
Constructor 474
vs. HashMap 471

TreeSet class 450, 465, 467
as a concrete collection type 451
Constructor 467

Trigonometric functions 44
trimToSize method 223

of ArrayList 224
Troubleshooting. See Debugging
true literal 670
Truncated computations 43
try keyword 670
try-with-resources statement 362

effectively final variables in 363
no locks with 552

try/catch 355, 360
generics and 403
wrapping entire task in try block 368

try/finally 360
tryLock method 521
trySetAccessible method

of AccessibleObject 270
tryTransfer method

of TransferQueue 580
Two-dimensional arrays 99, 103
Type bounds

annotating 615
Type erasure 404, 418

clashes after 426
Type interface 431, 432
type method

of ServiceLoader.Provider 339, 340
Type parameters 221

annotating 613
converting to raw types 410
not for arrays 409, 419
not instantiated with primitive types 418
vs. inheritance 395

Type variables
bounds for 401
common names of 398
in exceptions 403
in static fields or methods 424
matching in generic methods 430
no instantiating for 422
replacing with bound types 404

TypeElement interface 628
Types. See Data types
TypeVariable interface 431, 432, 437

getBounds method 437
getName method 437

U
UCSD Pascal system 4
UML (Unified Modeling Language) notation 111
UnaryOperator interface 318

uncaughtException method
of Thread.UncaughtExceptionHandler 529
of ThreadGroup 529

uncaughtExceptionHandler method
of Thread.Builder 531

Unchecked exceptions 258, 350, 352
applicability of 369

Unequality operator 48
Unicode 5, 36, 38, 52
Unit tests 611
University of Illinois 8
UNIX 167, 168
unlock method

of Lock 552, 554
Unmodifiable copies 485
Unmodifiable views 485
unmodifiableCollection method

of Collections 491
unmodifiableCollection methods (Collections) 485, 486
unmodifiableList method

of Collections 491
unmodifiableMap method

of Collections 491
unmodifiableNavigableMap method

of Collections 491
unmodifiableNavigableSet method

of Collections 491
unmodifiableSequencedCollection method

of Collections 491
unmodifiableSequencedMap method

of Collections 491
unmodifiableSequencedSet method

of Collections 491
unmodifiableSet method

of Collections 491
unmodifiableSortedMap method

of Collections 491
unmodifiableSortedSet method

of Collections 491
Unnamed modules 267
Unnamed packages 162, 165, 182, 372
unstarted method

of Thread.Builder 531
UnsupportedOperationException class 477, 484, 486, 489
updateAndGet method

of AtomicXxx 571
User input 348
User Interface. See Graphical User Interface
user method

of ProcessHandle.Info 610
User-defined types 230
uses keyword 662, 663, 670
“Uses–a” relationship 110
UTC (Coordinated Universal Time) 115
Utility classes/methods 291, 292

V
V> method

of ConcurrentHashMap 581
of ConcurrentSkipListMap 582

valueOf method
of BigInteger 89, 91
of Enum 239, 242

Index 705

of Integer 232
values method

of Map 476, 478
var keyword 124, 306, 332, 670

diamond syntax and 222
Varargs methods 232

passing generic types to 420
Varargs parameters

safety of 620, 621
VarHandle class 267, 653
Variable handles 267, 653
VariableElement interface 628
Variables 39

accessing
from outer methods 329
in lambda expressions 314

annotating 408
copying 298
declarations of 39, 202
deprecated 620
effectively final 316, 363
initializing 40, 183
local 124, 204, 408
mutating in lambda expressions 315
names of 39
package scope of 165
printing/logging values of 389
static 132
thread-local 573

Vector class 439, 504, 566, 567, 588
for dynamic arrays 222
get, set methods 567
synchronization in 461

Views 483
bulk operations for 501
checked 488
restricted 489
subranges of 487
synchronized 489
unmodifiable 485

Visual Basic
built-in date type in 112
syntax of 2

Visual Studio 18
void keyword 670
Volatile fields 568
volatile keyword 569, 570, 670
Von der Ahé, Peter 400

