Updated through Java 21

bore Java

for the

KN N 7/ j

Cay S. Horstmann

\\\!",”/ \1.'-. ‘_‘g\:\\‘ .
/ \\\Ih/ il N
//j \‘}/ ’f / y _\._\\\/".. S ‘\\ g?“\ e
\ // e ‘1/4 e AN,
‘Q\\\}\Q\\\ //ﬂ”“% ; ~s\ Y N
WAl

FREE SAMPLE CHAPTER | o o @

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780135404546
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780135404546
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780135404546

This page intentionally left blank

Core Java
for the Impatient

Fourth Edition

Cay S. Horstmann

vv Addison-Wesley

Hoboken, New Jersey

This page intentionally left blank

Cover illustration by Morphart Creation / Shutterstock
Figures 1.1, 1.3: Microsoft Corporation

Figure 1.2: Eclipse Foundation

Figures 1.4, 1.5, 1.11: Oracle Corporation

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or
(800) 382-34109.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact intlcs@pearson.com.
Please contact us with concerns about any potential bias at pearson.com/report-bias.html.
Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2024947133

Copyright © 2025 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit pearson.com/global-permission-granting.html.

ISBN-13: 978-0-13-540454-6
ISBN-10: 0-13-540454-1

https://informit.com/aw
https://pearson.com/global-permission-granting.html

This page intentionally left blank

To Chi—the most patient person in my life.

This page intentionally left blank

Table of Contents

PrEIACE ... i i i e e e e e et e e e e e e e e aaaraaees Xvii
ACKNOWIEAGIMENTES. ...t e et e e e e e e e e eeaeeeeas Xix
1. Fundamental Programming SErUCLUTES.......coeeevieiiiiiiiieieeeececceeee e 1
1.1, OUL FIrSt PrOQTamm......cueieeiiiiiiiiiiiiiiiiiiiiiiiiitiiiieieiiiiibebbiaibeeeebeaeeeeebaeaeeaeees 1
1.1.1. Dissecting the “Hello, World” Program.............ccccccceervrrurrrnnnnen. 1

1.1.2. Compiling and Running a Java Program..............cceeeeeeeeeeeeennnnn. 3

1.1.3. Object Instances and Method Calls..........ccccvvrveeeeeiiiiniciiriiennnn. 6

I I 1)1 Y S URPPR 8

1.2, PrimitivVe TYPES ..ceevriiiiiiiiiiiiiiiiiiiiiiiiiiieiees 12
1.2.1. Signed Integer TYPESuuuuuurrruriiiiiiiiiiiiiiiiiiiiieiiiiiineeeeneneeennnennne 12

1.2.2. Floating-Point TYPES.......uuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiniiiiiinieiaienenenenennnes 13

1.2.3. The Char TYDPE .eueeviriiiiieeeeeeceeeee et e e 14

1.2.4. The bo0lean TYPE..uuuiieeeeeeeeiciiiieeeee e e e e r e e e 15

1.3, Variables ..cooooeeiiiiiiiiieeeeeeeee e 15
1.3.1. Variable Declarationsccccccceeeeeeeiiiniiiiiiiiiieeeeeeeiiiieeeeeeenn 15

1.3.2. TAeNTIIETS ..ot 16

1.3.3. Initializationuvvviiiiiiiiiiiiii 16

G TR) 1 1] = 14 L £SO PPOPPRPPRRRE 17

1.4. Arithmetic OpPerations............uuuiiiiiiieiiiiiieecieee e e 18
1.4.1. ASSIGNIMENTE...cciiiiiiiiiiieei e e e e e e e e ee e 19

1.4.2. Basic ATItRMETICuvvviiiiiiiiiiiiiiiiiii e 19

1.4.3. Mathematical Methods..........cccccvveeieeiiiiiii e, 21

1.4.4. Number Type CONVEIrSIONSuuuuruurriumienninnniinnneneennnnnnnennnnnnnes 21

1.4.5. Relational and Logical Operators.........cccoeeeeeeeeeeeeeeeeeieeeeeeeeennn, 23

1.4.6. Big NUIMDETSovvviiiiiiiiiiiiiiiiiiiiiiiiiiiiviiieiaevv v eaveaaaevareeane 24

LT 11 L OO UUPPPPPRTPNt 25
1.5.1. Concatenationuuuuuuuuiuuuriiiiiiiiiiiiiiieirieeeieaeer .. 25

1.5.2. SUDSITINGS .vvvvvvviiiiiiiiiiiiiiiiiiiiiiieisieaeraeeeaeaaareeererereaae e 26

1.5.3. String COMPATISOIccivviriiiiiiiieeeeeeeeriiiiiiiire e e e e e e eerrriine e e e 27

1.5.4. Converting Between Numbers and Strings...............cceeeeeennn. 28

1.5.5. The String API.......ouuuiiiiiiiiiiiiiiiiiiii v aaaaeearaaaae 29

1.5.6. Code Points and Code UnitS........cccceeeeeeiiiiiiiiieeeeeeeeeeciiiireeeen. 30

1.5.7. TEXE BIOCKS ...vvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiivivai et avavaasaavsevaseanee 33

1.6. Input and OUEPUL ...vvvviiiiiiieecee e 35
1.6.1. Reading INPUL........uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiviiieaaaeeaveeaaeeaaeraneaane 35

1.6.2. Formatted OULPUL........uvvviiiiiiiiiiiiiiaees 37

1.7. CONETOL FIOW ...viviiiiiiiiie ettt e e e e e e e e e e nenenes 39
1.7.1. BTANCRES ...ovvviiiiiiiiiiiiiiiiiiiiiiiiiieiiieaavaasvaaveaasesasesassaessasssssaeseresenes 39

1.7.2. SWIECRES oo 40

G T 10 0] o OO RTRPPPP 43

1.7.4. Breaking and COntinuingccccceeeeeeieeiiiiinnnnnnnennnnnnnnnnnnnnnnns 44

1.7.5. Local Variable SCOPEuuuvururrrruriiiiiiiiiiiiiiiieieiieeeerennenneennnnnnnes 46

1.8. Arrays and ATTAY LISTSuuuuuuuiiiiiiiiiiiiiiiiiiiiiieesisrrrresiesrerererererea—.. 48

m Table of Contents

1.8.1. Working With ATTaYS.......covvvuiiiiiiiieeeieiiiiiieeeee e 48

1.8.2. Array ConstrucCtion..........ccuvviiiiiieeiiiiiiiiiiiiee e 49

1.8.3. AITay LiSTS ..ciiiiiiiiiiiiie e 50

1.8.4. Wrapper Classes for Primitive Typescccccvvvvieeeeeeeeiiinnnnne. 51

1.8.5. The Enhanced for LOODuvuvieieeiiiiieiiiicie e 52

1.8.6. Copying Arrays and Array LiStSccccccoovvriiiiiiiiiiiieiininiiiiiieeee, 52

1.8.7. Array AlgOTItRMS .. .uvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiaveaaeaaenane 53

1.8.8. Command-Line ArguUMENES...........uuueruunnninnnniiiiininininnnnnnnnnnnnnnns 54

1.8.9. Multidimensional ATTaysScccuvveeeeeeeeiiiiiiiiieeeeeeeeessiinrereeeeens 55

1.9. Functional DecompoOSIitiOncceeeeieiiiiiiiiiiiiieee e 58
1.9.1. Declaring and Calling Static Methodscceoeeeeeeeeeeeeeennnnnn. 58

1.9.2. Array Parameters and Return Values............cccoeeeeeeeeeeenenennnnn. 58

1.9.3. Variable ATGUMENTS..........uuuuuuuiiiiiiiiiiiiiiiiiiiieeeeeneeenreenneneneeenn.. 59

110, EXBICISES .uuuiiiiiiiiiiiiiiiiie e e ettt e e e e e e e e et e e e e e e e e e eaaaaaaaeeeeeeaeenaees 60
2. Object-Oriented Programmingcoeeeiiiiiiiiiiiiiie e 63
2.1. Working with ObJects........cccooiiiiiiiiiiii, 63
2.1.1. Accessor and Mutator Methodscccccevviiiniiiiiiiiiieniinnnnn, 66

2.1.2. Object Referencesccccceeeeeeeeiieiieeceeeeeeeeeeeeeeeeeeeeeeeeeeee, 66

2.2. Implementing ClaSSES.......uuuuiiiiieeiiiiiiiiiiieeee e e e e e e e e e siearrreeaee e 68
2.2.1. Instance Variablescccoeeeiiiiiiiiiiiiiiee e, 68

2.2.2. Method Headers..........uuuiiiiiiiiiiiiiiiiiieieeeeeeeiieeee e 69

2.2.3. Method BOdiesc.cuvviiiiiieiiiiiiiiiiiiceeee e 69

2.2.4. Instance Method Invocations............cccccceeviiiiiin 70

2.2.5. The this Reference........ccccccoiiiiiiiiiiie, 71

2.2.6. Call by Value......ccceeeiiiiiieeeee et 71

2.3. Object ConstruCtion..........ccoviiiiiiiiiii e, 73
2.3.1. Implementing Constructorsccccccceiiiiiiiiiiii, 73

PRIV 0121 o (0T o 11 1 To 74

2.3.3. Calling One Constructor from Another...........cccccvvviveieeeeennns 75

2.3.4. Default Initialization............ccooviviiiiiiiee e, 75

2.3.5. Instance Variable Initialization...........cccccceevivnnniiiiiiieiieeennnnnns 76

2.3.6. Final Instance Variables.........ccooccuiiiiiiiiiiiiiiiiiiiiiieeeee, 77

2.3.7. The Constructor with No Arguments...........ccccevvevvveiveiinennnnn.. 77

2.4, RECOTAS ..ceeeeeeeeeeeeeeee e 78
2.4.1. The Record CONCEPL.....ceeeeeiiiiiiiiiiicieee e 79

2.4.2. Constructors: Canonical, Custom, and Compact 81

2.5. Static Variables and Methodsccccvvviiiiiiiiiiiiiiiie, 82
2.5.1. Static Variables ..., 82

2.5.2. Static Constantsceeeeeeiiiiiiiiicce s 83

2.5.3. Static Initialization BIOCKSccceeeieiiiiiiiiiiiiieeeeeeeeeee, 84

2.5.4. Static Methodsc.evvviiiiiiiiiiiiic e 84

2.5.5. Factory Methods..........ccoooeeiiiiiiiiieeeee, 85

2.6. PaCkagesccoooveeeiiei e, 86
2.6.1. Package Declarations.........cccuvvveeeieeeeeeiiiiiireee e 86

2.6.2. The jar Command.........ccceeeeeiiiriiiiiiiiiieee e e e e e e 87

2.6.3. The Class Path.......ccc.uuviiiiiiiiiiie e 88

2.6.4. Package ACCESScccceeeeieeeeeeeeeeee e, 90

2.6.5. Importing ClasSes........cccoeeeeeeiiiieieeeeeeeeeeeeeeeeeeeeeeeeeee e, 91

Table of Contents n

2.6.6. StatiC IMPOTTS.....cciiiiiiiiiiiiee e 92

2.7. NESTEA ClaSSES..cciiiiiiiiiiiiiiiiieieee ettt e e e e et e e e e e e e e s sibbaraeeeeeas 92
2.7.1. Static Nested ClassSesS.......cvvvvvirviiiiiiieiieeieiiiiiiiieeee e 93

2.7.2. INNET ClaSSES ...ccceeeeeeeeeeeeeeee et 94

2.7.3. Special Syntax Rules for Inner Classes........cccccccvvvviiiiiiiieennnnnn. 97

2.8. Documentation COMMENLES..........cuuvuiiiiiiiiiiiiiiiiiiiiie e eeeeeeans 98
2.8.1. Comment INSErtiON......uuuiieriiiiiiiiiiiiiiee e ee e 98

2.8.2. Class COMMENTESuuuviiiiieeeeiiiiiiiiiiieeeeeeeesriiirrreeeeeeesessaeennees 99

2.8.3. Method Commentscceeeeviiiiiiiiiieeeee, 99

2.8.4. Variable Commentsccccceeviiiiiiiiiiiieeeeeeeeeecee e 100

2.8.5. General Comments..........cccceeeiiiiiiii, 100

2.8.6. LINKS ...ouiiiiiiiiieiiiiiiee e e 101

2.8.7. Package, Module, and Overview Comments 102

2.8.8. Comment EXtractioncccccevviiiiiiieeeeiiiireeieee e, 102

2.9, EXBTCISES c.cvvttiiiiiieeeeeeeeeetiee e et e e e e e e e e e et e e e e e e e e e aaababa e e as 103
3. Interfaces and Lambda EXPreSSiOnS......ccceeeeeeivveviiiiiiiieeeeeeeeeeeeiieee e 105
3.1, INTEITACES ..vviiiieeeeeiee e 106
3.1.1. Using Interfaces.......ccccccoeniiiiii 106

3.1.2. Declaring an Interfacecccoevvvviiiiieiieeieeiiiieeeee e 106

3.1.3. Implementing an Interface.........cccccccvvviiiiiiiiiiiiiiiiiiieee, 107

3.1.4. Converting to an Interface Typeccccccvvvvvvviiiiiiiiiiiiiieeieeeeee, 109

3.1.5. Casts and the instanceof Operatorccccccveeveeeeeeieieviiininnnnnn. 109

3.1.6. The “Pattern-Matching” Form of instanceof..............cccceee. 110

3.1.7. Extending Interfaces........cccccceeveiiiiiiiiiiiiieeeeciieeeee e 112

3.1.8. Implementing Multiple Interfaces......cccccccccvviiiiiviiiiiiirinennnnn. 112

3.1.9. ConStants .ccoeeeeeeeeeeeeeeeeeeeee e 112

3.2. Static, Default, and Private Methods............ccceeeeeiiieiiii, 113
3.2.1. Static Methodsccooeeiiiiiiii 113

3.2.2. Default Methods..........ccoooeiiiiii 114

3.2.3. Resolving Default Method Conflicts.......cccccccvvvviviiiiiiiiiinennnnne. 115

3.2.4. Private MethodsS ..., 116

3.3. Examples of Interfacesccccceeeeiieiiiiiii, 117
3.3.1. The Comparable Interfacecccccevviiiiiiiii 117

3.3.2. The Comparator Interfaceccccccevviiiiiiiiiiii 118

3.3.3. The Runnable Interfacecccccceeevevviiieeeeeeeeeeeeeeeee e 119

3.3.4. User Interface Callbacks..........ccccccviiiiiiii, 120

3.4. Lambda EXPIeSSIONSccceeeeeiiiiiieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 121
3.4.1. The Syntax of Lambda EXpressionscccccccevvvvvvevvreveneennenn. 121

3.4.2. Functional Interfacesccccccoiiii 123

3.5. Method and Constructor References..........ccccvvvvvviiieeeeiciiieeiiiiiiceeeeeee, 124
3.5.1. Method Referencescccccceviiiiiiii, 124

3.5.2. Constructor Referencescccccccvviiiiiiiiii, 125

3.6. Processing Lambda EXPressions.........cccceeen 126
3.6.1. Implementing Deferred Execution.........ccccccceeevvvivviiieeeeennnns 126

3.6.2. Choosing a Functional Interface........ccccccccviiiiiiiiiiiiiiiiinnnnnnen. 127

3.6.3. Implementing Your Own Functional Interfaces 130

3.7. Lambda Expressions and Variable Scopecccceeeiiiii. 131

3.7.1. Scope of a Lambda EXpressionccccccevvvvvevieiieieeieeeeeeenee, 131

n Table of Contents

3.7.2. Accessing Variables from the Enclosing Scope..........ccc......... 132

3.8. Higher-Order FUNCtionsS..........cccoeeeeeeiiiiiieeeeee, 134
3.8.1. Methods That Return Functionscccccccvvvvvvviviiiiiiieeennennen. 134

3.8.2. Methods That Modify Functionscccccceevveviiiiiieeeeeeennnns 135

3.8.3. Comparator Methods.......cceeeeeiiiiiiiiiiiiiee e, 135

3.9. Local and Anonymous ClasSeSuuviieeeeeeriiniiiiiiiiieeeeeeeeniiiiieeeeeeeenn 136
3.9.1. Local ClasSesS......cccceeeeiieeiieeeeeeeeeeeeeeeeee e, 136

3.9.2. Anonymous ClasSesS.........cccccevviiiiiiiiiiiiiie, 137

3.10. EXBTCISES c.cvvviiiiiiieeeeieeeeeeteie e e e ettt e e e e e e e e e e vt e e e e e e e e e eassaaaeeeeas 138
4. Inheritance and RefleCtionoiiiiiiiiiiiiiccce e 141
4.1. Extending @ Classcccvvviiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeee e e e e e e e 142
4.1.1. Super- and SUubCIaSSEScceeeeeiiiiiiiiiiicieee e 142

4.1.2. Defining and Inheriting Subclass Methods...........cccccvvvvvvnnnns 142

4.1.3. Method OVerTidingccccuvrvrieeeeeeeiiiiiiieeee e e 143

4.1.4. Subclass ConstrucCtion..........ccceeeeeeeeiiiiiiiiiiiiieee e, 144

4.1.5. Superclass ASSIGNMENTES.........uuuvvvvvvvrviiriiiiiriiriiieerirerieer.. 145

A.1.0. CASES ettt a e e e e e 146

4.1.7. ANonymous SUDCIASSESuuvvvrririrriiiiiiiiiiiiiriieriiirrreneeenna. 146

4.1.8. Method Expressions With SUPEIuevveeevieiiierrrieeeiinienneannnns 147

4.2. Inheritance HierarChies.........cccoooceiiiiiiiiiiieiciceee e, 147
4.2.1. Final Methods and ClasSSes............uuuvvuveriivrrrenirierrnnenenennnenannnns 148

