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Foreword

Having used and explored the internals of the wildly successful Windows 3.1 operat-
ing system, I immediately recognized the world-changing nature of Windows NT 3.1 

when Microsoft released it in 1993. David Cutler, the architect and engineering leader for 
Windows NT, had created a version of Windows that was secure, reliable, and scalable, 
but with the same user interface and ability to run the same software as its older yet 
more immature sibling. Helen Custer’s book Inside Windows NT was a fantastic guide to 
its design and architecture, but I believed that there was a need for and interest in a book 
that went deeper into its working details. VAX/VMS Internals and Data Structures, the 
GHÀQLWLYH�JXLGH�WR�'DYLG�&XWOHU·V�SUHYLRXV�FUHDWLRQ��ZDV�D�ERRN�DV�FORVH�WR�VRXUFH�FRGH�DV�
you could get with text, and I decided that I was going to write the Windows NT version 
of that book. 

3URJUHVV�ZDV�VORZ��,�ZDV�EXV\�ÀQLVKLQJ�P\�3K'�DQG�VWDUWLQJ�D�FDUHHU�DW�D�VPDOO�VRIW-
ware company. To learn about Windows NT, I read documentation, reverse-engineered 
its code, and wrote systems monitoring tools like Regmon and Filemon that helped me 
understand the design by coding them and using them to observe the under-the-hood 
views they gave me of Windows NT’s operation. As I learned, I shared my newfound 
knowledge in a monthly “NT Internals” column in Windows NT Magazine, the magazine 
for Windows NT administrators. Those columns would serve as the basis for the chapter-
length versions that I’d publish in Windows Internals, the book I’d contracted to write 
with IDG Press. 

My book deadlines came and went because my book writing was further slowed by 
my full-time job and time I spent writing Sysinternals (then NTInternals) freeware and 
commercial software for Winternals Software, my startup. Then, in 1996, I had a shock 
when Dave Solomon published Inside Windows NT, 2nd Edition. I found the book both 
impressive and depressing. A complete rewrite of the Helen’s book, it went deeper and 
broader into the internals of Windows NT like I was planning on doing, and it incorpo-
rated novel labs that used built-in tools and diagnostic utilities from the Windows NT 
Resource Kit and Device Driver Development Kit (DDK) to demonstrate key concepts and 
behaviors. He’d raised the bar so high that I knew that writing a book that matched the 
quality and depth he’d achieved was even more monumental than what I had planned. 

As the saying goes, if you can’t beat them, join them. I knew Dave from the Windows 
conference speaking circuit, so within a couple of weeks of the book’s publication I 
sent him an email proposing that I join him to coauthor the next edition, which would 
document what was then called Windows NT 5 and would eventually be renamed as 
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Windows 2000. My contribution would be new chapters based on my NT Internals 
column about topics Dave hadn’t included, and I’d also write about new labs that used 
my Sysinternals tools. To sweeten the deal, I suggested including the entire collection of 
Sysinternals tools on a CD that would accompany the book—a common way to distribute 
software with books and magazines. 

Dave was game. First, though, he had to get approval from Microsoft. I had caused 
Microsoft some public relations complications with my public revelations that Windows NT 
Workstation and Windows NT Server were the same exact code with different behaviors 
based on a Registry setting. And while Dave had full Windows NT source access, I didn’t, 
and I wanted to keep it that way so as not to create intellectual property issues with the 
software I was writing for Sysinternals or Winternals, which relied on undocumented APIs. 
The timing was fortuitous because by the time Dave asked Microsoft, I’d been repairing my 
relationship with key Windows engineers, and Microsoft tacitly approved. 

Writing Inside Windows 2000 with Dave was incredibly fun. Improbably and 
completely coincidentally, he lived about 20 minutes from me (I lived in Danbury, 
Connecticut and he lived in Sherman, Connecticut). We’d visit each other’s houses for 
marathon writing sessions where we’d explore the internals of Windows together, laugh 
at geeky jokes and puns, and pose technical questions that would pit him and me in 
UDFHV�WR�ÀQG�WKH�DQVZHU�ZLWK�KLP�VFRXULQJ�VRXUFH�FRGH�ZKLOH�,�XVHG�D�GLVDVVHPEOHU��GH-
bugger, and Sysinternals tools. (Don’t rub it in if you talk to him, but I always won.)

7KXV��,�EHFDPH�D�FRDXWKRU�WR�WKH�GHÀQLWLYH�ERRN�GHVFULELQJ�WKH�LQQHU�ZRUNLQJV�RI�
one of the most commercially successful operating systems of all time. We brought in 
$OH[�,RQHVFX�WR�FRQWULEXWH�WR�WKH�ÀIWK�HGLWLRQ��ZKLFK�FRYHUHG�:LQGRZV�;3�DQG�:LQGRZV�
Vista. Alex is among the best reverse engineers and operating systems experts in the 
world, and he added both breadth and depth to the book, matching or exceeding our 
high standards for legibility and detail. The increasing scope of the book, combined with 
Windows itself growing with new capabilities and subsystems, resulted in the 6th Edition 
exceeding the single-spine publishing limit we’d run up against with the 5th Edition, so 
we split it into two volumes. 

I had already moved to Azure when writing for the sixth edition got underway, and by 
the time we were ready for the seventh edition, I no longer had time to contribute to the 
book. Dave Solomon had retired, and the task of updating the book became even more 
challenging when Windows went from shipping every few years with a major release and 
version number to just being called Windows 10 and releasing constantly with feature 
and functionality upgrades. Pavel Yosifovitch stepped in to help Alex with Part 1, but he 
too became busy with other projects and couldn’t contribute to Part 2. Alex was also 
busy with his startup CrowdStrike, so we were unsure if there would even be a Part 2.
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Fortunately, Andrea came to the rescue. He and Alex have updated a broad swath of 
the system in Part 2, including the startup and shutdown process, Registry subsystem, 
and UWP. Not just content to provide a refresh, they’ve also added three new chapters 
WKDW�GHWDLO�+\SHU�9��FDFKLQJ�DQG�ÀOH�V\VWHPV��DQG�GLDJQRVWLFV�DQG�WUDFLQJ��7KH�OHJDF\�RI�
the Windows Internals book series being the most technically deep and accurate word on 
the inner workings on Windows, one of the most important software releases in history, 
is secure, and I’m proud to have my name still listed on the byline. 

A memorable moment in my career came when we asked David Cutler to write the 
foreword for Inside Windows 2000. Dave Solomon and I had visited Microsoft a few times 
to meet with the Windows engineers and had met David on a few of the trips. However, 
we had no idea if he’d agree, so were thrilled when he did. It’s a bit surreal to now be 
on the other side, in a similar position to his when we asked David, and I’m honored to 
be given the opportunity. I hope the endorsement my foreword represents gives you 
WKH�VDPH�FRQÀGHQFH�WKDW�WKLV�ERRN�LV�DXWKRULWDWLYH��FOHDU��DQG�FRPSUHKHQVLYH�DV�'DYLG�
Cutler’s did for buyers of Inside Windows 2000. 

Mark Russinovich
$]XUH�&KLHI�7HFKQRORJ\�2IÀFHU�DQG�7HFKQLFDO�)HOORZ

Microsoft

March 2021
Bellevue, Washington
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Introduction

W indows Internals, Seventh Edition, Part 2 is intended for advanced computer 
professionals (developers, security researchers, and system administrators) who 

want to understand how the core components of the Microsoft Windows 10 (up to and 
including the May 2021 Update, a.k.a. 21H1) and Windows Server (from Server 2016 up 
to Server 2022) operating systems work internally, including many components that are 
shared with Windows 11X and the Xbox Operating System. 

With this knowledge, developers can better comprehend the rationale behind design 
FKRLFHV�ZKHQ�EXLOGLQJ�DSSOLFDWLRQV�VSHFLÀF�WR�WKH�:LQGRZV�SODWIRUP�DQG�PDNH�EHWWHU�
decisions to create more powerful, scalable, and secure software. They will also improve 
their skills at debugging complex problems rooted deep in the heart of the system, all 
ZKLOH�OHDUQLQJ�DERXW�WRROV�WKH\�FDQ�XVH�IRU�WKHLU�EHQHÀW�

System administrators can leverage this information as well because understand-
ing how the operating system works “under the hood” facilitates an understanding of 
the expected performance behavior of the system. This makes troubleshooting system 
problems much easier when things go wrong and empowers the triage of critical issues 
from the mundane.

)LQDOO\��VHFXULW\�UHVHDUFKHUV�FDQ�ÀJXUH�RXW�KRZ�VRIWZDUH�DSSOLFDWLRQV�DQG�WKH�RSHUDW-
ing system can misbehave and be misused, causing undesirable behavior, while also un-
derstanding the mitigations and security features offered by modern Windows systems 
against such scenarios. Forensic experts can learn which data structures and mechanisms 
FDQ�EH�XVHG�WR�ÀQG�VLJQV�RI�WDPSHULQJ��DQG�KRZ�:LQGRZV�LWVHOI�GHWHFWV�VXFK�EHKDYLRU�

Whoever the reader might be, after reading this book, they will have a better under-
standing of how Windows works and why it behaves the way it does.

History of the book

This is the seventh edition of a book that was originally called Inside Windows NT 
(Microsoft Press, 1992), written by Helen Custer (prior to the initial release of Microsoft 
Windows NT 3.1). Inside Windows NT�ZDV�WKH�ÀUVW�ERRN�HYHU�SXEOLVKHG�DERXW�:LQGRZV�
NT and provided key insights into the architecture and design of the system. Inside 
Windows NT, Second Edition (Microsoft Press, 1998) was written by David Solomon. It 
updated the original book to cover Windows NT 4.0 and had a greatly increased level of 
technical depth.



xxiv Introduction

Inside Windows 2000, Third Edition (Microsoft Press, 2000) was authored by David 
Solomon and Mark Russinovich. It added many new topics, such as startup and shutdown, 
VHUYLFH�LQWHUQDOV��UHJLVWU\�LQWHUQDOV��ÀOH�V\VWHP�GULYHUV��DQG�QHWZRUNLQJ��,W�DOVR�FRYHUHG�
kernel changes in Windows 2000, such as the Windows Driver Model (WDM), Plug and 
Play, power management, Windows Management Instrumentation (WMI), encryption, the 
job object, and Terminal Services. Windows Internals, Fourth Edition (Microsoft Press, 2004) 
was the Windows XP and Windows Server 2003 update and added more content focused 
on helping IT professionals make use of their knowledge of Windows internals, such as us-
ing key tools from Windows SysInternals and analyzing crash dumps.

Windows Internals, Fifth Edition (Microsoft Press, 2009) was the update for Windows 
Vista and Windows Server 2008. It saw Mark Russinovich move on to a full-time job 
at Microsoft (where he is now the Azure CTO) and the addition of a new co-author, 
Alex Ionescu. New content included the image loader, user-mode debugging facil-
ity, Advanced Local Procedure Call (ALPC), and Hyper-V. The next release, Windows 
Internals, Sixth Edition (Microsoft Press, 2012), was fully updated to address the many 
kernel changes in Windows 7 and Windows Server 2008 R2, with many new hands-on 
H[SHULPHQWV�WR�UHÁHFW�FKDQJHV�LQ�WKH�WRROV�DV�ZHOO�

Seventh edition changes

7KH�VL[WK�HGLWLRQ�ZDV�DOVR�WKH�ÀUVW�WR�VSOLW�WKH�ERRN�LQWR�WZR�SDUWV��GXH�WR�WKH�OHQJWK�RI�
WKH�PDQXVFULSW�KDYLQJ�H[FHHGHG�PRGHUQ�SULQWLQJ�SUHVV�OLPLWV��7KLV�DOVR�KDG�WKH�EHQHÀW�
of allowing the authors to publish parts of the book more quickly than others (March 
2012 for Part 1, and September 2012 for Part 2). At the time, however, this split was purely 
based on page counts, with the same overall chapters returning in the same order as 
prior editions.

$IWHU�WKH�VL[WK�HGLWLRQ��0LFURVRIW�EHJDQ�D�SURFHVV�RI�26�FRQYHUJHQFH��ZKLFK�ÀUVW�
brought together the Windows 8 and Windows Phone 8 kernels, and eventually incorpo-
rated the modern application environment in Windows 8.1, Windows RT, and Windows 
Phone 8.1. The convergence story was complete with Windows 10, which runs on desk-
tops, laptops, cell phones, servers, Xbox One, HoloLens, and various Internet of Things 
�,R7��GHYLFHV��:LWK�WKLV�JUDQG�XQLÀFDWLRQ�FRPSOHWHG��WKH�WLPH�ZDV�ULJKW�IRU�D�QHZ�HGLWLRQ�
RI�WKH�VHULHV��ZKLFK�FRXOG�QRZ�ÀQDOO\�FDWFK�XS�ZLWK�DOPRVW�KDOI�D�GHFDGH�RI�FKDQJHV�

With the seventh edition (Microsoft Press, 2017), the authors did just that, joined for 
WKH�ÀUVW�WLPH�E\�3DYHO�<RVLIRYLFK��ZKR�WRRN�RYHU�'DYLG�6RORPRQ·V�UROH�DV�WKH�´0LFURVRIW�
insider” and overall book manager. Working alongside Alex Ionescu, who like Mark, 
had moved on to his own full-time job at CrowdStrike (where is now the VP of endpoint 
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engineering), Pavel made the decision to refactor the book’s chapters so that the two 
parts could be more meaningfully cohesive manuscripts instead of forcing readers to 
wait for Part 2 to understand concepts introduced in Part 1. This allowed Part 1 to stand 
fully on its own, introducing readers to the key concepts of Windows 10’s system archi-
tecture, process management, thread scheduling, memory management, I/O handling, 
plus user, data, and platform security. Part 1 covered aspects of Windows 10 up to and 
including Version 1703, the May 2017 Update, as well as Windows Server 2016.

Changes in Part 2
With Alex Ionescu and Mark Russinovich consumed by their full-time jobs, and Pavel 
PRYLQJ�RQ�WR�RWKHU�SURMHFWV��3DUW���RI�WKLV�HGLWLRQ�VWUXJJOHG�IRU�PDQ\�\HDUV�WR�ÀQG�D�
champion. The authors are grateful to Andrea Allievi for having eventually stepped up 
to carry on the mantle and complete the series. Working with advice and guidance from 
$OH[��EXW�ZLWK�IXOO�DFFHVV�WR�0LFURVRIW�VRXUFH�FRGH�DV�SDVW�FRDXWKRUV�KDG�DQG��IRU�WKH�ÀUVW�
WLPH��EHLQJ�D�IXOO�ÁHGJHG�GHYHORSHU�LQ�WKH�:LQGRZV�&RUH�26�WHDP��$QGUHD�WXUQHG�WKH�
book around and brought his own vision to the series. 

Realizing that chapters on topics such as networking and crash dump analysis were 
beyond today’s readers’ interests, Andrea instead added exciting new content around 
Hyper-V, which is now a key part of the Windows platform strategy, both on Azure and 
on client systems. This complements fully rewritten chapters on the boot process, on 
new storage technologies such as ReFS and DAX, and expansive updates on both system 
and management mechanisms, alongside the usual hands-on experiments, which have 
been fully updated to take advantage of new debugger technologies and tooling.

The long delay between Parts 1 and 2 made it possible to make sure the book was 
fully updated to cover the latest public build of Windows 10, Version 2103 (May 2021 
Update / 21H1), including Windows Server 2019 and 2022, such that readers would not be 
“behind” after such a long gap long gap. As Windows 11 builds upon the foundation of 
the same operating system kernel, readers will be adequately prepared for this upcom-
ing version as well.

