
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780135404546
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780135404546
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780135404546

This page intentionally left blank

Core Java
for the Impatient

Fourth Edition

Cay S. Horstmann

Hoboken, New Jersey

This page intentionally left blank

Cover illustration by Morphart Creation / Shutterstock
Figures 1.1, 1.3: Microsoft Corporation
Figure 1.2: Eclipse Foundation
Figures 1.4, 1.5, 1.11: Oracle Corporation

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or
(800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact intlcs@pearson.com.

Please contact us with concerns about any potential bias at pearson.com/report-bias.html.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2024947133

Copyright © 2025 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit pearson.com/global-permission-granting.html.

ISBN-13: 978-0-13-540454-6
ISBN-10: 0-13-540454-1

https://informit.com/aw
https://pearson.com/global-permission-granting.html

This page intentionally left blank

To Chi—the most patient person in my life.

This page intentionally left blank

Table of Contents
Preface... xvii
Acknowledgments... xix
1. Fundamental Programming Structures...1

1.1. Our First Program...1
1.1.1. Dissecting the “Hello, World” Program......................................1
1.1.2. Compiling and Running a Java Program3
1.1.3. Object Instances and Method Calls..6
1.1.4. JShell ..8

1.2. Primitive Types ...12
1.2.1. Signed Integer Types ...12
1.2.2. Floating-Point Types...13
1.2.3. The char Type ...14
1.2.4. The boolean Type...15

1.3. Variables ...15
1.3.1. Variable Declarations ...15
1.3.2. Identifiers ...16
1.3.3. Initialization ...16
1.3.4. Constants ...17

1.4. Arithmetic Operations...18
1.4.1. Assignment...19
1.4.2. Basic Arithmetic ...19
1.4.3. Mathematical Methods...21
1.4.4. Number Type Conversions ...21
1.4.5. Relational and Logical Operators...23
1.4.6. Big Numbers ..24

1.5. Strings...25
1.5.1. Concatenation ..25
1.5.2. Substrings ..26
1.5.3. String Comparison ...27
1.5.4. Converting Between Numbers and Strings..............................28
1.5.5. The String API ..29
1.5.6. Code Points and Code Units...30
1.5.7. Text Blocks ...33

1.6. Input and Output ..35
1.6.1. Reading Input...35
1.6.2. Formatted Output...37

1.7. Control Flow ...39
1.7.1. Branches ..39
1.7.2. Switches ...40
1.7.3. Loops ..43
1.7.4. Breaking and Continuing ...44
1.7.5. Local Variable Scope ..46

1.8. Arrays and Array Lists ..48

1.8.1. Working with Arrays...48
1.8.2. Array Construction...49
1.8.3. Array Lists ..50
1.8.4. Wrapper Classes for Primitive Types51
1.8.5. The Enhanced for Loop ..52
1.8.6. Copying Arrays and Array Lists ...52
1.8.7. Array Algorithms ..53
1.8.8. Command-Line Arguments...54
1.8.9. Multidimensional Arrays ..55

1.9. Functional Decomposition ..58
1.9.1. Declaring and Calling Static Methods58
1.9.2. Array Parameters and Return Values.......................................58
1.9.3. Variable Arguments..59

1.10. Exercises...60
2. Object-Oriented Programming ..63

2.1. Working with Objects..63
2.1.1. Accessor and Mutator Methods ...66
2.1.2. Object References ..66

2.2. Implementing Classes...68
2.2.1. Instance Variables ..68
2.2.2. Method Headers...69
2.2.3. Method Bodies ...69
2.2.4. Instance Method Invocations ...70
2.2.5. The this Reference...71
2.2.6. Call by Value...71

2.3. Object Construction ..73
2.3.1. Implementing Constructors ...73
2.3.2. Overloading ..74
2.3.3. Calling One Constructor from Another75
2.3.4. Default Initialization...75
2.3.5. Instance Variable Initialization...76
2.3.6. Final Instance Variables ...77
2.3.7. The Constructor with No Arguments77

2.4. Records ...78
2.4.1. The Record Concept...79
2.4.2. Constructors: Canonical, Custom, and Compact81

2.5. Static Variables and Methods ...82
2.5.1. Static Variables ..82
2.5.2. Static Constants ...83
2.5.3. Static Initialization Blocks ...84
2.5.4. Static Methods ...84
2.5.5. Factory Methods...85

2.6. Packages ...86
2.6.1. Package Declarations ...86
2.6.2. The jar Command...87
2.6.3. The Class Path..88
2.6.4. Package Access ..90
2.6.5. Importing Classes...91

viii Table of Contents

2.6.6. Static Imports...92
2.7. Nested Classes..92

2.7.1. Static Nested Classes...93
2.7.2. Inner Classes..94
2.7.3. Special Syntax Rules for Inner Classes....................................97

2.8. Documentation Comments..98
2.8.1. Comment Insertion...98
2.8.2. Class Comments ...99
2.8.3. Method Comments ...99
2.8.4. Variable Comments ..100
2.8.5. General Comments...100
2.8.6. Links...101
2.8.7. Package, Module, and Overview Comments102
2.8.8. Comment Extraction ..102

2.9. Exercises...103
3. Interfaces and Lambda Expressions..105

3.1. Interfaces ..106
3.1.1. Using Interfaces ...106
3.1.2. Declaring an Interface ...106
3.1.3. Implementing an Interface...107
3.1.4. Converting to an Interface Type ..109
3.1.5. Casts and the instanceof Operator ...109
3.1.6. The “Pattern-Matching” Form of instanceof110
3.1.7. Extending Interfaces ..112
3.1.8. Implementing Multiple Interfaces..112
3.1.9. Constants ...112

3.2. Static, Default, and Private Methods..113
3.2.1. Static Methods ...113
3.2.2. Default Methods...114
3.2.3. Resolving Default Method Conflicts.......................................115
3.2.4. Private Methods ...116

3.3. Examples of Interfaces ...117
3.3.1. The Comparable Interface ...117
3.3.2. The Comparator Interface ...118
3.3.3. The Runnable Interface ..119
3.3.4. User Interface Callbacks..120

3.4. Lambda Expressions ...121
3.4.1. The Syntax of Lambda Expressions121
3.4.2. Functional Interfaces ...123

3.5. Method and Constructor References..124
3.5.1. Method References ..124
3.5.2. Constructor References ...125

3.6. Processing Lambda Expressions...126
3.6.1. Implementing Deferred Execution ...126
3.6.2. Choosing a Functional Interface ..127
3.6.3. Implementing Your Own Functional Interfaces130

3.7. Lambda Expressions and Variable Scope ...131
3.7.1. Scope of a Lambda Expression ..131

Table of Contents ix

3.7.2. Accessing Variables from the Enclosing Scope......................132
3.8. Higher-Order Functions..134

3.8.1. Methods That Return Functions ..134
3.8.2. Methods That Modify Functions ..135
3.8.3. Comparator Methods...135

3.9. Local and Anonymous Classes ..136
3.9.1. Local Classes..136
3.9.2. Anonymous Classes ..137

3.10. Exercises...138
4. Inheritance and Reflection ..141

4.1. Extending a Class ...142
4.1.1. Super- and Subclasses ...142
4.1.2. Defining and Inheriting Subclass Methods142
4.1.3. Method Overriding...143
4.1.4. Subclass Construction..144
4.1.5. Superclass Assignments...145
4.1.6. Casts...146
4.1.7. Anonymous Subclasses ..146
4.1.8. Method Expressions with super ..147

4.2. Inheritance Hierarchies ..147
4.2.1. Final Methods and Classes...148
4.2.2. Abstract Methods and Classes ...148
4.2.3. Protected Access ..149
4.2.4. Sealed Types ..150
4.2.5. Inheritance and Default Methods ..154

4.3. Object: The Cosmic Superclass ...154
4.3.1. The toString Method...155
4.3.2. The equals Method..157
4.3.3. The hashCode Method...159
4.3.4. Cloning Objects ..161

4.4. Enumerations..164
4.4.1. Methods of Enumerations ..164
4.4.2. Constructors, Methods, and Fields ..165
4.4.3. Bodies of Instances ..166
4.4.4. Static Members ..167
4.4.5. Switching on an Enumeration ..167

4.5. Pattern Matching ..168
4.5.1. Record Patterns..169
4.5.2. Guards ..170
4.5.3. Null Handling ...170
4.5.4. Exhaustiveness...171
4.5.5. Dominance..172
4.5.6. Patterns and Constants ..173

4.6. Runtime Type Information and Resources ...174
4.6.1. The Class Class ...174
4.6.2. Loading Resources ...178
4.6.3. Class Loaders ...178
4.6.4. The Context Class Loader ..180

x Table of Contents

4.6.5. Service Loaders..181
4.7. Reflection ..183

4.7.1. Enumerating Class Members ...183
4.7.2. Inspecting Objects..184
4.7.3. Invoking Methods...185
4.7.4. Constructing Objects..186
4.7.5. JavaBeans ...187
4.7.6. Working with Arrays...188
4.7.7. Proxies..190

4.8. Exercises...191
5. Exceptions, Assertions, and Logging...193

5.1. Exception Handling...193
5.1.1. Throwing Exceptions..194
5.1.2. The Exception Hierarchy ...194
5.1.3. Declaring Checked Exceptions...196
5.1.4. Catching Exceptions...197
5.1.5. The Try-with-Resources Statement..198
5.1.6. The finally Clause..200
5.1.7. Rethrowing and Chaining Exceptions202
5.1.8. Uncaught Exceptions and the Stack Trace203
5.1.9. API Methods for Throwing Exceptions...................................204

5.2. Assertions ...205
5.2.1. Using Assertions ..206
5.2.2. Enabling and Disabling Assertions ..206

5.3. Logging ...207
5.3.1. Should You Use the Java Logging Framework?207
5.3.2. Logging 101 ...208
5.3.3. The Platform Logging API ..209
5.3.4. Logging Configuration ...211
5.3.5. Log Handlers..213
5.3.6. Filters and Formatters ...215

5.4. Exercises...216
6. Generic Programming ...219

6.1. Generic Classes...220
6.2. Generic Methods...220
6.3. Type Bounds ...221
6.4. Type Variance and Wildcards..222

6.4.1. Subtype Wildcards ...223
6.4.2. Supertype Wildcards ..224
6.4.3. Wildcards with Type Variables ...226
6.4.4. Unbounded Wildcards ..227
6.4.5. Wildcard Capture ...227

6.5. Generics in the Java Virtual Machine ...228
6.5.1. Type Erasure ..228
6.5.2. Cast Insertion...229
6.5.3. Bridge Methods..230

6.6. Restrictions on Generics...231
6.6.1. No Primitive Type Arguments ..231

Table of Contents xi

6.6.2. At Runtime, All Types Are Raw ..232
6.6.3. You Cannot Instantiate Type Variables233
6.6.4. You Cannot Construct Arrays of Parameterized Types235
6.6.5. Class Type Variables Are Not Valid in Static Contexts...........236
6.6.6. Methods May Not Clash after Erasure236
6.6.7. Exceptions and Generics..237

6.7. Reflection and Generics ..238
6.7.1. The Class<T> Class ..238
6.7.2. Generic Type Information in the Virtual Machine239

6.8. Exercises...241
7. Collections ...245

7.1. An Overview of the Collections Framework ...245
7.2. Iterators ..251
7.3. Sets ...252
7.4. Maps ...254

7.4.1. Basic Map Operations ..254
7.4.2. Entries and Traversal...258

7.5. Other Collections ..260
7.5.1. Properties...260
7.5.2. Bit Sets ...262
7.5.3. Small Collections..264
7.5.4. Enumeration Sets and Maps ..265
7.5.5. Stacks, Queues, Deques, and Priority Queues265
7.5.6. Weak Hash Maps..267

7.6. Views...267
7.6.1. Ranges..267
7.6.2. Unmodifiable Views..268
7.6.3. Reversed Views ..269

7.7. Exercises...269
8. Streams..271

8.1. From Iterating to Stream Operations ...271
8.2. Stream Creation..273
8.3. The filter, map, and flatMap Methods ..276
8.4. Extracting Substreams and Combining Streams..................................278
8.5. Other Stream Transformations ...279
8.6. Simple Reductions ..280
8.7. The Optional Type...281

8.7.1. Producing an Alternative ...281
8.7.2. Consuming the Value If Present ...281
8.7.3. Pipelining Optional Values ...282
8.7.4. How Not to Work with Optional Values..................................283
8.7.5. Creating Optional Values ...284
8.7.6. Composing Optional Value Functions with flatMap284
8.7.7. Turning an Optional into a Stream ..285

8.8. Collecting Results ...286
8.9. Collecting into Maps ...287
8.10. Grouping and Partitioning ..289
8.11. Downstream Collectors...290

xii Table of Contents

8.12. Reduction Operations ...292
8.13. Primitive Type Streams...294
8.14. Parallel Streams..295
8.15. Exercises...298

9. Processing Input and Output...301
9.1. Input/Output Streams, Readers, and Writers301

9.1.1. Obtaining Streams ...302
9.1.2. Reading Bytes ..302
9.1.3. Writing Bytes..303
9.1.4. Character Encodings..304
9.1.5. Text Input ...306
9.1.6. Text Output...307
9.1.7. Reading Character Input..309
9.1.8. Reading and Writing Binary Data ..310
9.1.9. Random-Access Files..311
9.1.10. Memory-Mapped Files ...311
9.1.11. File Locking..312

9.2. Paths, Files, and Directories ...313
9.2.1. Paths...313
9.2.2. Creating Files and Directories ...315
9.2.3. Copying, Moving, and Deleting Files315
9.2.4. Visiting Directory Entries...317
9.2.5. ZIP File Systems...320

9.3. HTTP Connections ..321
9.3.1. The URLConnection and HttpURLConnection Classes321
9.3.2. The HTTP Client API ..322

9.4. Regular Expressions ...325
9.4.1. The Regular Expression Syntax ...325
9.4.2. Testing a Match..330
9.4.3. Finding All Matches ...331
9.4.4. Groups ..332
9.4.5. Splitting along Delimiters ..333
9.4.6. Replacing Matches...334
9.4.7. Flags...335

9.5. Serialization ..336
9.5.1. The Serializable Interface ..336
9.5.2. Transient Instance Variables..338
9.5.3. The readObject and writeObject Methods338
9.5.4. The readExternal and writeExternal Methods340
9.5.5. The readResolve and writeReplace Methods341
9.5.6. Versioning...342
9.5.7. Deserialization and Security ..344

9.6. Exercises...346
10. Concurrent Programming..349

10.1. Concurrent Tasks ..350
10.1.1. Running Tasks ..350
10.1.2. Futures ...353
10.1.3. Thread Interruption ...355

Table of Contents xiii

10.2. Thread Safety..357
10.2.1. Visibility..357
10.2.2. Race Conditions ...359
10.2.3. Strategies for Safe Concurrency..361
10.2.4. Immutable Classes ...362

10.3. Threadsafe Data Structures..363
10.3.1. Concurrent Hash Maps ..363
10.3.2. Blocking Queues...365
10.3.3. Other Threadsafe Data Structures.......................................367

10.4. Parallel Algorithms ...368
10.4.1. Parallel Streams ...368
10.4.2. Parallel Array Operations...368

10.5. Asynchronous Computations ..369
10.5.1. Completable Futures..369
10.5.2. Composing Completable Futures ...371
10.5.3. Long-Running Tasks in User Interface Callbacks375

10.6. Atomic Counters and Accumulators ...376
10.7. Locks and Conditions..379

10.7.1. Locks ..379
10.7.2. The synchronized Keyword...380
10.7.3. Waiting on Conditions ..382

10.8. Threads ...384
10.8.1. Running a Thread...385
10.8.2. Thread-Local Variables...386
10.8.3. Miscellaneous Thread Properties...387

10.9. Processes ..388
10.9.1. Building a Process..388
10.9.2. Running a Process..390
10.9.3. Process Handles ...392

10.10. Exercises...393
11. Annotations..399

11.1. Using Annotations...400
11.1.1. Annotation Elements ..400
11.1.2. Multiple and Repeated Annotations.....................................401
11.1.3. Annotating Declarations...402
11.1.4. Annotating Type Uses ..403
11.1.5. Making Receivers Explicit..404

11.2. Defining Annotations ..405
11.3. Annotations in the Java API ..408

11.3.1. Annotations for Compilation ..409
11.3.2. Meta-Annotations ...410

11.4. Processing Annotations at Runtime..412
11.5. Source-Level Annotation Processing ..415

11.5.1. Annotation Processors..416
11.5.2. The Language Model API ...416
11.5.3. Using Annotations to Generate Source Code.......................417

11.6. Exercises...420
12. The Java Platform Module System...423

xiv Table of Contents

12.1. The Module Concept ...424
12.2. Naming Modules...425
12.3. The Modular “Hello, World!” Program ...426
12.4. Requiring Modules..427
12.5. Exporting Packages ..429
12.6. Modules and Reflective Access...433
12.7. Modular JARs ..436
12.8. Automatic Modules ...437
12.9. The Unnamed Module...438
12.10. Command-Line Flags for Migration..439
12.11. Transitive and Static Requirements ...440
12.12. Qualified Exporting and Opening ...442
12.13. Service Loading ..443
12.14. Tools for Working with Modules ...444
12.15. Exercises...446

Index..449

Table of Contents xv

This page intentionally left blank

Preface
Java has seen many changes since its initial release in 1996. The classic book, Core Java,
covers, in meticulous detail, not just the language but all core libraries and a multitude of
changes between versions, spanning two volumes and over 2,000 pages. However, if you
just want to be productive with modern Java, there is a much faster, easier pathway for
learning the language and core libraries. In this book, I don’t retrace history and don’t
dwell on features of past versions. I show you the good parts of Java as it exists today, so
you can put your knowledge to work quickly.

As with my previous "Impatient" books, I quickly cut to the chase, showing you what you
need to know to solve a programming problem without lecturing about the superiority of
one paradigm over another. I also present the information in small chunks, organized so
that you can quickly retrieve it when needed.

Assuming you are proficient in some other programming language, such as Python, C++,
JavaScript, Swift, PHP, or Ruby, with this book you will learn how to become a competent
Java programmer. I cover all aspects of Java that a developer needs to know today,
including the powerful concepts of lambda expressions and streams, as well as modern
constructs such as records and pattern matching.

This book is fully updated to Java 21. It uses modern features and does not dwell on
historical or obsolete constructs. Preview features that may make it to the language in the
future are not covered either.

A key reason to use Java is to tackle concurrent programming. With parallel algorithms and
threadsafe data structures readily available in the Java library, the way application
programmers should handle concurrent programming has completely changed. I provide
fresh coverage, showing you how to use the powerful library features instead of error-
prone low-level constructs.

Traditionally, books on Java have focused on user interface programming, but nowadays,
few developers produce user interfaces on desktop computers. You will be able to use this
book effectively without being distracted by lengthy GUI code.

Finally, this book is written for application programmers, not for a college course and not
for systems wizards. The book covers issues that application programmers need to wrestle
with, such as logging and working with files, but you won’t learn how to implement a
linked list by hand or how to write a web server.

I hope you enjoy this rapid-fire introduction into modern Java, and I hope it will make your
work with Java productive and enjoyable.

If you find errors or have suggestions for improvement, please visit http://horstmann.com/
javaimpatient/bugs.html and leave a comment.

http://horstmann.com/javaimpatient/bugs.html
http://horstmann.com/javaimpatient/bugs.html

Tip: Download the runnable code examples that complement this book at
http://horstmann.com/javaimpatient/bugs.html.

xviii Preface

http://horstmann.com/javaimpatient/bugs.html

Acknowledgments
My thanks go, as always, to my editor Greg Doench, who enthusiastically supported the
vision of a short book that gives a fresh introduction to Java. My special gratitude goes to
the excellent team of reviewers for this and previous editions who spotted many errors and
gave thoughtful suggestions for improvement. They are: Andres Almiray, Gail Anderson,
Paul Anderson, Marcus Biel, Jean-Claude Brantschen, Brian Goetz, Mark Lawrence, Doug
Lea, Ron Mak, Simon Ritter, Yoshiki Shibata, Clovis Tondo, and Christian Ullenboom.

I wrote the book using HTML and CSS, and Prince (https://princexml.com) turned it into
PDF—a workflow that I highly recommend.

Cay Horstmann
Düsseldorf, Germany
August 2024

https://princexml.com/

This page intentionally left blank

Processing Input and Output
In this chapter, you will learn how to work with files, directories, and web pages, and how
to read and write data in binary and text format. You will also find a discussion of regular
expressions, which can be useful for processing input. (I couldn’t think of a better place to
handle that topic, and apparently neither could the Java developers—when the regular
expression API specification was proposed, it was attached to the specification request for
“new I/O” features.) Finally, this chapter shows you the object serialization mechanism that
lets you store objects as easily as you can store text or numeric data.