4.2.2. Abstract Methods and ClasSesuuvvvervrverrverrrenrnnerennnnnnnns 148

4.2.3. PrOtECTEA ACCESS ...ovvvvviiiiiiiiiiiiiiiieireeeeeeereeereeereerereereerreeereereees 149

4.2.4, SEALEA TYPES ..vvvrrriiieeeeeeiiiiiiiiete e e e e e e esrrrree e e e e e e e e seearrareeeae s 150

4.2.5. Inheritance and Default Methodscccooeeeiiiiiiiiiiiiiiiennnen.n, 154

4.3. Object: The CoSmMIC SUPETCIASSceeeeiiiiiiiiiiiiiieeeeeeeeeeeeeee e, 154
4.3.1. The toString Method............vvvvviviiiiiiiiiiiiiiiiiiies 155

4.3.2. The equals Method.............uvvvviiiviiiiiiiiiiiiiiiiiiiieieeeeeeveeaaeann, 157

4.3.3. The hashCode Method.............uvvviviiiiiiiiiiiiiiiiiiiiiieeeeaaaaes 159

4.3.4. Cloning ODJECEScvvvvviiiiiiiiiiiiiiiiiiieiereeeeeeee e 161

4.4, ENUMETAtIONS......ciiiiiiiiiiiiieee ettt e e e eeeeeriiise e e e e e e eeesaaba e eeeeaaeeanns 164
4.4.1. Methods of ENumMerationsccccuuvvvivvvivivninniiiiinneenennnennnn. 164

4.4.2. Constructors, Methods, and Fieldscccccoeeeviiiiiiiinnnnnnn. 165

4.4.3. Bodies Of INSLANCESuevvvvviiiiiiiiiiiiiiiiiiiiieeerieeerreraeerrreeaaeraeann, 166

4.4.4. Static MEMDETSuuiieiiecieeeeeeciee e 167

4.4.5. Switching on an Enumeration...........ccccccvvvvvviviveeenieinneinnnnnnnn. 167

4.5. Pattern MatChingcoovvvviiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeee e 168
4.5.1. Record Patterns.........cccevvvvvviiviiiiiiiiiiiieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeees 169

A.5.2. GUATAS ..ceevveieieeiieeieeeeeeeeeeeeeeeeeee et e e e e e e e e e e e e e e eeeeeeeeeeaeeeaeeeeees 170

4.5.3. NUull HANAING ..evvviiiiiiiiiiiiiiiiiiiieees 170

4.5.4. EXRQUSTIVENESSccvvviiiiiiiiiiiiiiiiiiiiieeeeceeeeeeeeeereeeeeeeeeeeeeeeeeeeeees 171

4.5.5. DOMINANCE.......ccvtviiiiiiieeeeeeiieiiiiiiise e e e e e eeerriiee e e e e eeeeeaaaaraanns 172

4.5.6. Patterns and Constantscccccvvvvvvviviiiiieiiiiiiieiriieereeeeeenaen, 173

4.6. Runtime Type Information and ReSOUTICEScceveuvvrrrieieeeeeerernnnnnne, 174
4.6.1. The Class ClaSS ..uuururrrrrrrrrrrrrerrrrereeereereeerrrerrreerrerrrrrrrerreerrrereee. 174

4.6.2. Loading RESOUTCEScuvvvvviiiiiiiiiiiiiiiiiiiieeirerrieessrerresennnnaa. 178

4.6.3. Class LOAUETScuvvvviiriiiiiiiiiiiiiieireeeeeeeeeeeeeeeeeeeeseeeseeseeeseeeeees 178

4.6.4. The ConteXt ClasS Loaderueeeneeeeeeeeeeeeeee e 180

Table of Contents ﬂ

4.6.5. SErViCe LOAAETS......cvvviiiiiiiiiiiiiiiiiiieeeieeeereeeeeeeeeeeeeeeeeeeeeeeeeereeees 181

4.7, REIIECTION ..ttt e e e e e 183
4.7.1. Enumerating Class MemberS..........ccccuvvvvvvvinnireernnnnrenninnnnnnnns 183

4.7.2. Inspecting ODJeCES.......coovvviriiiiiieeeeeereee e 184

4.7.3. InvoKing MethodS..........cuuvvvviviiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeee 185

4.7.4. Constructing OBJeCES........uuvvvviriviiiiiiiiiiiiiiiiiiiieiieerieereereavaaea, 186

4.7.5. JAVABEANSiiieiiie e 187

4.7.6. Working With ATTayS.........cuvvvviririiiiiiiiiiiiiiiiiiiiriieesrrerreeeeeen. 188

A.7.7. PTOXIES ..cciitiiiiiiiiiiiiiiiiiiiiieiieeeieeeeeeeeeeereeeeeeeeeeeeeeeeeeeeeeseeeeeeesseeens 190

4.8. EXEICISES ..cciiiiiiiiiiiiiiiiiiee e 191
5. Exceptions, Assertions, and Logging.........ccccccvviiiiiiii, 193
5.1. Exception Handling.........ccooeeeeeeieieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e, 193
5.1.1. Throwing EXCeptionsS......ccooeeeeeiieiiieeiieiiieecceeeceeceeeeeeeee e 194

5.1.2. The Exception Hierarchycccccccccveeiiviiiiiiiieeeeee e, 194

5.1.3. Declaring Checked Exceptions..........ccccceeeeeiiiiiiiniinnninnnnnnnnnnn. 196

5.1.4. Catching EXCePtionsS......ccoeeevieeiieieieeeieececeeeeeeeeeeeeeeeeeeee e 197

5.1.5. The Try-with-Resources Statement.........................ooeeee. 198

5.1.6. The finally ClausSe.....ccooeeeieeiieeiieeiieeeieeecececeeeceeeeeeeee e 200

5.1.7. Rethrowing and Chaining EXceptions.........ccccccveeeernirieeennnnne. 202

5.1.8. Uncaught Exceptions and the Stack Trace...........ccccccceeernnnn. 203

5.1.9. API Methods for Throwing Exceptions..............ccccccceeiiinnnn. 204

0.2, ASSETITIONS ... s 205
5.2.1. USING ASSEITIONScceiiiiiiiiiiiiieeee e 206

5.2.2. Enabling and Disabling ASSertionsccccevvvveeieeeeeerinnnnnn. 206

S 706 TR 0 To {112 Lo [207
5.3.1. Should You Use the Java Logging Framework? 207

5.3.2. Logging 1071 ..ouuueiiiiiiiiiiee e 208

5.3.3. The Platform Logging API.........cccooovieiiieiiieiiieeeeeeeeeeeeeeeeeee, 209

5.3.4. Logging Configurationccccvvvveeieeeeeeiiiiiiiieeee e, 211

5.3.5. LOG HanAIErS.......uuuuuiiiiiiiiii e 213

5.3.6. Filters and Formatterscccuvviiieiiiiiiiniiiiiiieceeee, 215

IR R 8] o4 1] F S 216
6. GeneriC Programmingcceeeeeeiiiiiiiiiiiiieeeeeeeeeeeeiiise e e e e e e e eevaaaee e e e eeeeeeraaaeeaans 219
0.1. GENETIC ClaSSES...ccceieiiiiiiiiiiiieeeeeeeiititeeee e e e e e e e e e e e e e e e s ssserbareaeaaeens 220
6.2. Generic Methods.........cccooeiiiiiii e, 220
6.3. TYPE BOUNAScceoeieieeeeeeeeeeeeeeeeeeee e 221
6.4. Type Variance and Wildcards............ccccceviviiiiiiiiiiiie, 222
6.4.1. Subtype Wildcardsccccoeiiiii 223

6.4.2. Supertype Wildcardscccccceeveeiiiiiiiiiieee e 224

6.4.3. Wildcards with Type Variables..........ccccccccvvviiiiiiiiiiiiiiiiieennnnnn. 226

6.4.4. Unbounded Wildcards........cccccovvviviiiiiiiieeiiiiniiiiiicecee e 227

6.4.5. Wildcard Capturecccoeeveiiiiiiiii, 227

6.5. Generics in the Java Virtual Machineccccccccvvvvivviiiiiiiiiiiiiiiiiieeeee, 228
6.5.1. TYPE Erasurecccooevviiiiiiiiiieeeeeee e, 228

6.5.2. Cast INSEItioN.......ccovviiiiiiiiniiiceei e 229

6.5.3. Bridge Methods.........ccccooeeiiiiii 230

6.6. Restrictions 0n GENETICS........coovviiiiiiiiiiiiiiie, 231

6.6.1. No Primitive Type Arguments.............cceevvrviiiiiiieeeeeeeenniiinennnn. 231

n Table of Contents

6.6.2. At Runtime, All Types Are RaWceeeeveiiiiiiiiiiiiiiiieeeeennns 232

6.6.3. You Cannot Instantiate Type Variablesccccccciiiiin. 233

6.6.4. You Cannot Construct Arrays of Parameterized Types 235

6.6.5. Class Type Variables Are Not Valid in Static Contexts........... 236

6.6.6. Methods May Not Clash after Erasurecccccceeveinnnnnn. 236

6.6.7. Exceptions and GENETICS............uveeeeeeeeeiieeiiiiiiieeeeeeeeeeeeviiennns 237

6.7. Reflection and GENETICS........cuiiieiiiiiiiiiiiiieeeeeeeeniiiiieeeee e e e e e siriereeeeees 238
6.7.1. The Class<T> CLaSS ..cuuvuriiiiiieeeieiiiiiiieeeeeeeeeesirireee e e e e e e e 238

6.7.2. Generic Type Information in the Virtual Machine 239

0.8, EXOTCISES .ceviviiiiiiee e e et e e et e e e e e e e e et e e e e e e e e e aaesaaa e as 241
R 0] 1 [Ted 10 T TP 245
7.1. An Overview of the Collections Frameworkcccccceevvvviniiiiinnennnn. 245
7.2 TEETAEOTS .. 251
73 S BES i a e e e e ———— 252
T\ - | o1 RS PUUUU 254
7.4.1. Basic Map Operationsc.ccceuueeeeeeiiiiieeeeiiiiee e eeeiine e 254

7.4.2. Entries and Traversal.........cccccvviiiieiiiiiiiiiiiiiieeeceeeeiii, 258

7.5. Other COllECTIONSvvvviiiiiiieeeee et e e ee e e 260
7.5. 1. PTOPETITIES c.cceviiiiiiiee e 260

7.5.2. Bit SELS i 262

7.5.3. Small CoOlleCtiONS.......uviiiiiiiiiiiiiiiiiiee e 264

7.5.4. Enumeration Sets and Mapscceeeeeeeeeeeiiiiviriiiiiieeeeeeeeennnns 265

7.5.5. Stacks, Queues, Deques, and Priority Queues....................... 265

7.5.6. Weak Hash MapSccoeeeeieieiiiiiiiiiicccc e 267

7.0, VIBWS .ot e e e e e e e e e e e e e e e e e e a it e e e e e e eeeaarra s 267
7.6.1. RANQGES....ciiiiiiiiiiiiee e 267

7.6.2. Unmodifiable VIEWS........ccoovviiiiiiiiiiieiiiiniiiiieceeee e 268

7.6.3. REVETSEA VIEWSuuuiiiiiiiiiiiii e 269

7.7 EXEICISES .iiiiiiiiiieeee e e ettt e et e e e e e e e e ettt e e e e e e e e eaaaaaa e eas 269
8. SITEAIMIS.... .ot et et e e aeaeeeaaaaas 271
8.1. From Iterating to Stream Operations..........ccccceeevereiiiiiiiiiiiiiiinneeeeeennnnns 271
8.2. Stream Creation........cccceeveieiiiiiieeeeeeee e 273
8.3. The filter, map, and flatMap Methodsccovvvvvviiiiiiiiiiiiiiiiiiiiieeeeeee, 276
8.4. Extracting Substreams and Combining Streams...........ccccccceevvvvvnnnnenn. 278
8.5. Other Stream TransformationsS........cccoeeeevviviiiiiiiiieee e, 279
8.6. Simple REAUCTIONSovvviiiiieeiiieeeeeceeee e 280
8.7. The Optional TYyPe....ccceviiieiiieiieeeeeeeeee, 281
8.7.1. Producing an Alternativeccccccoviiiiiiiiiii 281

8.7.2. Consuming the Value If Present...........ccccccevvviiiiiiiiiiieeenennns 281

8.7.3. Pipelining Optional Valuescccccccviiiiiiiiiiiiiiiiiiiee, 282

8.7.4. How Not to Work with Optional Values..........cccceeeeerevrrrrnnnnnn. 283

8.7.5. Creating Optional Valuescccccvvviiiiiiiiiiiiiiieeee, 284

8.7.6. Composing Optional Value Functions with flatMap 284

8.7.7. Turning an Optional into a Streamccccceeevvvvivireeeeeeennns 285

8.8. Collecting ReSultScccoeeiiiiiiiiii, 286
8.9. Collecting into MapScceviiiiiiiiii 287
8.10. Grouping and Partitioningcccccceeeviiiiiiiiiii, 289

8.11. DOWNSEIEAIM COllECTOTS . cvuiiee ittt ettt ee e e e e e e e eaaees 290

Table of Contents m

8.12. Reduction Operationsccccceeeiiiiiiiiiieeee e, 292
8.13. Primitive Type Streams.........ccoovviiiiiiiiiieeiiiiieiiiiiee e 294
8.14. Parallel SIreams.......cc.cuvviiiiiieiiiiiiiee e 295
o T) o3 1] U 298
9. Processing Input and OUtPUL........ccceiiiiiiiiiiiiiiiiiieeeceeeeeeeeeeeeeeeeeeeeee e 301
9.1. Input/Output Streams, Readers, and Writersccccccvvviieeeeeeeeeeennnnn, 301
9.1.1. Obtaining Streamscccceeviiiiiiiiii, 302

9.1.2. Reading Bytescccooeeviiiiiiiii, 302

9.1.3. Writing BytesS...cccovveiiiiiiiiiii 303

9.1.4. Character Encodings..........cccccceeiiiiiiiiiiiiiiiiceeeeee, 304

9.1.5. TEXE INPUL ..eevveeiieiiieee e 306

9.1.6. TeXt OULPUL..cceeiiiiiiiiiiiiieee e 307

9.1.7. Reading Character Input...........ccccceniiiiiii, 309

9.1.8. Reading and Writing Binary Datacccccceeevvviiiiiiieeeeeennnns 310

9.1.9. Random-AccCess FileS....cccoeiiiiiiiiiiiiiiieeeeieeeieee e, 311
9.1.10. Memory-Mapped Filescccccviiiiiiiiiiiiieee, 311
9.1.11. File LoCKINGcceeeieeieeiieeeeeeeeeeeeeeeeeeeeeeeeee e, 312

9.2. Paths, Files, and Directoriescccccccviiiiiiiiiiiiiiiiicee, 313
0.2.1. PalthS..eeeiiiiiieiee e 313

9.2.2. Creating Files and DirecCtoriescccccccvvviiiiiiiiiiiiiiiieeeeeeenenn, 315

9.2.3. Copying, Moving, and Deleting Filesccccccvvvvrvirrrrirenennnenn. 315

9.2.4. Visiting Directory Entries........cccccoeeeeeeiiiiiiiiiiiiiiineeeeeeeeeiiiiennn, 317

9.2.5. ZIP File Systems........ccccceeiiiiiiii 320

9.3. HTTP CONNECLIONS ...ccevviiiiiiiieeeeeeceeeiiiiiee e e e et e e e e e e e e e e e e e 321
9.3.1. The URLConnection and HttpURLConnection Classes.................... 321

9.3.2. The HTTP Client APcooviiiiiiiiiiiiiiieeeeeeeeiieeeee e 322

9.4. Regular EXPresSionsccceevieiiiiiiiiiieeeccceeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e, 325
9.4.1. The Regular Expression Syntaxccccccevevveeeeieeieeeeeeeeeeeeneen, 325

9.4.2. Testing @ MatCh.......cccovvviiiiiieiiieee e 330

9.4.3. Finding All Matchescccccoeiiiiiiiii, 331

S R) 11 1SRNt 332

9.4.5. Splitting along Delimitersccccccvvviiiiiiiiiiiiiiiiieeee, 333

9.4.6. Replacing Matches..........cccciii 334

IR S A ol - Yo ST PSSUPRRR 335

9.5, SerialiZationcceiii i 336
9.5.1. The Serializable Interface.......cccococuviiieiiieiiiiniiiiiiiiieeeeeeees 336

