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Preface to OCP Java SE 21
Developer (Exam 1Z0-830)

Part I: OCP Java SE 21 Developer of this book provides a comprehensive coverage of
new topics that have come into Java 21 since the release of Java 17 and that are rel-
evant for the Java SE 21 Developer Professional Exam (1Z0-830). Primarily three new
topics in Java 21 (pattern matching for objects, sequenced collections, and virtual threads)
are included in the objectives for the new exam. Apart from that, the objectives for
the Java SE 21 Developer Professional Exam did not change significantly from the
objectives for the Java SE 17 Developer Exam. 

Part II: OCP Java SE 17 Developer of this book provides extensive coverage for the
following Java certifications:

• Oracle Certified Professional: Java SE 17 Developer, and its required Java SE 17
Developer Exam (1Z0-829) 

• Oracle Certified Professional: Java SE 11 Developer, and its required Java SE 11
Developer Exam (1Z0-819)

Part I and Part II together provide a comprehensive resource for Java 21 certifica-
tion:
• Oracle Certified Professional: Java SE 21 Developer, and its required Java SE 21

Developer Professional Exam (1Z0-830)

In this preface we provide the necessary details on how best to prepare and pass
the Java SE 21 Developer Professional Exam using this programmer’s guide. The syl-
labus for this exam is defined by a set of exam objectives that are presented in Appen-
dix A in Part I. The new topics that have been added to the Java SE 21 Developer
Professional Exam since Java 17 are covered in Part I, and Appendix A provides
detailed references where  the rest of the topics are covered in Part II: OCP Java SE
17 Developer.



xvi PART I: PREFACE

About Part I: OCP Java SE 21 Developer

Our approach to writing Part I has not changed from the one we employed for our
previous books, mainly because it has proved successful. The emphasis remains on
analyzing code scenarios, rather than esoteric syntax of individual language con-
structs. The exam continues to require actual experience with the language, not just
mere recitation of facts. We still claim that proficiency in the language is the key to
success.

Part I is no different from our previous books in one other important aspect: It pro-
vides a mixture of theory and practice that enables readers to prepare for the exam. 

All elements found in our previous books (e.g., examples, figures, tables, review
questions, mock exam questions) can be found in this one as well. We continue to
use UML (Unified Modeling Language) extensively to illustrate concepts and langu-
age constructs, and all numbered examples continue to be complete Java programs
ready for experimentation. 

Each topic is explained and discussed thoroughly with examples, and is backed by
review questions to reinforce the concepts. Part I is not biased toward any particu-
lar platform, but provides platform-specific details where necessary. 

Part I is primarily intended for professionals who want to prepare for the Java SE
21 Developer Professional Exam, but it is readily accessible to any programmer who
wants to master the new topics. After mastering the language and the core APIs by
working systematically through Part I and Part II, the reader can confidently sit for
the exam.

Part I has a separate appendix (Appendix A) providing all the pertinent information
on preparing for the exam. Since Part I only covers new topics that are relevant for
the Java 21 exam, it should be used with Part II, which covers the remaining exam
topics.

The table of contents; listings of tables, examples, and figures; and a comprehen-
sive index facilitate locating topics discussed in Part I. Cross-references are pro-
vided where necessary to indicate the relationships between the various features
of Java. 

In particular, we draw attention to the following features of Part I:

Chapter Topics

Each chapter starts with a short summary of the topics covered in the chapter,
pointing out the major concepts that are introduced.
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Prerequisites

Each chapter starts with a short summary of topics that are prerequisites for the
topics covered in the chapter. Part II: OCP Java SE 17 Developer readily provides
coverage for these prerequisites.

Exam Objectives

Review Questions

Review questions are provided after every major topic to test and reinforce the
material. The review questions predominantly reflect the kind of multiple-choice
questions that can be asked on the actual exam. On the exam, the exact number of
answers to choose for each question is explicitly stated. The review questions in
Part I follow that practice. 

Many questions on the actual exam contain code snippets with line numbers to
indicate that complete implementation is not provided, and that the necessary
missing code to compile and run the code snippets can be assumed. The review
questions in Part I provide complete code implementations where possible, so that
the code can be readily compiled and run.

Annotated answers to the review questions are provided in Appendix B in Part I.

Example 0.1 Example Source Code

We encourage readers to experiment with the code examples to reinforce the material
in the book. The source code for the examples can be downloaded from the website
for Part I (see p. xviii), and readily imported into the Eclipse IDE.

Developer Exam Objectives

[0.1] Exam objectives that are covered in each chapter are stated clearly at the beginning 
of every chapter.

[0.2] The number in front of the objective identifies the exam objective, as defined by 
Oracle. The objectives are organized into major sections, detailing the curriculum 
for the exam.

[0.3] The objectives for the Java SE 21 Developer Professional Exam are reproduced 
verbatim in Appendix A. This appendix also maps each exam objective to 
relevant chapters and sections in Part I and in Part II: OCP Java SE 17 Developer.

Supplementary Topics

• Supplementary topics are Java topics that are not on the exam per se, but which
the candidate is expected to know.

• Any supplementary topic is listed as a bullet at the beginning of the chapter.
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Java code in the book is presented in a monospaced font. Lines of code in the exam-
ples or in code snippets are referenced in the text by a number, which is specified
by using a single-line comment in the code. For example, in the following code
snippet, the call to the method doSomethingInteresting() at (1) does something
interesting:

// ...
doSomethingInteresting();                           // (1)
// ...

Names of classes and interfaces start with an uppercase letter. Names of packages,
variables, and methods start with a lowercase letter. Constants are in all uppercase
letters. Interface names begin with the prefix I, when it makes sense to distinguish
them from class names. Coding conventions are followed, except when we have
had to deviate from these conventions in the interest of space or clarity.

Java SE Platform API Documentation

To get the maximum benefit from using Part I in preparing for the Java SE 21 Devel-
oper Professional Exam, we strongly recommend installing the latest version (Release
21 or newer) of the JDK and its accompanying API documentation. Part I focuses
solely on the new topics that were finalized in Java SE 21 since the release of Java SE 17.

Website for Part I: OCP Java SE 21 Developer

Part I is backed by a website:
https://www.mughal.no/jse21ocp/

Auxiliary material on the website includes the following:

• Source code for all the examples in Part I 
• Annotated answers to the reviews questions in Part I
• Table of contents, sample chapters, and index from Part I
• Content specific for the Java SE 21 Developer Professional Exam 
• Errata for Part I
• Links to miscellaneous Java resources (e.g., certification, discussion groups,

and tools)

Information about the Java Standard Edition (SE) and its documentation can be
found at the following website:

fully.qualified.Name

A vertical gray bar is used to highlight methods and fields found in the classes 
of the Java SE Platform API.

Any explanation following the API information is also similarly highlighted.

https://www.mughal.no/jse21ocp/
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www.oracle.com/technetwork/java/javase/overview/index.html

The current authoritative technical reference for the Java programming language,
The Java® Language Specification: Java SE 21 Edition, can be found at this website:

http://docs.oracle.com/javase/specs/index.html

Request for Feedback

Considerable effort has been made to ensure the accuracy of the content of this
book. All code examples (including code fragments) have been compiled and
tested on various platforms. In the final analysis, any errors remaining are the sole
responsibility of the principal author.

Any questions, comments, suggestions, and corrections are welcome. Let us know
whether the book was helpful (or not) for your purpose. Any feedback is valuable.
The principal author and the co-author can be reached at the following e-mail
addresses, respectively:

khalid@mughal.no
vasiliy.a.strelnikov@oracle.com

About the Authors

Khalid A. Mughal
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3Virtual Threads

Chapter Topics

• What virtual threads are and how they compare to platform
threads.

• How virtual threads are executed.

• Creating and using virtual threads.

• Using virtual thread executors to run tasks.

• Best practices for using virtual threads.

Prerequisites

• Understanding how platform threads are executed.

• Understanding the thread lifecycle. 

• Creating and using platform threads.

• Using executor services to run tasks.

Java SE 21 Developer Professional Exam Objectives

[8.1]   Create both platform and virtual threads. Use both 
Runnable and Callable objects, manage the thread 
lifecycle, and use different Executor services and 
concurrent API to run tasks.

Only virtual 
threads are covered 
in this chapter.
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Introduction of virtual threads promises to facilitate building very high-throughput
concurrent applications that employ the one-thread-per-task paradigm. These
lightweight threads are under the regime of the JVM, and not the operating system.
In this chapter we cover what virtual threads are, explain their high-throughput
execution model, create and use them to run tasks, compare them to platform
threads, and provide best practices for using them. Most importantly, we need
hardly learn a new API to utilize them.

Before going forward, it is highly recommended to have a sound understanding of
the traditional concurrency model based on platform threads as outlined in the
prerequisites at the start of this chapter.

3.1 Motivation for Virtual Threads

The concurrency model in Java has traditionally centered around platform threads—
threads that are scheduled by the operating system and mapped to operating system
(OS) threads in order for them to execute Java code. 

Concurrent applications based on one-thread-per-task paradigm strive to increase
their throughput—that is, increase the number of tasks that can be done concur-
rently—by requiring evermore platform threads. However, constraints on the
number of platform threads that can be created and managed is often the bottle-
neck when it comes to scalability in concurrent applications. The constraints can be
due to limitations imposed by the hardware, the operating system, or the sheer size
of memory that would be required to handle vast number of platform threads.
One-thread-per-task style of developing high-throughput concurrent applications
with platform threads therefore becomes infeasible.

3.2 Virtual Thread Execution Model

By design, virtual threads are lightweight:

• They are less expensive to create and destroy than platform threads.

• They require substantially less stack memory to manage their execution than
platform threads. 

• Context switching between virtual threads is far less expensive than between
platform threads.