Hands-on experiments

Even without access to the Windows source code, you can glean much about Windows 
internals from the kernel debugger, tools from SysInternals, and the tools developed 
VSHFLÀFDOO\�IRU�WKLV�ERRN��:KHQ�D�WRRO�FDQ�EH�XVHG�WR�H[SRVH�RU�GHPRQVWUDWH�VRPH�
aspect of the internal behavior of Windows, the steps for trying the tool yourself are 
listed in special “EXPERIMENT” sections. These appear throughout the book, and we 
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encourage you to try them as you’re reading. Seeing visible proof of how Windows works 
internally will make much more of an impression on you than just reading about it will.

Topics not covered

Windows is a large and complex operating system. This book doesn’t cover everything 
relevant to Windows internals but instead focuses on the base system components. For 
example, this book doesn’t describe COM+, the Windows distributed object-oriented pro-
gramming infrastructure, or the Microsoft .NET Framework, the foundation of managed 
code applications. Because this is an “internals” book and not a user, programming, or sys-
WHP�DGPLQLVWUDWLRQ�ERRN��LW�GRHVQ·W�GHVFULEH�KRZ�WR�XVH��SURJUDP��RU�FRQÀJXUH�:LQGRZV�

A warning and a caveat

Because this book describes undocumented behavior of the internal architecture and 
the operation of the Windows operating system (such as internal kernel structures and 
functions), this content is subject to change between releases. By “subject to change,” we 
don’t necessarily mean that details described in this book will change between releases, 
but you can’t count on them not changing. Any software that uses these undocumented 
interfaces, or insider knowledge about the operating system, might not work on future 
releases of Windows. Even worse, software that runs in kernel mode (such as device 
drivers) and uses these undocumented interfaces might experience a system crash when 
running on a newer release of Windows, resulting in potential loss of data to users of 
such software.

In short, you should never use any internal Windows functionality, registry key, 
behavior, API, or other undocumented detail mentioned in this book during the devel-
opment of any kind of software designed for end-user systems or for any other purpose 
other than research and documentation. Always check with the Microsoft Software 
'HYHORSPHQW�1HWZRUN��06'1��IRU�RIÀFLDO�GRFXPHQWDWLRQ�RQ�D�SDUWLFXODU�WRSLF�ÀUVW�

Assumptions about you

The book assumes the reader is comfortable with working on Windows at a power-user 
level and has a basic understanding of operating system and hardware concepts, such as 
CPU registers, memory, processes, and threads. Basic understanding of functions, point-
HUV��DQG�VLPLODU�&�SURJUDPPLQJ�ODQJXDJH�FRQVWUXFWV�LV�EHQHÀFLDO�LQ�VRPH�VHFWLRQV�
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Organization of this book

The book is divided into two parts (as was the sixth edition), the second of which you’re 
holding in your hands.

 � Chapter 8, “System mechanisms,” provides information about the important 
internal mechanisms that the operating system uses to provide key services to 
device drivers and applications, such as ALPC, the Object Manager, and synchro-
nization routines. It also includes details about the hardware architecture that 
Windows runs on, including trap processing, segmentation, and side channel 
vulnerabilities, as well as the mitigations required to address them.

 � Chapter 9, “Virtualization technologies,” describes how the Windows OS uses the 
virtualization technologies exposed by modern processors to allow users to cre-
ate and use multiple virtual machines on the same system. Virtualization is also 
extensively used by Windows to provide a new level of security. Thus, the Secure 
Kernel and Isolated User Mode are extensively discussed in this chapter.

 � Chapter 10, “Management, diagnostics, and tracing,” details the fundamental 
PHFKDQLVPV�LPSOHPHQWHG�LQ�WKH�RSHUDWLQJ�V\VWHP�IRU�PDQDJHPHQW��FRQÀJXUD-
tion, and diagnostics. In particular, the Windows registry, Windows services, WMI, 
and Task Scheduling are introduced along with diagnostics services like Event 
Tracing for Windows (ETW) and DTrace.

 � &KDSWHU�����´&DFKLQJ�DQG�ÀOH�V\VWHPV�µ�VKRZV�KRZ�WKH�PRVW�LPSRUWDQW�´VWRUDJHµ�
FRPSRQHQWV��WKH�FDFKH�PDQDJHU�DQG�ÀOH�V\VWHP�GULYHUV��LQWHUDFW�WR�SURYLGH�WR�
:LQGRZV�WKH�DELOLW\�WR�ZRUN�ZLWK�ÀOHV��GLUHFWRULHV��DQG�GLVN�GHYLFHV�LQ�DQ�HIÀFLHQW�
DQG�IDXOW�VDIH�ZD\��7KH�FKDSWHU�DOVR�SUHVHQWV�WKH�ÀOH�V\VWHPV�WKDW�:LQGRZV�VXS-
ports, with particular detail on NTFS and ReFS.

 � &KDSWHU�����´6WDUWXS�DQG�VKXWGRZQ�µ�GHVFULEHV�WKH�ÁRZ�RI�RSHUDWLRQV�WKDW�RFFXUV�
when the system starts and shuts down, and the operating system components 
WKDW�DUH�LQYROYHG�LQ�WKH�ERRW�ÁRZ��7KH�FKDSWHU�DOVR�DQDO\]HV�WKH�QHZ�WHFKQRORJLHV�
brought on by UEFI, such as Secure Boot, Measured Boot, and Secure Launch.

Conventions

The following conventions are used in this book:

 � Boldface type is used to indicate text that you type as well as interface items that 
you are instructed to click or buttons that you are instructed to press.
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 � Italic type is used to indicate new terms.

 � Code elements appear in italics or in a monospaced font, depending on context.

 � 7KH�ÀUVW�OHWWHUV�RI�WKH�QDPHV�RI�GLDORJ�ER[HV�DQG�GLDORJ�ER[�HOHPHQWV�DUH�FDSL-
talized—for example, the Save As dialog box.

 � Keyboard shortcuts are indicated by a plus sign (+) separating the key names. For 
example, Ctrl+Alt+Delete means that you press the Ctrl, Alt, and Delete keys at 
the same time.

About the companion content

We have included companion content to enrich your learning experience. You can down-
load the companion content for this book from the following page:

MicrosoftPressStore.com/WindowsInternals7ePart2/downloads
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C H A P T E R  9

Virtualization technologies

One of the most important technologies used for running multiple operating systems on the same 
physical machine is virtualization. At the time of this writing, there are multiple types of virtualiza-

tion technologies available from different hardware manufacturers, which have evolved over the years. 
Virtualization technologies are not only used for running multiple operating systems on a physical 
machine, but they have also become the basics for important security features like the Virtual Secure 
Mode (VSM) and Hypervisor-Enforced Code Integrity (HVCI), which can’t be run without a hypervisor.

In this chapter, we give an overview of the Windows virtualization solution, called Hyper-V. Hyper-V 
is composed of the hypervisor, which is the component that manages the platform-dependent virtu-
alization hardware, and the virtualization stack. We describe the internal architecture of Hyper-V and 
provide a brief description of its components (memory manager, virtual processors, intercepts, sched-
uler, and so on). The virtualization stack is built on the top of the hypervisor and provides different ser-
vices to the root and guest partitions. We describe all the components of the virtualization stack (VM 
Worker process, virtual machine management service, VID driver, VMBus, and so on) and the different 
hardware emulation that is supported.

In the last part of the chapter, we describe some technologies based on the virtualization, such as 
VSM and HVCI. We present all the secure services that those technologies provide to the system. 

The Windows hypervisor

The Hyper-V hypervisor (also known as Windows hypervisor) is a type-1 (native or bare-metal) hyper-
visor: a mini operating system that runs directly on the host’s hardware to manage a single root and 
one or more guest operating systems. Unlike type-2 (or hosted) hypervisors, which run on the base of a 
conventional OS like normal applications, the Windows hypervisor abstracts the root OS, which knows 
about the existence of the hypervisor and communicates with it to allow the execution of one or more 
guest virtual machines. Because the hypervisor is part of the operating system, managing the guests 
inside it, as well as interacting with them, is fully integrated in the operating system through standard 
management mechanisms such as WMI and services. In this case, the root OS contains some enlighten-
ments. Enlightenments are special optimizations in the kernel and possibly device drivers that detect 
that the code is being run virtualized under a hypervisor, so they perform certain tasks differently, or 
more efficiently, considering this environment. 

Figure 9-1 shows the basic architecture of the Windows virtualization stack, which is described in 
detail later in this chapter.
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FIGURE 9-1 The Hyper-V architectural stack (hypervisor and virtualization stack).

At the bottom of the architecture is the hypervisor, which is launched very early during the system 
boot and provides its services for the virtualization stack to use (through the use of the hypercall inter-
face). The early initialization of the hypervisor is described in Chapter 12, “Startup and shutdown.” The 
hypervisor startup is initiated by the Windows Loader, which determines whether to start the hypervisor 
and the Secure Kernel; if the hypervisor and Secure Kernel are started, the hypervisor uses the services 
of the Hvloader.dll to detect the correct hardware platform and load and start the proper version of 
the hypervisor. Because Intel and AMD (and ARM64) processors have differing implementations of 
hardware-assisted virtualization, there are different hypervisors. The correct one is selected at boot-up 
time after the processor has been queried through CPUID instructions. On Intel systems, the Hvix64.exe 
binary is loaded; on AMD systems, the Hvax64.exe image is used. As of the Windows 10 May 2019 
Update (19H1), the ARM64 version of Windows supports its own hypervisor, which is implemented in 
the Hvaa64.exe image.

At a high level, the hardware virtualization extension used by the hypervisor is a thin layer that 
resides between the OS kernel and the processor. This layer, which intercepts and emulates in a safe 
manner sensitive operations executed by the OS, is run in a higher privilege level than the OS kernel. 
(Intel calls this mode VMXROOT. Most books and literature define the VMXROOT security domain as 
“Ring -1.”) When an operation executed by the underlying OS is intercepted, the processor stops to run 
the OS code and transfer the execution to the hypervisor at the higher privilege level. This operation is 
commonly referred to as a VMEXIT event. In the same way, when the hypervisor has finished process-
ing the intercepted operation, it needs a way to allow the physical CPU to restart the execution of the 
OS code. New opcodes have been defined by the hardware virtualization extension, which allow a 
VMENTER event to happen; the CPU restarts the execution of the OS code at its original privilege level.
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Partitions, processes, and threads
One of the key architectural components behind the Windows hypervisor is the concept of a partition. 
A partition essentially represents the main isolation unit, an instance of an operating system instal-
lation, which can refer either to what’s traditionally called the host or the guest. Under the Windows 
hypervisor model, these two terms are not used; instead, we talk of either a root partition or a child 
partition, respectively. A partition is composed of some physical memory and one or more virtual 
processors (VPs) with their local virtual APICs and timers. (In the global term, a partition also includes 
a virtual motherboard and multiple virtual peripherals. These are virtualization stack concepts, which 
do not belong to the hypervisor.)

At a minimum, a Hyper-V system has a root partition—in which the main operating system control-
ling the machine runs—the virtualization stack, and its associated components. Each operating system 
running within the virtualized environment represents a child partition, which might contain certain 
additional tools that optimize access to the hardware or allow management of the operating system. 
Partitions are organized in a hierarchical way. The root partition has control of each child and receives 
some notifications (intercepts) for certain kinds of events that happen in the child. The majority of the 
physical hardware accesses that happen in the root are passed through by the hypervisor; this means 
that the parent partition is able to talk directly to the hardware (with some exceptions). As a counter-
part, child partitions are usually not able to communicate directly with the physical machine’s hardware 
(again with some exceptions, which are described later in this chapter in the section “The virtualization 
stack”). Each I/O is intercepted by the hypervisor and redirected to the root if needed.

One of the main goals behind the design of the Windows hypervisor was to have it be as small and 
modular as possible, much like a microkernel—no need to support any hypervisor driver or provide a 
full, monolithic module. This means that most of the virtualization work is actually done by a separate 
virtualization stack (refer to Figure 9-1). The hypervisor uses the existing Windows driver architecture 
and talks to actual Windows device drivers. This architecture results in several components that provide 
and manage this behavior, which are collectively called the virtualization stack. Although the hypervi-
sor is read from the boot disk and executed by the Windows Loader before the root OS (and the parent 
partition) even exists, it is the parent partition that is responsible for providing the entire virtualization 
stack. Because these are Microsoft components, only a Windows machine can be a root partition. The 
Windows OS in the root partition is responsible for providing the device drivers for the hardware on the 
system, as well as for running the virtualization stack. It’s also the management point for all the child 
partitions. The main components that the root partition provides are shown in Figure 9-2.
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FIGURE 9-2 Components of the root partition.

Child partitions
A child partition is an instance of any operating system running parallel to the parent partition. 
(Because you can save or pause the state of any child, it might not necessarily be running.) Unlike the 
parent partition, which has full access to the APIC, I/O ports, and its physical memory (but not access 
to the hypervisor’s and Secure Kernel’s physical memory), child partitions are limited for security and 
management reasons to their own view of address space (the Guest Physical Address, or GPA, space, 
which is managed by the hypervisor) and have no direct access to hardware (even though they may 
have direct access to certain kinds of devices; see the “Virtualization stack” section for further details). 
In terms of hypervisor access, a child partition is also limited mainly to notifications and state changes. 
For example, a child partition doesn’t have control over other partitions (and can’t create new ones).

Child partitions have many fewer virtualization components than a parent partition because they 
aren’t responsible for running the virtualization stack—only for communicating with it. Also, these 
components can also be considered optional because they enhance performance of the environment but 
aren’t critical to its use. Figure 9-3 shows the components present in a typical Windows child partition.
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FIGURE 9-3 Components of a child partition.
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Processes and threads
The Windows hypervisor represents a virtual machine with a partition data structure. A partition, 
as described in the previous section, is composed of some memory (guest physical memory) and one 
or more virtual processors (VP). Internally in the hypervisor, each virtual processor is a schedulable 
entity, and the hypervisor, like the standard NT kernel, includes a scheduler. The scheduler dispatches 
the execution of virtual processors, which belong to different partitions, to each physical CPU. (We 
discuss the multiple types of hypervisor schedulers later in this chapter in the “Hyper-V schedulers” 
section.) A hypervisor thread (TH_THREAD data structure) is the glue between a virtual processor and 
its schedulable unit. Figure 9-4 shows the data structure, which represents the current physical execu-
tion context. It contains the thread execution stack, scheduling data, a pointer to the thread’s virtual 
processor, the entry point of the thread dispatch loop (discussed later) and, most important, a pointer 
to the hypervisor process that the thread belongs to.

Scheduling
Information

Physical Processor
Local Storage (PLS)

VP Stack

Owning Process

Dispatch Loop
Entry Point

FIGURE 9-4 The hypervisor’s thread data structure.

The hypervisor builds a thread for each virtual processor it creates and associates the newborn 
thread with the virtual processor data structure (VM_VP).

A hypervisor process (TH_PROCESS data structure), shown in Figure 9-5, represents a partition 
and is a container for its physical (and virtual) address space. It includes the list of the threads (which 
are backed by virtual processors), scheduling data (the physical CPUs affinity in which the process is 
allowed to run), and a pointer to the partition basic memory data structures (memory compartment, 
reserved pages, page directory root, and so on). A process is usually created when the hypervisor 
builds the partition (VM_PARTITION data structure), which will represent the new virtual machine.

Scheduling
Information

Thread List

Partition’s Memory
Compartment

FIGURE 9-5 The hypervisor’s process data structure.
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Enlightenments
Enlightenments are one of the key performance optimizations that Windows virtualization takes ad-
vantage of. They are direct modifications to the standard Windows kernel code that can detect that the 
operating system is running in a child partition and perform work differently. Usually, these optimiza-
tions are highly hardware-specific and result in a hypercall to notify the hypervisor. 

An example is notifying the hypervisor of a long busy–wait spin loop. The hypervisor can keep some 
state on the spin wait and decide to schedule another VP on the same physical processor until the wait 
can be satisfied. Entering and exiting an interrupt state and access to the APIC can be coordinated with 
the hypervisor, which can be enlightened to avoid trapping the real access and then virtualizing it.