9.5.2. Transient Instance Variables...........ccccccceeiiiinniiiiiiiiiieeeeennnns 338

9.5.3. The readObject and writeObject Methodscooeveiiiiiiiin. 338

9.5.4. The readExternal and writeExternal Methods...........cccvvveeeeen.. 340

9.5.5. The readResolve and writeReplace Methodscccevveeeeeeeen. 341

0.5.6. VEISIONIIIG . ..uuuuiieeeeiiiiiiiiiiiiineeeeeeeetviiiiiineeeeeeeeeerssieanneeeeeaaeenanes 342

9.5.7. Deserialization and Securitycccccccvvviiiiiiiiiiiiiiiiiiicieeeee, 344

0.6, EXBTCISES ..evvvviiiiieeeeeeiiiiiiiiiee e e e e e e ettt e e e e e e e e e et vt e e e e e e e e e eeaasaaaneeeas 346
10. Concurrent PrOgramIming............uuueeuuuuurueuureenrienuenneeenneenneeennenneenneneeeeeeeene.. 349
10.1. CONCUITENE TASKS ..vvvuiieeeiieieeiiiiiiiieee et e e e e e e et e e e e e e e eeeaans 350
10.1.1. RUNNING TASKS ..vvvvvvviiiiiiiiiiiiiiiiiiiiiiiiaiiieaiieniinennnnnnnnnnnnnnnnnnnanes 350

10.1.2. FUBUTES ..ttt 353

10.1.3. Thread Interruptionccccevvvvvivviiiiiiiiiiiiiiriiiiieiaanns 355

m Table of Contents

10.2. Thread Safety.......cceiiiiiiiiiiiiiiieeee e 357
10.2.1. VISIDIIEY..coviiiiiiiiieieeee e 357

10.2.2. Race CONAIitIONScceeeeviiiiiiiiiiiiieeeeeeiniiiiiieeee e e e e e ssiivneeeeeeas 359
10.2.3. Strategies for Safe Concurrency..........ccoeeevvvvveeeeeeeeeencnnnnen. 361
10.2.4. Immutable ClasSesuuvuiiiiieeeiiieeeeiciee e 362

10.3. Threadsafe Data StrUCTUIES.........uvvvviviiiiiiiiiiiiiiiiiiiiiiiierieer e, 363
10.3.1. Concurrent Hash Mapscceeeeeeeeiiieiviiiiiiieeeeeeeeeeeevee e 363

10.3.2. BlocKing QUEUES.........uuuuuuuuuiuiniiiiniiiiniiiiiiinieneeinnennnennnnnnnnnnnnns 365
10.3.3. Other Threadsafe Data Structures..........cccoeeeevvvveiciiiiiicnnnnns 367

10.4. Parallel AIGOTItRIMSvviiiiiiiiiiiiiiiiiiiiiiiii e 368
10.4.1. Paralle]l SEreamsuuuueuuiuimmiriiiiiiiiiiiiiiiiiiiiiiiiieienenneanes 368
10.4.2. Parallel Array OperationsS.........cccccveeereurrerrererrenenenrrennennnnnnnns 368

10.5. Asynchronous Computationseevevvvviiiviiiiiiiiiiiiiieerieereeese. 369
10.5.1. Completable FULUTES..........uuuvvviiriiiiiiiiiiiiiiiiiiiiiiiriarreavannnenanns 369
10.5.2. Composing Completable FUtures...........ccccoeeeeviiinnvnnnnnnnnnnnns 371
10.5.3. Long-Running Tasks in User Interface Callbacks................ 375

10.6. Atomic Counters and Accumulatorscccccveeeeeeeeiniiiiiiieeeeeeeennnens 376
10.7. Locks and COnditiOnS..........uuuuuvuvurruiiiiiiiiiiiiiieneieneeerneeneeennnennnenrnennenn.. 379
10.7.0. LOCKS wovtvtiiiiiiiiiiiiiiiiiiititt ittt aabaaaaaaareaaaaaaaenane 379
10.7.2. The synchronized KEYWOTrd..........ccooeuvurmumuvmrennriniinineennninnnennnns 380
10.7.3. Waiting on CONditiOnseevvvevurerrreumiinieeeriinrnenrrrnrenenien. 382

10.8. TRIEAAS ..ottt e e e st e e e e s e s bbeeees 384
10.8.1. Running @ Thread............cccvvvvvvviiiiiiiiiiiiiiiriririreeeeessesrsneaeee, 385

10.8.2. Thread-Local Variables..........cccccuvvvrvriiiiiiiiiiiiiiiiiiiininiinnnenann, 386
10.8.3. Miscellaneous Thread Properties.........ccccceeeevvvveiiiiiiiieneeennn. 387

10.9. PTOCESSES ...cvvveiiiiiiiiiiiiiiitiitetititee ettt babbsseesbeannnnsenne 388
10.9.1. Building @ PTOCESS.......uuuuvvviiiiiiiiiiiiiiiiiiiiiiriieerirarsenrressannnnean, 388
10.9.2. RUNNING @ PTOCESS.....ccivviiiiiiiiieeeeeeceeeeiee e 390
10.9.3. Process Handlesuuuuuuuuunrummnniiniiniininiinninnninnnnnnnnnnnnnnnnnns 392

10.10. EXBICISES ... ciiiiiiiiiiiiiiiee e e e eeeeeeeiee e e e e e e e e et e e e e e e e e e e esabbaaeeeeeaeeeenes 393
11, ANNOTATIONS . ..ceiiiiiiiiiiiiiiiiiiiite ettt e e e e e e eeeeeeeeeeeeeeeeeeeeeeees 399
11.1. USINg ANNOLALIONSuuiiiiiiiiiiiiiiiiiie e e e eeeeeeaaes 400
11.1.1. Annotation Elements........ccccccvvvrviiriiiiiiiiiiiiiiiiiiiiiiiviininnnnnnnns 400

11.1.2. Multiple and Repeated Annotations........cccceeeeevveiiiiiiiiiiinnnns 401
11.1.3. Annotating Declarations...........ccccccuvuvvueiiereremiinriiniriniinnnennnn 402

11.1.4. Annotating TYPe USESuvvvuiiiieiiiiiiiiiiiiiiiiieeeeeeeeeerviiine e 403

11.1.5. Making Receivers EXpliCit........ccccvvvurrririiiiiiiiiiiiiiiiiiiiiiininnnn, 404

11.2. Defining ANNOLAtIONSvvvvviiiiiiiiiiiiiiiiiiiiiiiieiiaeieeieeeieeeeeeaerennaeeeneenaeanae 405
11.3. Annotations in the Java APluvuviiiiiiiiiiiiiiiiiiiiiiieereeerieererearanaeeanes 408
11.3.1. Annotations for Compilationcccccceeeeeeeiiiiiiiiiiiiiieeeee, 409

11.3.2. Meta-Annotationsuueeveeueeeueeiiiiiiiiiiiiiiiieiieeeiieeeeeeeeeeeenes 410

11.4. Processing Annotations at Runtime...........ccceeeiiiviiiiiiiinnieiiieiiiiiinnn, 412
11.5. Source-Level Annotation ProCeSSINgevvvvvevvrvirirrvevirnenneennrennnnnnns 415
11.5.1. Annotation ProCeSSOTS........uuciieeeieeiiiiiiiiciie e 416

11.5.2. The Language Model APIL...........cccoouuuiiiiiiiiiiiiiiiiiiiiiinieneninnnns 416
11.5.3. Using Annotations to Generate Source Code....................... 417

11,6, EXEICISES ..evttitriiiiiiiiiiiiiiitiitttteteeeeeeesaeeeeaaee e eaaaeassaessbasssabsbasbaebaaeasneannes 420

12. The Java Platform Module SyStem...........uuueiiuumiiiiiiaaanaens 423

Table of Contents n

12.1. The Module CONCEPL......ccevveeiiiiiieeee e eeaaans 424
12.2. Naming MOAUIESuvuviiiiiiiiiiiiiiiiiiiiiiiiiiiieieiiieeieeeareeebeaereaereeearanaeaane 425
12.3. The Modular “Hello, World!” Programcccccceuvuvermninnnnnnnnnnnnnnnnnns 426
12.4. Requiring MOAULES........ccouviiiiiiiiiee et e e e 427
12.5. EXpOrting PaCKagesuuuuuuuiiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiianerinnneennenennnnneenne 429
12.6. Modules and RefleCtive ACCESS.......uuuuuvurvviviriiiiiiiiiiiiiieiiiesirarerennanneanne 433
12.7. MOAUIAT JARS ..ot e e e eeaans 436
12.8. Automatic ModUIesccouvviiiiiiiiiieiieiee e 437
12.9. The Unnamed ModUle............uuuuvriimiiiiiiiiiiiiiiiiiiiiiiiiirieeienennennenennnnnnnnnes 438
12.10. Command-Line Flags for Migration..........ccccccccuvvivueirinimniineenniennnnnnns 439
12.11. Transitive and Static Requirementscccoevvvviiiiieineeeeeeeeiiiiiinnnn, 440
12.12. Qualified Exporting and OPeningcccccuvvrerrrevrrrmrerrrmeereernnnnnnnnnes 442
12.13. Service LOAdinguvuvvvuviiiiiiiiiiiiiiiiiiiitiierieeeeeerrerereeerenereneeeen—.. 443
12.14. Tools for Working with Modulescccccuviiiiiiiiiiiiiiiiiiieeee e, 444
12,10, EXBICISES .. iiiiiieiiiiiiee e e ettt e e e e e e e e e e e e e e e aa s s e e e e eaeeaaens 446

This page intentionally left blank

Preface

Java has seen many changes since its initial release in 1996. The classic book, Core Java,
covers, in meticulous detail, not just the language but all core libraries and a multitude of
changes between versions, spanning two volumes and over 2,000 pages. However, if you
just want to be productive with modern Java, there is a much faster, easier pathway for
learning the language and core libraries. In this book, I don’t retrace history and don’t
dwell on features of past versions. I show you the good parts of Java as it exists today, so
you can put your knowledge to work quickly.

As with my previous "Impatient" books, I quickly cut to the chase, showing you what you
need to know to solve a programming problem without lecturing about the superiority of
one paradigm over another. I also present the information in small chunks, organized so

that you can quickly retrieve it when needed.

Assuming you are proficient in some other programming language, such as Python, C++,
JavaScript, Swift, PHP, or Ruby, with this book you will learn how to become a competent
Java programmer. I cover all aspects of Java that a developer needs to know today,
including the powerful concepts of lambda expressions and streams, as well as modern
constructs such as records and pattern matching.

This book is fully updated to Java 21. It uses modern features and does not dwell on
historical or obsolete constructs. Preview features that may make it to the language in the
future are not covered either.

A key reason to use Java is to tackle concurrent programming. With parallel algorithms and
threadsafe data structures readily available in the Java library, the way application
programmers should handle concurrent programming has completely changed. I provide
fresh coverage, showing you how to use the powerful library features instead of error-
prone low-level constructs.

Traditionally, books on Java have focused on user interface programming, but nowadays,
few developers produce user interfaces on desktop computers. You will be able to use this
book effectively without being distracted by lengthy GUI code.

Finally, this book is written for application programmers, not for a college course and not
for systems wizards. The book covers issues that application programmers need to wrestle
with, such as logging and working with files, but you won’t learn how to implement a
linked list by hand or how to write a web server.

I hope you enjoy this rapid-fire introduction into modern Java, and I hope it will make your
work with Java productive and enjoyable.

If you find errors or have suggestions for improvement, please visit http://horstmann.com/

javaimpatient/bugs.html and leave a comment.

http://horstmann.com/javaimpatient/bugs.html
http://horstmann.com/javaimpatient/bugs.html

m Preface

" Tip: Download the runnable code examples that complement this book at
http://horstmann.com/javaimpatient/bugs.html.

http://horstmann.com/javaimpatient/bugs.html

Acknowledgments

My thanks go, as always, to my editor Greg Doench, who enthusiastically supported the
vision of a short book that gives a fresh introduction to Java. My special gratitude goes to
the excellent team of reviewers for this and previous editions who spotted many errors and
gave thoughtful suggestions for improvement. They are: Andres Almiray, Gail Anderson,
Paul Anderson, Marcus Biel, Jean-Claude Brantschen, Brian Goetz, Mark Lawrence, Doug
Lea, Ron Mak, Simon Ritter, Yoshiki Shibata, Clovis Tondo, and Christian Ullenboom.

I wrote the book using HTML and CSS, and Prince (https://princexml.com) turned it into
PDF—a workflow that I highly recommend.

Cay Horstmann
Dusseldorf, Germany
August 2024

https://princexml.com/

This page intentionally left blank

CHAPTER

Processing Input and Output

In this chapter, you will learn how to work with files, directories, and web pages, and how
to read and write data in binary and text format. You will also find a discussion of regular
expressions, which can be useful for processing input. (I couldn’t think of a better place to
handle that topic, and apparently neither could the Java developers—when the regular
expression API specification was proposed, it was attached to the specification request for
“new I/O” features.) Finally, this chapter shows you the object serialization mechanism that
lets you store objects as easily as you can store text or numeric data.

The key points of this chapter are:

1. An InputStream is a source of bytes, and an OutputStream is a destination for bytes.
2. AReader reads characters, and a Writer writes them. Be sure to specify a character
encoding.
3. The Files class has convenience methods for reading all bytes or lines of a file.
4. The Datalnput and DataOutput interfaces have methods for writing numbers in binary
format.
Use a RandomAccessFile or a memory-mapped file for random access.
. A Path is an absolute or relative sequence of path components in a file system. Paths
can be combined (or “resolved”).
7. Use the methods of the Files class to copy, move, or delete files and to recursively
walk through a directory tree.
To read or update a ZIP file, use a ZIP file system.
. You can read the contents of a web page with the URL class. To read metadata or
write data, use the URLConnection class.
10. With the Pattern and Matcher classes, you can find all matches of a regular
expression in a string, as well as the captured groups for each match.
11. The serialization mechanism can save and restore any object implementing the
Serializable interface, provided its instance variables are also serializable.

o wn

© o

9.1. Input/Output Streams, Readers, and Writers

In the Java API, a source from which one can read bytes is called an input stream. The
bytes can come from a file, a network connection, or an array in memory. (These streams
are unrelated to the streams of Chapter 8.) Similarly, a destination for bytes is an output
stream. In contrast, readers and writers consume and produce sequences of characters. In
the following sections, you will learn how to read and write bytes and characters.

m Chapter 9 » Processing Input and Output

9.1.1. Obtaining Streams

The easiest way to obtain a stream from a file is with the static methods

InputStream in = Files.newInputStream(path);
QutputStream out = Files.newQutputStream(path);

Here, path is an instance of the Path class that is covered in Section 9.2.1. It describes a
path in a file system.

If you have an URL object, you can read its contents from the input stream returned by the
openStream method. (The URL constructors are deprecated, and you should create an URL
instance as shown here.)

var url = URI.create("https://horstmann.com/index.html").toURL();
InputStream in = url.openStream();

Section 9.3 shows how to send data to a web server.

The ByteArrayInputStream class lets you read from an array of bytes.
byte[] bytes = ...;
var in = new ByteArrayInputStream(bytes);
Read from in

Conversely, to send output to a byte array, use a ByteArrayOutputStream:
var out = new ByteArrayOutputStream();

Write to out
byte[] bytes = out.toByteArray();

9.1.2. Reading Bytes

The InputStream class has a method to read a single byte:

InputStream in = ...;
int b = in.read();

This method either returns the byte as an integer between 0 and 255, or returns -1 if the
end of input has been reached.

Caution: The Java byte type has values between -128 and 127. You can cast the
returned value into a byte after you have checked that it is not -1.

More commonly, you will want to read the bytes in bulk. The most convenient method is the
readAl1Bytes method that simply reads all bytes from the stream into a byte array:

9.1 = Input/Output Streams, Readers, and Writers m

byte[] bytes = in.readAllBytes();

’ Tip: If you want to read all bytes from a file, call the convenience method

byte[] bytes = Files.readAllBytes(path);

If you want to read some, but not all bytes, provide a byte array and call the read\Bytes
method:

var bytes = new byte[len];
int bytesRead = in.readNBytes(bytes, offset, n);

The method reads until either n bytes are read or no further input is available, and returns
the actual number of bytes read. If no input was available at all, the methods return -1.

é Note: There is also a read(byte[], int, int) method whose description seems exactly
like readNBytes. The difference is that the read method only attempts to read the bytes
and returns immediately with a lower count if it fails. The read\NBytes method keeps
calling read until all requested bytes have been obtained or read returns -1.

Finally, you can skip bytes:

long bytesToSkip = ...;
in.skipNBytes(bytesToSkip);

9.1.3. Writing Bytes

The write methods of an OutputStream can write individual bytes and byte arrays.

QutputStream out = ...;
intb=...;

out.write(b);

byte[] bytes = ...;
out.write(bytes);
out.write(bytes, start, length);

When you are done writing a stream, you must close it in order to commit any buffered
output. This is best done with a try-with-resources statement:

try (OutputStream out = ...) {
out.write(bytes);

}

m Chapter 9 » Processing Input and Output

If you need to copy an input stream to an output stream, use the InputStream.transferTo
method:

try (InputStream in = ...; OutputStream out = ...) {
in.transferTo(out);
}
Both streams need to be closed after the call to transferTo. It is best to use a try-with-
resources statement, as in the code example.
To write a file to an OutputStream, call
Files.copy(path, out);

Conversely, to save an InputStream to a file, call

Files.copy(in, path, StandardCopyOption.REPLACE EXISTING);

9.1.4. Character Encodings

Input and output streams are for sequences of bytes, but in many cases you will work with
text—that, is, sequences of characters. It then matters how characters are encoded into
bytes.

Java uses the Unicode standard for characters. Each character or “code point” has a 21-bit
integer number. There are different character encodings—methods for packaging those
21-bit numbers into bytes.