The key points of this chapter are:

1. An InputStream is a source of bytes, and an OutputStream is a destination for bytes.
2. A Reader reads characters, and a Writer writes them. Be sure to specify a character

encoding.
3. The Files class has convenience methods for reading all bytes or lines of a file.
4. The DataInput and DataOutput interfaces have methods for writing numbers in binary

format.
5. Use a RandomAccessFile or a memory-mapped file for random access.
6. A Path is an absolute or relative sequence of path components in a file system. Paths

can be combined (or “resolved”).
7. Use the methods of the Files class to copy, move, or delete files and to recursively

walk through a directory tree.
8. To read or update a ZIP file, use a ZIP file system.
9. You can read the contents of a web page with the URL class. To read metadata or

write data, use the URLConnection class.
10. With the Pattern and Matcher classes, you can find all matches of a regular

expression in a string, as well as the captured groups for each match.
11. The serialization mechanism can save and restore any object implementing the

Serializable interface, provided its instance variables are also serializable.

9.1. Input/Output Streams, Readers, and Writers
In the Java API, a source from which one can read bytes is called an input stream. The
bytes can come from a file, a network connection, or an array in memory. (These streams
are unrelated to the streams of Chapter 8.) Similarly, a destination for bytes is an output
stream. In contrast, readers and writers consume and produce sequences of characters. In
the following sections, you will learn how to read and write bytes and characters.

CHAPTER 9

9.1.1. Obtaining Streams
The easiest way to obtain a stream from a file is with the static methods

InputStream in = Files.newInputStream(path);
OutputStream out = Files.newOutputStream(path);

Here, path is an instance of the Path class that is covered in Section 9.2.1. It describes a
path in a file system.

If you have an URL object, you can read its contents from the input stream returned by the
openStream method. (The URL constructors are deprecated, and you should create an URL
instance as shown here.)

var url = URI.create("https://horstmann.com/index.html").toURL();
InputStream in = url.openStream();

Section 9.3 shows how to send data to a web server.

The ByteArrayInputStream class lets you read from an array of bytes.

byte[] bytes = ...;
var in = new ByteArrayInputStream(bytes);
Read from in

Conversely, to send output to a byte array, use a ByteArrayOutputStream:

var out = new ByteArrayOutputStream();
Write to out
byte[] bytes = out.toByteArray();

9.1.2. Reading Bytes
The InputStream class has a method to read a single byte:

InputStream in = ...;
int b = in.read();

This method either returns the byte as an integer between 0 and 255, or returns -1 if the
end of input has been reached.

Caution: The Java byte type has values between -128 and 127. You can cast the
returned value into a byte after you have checked that it is not -1.

More commonly, you will want to read the bytes in bulk. The most convenient method is the
readAllBytes method that simply reads all bytes from the stream into a byte array:

302 Chapter 9 ▪ Processing Input and Output

byte[] bytes = in.readAllBytes();

Tip: If you want to read all bytes from a file, call the convenience method

byte[] bytes = Files.readAllBytes(path);

If you want to read some, but not all bytes, provide a byte array and call the readNBytes
method:

var bytes = new byte[len];
int bytesRead = in.readNBytes(bytes, offset, n);

The method reads until either n bytes are read or no further input is available, and returns
the actual number of bytes read. If no input was available at all, the methods return -1.

Note: There is also a read(byte[], int, int) method whose description seems exactly
like readNBytes. The difference is that the read method only attempts to read the bytes
and returns immediately with a lower count if it fails. The readNBytes method keeps
calling read until all requested bytes have been obtained or read returns -1.

Finally, you can skip bytes:

long bytesToSkip = ...;
in.skipNBytes(bytesToSkip);

9.1.3. Writing Bytes
The write methods of an OutputStream can write individual bytes and byte arrays.

OutputStream out = ...;
int b = ...;
out.write(b);
byte[] bytes = ...;
out.write(bytes);
out.write(bytes, start, length);

When you are done writing a stream, you must close it in order to commit any buffered
output. This is best done with a try-with-resources statement:

try (OutputStream out = ...) {
out.write(bytes);

}

9.1 ▪ Input/Output Streams, Readers, and Writers 303

If you need to copy an input stream to an output stream, use the InputStream.transferTo
method:

try (InputStream in = ...; OutputStream out = ...) {
in.transferTo(out);

}

Both streams need to be closed after the call to transferTo. It is best to use a try-with-
resources statement, as in the code example.

To write a file to an OutputStream, call

Files.copy(path, out);

Conversely, to save an InputStream to a file, call

Files.copy(in, path, StandardCopyOption.REPLACE_EXISTING);

9.1.4. Character Encodings
Input and output streams are for sequences of bytes, but in many cases you will work with
text—that, is, sequences of characters. It then matters how characters are encoded into
bytes.

Java uses the Unicode standard for characters. Each character or “code point” has a 21-bit
integer number. There are different character encodings—methods for packaging those
21-bit numbers into bytes.

The most common encoding is UTF-8, which encodes each Unicode code point into a
sequence of one to four bytes (see Table 9.1). UTF-8 has the advantage that the characters
of the traditional ASCII character set, which contains all characters used in English, only
take up one byte each.

Table 9.1: UTF-8 Encoding

Character
range Encoding

0...7F 0a6a5a4a3a2a1a0

80...7FF 110a10a9a8a7a6 10a5a4a3a2a1a0

800...FFFF 1110a15a14a13a12 10a11a10a9a8a7a6 10a5a4a3a2a1a0

10000...10FFFF 11110a20a19a18 10a17a16a15a14a13a12 10a11a10a9a8a7a6
10a5a4a3a2a1a0

304 Chapter 9 ▪ Processing Input and Output

A less common encoding is UTF-16, which encodes each Unicode code point into one or
two 16-bit values (see Table 9.2). This is the encoding used in Java strings. Actually, there
are two forms of UTF-16, called “big-endian” and “little-endian.” Consider the 16-bit value
0x2122. In big-endian format, the more significant byte comes first: 0x21 followed by 0x22. In
little-endian format, it is the other way around: 0x22 0x21. To indicate which of the two is
used, a file can start with the “byte order mark,” the 16-bit quantity 0xFEFF. A reader can
use this value to determine the byte order and discard it.

Table 9.2: UTF-16 Encoding

Character range Encoding

0...FFFF a15a14a13a12a11a10a9a8a7a6a5a4a3a2a1a0

10000...10FFFF 110110b19b18b17b16a15a14a13a12a11a10 110111a9a8a7a6a5a4a3a2a1a0
where b19b18b17b16 = a20a19a18a17a16 – 1

Caution: Some programs, including Microsoft Notepad, add a byte order mark at
the beginning of UTF-8 encoded files. Clearly, this is unnecessary since there are no
byte ordering issues in UTF-8. But the Unicode standard allows it, and even suggests
that it’s a pretty good idea since it leaves little doubt about the encoding. It is
supposed to be removed when reading a UTF-8 encoded file. Sadly, Java does not do
that, and bug reports against this issue are closed as “will not fix.” Your best bet is
to strip out any leading \uFEFF that you find in your input.

In addition to the UTF encodings, there are partial encodings that cover a character range
suitable for a given user population. For example, ISO 8859-1 is a one-byte code that
includes accented characters used in Western European languages. Shift_JIS is a variable-
length code for Japanese characters. A large number of these encodings are still in
widespread use.

Because UTF-8 is so common, it has become the default encoding since Java 18. Previously,
the default encoding was the native encoding—the character encoding that is preferred by
the operating system of the computer running your program. On Windows, that is generally
not UTF-8. If you are using an older version of Java, or if you are working with text in an
encoding other than UTF-8, you need to explicitly specify the encoding.

Note: The native encoding is returned by the static method Charset.defaultCharset.
The static method Charset.availableCharsets returns all available Charset instances, as
a map from canonical names to Charset objects.

The StandardCharsets class has static variables of type Charset for the character encodings
that every Java virtual machine must support:

9.1 ▪ Input/Output Streams, Readers, and Writers 305

StandardCharsets.UTF_8
StandardCharsets.UTF_16
StandardCharsets.UTF_16BE
StandardCharsets.UTF_16LE
StandardCharsets.ISO_8859_1
StandardCharsets.US_ASCII

To obtain the Charset for another encoding, use the static forName method:

Charset shiftJIS = Charset.forName("Shift_JIS");

You use the Charset object to specify a character encoding. For example, you can turn an
array of bytes into a string as

var contents = new String(bytes, StandardCharsets.ISO_8859_1);

9.1.5. Text Input
To read text input, use a Reader. You can obtain a Reader from any input stream with the
InputStreamReader adapter:

InputStream inStream = ...;
var in = new InputStreamReader(inStream, charset);

If you want to process the input one UTF-16 code unit at a time, you can call the read
method:

int ch = in.read();

The method returns a code unit between 0 and 65536, or -1 at the end of input.

That is not very convenient. Here are several alternatives.

With a short text file, you can read it into a string like this:

String content = Files.readString(path, charset);

But if you want the file as a sequence of lines, call

List<String> lines = Files.readAllLines(path, charset);

If the file is large, process them lazily as a Stream<String>:

try (Stream<String> lines = Files.lines(path, charset)) {
...

}

306 Chapter 9 ▪ Processing Input and Output

Note: If an IOException occurs as the stream fetches the lines, that exception is
wrapped into an UncheckedIOException which is thrown out of the stream operation.
This subterfuge is necessary because stream operations are not declared to throw
any checked exceptions.

To read numbers or words from a file, use a Scanner, as you have seen in Chapter 1. For
example,

var in = new Scanner(path);
while (in.hasNextDouble()) {

double value = in.nextDouble();
...

}

Tip: To read alphabetic words, set the scanner’s delimiter to a regular expression
that is the complement of what you want to accept as a token. For example, after
calling

in.useDelimiter("\\PL+");

the scanner reads in letters since any sequence of nonletters is a delimiter. See
Section 9.4.1 for the regular expression syntax.

You can then obtain a stream of all words as

Stream<String> words = in.tokens();

If your input does not come from a file, wrap the InputStream into a BufferedReader:

try (var reader = new BufferedReader(new InputStreamReader(url.openStream()))) {
Stream<String> lines = reader.lines();
...

}

A BufferedReader reads input in chunks for efficiency. (Oddly, this is not an option for basic
readers.) It has methods readLine to read a single line and lines to yield a stream of lines.

If a method asks for a Reader and you want it to read from a file, call
Files.newBufferedReader(path, charset).

9.1.6. Text Output
To write text, use a Writer. With the write method, you can write strings. You can turn any
output stream into a Writer:

9.1 ▪ Input/Output Streams, Readers, and Writers 307

OutputStream outStream = ...;
var out = new OutputStreamWriter(outStream, charset);
out.write(str);

To get a writer for a file, use

Writer out = Files.newBufferedWriter(path, charset);

It is more convenient to use a PrintWriter, which has the print, println, and printf that you
have always used with System.out. Using those methods, you can print numbers and use
formatted output.

If you write to a file, construct a PrintWriter like this:

var out = new PrintWriter(Files.newBufferedWriter(path, charset));

If you write to another stream, use

var out = new PrintWriter(new OutputStreamWriter(outStream, charset));

Note: System.out is an instance of PrintStream, not PrintWriter. This is a relic from the
earliest days of Java. However, the print, println, and printf methods work the same
way for the PrintStream and PrintWriter classes, using a character encoding for
turning characters into bytes.

If you already have the text to write in a string, call

String content = ...;
Files.writeString(path, content, charset);

or

Files.write(path, lines, charset);

Here, lines can be a Collection<String>, or even more generally, an Iterable<? extends
CharSequence>.

To append to a file, use

Files.writeString(path, charset, StandardOpenOption.APPEND);
Files.write(path, lines, charset, StandardOpenOption.APPEND);

308 Chapter 9 ▪ Processing Input and Output

Caution: When writing text with a partial character set such as ISO 8859-1, any
unmappable characters are silently changed to a “replacement”—in most cases,
either the ? character or the Unicode replacement character U+FFFD.

Sometimes, a library method wants a Writer to write output. If you want to capture that
output in a string, hand it a StringWriter. Or, if it wants a PrintWriter, wrap the StringWriter
like this:

var writer = new StringWriter();
throwable.printStackTrace(new PrintWriter(writer));
String stackTrace = writer.toString();

9.1.7. Reading Character Input
If you read a file with a structured format such as JSON or XML, you will use a parser that
someone wrote who understands the fiddly details of that format. Such a parser typically
reads a character at a time.

In the uncommon case that you need to write such a parser, use a BufferedReader for
efficiency. Keep calling its read method, which yields a char value or -1 at the end of input.
The reader converts the encoding of the input stream into UTF-16.

If you want to process Unicode code points, you need to handle the UTF-16 encoding. Here
is how to read one code point:

int ch = reader.read();
if (ch != -1)
{

int codePoint;
if (Character.isHighSurrogate((char) ch))
{

int ch2 = reader.read();
if (Character.isLowSurrogate((char) ch2))

codePoint = Character.toCodePoint(ch, ch2);
else

throw new MalformedInputException();
}
else

codePoint = ch;
}

The Character class contains methods to tell whether a particular code point has a given
property. For example,

Character.isLetter(codePoint)

9.1 ▪ Input/Output Streams, Readers, and Writers 309

returns true if codePoint is a letter in some language. Here are some other classification
methods:

isUpperCase
isLowerCase
isDigit
isSpaceChar
isEmoji

These methods use the rules of the Unicode standard. Others refer to the rules of the Java
language:

isJavaIdentifierStart
isJavaIdentifierPart
isWhitespace

After analyzing the code points, you often need to store them in strings, converting them
back to UTF-16. The appendCodePoint method of the StringBuilder class turns a code point
into one or two char values which are appended to the builder.

9.1.8. Reading and Writing Binary Data
The DataInput interface declares the following methods for reading a number, a character, a
boolean value, or a string in binary format:

byte readByte()
int readUnsignedByte()
char readChar()
short readShort()
int readUnsignedShort()
int readInt()
long readLong()
float readFloat()
double readDouble()
void readFully(byte[] b)

The DataOutput interface declares corresponding write methods.

Note: These methods read and write numbers in big-endian format.

Caution: There are also readUTF/writeUTF methods that use a “modified UTF-8”
format. These methods are not compatible with regular UTF-8, and are only useful
for JVM internals.

310 Chapter 9 ▪ Processing Input and Output

The advantage of binary I/O is that it is fixed width and efficient. For example, writeInt
always writes an integer as a big-endian 4-byte binary quantity regardless of the number of
digits. The space needed is the same for each value of a given type, which speeds up
random access. Also, reading binary data is faster than parsing text. The main drawback is
that the resulting files cannot be easily inspected in a text editor.

You can use the DataInputStream and DataOutputStream adapters with any stream. For
example,

DataInput in = new DataInputStream(Files.newInputStream(path));
DataOutput out = new DataOutputStream(Files.newOutputStream(path));

9.1.9. Random-Access Files
The RandomAccessFile class lets you read or write data anywhere in a file. You can open a
random-access file either for reading only or for both reading and writing; specify the
option by using the string "r" (for read access) or "rw" (for read/write access) as the second
argument in the constructor. For example,

var file = new RandomAccessFile(path.toString(), "rw");

A random-access file has a file pointer that indicates the position of the next byte to be
read or written. The seek method sets the file pointer to an arbitrary byte position within
the file. The argument to seek is a long integer between zero and the length of the file
(which you can obtain with the length method). The getFilePointer method returns the
current position of the file pointer.

The RandomAccessFile class implements both the DataInput and DataOutput interfaces. To read
and write numbers from a random-access file, use methods such as readInt/writeInt that
you saw in the preceding section. For example,

int value = file.readInt();
file.seek(file.getFilePointer() - 4);
file.writeInt(value + 1);

9.1.10. Memory-Mapped Files
Memory-mapped files provide another, very efficient approach for random access that
works well for very large files. However, the API for data access is completely different
from that of input/output streams. First, get a channel to the file:

FileChannel channel = FileChannel.open(path,
StandardOpenOption.READ, StandardOpenOption.WRITE)

Then, map an area of the file (or, if it is not too large, the entire file) into memory:

9.1 ▪ Input/Output Streams, Readers, and Writers 311

ByteBuffer buffer = channel.map(FileChannel.MapMode.READ_WRITE,
0, channel.size());

Use methods get, getInt, getDouble, and so on to read values, and the equivalent put
methods to write values.

int offset = ...;
int value = buffer.getInt(offset);
buffer.put(offset, value + 1);

At some point, and certainly when the channel is closed, these changes are written back to
the file.

Note: By default, the methods for reading and writing numbers use big-endian byte
order. You can change the byte order with the command

buffer.order(ByteOrder.LITTLE_ENDIAN);

9.1.11. File Locking
When multiple simultaneously executing programs modify the same file, they need to
communicate in some way, or the file can easily become damaged. File locks can solve this
problem.

Suppose your application saves a configuration file with user preferences. If a user invokes
two instances of the application, it could happen that both of them want to write the
configuration file at the same time. In that situation, the first instance should lock the file.
When the second instance finds the file locked, it can decide to wait until the file is
unlocked or simply skip the writing process. To lock a file, call either the lock or tryLock
methods of the FileChannel class.

FileChannel channel = FileChannel.open(path, StandardOpenOption.WRITE);
FileLock lock = channel.lock();

or

FileLock lock = channel.tryLock();

The first call blocks until the lock becomes available. The second call returns immediately,
either with the lock or with null if the lock is not available. The file remains locked until the
lock or the channel is closed. It is best to use a try-with-resources statement:

try (FileLock lock = channel.lock()) {
...

}

312 Chapter 9 ▪ Processing Input and Output

9.2. Paths, Files, and Directories
You have already seen Path objects for specifying file paths. In the following sections, you
will see how to manipulate these objects and how to work with files and directories.

9.2.1. Paths
A Path is a sequence of directory names, optionally followed by a file name. The first
component of a path may be a root component, such as / or C:\. The permissible root
components depend on the file system. A path that starts with a root component is
absolute. Otherwise, it is relative. For example, here we construct an absolute and a
relative path. For the absolute path, we assume we are running on a Unix-like file system.

Path absolute = Path.of("/", "home", "cay");
Path relative = Path.of("myapp", "conf", "user.properties");

The static Path.of method receives one or more strings, which it joins with the path
separator of the default file system (/ for a Unix-like file system, \ for Windows). It then
parses the result, throwing an InvalidPathException if the result is not a valid path in the
given file system. The result is a Path object.

You can also provide a string with separators to the Path.of method:

Path homeDirectory = Path.of("/home/cay");

Note: A Path object does not have to correspond to a file that actually exists. It is
merely an abstract sequence of names. To create a file, first make a path, then call a
method to create the corresponding file—see Section 9.2.2.

It is very common to combine or “resolve” paths. The call p.resolve(q) returns a path
according to these rules:

▪ If q is absolute, then the result is q.
▪ if q does not have a root, then the result is obtained by joining p and q.
▪ Otherwise, the result depends on the rules of the file system.

For example, suppose your application needs to find its configuration file relative to the
home directory. Here is how you can combine the paths:

Path workPath = homeDirectory.resolve("myapp/work");
// Same as homeDirectory.resolve(Path.of("myapp/work"));

There is a convenience method resolveSibling that resolves against a path’s parent,
yielding a sibling path. For example, if workPath is /home/cay/myapp/work, the call

9.2 ▪ Paths, Files, and Directories 313

Path tempPath = workPath.resolveSibling("temp");

yields /home/cay/myapp/temp.

The opposite of resolve is relativize. The call p.relativize(r) yields the path q which, when
resolved with p, yields r. For example,

Path.of("/home/cay").relativize(Path.of("/home/fred/myapp"))

yields ../fred/myapp, assuming we have a file system that uses .. to denote the parent
directory.

The normalize method removes any redundant . and .. components (or whatever the file
system may deem redundant). For example, normalizing the path /home/cay/../fred/./myapp
yields /home/fred/myapp.

The toAbsolutePath method yields the absolute path of a given path. If the path is not
already absolute, it is resolved against the working directory—that is, the directory of the
process in which the JVM was invoked. For example, if you launched a Java program from
/home/cay/myapp, then Path.of("config").toAbsolutePath() returns /home/cay/myapp/config.

Note: You can obtain the working directory by a call to
System.getProperty("user.dir").

The Path interface has methods for taking paths apart and combining them with other
paths. This code sample shows some of the most useful ones:

Path p = Path.of("/home", "cay", "myapp.properties");
Path parent = p.getParent(); // The path /home/cay
Path file = p.getFileName(); // The last element, myapp.properties
Path root = p.getRoot(); // The initial segment / (null for a relative path)
Path first = p.getName(0); // The first element
Path dir = p.subpath(1, p.getNameCount());

// All but the first element, cay/myapp.properties

The Path interface extends the Iterable<Path> element, so you can iterate over the name
components of a Path with an enhanced for loop:

for (Path component : path) {
...

}

314 Chapter 9 ▪ Processing Input and Output

Note: Occasionally, you may need to interoperate with legacy APIs that use the File
class instead of the Path interface. The Path interface has a toFile method, and the
File class has a toPath method.

9.2.2. Creating Files and Directories
To create a new directory, call

Files.createDirectory(path);

All but the last component in the path must already exist. To create intermediate
directories as well, use

Files.createDirectories(path);

You can create an empty file with

Files.createFile(path);

The call throws an exception if the file already exists. The checks for existence and the
creation are atomic. If the file doesn’t exist, it is created before anyone else has a chance
to do the same.

The call Files.exists(path) checks whether the given file or directory exists. To test
whether it is a directory or a “regular” file (that is, with data in it, not something like a
directory or symbolic link), call the static methods isDirectory and isRegularFile of the Files
class.