Another example has to do with memory management, specifically translation lookaside buffer 
(TLB) flushing. (See Part 1, Chapter 5, “Memory management,” for more information on these con-
cepts.) Usually, the operating system executes a CPU instruction to flush one or more stale TLB entries, 
which affects only a single processor. In multiprocessor systems, usually a TLB entry must be flushed 
from every active processor’s cache (the system sends an inter-processor interrupt to every active 
processor to achieve this goal). However, because a child partition could be sharing physical CPUs with 
many other child partitions, and some of them could be executing a different VM’s virtual processor 
at the time the TLB flush is initiated, such an operation would also flush this information for those VMs. 
Furthermore, a virtual processor would be rescheduled to execute only the TLB flushing IPI, resulting 
in noticeable performance degradation. If Windows is running under a hypervisor, it instead issues a 
hypercall to have the hypervisor flush only the specific information belonging to the child partition.

Partition’s privileges, properties, and version features
When a partition is initially created (usually by the VID driver), no virtual processors (VPs) are associated 
with it. At that time, the VID driver is free to add or remove some partition’s privileges. Indeed, when 
the partition is first created, the hypervisor assigns some default privileges to it, depending on its type. 

A partition’s privilege describes which action—usually expressed through hypercalls or synthetic 
MSRs (model specific registers)—the enlightened OS running inside a partition is allowed to perform 
on behalf of the partition itself. For example, the Access Root Scheduler privilege allows a child parti-
tion to notify the root partition that an event has been signaled and a guest’s VP can be rescheduled 
(this usually increases the priority of the guest’s VP-backed thread). The Access VSM privilege instead 
allows the partition to enable VTL 1 and access its properties and configuration (usually exposed 
through synthetic registers). Table 9-1 lists all the privileges assigned by default by the hypervisor.

Partition privileges can only be set before the partition creates and starts any VPs; the hypervisor 
won’t allow requests to set privileges after a single VP in the partition starts to execute. Partition prop-
erties are similar to privileges but do not have this limitation; they can be set and queried at any time. 
There are different groups of properties that can be queried or set for a partition. Table 9-2 lists the 
properties groups.

When a partition is created, the VID infrastructure provides a compatibility level (which is specified 
in the virtual machine’s configuration file) to the hypervisor. Based on that compatibility level, the hy-
pervisor enables or disables specific virtual hardware features that could be exposed by a VP to the un-
derlying OS. There are multiple features that tune how the VP behaves based on the VM’s compatibility 



CHAPTER 9 Virtualization technologies 273

level. A good example would be the hardware Page Attribute Table (PAT), which is a configurable cach-
ing type for virtual memory. Prior to Windows 10 Anniversary Update (RS1), guest VMs weren’t able 
to use PAT in guest VMs, so regardless of whether the compatibility level of a VM specifies Windows 
10 RS1, the hypervisor will not expose the PAT registers to the underlying guest OS. Otherwise, in case 
the compatibility level is higher than Windows 10 RS1, the hypervisor exposes the PAT support to the 
underlying OS running in the guest VM. When the root partition is initially created at boot time, the 
hypervisor enables the highest compatibility level for it. In that way the root OS can use all the features 
supported by the physical hardware.

TABLE 9-1 Partition’s privileges

PARTITION TYPE DEFAULT PRIVILEGES

Root and child partition Read/write a VP’s runtime counter
Read the current partition reference time 
Access SynIC timers and registers 
Query/set the VP's virtual APIC assist page 
Read/write hypercall MSRs 
Request VP IDLE entry 
Read VP’s index 
Map or unmap the hypercall’s code area 
Read a VP’s emulated TSC (time-stamp counter) and its frequency
Control the partition TSC and re-enlightenment emulation 
Read/write VSM synthetic registers 
Read/write VP’s per-VTL registers 
Starts an AP virtual processor 
Enables partition’s fast hypercall support 

Root partition only Create child partition 
Look up and reference a partition by ID 
Deposit/withdraw memory from the partition compartment 
Post messages to a connection port 
Signal an event in a connection port’s partition 
Create/delete and get properties of a partition's connection port 
Connect/disconnect to a partition's connection port 
Map/unmap the hypervisor statistics page (which describe a VP, LP, partition, or hypervisor)
Enable the hypervisor debugger for the partition 
Schedule child partition’s VPs and access SynIC synthetic MSRs 
Trigger an enlightened system reset
Read the hypervisor debugger options for a partition 

Child partition only Generate an extended hypercall intercept in the root partition
Notify a root scheduler’s VP-backed thread of an event being signaled

EXO partition None

TABLE 9-2 Partition’s properties

PROPERTY GROUP DESCRIPTION

Scheduling properties Set/query properties related to the classic and core scheduler, like Cap, Weight, and Reserve

Time properties Allow the partition to be suspended/resumed

Debugging properties Change the hypervisor debugger runtime configuration

Resource properties Queries virtual hardware platform-specific properties of the partition (like TLB size, SGX 
support, and so on)

Compatibility properties Queries virtual hardware platform-specific properties that are tied to the initial compatibil-
ity features
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The hypervisor startup
In Chapter 12, we analyze the modality in which a UEFI-based workstation boots up, and all the compo-
nents engaged in loading and starting the correct version of the hypervisor binary. In this section, we 
briefly discuss what happens in the machine after the HvLoader module has transferred the execution 
to the hypervisor, which takes control for the first time.

The HvLoader loads the correct version of the hypervisor binary image (depending on the CPU 
manufacturer) and creates the hypervisor loader block. It captures a minimal processor context, which 
the hypervisor needs to start the first virtual processor. The HvLoader then switches to a new, just-
created, address space and transfers the execution to the hypervisor image by calling the hypervisor 
image entry point, KiSystemStartup, which prepares the processor for running the hypervisor and ini-
tializes the CPU_PLS data structure. The CPU_PLS represents a physical processor and acts as the PRCB 
data structure of the NT kernel; the hypervisor is able to quickly address it (using the GS segment). 
Differently from the NT kernel, KiSystemStartup is called only for the boot processor (the application 
processors startup sequence is covered in the “Application Processors (APs) Startup” section later in this 
chapter), thus it defers the real initialization to another function, BmpInitBootProcessor. 

BmpInitBootProcessor starts a complex initialization sequence. The function examines the system 
and queries all the CPU’s supported virtualization features (such as the EPT and VPID; the queried 
features are platform-specific and vary between the Intel, AMD, or ARM version of the hypervisor). It 
then determines the hypervisor scheduler, which will manage how the hypervisor will schedule virtual 
processors. For Intel and AMD server systems, the default scheduler is the core scheduler, whereas the 
root scheduler is the default for all client systems (including ARM64). The scheduler type can be manu-
ally overridden through the hypervisorschedulertype BCD option (more information about the different 
hypervisor schedulers is available later in this chapter).

The nested enlightenments are initialized. Nested enlightenments allow the hypervisor to be ex-
ecuted in nested configurations, where a root hypervisor (called L0 hypervisor), manages the real hard-
ware, and another hypervisor (called L1 hypervisor) is executed in a virtual machine. After this stage, the 
BmpInitBootProcessor routine performs the initialization of the following components:

 � Memory manager (initializes the PFN database and the root compartment).

 � The hypervisor’s hardware abstraction layer (HAL).

 � The hypervisor’s process and thread subsystem (which depends on the chosen scheduler type). 
The system process and its initial thread are created. This process is special; it isn’t tied to any 
partition and hosts threads that execute the hypervisor code.

 � The VMX virtualization abstraction layer (VAL). The VAL’s purpose is to abstract differences be-
tween all the supported hardware virtualization extensions (Intel, AMD, and ARM64). It includes 
code that operates on platform-specific features of the machine’s virtualization technology in 
use by the hypervisor (for example, on the Intel platform the VAL layer manages the “unrestrict-
ed guest” support, the EPT, SGX, MBEC, and so on).

 � The Synthetic Interrupt Controller (SynIC) and I/O Memory Management Unit (IOMMU).



CHAPTER 9 Virtualization technologies 275

 � The Address Manager (AM), which is the component responsible for managing the physical 
memory assigned to a partition (called guest physical memory, or GPA) and its translation to 
real physical memory (called system physical memory). Although the first implementation of 
Hyper-V supported shadow page tables (a software technique for address translation), since 
Windows 8.1, the Address manager uses platform-dependent code for configuring the hyper-
visor address translation mechanism offered by the hardware (extended page tables for Intel, 
nested page tables for AMD). In hypervisor terms, the physical address space of a partition is 
called address domain. The platform-independent physical address space translation is com-
monly called Second Layer Address Translation (SLAT). The term refers to the Intel’s EPT, AMD’s 
NPT or ARM 2-stage address translation mechanism.

The hypervisor can now finish constructing the CPU_PLS data structure associated with the boot 
processor by allocating the initial hardware-dependent virtual machine control structures (VMCS for 
Intel, VMCB for AMD) and by enabling virtualization through the first VMXON operation. Finally, the 
per-processor interrupt mapping data structures are initialized.

EXPERIMENT: Connecting the hypervisor debugger
In this experiment, you will connect the hypervisor debugger for analyzing the startup sequence 
of the hypervisor, as discussed in the previous section. The hypervisor debugger is supported 
only via serial or network transports. Only physical machines can be used to debug the hypervi-
sor, or virtual machines in which the “nested virtualization” feature is enabled (see the “Nested 
virtualization” section later in this chapter). In the latter case, only serial debugging can be en-
abled for the L1 virtualized hypervisor.

For this experiment, you need a separate physical machine that supports virtualization exten-
sions and has the Hyper-V role installed and enabled. You will use this machine as the debugged 
system, attached to your host system (which acts as the debugger) where you are running the 
debugging tools. As an alternative, you can set up a nested VM, as shown in the “Enabling nested 
virtualization on Hyper-V” experiment later in this chapter (in that case you don’t need another 
physical machine). 

As a first step, you need to download and install the “Debugging Tools for Windows” in the 
host system, which are available as part of the Windows SDK (or WDK), downloadable from 
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk. As an alternative, 
for this experiment you also can use the WinDbgX, which, at the time of this writing, is available 
in the Windows Store by searching “WinDbg Preview.”

The debugged system for this experiment must have Secure Boot disabled. The hypervi-
sor debugging is not compatible with Secure Boot. Refer to your workstation user manual for 
understanding how to disable Secure Boot (usually the Secure Boot settings are located in the 
UEFI Bios). For enabling the hypervisor debugger in the debugged system, you should first open 
an administrative command prompt (by typing cmd in the Cortana search box and selecting Run 
as administrator). 

EXPERIMENT: Connecting the hypervisor debugger
In this experiment, you will connect the hypervisor debugger for analyzing the startup sequence 
of the hypervisor, as discussed in the previous section. The hypervisor debugger is supported 
only via serial or network transports. Only physical machines can be used to debug the hypervi-
sor, or virtual machines in which the “nested virtualization” feature is enabled (see the “Nested 
virtualization” section later in this chapter). In the latter case, only serial debugging can be en-
abled for the L1 virtualized hypervisor.

For this experiment, you need a separate physical machine that supports virtualization exten-
sions and has the Hyper-V role installed and enabled. You will use this machine as the debugged 
system, attached to your host system (which acts as the debugger) where you are running the 
debugging tools. As an alternative, you can set up a nested VM, as shown in the “Enabling nested 
virtualization on Hyper-V” experiment later in this chapter (in that case you don’t need another 
physical machine). 

As a first step, you need to download and install the “Debugging Tools for Windows” in the 
host system, which are available as part of the Windows SDK (or WDK), downloadable from 
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk. As an alternative, 
for this experiment you also can use the WinDbgX, which, at the time of this writing, is available 
in the Windows Store by searching “WinDbg Preview.”

The debugged system for this experiment must have Secure Boot disabled. The hypervi-
sor debugging is not compatible with Secure Boot. Refer to your workstation user manual for 
understanding how to disable Secure Boot (usually the Secure Boot settings are located in the 
UEFI Bios). For enabling the hypervisor debugger in the debugged system, you should first open 
an administrative command prompt (by typing cmd in the Cortana search box and selecting Run 
as administrator). 

https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
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In case you want to debug the hypervisor through your network card, you should type the 
following commands, replacing the terms <HostIp> with the IP address of the host system; 
<HostPort>” with a valid port in the host (from 49152); and <NetCardBusParams> with the 
bus parameters of the network card of the debugged system, specified in the XX.YY.ZZ format 
(where XX is the bus number, YY is the device number, and ZZ is the function number). You 
can discover the bus parameters of your network card through the Device Manager applet or 
through the KDNET.exe tool available in the Windows SDK:

bcdedit /hypervisorsettings net hostip:<HostIp> port:<HostPort> 
bcdedit /set {hypervisorsettings} hypervisordebugpages 1000 
bcdedit /set {hypervisorsettings} hypervisorbusparams <NetCardBusParams> 
bcdedit /set hypervisordebug on

The following figure shows a sample system in which the network interface used for debug-
ging the hypervisor is located in the 0.25.0 bus parameters, and the debugger is targeting a host 
system configured with the IP address 192.168.0.56 on the port 58010.

Take note of the returned debugging key. After you reboot the debugged system, you should 
run Windbg in the host, with the following command:

windbg.exe -d -k net:port=<HostPort>,key=<DebuggingKey>

You should be able to debug the hypervisor, and follow its startup sequence, even though 
Microsoft may not release the symbols for the main hypervisor module:

In case you want to debug the hypervisor through your network card, you should type the 
following commands, replacing the terms <HostIp> with the IP address of the host system; 
<HostPort>” with a valid port in the host (from 49152); and <NetCardBusParams> with the 
bus parameters of the network card of the debugged system, specified in the XX.YY.ZZ format 
(where XX is the bus number, YY is the device number, and ZZ is the function number). You 
can discover the bus parameters of your network card through the Device Manager applet or 
through the KDNET.exe tool available in the Windows SDK:
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bcdedit /set {hypervisorsettings} hypervisorbusparams <NetCardBusParams>
bcdedit /set hypervisordebug on

The following figure shows a sample system in which the network interface used for debug-
ging the hypervisor is located in the 0.25.0 bus parameters, and the debugger is targeting a host 
system configured with the IP address 192.168.0.56 on the port 58010.

Take note of the returned debugging key. After you reboot the debugged system, you should 
run Windbg in the host, with the following command:

windbg.exe -d -k net:port=<HostPort>,key=<DebuggingKey>

You should be able to debug the hypervisor, and follow its startup sequence, even though 
Microsoft may not release the symbols for the main hypervisor module:
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In a VM with nested virtualization enabled, you can enable the L1 hypervisor debugger only 
through the serial port by using the following command in the debugged system:

bcdedit /hypervisorsettings SERIAL DEBUGPORT:1 BAUDRATE:115200

The creation of the root partition and the boot virtual processor
The first steps that a fully initialized hypervisor needs to execute are the creation of the root partition 
and the first virtual processor used for starting the system (called BSP VP). Creating the root partition 
follows almost the same rules as for child partitions; multiple layers of the partition are initialized one 
after the other. In particular:

1. The VM-layer initializes the maximum allowed number of VTL levels and sets up the partition 
privileges based on the partition’s type (see the previous section for more details). Furthermore, 
the VM layer determines the partition’s allowable features based on the specified partition’s 
compatibility level. The root partition supports the maximum allowable features.

2. The VP layer initializes the virtualized CPUID data, which all the virtual processors of the parti-
tion use when a CPUID is requested from the guest operating system. The VP layer creates the 
hypervisor process, which backs the partition.

3. The Address Manager (AM) constructs the partition’s initial physical address space by using 
machine platform-dependent code (which builds the EPT for Intel, NPT for AMD). The con-
structed physical address space depends on the partition type. The root partition uses identity 
mapping, which means that all the guest physical memory corresponds to the system physical 
memory (more information is provided later in this chapter in the “Partitions’ physical address 
space” section). 