The most common encoding is UTF-8, which encodes each Unicode code point into a
sequence of one to four bytes (see Table 9.1). UTF-8 has the advantage that the characters
of the traditional ASCII character set, which contains all characters used in English, only
take up one byte each.

Table 9.1: UTF-8 Encoding

Chr:fgc:er Encoding
0...7F Oapasasazazalag
80...7FF 110a1pa9aga7as 10asasazazaiap
800...FFFF 1110a15a14a13a12 10a11a1pagagayae lOasasazazalag
10000. . . 10FFFE %é;;gjazggzlgiéz 10a17a16a15a14a13a12 10a11a1eagagazas

9.1 = Input/Output Streams, Readers, and Writers m

A less common encoding is UTF-16, which encodes each Unicode code point into one or
two 16-bit values (see Table 9.2). This is the encoding used in Java strings. Actually, there
are two forms of UTF-16, called “big-endian” and “little-endian.” Consider the 16-bit value
0x2122. In big-endian format, the more significant byte comes first: 0x21 followed by 0x22. In
little-endian format, it is the other way around: 0x22 0x21. To indicate which of the two is
used, a file can start with the “byte order mark,” the 16-bit quantity 0xFEFF. A reader can
use this value to determine the byte order and discard it.

Table 9.2: UTF-16 Encoding

Character range Encoding

0...FFFF a15314a13a12d11a10a9a8a7apasa4a3a2a1an

110110b19b1gb17b16a15314213a12a11a10 110111agagasasasasazaralag

10000...10FFFF where b1obigb17b16 = azeaioaigaizaig - 1

Caution: Some programs, including Microsoft Notepad, add a byte order mark at
the beginning of UTF-8 encoded files. Clearly, this is unnecessary since there are no
byte ordering issues in UTF-8. But the Unicode standard allows it, and even suggests
that it’s a pretty good idea since it leaves little doubt about the encoding. It is
supposed to be removed when reading a UTF-8 encoded file. Sadly, Java does not do
that, and bug reports against this issue are closed as “will not fix.” Your best bet is
to strip out any leading \uFEFF that you find in your input.

In addition to the UTF encodings, there are partial encodings that cover a character range
suitable for a given user population. For example, ISO 8859-1 is a one-byte code that
includes accented characters used in Western European languages. Shift JIS is a variable-
length code for Japanese characters. A large number of these encodings are still in
widespread use.

Because UTF-8 is so common, it has become the default encoding since Java 18. Previously,
the default encoding was the native encoding—the character encoding that is preferred by
the operating system of the computer running your program. On Windows, that is generally
not UTF-8. If you are using an older version of Java, or if you are working with text in an
encoding other than UTF-8, you need to explicitly specify the encoding.

é Note: The native encoding is returned by the static method Charset.defaultCharset.
The static method Charset.availableCharsets returns all available Charset instances, as
a map from canonical names to Charset objects.

The StandardCharsets class has static variables of type Charset for the character encodings
that every Java virtual machine must support:

m Chapter 9 » Processing Input and Output

StandardCharsets.UTF 8
StandardCharsets.UTF 16
StandardCharsets.UTF 16BE
StandardCharsets.UTF 16LE
StandardCharsets.IS0O 8859 1
StandardCharsets.US ASCII
To obtain the Charset for another encoding, use the static forName method:
Charset shiftJIS = Charset.forName("Shift JIS");

You use the Charset object to specify a character encoding. For example, you can turn an
array of bytes into a string as

var contents = new String(bytes, StandardCharsets.ISO 8859 1);
9.1.5. Text Input

To read text input, use a Reader. You can obtain a Reader from any input stream with the
InputStreamReader adapter:

InputStream inStream = ...;
var in = new InputStreamReader(inStream, charset);

If you want to process the input one UTF-16 code unit at a time, you can call the read
method:

int ch = in.read();
The method returns a code unit between 0 and 65536, or -1 at the end of input.
That is not very convenient. Here are several alternatives.
With a short text file, you can read it into a string like this:
String content = Files.readString(path, charset);
But if you want the file as a sequence of lines, call
List<String> lines = Files.readAllLines(path, charset);
If the file is large, process them lazily as a Stream<String>:

try (Stream<String> lines = Files.lines(path, charset)) {

}

9.1 » Input/Output Streams, Readers, and Writers 307

é Note: If an I0Exception occurs as the stream fetches the lines, that exception is
wrapped into an UncheckedIOException which is thrown out of the stream operation.
This subterfuge is necessary because stream operations are not declared to throw
any checked exceptions.

To read numbers or words from a file, use a Scanner, as you have seen in Chapter 1. For
example,

var in = new Scanner(path);
while (in.hasNextDouble()) {
double value = in.nextDouble();

73

{ Tip: To read alphabetic words, set the scanner’s delimiter to a regular expression
that is the complement of what you want to accept as a token. For example, after
calling

in.useDelimiter("\\PL+");

the scanner reads in letters since any sequence of nonletters is a delimiter. See
Section 9.4.1 for the regular expression syntax.

You can then obtain a stream of all words as

Stream<String> words = in.tokens();

If your input does not come from a file, wrap the InputStream into a BufferedReader:

try (var reader = new BufferedReader(new InputStreamReader(url.openStream()))) {
Stream<String> lines = reader.lines();

}

A BufferedReader reads input in chunks for efficiency. (Oddly, this is not an option for basic
readers.) It has methods readLine to read a single line and lines to yield a stream of lines.

If a method asks for a Reader and you want it to read from a file, call
Files.newBufferedReader(path, charset).

9.1.6. Text Output

To write text, use a Writer. With the write method, you can write strings. You can turn any
output stream into a Writer:

m Chapter 9 » Processing Input and Output

QutputStream outStream = ...;

var out = new OutputStreamWriter(outStream, charset);

out.write(str);
To get a writer for a file, use

Writer out = Files.newBufferedWriter(path, charset);
It is more convenient to use a PrintWriter, which has the print, println, and printf that you
have always used with System.out. Using those methods, you can print numbers and use
formatted output.
If you write to a file, construct a PrintWriter like this:

var out = new PrintWriter(Files.newBufferedWriter(path, charset));

If you write to another stream, use

var out = new PrintWriter(new OutputStreamWriter(outStream, charset));

é Note: System.out is an instance of PrintStream, not PrintWriter. This is a relic from the
earliest days of Java. However, the print, println, and printf methods work the same
way for the PrintStream and PrintWriter classes, using a character encoding for
turning characters into bytes.

If you already have the text to write in a string, call

String content = ...;
Files.writeString(path, content, charset);

or
Files.write(path, lines, charset);

Here, lines can be a Collection<String>, or even more generally, an Iterable<? extends
CharSequence>.

To append to a file, use

Files.writeString(path, charset, StandardOpenOption.APPEND);
Files.write(path, lines, charset, StandardOpenOption.APPEND);

9.1 = Input/Output Streams, Readers, and Writers m

Caution: When writing text with a partial character set such as ISO 8859-1, any
unmappable characters are silently changed to a “replacement”—in most cases,
either the ? character or the Unicode replacement character U+FFFD.

Sometimes, a library method wants a Writer to write output. If you want to capture that
output in a string, hand it a StringWriter. Or, if it wants a PrintWriter, wrap the StringWriter
like this:

var writer = new StringWriter();
throwable.printStackTrace(new PrintWriter(writer));
String stackTrace = writer.toString();

9.1.7. Reading Character Input

If you read a file with a structured format such as JSON or XML, you will use a parser that
someone wrote who understands the fiddly details of that format. Such a parser typically
reads a character at a time.

In the uncommon case that you need to write such a parser, use a BufferedReader for
efficiency. Keep calling its read method, which yields a char value or -1 at the end of input.
The reader converts the encoding of the input stream into UTF-16.

If you want to process Unicode code points, you need to handle the UTF-16 encoding. Here
is how to read one code point:

int ch = reader.read();
if (ch !'= -1)
{
int codePoint;
if (Character.isHighSurrogate((char) ch))
{
int ch2 = reader.read();
if (Character.isLowSurrogate((char) ch2))
codePoint = Character.toCodePoint(ch, ch2);
else
throw new MalformedInputException();
}
else
codePoint = ch;
}

The Character class contains methods to tell whether a particular code point has a given
property. For example,

Character.islLetter(codePoint)

m Chapter 9 » Processing Input and Output

returns true if codePoint is a letter in some language. Here are some other classification
methods:

isUpperCase
isLowerCase
isDigit
isSpaceChar
isEmoji

These methods use the rules of the Unicode standard. Others refer to the rules of the Java
language:

isJavaldentifierStart
isJavaldentifierPart
isWhitespace

After analyzing the code points, you often need to store them in strings, converting them
back to UTF-16. The appendCodePoint method of the StringBuilder class turns a code point
into one or two char values which are appended to the builder.

9.1.8. Reading and Writing Binary Data

The Datalnput interface declares the following methods for reading a number, a character, a
boolean value, or a string in binary format:

byte readByte()

int readUnsignedByte()
char readChar()

short readShort()

int readUnsignedShort()
int readInt()

long readLong()

float readFloat()

double readDouble()

void readFully(byte[] b)

The DataOutput interface declares corresponding write methods.

Note: These methods read and write numbers in big-endian format.

Caution: There are also readUTF/writeUTF methods that use a “modified UTF-8”
format. These methods are not compatible with regular UTF-8, and are only useful
for JVM internals.

9.1 = Input/Output Streams, Readers, and Writers m

The advantage of binary I/O is that it is fixed width and efficient. For example, writelnt
always writes an integer as a big-endian 4-byte binary quantity regardless of the number of
digits. The space needed is the same for each value of a given type, which speeds up
random access. Also, reading binary data is faster than parsing text. The main drawback is
that the resulting files cannot be easily inspected in a text editor.

You can use the DatalnputStream and DataOutputStream adapters with any stream. For
example,

Datalnput in = new DatalnputStream(Files.newInputStream(path));
DataOutput out = new DataOutputStream(Files.newQutputStream(path));

9.1.9. Random-Access Files

The RandomAccessFile class lets you read or write data anywhere in a file. You can open a
random-access file either for reading only or for both reading and writing; specify the
option by using the string "r" (for read access) or "rw" (for read/write access) as the second
argument in the constructor. For example,

var file = new RandomAccessFile(path.toString(), "rw");

A random-access file has a file pointer that indicates the position of the next byte to be
read or written. The seek method sets the file pointer to an arbitrary byte position within
the file. The argument to seek is a long integer between zero and the length of the file
(which you can obtain with the length method). The getFilePointer method returns the
current position of the file pointer.

The RandomAccessFile class implements both the Datalnput and DataOutput interfaces. To read
and write numbers from a random-access file, use methods such as readInt/writelInt that
you saw in the preceding section. For example,

int value = file.readInt();

file.seek(file.getFilePointer() - 4);
file.writeInt(value + 1);

9.1.10. Memory-Mapped Files

Memory-mapped files provide another, very efficient approach for random access that
works well for very large files. However, the API for data access is completely different
from that of input/output streams. First, get a channel to the file:

FileChannel channel = FileChannel.open(path,
StandardOpenOption.READ, StandardOpenOption.WRITE)

Then, map an area of the file (or, if it is not too large, the entire file) into memory:

m Chapter 9 » Processing Input and Output

ByteBuffer buffer = channel.map(FileChannel.MapMode.READ WRITE,
0, channel.size());

Use methods get, getInt, getDouble, and so on to read values, and the equivalent put
methods to write values.

int offset = ...;
int value = buffer.getInt(offset);
buffer.put(offset, value + 1);

At some point, and certainly when the channel is closed, these changes are written back to
the file.

é Note: By default, the methods for reading and writing numbers use big-endian byte
order. You can change the byte order with the command

buffer.order(ByteOrder.LITTLE ENDIAN);

9.1.11. File Locking

When multiple simultaneously executing programs modify the same file, they need to
communicate in some way, or the file can easily become damaged. File locks can solve this
problem.

Suppose your application saves a configuration file with user preferences. If a user invokes
two instances of the application, it could happen that both of them want to write the
configuration file at the same time. In that situation, the first instance should lock the file.
When the second instance finds the file locked, it can decide to wait until the file is
unlocked or simply skip the writing process. To lock a file, call either the lock or trylLock
methods of the FileChannel class.

FileChannel channel = FileChannel.open(path, StandardOpenOption.WRITE);
FileLock lock = channel.lock();

or
FileLock lock = channel.tryLock();

The first call blocks until the lock becomes available. The second call returns immediately,

either with the lock or with null if the lock is not available. The file remains locked until the

lock or the channel is closed. It is best to use a try-with-resources statement:

try (FileLock lock = channel.lock()) {

}

9.2 m Paths, Files, and Directories m

9.2. Paths, Files, and Directories

You have already seen Path objects for specifying file paths. In the following sections, you
will see how to manipulate these objects and how to work with files and directories.

9.2.1. Paths

A Path is a sequence of directory names, optionally followed by a file name. The first
component of a path may be a root component, such as / or C:\. The permissible root
components depend on the file system. A path that starts with a root component is
absolute. Otherwise, it is relative. For example, here we construct an absolute and a
relative path. For the absolute path, we assume we are running on a Unix-like file system.

Path absolute = Path.of("/", "home", "cay");
Path relative = Path.of("myapp", "conf", "user.properties");

The static Path.of method receives one or more strings, which it joins with the path
separator of the default file system (/ for a Unix-like file system, \ for Windows). It then
parses the result, throwing an InvalidPathException if the result is not a valid path in the
given file system. The result is a Path object.

You can also provide a string with separators to the Path.of method:

Path homeDirectory = Path.of("/home/cay");

é Note: A Path object does not have to correspond to a file that actually exists. It is
merely an abstract sequence of names. To create a file, first make a path, then call a
method to create the corresponding file—see Section 9.2.2.

It is very common to combine or “resolve” paths. The call p.resolve(q) returns a path
according to these rules:

m If g is absolute, then the result is q.
m if g does not have a root, then the result is obtained by joining p and q.
m Otherwise, the result depends on the rules of the file system.

For example, suppose your application needs to find its configuration file relative to the
home directory. Here is how you can combine the paths:

Path workPath = homeDirectory.resolve("myapp/work");
// Same as homeDirectory.resolve(Path.of("myapp/work"));

There is a convenience method resolveSibling that resolves against a path’s parent,
yielding a sibling path. For example, if workPath is /home/cay/myapp/work, the call

m Chapter 9 » Processing Input and Output

Path tempPath = workPath.resolveSibling("temp");
yields /home/cay/myapp/temp.

The opposite of resolve is relativize. The call p.relativize(r) yields the path q which, when
resolved with p, yields r. For example,

Path.of("/home/cay").relativize(Path.of("/home/fred/myapp"))

yields ../fred/myapp, assuming we have a file system that uses .. to denote the parent
directory.

The normalize method removes any redundant . and .. components (or whatever the file
system may deem redundant). For example, normalizing the path /home/cay/../fred/./myapp
yields /home/fred/myapp.

The toAbsolutePath method yields the absolute path of a given path. If the path is not
already absolute, it is resolved against the working directory—that is, the directory of the
process in which the JVM was invoked. For example, if you launched a Java program from
/home/cay/myapp, then Path.of ("config").toAbsolutePath() returns /home/cay/myapp/config.

é Note: You can obtain the working directory by a call to
System.getProperty("user.dir").

The Path interface has methods for taking paths apart and combining them with other
paths. This code sample shows some of the most useful ones:

Path p = Path.of("/home", "cay", "myapp.properties");
Path parent = p.getParent(); // The path /home/cay
Path file = p.getFileName(); // The last element, myapp.properties
Path root = p.getRoot(); // The initial segment / (null for a relative path)
Path first = p.getName(0); // The first element
Path dir = p.subpath(l, p.getNameCount());
// All but the first element, cay/myapp.properties

The Path interface extends the Iterable<Path> element, so you can iterate over the name
components of a Path with an enhanced for loop:

for (Path component : path) {

}

9.2 m Paths, Files, and Directories m

Note: Occasionally, you may need to interoperate with legacy APIs that use the File
class instead of the Path interface. The Path interface has a toFile method, and the
File class has a toPath method.

9.2.2. Creating Files and Directories
To create a new directory, call
Files.createDirectory(path);

All but the last component in the path must already exist. To create intermediate
directories as well, use

Files.createDirectories(path);
You can create an empty file with
Files.createFile(path);

The call throws an exception if the file already exists. The checks for existence and the
creation are atomic. If the file doesn't exist, it is created before anyone else has a chance
to do the same.

The call Files.exists(path) checks whether the given file or directory exists. To test
whether it is a directory or a “regular” file (that is, with data in it, not something like a
directory or symbolic link), call the static methods isDirectory and isRegularFile of the Files
class.

There are convenience methods for creating a temporary file or directory in a given or
system-specific location.

Path tempFile = Files.createTempFile(dir, prefix, suffix);
Path tempFile = Files.createTempFile(prefix, suffix);

Path tempDir = Files.createTempDirectory(dir, prefix);
Path tempDir = Files.createTempDirectory(prefix);

Here, dir is a Path, and prefix/suffix are strings which may be null. For example, the call
Files.createTempFile(null, ".txt") might return a path such as /tmp/1234405522364837194. txt.