There are convenience methods for creating a temporary file or directory in a given or
system-specific location.

Path tempFile = Files.createTempFile(dir, prefix, suffix);
Path tempFile = Files.createTempFile(prefix, suffix);
Path tempDir = Files.createTempDirectory(dir, prefix);
Path tempDir = Files.createTempDirectory(prefix);

Here, dir is a Path, and prefix/suffix are strings which may be null. For example, the call
Files.createTempFile(null, ".txt") might return a path such as /tmp/1234405522364837194.txt.

9.2.3. Copying, Moving, and Deleting Files
To copy a file from one location to another, simply call

Files.copy(fromPath, toPath);

To move the file instead, call

9.2 ▪ Paths, Files, and Directories 315

Files.move(fromPath, toPath);

You can also use this command to move an empty directory.

The copy or move will fail if the target exists. If you want to overwrite an existing target,
use the REPLACE_EXISTING option. If you want to copy all file attributes, use the
COPY_ATTRIBUTES option. You can supply both like this:

Files.copy(fromPath, toPath, StandardCopyOption.REPLACE_EXISTING,
StandardCopyOption.COPY_ATTRIBUTES);

You can specify that a move should be atomic. Then you are assured that either the move
completed successfully, or the source continues to be present. Use the ATOMIC_MOVE option:

Files.move(fromPath, toPath, StandardCopyOption.ATOMIC_MOVE);

See Table 9.3 for a summary of the options that are available for file operations.

Finally, to delete a file, simply call

Files.delete(path);

This method throws an exception if the file doesn’t exist, so instead you may want to use

boolean deleted = Files.deleteIfExists(path);

The deletion methods can also be used to remove an empty directory.

Table 9.3: Standard Options for File Operations

Option Description

StandardOpenOption; use with newBufferedWriter, newInputStream, newOutputStream,
write

READ Open for reading.

WRITE Open for writing.

APPEND If opened for writing, append to the end of the file.

TRUNCATE_EXISTING If opened for writing, remove existing contents.

CREATE_NEW Create a new file and fail if it exists.

CREATE Atomically create a new file if it doesn’t exist.

DELETE_ON_CLOSE Make a “best effort” to delete the file when it is closed.

316 Chapter 9 ▪ Processing Input and Output

Option Description

SPARSE A hint to the file system that this file will be sparse.

DSYNC|SYNC Requires that each update to the file data|data and metadata
be written synchronously to the storage device.

StandardCopyOption; use with copy, move

ATOMIC_MOVE Move the file atomically.

COPY_ATTRIBUTES Copy the file attributes.

REPLACE_EXISTING Replace the target if it exists.

LinkOption; use with all of the above methods and exists, isDirectory,
isRegularFile

NOFOLLOW_LINKS Do not follow symbolic links.

FileVisitOption; use with find, walk, walkFileTree

FOLLOW_LINKS Follow symbolic links.

9.2.4. Visiting Directory Entries
The static Files.list method returns a Stream<Path> that reads the entries of a directory. The
directory is read lazily, making it possible to efficiently process directories with huge
numbers of entries.

Since reading a directory involves a system resource that needs to be closed, you should
use a try-with-resources block:

try (Stream<Path> entries = Files.list(pathToDirectory)) {
...

}

The list method does not enter subdirectories. To process all descendants of a directory,
use the Files.walk method instead.

try (Stream<Path> entries = Files.walk(pathToRoot)) {
// Contains all descendants, visited in depth-first order

}

Here is a sample traversal of the unzipped src.zip tree:

9.2 ▪ Paths, Files, and Directories 317

java
java/nio
java/nio/DirectCharBufferU.java
java/nio/ByteBufferAsShortBufferRL.java
java/nio/MappedByteBuffer.java
...
java/nio/ByteBufferAsDoubleBufferB.java
java/nio/charset
java/nio/charset/CoderMalfunctionError.java
java/nio/charset/CharsetDecoder.java
java/nio/charset/UnsupportedCharsetException.java
java/nio/charset/spi
java/nio/charset/spi/CharsetProvider.java
java/nio/charset/StandardCharsets.java
java/nio/charset/Charset.java
...
java/nio/charset/CoderResult.java
java/nio/HeapFloatBufferR.java
...

As you can see, whenever the traversal yields a directory, it is entered before continuing
with its siblings.

You can limit the depth of the tree that you want to visit by calling Files.walk(pathToRoot,
depth). Both walk methods have a varargs parameter of type FileVisitOption..., but there is
only one option you can supply: FOLLOW_LINKS to follow symbolic links.

Note: If you filter the paths returned by walk and your filter criterion involves the
file attributes stored with a directory, such as size, creation time, or type (file,
directory, symbolic link), then use the find method instead of walk. Call that method
with a predicate function that accepts a path and a BasicFileAttributes object. The
only advantage is efficiency. Since the directory is being read anyway, the attributes
are readily available.

This code fragment uses the Files.walk method to copy one directory to another:

Files.walk(source).forEach(p -> {
try {

Path q = target.resolve(source.relativize(p));
if (Files.isDirectory(p))

Files.createDirectory(q);
else

Files.copy(p, q);
} catch (IOException ex) {

318 Chapter 9 ▪ Processing Input and Output

throw new UncheckedIOException(ex);
}

});

Unfortunately, you cannot easily use the Files.walk method to delete a tree of directories
since you need to first visit the children before deleting the parent. In that case, use the
walkFileTree method. It requires an instance of the FileVisitor interface. Here is when the
file visitor gets notified:

1. Before a directory is processed:

FileVisitResult preVisitDirectory(T dir, IOException ex)

2. When a file is encountered:

FileVisitResult visitFile(T path, BasicFileAttributes attrs)

3. When an exception occurs in the visitFile method:

FileVisitResult visitFileFailed(T path, IOException ex)

4. After a directory is processed:

FileVisitResult postVisitDirectory(T dir, IOException ex)

In each case, the notification method returns one of the following results:

▪ Continue visiting the next file: FileVisitResult.CONTINUE
▪ Continue the walk, but without visiting the entries in this directory:

FileVisitResult.SKIP_SUBTREE
▪ Continue the walk, but without visiting the siblings of this file:

FileVisitResult.SKIP_SIBLINGS
▪ Terminate the walk: FileVisitResult.TERMINATE

If any of the methods throws an exception, the walk is also terminated, and that exception
is thrown from the walkFileTree method.

The SimpleFileVisitor class implements this interface, continuing the iteration at each point
and rethrowing any exceptions.

Here is how you can delete a directory tree:

Files.walkFileTree(root, new SimpleFileVisitor<Path>() {
public FileVisitResult visitFile(Path file,

BasicFileAttributes attrs) throws IOException {
Files.delete(file);
return FileVisitResult.CONTINUE;

}

9.2 ▪ Paths, Files, and Directories 319

public FileVisitResult postVisitDirectory(Path dir,
IOException ex) throws IOException {

if (ex != null) throw ex;
Files.delete(dir);
return FileVisitResult.CONTINUE;

}
});

Caution: The Files.walk method throws an exception if any of the subdirectories are
not readable. If you only want to visit readable directories, use the walkFileTree
method.

9.2.5. ZIP File Systems
The Paths class looks up paths in the default file system—the files on the user’s local disk.
You can have other file systems. One of the more useful ones is a ZIP file system. If zipname
is the name of a ZIP file, then the call

FileSystem zipfs = FileSystems.newFileSystem(Path.of(zipname));

establishes a file system that contains all files in the ZIP archive. It’s an easy matter to
copy a file out of that archive if you know its name:

Files.copy(zipfs.getPath(sourceName), targetPath);

Here, zipfs.getPath is the analog of Path.of for an arbitrary file system.

To list all files in a ZIP archive, walk the file tree:

Files.walk(zipfs.getPath("/")).forEach(p -> {
Process p

});

You have to work a bit harder to create a new ZIP file. Here is the magic incantation:

Path zipPath = Path.of("myfile.zip");
var uri = URI.create("jar:" + zipPath.toUri());

// Constructs the URI jar:file://myfile.zip
try (FileSystem zipfs = FileSystems.newFileSystem(uri,

Collections.singletonMap("create", "true"))) {
// To add files, copy them into the ZIP file system
Files.copy(sourcePath, zipfs.getPath("/").resolve(targetPath));

}

320 Chapter 9 ▪ Processing Input and Output

Note: There is an older API for working with ZIP archives, with classes
ZipInputStream and ZipOutputStream, but it’s not as easy to use as the one described in
this section.

9.3. HTTP Connections
You can read from a URL by using the input stream returned from URL.getInputStream
method. However, if you want additional information about a web resource, or if you want
to write data, you need more control over the process than the URL class provides. The
URLConnection class was designed before HTTP was the universal protocol of the Web. It
provides support for a number of protocols, but its HTTP support is somewhat
cumbersome. When the decision was made to support HTTP/2, it became clear that it
would be best to provide a modern client interface instead of reworking the existing API.
The HttpClient provides a more convenient API and HTTP/2 support.

In the following sections, I provide a cookbook for using the HttpURLConnection class, and
then give an overview of the API.

9.3.1. The URLConnection and HttpURLConnection Classes
To use the URLConnection class, follow these steps:

1. Get an URLConnection object:

URLConnection connection = url.openConnection();

For an HTTP URL, the returned object is actually an instance of HttpURLConnection.
2. If desired, set request properties:

connection.setRequestProperty("Accept-Charset", "UTF-8, ISO-8859-1");

If a key has multiple values, separate them by commas.
3. To send data to the server, call

connection.setDoOutput(true);
try (OutputStream out = connection.getOutputStream()) {

// Write to out
}

4. If you want to read the response headers and you haven’t called getOutputStream, call

connection.connect();

Then query the header information:

9.3 ▪ HTTP Connections 321

Map<String, List<String>> headers = connection.getHeaderFields();

For each key, you get a list of values since there may be multiple header fields with
the same key.

5. Read the response:

try (InputStream in = connection.getInputStream()) {
// Read from in

}

A common use case is to post form data. The URLConnection class automatically sets the
content type to application/x-www-form-urlencoded when writing data to a HTTP URL, but you
need to encode the name/value pairs:

URL url = ...;
URLConnection connection = url.openConnection();
connection.setDoOutput(true);
try (var out = new OutputStreamWriter(

connection.getOutputStream())) {
Map<String, String> postData = ...;
boolean first = true;
for (Map.Entry<String, String> entry : postData.entrySet()) {

if (first) first = false;
else out.write("&");
out.write(URLEncoder.encode(entry.getKey(), "UTF-8"));
out.write("=");
out.write(URLEncoder.encode(entry.getValue(), "UTF-8"));

}
}
try (InputStream in = connection.getInputStream()) {

...
}

9.3.2. The HTTP Client API
The HTTP client API provides another mechanism for connecting to a web server which is
simpler than the URLConnection class with its rather fussy set of stages. More importantly,
the implementation supports HTTP/2.

An HttpClient can issue requests and receive responses. You get a client by calling

HttpClient client = HttpClient.newHttpClient();

Alternatively, if you need to configure the client, use a builder API like this:

HttpClient client = HttpClient.newBuilder()
.followRedirects(HttpClient.Redirect.ALWAYS)
.build();

322 Chapter 9 ▪ Processing Input and Output

That is, you get a builder, call methods to customize the item that is going to be built, and
then call the build method to finalize the building process. This is a common pattern for
constructing immutable objects.

Follow the same pattern for formulating requests. Here is a GET request:

HttpRequest request = HttpRequest.newBuilder()
.uri(URI.create("https://horstmann.com"))
.GET()
.build();

The URI is the “uniform resource identifier” which is, when using HTTP, the same as a
URL. However, in Java, the URL class has methods for actually opening a connection to a
URL, whereas the URI class is only concerned with the syntax (scheme, host, port, path,
query, fragment, and so on).

When sending the request, you have to tell the client how to handle the response. If you
just want the body as a string, send the request with a HttpResponse.BodyHandlers.ofString(),
like this:

HttpResponse<String> response
= client.send(request, HttpResponse.BodyHandlers.ofString());

The HttpResponse class is a template whose type denotes the type of the body. You get the
response body string simply as

String bodyString = response.body();

There are other response body handlers that get the response as a byte array or a file. One
can hope that eventually the JDK will support JSON and provide a JSON handler.

With a POST request, you similarly need a “body publisher” that turns the request data into
the data that is being posted. There are body publishers for strings, byte arrays, and files.
Again, one can hope that the library designers will wake up to the reality that most POST
requests involve form data, file uploads, or JSON objects, and provide appropriate
publishers.

Nowadays, the most common POST request body contains JSON, which you need to convert
to a string. Then you can form the following request:

HttpRequest request = HttpRequest.newBuilder()
.uri(URI.create(urlString))
.header("Content-Type", "application/json")
.POST(HttpRequest.BodyPublishers.ofString(jsonString))
.build();

The book’s companion code has examples for posting form data and file uploads.

9.3 ▪ HTTP Connections 323

The HttpRequest.Builder class also has build methods for the less common PUT, DELETE, and
HEAD requests.

Java 16 adds a builder for filtering the headers of an existing HttpRequest. You provide the
request and a function that receives the header names and values, returning true for those
that should be retained. For example, here we modify the content type:

HttpRequest request2 = HttpRequest.newBuilder(request,
(name, value) -> !name.equalsIgnoreCase("Content-Type")) // Remove old content type

.header("Content-Type", "application/xml") // Add new content type

.build();

The HttpResponse object also yields the status code and the response headers.

int status = response.statusCode();
HttpHeaders responseHeaders = response.headers();

You can turn the HttpHeaders object into a map:

Map<String, List<String>> headerMap = responseHeaders.map();

The map values are lists since in HTTP, each key can have multiple values.

If you just want the value of a particular key, and you know that there won’t be multiple
values, call the firstValue method:

Optional<String> lastModified = headerMap.firstValue("Last-Modified");

You get the response value or an empty optional if none was supplied.

The HttpClient is autocloseable, so you can declare it in a try-with-resources statement. Its
close method waits for the completion of submitted requests and then closes its connection
pool.

Tip: To enable logging for the HttpClient, add this line to net.properties in your JDK:

jdk.httpclient.HttpClient.log=all

Instead of all, you can specify a comma-separated list of headers, requests, content,
errors, ssl, trace, and frames, optionally followed by :control, :data, :window, or :all.
Don’t use any spaces.

Then set the logging level for the logger named jdk.httpclient.HttpClient to INFO, for
example by adding this line to the logging.properties file in your JDK:

jdk.httpclient.HttpClient.level=INFO

324 Chapter 9 ▪ Processing Input and Output

9.4. Regular Expressions
Regular expressions specify string patterns. Use them whenever you need to locate strings
that match a particular pattern. For example, suppose you want to find hyperlinks in an
HTML file. You need to look for strings of the pattern . But wait—there may
be extra spaces, or the URL may be enclosed in single quotes. Regular expressions give
you a precise syntax for specifying what sequences of characters are legal matches.

In the following sections, you will see the regular expression syntax used by the Java API,
and how to put regular expressions to work.

9.4.1. The Regular Expression Syntax
In a regular expression, a character denotes itself unless it is one of the reserved
characters

. * + ? { | () [\ ^ $

For example, the regular expression Java only matches the string Java.

The symbol . matches any single character. For example, .a.a matches Java and data.

The * symbol indicates that the preceding constructs may be repeated 0 or more times; for
a +, it is 1 or more times. A suffix of ? indicates that a construct is optional (0 or 1 times).
For example, be+s? matches be, bee, and bees. You can specify other multiplicities with { }
(see Table 9.4).

A | denotes an alternative: .(oo|ee)f matches beef or woof. Note the parentheses—without
them, .oo|eef would be the alternative between .oo and eef. Parentheses are also used for
grouping—see Section 9.4.4.

A character class is a set of character alternatives enclosed in brackets, such as [Jj], [0-9],
[A-Za-z], or [^0-9]. Inside a character class, the - denotes a range (all characters whose
Unicode values fall between the two bounds). However, a - that is the first or last character
in a character class denotes itself. A ^ as the first character in a character class denotes the
complement (all characters except those specified).

Table 9.4 contains a number of predefined character classes such as \d (digits). There are
many more with the \p prefix, such as \p{Sc} (Unicode currency symbols)—see Table 9.5.

The characters ^ and $ match the beginning and end of input.

If you need to have a literal . * + ? { | () [\ ^ $, precede it by a backslash. Inside a
character class, you only need to escape [and \, provided you are careful about the
positions of] - ^. For example, []^-] is a class containing all three of them.

9.4 ▪ Regular Expressions 325

Caution: If the regular expression is in a string literal, each backslash needs to be
escaped with another backslash. If you forget that second backslash, you usually get
an error because sequences such as \$ or \. are not valid in string literals. But if you
want to match a word boundary and accidentally use \b instead of \\b, then you have
a problem: \b is a valid escape sequence, indicating a backspace.

Instead of using backslashes, you can surround a string with \Q and \E. For example,
\(\$0\.99\) and \Q($0.99)\E both match the string ($0.99).

Tip: If you have a string that may contain some of the many special characters in the
regular expression syntax, you can escape them all by calling Pattern.quote(str). This
simply surrounds the string with \Q and \E, but it takes care of the special case
where str may contain \E.

Table 9.4: Regular Expression Syntax

Expression Description Example

Characters

c, not one of . *
+ ? { | () [\ ^
$

The character c. J

.
Any character except line
terminators, or any character if
the DOTALL flag is set.

\X
Any Unicode “extended
grapheme cluster”, which is
perceived as a character or
symbol

\x{p} The Unicode code point with
hex code p. \x{1D546}

\uhhhh, \xhh,
\0o, \0oo, \0ooo

The UTF-16 code unit with the
given hex or octal value. \uFEFF

\a, \e, \f, \n, \r,
\t

Alert (\x{7}), escape (\x{1B}),
form feed (\x{B}), newline
(\x{A}), carriage return (\x{D}),
tab (\x{9}).

\n

326 Chapter 9 ▪ Processing Input and Output

Expression Description Example

\cc, where c is in
[A-Z] or one of @
[\] ^ _ ?

The control character
corresponding to the character
c.

\cH is a backspace (\x{8}).

\c, where c is
not in [A-Za-z0-9] The character c. \\

\Q ... \E Everything between the start
and the end of the quotation.

\Q(...)\E matches the
string (...).

Character Classes

[C1C2...], where
Ci are
characters,
ranges c-d, or
character
classes

Any of the characters
represented by C1, C2,... [0-9+-]

[^...] Complement of a character
class. [^\d\s]

[...&&...] Intersection of character
classes. [\p{L}&&[^A-Za-z]]

\p{...}, \P{...}
A predefined character class
(see Table 9.5); its complement.

\p{L} matches a Unicode
letter, and so does
\pL—you can omit braces
around a single letter.

\d, \D
Digits ([0-9], or \p{Digit} when
the UNICODE_CHARACTER_CLASS flag
is set); the complement.

\d+ is a sequence of digits.

\w, \W

Word characters ([a-zA-Z0-9_],
or Unicode word characters
when the
UNICODE_CHARACTER_CLASS flag is
set); the complement.

\s, \S
Spaces ([\n\r\t\f\x{B}], or
\p{IsWhite_Space} when the
UNICODE_CHARACTER_CLASS flag is
set); the complement.

\s*,\s* is a comma
surrounded by optional
white space.

9.4 ▪ Regular Expressions 327

Expression Description Example

\h, \v, \H, \V
Horizontal whitespace, vertical
whitespace, their complements.

Sequences and Alternatives

XY Any string from X, followed by
any string from Y.

[1-9][0-9]* is a positive
number without leading
zero.

X|Y Any string from X or Y. http|ftp

Grouping (see Section 9.4.4)

(X) Captures the match of X. '([^']*)' captures the
quoted text.

\n The nth group. (['"]).*\1 matches 'Fred'
or "Fred" but not "Fred'.

(?<name>X) Captures the match of X with
the given name.

'(?<id>[A-Za-z0-9]+)'
captures the match with
name id.

\k<name> The group with the given name. \k<id> matches the group
with name id.

(?:X) Use parentheses without
capturing X.

In (?:http|ftp)://(.*), the
match after :// is \1.

(?f1f2...:X),
(?f1...-fk...:X),
with fi in
[dimsuUx]

Matches, but does not capture,
X with the given flags (see
Section 9.4.7) on or off (after -).

(?i:jpe?g) is a case-
insensitive match.

Other (?...) See the Pattern API
documentation.

Quantifiers

X? Optional X. \+? is an optional + sign.

X*, X+ 0 or more X, 1 or more X. [1-9][0-9]+ is an integer ≥
10.

328 Chapter 9 ▪ Processing Input and Output

Expression Description Example

X{n}, X{n,},
X{m,n}

n times X, at least n times X,
between m and n times X.

[0-7]{1,3} are one to three
octal digits.

Q?, where Q is a
quantified
expression

Reluctant quantifier, attempting
the shortest match before
trying longer matches.

.*(<.+?>).* matches the
shortest sequence
enclosed in angle
brackets.

Q+, where Q is a
quantified
expression

Possessive quantifier, taking the
longest match without
backtracking.

'[^']*+' matches strings
enclosed in single quotes
and fails quickly on
strings without a closing
quote.

Boundary Matches

^ $
Beginning, end of input (or
beginning, end of line in
multiline mode).