Virtual threads are managed by the JVM scheduler during their lifetime, as
opposed to platform threads that have a one-to-one mapping with OS threads and
are scheduled by the operating system during their lifetime. In other words, the
whole regime of virtual threads is managed by the JVM that has a pool of platform
threads at its discretion, without the intervention of the operating system. Because
of their nature, virtual threads are ideal for building concurrent applications based
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on the one-thread-per-task paradigm, allowing each task to execute in its own vir-
tual thread.

Execution of virtual threads is illustrated in Figure 3.1a. As with platform threads,
a virtual thread is first created to run a task and then scheduled to begin execution.
There can be many virtual threads scheduled to begin execution ((1) in
Figure 3.1a). From hereon their execution is at the discretion of the JVM.

In order to run the task in a virtual thread that is ready for execution, the JVM
scheduler assigns the virtual thread to a platform thread for execution—this is called
mounting the virtual thread (vt) and the designated platform thread is called the
carrier thread (ct) ((2) and (5) in Figure 3.1a showing virtual threads vt0, vt12, and
vt11 that are mounted on carrier threads ct1, ct2, and ct3, respectively). A platform
thread is mapped to an OS thread (ost) and acts as a carrier thread when it is exe-
cuting a virtual thread. 

Figure 3.1 Virtual Thread Execution Model

(a) Execution of Virtual Threads

Unmount

Mount

(b) Execution Profile of a Virtual Thread
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Executing certain operations in its task can cause a mounted virtual thread to
unmount from its carrier thread—that it, to relinquish its carrier thread (as at (2) in
Figure 3.1a for virtual threads vt0 and vt12). A virtual thread is unmounted when
it executes a blocking operation (such as an I/O operation). It does not require any
action on the part of the application to initiate unmounting when a blocking oper-
ation is executed. I/O operations and other relevant blocking operations in the
APIs have been updated to work with virtual threads. The unmounted virtual
thread remains blocked until its blocking operation is ready to complete ((3) in
Figure 3.1a), at which point, it is unblocked and joins other virtual threads waiting
to mount and thus resume execution ((4) in Figure 3.1a). 

A virtual thread that completes its execution while mounted is of course
unmounted and terminated ((5) in Figure 3.1a for virtual thread vt11) and its car-
rier thread used to mount another virtual thread that is ready to be mounted for
execution.

Instead of a carrier thread being monopolized by its virtual thread until the
blocked operation is ready to complete, unmounting it allows the JVM scheduler
to mount another virtual thread that is ready for execution on the carrier thread.

An execution profile of a virtual thread is shown in Figure 3.1b, illustrating that the
virtual thread executes when it is mounted on a carrier thread, and is unmounted
and blocked on a blocking operation until the operation is ready to complete. Note
that on resumption of its execution, a virtual thread may be mounted on the same
carrier thread or on a different carrier thread.

The ratio m:n of m virtual threads to n platform threads is usually very high, contrib-
uting to the high-throughput of the virtual thread execution model. A task
assigned to a platform thread remains assigned to the platform thread throughout
its lifetime—even while it is in a waiting or a blocked state, and cannot therefore
do any useful work. The task in a virtual thread also remains assigned to the same
virtual thread through its lifetime, but the virtual thread may be executed on one
or more platform threads, freeing the carrier thread to do other work when the vir-
tual thread is unmounted and blocked. The virtual thread execution model results
in high utilization of the platform threads by multitude of virtual threads, which
counts for the high throughput of the one-thread-per-task execution model.

Platform threads are also known as classical threads or traditional threads. OS threads
are also known as native threads or kernel threads.

3.3 Using Thread Class to Create Virtual Threads

The Thread class supports virtual threads and provides new methods for this pur-
pose. We cannot use a constructor of the Thread class to create a virtual thread as all
constructors create platform threads. However, the Concurrency API provides
great flexibility in creating and running virtual threads, as we will see in the rest of
this chapter.
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Logging Information during Program Execution

Using blocking operations (such as print methods of the System.out stream) to write
information about program execution in concurrent applications can adversely
affect program performance. The Logging API provides a simple, yet flexible non-
blocking mechanism to log such information. There are no direct questions on the
exam in this topic, but use of loggers may be encountered in the context of other
questions, such as in the context of the Concurrency API or execution of parallel
streams.

Steps (1)-(4) shown in Example 3.1 are sufficient to create and use a logger for our
purpose, which we will be doing in some examples in this chapter:

(1) Import the Logger class.

(2) Declare a static field and create an instance of the Logger class.

(3) Provide a static initializer block to set property for appropriate format to be
used by the formatter when logging messages. For example:
[Timestamp] INFO: ...

(4) Call the info() method of the logger in the program to log messages.

Example 3.1 Using a Logger

package vt;
import java.util.logging.Logger;                             // (1)

public class Main {
  private static final Logger logger =                       // (2)
      Logger.getLogger(Main.class.getName());

  static {                                                   // (3)
    System.setProperty("java.util.logging.SimpleFormatter.format",
                       "[%1$tT.%1$tN] %4$s: %5$s%n");
  }

  public static void main(String[] args) {
    logger.info("Log this info.");                           // (4)
  }
}

Probable output from the program:

[12:22:11.357397000] INFO: Log this info.

Creating and Starting a Virtual Thread

The simplest way to create and start a virtual thread is to use the static method
startVirtualThread() of the Thread class, as shown at (2) in Example 3.2, passing the
task that is to be executed. 
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Thread vt = Thread.startVirtualThread(task);                          // (2)

A task is defined at (1) as a Runnable that prints the string representation of the cur-
rent thread, which in this case will be a virtual thread, when the task is executed.
Note that the print method is a blocking operation.

Runnable task = () -> System.out.println(Thread.currentThread());     // (1)

The virtual method created and started at (2) will execute the task at (1) when it is
allowed to run, printing information about the virtual thread:

 VirtualThread[#21]/runnable@ForkJoinPool-1-worker-1

In this case, the string representation of the current thread comprises of the follow-
ing components:

• VirtualThread identifies that it is a virtual thread.

• #21 specifies the unique thread ID of the virtual thread. In this case it is 21. The
thread ID does not change during the lifetime of a thread.

• runnable indicates the state the thread is in. In this case, it is in the runnable state.

• ForkJoinPool-1-worker-1 is composed of the name of the fork-join pool and the
name of the carrier thread on which the virtual thread is mounted. The name
ForkJoinPool-1 identifies the fork-join pool that manages the carrier threads
(which are platform threads). Designation worker-1 is the name of the carrier
thread in the fork-join pool ForkJoinPool-1 on which the virtual thread with ID
#21 is mounted. 
The number value in the thread ID designation, the carrier thread designation,
and the fork-join pool designation are counter values giving an indication of
how many of these entities have been created. 

Virtual threads are daemon threads—that is, they are unceremoniously terminated
when the parent platform thread terminates. The virtual thread created at (2) in
Example 3.2 can risk being terminated before it has completed if the parent plat-
form thread (in this case, the main thread) completes first. In order to allow the vir-
tual thread to complete its execution, the parent thread can call the join() method
on the virtual thread in order to wait for its completion before proceeding. The call
at (4) will ensure that the main thread will wait indefinitely and does not proceed
before the virtual thread completes its execution.

vt.join();                                                            // (4)

In Example 3.2, the main thread logs information about whether the virtual thread
is alive before and after calling the join() method on the virtual thread. The logged
information shows that virtual thread #21 was alive before the call to the join()
method, but had completed its execution after the call. 

Finally, the information logged at (5) in Example 3.2 shows that a virtual thread is
an instance of the java.lang.VirtualThread class. This class is a non-public subclass of
the Thread class in the java.lang package and not accessible outside this package.
For all intents and purposes, it is the Thread class that provides the support for vir-
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tual threads. However, the application has to keep track of whether a reference of
type Thread denotes a virtual or a platform thread.

Example 3.2 Creating and Running a Virtual Thread

package vt;
import java.util.logging.Logger;

public class BasicVTCreation {

  private static final Logger logger =
      Logger.getLogger(BasicVTCreation.class.getName());
  static {
    System.setProperty("java.util.logging.SimpleFormatter.format",
        "[%1$tT.%1$tN] %4$s: %5$s%n");
  }

  public static void main(String[] args) throws InterruptedException {

    // Create a task:
    Runnable task = () -> System.out.println(Thread.currentThread());     // (1)

    // Create and start a virtual thread that is assigned a task:
    Thread vt = Thread.startVirtualThread(task);                          // (2)

    logger.info("Before join, vt #" + vt.threadId() +                     // (3)
        " is " + (vt.isAlive() ? "alive." : "not alive."));

    vt.join();                                                            // (4)

    logger.info("After join, vt #" + vt.threadId() +                      // (5)
        " is " + (vt.isAlive() ? "alive." : "not alive."));

    // Class of a virtual thread:
    logger.info("A virtual thread is an instance of " + vt.getClass());   // (6)
  }
}

Probable output from the program:

VirtualThread[#21]/runnable@ForkJoinPool-1-worker-1
[17:43:54.118896000] INFO: Before join, vt #21 is alive.
[17:43:54.185280000] INFO: After join, vt #21 is not alive.
[17:43:54.186162000] INFO: A virtual thread is an instance of class java.lang.Vir-
tualThread
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The following is a summary of selected new methods in the java.lang.Thread class
since Java 17:

3.4 Using Thread Builders to Create Virtual Threads

For greater flexibility in creating threads, the Thread class defines nested interfaces
that are builders for creating threads and thread factories (p. 86). In addition, a thread
builder provides methods to set thread properties like the thread name, which
once set, are valid for all threads and thread factories created with the thread

java.lang.Thread

static Thread startVirtualThread(Runnable task)

Creates a virtual thread to execute a task and schedules it for execution.
This method is equivalent to: Thread.ofVirtual().start(task); 

static Thread.Builder.OfVirtual ofVirtual()

Returns a builder for creating a virtual Thread or ThreadFactory that can be used
to create virtual threads.

static Thread.Builder.OfPlatform ofPlatform()

Returns a builder for creating a platform Thread or ThreadFactory that can be
used to create platform threads.

final boolean isVirtual()

Returns true if this thread is a virtual thread. A virtual thread is scheduled by
the JVM rather than the operating system.

final long threadId()

Returns the identifier of this Thread. The thread ID is a positive long number
generated when this thread was created. The thread ID is unique and remains
unchanged during its lifetime.

final boolean join(Duration duration) throws InterruptedException

A call to this overloaded method invoked on a thread will wait and not return
until either the thread has completed or it is timed out after the specified dura-
tion. It returns true if the thread has terminated, false if the thread has not ter-
minated.
It does not wait if the duration to wait is less than or equal to zero. In this case,
it just tests if the thread has terminated. 

static void sleep(Duration duration) throws InterruptedException

The current thread sleeps (that is, temporarily ceases execution) for at least the
specified time before it becomes eligible for running again. Note this is a block-
ing operation on the current thread.
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builder. The inheritance hierarchy of these nested interfaces defined in the Thread
class is shown in Figure 3.2, where the thread builder subinterfaces
Thread.Builder.OfPlatform and Thread.Builder.OfVirtual pertain to platform and
virtual threads, respectively.