9.2.3. Copying, Moving, and Deleting Files
To copy a file from one location to another, simply call
Files.copy(fromPath, toPath);

To move the file instead, call

m Chapter 9 » Processing Input and Output

Files.move(fromPath, toPath);
You can also use this command to move an empty directory.
The copy or move will fail if the target exists. If you want to overwrite an existing target,
use the REPLACE EXISTING option. If you want to copy all file attributes, use the
COPY_ATTRIBUTES option. You can supply both like this:

Files.copy(fromPath, toPath, StandardCopyOption.REPLACE EXISTING,
StandardCopyOption.COPY ATTRIBUTES);

You can specify that a move should be atomic. Then you are assured that either the move
completed successfully, or the source continues to be present. Use the ATOMIC MOVE option:

Files.move(fromPath, toPath, StandardCopyOption.ATOMIC MOVE);

See Table 9.3 for a summary of the options that are available for file operations.

Finally, to delete a file, simply call
Files.delete(path);

This method throws an exception if the file doesn’t exist, so instead you may want to use
boolean deleted = Files.deleteIfExists(path);

The deletion methods can also be used to remove an empty directory.

Table 9.3: Standard Options for File Operations

Option Description

StandardOpenOption; use with newBufferedWriter, newInputStream, newOutputStreanm,

write

READ Open for reading.

WRITE Open for writing.

APPEND If opened for writing, append to the end of the file.

TRUNCATE EXISTING | If opened for writing, remove existing contents.

CREATE_NEW Create a new file and fail if it exists.

CREATE Atomically create a new file if it doesn’t exist.

DELETE ON_CLOSE | Make a “best effort” to delete the file when it is closed.

9.2 m Paths, Files, and Directories 317

Option Description
SPARSE A hint to the file system that this file will be sparse.
DSYNC|SYNC Requires that each update to the file data|data and metadata

be written synchronously to the storage device.

StandardCopyOption; use with copy, move

ATOMIC MOVE Move the file atomically.

COPY_ ATTRIBUTES Copy the file attributes.

REPLACE_EXISTING | Replace the target if it exists.

LinkOption; use with all of the above methods and exists, isDirectory,
isRegularFile

NOFOLLOW LINKS Do not follow symbolic links.

FileVisitOption; use with find, walk, walkFileTree

FOLLOW_LINKS Follow symbolic links.

9.2.4. Visiting Directory Entries

The static Files.list method returns a Stream<Path> that reads the entries of a directory. The
directory is read lazily, making it possible to efficiently process directories with huge
numbers of entries.

Since reading a directory involves a system resource that needs to be closed, you should
use a try-with-resources block:

try (Stream<Path> entries = Files.list(pathToDirectory)) {

}

The list method does not enter subdirectories. To process all descendants of a directory,
use the Files.walk method instead.

try (Stream<Path> entries = Files.walk(pathToRoot)) {
// Contains all descendants, visited in depth-first order
}

Here is a sample traversal of the unzipped src.zip tree:

m Chapter 9 » Processing Input and Output

java

java/nio
java/nio/DirectCharBufferU.java
java/nio/ByteBufferAsShortBufferRL.java
java/nio/MappedByteBuffer.java

java/nio/ByteBufferAsDoubleBufferB.java
java/nio/charset
java/nio/charset/CoderMalfunctionError.java
java/nio/charset/CharsetDecoder.java
java/nio/charset/UnsupportedCharsetException.java
java/nio/charset/spi
java/nio/charset/spi/CharsetProvider.java
java/nio/charset/StandardCharsets.java
java/nio/charset/Charset.java

java/nio/charset/CoderResult.java
java/nio/HeapFloatBufferR.java

As you can see, whenever the traversal yields a directory, it is entered before continuing
with its siblings.

You can limit the depth of the tree that you want to visit by calling Files.walk(pathToRoot,
depth). Both walk methods have a varargs parameter of type FileVisitOption..., but there is
only one option you can supply: FOLLOW LINKS to follow symbolic links.

é Note: If you filter the paths returned by walk and your filter criterion involves the
file attributes stored with a directory, such as size, creation time, or type (file,
directory, symbolic link), then use the find method instead of walk. Call that method
with a predicate function that accepts a path and a BasicFileAttributes object. The
only advantage is efficiency. Since the directory is being read anyway, the attributes
are readily available.

This code fragment uses the Files.walk method to copy one directory to another:

Files.walk(source).forEach(p -> {
try {
Path q = target.resolve(source.relativize(p));
if (Files.isDirectory(p))
Files.createDirectory(q);
else
Files.copy(p, q);
} catch (IOException ex) {

9.2 m Paths, Files, and Directories m

throw new UncheckedIOException(ex);
}
Hi

Unfortunately, you cannot easily use the Files.walk method to delete a tree of directories
since you need to first visit the children before deleting the parent. In that case, use the
walkFileTree method. It requires an instance of the FileVisitor interface. Here is when the
file visitor gets notified:
1. Before a directory is processed:
FileVisitResult preVisitDirectory(T dir, IOException ex)
2. When a file is encountered:
FileVisitResult visitFile(T path, BasicFileAttributes attrs)
3. When an exception occurs in the visitFile method:
FileVisitResult visitFileFailed(T path, IOException ex)
4. After a directory is processed:
FileVisitResult postVisitDirectory(T dir, IOException ex)
In each case, the notification method returns one of the following results:
m Continue visiting the next file: FileVisitResult.CONTINUE
m Continue the walk, but without visiting the entries in this directory:

FileVisitResult.SKIP SUBTREE

m Continue the walk, but without visiting the siblings of this file:
FileVisitResult.SKIP SIBLINGS
m Terminate the walk: FileVisitResult.TERMINATE

If any of the methods throws an exception, the walk is also terminated, and that exception
is thrown from the walkFileTree method.

The SimpleFileVisitor class implements this interface, continuing the iteration at each point
and rethrowing any exceptions.

Here is how you can delete a directory tree:

Files.walkFileTree(root, new SimpleFileVisitor<Path>() {
public FileVisitResult visitFile(Path file,
BasicFileAttributes attrs) throws IOException {
Files.delete(file);
return FileVisitResult.CONTINUE;

m Chapter 9 » Processing Input and Output

public FileVisitResult postVisitDirectory(Path dir,
I0Exception ex) throws IOException {
if (ex '= null) throw ex;
Files.delete(dir);
return FileVisitResult.CONTINUE;

Caution: The Files.walk method throws an exception if any of the subdirectories are
not readable. If you only want to visit readable directories, use the walkFileTree
method.

9.2.5. ZIP File Systems

The Paths class looks up paths in the default file system—the files on the user’s local disk.
You can have other file systems. One of the more useful ones is a ZIP file system. If zipname
is the name of a ZIP file, then the call

FileSystem zipfs = FileSystems.newFileSystem(Path.of(zipname));

establishes a file system that contains all files in the ZIP archive. It’s an easy matter to
copy a file out of that archive if you know its name:

Files.copy(zipfs.getPath(sourceName), targetPath);
Here, zipfs.getPath is the analog of Path.of for an arbitrary file system.
To list all files in a ZIP archive, walk the file tree:

Files.walk(zipfs.getPath("/")).forEach(p -> {
Process p

};

You have to work a bit harder to create a new ZIP file. Here is the magic incantation:

Path zipPath = Path.of("myfile.zip");
var uri = URI.create("jar:" + zipPath.toUri());
// Constructs the URI jar:file://myfile.zip
try (FileSystem zipfs = FileSystems.newFileSystem(uri,
Collections.singletonMap("create", "true"))) {
// To add files, copy them into the ZIP file system
Files.copy(sourcePath, zipfs.getPath("/").resolve(targetPath));

}

9.3 m HTTP Connections m

Note: There is an older API for working with ZIP archives, with classes
ZipInputStream and ZipOutputStream, but it’s not as easy to use as the one described in
this section.

9.3. HTTP Connections

You can read from a URL by using the input stream returned from URL.getInputStream
method. However, if you want additional information about a web resource, or if you want
to write data, you need more control over the process than the URL class provides. The
URLConnection class was designed before HTTP was the universal protocol of the Web. It
provides support for a number of protocols, but its HTTP support is somewhat
cumbersome. When the decision was made to support HTTP/2, it became clear that it
would be best to provide a modern client interface instead of reworking the existing API.
The HttpClient provides a more convenient API and HTTP/2 support.

In the following sections, I provide a cookbook for using the HttpURLConnection class, and
then give an overview of the API.

9.3.1. The URLConnection and HttpURLConnection Classes

To use the URLConnection class, follow these steps:
1. Get an URLConnection object:
URLConnection connection = url.openConnection();

For an HTTP URL, the returned object is actually an instance of HttpURLConnection.
2. If desired, set request properties:

connection.setRequestProperty("Accept-Charset", "UTF-8, IS0-8859-1");

If a key has multiple values, separate them by commas.
3. To send data to the server, call

connection.setDoOutput(true);

try (OutputStream out = connection.getOutputStream()) {
/] Write to out
}

4. If you want to read the response headers and you haven’t called getOutputStream, call

connection.connect();

Then query the header information:

m Chapter 9 » Processing Input and Output

Map<String, List<String>> headers = connection.getHeaderFields();

For each key, you get a list of values since there may be multiple header fields with
the same key.
5. Read the response:

try (InputStream in = connection.getInputStream()) {
// Read from in
}

A common use case is to post form data. The URLConnection class automatically sets the
content type to application/x-www-form-urlencoded when writing data to a HTTP URL, but you
need to encode the name/value pairs:

URL url = ...;
URLConnection connection = url.openConnection();
connection.setDoOutput(true);
try (var out = new OutputStreamWriter(
connection.getOutputStream())) {
Map<String, String> postData = ...;
boolean first = true;
for (Map.Entry<String, String> entry : postData.entrySet()) {
if (first) first = false;
else out.write("&");
out.write(URLEncoder.encode(entry.getKey(), "UTF-8"));
out.write("=");
out.write(URLEncoder.encode(entry.getValue(), "UTF-8"));

}
}
try (InputStream in = connection.getInputStream()) {
}

9.3.2. The HTTP Client API

The HTTP client API provides another mechanism for connecting to a web server which is
simpler than the URLConnection class with its rather fussy set of stages. More importantly,
the implementation supports HTTP/2.

An HttpClient can issue requests and receive responses. You get a client by calling
HttpClient client = HttpClient.newHttpClient();

Alternatively, if you need to configure the client, use a builder API like this:
HttpClient client = HttpClient.newBuilder()

.followRedirects(HttpClient.Redirect.ALWAYS)
Jbuild();

9.3 m HTTP Connections m

That is, you get a builder, call methods to customize the item that is going to be built, and
then call the build method to finalize the building process. This is a common pattern for
constructing immutable objects.

Follow the same pattern for formulating requests. Here is a GET request:

HttpRequest request = HttpRequest.newBuilder()
.uri(URI.create("https://horstmann.com"))
.GET()
build();

The URI is the “uniform resource identifier” which is, when using HTTP, the same as a
URL. However, in Java, the URL class has methods for actually opening a connection to a
URL, whereas the URI class is only concerned with the syntax (scheme, host, port, path,
query, fragment, and so on).

When sending the request, you have to tell the client how to handle the response. If you
just want the body as a string, send the request with a HttpResponse.BodyHandlers.ofString(),
like this:

HttpResponse<String> response
= client.send(request, HttpResponse.BodyHandlers.ofString());

The HttpResponse class is a template whose type denotes the type of the body. You get the
response body string simply as

String bodyString = response.body();

There are other response body handlers that get the response as a byte array or a file. One
can hope that eventually the JDK will support JSON and provide a JSON handler.

With a POST request, you similarly need a “body publisher” that turns the request data into
the data that is being posted. There are body publishers for strings, byte arrays, and files.
Again, one can hope that the library designers will wake up to the reality that most POST
requests involve form data, file uploads, or JSON objects, and provide appropriate
publishers.

Nowadays, the most common P0OST request body contains JSON, which you need to convert
to a string. Then you can form the following request:

HttpRequest request = HttpRequest.newBuilder()
.Uri(URI.create(urlString))
.header("Content-Type", "application/json")
.POST (HttpRequest.BodyPublishers.ofString(jsonString))
Juild();

The book’s companion code has examples for posting form data and file uploads.

m Chapter 9 » Processing Input and Output

The HttpRequest.Builder class also has build methods for the less common PUT, DELETE, and
HEAD requests.

Java 16 adds a builder for filtering the headers of an existing HttpRequest. You provide the
request and a function that receives the header names and values, returning true for those
that should be retained. For example, here we modify the content type:
HttpRequest request2 = HttpRequest.newBuilder(request,
(name, value) -> !name.equalsIgnoreCase("Content-Type")) // Remove old content type
.header("Content-Type", "application/xml") // Add new content type
Dbuild();
The HttpResponse object also yields the status code and the response headers.

int status = response.statusCode();
HttpHeaders responseHeaders = response.headers();

You can turn the HttpHeaders object into a map:
Map<String, List<String>> headerMap = responseHeaders.map();
The map values are lists since in HTTP, each key can have multiple values.

If you just want the value of a particular key, and you know that there won’t be multiple
values, call the firstValue method:

Optional<String> lastModified = headerMap.firstValue("Last-Modified");
You get the response value or an empty optional if none was supplied.
The HttpClient is autocloseable, so you can declare it in a try-with-resources statement. Its

close method waits for the completion of submitted requests and then closes its connection
pool.

" Tip: To enable logging for the HttpClient, add this line to net.properties in your JDK:
jdk.httpclient.HttpClient.log=all
Instead of all, you can specify a comma-separated list of headers, requests, content,
errors, ssl, trace, and frames, optionally followed by :control, :data, :window, or :all.

Don’t use any spaces.

Then set the logging level for the logger named jdk.httpclient.HttpClient to INFO, for
example by adding this line to the logging.properties file in your JDK:

jdk.httpclient.HttpClient.level=INFO

9.4 m Regular Expressions m

9.4. Regular Expressions

Regular expressions specify string patterns. Use them whenever you need to locate strings
that match a particular pattern. For example, suppose you want to find hyperlinks in an
HTML file. You need to look for strings of the pattern . But wait—there may
be extra spaces, or the URL may be enclosed in single quotes. Regular expressions give
you a precise syntax for specifying what sequences of characters are legal matches.

In the following sections, you will see the regular expression syntax used by the Java API,
and how to put regular expressions to work.

9.4.1. The Regular Expression Syntax

In a regular expression, a character denotes itself unless it is one of the reserved
characters

A2 0) TN S
For example, the regular expression Java only matches the string Java.
The symbol . matches any single character. For example, .a.a matches Java and data.

The * symbol indicates that the preceding constructs may be repeated 0 or more times; for
a+, it is 1 or more times. A suffix of ? indicates that a construct is optional (0 or 1 times).
For example, be+s? matches be, bee, and bees. You can specify other multiplicities with { }
(see Table 9.4).

A | denotes an alternative: . (0o|ee)f matches beef or woof. Note the parentheses—without
them, .oo0|eef would be the alternative between .00 and eef. Parentheses are also used for
grouping—see Section 9.4.4.

A character class is a set of character alternatives enclosed in brackets, such as [Jj], [0-9],
[A-Za-z], or [*0-9]. Inside a character class, the - denotes a range (all characters whose
Unicode values fall between the two bounds). However, a - that is the first or last character
in a character class denotes itself. A * as the first character in a character class denotes the
complement (all characters except those specified).

Table 9.4 contains a number of predefined character classes such as \d (digits). There are
many more with the \p prefix, such as \p{Sc} (Unicode currency symbols)—see Table 9.5.

The characters " and $ match the beginning and end of input.
If you need to have a literal . * + ? { | () [\ * $, precede it by a backslash. Inside a

character class, you only need to escape [and \, provided you are careful about the
positions of | - *. For example, []*-] is a class containing all three of them.

m Chapter 9 » Processing Input and Output

Caution: If the regular expression is in a string literal, each backslash needs to be
escaped with another backslash. If you forget that second backslash, you usually get
an error because sequences such as \$ or \. are not valid in string literals. But if you
want to match a word boundary and accidentally use \b instead of \\b, then you have
a problem: \b is a valid escape sequence, indicating a backspace.

Instead of using backslashes, you can surround a string with \Q and \E. For example,
\(\$0\.99\) and \Q($0.99)\E both match the string ($0.99).

{ Tip: If you have a string that may contain some of the many special characters in the
0 regular expression syntax, you can escape them all by calling Pattern.quote(str). This
simply surrounds the string with \Q and \E, but it takes care of the special case

where str may contain \E.

Table 9.4: Regular Expression Syntax

Expression Description Example
Characters
¢, not one of . *
+?2{] () [\" | The character c.]
$
Any character except line
terminators, or any character if
the DOTALL flag is set.
Any Unicode “extended
\X grapheme cluster”, which is
perceived as a character or
symbol
The Unicode code point with
\x{p} hex code p. \x{1D346}
\uhhhh, \xhh, The UTF-16 code unit with the \UFEFF
\0o, \0oo, \Oooo | given hex or octal value.
Alert (\x{7}), escape (\x{1B}),
\a, \e, \f, \n, \r, | form feed (\x{B}), newline \n
\t (\x{A}), carriage return (\x{D}),
tab (\x{9}).

9.4 m Regular Expressions

327

Expression

Description

Example

\cc, where c is in
[A-Z] or one of @
[N~ 7

The control character
corresponding to the character
C.

\cH is a backspace (\x{8}).

\c, where c is
not in [A-Za-z0-9]

The character c.