^Java$ matches the input
or line Java.

\A \Z \z
Beginning of input, end of
input, absolute end of input
(unchanged in multiline mode).

\b \B Word boundary, nonword
boundary.

\bJava\b matches the word
Java.

\b{g} Grapheme cluster boundary
Useful with split to
decompose a string into
grapheme clusters

\R A Unicode line break.

\G The end of the previous match.

Table 9.5: Predefined Character Classes \p{...}

Name Description

posixClass
posixClass is one of Lower, Upper, Alpha, Digit, Alnum,
Punct, Graph, Print, Cntrl, XDigit, Space, Blank, ASCII,
interpreted as POSIX or Unicode class, depending
on the UNICODE_CHARACTER_CLASS flag.

IsScript, sc=Script,
script=Script A script accepted by Character.UnicodeScript.forName.

9.4 ▪ Regular Expressions 329

Name Description

InBlock, blk=Block,
block=Block A block accepted by Character.UnicodeBlock.forName.

Category, InCategory,
gc=Category,
general_category=Category

A one- or two-letter name for a Unicode general
category.

IsProperty
Property is one of Alphabetic, Ideographic, Letter,
Lowercase, Uppercase, Titlecase, Punctuation, Control,
White_Space, Digit, Hex_Digit, Join_Control,
Noncharacter_Code_Point, Assigned.

javaMethod Invokes the method Character.isMethod (must not
be deprecated).

9.4.2. Testing a Match
Generally, there are two ways to use a regular expression: Either you want to test whether
a string matches the expression, or you want to find one or more matches of the expression
in a string.

The static matches method tests whether an entire string matches a regular expression:

String regex = "[+-]?\\d+";
CharSequence input = ...;
if (Pattern.matches(regex, input)) {

// input matches the regular expression
...

}

If you need to use the same regular expression many times, it is more efficient to compile
it. Then, create a Matcher for each input:

Pattern pattern = Pattern.compile(regex);
Matcher matcher = pattern.matcher(input);
if (matcher.matches()) ...

If the match succeeds, you can retrieve the location of matched groups—see Section 9.4.4.

To test whether a string contains a match, use the find method instead:

if (matcher.find()) {
// A substring of input matches the regular expression
...

}

330 Chapter 9 ▪ Processing Input and Output

The match and find methods mutate the state of the Matcher object. If you just want to find
out whether a given Matcher has found a match, call the hasMatch method instead.

You can turn the pattern into a predicate. This is particularly useful with the filter method
of a stream:

Pattern digits = Pattern.compile("[0-9]+");
List<String> strings = List.of("December", "31st", "1999");
List<String> matchingStrings = strings.stream()

.filter(digits.asMatchPredicate())

.toList(); // ["1999"]

The result contains all strings that match the regular expression.

Use the asPredicate method to test whether a string contains a match:

List<String> sringsContainingMatch = strings.stream()
.filter(digits.asPredicate())
.toList(); // ["31st", "1999"]

9.4.3. Finding All Matches
In this section, we consider a common use case for regular expressions—finding all
matches in an input. Use this loop:

String input = ...;
Matcher matcher = pattern.matcher(input);
while (matcher.find()) {

String match = matcher.group();
int matchStart = matcher.start();
int matchEnd = matcher.end();
...

}

In this way, you can process each match in turn. As shown in the code fragment, you can
get the matched string as well as its position in the input string.

More elegantly, you can call the results method to get a Stream<MatchResult>. The MatchResult
interface has methods group, start, and end, just like Matcher. (In fact, the Matcher class
implements this interface.) Here is how you get a list of all matches:

List<String> matches = pattern.matcher(input)
.results()
.map(MatchResult::group)
.toList();

9.4 ▪ Regular Expressions 331

If you have the data in a file, then you can use the Scanner.findAll method to get a
Stream<MatchResult>, without first having to read the contents into a string. You can pass a
Pattern or a pattern string:

var in = new Scanner(path);
Stream<String> words = in.findAll("\\pL+")

.map(MatchResult::group);

9.4.4. Groups
It is common to use groups for extracting components of a match. For example, suppose
you have a line item in the invoice with item name, quantity, and unit price such as

Blackwell Toaster USD29.95

Here is a regular expression with groups for each component:

(\p{Alnum}+(\s+\p{Alnum}+)*)\s+([A-Z]{3})([0-9.]*)

After matching, you can extract the nth group from the matcher as

String contents = matcher.group(n);

Groups are ordered by their opening parenthesis, starting at 1. (Group 0 is the entire
input.) In this example, here is how to take the input apart:

Matcher matcher = pattern.matcher(input);
if (matcher.matches()) {

item = matcher.group(1);
currency = matcher.group(3);
price = matcher.group(4);

}

We aren’t interested in group 2; it only arose from the parentheses that were required for
the repetition. For greater clarity, you can denote that group as “non-capturing”. Then it
doesn’t show up as a group in the matcher.

(\p{Alnum}+(?:\s+\p{Alnum}+)*)\s+([A-Z]{3})([0-9.]*)

Or, even better, use named groups:

(?<item>\p{Alnum}+(\s+\p{Alnum}+)*)\s+(?<currency>[A-Z]{3})(?<price>[0-9.]*)

Then, you can retrieve the groups by name:

item = matcher.group("item");

332 Chapter 9 ▪ Processing Input and Output

With the start and end methods of the Matcher and MatchResult classes, you can get the group
positions in the input:

int itemStart = matcher.start("item");
int itemEnd = matcher.end("item");

The namedGroups method yields a Map<String, Integer from group names to numbers.

Note: When you have a group inside a repetition, such as (\s+\p{Alnum}+)* in the
example above, it is not possible to get all of its matches. The group method only
yields the last match, which is rarely useful. You need to capture the entire
expression with another group.

9.4.5. Splitting along Delimiters
Sometimes, you want to break an input along matched delimiters and keep everything else.
The Pattern.split method automates this task. You obtain an array of strings, with the
delimiters removed:

String input = ...;
Pattern commas = Pattern.compile("\\s*,\\s*");
String[] tokens = commas.split(input);

// "1, 2, 3" turns into ["1", "2", "3"]

If there are many tokens, you can fetch them lazily:

Stream<String> tokens = commas.splitAsStream(input);

To also collect the delimiters, use the splitWithDelimiters method:

tokens = commas.splitWithDelimiters(input, -1); // ["1", ", ", "2", " , ", "3", ",", "4"]

If the second argument is a positive number n, the separator pattern is applied at most n -
1 times. and the last element is the remaining string. Otherwise, the pattern is applied as
often as possible. With a limit of zero, trailing empty strings are discarded.

If you don’t care about precompiling the pattern or lazy fetching, you can just use the split
and splitWithDelimiter methods of the String class:

tokens = input.split("\\s*,\\s*");

Caution: It is easy to forget that the argument of split is a regular expression. For
example,

9.4 ▪ Regular Expressions 333

"com.horstmann.corejava".split(".")

does not split along the dots. Instead, every character is a separator, and the result
is an empty array!

You need to escape the dot with a backslash in the regular expression, and therefore
with two backslashes in the string literal:

"com.horstmann.corejava".split("\\.")

Alternatively, use the Pattern.quote method:

"com.horstmann.corejava".split(Pattern.quote("."));

If the input is in a file, use a scanner:

var in = new Scanner(path);
in.useDelimiter("\\s*,\\s*");
Stream<String> tokens = in.tokens();

9.4.6. Replacing Matches
If you want to replace all matches of a regular expression with a string, call replaceAll on
the matcher:

Matcher matcher = commas.matcher(input);
String result = matcher.replaceAll(",");

// Normalizes the commas

Or, if you don’t care about precompiling, use the replaceAll method of the String class.

String result = input.replaceAll("\\s*,\\s*", ",");

The replacement string can contain group numbers $n or names ${name}. They are
replaced with the contents of the corresponding captured group.

String result = "3:45".replaceAll(
"(\\d{1,2}):(?<minutes>\\d{2})",
"$1 hours and ${minutes} minutes");
// Sets result to "3 hours and 45 minutes"

You can use \ to escape $ and \ in the replacement string, or you can call the
Matcher.quoteReplacement convenience method:

matcher.replaceAll(Matcher.quoteReplacement(str))

334 Chapter 9 ▪ Processing Input and Output

If you want to carry out a more complex operation than splicing in group matches, then you
can provide a replacement function instead of a replacement string. The function accepts a
MatchResult and yields a string. For example, here we replace all words with at least four
letters with their uppercase version:

String result = Pattern.compile("\\pL{4,}")
.matcher("Mary had a little lamb")
.replaceAll(m -> m.group().toUpperCase());
// Yields "MARY had a LITTLE LAMB"

The replaceFirst method replaces only the first occurrence of the pattern.

9.4.7. Flags
Several flags change the behavior of regular expressions. You can specify them when you
compile the pattern:

Pattern pattern = Pattern.compile(regex,
Pattern.CASE_INSENSITIVE | Pattern.UNICODE_CHARACTER_CLASS);

Or you can specify them inside the pattern:

String regex = "(?iU:expression)";

Here are the flags:

▪ Pattern.CASE_INSENSITIVE or i: Match characters independently of the letter case. By
default, this flag takes only US ASCII characters into account.

▪ Pattern.UNICODE_CASE or u: When used in combination with CASE_INSENSITIVE, use
Unicode letter case for matching.

▪ Pattern.UNICODE_CHARACTER_CLASS or U: Select Unicode character classes instead of
POSIX. Implies UNICODE_CASE.

▪ Pattern.MULTILINE or m: Make ^ and $ match the beginning and end of a line, not the
entire input.

▪ Pattern.UNIX_LINES or d: Only '\n' is a line terminator when matching ^ and $ in
multiline mode.

▪ Pattern.DOTALL or s: Make the . symbol match all characters, including line
terminators.

▪ Pattern.COMMENTS or x: Whitespace and comments (from # to the end of a line) are
ignored.

▪ Pattern.LITERAL: The pattern is taking literally and must be matched exactly, except
possibly for letter case.

▪ Pattern.CANON_EQ: Take canonical equivalence of Unicode characters into account.
For example, u followed by ¨ (diaeresis) matches ü.

The last two flags cannot be specified inside a regular expression.

9.4 ▪ Regular Expressions 335

9.5. Serialization
In the following sections, you will learn about object serialization—a mechanism for turning
an object into a bunch of bytes that can be shipped somewhere else or stored on disk, and
for reconstituting the object from those bytes.

Serialization is an essential tool for distributed processing, where objects are shipped from
one virtual machine to another. It is also used for fail-over and load balancing, when
serialized objects can be moved to another server. If you work with server-side software,
you will often need to enable serialization for classes. The following sections tell you how
to do that.

9.5.1. The Serializable Interface
In order for an object to be serialized—that is, turned into a bunch of bytes—it must be an
instance of a class that implements the Serializable interface. This is a marker interface
with no methods, similar to the Cloneable interface that you saw in Chapter 4.

For example, to make Employee objects serializable, the class needs to be declared as

public class Employee implements Serializable {
private String name;
private double salary;
...

}

It is appropriate for a class to implement the Serializable interface if all instance variables
have primitive or enum type, or contain references to serializable objects. Many classes in
the standard library are serializable. Arrays and the collection classes that you saw in
Chapter 7 are serializable provided their elements are.

In the case of the Employee class, and indeed with most classes, there is no problem. In the
following sections, you will see what to do when a little extra help is needed.

To serialize objects, you need an ObjectOutputStream, which is constructed with another
OutputStream that receives the actual bytes.

var out = new ObjectOutputStream(Files.newOutputStream(path));

Now call the writeObject method:

var peter = new Employee("Peter", 90000);
var paul = new Manager("Paul", 180000);
out.writeObject(peter);
out.writeObject(paul);

To read the objects back in, construct an ObjectInputStream:

336 Chapter 9 ▪ Processing Input and Output

var in = new ObjectInputStream(Files.newInputStream(path));

Retrieve the objects in the same order in which they were written, using the readObject
method.

var e1 = (Employee) in.readObject();
var e2 = (Employee) in.readObject();

When an object is written, the name of the class and the names and values of all instance
variables are saved. If the value of an instance variable belongs to a primitive type, it is
saved as binary data. If it is an object, it is again written with the writeObject method.

When an object is read in, the process is reversed. The class name and the names and
values of the instance variables are read, and the object is reconstituted.

There is just one catch. Suppose there were two references to the same object. Let’s say
each employee has a reference to their boss:

var peter = new Employee("Peter", 90000);
var paul = new Manager("Barney", 105000);
var mary = new Manager("Mary", 180000);
peter.setBoss(mary);
paul.setBoss(mary);
out.writeObject(peter);
out.writeObject(paul);

When reading these two objects back in, both of them need to have the same boss, not two
references to identical but distinct objects.

In order to achieve this, each object gets a serial number when it is saved. When you pass
an object reference to writeObject, the ObjectOutputStream checks if the object reference was
previously written. In that case, it just writes out the serial number and does not duplicate
the contents of the object.

In the same way, an ObjectInputStream remembers all objects it has encountered. When
reading in a reference to a repeated object, it simply yields a reference to the previously
read object.

Note: If the superclass of a serializable class is not serializable, it must have an
accessible no-argument constructor. Consider this example:

class Person // Not serializable
class Employee extends Person implements Serializable

9.5 ▪ Serialization 337

When an Employee object is deserialized, its instance variables are read from the
object input stream, but the Person instance variables are set by the Person
constructor.

9.5.2. Transient Instance Variables
Certain instance variables should not be serialized—for example, database connections
that are meaningless when an object is reconstituted. Also, when an object keeps a cache
of values, it might be better to drop the cache and recompute it instead of storing it.

To prevent an instance variable from being serialized, simply tag it with the transient
modifier. Always mark instance variables as transient if they hold instances of
nonserializable classes. Transient instance variables are skipped when objects are
serialized.

9.5.3. The readObject and writeObject Methods
In rare cases, you need to tweak the serialization mechanism. A serializable class can add
any desired action to the default read and write behavior, by defining methods with the
signature

@Serial private void readObject(ObjectInputStream in)
throws IOException, ClassNotFoundException

@Serial private void writeObject(ObjectOutputStream out)
throws IOException

Then, the object headers continue to be written as usual, but the instance variables fields
are no longer automatically serialized. Instead, these methods are called.

Note the @Serial annotation. The methods for tweaking serialization don’t belong to
interfaces. Therefore, you can’t use the @Override annotation to have the compiler check the
method declarations. The @Serial annotation is meant to enable the same checking for
serialization methods. Up to Java 17, the javac compiler doesn’t do that checking, but it
might happen in the future. Some IDEs check the annotation.

A number of classes in the java.awt.geom package, such as Point2D.Double, are not
serializable. Now, suppose you want to serialize a class LabeledPoint that stores a String and
a Point2D.Double. First, you need to mark the Point2D.Double field as transient to avoid a
NotSerializableException.

public class LabeledPoint implements Serializable {
private String label;
private transient Point2D.Double point;
...

}

338 Chapter 9 ▪ Processing Input and Output

In the writeObject method, first write the object descriptor and the String field, label, by
calling the defaultWriteObject method. This is a special method of the ObjectOutputStream
class that can only be called from within a writeObject method of a serializable class. Then
we write the point coordinates, using the standard DataOutput calls.

@Serial before private void writeObject(ObjectOutputStream out) throws IOException {
out.defaultWriteObject();
out.writeDouble(point.getX());
out.writeDouble(point.getY());

}

In the readObject method, we reverse the process:

@Serial before private void readObject(ObjectInputStream in)
throws IOException, ClassNotFoundException {

in.defaultReadObject();
double x = in.readDouble();
double y = in.readDouble();
point = new Point2D.Double(x, y);

}

Another example is the HashSet class that supplies its own readObject and writeObject
methods. Instead of saving the internal structure of the hash table, the writeObject method
simply saves the capacity, load factor, size, and elements. The readObject method reads back
the capacity and load factor, constructs a new table, and inserts the elements.

The readObject and writeObject methods only need to save and load their data. They do not
concern themselves with superclass data or any other class information.

The Date class uses this approach. Its writeObject method saves the milliseconds since the
“epoch” (January 1, 1970). The data structure that caches calendar data is not saved.

Caution: Just like a constructor, the readObject method operates on partially
initialized objects. If you call a non-final method inside readObject that is overridden
in a subclass, it may access uninitialized data.

Note: If a serializable class defines a field

@Serial private static final ObjectStreamField[] serialPersistentFields

then serialization uses those field descriptors instead of the non-transient non-static
fields. There is also an API for setting the field values before serialization or reading
them after deserialization. This is useful for preserving a legacy layout after a class

9.5 ▪ Serialization 339

has evolved. For example, the BigDecimal class uses this mechanism to serialize its
instances in a format that no longer reflects the instance fields.

9.5.4. The readExternal and writeExternal Methods
Instead of letting the serialization mechanism save and restore object data, a class can
define its own mechanism. For example, you can encrypt the data or use a format that is
more efficient than the serialization format.

To do this, a class implements the Externalizable interface instead of the Serializable
interface. This, in turn, requires two methods:

public void readExternal(ObjectInputStream in)
throws IOException

public void writeExternal(ObjectOutputStream out)
throws IOException

Unlike the readObject and writeObject methods, these methods are fully responsible for
saving and restoring the entire object, including the superclass data. When writing an
object, the serialization mechanism merely records the class of the object in the output
stream. When reading an externalizable object, the object input stream creates an object
with the no-argument constructor and then calls the readExternal method.

In this example, the LabeledPixel class extends the serializable Point class, but it takes over
the serialization of the class and superclass. The fields of the object are not stored in the
standard serialization format. Instead, the data are placed in an opaque block.

public class LabeledPixel extends Point implements Externalizable {
private String label;

public LabeledPixel() {} // required for externalizable class

@Override public void writeExternal(ObjectOutput out)
throws IOException {

out.writeInt((int) getX());
out.writeInt((int) getY());
out.writeUTF(label);

}

@Override public void readExternal(ObjectInput in)
throws IOException, ClassNotFoundException {

int x = in.readInt();
int y = in.readInt();
setLocation(x, y);
label = in.readUTF();

340 Chapter 9 ▪ Processing Input and Output

}
...

}

Note: The readExternal and writeExternal methods should not be annotated with
@Serial. Since they are defined in the Externalizable interface, you can simply
annotate them with @Override.

Caution: Unlike the readObject and writeObject methods, which are private and can
only be called by the serialization mechanism, the readExternal and writeExternal
methods are public. In particular, readExternal potentially permits modification of the
state of an existing object.

Note: You cannot customize the serialization of enumerations and records. If you
define readObject/writeObject or readExternal/writeExternal methods, they are not used
for serialization.

9.5.5. The readResolve and writeReplace Methods
We take it for granted that objects can only be constructed with the constructor. However,
a deserialized object is not constructed. Its instance variables are simply restored from an
object stream.

This is a problem if the constructor enforces some condition. For example, a singleton
object may be implemented so that the constructor can only be called once. As another
example, database entities can be constructed so that they always come from a pool of
managed instances.

You shouldn’t implement your own mechanism for singletons. If you need a singleton, make
an enumerated type with one instance that is, by convention, called INSTANCE.

public enum PersonDatabase {
INSTANCE;

public Person findById(int id) { ... }
...

}

This works because enum are guaranteed to be deserialized properly.

Now let’s suppose that you are in the rare situation where you want to control the identity
of each deserialized instance. As an example, suppose a Person class wants to restore its
instances from a database when deserializing. Then you should not serialize the object

9.5 ▪ Serialization 341

itself. Instead request that a proxy instance is saved. When restored, that proxy locates and
constructs the desired object. Your class needs to provide a writeReplace method that
returns the proxy object:

public class Person implements Serializable {
private int id;
// Other instance variables
...
@Serial private Object writeReplace() {

return new PersonProxy(id);
}

}

When a Person object is serialized, none of its instance variables are saved. Instead, the
writeReplace method is called and its return value is serialized and written to the stream.

The proxy class needs to implement a readResolve method that yields a Person instance:

class PersonProxy implements Serializable {
private int id;

public PersonProxy(int id) {
this.id = id;

}

@Serial private Object readResolve() {
return PersonDatabase.INSTANCE.findById(id);

}
}

When the readObject method finds a PersonProxy in an ObjectInputStream, it deserializes the
proxy, calls its readResolve method, and returns the result.

Note: Unlike the readObject and writeObject methods, the readResolve and
writeReplace methods need not be private.

Note: With enumerations and records, readObject/writeObject or
readExternal/writeExternal methods are not used for serialization. With records, but
not with enumerations, the writeReplace method will be used.

9.5.6. Versioning
Serialization was intended for sending objects from one virtual machine to another, or for
short-term persistence of state. If you use serialization for long-term persistence, or in any

342 Chapter 9 ▪ Processing Input and Output

situation where classes can change between serialization and deserialization, you will need
to consider what happens when your classes evolve. Can version 2 read the old data? Can
the users who still use version 1 read the files produced by the new version?

The serialization mechanism supports a simple versioning scheme. When an object is
serialized, both the name of the class and its serialVersionUID are written to the object
stream. That unique identifier is assigned by the implementor, by defining an instance
variable

@Serial private static final long serialVersionUID = 1L; // Version 1

When the class evolves in an incompatible way, the implementor should change the UID.
Whenever a deserialized object has a nonmatching UID, the readObject method throws an
InvalidClassException.