An implementation of a virtual thread builder (that implements the
Thread.Builder.OfVirtual interface) or a platform thread builder (that implements
the Thread.Builder.OfPlatform interface) is obtained by calling the static methods
ofVirtual() or ofPlatform() of the Thread class, respectively.

Example 3.3 demonstrates using thread builders to create and start threads. The
virtual thread builder returned by the Thread.ofVirtual() method has the name
property set by the Thread.Builder.OfVirtual.name() method. The threads it creates
will have the name "VT_n", where the prefix "VT_" is concatenated with the string
representation of n that is the value of the counter that the thread builder employs,
starting with the initial value specified together with the prefix in the call to the
name() method. 

Thread.Builder.OfVirtual vtBuilder = Thread.ofVirtual().name("VT_", 1);

The assignment statement above is equivalent to the following statements:

Thread.Builder.OfVirtual vtBuilder = Thread.ofVirtual();
vtBuilder.name("VT_", 1);// Returned reference to the thread builder is discarded.

The printout shows that the two virtual threads created have the names VT_1 and
VT_2 in their default string representation. 

Calling the name() method with only the string name will set the same name for all
threads created by the thread builder. Note that a virtual thread does not have a
name when it is created. 

Calling the start() or the unstarted() methods of the thread builder will create a
thread when passed a Runnable—that is, the task to execute, but only the thread cre-
ated by the start() method of the thread builder will be scheduled to begin execu-
tion, and the thread created by the unstarted() method of the thread builder must
explicitly call its start() method to begin execution. The following code is equiva-
lent to the code at (3):

Thread vt1 = vtBuilder.unstarted(task);
Thread vt2 = vtBuilder.unstarted(task);
vt1.start();

Figure 3.2 Inheritance Hierarchy of Thread Builders 

«static, sealed, interface»
Thread.Builder

«static, sealed, interface»
Thread.Builder.OfPlatform

«static, sealed, interface»
Thread.Builder.OfVirtual
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vt2.start();

Printout from Example 3.3 shows that VT_1 and VT_2 were mounted on carrier
threads worker-1 and worker-2 during execution of the task. 

When the code at (4) is executed to print the string representation of the virtual
threads, we see that thread VT_1 is still in the runnable state but not mounted on
any carrier thread. However, thread VT_2 is in the terminated state having com-
pleted its execution.

The join() method is necessary to call at (5) to allow the virtual threads to complete
their execution.

Creation of platform threads using a platform thread builder is analogous to that
for virtual threads, as shown from (6) to (8) in Example 3.3. Waiting to join in the
main thread is not necessary for platform threads. The string representation of a
platform thread includes the thread ID, the thread name if any, the priority, and the
name of the parent thread. The Thread.Builder.ofPlatform interface defines meth-
ods to set various properties of a platform thread.

Example 3.3 Using Thread Builders to Create Threads

package vt;
public class ThreadBuilderDemo {
  public static void main(String[] args) throws InterruptedException {

    // Create a task:                                                (1)
    Runnable task = () -> System.out.printf("%s: I am on it!%n",
                                            Thread.currentThread());

    // Obtain a virtual thread builder:                              (2)
    Thread.Builder.OfVirtual vtBuilder = Thread.ofVirtual().name("VT_", 1);

    // Creating and starting 2 virtual threads                       (3)
    // using the virtual thread builder:
    Thread vt1 = vtBuilder.start(task);
    Thread vt2 = vtBuilder.start(task);

    // Print virtual thread info:                                    (4)
    System.out.println("vt1: " + vt1);
    System.out.println("vt2: " + vt2);

    // Wait for the virtual threads to join:                         (5)
    vt1.join();
    vt2.join();

    System.out.println(new StringBuffer().repeat('-', 40));

    // Obtain a platform thread builder:                             (6)
    Thread.Builder.OfPlatform ptBuilder = Thread.ofPlatform().name("PT_", 1);

    // Creating and starting 2 platform threads                      (7)
    // using the platform thread builder:
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    Thread pt1 = ptBuilder.start(task);
    Thread pt2 = ptBuilder.start(task);

    // Print platform thread info:                                   (8)
    System.out.println("pt1: " + pt1);
    System.out.println("pt2: " + pt2);
  }
}

Probable output from the program:

VirtualThread[#22,VT_2]/runnable@ForkJoinPool-1-worker-2: I am on it!
VirtualThread[#20,VT_1]/runnable@ForkJoinPool-1-worker-1: I am on it!
vt1: VirtualThread[#20,VT_1]/runnable
vt2: VirtualThread[#22,VT_2]/terminated
----------------------------------------
Thread[#25,PT_1,5,main]: I am on it!
pt1: Thread[#25,PT_1,5,main]
Thread[#26,PT_2,5,main]: I am on it!
pt2: Thread[#26,PT_2,5,main]

java.lang.Thread.Builder

Thread unstarted(Runnable task)

Creates a new Thread from the current state of the builder to run the given task
but does not schedule it to execute.

Thread start(Runnable task)

Creates a new Thread from the current state of the builder and schedules it to
execute.

Thread.Builder name(String name)

The thread name that will be used for any thread created by this thread builder.

Thread.Builder name(String prefix, long start)

The thread name will be the concatenation of a string prefix and the string rep-
resentation of a counter value for any thread created using this thread builder.

ThreadFactory factory()

Returns a ThreadFactory to create threads from the current state of the builder.

java.lang.Thread.Builder.OfVirtual extends java.lang.Thread.Builder

Thread.Builder.OfVirtual name(String name)

The thread name that will be used for any virtual thread created by this virtual
thread builder.
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Important Aspects of Virtual Threads

Example 3.4 shows how virtual threads and platform threads are different in vari-
ous aspects. Two unstarted threads, one virtual thread and one platform thread,
are created with names vt and pt using a virtual and a platform thread builder,
respectively.

Thread.Builder.OfVirtual name(String prefix, long start)

The thread name will be the concatenation of a string prefix and the string rep-
resentation of a counter value for any virtual thread created using this virtual
thread builder.

java.lang.Thread.Builder.OfPlatform extends java.lang.Thread.Builder

Thread.Builder.OfPlatform name(String name)

The thread name that will be used for any platform thread created by this plat-
form thread builder.

Thread.Builder.OfPlatform name(String prefix, long start)

The thread name will be the concatenation of a string prefix and the string rep-
resentation of a counter value for any platform thread created using this plat-
form thread builder.

default Thread.Builder.OfPlatform daemon()

Sets the daemon status to true for any platform thread created by this platform
thread builder.

Thread.Builder.OfPlatform daemon(boolean on)

Sets the daemon status for any platform thread created by this platform thread
builder.

Thread.Builder.OfPlatform group(ThreadGroup group)

Sets the thread group of any platform thread created by this platform thread
builder.

Thread.Builder.OfPlatform priority(int priority)

Sets the thread priority of any platform thread created by this platform thread
builder.

Thread.Builder.OfPlatform stackSize(long stackSize)

Sets the desired stack size for any platform thread created by this platform
thread builder.

java.lang.Thread.Builder.OfVirtual extends java.lang.Thread.Builder (Continued)
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Is a Thread Virtual?

The isVirtual() method of the Thread class determines whether a thread is virtual
or not. The output shows that thread vt is virtual but thread pt is not. There is no
isPlatform() method in the Thread class.

Virtual Threads are Daemon Threads

The isDaemon() method of the Thread class determines whether a thread is daemon
or not. The output shows that thread vt is daemon but thread pt is not. Trying to
set a virtual thread as non-daemon with the setDaemon(false) call results in an Ille-
galArgumentException.

Virtual Threads have Normal Priority

Virtual threads always have ThreadPriority.NORM_PRIORITY (=5) that cannot be
changed. Setting a different priority of a virtual thread with the setPriority()
method is ignored. The method can readily be used to change the priority of a plat-
form thread.

Virtual Threads belong to VirtualThreads Group

All virtual threads belong to the VirtualThreads group, whereas a platform thread
belongs in a specific thread group. A thread group allows its thread to be manipu-
lated collectively rather than individually. The output shows that thread vt belongs
to the VirtualThreads group, whereas thread pt belongs to the main thread group.