W
wait method

of Object 521, 562, 565
Wait sets 555
waitFor method 606

of Process 609
walk method

of StackWalker 364, 366
Warning messages 620
Warning messages, suppressing 621
Warnings

fallthrough behavior and 85
generic 228, 408, 420, 425
suppressing 420, 425

Weak hash maps 478
Weak references 478
WeakHashMap class 478, 481

as a concrete collection type 451
Constructor 481

Weakly consistent iterators 580
WeakReference class 478
Web pages

dynamic 7
extracting links from 592
reading 597

whenComplete method
of CompletableFuture 593

where method
of ScopedValue 545

while keyword 75, 670
Whitespace

escape sequence for 36, 65
in text blocks 65
irrelevant to compiler 30
leading/trailing 65

Wildcard types 397, 410
annotating 615
arrays of 419
capturing 415
supertype bounds for 412
unbounded 415

WildcardType interface 431, 432, 438
getLowerBounds method 438
getUpperBounds method 438

Windows
changing warning string in 166

Windows operating system
executing JARs in 172
IDEs for 23
JDK in 15
paths in 167, 169
thread priority levels in 529

Wirth, Niklaus 4, 8, 107
with keyword 670
withInitial method

of ThreadLocal 574
Work stealing 546
Worker threads 597
Working directory, for a process 604
Wrappers 228

class constructors for 230
equality testing for 229
immutability of 228
locks and 230, 566

X
X, x conversion characters 70
XML 9, 11
XML descriptors, generating 630
XML/JSON binding 653
xor method

of BitSet 511

Y
Yasson 653
yield keyword 86, 670

706 Index

yield method
of Thread 521

Z
ZIP archives

for JMOD files 665
ZIP format 166, 169

Index 707

	Cover
	Title
	Copyright
	Contents
	Preface
	To the Reader
	A Tour of This Book
	Conventions
	Sample Code

	Acknowledgments
	3. Fundamental Programming Structures in Java
	3.1. A Simple Java Program
	3.2. Comments
	3.3. Data Types
	3.3.1. Integer Types
	3.3.2. Floating-Point Types
	3.3.3. The char Type
	3.3.4. Unicode and the char Type
	3.3.5. The boolean Type

	3.4. Variables and Constants
	3.4.1. Declaring Variables
	3.4.2. Initializing Variables
	3.4.3. Constants
	3.4.4. Enumerated Types

	3.5. Operators
	3.5.1. Arithmetic Operators
	3.5.2. Mathematical Functions and Constants
	3.5.3. Conversions between Numeric Types
	3.5.4. Casts
	3.5.5. Assignment
	3.5.6. Increment and Decrement Operators
	3.5.7. Relational and boolean Operators
	3.5.8. The Conditional Operator
	3.5.9. Switch Expressions
	3.5.10. Bitwise Operators
	3.5.11. Parentheses and Operator Hierarchy

	3.6. Strings
	3.6.1. Concatenation
	3.6.2. Static and Instance Methods
	3.6.3. Indexes and Substrings
	3.6.4. Strings Are Immutable
	3.6.5. Testing Strings for Equality
	3.6.6. Empty and Null Strings
	3.6.7. The String API
	3.6.8. Reading the Online API Documentation
	3.6.9. Building Strings
	3.6.10. Text Blocks

	3.7. Input and Output
	3.7.1. Reading Input
	3.7.2. Formatting Output

	3.8. Control Flow
	3.8.1. Block Scope
	3.8.2. Conditional Statements
	3.8.3. Loops
	3.8.4. Determinate Loops
	3.8.5. Multiple Selections with switch
	3.8.6. Statements That Break Control Flow

	3.9. Big Numbers
	3.10. Arrays
	3.10.1. Declaring Arrays
	3.10.2. Accessing Array Elements
	3.10.3. The “for each” Loop
	3.10.4. Array Copying
	3.10.5. Command-Line Arguments
	3.10.6. Array Sorting
	3.10.7. Multidimensional Arrays
	3.10.8. Ragged Arrays

	Index