\\

Everything between the start

\Q(...)\E matches the

AUKERS and the end of the quotation. string (...).
Character Classes
[C1C2...], where
Cj are
characters, Any of the characters 0-9+-]
ranges c-d, or represented by C1, C»,...
character
classes
A Complement of a character A
[~ class, [*\d\s]
Intersection of character n
[...&6...] classes. [\p{L}&&["A-Za-2]]
A predefined character class l\g‘gtgrrg?gggs d?)gsmcode
\p{...}, \P{...} (see Table 9.5); its complement. \pL—you can omit braces
around a single letter.
Digits ([0-9], or \p{Digit} when
\d, \D the UNICODE CHARACTER CLASS flag | \d+is a sequence of digits.
is set); the complement.
Word characters ([a-zA-Z0-9],
or Unicode word characters
\w, \W when the
UNICODE CHARACTER CLASS flag is
set); the complement.
Spaces ([\n\r\t\f\x{B}], or .
. \s*,\s* is a comma
\s, \S \p{Islihite space} when the surrounded by optional

UNICODE CHARACTER CLASS flag is
set); the complement.

white space.

m Chapter 9 » Processing Input and Output

Expression Description Example
Horizontal whitespace, vertical
\h, \v, \H, \V whitespace, their complements.
Sequences and Alternatives
: [1-9][0-9]* is a positive
XY Any string from X, followed by number without leading
any string from Y.
zero.
X|Y Any string from X or Y. http|ftp
Grouping (see Section 9.4.4)
"([*']*)"' captures the
(X) Captures the match of X. quoted text,
(['"1).*\1 matches 'Fred"
\n The nth group. or "Fred" but not "Fred".
. '(7<id>[A-Za-z0-9]+)"
(?<name>X) Ehaptgres the match of X with captures the match with
e given name. .
name id.
\k<names The group with the given name. \K<1d> matches the group
with name id.
(2:X) Use parentheses without In (?:http|ftp)://(.*), the
n capturing X. match after :// is \1.
? .
(2.1 X), _ Matches, but does not capture, L :
f1...-fk...:X), : : (?i:jpe?q) is a case-
with fi in X with the given flags (see insensitive match
e Section 9.4.7) on or off (after -). ‘
[dimsuUx]
Other (7...) See the Pattgrn API
ocumentation.
Quantifiers
X? Optional X. \+? is an optional + sign.
X*, X+ 0 or more X, 1 or more X. g%.g] [0-9]+ 1s an integer =

9.4 m Regular Expressions m

Expression Description Example
X{n}, X{n,}, n times X, at least n times X, [0-7]1{1,3} are one to three
X{m,n} between m and n times X. octal digits.
X ? X
Q?, where Qis a | Reluctant quantifier, attempting | ° (<.+7>).* matches the
) shortest sequence
quantified the shortest match before :
. : enclosed in angle
expression trying longer matches. brackets
"[*"]*+" matches strings
Q+, where Qis a | Possessive quantifier, taking the | enclosed in single quotes
quantified longest match without and fails quickly on
expression backtracking. strings without a closing
quote.
Boundary Matches
n Beg;nn;ng, end of nput (or ~Java$ matches the input
$ beginning, end of line in ;
1 or line Java.
multiline mode).
Beginning of input, end of
\A\Z \z input, absolute end of input
(unchanged in multiline mode).
\b \B Word boundary, nonword \bJava\b matches the word
boundary. Java.
Useful with split to
\b{g} Grapheme cluster boundary decompose a string into
grapheme clusters
\R A Unicode line break.
\G The end of the previous match.

Table 9.5: Predefined Character Classes \p{...}

Name Description
posixClass is one of Lower, Upper, Alpha, Digit, Alnum,
posixClass Punct, Graph, Print, Cntrl, XDigit, Space, Blank, ASCII,

interpreted as POSIX or Unicode class, depending
on the UNICODE CHARACTER CLASS flag.

IsScript, sc=Script,
script=Script

A script accepted by Character.UnicodeScript.forName.

m Chapter 9 » Processing Input and Output

Name Description

InBlock, blk=Block,

block=Block A block accepted by Character.UnicodeBlock. forName.

Category, InCategory,
gc=Category,
general category=Category

A one- or two-letter name for a Unicode general
category.

Property is one of Alphabetic, Ideographic, Letter,
Lowercase, Uppercase, Titlecase, Punctuation, Control,

IsProperty White Space, Digit, Hex Digit, Join Control,
Noncharacter Code Point, Assigned.
javaMethod Invokes the method Character.isMethod (must not

be deprecated).

9.4.2. Testing a Match

Generally, there are two ways to use a regular expression: Either you want to test whether
a string matches the expression, or you want to find one or more matches of the expression
in a string.

The static matches method tests whether an entire string matches a regular expression:

String regex = "[+-]7\\d+";
CharSequence input = ...;
if (Pattern.matches(regex, input)) {
// input matches the regular expression

}

If you need to use the same regular expression many times, it is more efficient to compile
it. Then, create a Matcher for each input:

Pattern pattern = Pattern.compile(regex);
Matcher matcher = pattern.matcher(input);
if (matcher.matches()) ...

If the match succeeds, you can retrieve the location of matched groups—see Section 9.4.4.
To test whether a string contains a match, use the find method instead:

if (matcher.find()) {
// A substring of input matches the regular expression

9.4 m Regular Expressions m

The match and find methods mutate the state of the Matcher object. If you just want to find
out whether a given Matcher has found a match, call the hasMatch method instead.

You can turn the pattern into a predicate. This is particularly useful with the filter method
of a stream:

Pattern digits = Pattern.compile("[0-9]+");
List<String> strings = List.of("December", "31st", "1999");
List<String> matchingStrings = strings.stream()
filter(digits.asMatchPredicate())
tolist(); // ["1999"]

The result contains all strings that match the regular expression.
Use the asPredicate method to test whether a string contains a match:

List<String> sringsContainingMatch = strings.stream()
filter(digits.asPredicate())
,tOLiSt(); // [”315t", II1999II]

9.4.3. Finding All Matches

In this section, we consider a common use case for regular expressions—finding all
matches in an input. Use this loop:

String input = ...;
Matcher matcher = pattern.matcher(input);
while (matcher.find()) {

String match = matcher.group();

int matchStart = matcher.start();

int matchEnd = matcher.end();

}

In this way, you can process each match in turn. As shown in the code fragment, you can
get the matched string as well as its position in the input string.

More elegantly, you can call the results method to get a Stream<MatchResult>. The MatchResult
interface has methods group, start, and end, just like Matcher. (In fact, the Matcher class
implements this interface.) Here is how you get a list of all matches:

List<String> matches = pattern.matcher(input)
.results()
.map(MatchResult::group)
Jtolist();

m Chapter 9 » Processing Input and Output

If you have the data in a file, then you can use the Scanner.findAll method to get a
Stream<MatchResult>, without first having to read the contents into a string. You can pass a
Pattern or a pattern string:

var in = new Scanner(path);

Stream<String> words = in.findAL1("\\pL+")
.map (MatchResult::group);

9.4.4. Groups

It is common to use groups for extracting components of a match. For example, suppose
you have a line item in the invoice with item name, quantity, and unit price such as

Blackwell Toaster USD29.95

Here is a regular expression with groups for each component:
(\p{Alnum}+(\s+\p{Alnum}+)*)\s+([A-Z]{3}) ([0-9.]%*)

After matching, you can extract the nth group from the matcher as
String contents = matcher.group(n);

Groups are ordered by their opening parenthesis, starting at 1. (Group 0 is the entire
input.) In this example, here is how to take the input apart:

Matcher matcher = pattern.matcher(input);
if (matcher.matches()) {

item = matcher.group(1);

currency = matcher.group(3);

price = matcher.group(4);

}

We aren’t interested in group 2; it only arose from the parentheses that were required for
the repetition. For greater clarity, you can denote that group as “non-capturing”. Then it
doesn’t show up as a group in the matcher.
(\p{Alnum}+(?:\s+\p{Alnum}+)*)\s+([A-Z]{3}) ([0-9.]*)
Or, even better, use named groups:
(?7<item>\p{Alnum}+(\s+\p{Alnum}+)*)\s+(?<currency>[A-Z]{3}) (?<price>[0-9.]*)

Then, you can retrieve the groups by name:

item = matcher.group("item");

9.4 m Regular Expressions m

With the start and end methods of the Matcher and MatchResult classes, you can get the group
positions in the input:

int itemStart = matcher.start("item");
int itemEnd = matcher.end("item");

The namedGroups method yields a Map<String, Integer from group names to numbers.

Note: When you have a group inside a repetition, such as (\s+\p{Alnum}+)* in the
example above, it is not possible to get all of its matches. The group method only
yields the last match, which is rarely useful. You need to capture the entire
expression with another group.

9.4.5. Splitting along Delimiters

Sometimes, you want to break an input along matched delimiters and keep everything else.
The Pattern.split method automates this task. You obtain an array of strings, with the
delimiters removed:

String input = ...;

Pattern commas = Pattern.compile("\\s*,\\s*");

String[] tokens = commas.split(input);

// II1’ 2, 3II turns into [Illll’ II2II, II3II]

If there are many tokens, you can fetch them lazily:

Stream<String> tokens = commas.splitAsStream(input);
To also collect the delimiters, use the splitWithDelimiters method:

tokens = commas.splitWithDelimiters(input, -1); // ("1, *, ", "2", ", ", "3", ",", "4"]
If the second argument is a positive number n, the separator pattern is applied at most n -
1 times. and the last element is the remaining string. Otherwise, the pattern is applied as

often as possible. With a limit of zero, trailing empty strings are discarded.

If you don’t care about precompiling the pattern or lazy fetching, you can just use the split
and splitWithDelimiter methods of the String class:

tokens = input.split("\\s*,\\s*");

Caution: It is easy to forget that the argument of split is a regular expression. For
example,

m Chapter 9 » Processing Input and Output

"com.horstmann.corejava".split(".")

does not split along the dots. Instead, every character is a separator, and the result
is an empty array!

You need to escape the dot with a backslash in the regular expression, and therefore
with two backslashes in the string literal:

"com.horstmann.corejava".split("\\.")
Alternatively, use the Pattern.quote method:

“com.horstmann.corejava".split(Pattern.quote("."));

If the input is in a file, use a scanner:

var in = new Scanner(path);
in.useDelimiter("\\s*,\\s*");
Stream<String> tokens = in.tokens();

9.4.6. Replacing Matches

If you want to replace all matches of a regular expression with a string, call replaceAll on
the matcher:

Matcher matcher = commas.matcher(input);
String result = matcher.replaceAll(",");
// Normalizes the commas

Or, if you don’t care about precompiling, use the replaceAll method of the String class.
String result = input.replaceAll("\\s*,\\s*", ",");

The replacement string can contain group numbers $n or names ${name}. They are
replaced with the contents of the corresponding captured group.

String result = "3:45".replaceAll(
"(\\d{1,2}): (?<minutes>\\d{2})",
"¢1 hours and ${minutes} minutes");
// Sets result to "3 hours and 45 minutes"

You can use \ to escape $ and \ in the replacement string, or you can call the
Matcher.quoteReplacement convenience method:

matcher.replaceAll(Matcher.quoteReplacement(str))

9.4 m Regular Expressions m

If you want to carry out a more complex operation than splicing in group matches, then you
can provide a replacement function instead of a replacement string. The function accepts a
MatchResult and yields a string. For example, here we replace all words with at least four
letters with their uppercase version:

String result = Pattern.compile("\\pL{4,}")
.matcher("Mary had a little lamb")
.replaceAll(m -> m.group().toUpperCase());
// Yields "MARY had a LITTLE LAMB"

The replaceFirst method replaces only the first occurrence of the pattern.

9.4.7. Flags

Several flags change the behavior of regular expressions. You can specify them when you
compile the pattern:

Pattern pattern = Pattern.compile(regex,
Pattern.CASE INSENSITIVE | Pattern.UNICODE CHARACTER CLASS);

Or you can specify them inside the pattern:
String regex = "(?iU:expression)";
Here are the flags:

m Pattern.CASE INSENSITIVE or i: Match characters independently of the letter case. By
default, this flag takes only US ASCII characters into account.

m Pattern.UNICODE CASE or u: When used in combination with CASE INSENSITIVE, use
Unicode letter case for matching.

m Pattern.UNICODE CHARACTER CLASS or U: Select Unicode character classes instead of
POSIX. Implies UNICODE CASE.

m Pattern.MULTILINE or m: Make " and $ match the beginning and end of a line, not the
entire input.

m Pattern.UNIX LINES or d: Only '\n' is a line terminator when matching " and $ in
multiline mode.

m Pattern.DOTALL or s: Make the . symbol match all characters, including line
terminators.

m Pattern.COMMENTS or x: Whitespace and comments (from # to the end of a line) are
ignored.

m Pattern.LITERAL: The pattern is taking literally and must be matched exactly, except
possibly for letter case.

m Pattern.CANON EQ: Take canonical equivalence of Unicode characters into account.
For example, u followed by ~ (diaeresis) matches u.

The last two flags cannot be specified inside a regular expression.

m Chapter 9 » Processing Input and Output

9.5. Serialization

In the following sections, you will learn about object serialization—a mechanism for turning
an object into a bunch of bytes that can be shipped somewhere else or stored on disk, and
for reconstituting the object from those bytes.

Serialization is an essential tool for distributed processing, where objects are shipped from
one virtual machine to another. It is also used for fail-over and load balancing, when
serialized objects can be moved to another server. If you work with server-side software,
you will often need to enable serialization for classes. The following sections tell you how
to do that.

9.5.1. The Serializable Interface

In order for an object to be serialized—that is, turned into a bunch of bytes—it must be an
instance of a class that implements the Serializable interface. This is a marker interface
with no methods, similar to the Cloneable interface that you saw in Chapter 4.

For example, to make Employee objects serializable, the class needs to be declared as

public class Employee implements Serializable {
private String name;
private double salary;

}

It is appropriate for a class to implement the Serializable interface if all instance variables
have primitive or enum type, or contain references to serializable objects. Many classes in
the standard library are serializable. Arrays and the collection classes that you saw in
Chapter 7 are serializable provided their elements are.

In the case of the Employee class, and indeed with most classes, there is no problem. In the
following sections, you will see what to do when a little extra help is needed.

To serialize objects, you need an ObjectOutputStream, which is constructed with another
OutputStream that receives the actual bytes.

var out = new ObjectOutputStream(Files.newOutputStream(path));
Now call the writeObject method:

var peter = new Employee("Peter", 90000);

var paul = new Manager("Paul", 180000);

out.writeObject(peter);

out.writeObject(paul);

To read the objects back in, construct an ObjectInputStrean:

9.5 m Serialization 337

var in = new ObjectInputStream(Files.newInputStream(path));

Retrieve the objects in the same order in which they were written, using the readObject
method.

var el = (Employee) in.readObject();
var e2 = (Employee) in.readObject();

When an object is written, the name of the class and the names and values of all instance
variables are saved. If the value of an instance variable belongs to a primitive type, it is
saved as binary data. If it is an object, it is again written with the writeObject method.

When an object is read in, the process is reversed. The class name and the names and
values of the instance variables are read, and the object is reconstituted.

There is just one catch. Suppose there were two references to the same object. Let’s say
each employee has a reference to their boss:

var peter = new Employee("Peter", 90000);
var paul = new Manager("Barney", 105000);
var mary = new Manager("Mary", 180000);
peter.setBoss(mary);

paul.setBoss(mary);
out.writeObject(peter);
out.writeObject(paul);

When reading these two objects back in, both of them need to have the same boss, not two
references to identical but distinct objects.

In order to achieve this, each object gets a serial number when it is saved. When you pass

an object reference to writeObject, the ObjectOutputStream checks if the object reference was
previously written. In that case, it just writes out the serial number and does not duplicate
the contents of the object.

In the same way, an ObjectInputStream remembers all objects it has encountered. When
reading in a reference to a repeated object, it simply yields a reference to the previously
read object.

é Note: If the superclass of a serializable class is not serializable, it must have an
accessible no-argument constructor. Consider this example:

class Person // Not serializable
class Employee extends Person implements Serializable

m Chapter 9 » Processing Input and Output

When an Employee object is deserialized, its instance variables are read from the
object input stream, but the Person instance variables are set by the Person
constructor.

9.5.2. Transient Instance Variables

Certain instance variables should not be serialized—for example, database connections
that are meaningless when an object is reconstituted. Also, when an object keeps a cache
of values, it might be better to drop the cache and recompute it instead of storing it.

To prevent an instance variable from being serialized, simply tag it with the transient
modifier. Always mark instance variables as transient if they hold instances of
nonserializable classes. Transient instance variables are skipped when objects are
serialized.

9.5.3. The readObject and writeObject Methods

In rare cases, you need to tweak the serialization mechanism. A serializable class can add
any desired action to the default read and write behavior, by defining methods with the
signature

@Serial private void readObject(ObjectInputStream in)
throws IOException, ClassNotFoundException

@Serial private void writeObject(ObjectOutputStream out)
throws IOException

Then, the object headers continue to be written as usual, but the instance variables fields
are no longer automatically serialized. Instead, these methods are called.

Note the @Serial annotation. The methods for tweaking serialization don’t belong to
interfaces. Therefore, you can’t use the @verride annotation to have the compiler check the
method declarations. The @Serial annotation is meant to enable the same checking for
serialization methods. Up to Java 17, the javac compiler doesn’t do that checking, but it
might happen in the future. Some IDEs check the annotation.