Example 3.4 Selected Aspects of Threads

package vt;

public class ThreadAspects {
  public static void main(String[] args) throws InterruptedException {

    // Create task:
    Runnable task = () -> System.out.println(Thread.currentThread());

    // Create threads:
    Thread vt = Thread.ofVirtual().name("vt").unstarted(task);
    Thread pt = Thread.ofPlatform().name("pt").unstarted(task);

    // Get names:
    String vtName = vt.getName();
    String ptName = pt.getName();

    // Virtual:
    System.out.println(vtName + " virtual? " + vt.isVirtual());
    System.out.println(ptName + " virtual? " + pt.isVirtual());

    // Daemon:
    System.out.println(vtName + " daemon? " + vt.isDaemon());
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    // vt.setDaemon(false);              // java.lang.IllegalArgumentException:
                                         // can only be true for virtual threads
    System.out.println(ptName + " daemon? " + pt.isDaemon());

    // Priority:
    System.out.println(vtName + " priority (before change): " +
                       vt.getPriority()); // NORM_PRIORITY = 5
    vt.setPriority(6);
    System.out.println(vtName + " priority (after change): " +
                       vt.getPriority()); // Unchanged: NORM_PRIORITY

    System.out.println(ptName + " priority (before change): " +
                       pt.getPriority()); // NORM_PRIORITY = 5
    pt.setPriority(4);
    System.out.println(ptName + " priority (after change): " + pt.getPriority());

    // ThreadGroup:
    System.out.println("Thread group for " + vtName + ": "  +
                       vt.getThreadGroup().getName());
    System.out.println("Thread group for " + ptName + ": "  +
                       pt.getThreadGroup().getName());

    vt.start();
    vt.join();

    pt.start();
  }
}

Probable output from the program:

vt virtual? true
pt virtual? false
vt daemon? true
pt daemon? false
vt priority (before change): 5
vt priority (after change): 5
pt priority (before change): 5
pt priority (after change): 4
Thread group for vt: VirtualThreads
Thread group for pt: main
VirtualThread[#20,vt]/runnable@ForkJoinPool-1-worker-1
Thread[#21,pt,4,main]

3.5 Using Thread Factory to Create Threads

 A thread factory can be used to create threads on demand. Such a factory imple-
ments the newThread() method of the ThreadFactory interface that creates and
returns an unstarted thread. A thread factory is thread-safe from multiple concur-
rent threads, as opposed to a thread builder which is not.
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Thread builders provide the factory() method that returns a thread factory based
on the current state of the builder, such as the thread name to use when creating
threads.

ThreadFactory vtf = Thread.ofVirtual().name("VT_", 1).factory(); // (2)

In the code above from Example 3.5, the virtual thread factory (ThreadFactory)
obtained from the virtual thread builder (Thread.Builder.OfVirtual) that is returned
by the Thread.ofVirtual() method will create unstarted virtual threads whose
names will be VT_1, VT_2, and so on.

Unstarted virtual threads are created at (2) by calling the newThread() method of the
thread factory and have to be explicitly scheduled to begin execution by calling the
start() method of the Thread class:

Thread vt4 = vtf.newThread(task);       // VT_1
...
vt4.start();

Using a platform thread factory obtained from a platform thread builder is analo-
gous to using a virtual thread factory obtained from a virtual thread builder.

Example 3.5 Using a Virtual Thread Factory to Create Virtual Threads

package vt;
import java.util.concurrent.ThreadFactory;

public class ThreadFactoryDemo {
  public static void main(String[] args) throws InterruptedException {

    // Create a task:                                                   (1)
    Runnable task = () -> System.out.printf("%s: I am on it!%n",
                                            Thread.currentThread());

    // Obtain a virtual thread factory using a virtual thread builder:
    ThreadFactory vtf = Thread.ofVirtual().name("VT_", 1).factory(); // (2)

    // Create virtual threads using the virtual thread factory          (3)
    Thread vt4 = vtf.newThread(task);       // VT_1
    Thread vt5 = vtf.newThread(task);       // VT_2

    vt4.start();
    vt5.start();

    vt4.join();
    vt5.join();
  }
}

Probable output from the program:

VirtualThread[#21,vt_5]/runnable@ForkJoinPool-1-worker-2: I am on it!
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VirtualThread[#20,vt_4]/runnable@ForkJoinPool-1-worker-1: I am on it!

3.6 Using Thread Executor Services

An executor service implements the ExecutorService interface that extends the Exec-
utor interface. It provides methods that facilitate:

• Flexible submitting of tasks to the executor service and handling of results that are
returned from executing tasks. 

• Managing the lifecycle of an executor service: creating, running, shutdown, and
termination of the executor service.

The Executors utility class provides two methods newVirtualThreadPerTaskExecu-
tor() and newThreadPerTaskExecutor() to obtain one-thread-per-task executor ser-
vices. Both the executor services implement the AutoCloseable interface and are
thus best deployed in a try-with-resources construct that ensures proper shut-
down and termination of the executor service. 

Using the Virtual-Thread-Per-Task Executor Service

The method newVirtualThreadPerTaskExecutor() returns an executor service that
embodies the one-virtual-thread-per-task model of execution—in other words, it
exclusively uses a new virtual thread to execute a task.

In Example 3.6, the code at (2) creates a one-virtual-thread-per-task executor service
that will create a virtual thread for each task that is submitted. Note there is no way
to set any property of a virtual thread that the executor service creates. For exam-
ple, we cannot set the name of a virtual thread in this executor service.

Customizing the Thread-Per-Task Executor Service

The method newThreadPerTaskExecutor() returns an executor service that is more
customizable by a thread factory for executing one thread per task in general. The
kind of threads the executor service will create and deploy depends on the thread
factory passed to the method.

java.util.concurrent.ThreadFactory

Thread newThread(Runnable r)

Constructs a new unstarted Thread to run the given runnable.
Returns the constructed thread, or null if the request to create a thread is
rejected.
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In Example 3.6, the code at (3) creates a one-thread-per-task executor service that will
create a new virtual thread for each task that is submitted, as it is passed a virtual
thread factory that is also customized to use a naming scheme for the virtual threads
created. This naming scheme for the virtual threads is reflected in the output. 

Note that submitting a task to an executor service using the submit() method is an
asynchronous operation—that is, the method returns immediately. The try-with-
resources construct used to manage the executor service ensures that there is an
orderly shutdown and termination of the executor service when the submitted
tasks have completed execution.

The handling of the result returned by a task that is implemented as a Callable<V>
object and submitted to an execution service for execution by a virtual thread is no
different than if it was by a platform thread, requiring polling of the Future<V>
object that receives the result.

Example 3.6 Using One-Thread-Per-Task Executor Service

package vt;
import java.util.concurrent.*;
import java.util.stream.IntStream;

public class OneThreadPerTaskExecutorDemo {
  public static final int NUM_OF_TASKS = 5;

  public static void main(String[] args) throws InterruptedException {

    // Create a task:                                                      (1)
    Runnable task = () -> System.out.printf("%s: I am on it!%n",
        Thread.currentThread());

    // Using an ExecutorService for running one virtual thread per task:   (2)
    try (ExecutorService executor = Executors.newVirtualThreadPerTaskExecutor()) {
      IntStream.range(0, NUM_OF_TASKS).forEach(i -> executor.submit(task));
    }

    System.out.println(new StringBuffer().repeat('-', 69));

    // Using a customized virtual thread factory with an ExecutorService   (3)
    // for running one virtual thread per task.
    ThreadFactory vtf = Thread.ofVirtual().name("VT_", 1).factory();
    try (ExecutorService executor = Executors.newThreadPerTaskExecutor(vtf)) {
      IntStream.range(0, NUM_OF_TASKS).forEach(i -> executor.submit(task));
    }
  }
}

Probable output from the program:

VirtualThread[#22]/runnable@ForkJoinPool-1-worker-2: I am on it!
VirtualThread[#20]/runnable@ForkJoinPool-1-worker-3: I am on it!
VirtualThread[#23]/runnable@ForkJoinPool-1-worker-1: I am on it!
VirtualThread[#24]/runnable@ForkJoinPool-1-worker-2: I am on it!
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VirtualThread[#25]/runnable@ForkJoinPool-1-worker-1: I am on it!
---------------------------------------------------------------------
VirtualThread[#30,VT_1]/runnable@ForkJoinPool-1-worker-1: I am on it!
VirtualThread[#31,VT_2]/runnable@ForkJoinPool-1-worker-5: I am on it!
VirtualThread[#32,VT_3]/runnable@ForkJoinPool-1-worker-2: I am on it!
VirtualThread[#33,VT_4]/runnable@ForkJoinPool-1-worker-5: I am on it!
VirtualThread[#34,VT_5]/runnable@ForkJoinPool-1-worker-2: I am on it!

The Executors Utility Class

The Executors utility class provides the following methods to create executor ser-
vices that implement the one-thread-per-task model of execution:

3.7 Scalability of Throughput with Virtual Threads

Figure 3.1b illustrates how a virtual thread executes its task by being mounted and
unmounted on carrier threads during its lifetime. Example 3.7 demonstrates how
virtual threads are executed by mounting on platform threads. In addition, it dem-
onstrates the scalability of executing thousands of virtual threads.

The following line of code executed by a thread returns a string representation of
the thread with pertinent information about the thread.

String vtInfo1 = Thread.currentThread().toString();

For a virtual thread, it returns pertinent information about the virtual thread in the
following format:

VirtualThread[#22,VT_2]/runnable@ForkJoinPool-1-worker-2

java.util.concurrent.Executors

static ExecutorService newVirtualThreadPerTaskExecutor()
static ExecutorService newThreadPerTaskExecutor(ThreadFactory tf)

The first method creates an Executor that starts a new virtual Thread for each
task. 

The second method creates an Executor that starts a new Thread for each task.
The thread being a virtual or a platform thread depending on whether the
thread factory is a virtual or a platform thread factory.
The first method is equivalent to the second method when the thread factory
passed as parameter creates virtual threads. 