In a VM with nested virtualization enabled, you can enable the L1 hypervisor debugger only 
through the serial port by using the following command in the debugged system:

bcdedit /hypervisorsettings SERIAL DEBUGPORT:1 BAUDRATE:115200
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Finally, after the SynIC, IOMMU, and the intercepts’ shared pages are correctly configured for the 
partition, the hypervisor creates and starts the BSP virtual processor for the root partition, which is the 
unique one used to restart the boot process. 

A hypervisor virtual processor (VP) is represented by a big data structure (VM_VP), shown in 
Figure 9-6. A VM_VP data structure maintains all the data used to track the state of the virtual proces-
sor: its platform-dependent registers state (like general purposes, debug, XSAVE area, and stack) and 
data, the VP’s private address space, and an array of VM_VPLC data structures, which are used to track 
the state of each Virtual Trust Level (VTL) of the virtual processor. The VM_VP also includes a pointer to 
the VP’s backing thread and a pointer to the physical processor that is currently executing the VP.

Intercept Packet

Backing Thread

Virtual Registers
State

Pointer to the
Physical CPU_PLS

VM_VPLC Array

VP’s Private Address
Space and Zone

SynIC Data

VTL 1

VTL 0

Physical CPU

FIGURE 9-6 The VM_VP data structure representing a virtual processor.

As for the partitions, creating the BSP virtual processor is similar to the process of creating normal 
virtual processors. VmAllocateVp is the function responsible in allocating and initializing the needed 
memory from the partition’s compartment, used for storing the VM_VP data structure, its platform-
dependent part, and the VM_VPLC array (one for each supported VTL). The hypervisor copies the initial 
processor context, specified by the HvLoader at boot time, into the VM_VP structure and then cre-
ates the VP’s private address space and attaches to it (only in case address space isolation is enabled). 
Finally, it creates the VP’s backing thread. This is an important step: the construction of the virtual 
processor continues in the context of its own backing thread. The hypervisor’s main system thread at 
this stage waits until the new BSP VP is completely initialized. The wait brings the hypervisor scheduler 
to select the newly created thread, which executes a routine, ObConstructVp, that constructs the VP in 
the context of the new backed thread.

ObConstructVp, in a similar way as for partitions, constructs and initializes each layer of the virtual 
processor—in particular, the following:

1. The Virtualization Manager (VM) layer attaches the physical processor data structure (CPU_PLS) 
to the VP and sets VTL 0 as active.
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2. The VAL layer initializes the platform-dependent portions of the VP, like its registers, XSAVE 
area, stack, and debug data. Furthermore, for each supported VTL, it allocates and initializes 
the VMCS data structure (VMCB for AMD systems), which is used by the hardware for keeping 
track of the state of the virtual machine, and the VTL’s SLAT page tables. The latter allows each 
VTL to be isolated from each other (more details about VTLs are provided later in the “Virtual 
Trust Levels (VTLs) and Virtual Secure Mode (VSM)” section) . Finally, the VAL layer enables 
and sets VTL 0 as active. The platform-specific VMCS (or VMCB for AMD systems) is entirely 
compiled, the SLAT table of VTL 0 is set as active, and the real-mode emulator is initialized. The 
Host-state part of the VMCS is set to target the hypervisor VAL dispatch loop. This routine is 
the most important part of the hypervisor because it manages all the VMEXIT events generated 
by each guest.

3. The VP layer allocates the VP’s hypercall page, and, for each VTL, the assist and intercept mes-
sage pages. These pages are used by the hypervisor for sharing code or data with the guest 
operating system.

When ObConstructVp finishes its work, the VP’s dispatch thread activates the virtual processor and 
its synthetic interrupt controller (SynIC). If the VP is the first one of the root partition, the dispatch 
thread restores the initial VP’s context stored in the VM_VP data structure by writing each captured 
register in the platform-dependent VMCS (or VMCB) processor area (the context has been specified 
by the HvLoader earlier in the boot process). The dispatch thread finally signals the completion of the 
VP initialization (as a result, the main system thread enters the idle loop) and enters the platform-
dependent VAL dispatch loop. The VAL dispatch loop detects that the VP is new, prepares it for the first 
execution, and starts the new virtual machine by executing a VMLAUNCH instruction. The new VM 
restarts exactly at the point at which the HvLoader has transferred the execution to the hypervisor. The 
boot process continues normally but in the context of the new hypervisor partition.

The hypervisor memory manager
The hypervisor memory manager is relatively simple compared to the memory manager for NT or the 
Secure Kernel. The entity that manages a set of physical memory pages is the hypervisor’s memory 
compartment. Before the hypervisor startup takes palace, the hypervisor loader (Hvloader.dll) allocates 
the hypervisor loader block and pre-calculates the maximum number of physical pages that will be 
used by the hypervisor for correctly starting up and creating the root partition. The number depends 
on the pages used to initialize the IOMMU to store the memory range structures, the system PFN data-
base, SLAT page tables, and HAL VA space. The hypervisor loader preallocates the calculated number 
of physical pages, marks them as reserved, and attaches the page list array in the loader block. Later, 
when the hypervisor starts, it creates the root compartment by using the page list that was allocated 
by the hypervisor loader.

Figure 9-7 shows the layout of the memory compartment data structure. The data structure keeps 
track of the total number of physical pages “deposited” in the compartment, which can be allocated 
somewhere or freed. A compartment stores its physical pages in different lists ordered by the NUMA 
node. Only the head of each list is stored in the compartment. The state of each physical page and 
its link in the NUMA list is maintained thanks to the entries in the PFN database. A compartment also 
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tracks its relationship with the root. A new compartment can be created using the physical pages that 
belongs to the parent (the root). Similarly, when the compartment is deleted, all its remaining physical 
pages are returned to the parent.
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FIGURE 9-7 The hypervisor’s memory compartment. Virtual address space for the global zone is reserved from 
the end of the compartment data structure

When the hypervisor needs some physical memory for any kind of work, it allocates from the ac-
tive compartment (depending on the partition). This means that the allocation can fail. Two possible 
scenarios can arise in case of failure:

 � If the allocation has been requested for a service internal to the hypervisor (usually on behalf 
of the root partition), the failure should not happen, and the system is crashed. (This explains 
why the initial calculation of the total number of pages to be assigned to the root compartment 
needs to be accurate.)

 � If the allocation has been requested on behalf of a child partition (usually through a hypercall), 
the hypervisor will fail the request with the status INSUFFICIENT_MEMORY. The root partition 
detects the error and performs the allocation of some physical page (more details are discussed 
later in the “Virtualization stack” section), which will be deposited in the child compartment 
through the HvDepositMemory hypercall. The operation can be finally reinitiated (and usually 
will succeed).

The physical pages allocated from the compartment are usually mapped in the hypervisor using a 
virtual address. When a compartment is created, a virtual address range (sized 4 or 8 GB, depending on 
whether the compartment is a root or a child) is allocated with the goal of mapping the new compart-
ment, its PDE bitmap, and its global zone. 

A hypervisor’s zone encapsulates a private VA range, which is not shared with the entire hypervisor 
address space (see the “Isolated address space” section later in this chapter). The hypervisor executes 
with a single root page table (differently from the NT kernel, which uses KVA shadowing). Two entries in 
the root page table page are reserved with the goal of dynamically switching between each zone and 
the virtual processors’ address spaces.
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Partitions’ physical address space
As discussed in the previous section, when a partition is initially created, the hypervisor allocates a 
physical address space for it. A physical address space contains all the data structures needed by the 
hardware to translate the partition’s guest physical addresses (GPAs) to system physical addresses 
(SPAs). The hardware feature that enables the translation is generally referred to as second level ad-
dress translation (SLAT). The term SLAT is platform-agnostic: hardware vendors use different names: 
Intel calls it EPT for extended page tables; AMD uses the term NPT for nested page tables; and ARM 
simply calls it Stage 2 Address Translation. 

The SLAT is usually implemented in a way that’s similar to the implementation of the x64 page 
tables, which uses four levels of translation (the x64 virtual address translation has already been dis-
cussed in detail in Chapter 5 of Part 1). The OS running inside the partition uses the same virtual address 
translation as if it were running by bare-metal hardware. However, in the former case, the physical 
processor actually executes two levels of translation: one for virtual addresses and one for translating 
physical addresses. Figure 9-8 shows the SLAT set up for a guest partition. In a guest partition, a GPA is 
usually translated to a different SPA. This is not true for the root partition. 
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FIGURE 9-8 Address translation for a guest partition.

When the hypervisor creates the root partition, it builds its initial physical address space by using 
identity mapping. In this model, each GPA corresponds to the same SPA (for example, guest frame 
0x1000 in the root partition is mapped to the bare-metal physical frame 0x1000). The hypervisor preal-
locates the memory needed for mapping the entire physical address space of the machine (which has 
been discovered by the Windows Loader using UEFI services; see Chapter 12 for details) into all the 
allowed root partition’s virtual trust levels (VTLs). (The root partition usually supports two VTLs.) The 
SLAT page tables of each VTL belonging to the partition include the same GPA and SPA entries but usu-
ally with a different protection level set. The protection level applied to each partition’s physical frame 
allows the creation of different security domains (VTL), which can be isolated one from each other. VTLs 
are explained in detail in the section “The Secure Kernel” later in this chapter. The hypervisor pages 
are marked as hardware-reserved and are not mapped in the partition’s SLAT table (actually they are 
mapped using an invalid entry pointing to a dummy PFN).
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Note For performance reasons, the hypervisor, while building the physical 
memory mapping, is able to detect large chunks of contiguous physical mem-
ory, and, in a similar way as for virtual memory, is able to map those chunks by 
using large pages. If for some reason the OS running in the partition decides to 
apply a more granular protection to the physical page, the hypervisor would 
use the reserved memory for breaking the large page in the SLAT table.

Earlier versions of the hypervisor also supported another technique for map-
ping a partition’s physical address space: shadow paging. Shadow paging was 
used for those machines without the SLAT support. This technique had a very 
high-performance overhead; as a result, it’s not supported anymore. (The ma-
chine must support SLAT; otherwise, the hypervisor would refuse to start.)

The SLAT table of the root is built at partition-creation time, but for a guest partition, the situation is 
slightly different. When a child partition is created, the hypervisor creates its initial physical address space 
but allocates only the root page table (PML4) for each partition’s VTL. Before starting the new VM, the 
VID driver (part of the virtualization stack) reserves the physical pages needed for the VM (the exact 
number depends on the VM memory size) by allocating them from the root partition. (Remember, we 
are talking about physical memory; only a driver can allocate physical pages.) The VID driver maintains 
a list of physical pages, which is analyzed and split in large pages and then is sent to the hypervisor 
through the HvMapGpaPages Rep hypercall. 

Before sending the map request, the VID driver calls into the hypervisor for creating the needed 
SLAT page tables and internal physical memory space data structures. Each SLAT page table hierarchy 
is allocated for each available VTL in the partition (this operation is called pre-commit). The operation 
can fail, such as when the new partition’s compartment could not contain enough physical pages. In 
this case, as discussed in the previous section, the VID driver allocates more memory from the root par-
tition and deposits it in the child’s partition compartment. At this stage, the VID driver can freely map 
all the child’s partition physical pages. The hypervisor builds and compiles all the needed SLAT page 
tables, assigning different protection based on the VTL level. (Large pages require one less indirection 
level.) This step concludes the child partition’s physical address space creation.

Address space isolation
Speculative execution vulnerabilities discovered in modern CPUs (also known as Meltdown, Spectre, 
and Foreshadow) allowed an attacker to read secret data located in a more privileged execution 
context by speculatively reading the stale data located in the CPU cache. This means that software 
executed in a guest VM could potentially be able to speculatively read private memory that belongs to 
the hypervisor or to the more privileged root partition. The internal details of the Spectre, Meltdown, 
and all the side-channel vulnerabilities and how they are mitigated by Windows have been covered in 
detail in Chapter 8.
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The hypervisor has been able to mitigate most of these kinds of attacks by implementing the 
HyperClear mitigation. The HyperClear mitigation relies on three key components to ensure strong 
Inter-VM isolation: core scheduler, Virtual-Processor Address Space Isolation, and sensitive data scrub-
bing. In modern multicore CPUs, often different SMT threads share the same CPU cache. (Details about 
the core scheduler and symmetric multithreading are provided in the “Hyper-V schedulers” section.) In 
the virtualization environment, SMT threads on a core can independently enter and exit the hypervisor 
context based on their activity. For example, events like interrupts can cause an SMT thread to switch 
out of running the guest virtual processor context and begin executing the hypervisor context. This can 
happen independently for each SMT thread, so one SMT thread may be executing in the hypervisor 
context while its sibling SMT thread is still running a VM’s guest virtual processor context. An attacker 
running code in a less trusted guest VM’s virtual processor context on one SMT thread can then use a 
side channel vulnerability to potentially observe sensitive data from the hypervisor context running on 
the sibling SMT thread. 

The hypervisor provides strong data isolation to protect against a malicious guest VM by maintain-
ing separate virtual address ranges for each guest SMT thread (which back a virtual processor). When 
the hypervisor context is entered on a specific SMT thread, no secret data is addressable. The only data 
that can be brought into the CPU cache is associated with that current guest virtual processor or rep-
resent shared hypervisor data. As shown in Figure 9-9, when a VP running on an SMT thread enters the 
hypervisor, it is enforced (by the root scheduler) that the sibling LP is running another VP that belongs 
to the same VM. Furthermore, no shared secrets are mapped in the hypervisor. In case the hypervisor 
needs to access secret data, it assures that no other VP is scheduled in the other sibling SMT thread.
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FIGURE 9-9 The Hyperclear mitigation.

Unlike the NT kernel, the hypervisor always runs with a single page table root, which creates a single 
global virtual address space. The hypervisor defines the concept of private address space, which has 
a misleading name. Indeed, the hypervisor reserves two global root page table entries (PML4 entries, 
which generate a 1-TB virtual address range) for mapping or unmapping a private address space. When 
the hypervisor initially constructs the VP, it allocates two private page table root entries. Those will be 
used to map the VP’s secret data, like its stack and data structures that contain private data. Switching 
the address space means writing the two entries in the global page table root (which explains why the 
term private address space has a misleading name—actually it is private address range). The hypervisor 
switches private address spaces only in two cases: when a new virtual processor is created and during 
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thread switches. (Remember, threads are backed by VPs. The core scheduler assures that no sibling SMT 
threads execute VPs from different partitions.) During runtime, a hypervisor thread has mapped only 
its own VP’s private data; no other secret data is accessible by that thread. 

Mapping secret data in the private address space is achieved by using the memory zone, represent-
ed by an MM_ZONE data structure. A memory zone encapsulates a private VA subrange of the private 
address space, where the hypervisor usually stores per-VP’s secrets.

The memory zone works similarly to the private address space. Instead of mapping root page table 
entries in the global page table root, a memory zone maps private page directories in the two root 
entries used by the private address space. A memory zone maintains an array of page directories, which 
will be mapped and unmapped into the private address space, and a bitmap that keeps track of the 
used page tables. Figure 9-10 shows the relationship between a private address space and a memory 
zone. Memory zones can be mapped and unmapped on demand (in the private address space) but are 
usually switched only at VP creation time. Indeed, the hypervisor does not need to switch them during 
thread switches; the private address space encapsulates the VA range exposed by the memory zone. 
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FIGURE 9-10 The hypervisor’s private address spaces and private memory zones.
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In Figure 9-10, the page table's structures related to the private address space are filled with a pat-
tern, the ones related to the memory zone are shown in gray, and the shared ones belonging to the hy-
pervisor are drawn with a dashed line. Switching private address spaces is a relatively cheap operation 
that requires the modification of two PML4 entries in the hypervisor’s page table root. Attaching or 
detaching a memory zone from the private address space requires only the modification of the zone’s 
PDPTE (a zone VA size is variable; the PDTPE are always allocated contiguously).