A number of classes in the java.awt.geom package, such as Point2D.Double, are not
serializable. Now, suppose you want to serialize a class LabeledPoint that stores a String and
a Point2D.Double. First, you need to mark the Point2D.Double field as transient to avoid a
NotSerializableException.

public class LabeledPoint implements Serializable {
private String label;
private transient Point2D.Double point;

9.5 m Serialization m

In the writeObject method, first write the object descriptor and the String field, label, by
calling the defaultWriteObject method. This is a special method of the ObjectOutputStream
class that can only be called from within a writeObject method of a serializable class. Then
we write the point coordinates, using the standard DataOutput calls.

@Serial before private void writeObject(ObjectOutputStream out) throws IOException {
out.defaultWriteObject();
out.writeDouble(point.getX());
out.writeDouble(point.getY());

}

In the readObject method, we reverse the process:

@Serial before private void readObject(ObjectInputStream in)
throws IOException, ClassNotFoundException {
in.defaultReadObject();
double x = in.readDouble();
double y = in.readDouble();
point = new Point2D.Double(x, y);

}

Another example is the HashSet class that supplies its own readObject and writeObject
methods. Instead of saving the internal structure of the hash table, the writeObject method
simply saves the capacity, load factor, size, and elements. The readObject method reads back
the capacity and load factor, constructs a new table, and inserts the elements.

The readObject and writeObject methods only need to save and load their data. They do not
concern themselves with superclass data or any other class information.

The Date class uses this approach. Its writeObject method saves the milliseconds since the
“epoch” (January 1, 1970). The data structure that caches calendar data is not saved.

0 Caution: Just like a constructor, the read0bject method operates on partially
initialized objects. If you call a non-final method inside readObject that is overridden
in a subclass, it may access uninitialized data.

Note: If a serializable class defines a field
@Serial private static final ObjectStreamField[] serialPersistentFields
then serialization uses those field descriptors instead of the non-transient non-static

fields. There is also an API for setting the field values before serialization or reading
them after deserialization. This is useful for preserving a legacy layout after a class

m Chapter 9 » Processing Input and Output

has evolved. For example, the BigDecimal class uses this mechanism to serialize its
instances in a format that no longer reflects the instance fields.

9.5.4. The readExternal and writeExternal Methods

Instead of letting the serialization mechanism save and restore object data, a class can
define its own mechanism. For example, you can encrypt the data or use a format that is
more efficient than the serialization format.

To do this, a class implements the Externalizable interface instead of the Serializable
interface. This, in turn, requires two methods:

public void readExternal(ObjectInputStream in)
throws IOException

public void writeExternal(ObjectOutputStream out)
throws I0Exception

Unlike the readObject and writeObject methods, these methods are fully responsible for
saving and restoring the entire object, including the superclass data. When writing an
object, the serialization mechanism merely records the class of the object in the output
stream. When reading an externalizable object, the object input stream creates an object
with the no-argument constructor and then calls the readExternal method.

In this example, the LabeledPixel class extends the serializable Point class, but it takes over
the serialization of the class and superclass. The fields of the object are not stored in the
standard serialization format. Instead, the data are placed in an opaque block.

public class LabeledPixel extends Point implements Externalizable {
private String label;

public LabeledPixel() {} // required for externalizable class

@verride public void writeExternal(ObjectOutput out)
throws IOException {
out.writeInt((int) getX());
out.writeInt((int) getY());
out.writeUTF(label);

}

@0verride public void readExternal(ObjectInput in)
throws IOException, ClassNotFoundException {
int x = in.readInt();
int y = in.readInt();
setlLocation(x, y);
label = in.readUTF();

9.5 m Serialization m

Note: The readExternal and writeExternal methods should not be annotated with
@Serial. Since they are defined in the Externalizable interface, you can simply
annotate them with @0verride.

0 Caution: Unlike the readObject and writeObject methods, which are private and can

only be called by the serialization mechanism, the readExternal and writeExternal
methods are public. In particular, readExternal potentially permits modification of the
state of an existing object.

Note: You cannot customize the serialization of enumerations and records. If you
define readObject/writeObject or readExternal/writeExternal methods, they are not used
for serialization.

9.5.5. The readResolve and writeReplace Methods

We take it for granted that objects can only be constructed with the constructor. However,
a deserialized object is not constructed. Its instance variables are simply restored from an
object stream.

This is a problem if the constructor enforces some condition. For example, a singleton
object may be implemented so that the constructor can only be called once. As another

example, database entities can be constructed so that they always come from a pool of
managed instances.

You shouldn’t implement your own mechanism for singletons. If you need a singleton, make
an enumerated type with one instance that is, by convention, called INSTANCE.

public enum PersonDatabase {
INSTANCE;

public Person findById(int id) { ... }
} e
This works because enum are guaranteed to be deserialized properly.
Now let’s suppose that you are in the rare situation where you want to control the identity

of each deserialized instance. As an example, suppose a Person class wants to restore its
instances from a database when deserializing. Then you should not serialize the object

m Chapter 9 » Processing Input and Output

itself. Instead request that a proxy instance is saved. When restored, that proxy locates and
constructs the desired object. Your class needs to provide a writeReplace method that
returns the proxy object:

public class Person implements Serializable {
private int id;
// Other instance variables

@Serial private Object writeReplace() {
return new PersonProxy(id);
}

}

When a Person object is serialized, none of its instance variables are saved. Instead, the
writeReplace method is called and its return value is serialized and written to the stream.

The proxy class needs to implement a readResolve method that yields a Person instance:

class PersonProxy implements Serializable {
private int id;

public PersonProxy(int id) {
this.id = id;
}

@Serial private Object readResolve() {
return PersonDatabase.INSTANCE.findById(id);
}

}

When the readObject method finds a PersonProxy in an ObjectInputStream, it deserializes the
proxy, calls its readResolve method, and returns the result.

Note: Unlike the readObject and writeObject methods, the readResolve and
writeReplace methods need not be private.

Note: With enumerations and records, readObject/writeObject or
readExternal/writeExternal methods are not used for serialization. With records, but
not with enumerations, the writeReplace method will be used.

9.5.6. Versioning

Serialization was intended for sending objects from one virtual machine to another, or for
short-term persistence of state. If you use serialization for long-term persistence, or in any

9.5 m Serialization m

situation where classes can change between serialization and deserialization, you will need
to consider what happens when your classes evolve. Can version 2 read the old data? Can
the users who still use version 1 read the files produced by the new version?

The serialization mechanism supports a simple versioning scheme. When an object is
serialized, both the name of the class and its serialVersionUID are written to the object
stream. That unique identifier is assigned by the implementor, by defining an instance
variable

@Serial private static final long serialVersionUID = 1L; // Version 1

When the class evolves in an incompatible way, the implementor should change the UID.
Whenever a deserialized object has a nonmatching UID, the readObject method throws an
InvalidClassException.

If the serialVersionUID matches, deserialization proceeds even if the implementation has
changed. Each non-transient instance variable of the object to be read is set to the value in
the serialized state, provided that the name and type match. All other instance variables
are set to the default: null for object references, zero for numbers, and false for boolean
values. Anything in the serialized state that doesn’t exist in the object to be read is ignored.

Is that process safe? Only the implementor of the class can tell. If it is, then the
implementor should give the new version of the class the same serialVersionUID as the old
version.
If you don’t assign a serialVersionUID, one is automatically generated by hashing a
canonical description of the instance variables, methods, and supertypes. You can see the
hash code with the serialver utility. The command

serialver ch09.sec05.Employee
displays

private static final long serialVersionUID = -4932578720821218323L;

When the class implementation changes, there is a very high probability that the hash code
changes as well.

If you need to be able to read old version instances, and you are certain that is safe to do
so, run serialver on the old version of your class and add the result to the new version.

Note: If you want to implement a more sophisticated versioning scheme, override
the readObject method and call the readFields method instead of the defaultReadObject
method. You get a description of all fields found in the stream, and you can do with
them what you want.

m Chapter 9 » Processing Input and Output

Note: Enumerations and records ignore the serialVersionUID field. An enumeration
always has a serialVersionUID of OL. You can declare the serialVersionUID of a record,
but the IDs don’t have to match for deserialization.

é Note: In this section, you saw what happens when the reader’s version of a class
has instance variables that aren’t present in the object stream. It is also possible
during class evolution for a superclass to be added. Then a reader using the new
version may read an object stream in which the instance variables of the superclass
are not set. By default, those instance fields are set to their 0/false/null default. That
may leave the superclass in an unsafe state. The superclass can defend against that
problem by defining an initialization method

@Serial private void readObjectNoData() throws ObjectStreamException

The method should either set the same state as the no-argument constructor or
throw an InvalidObjectException. It is only called in the unusual circumstance where
an object stream is read that contains an instance of a subclass with missing
superclass data.

9.5.7. Deserialization and Security

During deserialization of a serializable class, objects are created without invoking any
constructor of the class. Even if the class has a no-argument constructor, it is not used. The
field values are set directly from the values of the object input stream.

Note: For serializable records, deserialization calls the canonical constructor,
passing it the values of the components from the object input stream. (As a
consequence, cyclic references in records are not restored.)

Bypassing construction is a security risk. An attacker can craft bytes describing an invalid
object that could have never been constructed. Suppose, for example, that the Employee
constructor throws an exception when called with a negative salary. We would like to think
that no Employee object can have a negative salary as a result. But it is not difficult to
inspect the bytes for a serialized object and modify some of them. This way, one can craft
bytes for an employee with a negative salary and then deserialize them.

A serializable class can optionally implement the ObjectInputValidation interface and define
a validateObject method to check whether its objects are properly deserialized. For
example, the Employee class can check that salaries are not negative:

9.5 m Serialization m

public void validateObject() throws InvalidObjectException {
System.out.println("validateObject");
if (salary < 0)
throw new InvalidObjectException("salary < 0");

}

Unfortunately, the method is not invoked automatically. To invoke it, you also must provide
the following method:

@Serial private void readObject(ObjectInputStream in)
throws I0Exception, ClassNotFoundException {
in.registerValidation(this, 0);
in.defaultReadObject();
}

The object is then scheduled for validation, and the validateObject method is called when
this object and all dependent objects have been loaded. The second parameter lets you
specify a priority. Validation requests with higher priorities are done first.

There are other security risks. Adversaries can create data structures that consume
enough resources to crash a virtual machine. More insidiously, any class on the class path
can be deserialized. Hackers have been devious about piecing together “gadget
chains”—sequences of operations in various utility classes that use reflection and
culminate in calling methods such as Runtime.exec with a string of their choice.

Any application that receives serialized data from untrusted sources over a network
connection is vulnerable to such attacks. For example, some servers serialize session data
and deserialize whatever data are returned in the HTTP session cookie.

You should avoid situations in which arbitrary data from untrusted sources are
deserialized. In the example of session data, the server should sign the data, and only
deserialize data with a valid signature.

A serialization filter mechanism can harden applications from such attacks. The filters see
the names of deserialized classes and several metrics (stream size, array sizes, total
number of references, longest chain of references). Based on those data, the
deserialization can be aborted.

In its simplest form, you provide a pattern describing the valid and invalid classes. For
example, if you start our sample serialization demo as

java -Djdk.serialFilter="serial.*;java.**;!*' serial.ObjectStreamTest
then the objects will be loaded. The filter allows all classes in the serial package and all

classes whose package name starts with java, but no others. If you don’t allow java.**, or at
least java.util.Date, deserialization fails.

m Chapter 9 » Processing Input and Output

You can place the filter pattern into a configuration file and specify multiple filters for
different purposes. You can also implement your own filters. See https://docs.oracle.com/en/
java/javase/21/core/serialization-filteringl.html for details.

9.6. Exercises

1. Write a utility method for copying all of an InputStream to an QutputStream, without
using any temporary files. Provide another solution, without a loop, using
operations from the Files class, using a temporary file.

2. Write a program that reads a text file and produces a file with the same name but
extension .toc, containing an alphabetized list of all words in the input file together
with a list of line numbers in which each word occurs. Assume that the file’s
encoding is UTF-8.

3. Write a program that reads a file containing text and, assuming that most words are
English, guesses whether the encoding is ASCII, ISO 8859-1, UTF-8, or UTF-16, and
if the latter, which byte ordering is used.

4. Using a Scanner is convenient, but it is a bit slower than using a BufferedReader. Read
in a long file a line at a time, counting the number of input lines, with (a) a Scanner
and hasNextLine/nextLine, (b) a BufferedReader and readlLine, (c) a BufferedReader and
lines. Which is the fastest? The most convenient?

5. When an encoder of a Charset with partial Unicode coverage can’t encode a
character, it replaces it with a default—usually, but not always, the encoding of "?".
Find all replacements of all available character sets that support encoding. Use the
newEncoder method to get an encoder, and call its replacement method to get the
replacement. For each unique result, report the canonical names of the charsets
that use it.

6. The BMP file format for uncompressed image files is well documented and simple.
Using random access, write a program that reflects each row of pixels in place,
without writing a new file.

7. Look up the API documentation for the MessageDigest class and write a program that
computes the SHA-512 digest of a file. Feed blocks of bytes to the MessageDigest
object with the update method, then display the result of calling digest. Verify that
your program produces the same result as the sha512sum utility.

8. Write a utility method for producing a ZIP file containing all files from a directory
and its descendants.

9. Using the URLConnection class, read data from a password-protected web page with
“basic” authentication. Concatenate the user name, a colon, and the password, and
compute the Base64 encoding:

String input = username + ":" + password;
String encoding = Base64.getEncoder().encodeToString(input.getBytes());

Set the HTTP header Authorization to the value "Basic " + encoding. Then read and
print the page contents.

10. Using a regular expression, extract all decimal integers (including negative ones)
from a string into an ArrayList<Integer> (a) using find, and (b) using split. Note that
a + or - that is not followed by a digit is a delimiter.

https://docs.oracle.com/en/java/javase/21/core/serialization-filtering1.html
https://docs.oracle.com/en/java/javase/21/core/serialization-filtering1.html

9.6 m Exercises 347

11.

12.

13.

14.

15.

16.

17.

Using regular expressions, extract the directory path names (as an array of strings),
the file name, and the file extension from an absolute or relative path such as /home/
cay/myfile.txt.

Come up with a realistic use case for using group references in Matcher.replaceAll
and implement it.

Implement a method that can produce a clone of any serializable object by
serializing it into a byte array and deserializing it.

Implement a serializable class Point with instance variables for x and y. Write a
program that serializes an array of Point objects to a file, and another that reads the
file.

Continue the preceding exercise, but change the data representation of Point so
that it stores the coordinates in an array. What happens when the new version tries
to read a file generated by the old version? What happens when you fix up the
serialVersionUID? Suppose your life depended upon making the new version
compatible with the old. What could you do?

Which classes in the standard Java library implement Externalizable? Which of them
use writeReplace/readResolve?

Unzip the API source and investigate how the LocalDate class is serialized. Why does
the class define writeExternal and readExternal methods even though it doesn’t
implement Externalizable? (Hint: Look at the Ser class.) Why does the class define a
readObject method? How could it be invoked?