If the serialVersionUID matches, deserialization proceeds even if the implementation has
changed. Each non-transient instance variable of the object to be read is set to the value in
the serialized state, provided that the name and type match. All other instance variables
are set to the default: null for object references, zero for numbers, and false for boolean
values. Anything in the serialized state that doesn’t exist in the object to be read is ignored.

Is that process safe? Only the implementor of the class can tell. If it is, then the
implementor should give the new version of the class the same serialVersionUID as the old
version.

If you don’t assign a serialVersionUID, one is automatically generated by hashing a
canonical description of the instance variables, methods, and supertypes. You can see the
hash code with the serialver utility. The command

serialver ch09.sec05.Employee

displays

private static final long serialVersionUID = -4932578720821218323L;

When the class implementation changes, there is a very high probability that the hash code
changes as well.

If you need to be able to read old version instances, and you are certain that is safe to do
so, run serialver on the old version of your class and add the result to the new version.

Note: If you want to implement a more sophisticated versioning scheme, override
the readObject method and call the readFields method instead of the defaultReadObject
method. You get a description of all fields found in the stream, and you can do with
them what you want.

9.5 ▪ Serialization 343

Note: Enumerations and records ignore the serialVersionUID field. An enumeration
always has a serialVersionUID of 0L. You can declare the serialVersionUID of a record,
but the IDs don’t have to match for deserialization.

Note: In this section, you saw what happens when the reader’s version of a class
has instance variables that aren’t present in the object stream. It is also possible
during class evolution for a superclass to be added. Then a reader using the new
version may read an object stream in which the instance variables of the superclass
are not set. By default, those instance fields are set to their 0/false/null default. That
may leave the superclass in an unsafe state. The superclass can defend against that
problem by defining an initialization method

@Serial private void readObjectNoData() throws ObjectStreamException

The method should either set the same state as the no-argument constructor or
throw an InvalidObjectException. It is only called in the unusual circumstance where
an object stream is read that contains an instance of a subclass with missing
superclass data.

9.5.7. Deserialization and Security
During deserialization of a serializable class, objects are created without invoking any
constructor of the class. Even if the class has a no-argument constructor, it is not used. The
field values are set directly from the values of the object input stream.

Note: For serializable records, deserialization calls the canonical constructor,
passing it the values of the components from the object input stream. (As a
consequence, cyclic references in records are not restored.)

Bypassing construction is a security risk. An attacker can craft bytes describing an invalid
object that could have never been constructed. Suppose, for example, that the Employee
constructor throws an exception when called with a negative salary. We would like to think
that no Employee object can have a negative salary as a result. But it is not difficult to
inspect the bytes for a serialized object and modify some of them. This way, one can craft
bytes for an employee with a negative salary and then deserialize them.

A serializable class can optionally implement the ObjectInputValidation interface and define
a validateObject method to check whether its objects are properly deserialized. For
example, the Employee class can check that salaries are not negative:

344 Chapter 9 ▪ Processing Input and Output

public void validateObject() throws InvalidObjectException {
System.out.println("validateObject");
if (salary < 0)

throw new InvalidObjectException("salary < 0");
}

Unfortunately, the method is not invoked automatically. To invoke it, you also must provide
the following method:

@Serial private void readObject(ObjectInputStream in)
throws IOException, ClassNotFoundException {

in.registerValidation(this, 0);
in.defaultReadObject();

}

The object is then scheduled for validation, and the validateObject method is called when
this object and all dependent objects have been loaded. The second parameter lets you
specify a priority. Validation requests with higher priorities are done first.

There are other security risks. Adversaries can create data structures that consume
enough resources to crash a virtual machine. More insidiously, any class on the class path
can be deserialized. Hackers have been devious about piecing together “gadget
chains”—sequences of operations in various utility classes that use reflection and
culminate in calling methods such as Runtime.exec with a string of their choice.

Any application that receives serialized data from untrusted sources over a network
connection is vulnerable to such attacks. For example, some servers serialize session data
and deserialize whatever data are returned in the HTTP session cookie.

You should avoid situations in which arbitrary data from untrusted sources are
deserialized. In the example of session data, the server should sign the data, and only
deserialize data with a valid signature.

A serialization filter mechanism can harden applications from such attacks. The filters see
the names of deserialized classes and several metrics (stream size, array sizes, total
number of references, longest chain of references). Based on those data, the
deserialization can be aborted.

In its simplest form, you provide a pattern describing the valid and invalid classes. For
example, if you start our sample serialization demo as

java -Djdk.serialFilter='serial.*;java.**;!*' serial.ObjectStreamTest

then the objects will be loaded. The filter allows all classes in the serial package and all
classes whose package name starts with java, but no others. If you don’t allow java.**, or at
least java.util.Date, deserialization fails.

9.5 ▪ Serialization 345

You can place the filter pattern into a configuration file and specify multiple filters for
different purposes. You can also implement your own filters. See https://docs.oracle.com/en/
java/javase/21/core/serialization-filtering1.html for details.

9.6. Exercises
1. Write a utility method for copying all of an InputStream to an OutputStream, without

using any temporary files. Provide another solution, without a loop, using
operations from the Files class, using a temporary file.

2. Write a program that reads a text file and produces a file with the same name but
extension .toc, containing an alphabetized list of all words in the input file together
with a list of line numbers in which each word occurs. Assume that the file’s
encoding is UTF-8.

3. Write a program that reads a file containing text and, assuming that most words are
English, guesses whether the encoding is ASCII, ISO 8859-1, UTF-8, or UTF-16, and
if the latter, which byte ordering is used.

4. Using a Scanner is convenient, but it is a bit slower than using a BufferedReader. Read
in a long file a line at a time, counting the number of input lines, with (a) a Scanner
and hasNextLine/nextLine, (b) a BufferedReader and readLine, (c) a BufferedReader and
lines. Which is the fastest? The most convenient?

5. When an encoder of a Charset with partial Unicode coverage can’t encode a
character, it replaces it with a default—usually, but not always, the encoding of "?".
Find all replacements of all available character sets that support encoding. Use the
newEncoder method to get an encoder, and call its replacement method to get the
replacement. For each unique result, report the canonical names of the charsets
that use it.

6. The BMP file format for uncompressed image files is well documented and simple.
Using random access, write a program that reflects each row of pixels in place,
without writing a new file.

7. Look up the API documentation for the MessageDigest class and write a program that
computes the SHA-512 digest of a file. Feed blocks of bytes to the MessageDigest
object with the update method, then display the result of calling digest. Verify that
your program produces the same result as the sha512sum utility.

8. Write a utility method for producing a ZIP file containing all files from a directory
and its descendants.

9. Using the URLConnection class, read data from a password-protected web page with
“basic” authentication. Concatenate the user name, a colon, and the password, and
compute the Base64 encoding:

String input = username + ":" + password;
String encoding = Base64.getEncoder().encodeToString(input.getBytes());

Set the HTTP header Authorization to the value "Basic " + encoding. Then read and
print the page contents.

10. Using a regular expression, extract all decimal integers (including negative ones)
from a string into an ArrayList<Integer> (a) using find, and (b) using split. Note that
a + or - that is not followed by a digit is a delimiter.

346 Chapter 9 ▪ Processing Input and Output

https://docs.oracle.com/en/java/javase/21/core/serialization-filtering1.html
https://docs.oracle.com/en/java/javase/21/core/serialization-filtering1.html

11. Using regular expressions, extract the directory path names (as an array of strings),
the file name, and the file extension from an absolute or relative path such as /home/
cay/myfile.txt.

12. Come up with a realistic use case for using group references in Matcher.replaceAll
and implement it.

13. Implement a method that can produce a clone of any serializable object by
serializing it into a byte array and deserializing it.

14. Implement a serializable class Point with instance variables for x and y. Write a
program that serializes an array of Point objects to a file, and another that reads the
file.

15. Continue the preceding exercise, but change the data representation of Point so
that it stores the coordinates in an array. What happens when the new version tries
to read a file generated by the old version? What happens when you fix up the
serialVersionUID? Suppose your life depended upon making the new version
compatible with the old. What could you do?

16. Which classes in the standard Java library implement Externalizable? Which of them
use writeReplace/readResolve?

17. Unzip the API source and investigate how the LocalDate class is serialized. Why does
the class define writeExternal and readExternal methods even though it doesn’t
implement Externalizable? (Hint: Look at the Ser class.) Why does the class define a
readObject method? How could it be invoked?

9.6 ▪ Exercises 347

This page intentionally left blank

Index
Symbols
! operator

in property files 261
operator 18, 23

!= operator 18, 23
for wrapper classes 51

"" 27, 28, 156
""" 33
"..." (single quotes, for strings)

for strings 7
in javadoc hyperlinks 101
in text blocks 34

(number sign)
flag (for output) 39
in javadoc hyperlinks 101
in option files 440
in property files 261

$ (dollar sign)
flag (for output) 39
in regular expressions 325, 326, 329, 334, 335
in variable names 16

% (percent sign)
conversion character 37, 38
operator 18, 20

%% 215
%= operator 18
%g 215
%h 215
%t 215
%u 215
& (ampersand) 18, 24
&& operator

in regular expressions 327
operator 18, 23

&= operator 18
> (right angle bracket)

in shell syntax 36
operator 23

>>=, >>>= operators 18
>=, >>, >>> operators 18, 23, 24
< (left angle bracket)

flag (for output) 39
in shell syntax 36
operator 23

<>
for constructors of generic classes 220

<< operator 18, 24
<<= operator 18
<...> (angle brackets)

for element types, in array lists 50
for type parameters 117, 220
in javadoc hyperlinks 101

in regular expressions 328
<= operator 18, 23
'...' (for character literals)

for character literals 14
((left parenthesis) 39
(...) (parentheses)

empty, for anonymous classes 138
for casts 22, 109
in regular expressions 325, 328, 332
operator 18

* (asterisk)
for annotation processors 416
in documentation comments 99
in regular expressions 325, 328, 333
operator 18, 19
wildcard

in class path 89
in imported classes 91

*= operator 18
+ (plus sign)

flag (for output) 39
in regular expressions 325, 328
operator 18, 19

for strings 25, 28, 156
++ operator 18, 20
+= operator 18
, (comma)

flag (for output) 39
normalizing 334
trailing, in arrays 49

- (minus sign)
flag (for output) 39
in regular expressions 325
operator 18, 19

-> operator 121, 124
-- operator

in command-line options 88
operator 18, 20

-= operator 18, 19
. (period) 314

in method calls 6
in package names 3, 86
in regular expressions 325, 326, 335
operator 18

... (ellipsis) 59
/ (slash)

file separator (Unix) 262, 313
in javac path segments 3
operator 18, 19
root component 313

/**...*/ 98
//, /*...*/ comments 2
/= operator 18
0

as default value 75, 77
flag (for output) 39
prefix (for octal literals) 13

0b 13
0x 13, 39
0xFEFF 305
: (colon)

in assertions 206
in switch statement 42
path separator (Unix) 89, 262
switch 41
switch statement 42, 171

:: (C++ operator) 124, 147
; (semicolon)

path separator (Windows) 89, 262
= operator 18, 19
== operator 18, 23, 158

for class objects 175
for enumerations 164
for strings 27
for wrapper classes 51

? (question mark)
in regular expressions 325, 326, 328
replacement character 309
wildcard, for types 223, 228, 239

? : 18, 23
@ (at sign)

in java command 440
in javadoc comments 98

[...] (brackets)
for arrays 48, 55
in regular expressions 325, 327
operator 18

[I 156, 175
[L 175
\ (backslash)

character literal 15
file separator (Windows) 262, 313
in option files 440
in regular expressions 325, 326, 334
in text blocks 34

\0 326
\a, \A, in regular expressions 326, 329
\b (backslash character literal) 15
\b, \B, in regular expressions 329
\c 327
\d, \D, in regular expressions 327
\e, \E, in regular expressions 326
\f (form feed character literal) 326
\G 329
\h, \H, in regular expressions 328
\k 328
\n (newline character literal)

for character literals 15
in property files 261, 262
in regular expressions 326, 328, 335

\p, \P, in regular expressions 327
\Q 326, 327
\r (carriage return character literal)

for character literals 15

in property files 262
\r, \R, in regular expressions 326, 329
\s, \S, in regular expressions 327
\t (tab character literal)

in regular expressions 326
tab, for character literals 15

\u (Unicode character literal)
for character literals 14
in regular expressions 326

\v, \V, in regular expressions 328
\w, \W, in regular expressions 327
\x 326
\z, \Z, in regular expressions 329
^ (caret)

for function parameters 121
in regular expressions 325, 329, 335
operator 18, 24

^= operator 18
_ (underscore)

in number literals 13
in variable names 16, 71

{...} (braces)
in annotation elements 401
in lambda expressions 122
in regular expressions 325, 329, 334
with arrays 49

{{...}} 146
| operator

in regular expressions 325, 328
operator 18, 24

|= operator 18
|| operator 18, 23
~ operator 18, 24

A
a, A conversion characters 38
abstract keyword 109, 148
abstract classes 148
abstract methods 123
AbstractCollection class 114
AbstractMethodError class 114
AbstractProcessor class 416
accept 128, 129
acceptEither method 374, 375
AccessibleObject class

setAccessible method 184, 185, 186
trySetAccessible method 184

accessors 66
accumulate 378
accumulateAndGet method 377
accumulator functions 293
ActionListener interface 120
add method

of ArrayDeque 266
of ArrayList 50, 66
of BlockingQueue 365
of Collection 245
of List 247

450 Index

of ListIterator 252
of LongAdder 378

addAll method
of Collection 226, 245
of Collections 249
of List 247

addExact method 21
addition 19

identity for 293
addSuppressed method 200
aggregators 441
allMatch method 281
allOf method

of CompletableFuture 374, 375
of EnumSet 265

allProcesses method 392
and, andNot methods (BitSet) 263
and, andThen methods (functional interfaces) 128
Android 120, 376
AnnotatedConstruct interface 417
AnnotatedElement interface 413, 415
Annotation interface

extending 408
annotation interfaces 405
annotation processors 416
annotations

accessing 407, 442
applicability of 409
container 412, 414
declaration 402
documented 409, 411
generating source code with 417
inherited 409, 412, 414
key/value pairs in 400, 407
meta 406, 412
modifiers and 404
multiple 401
processing

at runtime 412
source-level 415

repeatable 401, 409, 412, 414
standard 408
type use 403

anonymous classes 137
anyMatch method 281
anyOf method 374, 375
Apache Commons CSV 438
API documentation 30, 32

generating 98
Applet 178
apply, applyAsXxx methods (functional interfaces) 128,

129
applyToEither method 374, 375
arithmetic operations 18
Array class 188
array lists 50

anonymous 146
checking for nulls 227
constructing 51
converting between 223

copying 53
elements of 50, 52
filling 53
instantiating with type variables 234
size of 51
sorting 54
variables of 50

array variables
assigning values to 49
copying 52
declaring 48
initializing 48

ArrayBlockingQueue class 366
ArrayDeque class 265
ArrayIndexOutOfBoundsException class 48
ArrayList class 50, 248

add method 50, 66
clone method 163
forEach method 124
get, remove methods 51
removeIf method 123
set, size methods 51

arrays 48, 50
accessing nonexisting elements in 48
allocating 234
annotating 403
asList method 265
casting 188
checking 188
comparing 158
computing values of 369
constructing 48, 49
constructor references with 126
converting

to a reference of type Object 155
to/from streams 286, 296, 369

copying 52
copyOf method 52, 189
covariant 223
deepToString method 156
equals method 158
fill method 53
filling 49, 53
generating Class objects for 175
growing 188, 189
hash codes of 160
hashCode method 160
length of 48, 50, 134
multidimensional 55, 156
of bytes 302
of generic types 126, 235
of objects 49, 369
of primitive types 369
of strings 333
parallelXxx methods 54, 369
passing into methods 58
printing 54, 57, 156
serializable 336
setAll method 127
sort method 54, 118, 119, 123, 124

Index 451

sorting 54, 117, 369
stream method 273, 294
superclass assignment in 145
toString method 54, 156
using class literals with 175

ArrayStoreException class 145, 223, 235
ASCII 30, 304
ASM tool 420
asMatchPredicate, asPredicate methods (Pattern) 331
assert keyword 206
AssertionError class 206
assertions 205

checking 403
enabling/disabling 206

assignment operators 19
associative operations 293
asSubclass method 239
asynchronous computations 369
AsyncTask 376
atomic operations 361, 364, 376, 382

performance and 377
AtomicXxx classes 377
@author annotation 99, 102
autoboxing 51, 130
AutoCloseable interface 199, 221

close method 199
automatic modules 437, 439
availableCharsets method 305
availableProcessors method 351
average method (XxxStream) 295

B
b, B conversion characters 38
Base classes. See Superclasses
BasicFileAttributes interface 318
BeanInfo interface 188
BiConsumer interface 128
BiFunction interface 128, 130
big-endian format 305, 310, 312
BigDecimal class 14, 24, 339
BigInteger class 12, 24
binary data, reading/writing 310
binary numbers 13, 14
binary trees 252
BinaryOperator interface 129
binarySearch method 250
BiPredicate interface 129
BitSet class 262

collecting streams into 294
methods of 263

bitwise operators 24
block statement, labeled 46
blocking queues 365
BlockingQueue interface 365, 366
boolean type 15, 51

default value of 75, 77
formatting for output 38
reading/writing 310

streams of 294
BooleanSupplier interface 129
bootstrap class loader 178
boxed 295
branches 39
break keyword 42, 43, 44
bridge methods 230

clashes of 237
BufferedReader class 307
build 322
bulk operations 365
byte type 12, 51, 302

MAX_VALUE, MIN_VALUE constants 12
streams of 294
toUnsignedInt method 13
type conversions of 22

byte codes 3
byte order mark 305
ByteArrayXxxStream classes 302
ByteBuffer class 312
bytes

arrays of 302
converting to strings 306
reading 302
skipping 303
writing 303

C
C# programming language, type parameters in 227
c, C conversion characters 38
C/C++

#include directive in 92
allocating memory in 361
integer types in 12
pointers in 66

C:\ 313
CachedRowSetImpl 440
calculators 166
calendars 64
call by reference 73
Callable interface

call method 353
callbacks 120, 371

registering 369
camel case 16
cancel method

of CompletableFuture 371
of Future 353

cancellation requests 356
CancellationException class 371
cardinality 263
carriage return 15
case keyword 40
cast 239
cast operator 22
casts 22, 109, 146

annotating 404
generic types and 232

452 Index

inserting 229
catch keyword 197

annotating parameters of 402
in try-with-resources 200
no type variables in 237

ceiling 254
Channel interface 112
channels 311
char type 14

streams of 294
type conversions of 22

Character class 51
character classes 325
character encodings 304

native 305
partial 305, 309

character literals 14
characters 301

formatting for output 38
reading/writing 310

charAt method 33
CharSequence interface 30, 274

chars, codePoints methods 294
Charset class

availableCharsets method 305
defaultCharset method 305
forName method 306

checked exceptions 194, 197
combining in a superclass 196
declaring 196
documenting 197
generic types and 238
in lambda expressions 197
no-argument constructors and 186
not allowed in a method 203
rethrowing 202

checked views 232, 268
checkedXxx methods (Collections) 251, 269
Checker Framework 403
checkIndex method 205
Child classes. See Subclasses
Church, Alonzo 121
Class class 174, 175, 240

asSubclass, cast methods 239
comparing objects of 175
forName method 174, 175, 176, 179, 180, 195, 204
generic 238
getCanonicalName method 175, 176
getClassLoader method 177
getComponentType method 176, 188
getConstructor(s) methods 177, 183, 186, 238, 239
getDeclaredConstructor(s) methods 177, 183, 239
getDeclaredField(s) methods 177
getDeclaredMethod(s) methods 177, 185
getDeclaringClass method 176
getEnclosingXxx methods 176
getEnumConstants method 239
getField(s) methods 177, 183
getInterfaces method 176
getMethod(s) methods 177, 183, 185

getModifiers method 176
getName method 174, 176
getPackage method 176
getPackageName method 176
getPermittedSubclasses method 176
getRecordComponents method 177
getResource method 178
getResourceAsStream method 177, 178
getSimpleName method 176
getSuperclass method 176, 239
getTypeName method 176
getTypeParameters method 240
isXxx methods 176, 188
newInstance method 186, 238
toGenericString, toString methods 176

class declarations
annotations in 402, 412
initialization blocks in 76

class files 3, 178
paths of 87
processing annotations in 420

class literals 175
no annotations for 404
no type variables in 233

class loaders 178, 180
class objects 175
class path 88, 425
ClassCastException class 110, 232
classes 2, 64

abstract 109, 116, 148
accessing from a different module 442
adding to packages 91
anonymous 137
companion 114
constructing objects of 15
deprecated 100, 408, 409
deserialization of 344
documentation comments for 98, 99
encapsulation of 423, 424
evolving 342
extending 142
fields of 141
final 148
generic 50
immutable 30, 362
implementing 68, 161
importing 91
inner 94
instances of 6, 68, 85
loading 184
local 136
members of 141

enumerating 167, 183
naming 16, 86, 174
nested 92, 403
not known at compile time 175, 190
protected 149
public 90, 429
sealed 152
serializable 338, 339