The number of threads created by the Executor is unbounded.
Invoking cancel(true) on a Future representing the pending result of a task
submitted to the Executor will interrupt the thread executing the task.
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From the string representation, we can see that the virtual thread with ID #22 is
mounted on carrier thread worker-2. We can extract the name of carrier thread with
this code:

String ctName1 = vtInfo1.substring(vtInfo1.indexOf('w'));  // worker-2

If virtual thread #22 executes a blocking operation, it will be unmounted and when
it resumes execution, it might be mounted on a different or the same carrier thread.
We can check this from the string representation of the virtual thread after resump-
tion:

String vtInfo2 = Thread.currentThread().toString();

If the string representation of the virtual thread is as below, we know that it was
mounted on carrier thread worker-4.

 VirtualThread[#22,VT_2]/runnable@ForkJoinPool-1-worker-4

We can extract the name of carrier thread with this code:

String ctName2 = vtInfo2.substring(vtInfo2.indexOf('w'));  // worker-4

We can graphically represent the scheduling of a virtual thread from one carrier
thread to another after a blocking operation as follows:

 worker-2 -> worker-4

The getCarrierThreadName() static method at (7) in Example 3.7 extracts the name of
the carrier thread the virtual thread is mounted on as outlined above. We call the
getCarrierThreadName() method to extract the name of the carrier thread before and
after each blocking operation in the task defined at (3):

String ctName1 = getCarrierThreadName();   // Carrier thread before.
someBlockingOperation();
String ctName2 = getCarrierThreadName();   // Carrier thread after.
...

The scheduling of a virtual thread from one carrier thread to another after each
blocking operation is printed in the same order as the blocking operations. In order
to keep the output manageable, only execution of a limited number of virtual
threads is printed (controlled by the INTERVAL value defined at (2)).

A sleeping operation with a duration of 1 second is implemented as the blocking
operation by the method someBlockingOperation() declared at (8). 

The main() method at (9) uses a one-virtual-thread-per-task executor service to sub-
mit and execute the task a fixed number of times (NUM_OF_VT defined at (1)). The
main() method also computes the time the executor service used to execute the sub-
mitted tasks (i.e., the duration) at (10) and the throughput (i.e., number of tasks/dura-
tion) at (11).

From the output in Example 3.7, we can see the carrier threads that a virtual thread
was mounted on to execute the task. At the resumption of execution after blocking,
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a virtual thread can be mounted on the same or a different carrier thread. Virtual
thread #200000 was mounted consecutively on the same carrier thread twice:

Virtual Thread #200000: worker-2 -> worker-2 -> worker-5 -> worker-5

Whereas, virtual thread #300000 was mounted on different carrier threads after
blocking during its lifetime.

Virtual Thread #300000: worker-3 -> worker-8 -> worker-4 -> worker-5

From the output in Example 3.7, we can see that the number of carrier threads
employed by the executor service is 8 (the highest count on a carrier thread name
in the output that is the same as the number of processors in this case). 

Example 3.7 is running a million virtual threads (with a one-thread-per-task exec-
utor service taking a little over 54 seconds). The very high ratio of virtual threads
executed to carrier threads employed to execute them results in formidable scaling
of throughput, in this case a little over 18000 tasks/second. The curious reader is
encouraged to experiment with different values for the number of tasks to execute,
and to refactor the code to use platform threads and different executor services.

An important factor to keep in mind is that virtual threads can help to increase the
throughput under the right circumstances, but they do not improve the latency—
that is, they do not make each task execute faster.

Example 3.7 Virtual Thread Execution and Scalability

package vt;
import java.time.Duration;
import java.time.Instant;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.stream.IntStream;

public class VTExecutionDemo {

  public static final int NUM_OF_VT = 1_000_000;               // (1)
  public static final int INTERVAL = NUM_OF_VT/10;             // (2)

  // Create the task:                                             (3)
  static final Runnable task = () -> {

    // Obtain the names of carrier threads
    // the virtual thread was mounted on:                         (4)
    var ctName1 = getCarrierThreadName();
    someBlockingOperation();
    var ctName2 = getCarrierThreadName();
    someBlockingOperation();
    var ctName3 = getCarrierThreadName();
    someBlockingOperation();
    var ctName4 = getCarrierThreadName();

    // ID of this virtual thread:                                 (5)
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    var vtID = Thread.currentThread().threadId();

    // Print carrier threads the virtual thread was mounted on:   (6)
    if (vtID % INTERVAL == 0) {
      System.out.printf("Virtual Thread #%d: %s -> %s -> %s -> %s%n",
                        vtID, ctName1, ctName2, ctName3, ctName4);
    }
  };

  // Get the name of the carrier thread (format: worker-n)
  // the current virtual thread is mounted on.                    (7)
  static String getCarrierThreadName() {
    var vtInfo = Thread.currentThread().toString();
    return vtInfo.substring(vtInfo.indexOf('w'));
  }

  // A blocking operation to unmount a virtual thread.            (8)
  static void someBlockingOperation() {
    try {
      Thread.sleep(1000);
    } catch (InterruptedException e) {
      e.printStackTrace();
    }
  }

  public static void main(String[] args) {                     // (9)

    Instant start = Instant.now();

    try (ExecutorService executor = Executors.newVirtualThreadPerTaskExecutor()) {
      IntStream.range(0, NUM_OF_VT).forEach(i -> executor.submit(task));
    }

    Instant finish = Instant.now();
    long duration = Duration.between(start, finish).toMillis();// (10)
    double throughput = (double) NUM_OF_VT / duration * 1000;  // (11)
    String format = """
        Number of virtual threads: %d
        Duration: %d ms
        Throughput: %.2f tasks/s
        """;
    System.out.printf(format, NUM_OF_VT, duration, throughput);
  }
}

Probable output from the program:

Virtual Thread #100000: worker-3 -> worker-7 -> worker-5 -> worker-7
Virtual Thread #200000: worker-2 -> worker-2 -> worker-5 -> worker-5
Virtual Thread #300000: worker-3 -> worker-8 -> worker-4 -> worker-5
Virtual Thread #400000: worker-2 -> worker-7 -> worker-8 -> worker-8
Virtual Thread #500000: worker-7 -> worker-4 -> worker-3 -> worker-2
Virtual Thread #600000: worker-1 -> worker-8 -> worker-4 -> worker-3
Virtual Thread #700000: worker-3 -> worker-7 -> worker-1 -> worker-8
Virtual Thread #800000: worker-2 -> worker-4 -> worker-5 -> worker-6
Virtual Thread #900000: worker-4 -> worker-4 -> worker-7 -> worker-8
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Virtual Thread #1000000: worker-5 -> worker-5 -> worker-5 -> worker-7
Number of virtual threads: 1000000
Duration: 54407 ms
Throughput: 18379.99 tasks/s

3.8 Best Practices for Using Virtual Threads

In this section, we summarize some of the dos and don’ts of using virtual threads.
Ultimately, benchmarking the performance of the concurrent application is the best
way to determine any gains from using virtual threads. However, use of virtual
threads boosts the throughput of one-thread-per-task-based applications under
the following conditions:

• Sufficiently large number of virtual threads

• Frequent short-lived blocking tasks 

These two conditions result in a high ratio of number of virtual threads to number
of platform threads and the virtual threads being frequently unmounted so that
their carrier threads can be scheduled to mount other virtual threads that are ready
to execute their tasks, thereby effectively increasing the throughput of the applica-
tion.

Avoid Pinning of Virtual Threads

As we have seen, a virtual thread is designed so that it can be unmounted from its
carrier thread on executing a blocking operation, thereby allowing the JVM thread
scheduler to mount another virtual thread on the carrier thread. However, there
are situations where it is not possible to unmount a virtual thread from its associ-
ated carrier thread—called pinning. The virtual thread monopolizes its carrier
thread, preventing it from servicing other virtual threads. Pinning of a virtual
thread to its carrier thread can potentially impact both the scalability and the per-
formance of a concurrent application, especially if more virtual threads become
progressively pinned and thereby their associated carried threads cannot service
other virtual threads.

Pinning of a virtual thread to its carrier thread can primarily occur in the following
two contexts:

• When the virtual thread is running code inside a synchronized block or method.

• When the virtual thread is calling a native method or a foreign function. (This topic is
beyond the scope of this book and will not be discussed further.)

Note that pinning does not render the application incorrect. Carrier threads have
bounded availability (i.e., only a finite number of them can be created) and since pin-
ning reduces the number of carrier threads available for executing virtual threads,
pinning can have negative impact on the scalability of the application, especially if
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it is frequent and long-lived. Note that a pinned virtual thread does not block its
associated carrier thread unless a blocking operation is executed. If that happens,
the associated carrier thread remains idle when blocked, further increasing the
impact of pinning.

Example 3.8 illustrates both pinning of virtual threads in a synchronized block and
how refactoring the code to use a reentrant lock can alleviate the problem. The
example prints the schedule trace of carrier threads on which a virtual thread is
mounted during the execution of its task.

In Example 3.8, a blocking operation is defined by the method blockingOp() at (3).
The method returns a string of the form "worker-n -> worker-m" that identifies the
scheduling of carrier threads the virtual thread was mounted on before and after the
blocking operation, respectively.

Pinning in Synchronized Block

Example 3.8 defines a task at (4) that uses a synchronized block at (5) to implement a
critical region. At the most only one thread can be executing the synchronized block.
The code in the task traces the carrier threads that the virtual thread was mounted
at various points in the code: before obtaining the lock of the synchronized object
at (6), after obtaining the lock of the synchronized object at (7), executing the block-
ing operation at (8), and after the completion of the synchronized block at (9). Note
that only one thread at a time can execute the synchronized block, other threads
trying to obtain the lock of the synchronized object are blocked and have to wait
their turn to execute the synchronized block. 