Dynamic memory
Virtual machines can use a different percentage of their allocated physical memory. For example, 
some virtual machines use only a small amount of their assigned guest physical memory, keeping a lot 
of it freed or zeroed. The performance of other virtual machines can instead suffer for high-memory 
pressure scenarios, where the page file is used too often because the allocated guest physical memory 
is not enough. With the goal to prevent the described scenario, the hypervisor and the virtualization 
stack supports the concept of dynamic memory. Dynamic memory is the ability to dynamically assign 
and remove physical memory to a virtual machine. The feature is provided by multiple components:

 � The NT kernel’s memory manager, which supports hot add and hot removal of physical memory 
(on bare-metal system too)

 � The hypervisor, through the SLAT (managed by the address manager)

 � The VM Worker process, which uses the dynamic memory controller module, Vmdynmem.dll, 
to establish a connection to the VMBus Dynamic Memory VSC driver (Dmvsc.sys), which runs in 
the child partition

To properly describe dynamic memory, we should quickly introduce how the page frame number 
(PFN) database is created by the NT kernel. The PFN database is used by Windows to keep track of 
physical memory. It was discussed in detail in Chapter 5 of Part 1. For creating the PFN database, the 
NT kernel first calculates the hypothetical size needed to map the highest possible physical address 
(256 TB on standard 64-bit systems) and then marks the VA space needed to map it entirely as reserved 
(storing the base address to the MmPfnDatabase global variable). Note that the reserved VA space still 
has no page tables allocated. The NT kernel cycles between each physical memory descriptor discov-
ered by the boot manager (using UEFI services), coalesces them in the longest ranges possible and, 
for each range, maps the underlying PFN database entries using large pages. This has an important 
implication; as shown in Figure 9-11, the PFN database has space for the highest possible amount of 
physical memory but only a small subset of it is mapped to real physical pages (this technique is called 
sparse memory).
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MmPfnDatabase Physical Memory

Pfn 0x500

Page 0x500

. . .

Page 0x5FF

Memory Hole*

No
Map

Pfn 0x5FF

Pfn 0x800

Pfn 0x8FF
Hot Removed

Memory
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Page 0x800

. . .

Page 0x8FF

FIGURE 9-11 An example of a PFN database where some physical memory has been removed.

Hot add and removal of physical memory works thanks to this principle. When new physical 
memory is added to the system, the Plug and Play memory driver (Pnpmem.sys) detects it and calls 
the MmAddPhysicalMemory routine, which is exported by the NT kernel. The latter starts a complex 
procedure that calculates the exact number of pages in the new range and the Numa node to which 
they belong, and then it maps the new PFN entries in the database by creating the necessary page 
tables in the reserved VA space. The new physical pages are added to the free list (see Chapter 5 in 
Part 1 for more details). 

When some physical memory is hot removed, the system performs an inverse procedure. It checks 
that the pages belong to the correct physical page list, updates the internal memory counters (like the 
total number of physical pages), and finally frees the corresponding PFN entries, meaning that they 
all will be marked as “bad.” The memory manager will never use the physical pages described by them 
anymore. No actual virtual space is unmapped from the PFN database. The physical memory that was 
described by the freed PFNs can always be re-added in the future.

When an enlightened VM starts, the dynamic memory driver (Dmvsc.sys) detects whether the child 
VM supports the hot add feature; if so, it creates a worker thread that negotiates the protocol and 
connects to the VMBus channel of the VSP. (See the “Virtualization stack” section later in this chapter 
for details about VSC and VSP.) The VMBus connection channel connects the dynamic memory driver 
running in the child partition to the dynamic memory controller module (Vmdynmem.dll), which is 
mapped in the VM Worker process in the root partition. A message exchange protocol is started. Every 
one second, the child partition acquires a memory pressure report by querying different performance 
counters exposed by the memory manager (global page-file usage; number of available, committed, 
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and dirty pages; number of page faults per seconds; number of pages in the free and zeroed page list). 
The report is then sent to the root partition. 

The VM Worker process in the root partition uses the services exposed by the VMMS balancer, a 
component of the VmCompute service, for performing the calculation needed for determining the 
possibility to perform a hot add operation. If the memory status of the root partition allowed a hot add 
operation, the VMMS balancer calculates the proper number of pages to deposit in the child partition 
and calls back (through COM) the VM Worker process, which starts the hot add operation with the as-
sistance of the VID driver:

1. Reserves the proper amount of physical memory in the root partition

2. Calls the hypervisor with the goal to map the system physical pages reserved by the root parti-
tion to some guest physical pages mapped in the child VM, with the proper protection

3. Sends a message to the dynamic memory driver for starting a hot add operation on some guest 
physical pages previously mapped by the hypervisor

The dynamic memory driver in the child partition uses the MmAddPhysicalMemory API exposed by 
the NT kernel to perform the hot add operation. The latter maps the PFNs describing the new guest 
physical memory in the PFN database, adding new backing pages to the database if needed. 

In a similar way, when the VMMS balancer detects that the child VM has plenty of physical pages 
available, it may require the child partition (still through the VM Worker process) to hot remove some 
physical pages. The dynamic memory driver uses the MmRemovePhysicalMemory API to perform the 
hot remove operation. The NT kernel verifies that each page in the range specified by the balancer is 
either on the zeroed or free list, or it belongs to a stack that can be safely paged out. If all the condi-
tions apply, the dynamic memory driver sends back the “hot removal” page range to the VM Worker 
process, which will use services provided by the VID driver to unmap the physical pages from the child 
partition and release them back to the NT kernel.

Note Dynamic memory is not supported when nested virtualization is enabled.

Hyper-V schedulers
The hypervisor is a kind of micro operating system that runs below the root partition’s OS (Windows). 
As such, it should be able to decide which thread (backing a virtual processor) is being executed by 
which physical processor. This is especially true when the system runs multiple virtual machines com-
posed in total by more virtual processors than the physical processors installed in the workstation. The 
hypervisor scheduler role is to select the next thread that a physical CPU is executing after the allocated 
time slice of the current one ends. Hyper-V can use three different schedulers. To properly manage all 
the different schedulers, the hypervisor exposes the scheduler APIs, a set of routines that are the only 
entries into the hypervisor scheduler. Their sole purpose is to redirect API calls to the particular sched-
uler implementation.



288 CHAPTER 9 Virtualization technologies

EXPERIMENT: Controlling the hypervisor’s scheduler type
Whereas client editions of Windows start by default with the root scheduler, Windows Server 2019 
runs by default with the core scheduler. In this experiment, you figure out the hypervisor scheduler 
enabled on your system and find out how to switch to another kind of hypervisor scheduler on the 
next system reboot.

The Windows hypervisor logs a system event after it has determined which scheduler to en-
able. You can search the logged event by using the Event Viewer tool, which you can run by typ-
ing eventvwr in the Cortana search box. After the applet is started, expand the Windows Logs 
key and click the System log. You should search for events with ID 2 and the Event sources set to 
Hyper-V-Hypervisor. You can do that by clicking the Filter Current Log button located on the 
right of the window or by clicking the Event ID column, which will order the events in ascending 
order by their ID (keep in mind that the operation can take a while). If you double-click a found 
event, you should see a window like the following:

The launch event ID 2 denotes indeed the hypervisor scheduler type, where

1 = Classic scheduler, SMT disabled

2 = Classic scheduler

3 = Core scheduler

4 = Root scheduler

EXPERIMENT: Controlling the hypervisor’s scheduler type
Whereas client editions of Windows start by default with the root scheduler, Windows Server 2019 
runs by default with the core scheduler. In this experiment, you figure out the hypervisor scheduler 
enabled on your system and find out how to switch to another kind of hypervisor scheduler on the 
next system reboot.

The Windows hypervisor logs a system event after it has determined which scheduler to en-
able. You can search the logged event by using the Event Viewer tool, which you can run by typ-
ing eventvwr in the Cortana search box. After the applet is started, expand the Windows Logs
key and click the System log. You should search for events with ID 2 and the Event sources set to 
Hyper-V-Hypervisor. You can do that by clicking the Filter Current Log button located on the 
right of the window or by clicking the Event ID column, which will order the events in ascending 
order by their ID (keep in mind that the operation can take a while). If you double-click a found 
event, you should see a window like the following:

The launch event ID 2 denotes indeed the hypervisor scheduler type, where

1 = Classic scheduler, SMT disabled

2 = Classic scheduler

3 = Core scheduler

4 = Root scheduler
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The sample figure was taken from a Windows Server system, which runs by default with the 
Core Scheduler. To change the scheduler type to the classic one (or root), you should open an ad-
ministrative command prompt window (by typing cmd in the Cortana search box and selecting 
Run As Administrator) and type the following command:

bcdedit /set hypervisorschedulertype <Type>

where <Type> is Classic for the classic scheduler, Core for the core scheduler, or Root for the 
root scheduler. You should restart the system and check again the newly generated Hyper-V-
Hypervisor event ID 2. You can also check the current enabled hypervisor scheduler by using an 
administrative PowerShell window with the following command:

Get-WinEvent -FilterHashTable @{ProviderName="Microsoft-Windows-Hyper-V-Hypervisor"; ID=2}          
-MaxEvents 1

The command extracts the last Event ID 2 from the System event log.

The classic scheduler
The classic scheduler has been the default scheduler used on all versions of Hyper-V since its initial 
release. The classic scheduler in its default configuration implements a simple, round-robin policy in 
which any virtual processor in the current execution state (the execution state depends on the total 
number of VMs running in the system) is equally likely to be dispatched. The classic scheduler supports 
also setting a virtual processor’s affinity and performs scheduling decisions considering the physical 
processor’s NUMA node. The classic scheduler doesn’t know what a guest VP is currently executing. 
The only exception is defined by the spin-lock enlightenment. When the Windows kernel, which is run-
ning in a partition, is going to perform an active wait on a spin-lock, it emits a hypercall with the goal 
to inform the hypervisor (high IRQL synchronization mechanisms are described in Chapter 8, “System 
mechanisms”). The classic scheduler can preempt the current executing virtual processor (which 
hasn’t expired its allocated time slice yet) and can schedule another one. In this way it saves the active 
CPU spin cycles. 

The default configuration of the classic scheduler assigns an equal time slice to each VP. This means 
that in high-workload oversubscribed systems, where multiple virtual processors attempt to execute, 
and the physical processors are sufficiently busy, performance can quickly degrade. To overcome 

The sample figure was taken from a Windows Server system, which runs by default with the 
Core Scheduler. To change the scheduler type to the classic one (or root), you should open an ad-
ministrative command prompt window (by typing cmd in the Cortana search box and selecting 
Run As Administrator) and type the following command:

bcdedit /set hypervisorschedulertype <Type>

where <Type> is Classic for the classic scheduler, Core for the core scheduler, or Root for the <Type> is Classic for the classic scheduler, Core for the core scheduler, or Root for the <Type>

root scheduler. You should restart the system and check again the newly generated Hyper-V-
Hypervisor event ID 2. You can also check the current enabled hypervisor scheduler by using an 
administrative PowerShell window with the following command:

Get-WinEvent -FilterHashTable @{ProviderName="Microsoft-Windows-Hyper-V-Hypervisor"; ID=2}          
-MaxEvents 1

The command extracts the last Event ID 2 from the System event log.
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the problem, the classic scheduler supports different fine-tuning options (see Figure 9-12), which can 
modify its internal scheduling decision:

 � VP reservations A user can reserve the CPU capacity in advance on behalf of a guest ma-
chine. The reservation is specified as the percentage of the capacity of a physical processor to 
be made available to the guest machine whenever it is scheduled to run. As a result, Hyper-V 
schedules the VP to run only if that minimum amount of CPU capacity is available (meaning that 
the allocated time slice is guaranteed).

 � VP limits Similar to VP reservations, a user can limit the percentage of physical CPU usage for 
a VP. This means reducing the available time slice allocated to a VP in a high workload scenario.

 � VP weight This controls the probability that a VP is scheduled when the reservations have 
already been met. In default configurations, each VP has an equal probability of being executed. 
When the user configures weight on the VPs that belong to a virtual machine, scheduling deci-
sions become based on the relative weighting factor the user has chosen. For example, let’s 
assume that a system with four CPUs runs three virtual machines at the same time. The first VM 
has set a weighting factor of 100, the second 200, and the third 300. Assuming that all the system’s 
physical processors are allocated to a uniform number of VPs, the probability of a VP in the first 
VM to be dispatched is 17%, of a VP in the second VM is 33%, and of a VP in the third one is 50%.

FIGURE 9-12 The classic scheduler fine-tuning settings property page, which is available  
only when the classic scheduler is enabled.
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The core scheduler
Normally, a classic CPU’s core has a single execution pipeline in which streams of instructions are 
executed one after each other. An instruction enters the pipe, proceeds through several stages of 
execution (load data, compute, store data, for example), and is retired from the pipe. Different types 
of instructions use different parts of the CPU core. A modern CPU’s core is often able to execute in an 
out-of-order way multiple sequential instructions in the stream (in respect to the order in which they 
entered the pipeline). Modern CPUs, which support out-of-order execution, often implement what is 
called symmetric multithreading (SMT): a CPU’s core has two execution pipelines and presents more 
than one logical processor to the system; thus, two different instruction streams can be executed side 
by side by a single shared execution engine. (The resources of the core, like its caches, are shared.) The 
two execution pipelines are exposed to the software as single independent processors (CPUs). From 
now on, with the term logical processor (or simply LP), we will refer to an execution pipeline of an SMT 
core exposed to Windows as an independent CPU. (SMT is discussed in Chapters 2 and 4 of Part 1.)

This hardware implementation has led to many security problems: one instruction executed 
by a shared logical CPU can interfere and affect the instruction executed by the other sibling LP. 
Furthermore, the physical core’s cache memory is shared; an LP can alter the content of the cache. The 
other sibling CPU can potentially probe the data located in the cache by measuring the time employed 
by the processor to access the memory addressed by the same cache line, thus revealing “secret data” 
accessed by the other logical processor  (as described in the “Hardware side-channel vulnerabilities” 
section of Chapter 8). The classic scheduler can normally select two threads belonging to different VMs 
to be executed by two LPs in the same processor core. This is clearly not acceptable because in this 
context, the first virtual machine could potentially read data belonging to the other one.

To overcome this problem, and to be able to run SMT-enabled VMs with predictable performance, 
Windows Server 2016 has introduced the core scheduler. The core scheduler leverages the properties 
of SMT to provide isolation and a strong security boundary for guest VPs. When the core scheduler is 
enabled, Hyper-V schedules virtual cores onto physical cores. Furthermore, it ensures that VPs belong-
ing to different VMs are never scheduled on sibling SMT threads of a physical core. The core scheduler 
enables the virtual machine for making use of SMT. The VPs exposed to a VM can be part of an SMT 
set. The OS and applications running in the guest virtual machine can use SMT behavior and program-
ming interfaces (APIs) to control and distribute work across SMT threads, just as they would when 
run nonvirtualized. 