Index 453

static initialization of 179
static methods of 85
system 207
testing 90
utility 90, 180
wrapper 51

classes win rule 160
classifier functions 289
ClassLoader class

defineClass method 440
findClass, loadClass methods 179
setXxxAssertionStatus methods 207

classloader inversion 180
ClassNotFoundException class 195
CLASSPATH 89
clear method

of BitSet 263
of Collection 246
of Map 257

clone method
of ArrayList 163
of Enum 165
of Message 162, 163
of Object 150, 155, 161, 185
protected 161

Cloneable interface 162
CloneNotSupportedException class 162, 165
cloning 161
close method

of AutoCloseable, Closeable 199
of PrintWriter 198, 199
throwing exceptions 200

Closeable interface 112
close method 199

closures 132
code 99
code generator tools 410
code points 30, 277, 304
code units 14, 32, 294

in regular expressions 326
codePoints method

of CharSequence 294
Collator class 28
collect 286, 294
collectingAndThen method 291
Collection interface 114, 245

add method 245
addAll method 226, 245
clear, contains, containsAll methods 246
isEmpty method 246
iterator method 247
parallelStream method 247, 272, 295, 368
remove, removeXxx, retainAll methods 246
size method 246
spliterator method 247
stream method 247, 272
toArray method 247

Collections class 114, 245, 249, 269
addAll method 249
binarySearch method 250

branching 292
copy method 249
disjoint method 249
fill method 53, 250
frequency method 250
generic 268
given elements of 264
indexOfSubList, lastIndexOfSubList methods 250
iterating over elements of 271
mutable 265
nCopies method 248, 250
processing 249
replaceAll method 249
reverse method 54, 250
rotate method 250
serializable 336
shuffle method 54, 250
sort method 54, 226, 227, 240, 250
swap method 250
synchronizedXxx methods 250
threadsafe 367
unmodifiable views of 265, 268
unmodifiableXxx methods 250
vs. streams 272

Collector interface 286
Collectors class 92

counting method 290
filtering method 292
flatMapping method 291
groupingBy method 289, 292
groupingByConcurrent method 290, 297
joining method 287
mapping method 291
maxBy, minBy methods 291
partitioningBy method 289, 292
reducing method 292
summarizingXxx methods 287, 291
summingXxx methods 290
teeing method 292
toCollection method 287
toConcurrentMap method 289
toMap method 287
toSet method 287, 290

Collectors class
collectingAndThen method 291
mapping method 291

command-line arguments 54
comments 2

documentation 98
commonPool method 298, 370
companion classes 114
Comparable interface 117, 165, 226, 253

compareTo method 117
priority queues with 266
streams of 279

Comparator interface 92, 118, 134, 253
comparing, comparingXxx methods 135
naturalOrder method 136
nullsFirst, nullsLast methods 136
priority queues with 266

454 Index

reversed method 135
reverseOrder method 136
streams of 279
thenComparing method 135

compare 118
compareTo method

of Enum 165
of String 28, 117

compareToIgnoreCase method 124
compareUnsigned method 21
compatibility, drawbacks of 228
compilation 3
compile 330, 335
compile-time errors 16, 111
compiler

instruction reordering in 358
completable futures 369, 375

combining 375
composing 371
interrupting 371

CompletableFuture class 369, 375
acceptEither method 374, 375
allOf, anyOf methods 374, 375
applyToEither method 374, 375
cancel method 371
complete, completeExceptionally methods 370
completeOnTimeout method 374
exceptionally method 373, 374
exceptionallyCompose method 374
handle method 374
isDone method 371
orTimeout method 374
runAfterXxx methods 374, 375
supplyAsync method 370, 371
thenAccept method 369, 373
thenAcceptBoth method 374
thenApply, thenApplyAsync methods 372, 373
thenCombine method 374
thenCompose method 373
thenRun method 374
whenComplete method 370, 373, 374

CompletionStage interface 375
compose 128
computations

asynchronous 369
mutator 66
precision of 14

compute method
of ConcurrentHashMap 364
of Map 257

computeIfXxx methods
of ConcurrentHashMap 364
of Map 257

concat 279
concatenation 25

objects with strings 156
concurrent programming 349, 391

access errors in 134
strategies for 361

ConcurrentHashMap class 363, 384

compute method 364
computeIfXxx methods 364
forEachXxx methods 365
keySet method 367
merge method 364
newKeySet method 367
no null values in 256
putIfAbsent method 364
reduceXxx, searchXxx methods 365
threadsafe 380

ConcurrentModificationException class 252, 367
ConcurrentSkipListXxx classes 367
conditional operator 23
configuration files

editing 211
locating 178
resolving paths for 313

confinement 361
connect 321
Console class 36
ConsoleHandler class 213, 215
constants 17, 112

naming 17
static 83
using in another class 17

Constructor class 183
getModifiers, getName methods 183
newInstance method 186, 187

constructor references 125
annotating 404

constructors 73
abstract classes and 149
annotating 236, 402, 403
canonical, compact, custom 81
documentation comments for 98
executing 74
for subclasses 144
implementing 73
invoking another constructor from 75
no-argument 77, 144, 186
overloading 74
public 73, 183
references in 363

Consumer interface 128
contains method (String) 29
contains, containsAll methods (Collection) 246
containsXxx methods (Map) 257
context class loaders 180
continue keyword 45, 46
control flow 39
conversion characters 37
cooperative cancellation 355
Cooperative scheduling 351
copy method

of Collections 249
of Files 304, 315, 320

copyOf method 52, 189
CopyOnWriteArrayXxx classes 367
CORBA 424
count 272, 280

Index 455

counters
atomic 376
de/incrementing 201

counting 290
country codes 289
covariance 222
createDirectory, createDirectories, createFile methods

(Files) 315
createInstance method 180
createTempXxx methods (Files) 315
critical sections 361, 379, 385
current method

of ProcessHandlex 392
of ThreadLocalRandom 387

D
D 14

conversion character 37
daemon threads 388
Databases 399

persisting objects in 433
DataInput/Output interfaces 310

read/writeXxx methods 310, 311
DataXxxStream classes 311
date classes

immutability of 362
DayOfWeek enumeration 65
deadlocks 361, 380, 384, 385
debugging

messages for 194
overriding methods for 148
primary arrays for 54
streams 279
threads 387
using anonymous subclasses for 146
with assertions 206

DecimalFormat class 86
declaration-site variance 227
decomposition

of classes 58
decrement operator 20
decrementExact method 21
deep copies 161
deepToString method 156
default keyword 114, 407
default label (in switch) 40
default methods 114, 116

conflicts of 115, 154
in interfaces 160

defaultCharset method 305
defaultReadObject method 339, 343
defaultWriteObject method 339
defensive programming 205
deferred execution 126
defineClass method 440
delete, deleteIfExists methods (Files) 316
delimiters, for scanners 307
@deprecated annotation 100, 408, 409

Deque interface 249, 265
Derived classes. See Subclasses
destroy, destroyForcibly methods

of Process 391
of ProcessHandle 393

diamond syntax
for array lists 50
for constructors of generic classes 220

directories 313
checking for existence 315, 317
creating 315, 317
deleting 316, 319
moving 315
temporary 315
user 314
visiting 317
working 388

directory 388
disjoint 249
distinct 279, 296
divideUnsigned method 21
division 19
do 43
doc-files 99
documentation comments 98
@Documented annotation 409, 411
domain names

for modules 425
for packages 86

dot notation 6, 17
double type 13, 51

atomic operations on 379
compare method 118
equals method 158
functional interfaces for 129
isFinite, isInfinite methods 14
NaN, NEGATIVE_INFINITY, POSITIVE_INFINITY values 14
parseDouble method 29
streams of 294
toString method 29
type conversions of 21

double brace initialization 146
DoubleAccumulator, DoubleAdder classes 379
DoubleConsumer, DoubleXxxOperator, DoublePredicate,

DoubleSupplier, DoubleToXxxFunction interfaces 129
DoubleFunction interface 129, 231
doubles 295
DoubleStream interface 294
DoubleSummaryStatistics class 287, 295
downstream collectors 290, 297
Driver.parentLogger method 441
dropWhile method 279
dynamic method lookup 145, 230, 231

E
E 21
e, E

conversion characters 38

456 Index

Eclipse 5
effectively final variables 133
efficiency, and final modifier 148
element 366, 416, 417
Elements 400, 407
else keyword 40
em 99
empty method

of Optional 284
of Stream 273

empty string 27, 156
concatenating 28

encapsulation 64, 423, 424, 425, 433
Encodings. See Character encodings
end 331, 333
End-of-line character. See Line feed
endsWith method 29
enhanced for loop 52, 57, 133

for collections 251
for enumerations 164
for iterators 182
for paths 314

enhanced form 42, 171
Entry 228
entrySet method 258
enum keyword 18, 164, 165
enum instances

adding methods to 166
construction 166
referred by name 168

enumeration sets 265
enumerations 164

annotating 402
comparing 164, 165
constructing 165
customizing serialization of 341
defining 18
nested inside classes 167
serialization of 341
static members of 167
traversing instances of 164
using in switch 167

EnumMap, EnumSet classes 265
environment variables 390
equality, testing for 23
equals method

final 159
null-safe 158
of Arrays 158
of Double 158
of Object 155, 159
of Objects 158
of records 79
of String 27
of subclasses vs. superclass 158
of wrapper classes 51
overriding 157, 159
symmetric 159
values from different classes and 159

equalsIgnoreCase method 28

Error class 194
error messages, for generic methods 221
errorReader method 389
errors

AbstractMethodError 114
AssertionError 206

even numbers 20
Exception class 194
exceptionally 373, 374
exceptionallyCompose method 374
exceptions 193

annotating 404
ArrayIndexOutOfBoundsException 48
ArrayStoreException 145, 223, 235
CancellationException 371
catching 197, 202
chaining 202
checked 186, 194, 197
ClassCastException 110, 232
ClassNotFoundException 195
CloneNotSupportedException 162, 165
combining in a superclass 196
ConcurrentModificationException 252, 367
creating 196
documenting 197
ExecutionException 353
FileNotFoundException 195
generic types and 237
hierarchy of 194
IllegalArgumentException 206
IllegalStateException 287, 365
InaccessibleObjectException 184, 434
IndexOutOfBoundsException 205
InterruptedException 355
InvalidClassException 343
InvalidPathException 313
IOException 195, 200, 307
NoSuchElementException 283, 366
NullPointerException 27, 50, 68, 76, 195, 205, 255,
280
NumberFormatException 195
ReflectiveOperationException 175
rethrowing 200, 203
RuntimeException 194
SecurityException 184
ServletException 203
suppressed 200
throwing 194
TimeoutException 353
uncaught 204
unchecked 194
UncheckedIOException 307

exec 388
Executable class

getModifiers method 187
getName method 187
getParameters method 183, 187

ExecutableElement interface 416
ExecutionException class 353
Executor interface 372

Index 457

executor services 351, 370
ExecutorCompletionService class 354
Executors class

newFixedThreadPool method 351
newVirtualThreadPerTaskExecutor method 351

ExecutorService interface
execute method 351
invokeAll, invokeAny methods 354

exhaustiveness 41
exists 315, 317
exitValue method 391
exports keyword 426, 429, 432

qualified 442
extends keyword 112, 142, 221, 226
Externalizable interface, read/writeExternal

methods 340

F
F 14, 38
factory methods 73, 85
failures, logging 202
false literal 15

as default value 75, 77
Field class 183

get method 184, 186
getBoolean, getByte, getChar, getDouble, getFloat, getInt,
getLong methods 184, 186
getModifiers, getName methods 183, 186
getShort method 184, 186
getType method 183
set, setXxx methods 186

fields 141
enumerating 183
final 359
provided 150
public 183
retrieving values of 184
setting 185
transient 338

File class 315
file attributes

copying 316
filtering paths by 318

file handlers 214
file pointers 311
file.separator package 261
FileChannel class

get, getXxx methods 312
lock method 312
open method 311
put, putXxx methods 312
tryLock method 312

FileFilter interface 129
FileHandler class 213, 215
FileNotFoundException class 195
files

archiving 320
channels to 311

checking for existence 195, 315, 317
closing 198
copy method 304, 315, 320
copying 315
createTempXxx methods 315
createXxx methods 315
creating 313, 317
delete, deleteIfExists methods 316
deleting 316
empty 315
encoding of 304, 305
exists method 315, 317
find method 317, 318
isDirectory, isRegularFile methods 315, 317
lines method 274, 297, 306
list method 317
locking 312
memory-mapped 297, 311
move method 315
moving 315
newBufferedReader method 307
newBufferedWriter method 307, 316
newXxxStream methods 302, 316, 336
random-access 311
read method 303
readAllBytes method 303
readAllLines method 306
reading from/writing to 36, 195, 303
readNBytes method 303
skipNBytes method 303
temporary 315
walk method 317, 320
walkFileTree method 317, 319
write method 308, 316

FileSystem, FileSystems classes 320
FileVisitor interface 319
fill method

of Arrays 53
of Collections 53, 250

Filter class 215
of Optional 282
of Stream 272, 276, 280

filtering 292
final keyword 17, 77, 148
final fields 359
final methods 363
final variables 359, 362
finalize 155
finally keyword 200

for locks 380
return statements in 201

financial calculations 14
find 317, 318
findAll method 332
findAny method 280
findClass method 179
findFirst method 182, 280
first 254
flag bits, sequences of 262
flatMap method

458 Index

of Optional 284, 285
of Stream 277

flatMapping method 291
flip 263
float type 13, 51

streams of 294
type conversions of 21

floating-point types 13
binary number system and 14
comparing 118
division of 20
formatting for output 38
in hexadecimal notation 14
type conversions of 21

floor 254
floorMod method 20
for keyword 43, 44

declaring variables for 47
enhanced 52, 57, 133, 164, 251, 314
multiple variables in 44

forEach method
of ArrayList 124
of Map 257
of Stream 286

forEachOrdered method 286
forEachXxx methods (ConcurrentHashMap) 365
ForkJoinPool class 372

commonPool method 298, 370
format specifiers 37
formatted 39
formatted output 37
Formatter class 215
forms, posting data from 322, 324
forName method

of Charset 306
of Class 174, 175, 176, 179, 180, 195, 204

frequency 250
Function interface 128, 287
function types 121, 127
functional interfaces 123, 409, 410

as method parameters 224
common 128
contravariant in parameter types 225
for primitive types 129
implementing 130

@FunctionalInterface annotation 130, 409, 410, 411
functions 63

higher-order 134
Functions. See Methods
Future interface 354

cancel, isCancelled, isDone methods 353
get method 353, 369

futures 353
completable 369, 375

G
g, G

conversion characters 38

gadget chains 345
garbage collector 267
generate 273, 294
@Generated annotation 409, 410
generators, converting to streams 296
generic classes 50, 220

constructing objects of 220
information available at runtime 239
instantiating 220

generic collections 268
generic constructors 240
generic methods 220

calling 221
declaring 221
information available at runtime 239

generic type declarations 240, 241
generic types 117

annotating 403
arrays of 126
casting 232
exceptions and 237
in JVM 228
invariant 223, 225
lambda expressions and 225
reflection and 238
restrictions on 231

GenericArrayType interface 240
get method

of Array 189
of ArrayList 51
of BitSet 263
of Field 184, 186, 312
of Future 353, 369
of List 248
of LongAccumulator 378
of Map 255, 256
of Optional 283, 285
of Path 314
of ServiceLoader.Provider 182
of Supplier 128

GET requests 323
getAndXxx methods (AtomicXxx) 377
getAnnotation, getAnnotationsByType methods

of AnnotatedConstruct 417
of AnnotatedElement 413, 415

getAsXxx methods
of OptionalXxx 295
of XxxSupplier 129

getAudioClip method 178
getAverage method 287
getBoolean method

of Array 189
of Field 184, 186
of FileChannel 312

getByte method
of Array 189
of Field 184, 186
of FileChannel 312

getCanonicalName method 175, 176
getChar method

Index 459

of Array 189
of Field 184, 186
of FileChannel 312

getClass method 148, 155, 158, 174, 233, 238
getClassLoader method 177
getComponentType method 176, 188
getConstructor(s) methods (Class) 177, 183, 186, 238,

239
getContextClassLoader method 180
getCountry method 289
getCurrencyInstance method 85
getDayOfXxx methods

of LocalDate 65
getDeclaredAnnotationXxx methods

(AnnotatedElement) 413, 415
getDeclaredConstructor(s) methods (Class) 177, 183,

239
getDeclaredField(s) methods (Class) 177
getDeclaredMethod(s) methods (Class) 177, 185
getDeclaringClass method

of Class 176
of Enum 165

getDefault method
of RandomGenerator 7

getDouble method
of Array 189
of Field 184, 186
of FileChannel 312

getElementsAnnotatedWith method 417
getEnclosedElements method 417
getEnclosingXxx methods (Class) 176
getEnumConstants method 239
getErrorStream method 389, 390
getField(s) methods (Class) 177, 183
getFileName method 314
getFilePointer method 311
getFloat method

of Array 189
of Field 184, 186
of FileChannel 312

getHead method 215
getHeaderFields method 321
getInputStream method

of Process 389
of URL 321
of URLConnection 322

getInstant method 216
getInt method

of Array 189
of Field 184, 186
of FileChannel 312

getInterfaces method 176
getLength method 189
getLevel method 216
getLogger method 208, 210
getLoggerName method 216
getLong method

of Array 189
of Field 184, 186
of FileChannel 312

getLongThreadID method 216
getMax method 287
getMessage method 216
getMethod(s) methods (Class) 177, 183, 185
getModifiers method

of Class 176
of Constructor 183
of Executable 187
of Field 183, 186
of Method 183

getMonthValue method
of LocalDate 65

getName method
of Class 174, 176
of Constructor 183
of Executable 187
of Field 183, 186
of Method 183
of Parameter 187
of Path 314
of PropertyDescriptor 188
of System.Logger 210

getOrDefault method 255, 256
getOutputStream method

of Process 389
of URLConnection 321

getPackage method 176
getPackageName method 176
getParameters method

of Executable 183, 187
of LogRecord 216

getParent method 314
getPath method 320
getPercentInstance method 85
getPermittedSubclasses method 176
getProperties method 261
getProperty method 179, 205, 261
getPropertyDescriptors method 188
getPropertyType, getReadMethod methods

(PropertyDescriptor) 188
getQualifiedName method 417
getRecordComponents method 177
getResource method 178
getResourceAsStream method

of Class 177, 178
of Module 435

getResourceBundle, getResourceBundleName methods
(LogRecord) 216

getRoot method 314
getSequenceNumber method 216
getShort method

of Array 189
of Field 184, 186
of FileChannel 312

getSimpleName method
of Class 176
of Element 417

getSourceXxxName methods (LogRecord) 216
getSuperclass method 176, 239
getSuppressed method 200

460 Index

getTail method 215
Getter/setter pairs. See Properties
getThrown method 216
getType method

of Field 183
of Parameter 187

getTypeName method 176
getTypeParameters method 240
getURLs method 179
getValue method 65
getWriteMethod method 188
Goetz, Brian 349
graphemeClusters method

of String 279
group 331, 333
grouping 289

classifier functions of 289
reducing to numbers 290

groupingBy method 289, 292
groupingByConcurrent method 290, 297
GUI

callbacks in 120
long-running tasks in 375

H
h, H conversion characters 38
handle 374
Hansen, Per Brinch 382
hash 160
hash codes 159

computing in String class 160
formatting for output 38

hash functions 159, 253
hash maps

concurrent 363
weak 267

hash tables 252
hashCode method

of Arrays 160
of Enum 165
of Object 155, 157, 159
of records 79

HashMap class 255
null values in 256

HashSet class 252
readObject, writeObject methods 339

Hashtable class 382
hasNext method

declaring 107
of Iterator 251
of Scanner 36, 307

hasNextXxx methods (Scanner) 36, 307
headMap method 268
headSet method

of NavigableSet 254
of SortedSet 254, 268

heap pollution 232, 268
Hello, World! program 1

modular 426
helper methods 228
hexadecimal numbers 13, 14

formatting for output 38
higher 254
higher-order functions 134
hn, hr elements (HTML) 99
Hoare, Tony 382
HTML

generating documentation in 419
including code in 34

HTTP connections 321
HTTP/2 support 321
HttpClient class 321, 324

enabling logging for 324
newBuilder, newHttpClient methods 322, 370

HttpHeaders class 324
HttpResponse interface 323, 324
HttpURLConnection class 321
hyperlinks

in documentation comments 101
regular expressions for 325

I
IDE 3, 5
identity method

of Function 128, 287
of UnaryOperator 128

identity values 293
if keyword 39, 40
ifPresent, ifPresentOrElse methods (Optional) 281
IllegalArgumentException class 206
IllegalStateException class 287, 365
ImageIcon class 178
images, locating 178
img 99
immutability 362
immutable classes 362
implements keyword 107, 108
import keyword 8, 91

no annotations for 404
static 92

import static 168
InaccessibleObjectException class 184, 434
increment 378
increment operator 20
incrementAndGet method 377
incrementExact method 21
indexOf method

of List 248
of String 29

indexOfSubList method 250
IndexOutOfBoundsException class 205
info 392
Information hiding. See Encapsulation
inheritance 142, 163

classes win rule 154, 160
default methods and 154

Index 461

@Inherited annotation 409, 412
initCause method 203
initialization blocks 76

static 84
inlining 148
inner classes 94

anonymous 137
invoking methods of outer classes 96
local 133, 136
syntax for 97

input
reading 35, 306
splitting along delimiters 333

input prompts 37
input streams 301

copying 304
obtaining 302
reading from 302

inputReader method 389
InputStream class 302

transferTo method 304
InputStreamReader class 306
INSTANCE 341
instance methods 6, 70
instance variables 68, 71

abstract classes and 149
annotating 402
comparing 158
default values of 75
final 77
in records 79, 81
initializing 76, 144
not accessible from static methods 85
of deserialized objects 341, 343
protected 149
setting 74
transient 338
vs. local 75

instanceof keyword 110, 146, 158, 159
annotating 404
with pattern matching 110

instances 2, 6
instruction reordering 358
int type 12

functional interfaces for 129
processing values of 127
random number generator for 7
streams of 294
type conversions of 21
using class literals with 175