If an application is run with the flag jdk.tracePinnedThreads having the value short
or full on the command line, the JVM can print relevant stack trace information to
identify a carrier thread that gets blocked while its virtual thread is pinned.

>java -Djdk.tracePinnedThreads=short MyApp

Example 3.8 is run with the above flag having the value short for tracing pinned
threads. The scheduling trace of the carrier threads is printed at (10). For example,
we see the following output for virtual thread #28: 

Thread[#35,ForkJoinPool-1-worker-7,5,CarrierThreads]
    vt.VTPinningDemo.lambda$0(VTPinningDemo.java:41) <== monitors:1
[10:27:31] INFO: vt  #28: LockAcquiring(worker-7 -> worker-7) -> 
                          BlockingOp(worker-7 -> worker-7) -> worker-7

The first two lines above show that carrier thread #35, having the name worker-7,
was blocked during the execution of the blocking operation in the synchronized
block. From the output we can see that virtual thread #28 is pinned to carrier thread
#35 with the name worker-7 that is blocked.

The last two lines show that virtual thread #28 was pinned to carrier thread worker-
7 during the entire execution of the synchronized block: when acquiring the lock
of the synchronized object, during the blocking operation, and after the synchro-
nized block. It is important to note that not only was the virtual thread pinned to
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its carrier thread, but the carrier thread was also blocked during the blocking oper-
ation. Pinning not only takes the associated carrier thread out of scheduling for
other virtual threads, but during a blocking operation, it is also idle for the dura-
tion of the blocking period.

Similarly, pinning of the virtual threads can be traced in all runs of the task con-
taining the synchronized block. Note that each virtual thread is assigned to a new
carrier thread as virtual threads get pinned executing the synchronized block.

Example 3.8 Pinning of Virtual Threads

package vt;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReentrantLock;
import java.util.logging.Logger;
import java.util.stream.IntStream;

public class VTPinningDemo {
  private static final Logger logger =
      Logger.getLogger(VTPinningDemo.class.getName());
  static {
    System.setProperty("java.util.logging.SimpleFormatter.format",
        "[%1$tT] %4$s: %5$s%n");
  }

  public static final int NUMBER_OF_VT = 8;                             // (1)
  public static final int DURATION = 1000;                              // (2)

  // Blocking operation:
  private static String blockingOp() {                                  // (3)
    try {
      var ctNameBefore = getCarrierThreadName();
      TimeUnit.MILLISECONDS.sleep(DURATION);
      var ctNameAfter  = getCarrierThreadName();
      return String.format("%s -> %s", ctNameBefore, ctNameAfter);
    } catch (InterruptedException e) {
      e.printStackTrace();
    }
    return "? -> ?";
  }

  // Task uses synchronized block:
  static final Runnable task1 = () -> {                                 // (4)
    String ctBeforeLock = "", ctAfterLock = "", ctAfterSynch = "",
           blockTrace = "";

    ctBeforeLock = getCarrierThreadName();                              // (5)
    synchronized (VTPinningDemo.class) {                                // (6)
      ctAfterLock = getCarrierThreadName();                             // (7)
      blockTrace = blockingOp();                                        // (8)
    }
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    ctAfterSynch  = getCarrierThreadName();                             // (9)

    logger.info(String.format(                                          // (10)
        "vt %4s: LockAcquiring(%s -> %s) -> BlockingOp(%s) -> %s",
        vtID(), ctBeforeLock, ctAfterLock, blockTrace, ctAfterSynch));
  };

  // Reentrant lock:
  public static final ReentrantLock lock = new ReentrantLock();         // (11)

  // Task uses reentrant lock:
  static final Runnable task2 = () -> {                                 // (12)
    String ctBeforeLock = "", ctAfterLock = "", ctAfterUnlock = "",
           blockTrace = "";

    ctBeforeLock = getCarrierThreadName();                              // (13)
    lock.lock();                                                        // (14)
    ctAfterLock = getCarrierThreadName();                               // (15)
    try {
      blockTrace = blockingOp();                                        // (16)
    } finally {
      lock.unlock();
    }
    ctAfterUnlock = getCarrierThreadName();                             // (17)

    logger.info(String.format(                                          // (18)
        "vt %4s: LockAcquiring(%s -> %s) -> BlockingOp(%s) -> %s",
        vtID(), ctBeforeLock, ctAfterLock, blockTrace, ctAfterUnlock
    ));
  };

  public static void main(String[] args) {                              // (19)
    logger.info("-----Synchronized block-----");
    try (ExecutorService executor = Executors.newVirtualThreadPerTaskExecutor()) {
      IntStream.range(0, NUMBER_OF_VT).forEach(i -> executor.submit(task1));
    }

    logger.info("-----Reentrant lock-----");
    try (ExecutorService executor = Executors.newVirtualThreadPerTaskExecutor()) {
      IntStream.range(0, NUMBER_OF_VT).forEach(i -> executor.submit(task2));
    }
  }

  static String vtID() {
    return  "#" + Thread.currentThread().threadId();
  }

  static String getCarrierThreadName() {
    var vtInfo = Thread.currentThread().toString();
    return vtInfo.substring(vtInfo.indexOf('w'));
  }
}

Probable output from the program (edited to fit in page width):

[10:27:30] INFO: -----Synchronized block-----
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Thread[#35,ForkJoinPool-1-worker-7,5,CarrierThreads]
    vt.VTPinningDemo.lambda$0(VTPinningDemo.java:41) <== monitors:1
[10:27:31] INFO: vt  #28: LockAcquiring(worker-7 -> worker-7) -> 
                          BlockingOp(worker-7 -> worker-7) -> worker-7
[10:27:32] INFO: vt  #23: LockAcquiring(worker-2 -> worker-2) -> 
                          BlockingOp(worker-2 -> worker-2) -> worker-2
[10:27:33] INFO: vt  #29: LockAcquiring(worker-8 -> worker-8) -> 
                          BlockingOp(worker-8 -> worker-8) -> worker-8
[10:27:35] INFO: vt  #26: LockAcquiring(worker-5 -> worker-5) -> 
                          BlockingOp(worker-5 -> worker-5) -> worker-5
[10:27:36] INFO: vt  #21: LockAcquiring(worker-1 -> worker-1) -> 
                          BlockingOp(worker-1 -> worker-1) -> worker-1
[10:27:37] INFO: vt  #27: LockAcquiring(worker-6 -> worker-6) -> 
                          BlockingOp(worker-6 -> worker-6) -> worker-6
[10:27:38] INFO: vt  #24: LockAcquiring(worker-3 -> worker-3) -> 
                          BlockingOp(worker-3 -> worker-3) -> worker-3
[10:27:39] INFO: vt  #25: LockAcquiring(worker-4 -> worker-4) -> 
                          BlockingOp(worker-4 -> worker-4) -> worker-4
[10:27:39] INFO: -----Reentrant lock-----
[10:27:40] INFO: vt  #38: LockAcquiring(worker-4 -> worker-4) -> 
                          BlockingOp(worker-4 -> worker-1) -> worker-1
[10:27:41] INFO: vt  #39: LockAcquiring(worker-3 -> worker-7) -> 
                          BlockingOp(worker-7 -> worker-1) -> worker-1
[10:27:42] INFO: vt  #41: LockAcquiring(worker-1 -> worker-7) -> 
                          BlockingOp(worker-7 -> worker-1) -> worker-1
[10:27:43] INFO: vt  #40: LockAcquiring(worker-6 -> worker-7) -> 
                          BlockingOp(worker-7 -> worker-1) -> worker-1
[10:27:44] INFO: vt  #42: LockAcquiring(worker-5 -> worker-7) -> 
                          BlockingOp(worker-7 -> worker-1) -> worker-1
[10:27:45] INFO: vt  #43: LockAcquiring(worker-8 -> worker-7) -> 
                          BlockingOp(worker-7 -> worker-1) -> worker-1
[10:27:46] INFO: vt  #44: LockAcquiring(worker-2 -> worker-7) -> 
                          BlockingOp(worker-7 -> worker-1) -> worker-1
[10:27:47] INFO: vt  #45: LockAcquiring(worker-7 -> worker-7) -> 
                          BlockingOp(worker-7 -> worker-1) -> worker-1

Avoiding Pinning with a Reentrant Lock

Example 3.8 defines a task at (12) that uses a reentrant lock (declared at (11)) instead
of a synchronized block to implement a critical region. The task uses the classical
idiom for using a reentrant lock: 

lock.lock();                     // Acquire the lock.
try {
  // Critical region
} finally {
  lock.unlock();                 // Release the lock.
}

The method lock() of the ReentrantLock class is a blocking operation. Other threads
will wait if the lock is already taken. Especially if a virtual thread gets blocked
because the lock is taken, the virtual thread is unmounted and its carrier thread can
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be scheduled to service other virtual threads by the JVM thread scheduler. There is
no pinning involved.

As before, the code in the task traces the carrier threads that the virtual thread was
mounted at various points in the code: before obtaining the lock at (13), after
obtaining the lock at (15), executing the blocking operation at (16), and after the
lock is freed at (17). 

The scheduling trace of the carrier threads is printed at (18). For example, we see
the following output for virtual thread #38: 

[10:27:40] INFO: vt  #38: LockAcquiring(worker-4 -> worker-4) -> 
                          BlockingOp(worker-4 -> worker-1) -> worker-1

The trace for acquiring the lock shows that virtual thread #38 was mounted on car-
rier thread worker-4, most probably acquired the lock straight away, since the trace
shows the same carrier thread before and after acquiring the lock. 