Figure 9-13 shows an example of an SMT system with four logical processors distributed in two CPU 
cores. In the figure, three VMs are running. The first and second VMs have four VPs in two groups of two, 
whereas the third one has only one assigned VP. The groups of VPs in the VMs are labelled A through E. 
Individual VPs in a group that are idle (have no code to execute) are filled with a darker color. 
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APCs (asynchronous procedure calls), 61–66
APIC, and PIC (Programmable Interrupt 

Controller), 37–38
APIC (Advanced Programmable Interrupt 

Controller), 35–36
!apic command, 37
APIC Timer, 67
APIs, 690
\AppContainer NamedObjects directory, 160
AppContainers, 243–244
AppExecution aliases, 263–264
apps, activating through command line, 

261–262. See also packaged applications
APT (Advanced Persistent Threats), 781
!arbiter command, 48
architectural system service dispatching, 92–95
\ArcName directory, 160
ARM32 simulation on ARM 64 platforms, 115
assembly code, 2
associative cache, 13
atomic execution, 207
attributes, resident and nonresident, 667–670
auto-expand pushlocks, 201
Autoruns tool, 837
autostart services startup, 451–457
AWE (Address Windowing Extension), 201

B
B+ Tree physical layout, ReFS (Resilient File 

System), 742–743
background tasks and Broker Infrastructure, 

256–258

SYMBOLS
\ (root directory), 692

NUMBERS
32-bit handle table entry, 147
64-bit IDT, viewing, 34–35

A
AAM (Application Activation Manager), 244
ACL (access control list), displaying, 153–154
ACM (authenticated code module), 805–806
!acpiirqarb command, 49
ActivationObject object, 129
ActivityReference object, 129
address-based pushlocks, 201
address-based waits, 202–203
ADK (Windows Assessment and 

Deployment Kit), 421
administrative command prompt, opening, 

253, 261
AeDebug and AeDebugProtected root keys, 

WER (Windows Error Reporting), 540
AES (Advanced Encryption Standard), 711
allocators, ReFS (Resilient File System), 743–745
ALPC (Advanced Local Procedure Call), 209
!alpc command, 224
ALPC message types, 211
ALPC ports, 129, 212–214
ALPC worker thread, 118
APC level, 40, 43, 62, 63, 65
!apciirqarb command, 48
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Background Broker Infrastructure

Background Broker Infrastructure, 244, 256–258 
backing up encrypted files, 716–717
bad-cluster recovery, NTFS recovery support, 

703–706. See also clusters
bad-cluster remapping, NTFS, 633
base named objects, looking at, 163–164. 

See also objects
\BaseNamedObjects directory, 160
BCD (Boot Configuration Database), 392, 

398–399
BCD library for boot operations, 790–792
BCD options

Windows hypervisor loader (Hvloader), 
796–797

Windows OS Loader, 792–796
bcdedit command, 398–399
BI (Background Broker Infrastructure), 244, 

256–258
BI (Broker Infrastructure), 238
BindFlt (Windows Bind minifilter driver), 248
BitLocker

encryption offload, 717–718
recovery procedure, 801
turning on, 804

block volumes, DAX (Direct Access Disks), 
728–730

BNO (Base Named Object) Isolation, 167
BOOLEAN status, 208
boot application, launching, 800–801
Boot Manager

BCD objects, 798
overview, 785–799
and trusted execution, 805

boot menu, 799–800
boot process. See also Modern boot menu

BIOS, 781
driver loading in safe mode, 848–849
hibernation and Fast Startup, 840–844
hypervisor loader, 811–813
images start automatically, 837
kernel and executive subsystems, 818–824

kernel initialization phase 1, 824–829
Measured Boot, 801–805
ReadyBoot, 835–836
safe mode, 847–850
Secure Boot, 781–784
Secure Launch, 816–818
shutdown, 837–840
Smss, Csrss, Wininit, 830–835
trusted execution, 805–807
UEFI, 777–781
VSM (Virtual Secure Mode) startup policy, 

813–816
Windows OS Loader, 808–810
WinRE (Windows Recovery 

Environment), 845
boot status file, 850
Bootim.exe command, 832
booting from iSCSI, 811
BPB (boot parameter block), 657
BTB (Branch Target Buffer), 11
bugcheck, 40

C
C-states and timers, 76
cache

copying to and from, 584
forcing to write through to disk, 595

cache coherency, 568–569
cache data structures, 576–582
cache manager

in action, 591–594
centralized system cache, 567
disk I/O accounting, 600–601
features, 566–567
lazy writer, 622
mapping views of files, 573
memory manager, 567
memory partitions support, 571–572
NTFS MFT working set enhancements, 571
read-ahead thread, 622–623
recoverable file system support, 570
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stream-based caching, 569
virtual block caching, 569
write-back cache with lazy write, 589

cache size, 574–576
cache virtual memory management, 572–573
cache-aware pushlocks, 200–201
caches and storage memory, 10
caching

with DMA (direct memory access) inter-
faces, 584–585

with mapping and pinning interfaces, 584
caching and file systems

disks, 565
partitions, 565
sectors, 565
volumes, 565–566

\Callback directory, 160
cd command, 144, 832
CDFS legacy format, 602
CEA (Common Event Aggregator), 238
Centennial applications, 246–249, 261
CFG (Control Flow Integrity), 343
Chain of Trust, 783–784
change journal file, NTFS on-disk structure, 

675–679
change logging, NTFS, 637–638
check-disk and fast repair, NTFS recovery 

support, 707–710
checkpoint records, NTFS recovery support, 698
!chksvctbl command, 103
CHPE (Compile Hybrid Executable) bitmap, 

115–118
CIM (Common Information Model), WMI 

(Windows Management Instrumentation), 
488–495

CLFS (common logging file system), 403–404
Clipboard User Service, 472
clock time, 57
cloning ReFS files, 755
Close method, 141
clusters. See also bad-cluster recovery

defined, 566
NTFS on-disk structure, 655–656

cmd command, 253, 261, 275, 289, 312, 526, 832
COM-hosted task, 479, 484–486
command line, activating apps through, 

261–262
Command Prompt, 833, 845
commands

!acpiirqarb, 49
!alpc, 224
!apciirqarb, 48
!apic, 37
!arbiter, 48
bcdedit, 398–399
Bootim.exe, 832
cd, 144, 832
!chksvctbl, 103
cmd, 253, 261, 275, 289, 312, 526, 832
db, 102
defrag.exe, 646
!devhandles, 151
!devnode, 49
!devobj, 48
dg, 7–8
dps, 102–103
dt, 7–8
dtrace, 527
.dumpdebug, 547
dx, 7, 35, 46, 137, 150, 190
.enumtag, 547
eventvwr, 288, 449
!exqueue, 83
fsutil resource, 693
fsutil storagereserve findById, 687
g, 124, 241
Get-FileStorageTier, 649
Get-VMPmemController, 737
!handle, 149
!idt, 34, 38, 46
!ioapic, 38
!irql, 41
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commands (continued)
k, 485
link.exe/dump/loadconfig, 379
!locks, 198
msinfo32, 312, 344
notepad.exe, 405
!object, 137–138, 151, 223
perfmon, 505, 519
!pic, 37
!process, 190
!qlocks, 176
!reg openkeys, 417
regedit.exe, 468, 484, 542
Runas, 397
Set-PhysicalDisk, 774
taskschd.msc, 479, 484
!thread, 75, 190
.tss, 8
Wbemtest, 491
wnfdump, 237

committing a transaction, 697
Composition object, 129
compressing

nonsparse data, 673–674
sparse data, 671–672

compression and ghosting, ReFS (Resilient File 
System), 769–770

compression and sparse files, NTFS, 637
condition variables, 205–206
connection ports, dumping, 223–224
container compaction, ReFS (Resilient File 

System), 766–769
container isolation, support for, 626
contiguous file, 643
copying

to and from cache, 584
encrypted files, 717

CoreMessaging object, 130
corruption record, NTFS recovery support, 708
CoverageSampler object, 129

CPL (Code Privilege Level), 6
CPU branch predictor, 11–12
CPU cache(s), 9–10, 12–13
crash dump files, WER (Windows Error 

Reporting), 543–548
crash dump generation, WER (Windows Error 

Reporting), 548–551
crash report generation, WER (Windows Error 

Reporting), 538–542
crashes, consequences of, 421
critical sections, 203–204
CS (Code Segment)), 31
Csrss, 830–835, 838–840

D
data compression and sparse files, NTFS, 670–671
data redundancy and fault tolerance, 629–630
data streams, NTFS, 631–632
data structures, 184–189
DAX (Direct Access Disks). See also disks

block volumes, 728–730
cached and noncached I/O in volume, 

723–724
driver model, 721–722
file system filter driver, 730–731
large and huge pages support, 732–735
mapping executable images, 724–728
overview, 720–721
virtual PMs and storage spaces support, 

736–739
volumes, 722–724

DAX file alignment, 733–735
DAX mode I/Os, flushing, 731
db command, 102
/debug switch, FsTool, 734
debugger

breakpoints, 87–88
objects, 241–242
!pte extension, 735
!trueref command, 148
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enclave configuration, dumping 

debugging. See also user-mode debugging
object handles, 158
trustlets, 374–375
WoW64 in ARM64 environments, 122–124

decryption process, 715–716
defrag.exe command, 646
defragmentation, NTFS, 643–645
Delete method, 141
Dependency Mini Repository, 255
Desktop object, 129
!devhandles command, 151
\Device directory, 161
device shims, 564
!devnode command, 49
!devobj command, 48
dg command, 4, 7–8
Directory object, 129
disk I/Os, counting, 601
disks, defined, 565. See also DAX (Direct 

Access Disks)
dispatcher routine, 121
DLLs

Hvloader.dll, 811
IUM (Isolated User Mode), 371–372
Ntevt.dll, 497
for Wow64, 104–105

DMA (Direct Memory Access), 50, 584–585
DMTF, WMI (Windows Management 

Instrumentation), 486, 489
DPC (dispatch or deferred procedure call) inter-

rupts, 54–61, 71. See also software interrupts
DPC Watchdog, 59
dps (dump pointer symbol) command, 102–103
drive-letter name resolution, 620
\Driver directory, 161
driver loading in safe mode, 848–849
driver objects, 451
driver shims, 560–563
\DriverStore(s) directory, 161
dt command, 7, 47

DTrace (dynamic tracing)
ETW provider, 533–534
FBT (Function Boundary Tracing) provider, 

531–533
initialization, 529–530
internal architecture, 528–534
overview, 525–527
PID (Process) provider, 531–533
symbol server, 535
syscall provider, 530
type library, 534–535

dtrace command, 527
.dump command, LiveKd, 545
dump files, 546–548
Dump method, 141
.dumpdebug command, 547
Duplicate object service, 136
DVRT (Dynamic Value Relocation Table), 

23–24, 26
dx command, 7, 35, 46, 137, 150, 190
Dxgk* objects, 129
dynamic memory, tracing, 532–533
dynamic partitioning, NTFS, 646–647

E
EFI (Extensible Firmware Interface), 777
EFS (Encrypting File System)

architecture, 712
BitLocker encryption offload, 717–718
decryption process, 715–716
described, 640
first-time usage, 713–715
information and key entries, 713
online support, 719–720
overview, 710–712
recovery agents, 714

EFS information, viewing, 716
EIP program counter, 8
enclave configuration, dumping, 379–381
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encrypted files

encrypted files
backing up, 716–717
copying, 717

encrypting file data, 714–715
encryption NTFS, 640
encryption support, online, 719–720
EnergyTracker object, 130
enhanced timers, 78–81. See also timers
/enum command-line parameter, 786
.enumtag command, 547
Error Reporting. See WER (Windows Error 

Reporting)
ETL file, decoding, 514–515
ETW (Event Tracing for Windows). See also trac-

ing dynamic memory
architecture, 500
consuming events, 512–515
events decoding, 513–515
Global logger and autologgers, 521
and high-frequency timers, 68–70
initialization, 501–502
listing processes activity, 510
logger thread, 511–512
overview, 499–500
providers, 506–509
providing events, 509–510
security, 522–525
security registry key, 503
sessions, 502–506
system loggers, 516–521

ETW provider, DTrace (dynamic tracing), 533–534
ETW providers, enumerating, 508
ETW sessions

default security descriptor, 523–524
enumerating, 504–506

ETW_GUID_ENTRY data structure, 507
ETW_REG_ENTRY, 507
EtwConsumer object, 129
EtwRegistration object, 129
Event Log provider DLL, 497

Event object, 128
Event Viewer tool, 288
eventvwr command, 288, 449
ExAllocatePool function, 26
exception dispatching, 85–91
executive mutexes, 196–197
executive objects, 126–130
executive resources, 197–199
exFAT, 606
explicit file I/O, 619–622
export thunk, 117
!exqueue command, 83

F
F5 key, 124, 397
fast I/O, 585–586. See also I/O system
fast mutexes, 196–197
fast repair and check-disk, NTFS recovery sup-

port, 707–710
Fast Startup and hibernation, 840–844
FAT12, FAT16, FAT32, 603–606
FAT64, 606
Fault Reporting process, WER (Windows Error 

Reporting), 540
fault tolerance and data redundancy, NTFS, 

629–630
FCB (File Control Block), 571
FCB Headers, 201
feature settings and values, 22–23
FEK (File Encryption Key), 711
file data, encrypting, 714–715
file names, NTFS on-disk structure, 664–666
file namespaces, 664
File object, 128
file record numbers, NTFS on-disk structure, 660
file records, NTFS on-disk structure, 661–663
file system drivers, 583
file system formats, 566
file system interfaces, 582–585
File System Virtualization, 248
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file systems
CDFS, 602
data-scan sections, 624–625
drivers architecture, 608
exFAT, 606
explicit file I/O, 619–622
FAT12, FAT16, FAT32, 603–606
filter drivers, 626
filter drivers and minifilters, 623–626
filtering named pipes and mailslots, 625
FSDs (file system drivers), 608–617
mapped page writers, 622
memory manager, 622
NTFS file system, 606–607
operations, 618
Process Monitor, 627–628
ReFS (Resilient File System), 608
remote FSDs, 610–617
reparse point behavior, 626
UDF (Universal Disk Format), 603

\FileSystem directory, 161
fill buffers, 17
Filter Manager, 626
FilterCommunicationPort object, 130
FilterConnectionPort object, 130
Flags, 132
flushing mapped files, 595–596
Foreshadow (L1TF) attack, 16
fragmented file, 643
FSCTL (file system control) interface, 688
FSDs (file system drivers), 608–617
FsTool, /debug switch, 734
fsutil resource command, 693
fsutil storagereserve findById command, 687

G
g command, 124, 241
gadgets, 15
GDI/User objects, 126–127. See also 

user-mode debugging

GDT (Global Descriptor Table), 2–5
Get-FileStorageTier command, 649
Get-VMPmemController command, 737
Gflags.exe, 554–557
GIT (Generic Interrupt Timer), 67
\GLOBAL?? directory, 161
global flags, 554–557
global namespace, 167
GPA (guest physical address), 17
GPIO (General Purpose Input Output), 51
GSIV (global system interrupt vector), 32, 51
guarded mutexes, 196–197
GUI thread, 96

H
HAM (Host Activity Manager), 244, 249–251
!handle command, 149
Handle count, 132
handle lists, single instancing, 165
handle tables, 146, 149–150
handles

creating maximum number of, 147
viewing, 144–145

hard links, NTFS, 634
hardware indirect branch controls, 21–23
hardware interrupt processing, 32–35
hardware side-channel vulnerabilities, 9–17
hibernation and Fast Startup, 840–844
high-IRQL synchronization, 172–177
hive handles, 410
hives. See also registry

loading, 421
loading and unloading, 408
reorganization, 414–415

HKEY_CLASSES_ROOT, 397–398
HKEY_CURRENT_CONFIG, 400
HKEY_CURRENT_USER subkeys, 395
HKEY_LOCAL_MACHINE, 398–400
HKEY_PERFORMANCE_DATA, 401
HKEY_PERFORMANCE_TEXT, 401
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HKEY_USERS, 396
HKLM\SYSTEM\CurrentControlSet\Control\

SafeBoot registry key, 848
HPET (High Performance Event Timer), 67
hung program screen, 838
HungAppTimeout, 839
HVCI (Hypervisor Enforced Code Integrity), 358
hybrid code address range table, dumping, 

117–118
hybrid shutdown, 843–844
hypercalls and hypervisor TLFS (Top Level 

Functional Specification), 299–300
Hyper-V schedulers. See also Windows 

hypervisor
classic, 289–290
core, 291–294
overview, 287–289
root scheduler, 294–298
SMT system, 292

hypervisor debugger, connecting, 275–277
hypervisor loader boot module, 811–813

I
IBPB (Indirect Branch Predictor Barrier), 22, 25
IBRS (Indirect Branch Restricted Speculation), 

21–22, 25
IDT (interrupt dispatch table), 32–35
!idt command, 34, 38, 46
images starting automatically, 837
Import Optimization and Retpoline, 23–26
indexing facility, NTFS, 633, 679–680
Info mask, 132
Inheritance object service, 136
integrated scheduler, 294
interlocked operations, 172
interrupt control flow, 45
interrupt dispatching

hardware interrupt processing, 32–35
overview, 32
programmable interrupt controller 

architecture, 35–38

software IRQLs (interrupt request levels), 
38–50

interrupt gate, 32
interrupt internals, examining, 46–50
interrupt objects, 43–50
interrupt steering, 52
interrupt vectors, 42
interrupts

affinity and priority, 52–53
latency, 50
masking, 39

I/O system, components of, 652. See also 
Fast I/O

IOAPIC (I/O Advanced Programmable Interrupt 
Controller), 32, 36

!ioapic command, 38
IoCompletion object, 128
IoCompletionReserve object, 128
Ionescu, Alex, 28
IRPs (I/O request packets), 567, 583, 585, 619, 

621–624, 627, 718
IRQ affinity policies, 53
IRQ priorities, 53 
IRQL (interrupt request levels), 347–348. 