IntBinaryOperator interface 129
IntConsumer interface 127, 129
Integer class 51

compare method 118
MAX_VALUE, MIN_VALUE constants 12
parseInt method 29, 195
toString method 28
unsigned division in 13
xxxUnsigned methods 21

integer types 12

comparing 118
computing 20, 21
formatting for output 37
in hexadecimal notation 13
reading/writing 310, 311
type conversions of 21
values of

even/odd 20
signed 13

interface keyword 107, 405, 406, 407
sealed 152

interface methods 114, 116
interfaces 106

annotating 402, 403
compatibility of 114
declarations of 106
defining variables in 112
documentation comments for 98
evolution of 114
extending 112
functional 123, 409, 410
implementing 107

multiple 112
methods of 107, 108
nested, enumerating 183
no instance variables in 113
no redefining methods of the Object class in 160
views of 267

interrupted 356
interrupted status 356
InterruptedException class 355
intersects 264
IntFunction interface 129, 231
IntPredicate interface 129
intrinsic locks 380
ints 295
IntSequence 108, 137
IntStream interface 294

parallel method 295
IntSummaryStatistics class 287, 295
IntSupplier, IntToXxxFunction,

IntUnaryOperator interfaces 129
InvalidClassException class 343
InvalidPathException class 313
InvocationHandler interface 190
invoke 185, 187
invokeAll, invokeAny methods (ExecutorService) 354
IOException class 195, 307

addSuppressed, getSuppressed methods 200
isAbstract method 177, 183
isAlive method

of Process 391
of ProcessHandle 393
of Thread 385

isAnnotation method 176
isAnonymousClass method 176
isArray method 176, 188
isAssignableFrom method 176
isCancelled method 353
isDirectory method 315, 317

462 Index

isDone method
of CompletableFuture 371
of Future 353

isEmpty method
of BitSet 264
of Collection 246
of Map 257

isEnum method 176
isEqual method 129
isFinite, isInfinite methods (Double) 14
isInstance method 176
isInterface method 177, 183
isInterrupted method 356
isLocalClass method 176
isLoggable method

of Filter 215
of System.Logger 210

isMemberClass method 176
isNamePresent method 187
isNative method 177, 183
isNull method 124
ISO 8601 format 410
ISO 8859-1 encoding 305, 309
isPresent method 283, 285
isPrimitive method 176
isPrivate, isProtected, isPublic methods (Modifier) 177,

183
isRecord method 176
isRegularFile method 315, 317
isSealed method 176
isStatic, isStrict, isSynchronized methods

(Modifier) 177, 183
isSynthetic method 176
isVolatile method 177, 183
Iterable interface 251, 314

iterator method 251
iterate 274, 279, 294, 368
iterator method

next, hasNext methods 251
of Collection 247
of ServiceLoader 182
of Stream 286
remove, removeIf methods 251

iterators 251, 286
converting to streams 275, 296
invalid 252
traversing 182
weakly consistent 367

J
jar 87

--module-version option 436
-C option 436
-d option 436

JAR files 87
dependencies in 444
for split packages 436
manifest for 438

modular 436
processing order of 89
resources in 178
scanning for deprecated elements 409

Java 3
--add-exports, --add-opens options 440
--add-module option 437
--illegal-access option 439
-cp (--class-path, -classpath) option 89
-da (-disableassertions) option 207
-ea (-enableassertions) option 206
-esa (-enablesystemassertions) option 207
-m, -p (--module, --module-path) options 426, 436
compatibility with older versions of 153, 154, 228
online API documentation on 30, 32
option files for 440
option names in 88
strongly typed 15
Unicode support in 30
uniformity of 2, 116

Java Persistence Architecture 399
Java Platform Module System 423

layers in 437
migration to 437, 439
no support for versioning in 425, 427, 436
service loading in 443

java.awt package 90, 424
java.awt.geom package 338
java.base package 428
java.class.path package 261
java.desktop package 428
java.home package 261
java.io.tmpdir package 261
java.lang, java.lang.annotation packages 408
java.lang.reflect package 183
java.logging package 441
java.time package

immutability of classes 362
java.util package 8, 367
java.util.concurrent package 363, 366
java.util.concurrent.atomic package 376
java.util.logging package 207, 211
java.util.random package 106
java.version package 261
JavaBeans 187
javac 3

-author option 102
-cp (--class-path, -classpath) option 89
-d option 87, 102
-link, -linksource options 102
-parameters option 183
-processor option 416
-version option 102
-XprintRounds option 419

javadoc 98
including annotations in 411

JavaFX 120, 376
javan.log files 213
JavaServer Faces framework 259
javax.annotation package 408

Index 463

javax.swing package 428
JAXB 433
JCommander 399
jconsole 213
jdeprscan 409
jdeps 444
JDK 3

obsolete features in 424
JEP 246 (platform logging API) 207
jlink 445
jmod 446
job scheduling 266
join method

of String 26
of Thread 385

joining 287
JPA 433
JShell 8

imported packages in 11
loading modules into 437

JSON 150
JUnit 399, 400

K
key/value pairs

in annotations 400, 407
in maps 254
removed by garbage collector 267

Key/value pairs. See Properties
keySet method

of ConcurrentHashMap 367
of Map 258, 267

keywords 16
contextual 153

L
L 13
L64X128MixRandom 106
labeled statements 45, 46
lambda expressions 121

annotating targets for 410
capturing variables in 132
executing 127
for loggers 209
generic types and 225
parameters of 122
processing 126
return type of 122
scope of 131
this reference in 131
throwing exceptions in 197
using with streams 276, 368

language codes 289
language model API 416
last 254
lastIndexOf method

of List 248

of String 29
lastIndexOfSubList method 250
lazy operations 272, 276, 279, 333
length method

of arrays 48
of RandomAccessFile 311
of String 7, 33

.level 212
lib/modules 446
limit 278, 297
line feed 34

character literal for 15
formatting for output 38
in regular expressions 329

line.separator package 262
lines method

of BufferedReader 307
of Files 274, 297, 306

@link annotation 101
linked lists 248, 252
LinkedBlockingQueue class 366, 384
LinkedHashMap class 259
LinkedList class 248
List class 226, 247, 248, 317

add, addAll, get, indexOf, lastIndexOf, listIterator
methods 247
of method 51, 53, 248, 264
remove, replaceAll, set, sort methods 248
subList method 248, 267

ListIterator interface 252
lists

converting to streams 296
mutable 265
printing elements of 124
removing null values from 124
sublists of 267
unmodifiable views of 268

literals
character 14
floating-point 14
integer 13
string 27, 33

little-endian format 305
load 182, 444
load balancing 336
loadClass method 179
local classes 136
local variables 46

annotating 402, 403
vs. instance 75

LocalDate class 64
getXxx methods 65
now method 73, 85
of method 64, 73
plus, plusXxx methods 65, 66, 68

Locale class 288
getCountry method 289

locales 288, 291
LocalTime class

final 148

464 Index

lock method
of FileChannel 312
of ReentrantLock 380

locks 361
error-prone 362
intrinsic 380
reentrant 379
releasing 201, 359

log handlers 213
filtering/formatting 215

Log4j 207
Logback 207
Logger class (java.util.logging) 441
Logger interface (System) 208, 211

getName method 210
isLoggable method 210
log method 208, 210

loggers
filtering/formatting 215
hierarchy of 212
naming 208

logging 207
configuring 211, 213
failures 202
levels of 209, 213
overriding methods for 148

LogRecord class, methods of 216
long type 12, 51

atomic operations on 377, 379
functional interfaces for 129
MAX_VALUE, MIN_VALUE constants 12
streams of 294
type conversions of 21
unsigned division in 13
xxxUnsigned methods 21

long-term persistence 342
LongAccumulator class 377

accumulate, get methods 378
LongAdder class 377, 379

add, increment, sum methods 378
threadsafe 380

LongConsumer, LongXxxOperator, LongPredicate, LongSupplier,
LongToXxxFunction interfaces 129

LongFunction interface 129, 231
longs 295
LongStream interface 294
LongSummaryStatistics class 287, 295
Lookup 435
lookup method (MethodHandles) 435
loops 43

exiting 44
infinite 44

lower 254

M
main 2, 6

decomposing 58
string array parameter of 54

Map interface 249
clear method 257
compute method 257
computeIfXxx methods 257
containsXxx methods 257
entrySet method 258
forEach method 257
get, getOrDefault methods 255, 256
isEmpty method 257
keySet method 258, 267
merge method 255, 256
of method 258, 264
of Optional 282
of Stream 276
ofEntries method 264
put method 254, 256
putAll method 257
putIfAbsent method 256
remove method 257
replace, replaceAll methods 257
size method 257
values method 258, 267

mapping method 291
of Collectors 291

maps 254
concurrent 257, 289
empty 257
iterating over 258
of stream elements 287, 297
order of elements in 259
views of 258

unmodifiable 268
mapToInt method 293
mapToXxx methods (XxxStream) 295
marker interfaces 162
Matcher class 330, 333

methods of 334
matcher, matches methods (Pattern) 330
MatchResult interface 331, 335
Math class

E constant 21
floorMod method 20
max, min methods 21
PI constant 21, 83, 92
pow method 21, 84, 92
round method 22
sqrt method 21
TAU constant 21
xxxExact methods 21, 23

max method
of Stream 280
of XxxStream 295

MAX_VALUE 12
maxBy method

of BinaryOperator 129
of Collectors 291

memory
allocating 361
caching 358
concurrent access to 359

Index 465

memory-mapped files 311
merge method

of ConcurrentHashMap 364
of Map 255, 256

Message 162, 163
meta-annotations 406, 412
META-INF/MANIFEST.MF 438
META-INF/services 443
Method class 183

getModifiers, getName methods 183
invoke method 185, 187

method calls 6
receiver of 70

method expressions 124, 147
method references 124, 233

annotating 404
MethodHandles.lookup method 435
methods 2

abstract 123, 148
accessor 66, 79
annotating 236, 402
atomic 364
body of 69
chaining calls of 65
clashes of 236
compatible 160
declarations of 69
default 114, 116
deprecated 100, 408, 409
documentation comments for 98, 99
enumerating 183
factory 73, 85
final 148, 363
for throwing exceptions 204
header of 69
inlining 148
instance 70
invoking 185
modifying functions 135
mutator 66, 268, 363
naming 16, 79
native 84
overloading 74, 125
overriding 114, 143, 148, 197, 408, 409
parameters of 183

null checks for 204
passing arrays into 58
private 116
proxied 191
public 107, 108, 183
restricted to subclasses 149
return value of 2, 69
returning functions 134
static 58, 84, 85, 92, 113
storing in variables 7
symmetric 159
synchronized 381, 384
used for serialization 408, 410
utility 90
variable number of arguments of 59

Microsoft Notepad 305
Microsoft Windows

line ending in 34
path separator in 89, 262

min method
of Math 21
of Stream 280
of XxxStream 295

MIN_VALUE 12
minBy method

of BinaryOperator 129
of Collectors 291

Modifier class
isXxx methods 177, 183
toString method 177

modifiers, checking 183
module keyword 426
module path 426, 436, 438
module-info.class 426, 436
module-info.java 426
Module.getResourceAsStream method 435
modules 423

aggregator 441
annotating 427
automatic 437, 439
bundling up the minimal set of 445
declaration of 425, 426
documentation comments for 98, 102
explicit 439
illegal access to 439
inspecting files in 446
loading into JShell 437
naming 425, 438
open 434
reflective access for 184, 185
required 427, 440
tools for 444
transitive 440
unnamed 438
versioning and 425, 427, 436

monitors (classes) 382
move 315
multiplication 19
mutators 66

unmodifiable views and 268

N
n

conversion character 38
name 165
NaN 14
native encoding 305
native methods 84
naturalOrder method 136
navigable maps/sets 268
NavigableMap interface 367
NavigableSet interface 249, 253, 268

methods of 254

466 Index

nCopies method 248, 250
negate 129
negateExact method 21
negative values 12
NEGATIVE_INFINITY 14
nested classes 92

annotating 403
enumerating 183
inner 94
public 93
static 93

new keyword 7, 15, 18, 74
as constructor reference 125
for anonymous classes 138
for arrays 48, 49, 56

newBufferedReader method 307
newBufferedWriter method 307, 316
newBuilder method 322, 370
newFileSystem method 320
newFixedThreadPool method

of Executors 351
newHttpClient method 322, 370
newInputStream method 302, 316, 336
newInstance method

of Array 189
of Class 186, 238
of Constructor 186, 187

newKeySet method 367
newOutputStream method 302, 316, 336
newProxyInstance method 190
newVirtualThreadPerTaskExecutor method

of Executors 351
next method

declaring 107
of Iterator 251
of Scanner 35

nextClearBit method 263
nextDouble method

common for all generators 106
of Scanner 35, 307

nextInt method
common for all generators 106
of Random 7
of Scanner 35

nextLine method 35
nextSetBit method 263
nominal typing 127
non-sealed keyword 152
noneMatch method 281
noneOf method 265
noninterference, of stream operations 276
@NonNull annotation 403
normalize 314
NoSuchElementException class 283, 366
notify, notifyAll methods (Object) 384
now method

of LocalDate 73, 85
null literal 27, 67

as default value 75, 77
checking parameters for 204

comparing against 158
converting to strings 156

NullPointerException class 27, 50, 68, 76, 195, 205,
255
vs. Optional 280

nullsFirst, nullsLast methods (Comparator) 136
NumberFormat class

getXxxInstance methods 85
NumberFormatException class 195
numbers

average of 107, 108
big 24
comparing 118
converting to strings 28
default value of 75, 77
even or odd 20
formatting 37
from grouped elements 290
in regular expressions 327
non-negative 206, 262
printing 37
random 7, 106, 273, 278, 295
reading/writing 307, 310, 311
rounding 14, 22
type conversions of 21
unsigned 13, 21
with fractional parts 13

O
o 38
Object class 154

clone method 150, 155, 161, 185
equals method 155, 159
finalize method 155
getClass method 148, 155, 158, 174, 233, 238
hashCode method 155, 157, 159
notify, notifyAll methods 384
toString method 155, 157
wait method 383, 384

object references 66
attempting to change 72
comparing 157
default value of 75, 77
null 67
passed by value 73
serialization and 337

object-oriented programming 63
encapsulation in 423, 424

object-relational mappers 433
ObjectInputStream class 336, 337

defaultReadObject method 339, 343
readDouble method 339
readFields method 343
readObject method 337, 345

ObjectInputValidation interface 344, 345
ObjectOutputStream class 336

defaultWriteObject method 339
writeDouble method 339

Index 467

writeObject method 336, 339
objects 2, 63

calling methods on 7
casting 109
checkIndex method 205
cloning 161
comparing 51, 157
constructing 7, 73, 186
converting

to JSON 433
to strings 155

converting to streams 274
deep/shallow copies of 161, 163
deserialized 341, 343
equals method 158
hash method 160
immutable 66
initializing variables with 15
inspecting 184
invoking static methods on 85
isNull method 124
mutable 77
requireNonNull, requireNonNullXxx methods 204
serializable 336
sorting 117
state of 63

ObjXxxConsumer interfaces 129
octal numbers 13

formatting for output 38
octonions 30
odd numbers 20
of method

of EnumSet 265
of IntStream 294
of List 51, 53, 248, 264
of LocalDate 64, 73
of Map 258, 264
of Optional 284
of Path 313, 314, 320
of ProcessHandle 392
of Set 264
of Stream 273

ofEntries method 264
offer 366
ofNullable method

of Optional 284
of Stream 274, 286

ofString method 323
onExit method

of Process 391
of ProcessHandle 393

open keyword 311
open keyword 435
openConnection method 321
opens keyword 434

qualified 442
openStream method 302
Operation 166
operations

associative 293

atomic 361, 364, 376, 382
bulk 365
lazy 272, 276, 279, 333
parallel 368
performed optimistically 377
stateless 296
threadsafe 363

operators 18
cast 22
precedence of 19

option files 440
Optional class 280, 285

creating values of 284
empty method 284
filter method 282
flatMap method 284, 285
for empty streams 292, 293
for processes 392
get method 283, 285
ifPresent method 281
ifPresentOrElse method 282
isPresent method 283, 285
map method 282
of, ofNullable methods 284
or method 282
orElse method 280
orElseThrow method 281, 283
proper usage of 283
stream method 285

OptionalXxx classes 295
or method

of BitSet 263
of Predicate, BiPredicate 129

order 312
ordinal 165
orElseThrow method 281, 283
org.omg.corba package 424
orTimeout method 374
os.arch, os.name, os.version system properties 261
OSGi 424
output

formatted 37
writing 307

output streams 301
closing 303
obtaining 302
writing to 303

OutputStream class 336
write method 303

OutputStreamWriter class 307
outputWriter method 389
@Override annotation 144, 338, 341, 408, 409
overriding 143

for logging/debugging 148
overview.html package 102

P
package keyword 87

468 Index

package declarations 86
package-info.java 102, 402
packages 2, 86

accessing 90, 150, 424, 430, 431, 434, 437
adding classes to 91
annotating 402, 403
default 87
documentation comments for 98, 102
exporting 429, 435
naming 86
not nesting 86
split 436

parallel 295
parallel streams 368
parallelStream method 247, 272, 295, 368
parallelXxx methods (Arrays) 54, 369
@param annotation 99
Parameter class 187
parameter variables 72

annotating 402
scope of 47

Parameterized types. See Type parameters
ParameterizedType interface 240
Parent classes. See Superclasses
parentLogger method (Driver) 441
parseDouble method 29
parseInt method 29, 195
partitioning 362
partitioningBy method 289, 292
Pascal triangle 56
passwords 36
Path interface 114, 313

get method 314
getXxx methods 314
normalize method 314
of method 313, 314, 320
relativize method 314
resolve, resolveSibling methods 313
subpath method 314
toAbsolutePath, toFile methods 314

path separators 313
path.separator package 262
Paths class 114, 313

absolute vs. relative 313, 314
combining 314
filtering 318
resolving 313
taking apart 314

Pattern class
asMatchPredicate, asPredicate methods 331
compile method 330, 335
flags 335
matcher, matches methods 330
split method 333
splitAsStream method 274, 333
splitWithDelimiters method 333

pattern variables 215
Pattern.quote method 326
PECS (producer extends, consumer super) 225
peek method

of BlockingQueue 366
of Stream 279

performance
atomic operations and 377
big numbers and 24
combined operators and 20
memory caching and 358

permits keyword 152
@Persistent annotation 412
PI 21, 83, 92
Picocli 399
platform class loader 178
platform logging API 207, 212
Platform threads 350
plugins, loading 179
plus, plusXxx methods

of LocalDate 65, 66, 68
Point class 155
poll 366
pollXxx methods (NavigableSet) 254
pools, for parallel streams 298
pop 266
POSITIVE_INFINITY 14
POST requests 323
postVisitDirectory method 319
pow 21, 84, 92
predefined character classes 325, 327, 329
Predicate interface 123, 129

and method 129
isEqual method 129
or, negate methods 129
test method 129, 224

predicate functions 289
previous method

of ListIterator 252
previousClearBit method 263
previousSetBit method 263
preVisitDirectory method 319
primitive types 12

comparing 158
converting to strings 156
functions interfaces for 129
passed by value 73
streams of 293, 295
type parameters and 231
variables of, no updating for 72
wrapper classes for 51

printStackTrace method 204
PrintStream class 6, 156, 308

print method 6, 37, 207, 308
printf method 37, 38, 59, 308
println method 6, 7, 35, 37, 54, 124, 308

PrintWriter class 308
close method 198, 199
print method 308
printf method 308
println method 308

priority queues 266
private keyword 2, 90

for enum constructors 166

Index 469

Process class 388
destroy, destroyForcibly methods 391
errorReader method 389
exitValue method 391
getErrorStream method 389, 390
getInputStream, getOutputStream methods 389
inputReader method 389
isAlive method 391
onExit method 391
outputWriter method 389
supportsNormalTermination method 391
toHandle method 392
waitFor method 391