The trace for the blocking operation shows that virtual thread #38 was mounted on
carrier thread worker-4 before the blocking operation and was mounted on carrier
thread worker-1 when it was allowed to resume execution after blocking. While it
was blocked, its carrier thread worker-4 can be scheduled to execute other virtual
threads. Again, there is no pinning during the blocking operation.

The unlock() method of the ReentrantLock class is not a blocking operation. The
scheduling trace shows that virtual thread #38 continued execution while mounted
on carrier thread worker-1.

Similarly, the scheduling traces of the other virtual threads show that there is no
pinning when using a reentrant lock in other runs of the task. Note that since the
virtual threads were not pinned, their associated carrier threads can be scheduled
to service other virtual threads waiting to execute, as evident from the runs where
the same carrier thread was involved in the execution of several other virtual
threads. 

Avoid Using Virtual Threads for CPU-Bound Tasks

The benefit of virtual threads is best harnessed when virtual threads execute fre-
quent short-lived blocking operations—that is the nature of virtual threads. In the
Java APIs, I/O operations and blocking operations on relevant data structures
have been refactored to unmount virtual threads, without any explicit action on
the part of the application. Long-running CPU-intensive tasks will not unmount
virtual threads, thus providing no additional advantage and are best executed by
platform threads.
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Avoid Pooling of Virtual Threads

A thread pool manages a fixed number of threads to limit the number of tasks that
can execute concurrently—also called limiting concurrency. It does not create new
threads, only allocating new tasks to existing threads as these become available. 

Platform threads are a scarce resource, expensive to create and destroy. This is in
contrast to virtual threads that are lightweight, cheap to create and destroy, spe-
cially designed for one-thread-per-task model of concurrent programming. Using
a thread pool for virtual threads is thus inconsequential. 

However, if it is necessary to limit the number of virtual threads that can execute
concurrently, the interested reader should refer to the API of the java.util.concur-
rent.Semaphore class, as the Concurrency API does not provide any executor service
that allows a fixed number of virtual threads. 

Minimize Using Thread-Local Variables with Virtual Threads

A thread-local variable allows a thread to store a value that is only accessible in the
scope of the thread where each thread has a private copy of the variable—thus
ensuring its thread-safety. 

Virtual threads work with thread-local variables, but as virtual threads can be cre-
ated in the thousands, the sheer number of copies of each thread-local variable for
each virtual thread can put a premium on memory space, especially if the data
stored in the thread-local variables has a large memory footprint. This issue is less
of a problem with platform threads, as these threads are seldom created in such
large numbers as virtual threads.

For details on thread-local variables and their usage, the curious reader should
refer to the API of the java.lang.ThreadLocal<T> class. 

Avoid Substituting Virtual Threads for Platform Threads

Substituting virtual threads for platform threads is not always the answer to
improve performance because virtual threads are not faster than platform threads.
Under the right circumstances—large number of concurrent tasks that perform
short-lived blocking operations—virtual threads can substantially increase the
scalability of one-virtual-thread-per-task-based concurrent applications. 

Future releases of Java aim to alleviate many of the issues regarding virtual threads
that have been raised in this section.

Review Questions

3.1 Given the following code:

public class VTRQ1 {
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  public static void main(String[] args) {
    Logger logger = Logger.getLogger("Test");
    Runnable r1 = () -> {
      int i = 0;
      while(true) {
        i++;
        logger.info(String.valueOf(i));
        try {
          Thread.sleep(1000);
        } catch (InterruptedException e) {
          break;
        }
      }
    };
    Thread t1 = Thread.ofPlatform().name("acme").unstarted(r1);
    t1.start();
    t1.interrupt();
  }
}

Which scenario is possible when running the program?
(a) Program will log nothing and continue to run indefinitely.
(b) Program will log the value of i and continue to run indefinitely.
(c) Program will log nothing and terminate.
(d) Program will log one or more values of i and terminate.

3.2 Given the following code:

public class VTRQ2 {
    public static void main(String[] args) {
    Logger logger = Logger.getLogger("Test");
    Runnable r1 = () -> {
      int i = 0;
      while(true) {
        i++;
        try {
          Thread.sleep(1000);
        } catch (InterruptedException e) {
          if (Thread.currentThread().isInterrupted()) {
            break;
          }
          logger.info(String.valueOf(i));
        }
      }
      logger.info(String.valueOf(i));
    };
    Thread t1 = Thread.ofPlatform().name("acme").unstarted(r1);
    t1.start();
    t1.interrupt();
  }
}

Which scenario is possible when running the program?
(a) Program will log nothing and continue to run indefinitely.
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(b) Program will log the value of i and continue to run indefinitely.
(c) Program will log nothing and terminate.
(d) Program will log one or more values of i and terminate.

3.3 Given the following code:

public class VTRQ3 {
  public static void main(String[] args) {
    Logger logger = Logger.getLogger("Test");
    Runnable r1 = () -> {
      int i = 0;
      while(true) {
        i++;
        logger.info(String.valueOf(i));
        try {
          Thread.sleep(1000);
        } catch (InterruptedException e) {
          break;
        }
      }
    };
    Thread t1 = Thread.ofVirtual().name("acme").unstarted(r1);
    t1.start();
    t1.interrupt();
  }
}

Which scenarios are possible when running the program?
Select the two correct answers.
(a) Program will log nothing and continue to run indefinitely.
(b) Program will log the value of i and continue to run indefinitely.
(c) Program will log nothing and terminate.
(d) Program will log one of more values of i and terminate.

3.4 Given the following code:

public class VTRQ4 {
  public static void main(String[] args) {
    Logger logger = Logger.getLogger("Test");
    Runnable r1 = () -> {
      int i = 0;
      while(true) {
        i++;
        try {
          Thread.sleep(1000);
        } catch (InterruptedException e) {
          if (Thread.currentThread().isInterrupted()) {
            break;
          }
          logger.info(String.valueOf(i));
        }
      }
      logger.info(String.valueOf(i));
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    };
    Thread t1 = Thread.ofVirtual().name("acme").unstarted(r1);
    t1.start();
    t1.interrupt();
  }
}

Which scenarios are possible when running the program?
Select the two correct answers.
(a) Program will log nothing and continue to run indefinitely.
(b) Program will log the value of i and continue to run indefinitely.
(c) Program will log nothing and terminate.
(d) Program will log one of more values of i and terminate.

3.5 Which statements are true about threads?
Select the two correct answers.
(a) The priority of a virtual thread cannot be changed.
(b) JVM only exits after all platform and virtual threads have completed their

execution.
(c) When a virtual thread executes an I/O operation, it is blocked and its priority

is set to 0.
(d) When a platform thread executes an I/O operation, it is blocked and its prior-

ity is set to 0.
(e) Virtual threads managed by a thread pool may improve application perfor-

mance.
(f) Platform threads managed by a thread pool may improve application perfor-

mance.

3.6 Which statements are true about virtual threads?
Select the three correct answers.
(a) Virtual threads are managed by the JVM rather than the operating system.
(b) Virtual threads can significantly improve the performance of CPU-bound

tasks.
(c) Existing concurrency codebases using platform threads require minimal

refactoring in order to leverage the benefits of virtual threads.
(d) Virtual threads can increase the throughput of a concurrency application as

they drastically reduce the overhead associated with platform threads.
(e) Virtual threads are designed to replace platform threads in all Java concur-

rency applications.

3.7 Which statements are true about threads?
Select the two correct answers.
(a) A carrier thread is a virtual thread that is in the running state.
(b) A carrier thread is a platform thread on which a virtual thread is mounted for

execution.
(c) A virtual thread has no name by default.
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(d) An unmounted virtual thread when mounted to resume execution will con-
tinue running on the same platform thread.

3.8 Given the following code:

public class VTRQ8 {
  public static void main(String[] args) throws Exception {

    Runnable task = () -> System.out.printf("NAME: %s%n",
                                            Thread.currentThread().getName());
    // (1) Insert code here.
  }
}

Which options will cause the program to execute normally and always print NAME:
vt_1 when inserted at (1)? 
Select the two correct answers.
(a) Thread vt = Thread.startVirtualThread(task);

vt.setName("vt_1");
vt.start();
vt.join();

(b) Thread vt = Thread.startVirtualThread(task);
vt.setName("vt_1");
vt.join();

(c) Thread.Builder.OfVirtual vtb = Thread.ofVirtual().name("vt_", 1);
Thread vt = vtb.unstarted(task);
vt = vtb.start(task);
vt.join();

(d) Thread.Builder.OfVirtual vtb = Thread.ofVirtual();
Thread vt = vtb.name("vt_", 1).started(task);
vt.join();

(e) Thread.Builder.OfVirtual vtb = Thread.ofVirtual();
Thread vt = vtb.unstarted(task).name("vt_", 1);
vt.join();

(f) Thread.Builder.OfVirtual vtb = Thread.ofVirtual().name("vt_", 1);
Thread vt = vtb.unstarted(task);
vt.start(task);
vt.join();

(g) Thread.Builder.OfVirtual vtb = Thread.ofVirtual().name("vt_", 1);
Thread vt = vtb.unstarted(task);
vt = vt.start();
vt.join();

(h) Thread vt = Thread.ofVirtual().name("vt_", 1).start(task);
vt.join();

(i) Thread.ofVirtual().name("vt_", 1).start(task).join();

3.9 Given the following code:

public class VTRQ9 {



REVIEW QUESTIONS 105

  public static void main(String[] args) throws Exception {

    Runnable task = () -> System.out.printf("NAME: %s%n",
                                            Thread.currentThread().getName());
    // (1) Insert code here.
  }
}

Which options will cause the program to execute normally and print NAME: vt_1
when inserted at (1)? 
Select the two correct answers.
(a) ThreadFactory vtf = Thread.ofVirtual().name("vt_0").factory();

Thread vt = vtf.newThread(task);
vt.setName("vt_1");
vt.start();
vt.join();