See also software IRQLs (interrupt request 
levels)

!irql command, 41
IRTimer object, 128
iSCSI, booting from, 811
isolation, NTFS on-disk structure, 689–690
ISR (interrupt service routine), 31
IST (Interrupt Stack Table), 7–9
IUM (Isolated User Mode)

overview, 371–372
SDF (Secure Driver Framework), 376
secure companions, 376
secure devices, 376–378
SGRA (System Guard Runtime attestation), 

386–390
trustlets creation, 372–375
VBS-based enclaves, 378–386
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J
jitted blocks, 115, 117
jitting and execution, 121–122
Job object, 128

K
k command, 485
Kali Linus, 247
KeBugCheckEx system function, 32
KEK (Key Exchange Key), 783
kernel. See also Secure Kernel

dispatcher objects, 179–181
objects, 126
spinlocks, 174
synchronization mechanisms, 179

kernel addresses, mapping, 20
kernel debugger

!handle extension, 125
!locks command, 198
searching for open files with, 151–152
viewing handle table with, 149–150

kernel logger, tracing TCP/IP activity with, 
519–520

Kernel Patch Protection, 24
kernel reports, WER (Windows Error 

Reporting), 551
kernel shims

database, 559–560
device shims, 564
driver shims, 560–563
engine initialization, 557–559
shim database, 559–560
witnessing, 561–563

kernel-based system call dispatching, 97
kernel-mode debugging events, 240
\KernelObjects directory, 161
Key object, 129
keyed events, 194–196
KeyedEvent object, 128
KilsrThunk, 33

KINTERRUPT object, 44, 46
\KnownDlls directory, 161
\KnownDlls32 directory, 161
KPCR (Kernel Processor Control Region), 4
KPRCB fields, timer processing, 72
KPTI (Kernel Page Table Isolation ), 18
KTM (Kernel Transaction Manager), 157, 688
KVA Shadow, 18–21

L
L1TF (Foreshadow) attack, 16
LAPIC (Local Advanced Programmable 

Interrupt Controllers), 32
lazy jitter, 119
lazy segment loading, 6
lazy writing

disabling, 595
and write-back caching, 589–595

LBA (logical block address), 589
LCNs (logical cluster numbers), 656–658
leak detections, ReFS (Resilient File System), 

761–762
leases, 614–615, 617
LFENCE, 23
LFS (log file service), 652, 695–697
line-based versus message signaled-based 

interrupts, 50–66
link tracking, NTFS, 639
link.exe tool, 117, 379
link.exe/dump/loadconfig command, 379
LiveKd, .dump command, 545
load ports, 17
loader issues, troubleshooting, 556–557
Loader Parameter block, 819–821
local namespace, 167
local procedure call

ALPC direct event attribute, 222
ALPC port ownership, 220
asynchronous operation, 214–215
attributes, 216–217
blobs, handles, and resources, 217–218
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local procedure call (continued)
connection model, 210–212
debugging and tracing, 222–224
handle passing, 218–219
message model, 212–214
overview, 209–210
performance, 220–221
power management, 221
security, 219–220
views, regions, and sections, 215–216

Lock, 132
!locks command, kernel debugger, 198
log record types, NTFS recovery support, 

697–699
$LOGGED_UTILITY_STREAM attribute, 663
logging implementation, NTFS on-disk struc-

ture, 693
Low-IRQL synchronization. See also 

synchronization
address-based waits, 202–203
condition variables, 205–206
critical sections, 203–204
data structures, 184–194
executive resources, 197–202
kernel dispatcher objects, 179–181
keyed events, 194–196
mutexes, 196–197
object-less waiting (thread alerts), 183–184
overview, 177–179
run once initialization, 207–208
signalling objects, 181–183
(SRW) Slim Reader/Writer locks, 206–207
user-mode resources, 205

LRC parity and RAID 6, 773
LSASS (Local Security Authority Subsystem 

Service) process, 453, 465
LSN (logical sequence number), 570

M
mailslots and named pipes, filtering, 625
Make permanent/temporary object service, 136

mapped files, flushing, 595–596
mapping and pinning interfaces, caching 

with, 584
masking interrupts, 39
MBEC (Mode Base Execution Controls), 93
MDL (Memory Descriptor List), 220
MDS (Microarchitectural Data Sampling), 17
Measured Boot, 801–805
media mixer, creating, 165
Meltdown attack, 14, 18
memory, sharing, 171
memory hierarchy, 10
memory manager

modified and mapped page writer, 622
overview, 567
page fault handler, 622–623

memory partitions support, 571–572
metadata

defined, 566, 570
metadata logging, NTFS recovery support, 695
MFT (Master File Table)

NTFS metadata files in, 657
NTFS on-disk structure, 656–660
record for small file, 661

MFT file records, 668–669
MFT records, compressed file, 674
Microsoft Incremental linker ((link.exe)), 117
minifilter driver, Process Monitor, 627–628
Minstore architecture, ReFS (Resilient File 

System), 740–742
Minstore I/O, ReFS (Resilient File System), 

746–748
Minstore write-ahead logging, 758
Modern Application Model, 249, 251, 262
modern boot menu, 832–833. See also boot 

process
MOF (Managed Object Format), WMI 

(Windows Management Instrumentation), 
488–495

MPS (Multiprocessor Specification), 35
Msconfig utility, 837
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MSI (message signaled interrupts), 50–66
msinfo32 command, 312, 344
MSRs (model specific registers), 92
Mutex object, 128
mutexes, fast and guarded, 196–197
mutual exclusion, 170

N
named pipes and mailslots, filtering, 625
namespace instancing, viewing, 169
\NLS directory, 161
nonarchitectural system service dispatching, 

96–97
nonsparse data, compressing, 673–674
notepad.exe command, 405
notifications. See WNF (Windows Notification 

Facility)
NT kernel, 18–19, 22
Ntdll version list, 106
Ntevt.dll, 497
NTFS bad-cluster recovery, 703–706
NTFS file system

advanced features, 630
change logging, 637–638
compression and sparse files, 637
data redundancy, 629–630
data streams, 631–632
data structures, 654
defragmentation, 643–646
driver, 652–654
dynamic bad-cluster remapping, 633
dynamic partitioning, 646–647
encryption, 640
fault tolerance, 629–630
hard links, 634
high-end requirements, 628
indexing facility, 633
link tracking, 639
metadata files in MFT, 657
overview, 606–607
per-user volume quotas, 638–639

POSIX deletion, 641–643
recoverability, 629
recoverable file system support, 570
and related components, 653
security, 629
support for tiered volumes, 647–651
symbolic links and junctions, 634–636
Unicode-based names, 633

NTFS files, attributes for, 662–663
NTFS information, viewing, 660
NTFS MFT working set enhancements, 571
NTFS on-disk structure

attributes, 667–670
change journal file, 675–679
clusters, 655–656
consolidated security, 682–683
data compression and sparse files, 670–674
on-disk implementation, 691–693
file names, 664–666
file record numbers, 660
file records, 661–663
indexing, 679–680
isolation, 689–690
logging implementation, 693
master file table, 656–660
object IDs, 681
overview, 654
quota tracking, 681–682
reparse points, 684–685
sparse files, 675
Storage Reserves and reservations, 685–688
transaction support, 688–689
transactional APIs, 690
tunneling, 666–667
volumes, 655

NTFS recovery support
analysis pass, 700
bad clusters, 703–706
check-disk and fast repair, 707–710
design, 694–695
LFS (log file service), 695–697
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NTFS recovery support (continued)
log record types, 697–699
metadata logging, 695
recovery, 699–700
redo pass, 701
self-healing, 706–707
undo pass, 701–703

NTFS reservations and Storage Reserves, 
685–688

Ntoskrnl and Winload, 818
NVMe (Non-volatile Memory disk), 565

O
!object command, 137–138, 151, 223
Object Create Info, 132
object handles, 146, 158
object IDs, NTFS on-disk structure, 681
Object Manager

executive objects, 127–130
overview, 125–127
resource accounting, 159
symbolic links, 166–170

Object type index, 132
object-less waiting (thread alerts), 183–184
objects. See also base named objects; private 

objects; reserve objects
directories, 160–165
filtering, 170
flags, 134–135
handles and process handle table, 143–152
headers and bodies, 131–136
methods, 140–143
names, 159–160
reserves, 152–153
retention, 155–158
security, 153–155
services, 136
signalling, 181–183
structure, 131
temporary and permanent, 155
types, 126, 136–140

\ObjectTypes directory, 161
ODBC (Open Database Connectivity), 

WMI (Windows Management 
Instrumentation), 488

Okay to close method, 141
on-disk implementation, NTFS on-disk 

structure, 691–693
open files, searching for, 151–152
open handles, viewing, 144–145
Open method, 141
Openfiles/query command, 126
oplocks and FSDs, 611–612, 616
Optimize Drives tool, 644–645
OS/2 operating system, 130
out-of-order execution, 10–11

P
packaged applications. See also apps

activation, 259–264
BI (Background Broker Infrastructure), 

256–258
bundles, 265
Centennial, 246–249
Dependency Mini Repository, 255
Host Activity Manager, 249–251
overview, 243–245
registration, 265–266
scheme of lifecycle, 250
setup and startup, 258
State Repository, 251–254
UWP, 245–246

page table, ReFS (Resilient File System), 
745–746

PAN (Privileged Access Neven), 57
Parse method, 141
Partition object, 130
partitions

caching and file systems, 565
defined, 565

Pc Reset, 845
PCIDs (Process-Context Identifiers), 20
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PEB (process environment block), 104
per-file cache data structures, 579–582
perfmon command, 505, 519
per-user volume quotas, NTFS, 638–639
PFN database, physical memory removed 

from, 286
PIC (Programmable Interrupt Controller), 35–38
!pic command, 37
pinning and mapping interfaces, caching 

with, 584
pinning the bucket, ReFS (Resilient File 

System), 743
PIT (Programmable Interrupt Timer), 66–67
PM (persistent memory), 736
Pointer count field, 132
pop thunk, 117
POSIX deletion, NTFS, 641–643
PowerRequest object, 129
private objects, looking at, 163–164. 

See also objects
Proactive Scan maintenance task, 708–709
!process command, 190
Process Explorer, 58, 89–91, 144–145, 147, 

153–154, 165 169
Process Monitor, 591–594, 627–628, 725–728
Process object, 128, 137
processor execution model, 2–9
processor selection, 73–75
processor traps, 33
Profile object, 130
PSM (Process State Manager), 244
!pte extension of debugger, 735
PTEs (Page table entries), 16, 20
push thunk, 117
pushlocks, 200–202

Q
!qlocks command, 176
Query name method, 141
Query object service, 136
Query security object service, 136

queued spinlocks, 175–176
quota tracking, NTFS on-disk structure, 

681–682

R
RAID 6 and LRC parity, 773
RAM (Random Access Memory), 9–11
RawInputManager object, 130
RDCL (Rogue Data Cache load), 14
Read (R) access, 615
read-ahead and write-behind

cache manager disk I/O accounting, 
600–601

disabling lazy writing, 595
dynamic memory, 599–600
enhancements, 588–589
flushing mapped files, 595–596
forcing cache to write through disk, 595
intelligent read-ahead, 587–588
low-priority lazy writes, 598–599
overview, 586–587
system threads, 597–598
write throttling, 596–597
write-back caching and lazy writing, 

589–594
reader/writer spinlocks, 176–177
ReadyBoost driver service settings, 810
ReadyBoot, 835–836
Reconciler, 419–420
recoverability, NTFS, 629
recoverable file system support, 570
recovery, NTFS recovery support, 699–700. 

See also WinRE (Windows Recovery 
Environment)

redo pass, NTFS recovery support, 701
ReFS (Resilient File System)

allocators, 743–745
architecture’s scheme, 749
B+ tree physical layout, 742–743
compression and ghosting, 769–770
container compaction, 766–769
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ReFS (Resilient File System) (continued)
data integrity scanner, 760
on-disk structure, 751–752
file integrity streams, 760
files and directories, 750
file’s block cloning and spare VDL, 754–757
leak detections, 761–762
Minstore architecture, 740–742
Minstore I/O, 746–748
object IDs, 752–753
overview, 608, 739–740, 748–751
page table, 745–746
pinning the bucket, 743
recovery support, 759–761
security and change journal, 753–754
SMR (shingled magnetic recording) vol-

umes, 762–766
snapshot support through HyperV, 756–757
tiered volumes, 764–766
write-through, 757–758
zap and salvage operations, 760

ReFS files, cloning, 755
!reg openkeys command, 417
regedit.exe command, 468, 484, 542
registered file systems, 613–614
registry. See also hives

application hives, 402–403
cell data types, 411–412
cell maps, 413–414
CLFS (common logging file system), 403–404
data types, 393–394
differencing hives, 424–425
filtering, 422
hive structure, 411–413
hives, 406–408
HKEY_CLASSES_ROOT, 397–398
HKEY_CURRENT_CONFIG, 400
HKEY_CURRENT_USER subkeys, 395
HKEY_LOCAL_MACHINE, 398–400
HKEY_PERFORMANCE_DATA, 401
HKEY_PERFORMANCE_TEXT, 401

HKEY_USERS, 396
HKLM\SYSTEM\CurrentControlSet\Control\

SafeBoot key, 848
incremental logging, 419–421
key control blocks, 417–418
logical structure, 394–401
modifying, 392–393
monitoring activity, 404
namespace and operation, 415–418
namespace redirection, 423
optimizations, 425–426
Process Monitor, 405–406
profile loading and unloading, 397
Reconciler, 419–420
remote BCD editing, 398–399
reorganization, 414–415
root keys, 394–395
ServiceGroupOrder key, 452
stable storage, 418–421
startup and process, 408–414
symbolic links, 410
TxR (Transactional Registry), 403–404
usage, 392–393
User Profiles, 396
viewing and changing, 391–392
virtualization, 422–425

RegistryTransaction object, 129
reparse points, 626, 684–685
reserve objects, 152–153. See also objects
resident and nonresident attributes, 667–670
resource manager information, querying, 

692–693
Resource Monitor, 145
Restricted User Mode, 93
Retpoline and Import optimization, 23–26
RH (Read-Handle) access, 615
RISC (Reduced Instruction Set Computing), 113
root directory (\), 692
\RPC Control directory, 161
RSA (Rivest-Shamir-Adleman) public key 

algorithm, 711
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RTC (Real Time Clock), 66–67
run once initialization, 207–208
Runas command, 397
runtime drivers, 24
RW (Read-Write) access, 615
RWH (Read-Write-Handle) access, 615