ProcessBuilder class 388
directory method 388
redirectXxx methods 389, 390
start, startPipeline methods 390

processes 388
building 388
getting info about 392
killing 391
running 390

ProcessHandle interface 392
allProcesses method 392
current method 392
destroy, destroyForcibly methods 393
info method 392
isAlive method 393
of method 392
onExit method 393
supportsNormalTermination method 393

processing pipeline 371, 390
Processor interface 416
programming languages

functional 105
object-oriented 2

programs
compiling 3
configuration options for 260
packaging 446
responsive 375
running 3
testing 206

promises (in concurrent libraries) 370
properties 187, 260

loading from file 261
naming 188
read-only/write-only 187
testing for 224

property files
encoding 261
generating 419

protected keyword 149
Provider.get, Provider.type methods 182
provides keyword 444
Proxy class 190

newProxyInstance method 190
public keyword 2, 90

for interface methods 107, 108
method overriding and 144

push 266
put method

of BlockingQueue 365
of FileChannel 312
of Map 254, 256

putAll method 257
putBoolean method

of FileChannel 312
putByte method 312
putChar method 312
putDouble, putFloat methods

of FileChannel 312
putIfAbsent method

of ConcurrentHashMap 364
of Map 256

putInt, putLong methods
of FileChannel 312

putShort method 312

Q
qualified exports 442
Queue class 249, 265

synchronizing methods in 382
using ArrayDeque with 266

quote method (Pattern) 326
quoteReplacement method 334

R
race conditions 296, 359
Random class 7, 106

nextInt method 7
random numbers 7, 106

streams of 273, 278, 295
RandomAccess interface 248
RandomAccessFile class 311

getFilePointer method 311
length method 311
seek method 311

RandomGenerator interface 106
getDefault method 7
methods of 295

RandomNumbers 85
range 265
range, rangeClosed methods (XxxStream) 294
ranges 267

converting to streams 296
raw types 228, 232
read method

of Files 303
of InputStream 302
of InputStreamReader 306

readAllXxx methods (Files) 303, 306
readByte, readChar methods (DataInput) 310
readDouble method

of DataInput 310
of ObjectInputStream 339

Reader class 306

470 Index

readers 301
readExternal method 340
readFields method 343
readFloat, readFully methods (DataInput) 310
readInt method 310, 311
readLine method

of BufferedReader 307
of Console 36

readLong method 310
readNBytes method 303
readObject method

of HashSet 339
of ObjectInputStream 337, 345

readPassword method 36
readResolve method 341
readShort method 310
readUnsignedXxx, readUTF methods (DataOutput) 310
receiver parameters 70, 405
records 78

customizing serialization of 341
serializable 344

redirection syntax 36
redirectXxx methods (ProcessBuilder) 389, 390
reduce 292
reduceXxx methods (ConcurrentHashMap) 365
reducing 292
reductions 280, 292
ReentrantLock class 379

lock, unlock methods 380
reflection 183

generic types and 233, 238
module system and 184, 185, 433, 440
processing annotations with 413
security and 345

ReflectiveOperationException class 175
regular expressions 325

flags for 335
groups in 332
replacing matches with 334
splitting input with 333
testing matches of 330, 332
turning into predicates 331

relational operators 23
relativize 314
remainderUnsigned method 21
remove method

of ArrayDeque 266
of ArrayList 51
of BlockingQueue 365
of Collection 246
of Iterator 251
of List 248
of Map 257

removeAll method 246
removeIf method

of ArrayList 123
of Collection 246
of Iterator 251

@Repeatable annotation 409, 412
@RepeatedTest annotation 401

replace method
of Map 257
of String 29

replaceAll method
of Collections 249
of List 248
of Map 257
of Matcher 334, 335
of String 334

replaceFirst method 335
requireNonNull, requireNonNullXxx methods (Objects) 204
requires keyword 426, 429, 432, 437, 440
Reserved words. See Keywords
resolve, resolveSibling methods (Path) 313
resources 174

loading 178, 435
managing 198

resume 385
retainAll method 246
@Retention annotation 406, 409
return keyword 58, 69, 99

in finally blocks 201
in lambda expressions 122

return types, covariant 144, 231
return values

as arrays 59
missing 280
providing type of 58

reverse 54, 250
reverse domain name convention 86, 425
reversed 135
reverseOrder method 136
rotate 250
round 22
RoundEnvironment interface 417
roundoff errors 14
RowSetProvider class 440
runAfterXxx methods (CompletableFuture) 374, 375
Runnable interface 119, 128, 352, 353

executing on the UI thread 376
run method 128, 350, 355, 385
using class literals with 175

runtime
availableProcessors method 351
exec method 388
raw types at 232
safety checks at 229

runtime image file 446
RuntimeException class 194

S
s, S conversion characters 38
safety checks, as runtime 229
@SafeVarargs annotation 235, 409, 410
sample code 6
Scala 227
Scanner class 35

findAll method 332

Index 471

hasNext, hasNextXxx methods 35, 307
next, nextXxx methods 35, 307
tokens method 274, 307

sealed keyword 152
sealed types 150
searchXxx methods (ConcurrentHashMap) 365
security 91, 344
SecurityException class 184
@see annotation 101
seek 311
sequences, producing 274
@Serial annotation 338, 341, 408, 410
serial numbers 337
Serializable interface 336

readResolve, writeReplace methods 341
serialization 336

filters for 345
serialVersionUID method 343
server-side software 336
ServiceLoader class 181, 443

iterator method 182
load method 182, 444

ServiceLoader.Provider interface 182
services

configurable 181
loading 181, 443

ServletException 203
set method 249, 367

of Array 189
of ArrayList 51
of BitSet 263
of Field 186
of List 248
of ListIterator 252
of method 264
working with EnumSet 265

setAccessible method 184, 185, 186
setAll method 127
setBoolean, setByte, setChar methods

of Array 189
of Field 186

setClassAssertionStatus method 207
setContextClassLoader method 180
setDaemon method 388
setDefaultAssertionStatus method 207
setDefaultUncaughtExceptionHandler method 204
setDoOutput method 321
setDouble, setFloat, setInt, setLong methods

of Array 189
of Field 186

setOut method 84
setPackageAssertionStatus method 207
setProperty method 211
setRequestProperty method 321
sets 252

immutable 362
threadsafe 367
unmodifiable views of 268

setShort method
of Array 189

of Field 186
setUncaughtExceptionHandler method 385
shallow copies 161, 163
shared variables 359, 362

atomic mutations of 376
locking 379

shell
redirection syntax of 36
scripts for, generating 419

shift operators 24
Shift_JIS encoding 305
short type 12, 51

MAX_VALUE, MIN_VALUE constants 12
streams of 294
type conversions of 22

short circuit evaluation 23
short-term persistence 342
shuffle 54, 250
SimpleFileVisitor class 319
@since annotation 100
singletons 341
size method

of ArrayList 51
of Collection 246
of Map 257

skip 278
skipNBytes method 303
sleep 355
SLF4J 207, 425
SOAP protocol 424
SocketHandler class 213
sort method

of Arrays 54, 118, 119, 123, 124
of Collections 54, 226, 227, 240, 250
of List 248

sorted 279
sorted maps 267, 268
sorted sets 249, 267

traversing 253
unmodifiable views of 268

sorted streams 296
SortedMap interface 268
SortedSet interface 249, 253

first method 254
headSet method 254, 268
last method 254
subSet, tailSet methods 254, 268

sorting
array lists 54
arrays 54, 117
chaining comparators for 135
changing order of 134
streams 279
strings 28, 124

source code, generating 409, 410, 417
source files

documentation comments for 102
placing, in a file system 87

space flag (for output) 39
spaces

472 Index

in regular expressions 327
removing 29

split method
of Pattern 333
of String 26, 333

splitAsStream method 274, 333
spliterator 247
Spliterators class

spliteratorUnknownSize method 275
splitWithDelimiters method 333
SQL 34
sqrt 21
square root, computing 284
Stack class 265
stack trace 203, 205
StackWalker class 204
standard output 2
StandardCharsets class 305
start method

of Matcher, MatchResult 331, 333
of ProcessBuilder 390
of Thread 385

startPipeline method 390
startsWith method 29
stateless operations 296
statements, combining 48
static keyword 2, 17, 58, 82, 167

for modules 442
static constants 83
static imports 92
static initialization 179
static methods 58, 84, 85

accessing static variables from 85
importing 92
in interfaces 113, 114

static nested classes 93
static variables 82

accessing from static methods 85
importing 92
visibility of 359

stop 385
Stream interface

anyMatch method 281
collect method 286, 294
concat method 279
count method 272, 280
distinct method 279, 296
dropWhile method 278
empty method 273
filter method 272, 276, 280
findAny method 280
findFirst method 182, 280
flatMap method 277
forEach, forEachOrdered methods 286
generate method 273, 294
iterate method 274, 279, 294, 368
iterator method 286
limit method 278, 297
map method 276
mapToInt method 293

max, min methods 280
noneMatch method 281
of Arrays 273, 294
of BitSet 263
of Collection 247, 272
of method 273
of Optional 285
of StreamSupport 275
ofNullable method 274, 286
peek method 279
reduce method 292
skip method 278
sorted method 279
takeWhile method 278
toArray method 126, 286
toList method 275
unordered method 296

streams 271, 276
collecting elements of 286, 289
combining 278
computing values from 292
converting to/from arrays 273, 286, 296, 369
creating 273
debugging 279
empty 273, 280, 292, 293
filtering 285
finite 274
flattening 277, 285
infinite 272, 273, 278, 279
intermediate operations for 273
locating services with 182
noninterference of 276
of primitive type values 293, 295
of random numbers 295
ordered 296
parallel 272, 280, 286, 289, 290, 293, 295, 368
processed lazily 272, 276, 279
reductions of 280
removing duplicates from 279
returned by Files.lines 297
sorting 279
splitting 278
summarizing 287, 295
terminal operation for 273, 280
transformations of 276, 295
vs. collections 272

StreamSupport class
stream method 275

String class 7, 29
charAt method 33
compareTo method 28, 117
compareToIgnoreCase method 124
contains method 29
endsWith method 29
equals method 27
equalsIgnoreCase method 28
final 148
formatted method 39
graphemeClusters method 279
hash codes 160

Index 473

immutability of 30, 362
indexOf, lastIndexOf methods 29
join method 26
length method 7, 33
replace method 29
replaceAll method 334
split method 26, 333
startsWith method 29
substring method 26
toLowerCase method 29, 276
toUpperCase method 29

StringBuilder class 26
strings 7, 25

comparing 27
concatenating 25, 156
converting

from byte arrays 306
from objects 155
to numbers 28

converting to code points 277
empty 27, 28, 156
formatting for output 38
internal representation of 33
sorting 28, 124
splitting 26, 274
transforming to lower/uppercase 276

StringWriter class 309
strip 29
strong 99
subclasses 142

anonymous 146, 166
calling toString method in 156
constructors for 144
inheriting annotations 409
initializing instance variables in 144
methods in 142
preventing 148
public 144
superclass assignments in 145

subList method 248, 267
subMap method 268
subpath 314
subSet method

of NavigableSet 254
of SortedSet 254, 268

substring 26
subtractExact method 21
subtraction 19

accurate 25
not associative 293

subtypes 109
wildcards for 223

sum method
of LongAdder 378
of XxxStream 295

summarizingXxx methods (Collectors) 287, 291
summaryStatistics method 295
summingXxx methods (Collectors) 290
super keyword 115, 143, 144, 147, 224, 227
superclasses 142

annotating 403
calling equals method on 158
default methods of 154
methods of 143
public 144
serializability of 337

supertypes 109, 110, 112
wildcards for 224

Supplier interface 128, 370
supplyAsync method 370, 371
supportsNormalTermination method

of Process 391
of ProcessHandle 393

@SuppressWarnings annotation 232, 409, 410, 411, 427
suspend 385
swap 250
Swing GUI toolkit 120, 376
SwingConstants interface 112
SwingWorker class 376
switch keyword 40

enhanced 42, 171
exhaustive 41
fall-through variant of 42
using enumerations in 167
with pattern matching 151

symbolic links 317, 318
synchronized keyword 379, 384
synchronized views 269
synchronizedXxx methods (Collections) 250
System class

getLogger method 208, 210
getProperties method 261
getProperty method 179, 205, 261
setOut method 84
setProperty method 211

system class loader 178, 180
system classes, enabling/disabling assertions for 207
system properties 261, 262
System.err 203, 213, 388
System.in 35
System.Logger interface 208, 211

getName method 210
isLoggable method 210
log method 208, 210

System.Logger.Level enumeration 209
System.out 6, 7, 17, 35, 38, 54, 59, 83, 124, 207, 308

T
t, T conversion characters 38
tab completion 10
tagging interfaces 162
tailMap method 268
tailSet method

of NavigableSet 254
of SortedSet 254, 268

take 365
takeWhile method 278
tar 87, 88

474 Index

@Target annotation 406, 409
tasks 350

canceling 354
combining results from 353
computationally intensive 351
coordinating work between 365
defining 119
executing 351
executing in a thread 120
groups of 387
long-running 375
running 350
submitting 353
vs. threads 351
working simultaneously 370

TAU 21
teeing 292
terminal window 3, 4
test method 400, 405, 406

of BiPredicate 129
of Predicate 129, 224
of XxxPredicate 129

text blocks 33
thenAccept method 369, 373
thenAcceptBoth method 374
thenApply, thenApplyAsync methods

(CompletableFuture) 372, 373
thenCombine method 374
thenComparing method 135
thenCompose method 373
thenRun method 374
third-party libraries 437, 438
this keyword 71

annotating 405
in constructors 75, 363
in lambda expressions 131
in method references 125

Thread class
getContextClassLoader method 180
interrupted, isInterrupted methods 356
isAlive method 385
join method 385
properties 387
resume method (deprecated) 385
setContextClassLoader method 180
setDaemon method 388
setDefaultUncaughtExceptionHandler method 204
setUncaughtExceptionHandler method 385
sleep method 355
start method 351, 385
stop, suspend methods (deprecated) 385

ThreadLocal class 386
ThreadLocalRandom.current method 387
threads 350, 384

atomic mutations in 376
daemon 388
groups of 387
interrupting 354, 355
locking 379
names of 387

platform 350
priorities of 387
race conditions in 296, 359
running tasks in 119
starting 385
states of 387
terminating 353
uncaught exception handlers of 388
virtual 350
visibility and 357, 381
vs. tasks 351
waiting on conditions 382
worker 375

throw keyword 194
Throwable class 194

in assertions 206
initCause method 203
no generic subtypes for 237
printStackTrace method 204

@throws annotation 99, 196, 197
type variables in 237

TimeoutException class 353
Timestamp class 159
toAbsolutePath method 314
toArray method

of Collection 247
of Stream 126, 286
of XxxStream 295

toByteArray method
of BitSet 263
of ByteArrayOutputStream 302

toCollection method 287
toConcurrentMap method 289
ToDoubleFunction interface 129, 231
toFile method 315
toGenericString method 176
toHandle method 392
toIntExact method 23
ToIntFunction interface 129, 231
tokens 274, 307
toList method 275
toLongArray method 263
ToLongFunction interface 129, 231
toLowerCase method 29, 276
toMap method 287
toPath method 315
toSet method 287, 290
toString method

calling from subclasses 156
of Arrays 54, 156
of BitSet 263
of Class 176
of Double 28
of Enum 165
of Integer 28
of Modifier 177
of Object 155, 157
of Point 155
of records 79

toUnsignedInt method 13

Index 475

toUpperCase method 29
transferTo method 304
transient keyword 338
transitive keyword 441
TreeMap class 255, 288
TreeSet class 252
Troubleshooting. See Debugging
true literal 15
try keyword 197, 202

for visiting directories 317
try-with-resources 198

closing output streams with 303
for file locking 312

tryLock method 312
trySetAccessible method 184
Type interface 240
type bounds 221, 240

annotating 404
type erasure 228, 236

clashes after 236
type method (ServiceLoader.Provider) 182
type parameters 117, 220

annotating 402
primitive types and 220, 231

type variables
exceptions and 237
in static context 236
no instantiating of 233
wildcards with 226

TypeElement interface 417
TypeVariable interface 240

U
U+ 30
UnaryOperator interface 128
uncaught exception handlers 385, 388
unchecked exceptions 194

documenting 197
generic types and 238

UncheckedIOException class 307
Unicode 30, 294, 304

replacement character in 309
Unit tests 399
Unix

executable files in 4
path separator in 89, 262
wildcard in classpath in 89

unlock 380
unmodifiableXxx methods (Collections) 250
unordered 296
updateAndGet method 377
URI class 323
URL class 323

final 148
getInputStream method 321
openConnection method 321
openStream method 302

URLClassLoader class 179

URLConnection class 321
connect method 321
getHeaderFields method 321
getInputStream method 322
getOutputStream method 321
setDoOutput method 321
setRequestProperty method 321

URLs, reading from 302, 321
user.dir, user.home, user.name system properties 261
uses keyword 444
UTF-16 14, 30, 294, 305

in regular expressions 326
UTF-8 304

modified 310
Util.createInstance 180
utility classes 90, 180

V
validateObject method 344, 345
valueOf method

of BitSet 264
of Enum 164, 165

values method
of Enum 164
of Map 258, 267

var keyword 15, 16
varargs parameters

declaring 59
safety of 409, 410

VarHandle class 435
variable handles 435
VariableElement interface 416
variables 7, 15

atomic mutations of 376
capturing, in lambda expressions 132
declaring 15, 17
defined in interfaces 112
deprecated 100, 408, 409
documentation comments for 98, 100
effectively final 133
final 359, 362
holding object references 66
initializing 15, 17
instance 68, 71, 74, 77, 79, 81, 85, 144, 149, 158,
338, 341, 343
local 46
naming 16
parameter 72
private 68, 90
public static final 112
redefining 47
scope of 46, 90
shared 359, 362, 379
static 82, 85, 92, 359
thread-local 386
using an abstract class as type of 149
visibility of 357, 381
volatile 359

476 Index

@version annotation 99, 102
versioning 342
views 267
virtual machine 3

instruction reordering in 358
Virtual threads 350
visibility 357

guaranteed with locks 381
visitFile, visitFileFailed methods (FileVisitor) 319
void keyword 2, 58

using class literals with 175
volatile keyword 359

W
wait 383, 384
waitFor method 391
waiting on a condition 383
walk 317, 320
walkFileTree method 317, 319
warning 409
warnings, suppressing 232, 235, 410
weak references 267
weaker access privilege 144
WeakHashMap class 267
weakly consistent iterators 367
WeakReference class 267
web pages

extracting links from 371
reading 373, 375

whenComplete method 370, 373, 374
while keyword 43

breaking/continuing 45, 46
declaring variables for 47

white space
in regular expressions 327
in text blocks 34
removing 29

wildcards
annotating 404
capturing 227
for annotation processors 416
for types 223, 225
in class path 89
unbounded 227
with imported classes 91
with type variables 226

WildcardType interface 240
Window class 90

WindowAdapter class 114
WindowListener interface 114
words

in regular expressions 327
reading from a file 307

working directory 314, 388
wrapper classes 51
write method

of Files 308, 316
of OutputStream 303
of Writer 307

writeByte, writeChar methods (DataOutput) 310
writeDouble method

of DataOutput 310
of ObjectOutputStream 339

writeExternal method 340
writeFloat, writeFully methods (DataOutput) 310
writeInt method 310, 311
writeLong method 310
writeObject method

of HashSet 339
of ObjectOutputStream 336, 339

Writer class 307, 309
write method 307

writeReplace method 341
writers 301
writeShort, writeUnsignedXxx, writeUTF methods

(DataOutput) 310

X
x, X

conversion characters 38
XML descriptors, generating 419
xor 263
Xoroshiro128PlusPlus 106

Y
yield keyword 42, 43
yield method (Thread) 351

Z
ZIP file systems 320
ZipInputStream, ZipOutputStream classes 321

Index 477

	Cover
	Title
	Copyright
	Dedication
	Table of Contents
	Preface
	Acknowledgments
	9. Processing Input and Output
	9.1. Input/Output Streams, Readers, and Writers
	9.1.1. Obtaining Streams
	9.1.2. Reading Bytes
	9.1.3. Writing Bytes
	9.1.4. Character Encodings
	9.1.5. Text Input
	9.1.6. Text Output
	9.1.7. Reading Character Input
	9.1.8. Reading and Writing Binary Data
	9.1.9. Random-Access Files
	9.1.10. Memory-Mapped Files
	9.1.11. File Locking

	9.2. Paths, Files, and Directories
	9.2.1. Paths
	9.2.2. Creating Files and Directories
	9.2.3. Copying, Moving, and Deleting Files
	9.2.4. Visiting Directory Entries
	9.2.5. ZIP File Systems

	9.3. HTTP Connections
	9.3.1. The URLConnection and HttpURLConnection Classes
	9.3.2. The HTTP Client API

	9.4. Regular Expressions
	9.4.1. The Regular Expression Syntax
	9.4.2. Testing a Match
	9.4.3. Finding All Matches
	9.4.4. Groups
	9.4.5. Splitting along Delimiters
	9.4.6. Replacing Matches
	9.4.7. Flags

	9.5. Serialization
	9.5.1. The Serializable Interface
	9.5.2. Transient Instance Variables
	9.5.3. The readObject and writeObject Methods
	9.5.4. The readExternal and writeExternal Methods
	9.5.5. The readResolve and writeReplace Methods
	9.5.6. Versioning
	9.5.7. Deserialization and Security

	9.6. Exercises

	Index