(b) ThreadFactory vtf = Thread.ofVirtual().name("vt_0").factory();
Thread vt = new Thread(task);
vt.setName("vt_1");
vt.start();
vt.join();

(c) Thread vt = Thread.ofVirtual().name("vt_1").factory().newThread(task);
vt.join();

(d) Thread vt = Thread.ofVirtual().name("vt_1").factory().newThread(task);
vt.start().join();

(e) Thread.Builder.OfVirtual vtb = Thread.ofVirtual().name("vt_", 1);
vtb.unstarted(task);
Thread vt = vtb.factory().newThread(task);
vt.start();
vt.join();
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Symbols
: 11
-> 11

A
ArrayDeque 56

B
blocking operations 76, 78
BlockingDeque 66
BlockingQueue 66

C
carrier threads

executing virtual threads 76
fork-join pool 78
name 78

case pattern 13
case pattern labels

exhaustiveness 18
classical threads

see platform threads
codepoint 123
Collection 48
collections

inheritance hierarchy 47
component hierarchy 21
concurrent applications 74

throughput 74
ConcurrentLinkedDeque 66, 67
ConcurrentMap 69
ConcurrentNavigableMap 69

ConcurrentSkipListMap 69
sequenced methods 69

ConcurrentSkipListSet 66, 67
conditional and operator (&&)

pattern variable 9
conditional or operator (||)

pattern variable 10
context switching 74
CopyOnWriteArrayList 66, 67
core map interfaces 47, 57
CPU-bound tasks 99
critical region 95, 98

D
daemon threads 78
default label 13
defined encounter order 46

insertion order 50
sort order 50

Deque 49
deques 52

ArrayDeque 56
Deque 49
LinkedList 56

E
enhanced switch construct 11

case label dominance 16, 28
case pattern 13
default label 13
execution 14
exhaustiveness 20
fall-through 20
generic record patterns 30
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guarded case pattern 16
guarded record patterns 27
legal fall-through to a pattern 19, 28
nested record patterns 26
null value as case constant 15
pattern label 13
record patterns 26
scope of pattern variables 18, 27
sealed types with record patterns 29
sealed types with type patterns 19
type inference with var 27
type patterns 14
unexpected failure 35
variations 13

entries 56
static snapshot 60
unmodifiable copy 58

enum constants
qualified name 34

exam objectives
Java SE 21 Developer Professional 107

Executor interface 88
executor service 88

asynchronous task submission 89
Executors utility class 90
ExecutorService interface 88

F
first map entry 58
flow sensitive scope 8
fork-join pool

carrier threads 78

G
guard

see guarded case pattern
guarded case pattern 16

H
histogram 123

I
identity cast 5
if-else statement

scope of pattern variable 9
IllegalArgumentException 124
insertion order 50, 62

instanceof operators 2, 3
instanceof pattern match operator 2, 3

generic record patterns 24
nested record patterns 23
operand types 5
pattern variable 3
record patterns 22
scope of pattern variables 23
type inference with var 23
type patterns 3

instanceof type comparison operator 2

J
Java Collections Framework 46
java.util.concurrent 64
jdk.tracePinnedThreads flag 95

K
kernel threads

see OS threads
key objects 56
keywords

case 11
default 13
instanceof 2
null 13
switch 11
when 16
yield 12

L
last map entry 58
latency 92
limiting concurrency 100
LinkedBlockingDeque 66, 67
LinkedHashMap

insertion order 62
repositioning on insertion 62

LinkedHashSet 55
LinkedList 56
List 48
lists 52
locales

constructing 125
logging program execution 77
logical complement (!) operator

pattern variable 10
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M
map entry

unmodifiable copy 58
mappings 56

see entries 56
maps 57

entries 56
inheritance hierarchy 57
keys 56
mappings 56
values 56

MatchException 35
multi-way branch 11

N
native threads

see OS threads
navigable map 57
navigable sets 52
NavigableMap 61
NavigableSet 49, 54
NoSuchElementException 50

O
one-thread-per-task executor service

 89
customizing 89

one-thread-per-task paradigm 74
one-virtual-thread-per-task executor 

service 88
open range 121
operating system (OS) threads 74
operators

instanceof pattern match operator 2, 3
instanceof type comparison operator 2

P
pattern label 13
pattern match operator 2, 3
pattern matching

MatchException 35
record pattern matching 22, 26
type pattern matching 2, 11
unexpected failure 35

pattern variable 3
cannot shadow local variable 8
declare final 8
flow sensitive scope 8, 18, 23, 27

properties 8
scope 4
shadow a field 8
type inference with var 23, 27

patterns
context 34
record patterns 20
syntax 34
type pattern 3

platform thread builders
set misc. properties for platform threads 

84
set name property for platform threads 

84
set name property for platform threads 

that uses a counter 84
platform thread factory 87
platform threads 74

carrier thread 75
comparison with virtual threads 84
create using platform thread builders 80
create using platform thread factory 87
in executor services 88
naming using counter 81
the main thread 78

Q
qualified enum constants 35
Queue 49

R
record deconstruction 20
record pattern matching

enhanced switch construct 26
instanceof pattern match operator 22

record patterns 20
generic record patterns 24, 30
guarded record patterns 27
nested record patterns 23, 26
syntax 22
using sealed types 29

records
component hierarchy 21

reentrant lock
avoid pinning 98
critical region 98

reifiable types 7
reverse-ordered view 50, 51

create 50
runnable state 78
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S
scalability 90
scope

flow sensitive scope 8
separate compilation anomalies 35
sequenced collection 47

add first 49
add last 49
defined encounter order 46
get first element 50
get last element 50
implementing SequencedCollection 

interface 52
inheritance hierarchy 47
remove first element 50
remove last element 50
reverse-ordered view 51
SequencedCollection 48, 49
summary 48

sequenced concurrent collections 64, 66
ConcurrentLinkedDeque 66, 67
ConcurrentSkipListSet 66, 67
inheritance hierarchy 65
sequenced methods 66

sequenced concurrent deques
BlockingDeque 66
LinkedBlockingDeque 66, 67

sequenced concurrent list
CopyOnWriteArrayList 66, 67

sequenced concurrent maps 67, 68
ConcurrentSkipListMap 69
inheritance hierarchy 68, 69

sequenced list
ArrayList 53
LinkedList 56
List 48, 53
reverse-ordered view 53

sequenced map
get first entry 58
get last entry 58
implementing SequencedMap interface 59
inheritance hierarchy 56, 57
insert first 58
insert last 58
LinkedHashMap 59, 62
navigable map 57
NavigableMap 61
remove first entry 58
remove last entry 58
SequencedMap 56, 57, 58, 67
sorted map 57
SortedMap 61

static entry snapshot 60
TreeMap 59, 61
views on keys, values, and entries 60

sequenced sets 52
LinkedHashSet 55
NavigableSet 49, 54
reverse-ordered view 54
SequencedSet 48, 54
sort order 54
SortedSet 49, 54
TreeSet 55

sequenced views
composing 60
on keys, values, and entries 60

SequencedCollection 48, 49
SequencedSet 48, 54
Set 48
sort order 50
sorted map

NavigableMap 61
SortedMap 57, 61
TreeMap 61

SortedMap 61
SortedSet 49, 54
stack memory 74
string buffers

extending 123
StringIndexOutOfBoundsException 121
strings

open range 121
searching in a string 121

subtype-and-cast idiom 3, 4
switch construct

arrow(->) notation 11
colon (:) notation 11
enhanced switch construct 11
qualified enum constants 35
traditional switch construct 11
variations 11

synchronized block
pinning 95

T
the main thread 78
thread builders

create a thread factory 83
create new thread and schedule for 

execution 83
create new unstarted thread 83
set name property for threads 83
set name property for threads using 
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counter 83
Thread class

create platform thread builder 80
create virtual thread builder 80
create virtual threads 77, 80

thread factories 80, 86
thread ID 78, 80
thread pool 100
Thread.Builder interface 81
Thread.Builder.OfPlatform interface 81
Thread.Builder.OfVirtual interface 81
ThreadFactory interface 87, 88
thread-local variables 100
threads

see also virtual threads
create using thread builders 80
in executor services 88
joining 80
naming using counter 81
operating system (OS) threads 74
platform threads 74
sleeping 80
thread ID 80

throughput 92
top-level type pattern 21
traditional switch construct

exhaustiveness 11, 12
fall-through 11, 12

traditional threads
see platform threads

TreeMap 61
TreeSet 55
type pattern matching 11

enhanced switch construct 11
instanceof pattern match operator 2

type patterns 3
top-level type pattern 21
unguarded 13
using sealed types 19

types
inconvertible 5
reifiable 7

U
Unified Modeling Language xvi
unmodifiable sequenced collection 51
unmodifiable sequenced view of a 

sequenced collection 63
unmodifiable sequenced view of a 

sequenced map 63
unmodifiable sequenced view of a 

sequenced set 63
unmodifiable sequenced views 63
unmodifiable views 62
unsafe cast 5
UnsupportedOperationException 49, 58
UTF-16 123

V
value objects 56
virtual thread builders

set name property of virtual threads 
using counter 84

virtual thread factory 87
virtual threads 73

best practices 94
blocking operations 76
comparison with platform threads 84
create using Thread class 77
create using virtual thread builders 80
create using virtual thread factories 87
daemon threads 78
execution model 75
execution profile 76
in executor services 88
joining 78, 80
JVM scheduler 74
latency 92
lightweight 74
misc. aspects 84
mounting 75
naming using counter 81
one-thread-per-task paradigm 74
pinning 94
scalability 90
sleeping 80
thread ID 78
throughput 76, 92
unmounting 76

VirtualThread class 78

W
when clause 16

Y
yield statement 12
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