S
safe mode, 847–850
SCM (Service Control Manager)

network drive letters, 450
overview, 446–449
and Windows services, 426–428

SCM Storage driver model, 722
SCP (service control program), 426–427
SDB (shim database), 559–560
SDF (Secure Driver Framework), 376
searching for open files, 151–152
SEB (System Events Broker), 226, 238
second-chance notification, 88
Section object, 128
sectors

caching and file systems, 565
and clusters on disk, 566
defined, 565

secure boot, 781–784
Secure Kernel. See also kernel

APs (application processors) startup, 
362–363

control over hypercalls, 349
hot patching, 368–371
HVCI (Hypervisor Enforced Code 

Integrity), 358
memory allocation, 367–368
memory manager, 363–368
NAR data structure, 365
overview, 345
page identity/secure PFN database, 

366–367
secure intercepts, 348–349
secure IRQLs, 347–348

secure threads and scheduling, 356–358
Syscall selector number, 354
trustlet for normal call, 354
UEFI runtime virtualization, 358–360
virtual interrupts, 345–348
VSM startup, 360–363
VSM system calls, 349–355

Secure Launch, 816–818
security consolidation, NTFS on-disk structure, 

682–683
Security descriptor field, 132
\Security directory, 161
Security method, 141
security reference monitor, 153
segmentation, 2–6
self-healing, NTFS recovery support, 706–707
Semaphore object, 128
service control programs, 450–451
service database, organization of, 447
service descriptor tables, 100–104
ServiceGroupOrder registry key, 452
services logging, enabling, 448–449
session namespace, 167–169
Session object, 130
\Sessions directory, 161
Set security object service, 136
/setbootorder command-line parameter, 788
Set-PhysicalDisk command, 774
SGRA (System Guard Runtime attestation), 

386–390
SGX, 16
shadow page tables, 18–20
shim database, 559–560
shutdown process, 837–840
SID (security identifier), 162
side-channel attacks

L1TF (Foreshadow), 16
MDS (Microarchitectural Data Sampling), 17
Meltdown, 14
Spectre, 14–16
SSB (speculative store bypass), 16
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Side-channel mitigations in Windows
hardware indirect branch controls, 21–23
KVA Shadow, 18–21
Retpoline and import optimization, 23–26
STIPB pairing, 26–30

Signal an object and wait for another service, 136
Sihost process, 834
\Silo directory, 161
SKINIT and Secure Launch, 816, 818
SkTool, 28–29
SLAT (Second Level Address Translation) table, 17
SMAP (Supervisor Mode Access Protection), 

57, 93
SMB protocol, 614–615
SMP (symmetric multiprocessing), 171
SMR (shingled magnetic recording) volumes, 

762–763
SMR disks tiers, 765–766
Smss user-mode process, 830–835
SMT system, 292
software interrupts. See also DPC (dispatch or 

deferred procedure call) interrupts
APCs (asynchronous procedure calls), 61–66
DPC (dispatch or deferred procedure call), 

54–61
overview, 54

software IRQLs (interrupt request levels), 38–
50. See also IRQL (interrupt request levels)

Spaces. See Storage Spaces
sparse data, compressing, 671–672
sparse files

and data compression, 670–671
NTFS on-disk structure, 675

Spectre attack, 14–16
SpecuCheck tool, 28–29
SpeculationControl PowerShell script, 28
spinlocks, 172–177
Spot Verifier service, NTFS recovery support, 708
spurious traps, 31
SQLite databases, 252
SRW (Slim Read Writer) Locks, 178, 195, 205–207

SSB (speculative store bypass), 16
SSBD (Speculative Store Bypass Disable), 22
SSD (solid-state disk), 565, 644–645
SSD volume, retrimming, 646
Startup Recovery tool, 846
Startup Repair, 845
State Repository, 251–252
state repository, witnessing, 253–254
STIBP (Single Thread Indirect Branch 

Predictors), 22, 25–30
Storage Reserves and NTFS reservations, 

685–688
Storage Spaces

internal architecture, 771–772
overview, 770–771
services, 772–775

store buffers, 17
stream-based caching, 569
structured exception handling, 85
Svchost service splitting, 467–468
symbolic links, 166
symbolic links and junctions, NTFS, 634–637
SymbolicLink object, 129
symmetric encryption, 711
synchronization. See also Low-IRQL 

synchronization
High-IRQL, 172–177
keyed events, 194–196
overview, 170–171

syscall instruction, 92
system call numbers, mapping to functions and 

arguments, 102–103
system call security, 99–100
system call table compaction, 101–102
system calls and exception dispatching, 122
system crashes, consequences of, 421
System Image Recover, 845
SYSTEM process, 19–20
System Restore, 845
system service activity, viewing, 104
system service dispatch table, 96
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trap dispatching

system service dispatcher, locating, 94–95
system service dispatching, 98
system service handling

architectural system service dispatching, 
92–95

overview, 91
system side-channel mitigation status, 

querying, 28–30
system threads, 597–598
system timers, listing, 74–75. See also timers
system worker threads, 81–85

T
take state segments, 6–9
Task Manager, starting, 832
Task Scheduler

boot task master key, 478
COM interfaces, 486
initialization, 477–481
overview, 476–477
Triggers and Actions, 478
and UBPM (Unified Background Process 

Manager), 481–486
XML descriptor, 479–481

task scheduling and UBPM, 475–476
taskschd.msc command, 479, 484
TBOOT module, 806
TCP/IP activity, tracing with kernel logger, 

519–520
TEB (Thread Environment Block), 4–5, 104
Terminal object, 130
TerminalEventQueue object, 130
thread alerts (object-less waiting), 183–184
!thread command, 75, 190
thread-local register effect, 4. See also 

Windows threads
thunk kernel routines, 33
tiered volumes. See also volumes

creating maximum number of, 774–775
support for, 647–651

Time Broker, 256

timer coalescing, 76–77
timer expiration, 70–72
timer granularity, 67–70
timer lists, 71
Timer object, 128
timer processing, 66
timer queuing behaviors, 73
timer serialization, 73
timer tick distribution, 75–76
timer types

and intervals, 66–67
and node collection indices, 79

timers. See also enhanced timers; system timers
high frequency, 68–70
high resolution, 80

TLB flushing algorithm, 18, 20–21, 272
TmEn object, 129
TmRm object, 129
TmTm object, 129
TmTx object, 129
Token object, 128
TPM (Trusted Platform Module), 785, 800–801
TPM measurements, invalidating, 803–805
TpWorkerFactory object, 129
TR (Task Register), 6, 32
Trace Flags field, 132
tracing dynamic memory, 532–533. See also 

DTrace (dynamic tracing); ETW (Event 
Tracing for Windows)

transaction support, NTFS on-disk structure, 
688–689

transactional APIs, NTFS on-disk structure, 690
transactions

committing, 697
undoing, 702

transition stack, 18
trap dispatching

exception dispatching, 85–91
interrupt dispatching, 32–50
line-based interrupts, 50–66
message signaled-based interrupts, 50–66
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trap dispatching (continued)
overview, 30–32
system service handling, 91–104
system worker threads, 81–85
timer processing, 66–81

TRIM commands, 645
troubleshooting Windows loader issues, 

556–557
!trueref debugger command, 148
trusted execution, 805–807
trustlets

creation, 372–375
debugging, 374–375
secure devices, 376–378
Secure Kernel and, 345
secure system calls, 354
VBS-based enclaves, 378
in VTL 1, 371
Windows hypervisor on ARM64, 314–315

TSS (Task State Segment), 6–9
.tss command, 8
tunneling, NTFS on-disk structure, 666–667
TxF APIs, 688–690
$TXF_DATA attribute, 691–692
TXT (Trusted Execution Technology), 801, 

805–807, 816
type initializer fields, 139–140
type objects, 131, 136–140

U
UBPM (Unified Background Process Manager), 

481–486
UDF (Universal Disk Format), 603
UEFI boot, 777–781
UEFI runtime virtualization, 358–363
UMDF (User-Mode Driver Framework), 209
\UMDFCommunicationPorts directory, 161
undo pass, NTFS recovery support, 701–703
unexpected traps, 31
Unicode-based names, NTFS, 633
user application crashes, 537–542

User page tables, 18
UserApcReserve object, 130
user-issued system call dispatching, 98
user-mode debugging. See also debugging; 

GDI/User objects
kernel support, 239–240
native support, 240–242
Windows subsystem support, 242–243

user-mode resources, 205
UWP (Universal Windows Platform)

and application hives, 402
application model, 244
bundles, 265
and SEB (System Event Broker), 238
services to apps, 243

UWP applications, 245–246, 259–260

V
VACBs (virtual address control blocks), 572, 

576–578, 581–582
VBO (virtual byte offset), 589
VBR (volume boot record), 657
VBS (virtualization-based security)

detecting, 344
overview, 340
VSM (Virtual Secure Mode), 340–344
VTLs (virtual trust levels), 340–342

VCNs (virtual cluster numbers), 656–658, 
669–672

VHDPMEM image, creating and mounting, 
737–739

virtual block caching, 569
virtual PMs architecture, 736
virtualization stack

deferred commit, 339
EPF (enlightened page fault), 339
explained, 269
hardware support, 329–335
hardware-accelerated devices, 332–335
memory access hints, 338
memory-zeroing enlightenments, 338
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overview, 315
paravirtualized devices, 331
ring buffer, 327–329
VA-backed virtual machines, 336–340
VDEVs (virtual devices), 326–327
VID driver and memory manager, 317
VID.sys (Virtual Infrastructure Driver), 317
virtual IDE controller, 330
VM (virtual machine), 318–322
VM manager service and worker processes, 

315–316
VM Worker process, 318–322, 330
VMBus, 323–329
VMMEM process, 339–340
Vmms.exe (virtual machine manager ser-

vice), 315–316
VM (View Manager), 244
VMENTER event, 268
VMEXIT event, 268, 330–331
\VmSharedMemory directory, 161
VMXROOT mode, 268
volumes. See also tiered volumes

caching and file systems, 565–566
defined, 565–566
NTFS on-disk structure, 655
setting repair options, 706

VSM (Virtual Secure Mode)
overview, 340–344 
startup policy, 813–816
system calls, 349–355

VTLs (virtual trust levels), 340–342

W
wait block states, 186
wait data structures, 189
Wait for a single object service, 136
Wait for multiple objects service, 136
wait queues, 190–194
WaitCompletionPacket object, 130
wall time, 57
Wbemtest command, 491

Wcifs (Windows Container Isolation minifilter 
driver), 248

Wcnfs (Windows Container Name 
Virtualization minifilter driver), 248

WDK (Windows Driver Kit), 392
WER (Windows Error Reporting)

ALPC (advanced local procedure call), 209
AeDebug and AeDebugProtected root 

keys, 540
crash dump files, 543–548
crash dump generation, 548–551
crash report generation, 538–542
dialog box, 541
Fault Reporting process, 540
implementation, 536
kernel reports, 551
kernel-mode (system) crashes, 543–551
overview, 535–537
process hang detection, 551–553
registry settings, 539–540
snapshot creation, 538
user application crashes, 537–542
user interface, 542

Windows 10 Creators Update (RS2), 571
Windows API, executive objects, 128–130
Windows Bind minifilter driver, (BindFit) 248
Windows Boot Manager, 785–799

BCD objects, 798
\Windows directory, 161
Windows hypervisor. See also Hyper-V 

schedulers
address space isolation, 282–285
AM (Address Manager), 275, 277
architectural stack, 268
on ARM64, 313–314
boot virtual processor, 277–279
child partitions, 269–270, 323
dynamic memory, 285–287
emulation of VT-x virtualization extensions, 

309–310
enlightenments, 272
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execution vulnerabilities, 282
Hyperclear mitigation, 283
intercepts, 300–301
memory manager, 279–287
nested address translation, 310–313
nested virtualization, 307–313
overview, 267–268
partitions, processes, threads, 269–273
partitions physical address space, 281–282
PFN database, 286
platform API and EXO partitions, 304–305
private address spaces/memory zones, 284
process data structure, 271
processes and threads, 271
root partition, 270, 277–279
SLAT table, 281–282
startup, 274–279
SynIC (synthetic interrupt controller), 

301–304
thread data structure, 271
VAL (VMX virtualization abstraction layer), 

274, 279
VID driver, 272
virtual processor, 278
VM (Virtualization Manager), 278
VM_VP data structure, 278
VTLs (virtual trust levels), 281

Windows hypervisor loader (Hvloader), BCD 
options, 796–797

Windows loader issues, troubleshooting, 
556–557

Windows Memory Diagnostic Tool, 845
Windows OS Loader, 792–796, 808–810
Windows PowerShell, 774
Windows services

accounts, 433–446
applications, 426–433
autostart startup, 451–457
boot and last known good, 460–462
characteristics, 429–433

Clipboard User Service, 472
control programs, 450–451
delayed autostart, 457–458
failures, 462–463
groupings, 466
interactive services/session 0 isolation, 

444–446
local service account, 436
local system account, 434–435
network service account, 435
packaged services, 473
process, 428
protected services, 474–475
Recovery options, 463
running services, 436
running with least privilege, 437–439
SCM (Service Control Manager), 426, 446–450
SCP (service control program), 426
Service and Driver Registry parameters, 

429–432
service isolation, 439–443
Service SIDs, 440–441
shared processes, 465–468
shutdown, 464–465
startup errors, 459–460
Svchost service splitting, 467–468
tags, 468–469
triggered-start, 457–459
user services, 469–473
virtual service account, 443–444
window stations, 445

Windows threads, viewing user start address 
for, 89–91. See also thread-local register 
effect

WindowStation object, 129
Wininit, 831–835
Winload, 792–796, 808–810
Winlogon, 831–834, 838
WinObjEx64 tool, 125
WinRE (Windows Recovery Environment), 

845–846. See also recovery
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WMI (Windows Management Instrumentation)
architecture, 487–488
CIM (Common Information Model), 

488–495
class association, 493–494
Control Properties, 498
DMTF, 486, 489
implementation, 496–497
Managed Object Format Language, 

489–495
MOF (Managed Object Format), 488–495
namespace, 493
ODBC (Open Database Connectivity), 488
overview, 486–487
providers, 488–489, 497
scripts to manage systems, 495
security, 498
System Control commands, 497

WmiGuid object, 130
WmiPrvSE creation, viewing, 496
WNF (Windows Notification Facility)

event aggregation, 237–238
features, 224–225
publishing and subscription model, 236–237
state names and storage, 233–237
users, 226–232

WNF state names, dumping, 237
wnfdump command, 237
WnfDump utility, 226, 237
WoW64 (Windows-on-Windows)

ARM, 113–114
ARM32 simulation on ARM 64 platforms, 115

core, 106–109
debugging in ARM64, 122–124
exception dispatching, 113
file system redirection, 109–110
memory models, 114
overview, 104–106
registry redirection, 110–111
system calls, 112
user-mode core, 108–109
X86 simulation on AMD64 platforms, 759–751
X86 simulation on ARM64 platforms, 115–125

write throttling, 596–597
write-back caching and lazy writing, 589–595
write-behind and read-ahead. See read-ahead 

and write-behind
WSL (Windows Subsystem for Linux), 64, 128

X
x64 systems, 2–4

viewing GDT on, 4–5
viewing TSS and IST on, 8–9

x86 simulation in ARM64 platforms, 115–124
x86 systems, 3, 35, 94–95, 101–102

exceptions and interrupt numbers, 86
Retpoline code sequence, 23
viewing GDT on, 5
viewing TSSs on, 7–8

XML descriptor, Task Scheduler, 479–481
XPERF tool, 504
XTA cache, 118–120
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