This page intentionally left blank

Index

Symbols

I operator
in property files 261
operator 18, 23
I= operator 18, 23
for wrapper classes 51
"..." (single quotes, for strings)
for strings 7
in javadoc hyperlinks 101
in text blocks 34
(number sign)
flag (for output) 39
in javadoc hyperlinks 101
in option files 440
in property files 261
$ (dollar sign)
flag (for output) 39
in regular expressions 325, 326, 329, 334, 335
in variable names 16
% (percent sign)
conversion character 37, 38
operator 18, 20
%% 215
%= operator 18
%g 215
%h 215
%t 215
%u 215
& (ampersand) 18, 24
& operator
in regular expressions 327
operator 18, 23
& operator 18
> (right angle bracket)
in shell syntax 36
operator 23
>>=, >>>= operators 18
>z, >>, >>> operators 18, 23, 24
< (left angle bracket)
flag (for output) 39
in shell syntax 36
operator 23
<>
for constructors of generic classes 220
<< operator 18, 24
<<= operator 18
<...> (angle brackets)
for element types, in array lists 50
for type parameters 117, 220
in javadoc hyperlinks 101

in regular expressions 328
<= operator 18, 23
"..." (for character literals)
for character literals 14
((left parenthesis) 39
(...) (parentheses)
empty, for anonymous classes 138
for casts 22, 109
in regular expressions 325, 328, 332
operator 18
* (asterisk)
for annotation processors 416
in documentation comments 99
in regular expressions 325, 328, 333
operator 18, 19
wildcard
in class path 89
in imported classes 91
*= operator 18
+ (plus sign)
flag (for output) 39
in regular expressions 325, 328
operator 18, 19
for strings 25, 28, 156
++ operator 18, 20
+= operator 18
, (comma)
flag (for output) 39
normalizing 334
trailing, in arrays 49
- (minus sign)
flag (for output) 39
in regular expressions 325
operator 18, 19
-> operator 121, 124
-- operator
in command-line options 88
operator 18, 20
-= operator 18, 19
. (period) 314
in method calls 6
in package names 3, 86
in regular expressions 325, 326, 335
operator 18
... (ellipsis) 59
/ (slash)
file separator (Unix) 262, 313
in javac path segments 3
operator 18, 19
root component 313
[F*.*¥ 98
//, /*...*/ comments 2
/= operator 18
0

as default value 75, 77
flag (for output) 39
prefix (for octal literals) 13
0b 13
Ox 13,39
0xFEFF 305
: (colon)
in assertions 206
in switch statement 42
path separator (Unix) 89, 262
switch 41
switch statement 42, 171
i1 (C++ operator) 124, 147
; (semicolon)
path separator (Windows) 89, 262
=operator 18, 19
== operator 18, 23, 158
for class objects 175
for enumerations 164
for strings 27
for wrapper classes 51
? (question mark)
in regular expressions 325, 326, 328
replacement character 309
wildcard, for types 223, 228, 239
?: 18,23
@ (at sign)
in java command 440
in javadoc comments 98
[...] (brackets)
for arrays 48, 55
in regular expressions 325, 327
operator 18
[156,175
[L 175
\ (backslash)
character literal 15
file separator (Windows) 262, 313
in option files 440
in regular expressions 325, 326, 334
in text blocks 34
\0 326
\a, \A, in regular expressions 326, 329
\b (backslash character literal) 15
\b, \B, in regular expressions 329
\c 327
\d, \D, in regular expressions 327
\e, \E, in regular expressions 326
\f (form feed character literal) 326
\G 329
\h, \H, in regular expressions 328
\k 328
\n (newline character literal)
for character literals 15
in property files 261, 262
in regular expressions 326, 328, 335
\p, \P, in regular expressions 327
\Q 326, 327
\r (carriage return character literal)
for character literals 15

in property files 262
\r, \R, in regular expressions 326, 329
\s, \S, in regular expressions 327
\t (tab character literal)
in regular expressions 326
tab, for character literals 15
\U (Unicode character literal)
for character literals 14
in regular expressions 326
\v, \V, in regular expressions 328
\w, \W, in regular expressions 327
\x 326
\z, \Z, in regular expressions 329
* (caret)
for function parameters 121
in regular expressions 325, 329, 335
operator 18, 24
“= operator 18
(underscore)
in number literals 13
in variable names 16, 71
{...} (braces)
in annotation elements 401
in lambda expressions 122
in regular expressions 325, 329, 334
with arrays 49
{{...}} 146
| operator
in regular expressions 325, 328
operator 18, 24
|= operator 18
|| operator 18, 23
~operator 18, 24

A

a, A conversion characters 38
abstract keyword 109, 148
abstract classes 148
abstract methods 123
AbstractCollection class 114
AbstractMethodError class 114
AbstractProcessor class 416
accept 128,129
acceptEither method 374, 375
AccessibleObject class

setAccessible method 184, 185, 186

trySetAccessible method 184
accessors 66
accumulate 378
accumulateAndGet method 377
accumulator functions 293
ActionListener interface 120
add method

of ArrayDeque 266

of ArrayList 50, 66

of BlockingQueue 365

of Collection 245

of List 247

of ListIterator 252
of LongAdder 378
addAll method
of Collection 226, 245
of Collections 249
of List 247
addExact method 21
addition 19
identity for 293
addSuppressed method 200
aggregators 441
allMatch method 281
all0f method
of CompletableFuture 374, 375
of EnumSet 265
allProcesses method 392
and, andNot methods (BitSet) 263
and, andThen methods (functional interfaces) 128
Android 120, 376
AnnotatedConstruct interface 417
AnnotatedElement interface 413, 415
Annotation interface
extending 408
annotation interfaces 405
annotation processors 416
annotations
accessing 407, 442
applicability of 409
container 412,414
declaration 402
documented 409, 411
generating source code with 417
inherited 409, 412, 414
key/value pairs in 400, 407
meta 406, 412
modifiers and 404
multiple 401
processing
at runtime 412
source-level 415
repeatable 401, 409, 412, 414
standard 408
type use 403
anonymous classes 137
anyMatch method 281
any0f method 374, 375
Apache Commons CSV 438
API documentation 30, 32
generating 98
Applet 178
apply, applyAsXxx methods (functional interfaces) 128,
129

applyToEither method 374, 375
arithmetic operations 18
Array class 188

array lists 50

anonymous 146

checking for nulls 227
constructing 51
converting between 223

copying 53

elements of 50, 52

filling 53

instantiating with type variables 234

size of 51

sorting 54

variables of 50
array variables

assigning values to 49

copying 52

declaring 48

initializing 48
ArrayBlockingQueue class 366
ArrayDeque class 265
ArrayIndexOutOfBoundsException class 48
ArraylList class 50, 248

add method 50, 66

clone method 163

foreach method 124

get, remove methods 51

removelf method 123

set, size methods 51
arrays 48, 50

accessing nonexisting elements in 48

allocating 234

annotating 403

asList method 265

casting 188

checking 188

comparing 158

computing values of 369

constructing 48, 49

constructor references with 126

converting

to a reference of type Object 155
to/from streams 286, 296, 369

copying D52

copy0f method 52, 189

covariant 223

deepToString method 156

equals method 158

fill method 53

filling 49, 53

generating Class objects for 175

growing 188, 189

hash codes of 160

hashCode method 160

length of 48, 50, 134

multidimensional 55, 156

of bytes 302

of generic types 126, 235

of objects 49, 369

of primitive types 369

of strings 333

parallelXxx methods 54, 369

passing into methods 58

printing 54, 57, 156

serializable 336

setAll method 127

sort method 54, 118, 119, 123, 124

sorting 54, 117, 369 streams of 294
stream method 273, 294 BooleanSupplier interface 129
superclass assignment in 145 bootstrap class loader 178
toString method 54, 156 boxed 295
using class literals with 175 branches 39
ArrayStoreException class 145, 223, 235 break keyword 42, 43, 44
ASCIT 30, 304 bridge methods 230
ASM tool 420 clashes of 237
asMatchPredicate, asPredicate methods (Pattern) 331 BufferedReader class 307
assert keyword 206 build 322
AssertionError class 206 bulk operations 365
assertions 205 byte type 12, 51, 302
checking 403 MAX VALUE, MIN VALUE constants 12
enabling/disabling 206 streams of 294
assignment operators 19 toUnsignedInt method 13
associative operations 293 type conversions of 22
asSubclass method 239 byte codes 3
asynchronous computations 369 byte order mark 305
AsyncTask 376 ByteArrayXxxStream classes 302
atomic operations 361, 364, 376, 382 ByteBuffer class 312
performance and 377 bytes
AtomicXxx classes 377 arrays of 302
@author annotation 99, 102 converting to strings 306
autoboxing 51, 130 reading 302
AutoCloseable interface 199, 221 skipping 303
close method 199 writing 303
automatic modules 437, 439
availableCharsets method 305 C
availableProcessors method 351
average method (XxStream) 295 C# programming language, type parameters in 227
¢, C conversion characters 38
B C/C++
#include directive in 92
b, B conversion characters 38 allocating memory in 361
Base classes. See Superclasses integer typesin 12
BasicFileAttributes interface 318 pointers in 66
BeanInfo interface 188 C:\ 313
BiConsumer interface 128 CachedRowSetIlmpl 440
BiFunction interface 128, 130 calculators 166
big-endian format 305, 310, 312 calendars 64
BigDecimal class 14, 24, 339 call by reference 73
BigInteger class 12,24 Callable interface
binary data, reading/writing 310 call method 353
binary numbers 13, 14 callbacks 120, 371
binary trees 252 registering 369
BinaryOperator interface 129 camel case 16
binarySearch method 250 cancel method
BiPredicate interface 129 of CompletableFuture 371
BitSet class 262 of Future 353
collecting streams into 294 cancellation requests 356
methods of 263 CancellationException class 371
bitwise operators 24 cardinality 263
block statement, labeled 46 carriage return 15
blocking queues 365 case keyword 40
BlockingQueue interface 365, 366 cast 239
boolean type 15, 51 cast operator 22
default value of 75, 77 casts 22,109, 146
formatting for output 38 annotating 404

reading/writing 310 generic types and 232

inserting 229
catch keyword 197
annotating parameters of 402
in try-with-resources 200
no type variables in 237
ceiling 254
Channel interface 112
channels 311
char type 14
streams of 294
type conversions of 22
Character class 51
character classes 325
character encodings 304
native 305
partial 305, 309
character literals 14
characters 301
formatting for output 38
reading/writing 310
charAt method 33
CharSequence interface 30, 274
chars, codePoints methods 294
Charset class
availableCharsets method 305
defaultCharset method 305
forName method 306
checked exceptions 194, 197
combining in a superclass 196
declaring 196
documenting 197
generic types and 238
in lambda expressions 197
no-argument constructors and 186
not allowed in a method 203
rethrowing 202
checked views 232, 268
checkedXxx methods (Collections)
Checker Framework 403
checkIndex method 205
Child classes. See Subclasses
Church, Alonzo 121
Class class 174, 175, 240
asSubclass, cast methods 239
comparing objects of 175
forName method 174, 175, 176, 179, 180, 195, 204
generic 238
getCanonicalName method 175, 176
getClassLoader method 177
getComponentType method 176, 188
getConstructor(s) methods 177, 183, 186, 238, 239
getDeclaredConstructor(s) methods 177, 183, 239
getDeclaredField(s) methods 177
getDeclaredMethod(s) methods 177, 185
getDeclaringClass method 176
getEnclosingXxx methods 176
getEnumConstants method 239
getField(s) methods 177, 183
getInterfaces method 176
getMethod(s) methods 177, 183, 185

251, 269

getModifiers method 176
getName method 174, 176
getPackage method 176
getPackageName method 176
getPermittedSubclasses method 176
getRecordComponents method 177
getResource method 178
getResourceAsStream method 177, 178
getSimpleName method 176
getSuperclass method 176, 239
getTypeName method 176
getTypeParameters method 240
isXxx methods 176, 188
newInstance method 186, 238
toGenericString, toString methods 176
class declarations
annotations in 402, 412
initialization blocks in 76
class files 3, 178
paths of 87
processing annotations in 420
class literals 175
no annotations for 404
no type variables in 233
class loaders 178, 180
class objects 175
class path 88, 425
(lassCastException class 110, 232
classes 2, 64
abstract 109, 116, 148
accessing from a different module 442
adding to packages 91
anonymous 137
companion 114
constructing objects of 15
deprecated 100, 408, 409
deserialization of 344
documentation comments for 98, 99
encapsulation of 423, 424
evolving 342
extending 142
fields of 141
final 148
generic 50
immutable 30, 362
implementing 68, 161
importing 91
inner 94
instances of 6, 68, 85
loading 184
local 136
members of 141
enumerating 167, 183
naming 16, 86,174
nested 92, 403
not known at compile time 175, 190
protected 149
public 90, 429
sealed 152
serializable 338, 339

static initialization of 179 branching 292
static methods of 85 copy method 249
system 207 disjoint method 249
testing 90 fill method 53, 250
utility 90, 180 frequency method 250
wrapper 51 generic 268
classes win rule 160 given elements of 264
classifier functions 289 index0fSubList, lastIndex0fSubList methods 250
(ClassLoader class iterating over elements of 271
defineClass method 440 mutable 265
findClass, loadClass methods 179 nCopies method 248, 250
setXxxAssertionStatus methods 207 processing 249
classloader inversion 180 replaceAll method 249
ClassNotFoundException class 195 reverse method 54, 250
CLASSPATH 89 rotate method 250
clear method serializable 336
of BitSet 263 shuffle method 54, 250
of Collection 246 sort method 54, 226, 227, 240, 250
of Map 257 swap method 250
clone method synchronizedXxx methods 250
of ArrayList 163 threadsafe 367
of Enum 165 unmodifiable views of 265, 268
of Message 162, 163 unmodifiableXxx methods 250
of Object 150, 155, 161, 185 vs. streams 272
protected 161 Collector interface 286
Cloneable interface 162 Collectors class 92
CloneNotSupportedException class 162, 165 counting method 290
cloning 161 filtering method 292
close method flatMapping method 291
of AutoCloseable, Closeable 199 groupingBy method 289, 292
of PrintWriter 198, 199 groupingByConcurrent method 290, 297
throwing exceptions 200 joining method 287
(loseable interface 112 mapping method 291
close method 199 maxBy, minBy methods 291
closures 132 partitioningBy method 289, 292
code 99 reducing method 292
code generator tools 410 summarizingXxx methods 287, 291
code points 30, 277, 304 summingXxx methods 290
code units 14, 32, 294 teeing method 292
in regular expressions 326 toCollection method 287
codePoints method toConcurrentMap method 289
of CharSequence 294 toMap method 287
Collator class 28 toSet method 287, 290
collect 286, 294 Collectors class
collectingAndThen method 291 collectingAndThen method 291
Collection interface 114, 245 mapping method 291
add method 245 command-line arguments 54
addAll method 226, 245 comments 2
clear, contains, containsAll methods 246 documentation 98
isEmpty method 246 commonPool method 298, 370
iterator method 247 companion classes 114
parallelStream method 247, 272, 295, 368 Comparable interface 117, 165, 226, 253
remove, removeXxx, retainAll methods 246 compareTo method 117
size method 246 priority queues with 266
spliterator method 247 streams of 279
stream method 247, 272 Comparator interface 92, 118, 134, 253
toArray method 247 comparing, comparingXxx methods 135
Collections class 114, 245, 249, 269 naturalOrder method 136
addAll method 249 nullsFirst, nullsLast methods 136

binarySearch method 250 priority queues with 266

reversed method 135
reverseOrder method 136
streams of 279
thenComparing method 135
compare 118
compareTo method
of Enum 165
of String 28,117
compareToIgnoreCase method 124
compareUnsigned method 21
compatibility, drawbacks of 228
compilation 3
compile 330, 335
compile-time errors 16, 111
compiler
instruction reordering in 358
completable futures 369, 375
combining 375
composing 371
interrupting 371
CompletableFuture class 369, 375
acceptEither method 374, 375
all0f, any0f methods 374, 375
applyToEither method 374, 375
cancel method 371
complete, completeExceptionally methods 370
completeOnTimeout method 374
exceptionally method 373, 374
exceptionallyCompose method 374
handle method 374
isDone method 371
orTimeout method 374
runAfterXxx methods 374, 375
supplyAsync method 370, 371
thenAccept method 369, 373
thenAcceptBoth method 374
thenApply, thenApplyAsync methods 372, 373
thenCombine method 374
thenCompose method 373
thenRun method 374
whenComplete method 370, 373, 374
CompletionStage interface 375
compose 128
computations
asynchronous 369
mutator 66
precision of 14
compute method
of ConcurrentHashMap 364
of Map 257
computeIfXxx methods
of ConcurrentHashMap 364
of Map 257
concat 279
concatenation 25
objects with strings 156
concurrent programming 349, 391
access errors in 134
strategies for 361
ConcurrentHashMap class 363, 384

compute method 364
computeIfXxx methods 364
forEachXxx methods 365
keySet method 367
merge method 364
newkeySet method 367
no null values in 256
putIfAbsent method 364
reduceXxx, searchXxx methods 365
threadsafe 380
ConcurrentModificationException class 252, 367
ConcurrentSkipListXxx classes 367
conditional operator 23
configuration files
editing 211
locating 178
resolving paths for 313
confinement 361
connect 321
Console class 36
ConsoleHandler class 213, 215
constants 17,112
naming 17
static 83
using in another class 17
Constructor class 183
getModifiers, getName methods 183
newInstance method 186, 187
constructor references 125
annotating 404
constructors 73
abstract classes and 149
annotating 236, 402, 403
canonical, compact, custom 81
documentation comments for 98
executing 74
for subclasses 144
implementing 73
invoking another constructor from 75
no-argument 77, 144, 186
overloading 74
public 73, 183
references in 363
Consumer interface 128
contains method (String) 29
contains, containsAll methods (Collection) 246
containsXxx methods (Map) 257
context class loaders 180
continue keyword 45, 46
control flow 39
conversion characters 37
cooperative cancellation 355
Cooperative scheduling 351
copy method
of Collections 249
of Files 304, 315, 320
copyOf method 52, 189
CopyOnWriteArrayXxx classes 367
CORBA 424
count 272, 280

counters Deque interface 249, 265
atomic 376 Derived classes. See Subclasses
de/incrementing 201 destroy, destroyForcibly methods
counting 290 of Process 391
country codes 289 of ProcessHandle 393
covariance 222 diamond syntax
createDirectory, createDirectories, createFile methods for array lists 50
(Files) 315 for constructors of generic classes 220
createInstance method 180 directories 313
createTempXxx methods (Files) 315 checking for existence 315, 317
critical sections 361, 379, 385 creating 315, 317
current method deleting 316, 319
of ProcessHandlex 392 moving 315
of ThreadLocalRandom 387 temporary 315
user 314
D visiting 317
working 388
D 14 directory 388
conversion character 37 disjoint = 249
daemon threads 2388 distinct 279, 296
Databases 399 divideUnsigned method 21
persisting objects in 433 division 19
DataInput/Output interfaces 310 do 43
read/writeXxx methods 310, 311 doc-files 99
DataXxxStream classes 311 documentation comments 98
date classes @ocumented annotation 409, 411
immutability of 362 domain names
DayOfWeek enumeration 65 for modules 425
deadlocks 361, 380, 384, 385 for packages 86
debugging dot notation 6, 17
messages for 194 double type 13,'51
overriding methods for 148 atomic operations on 379
primary arrays for 54 compare method 118
streams 279 equals method 158
threads 387 functional interfaces for 129
using anonymous subclasses for 146 isFinite, isInfinite methods 14
with assertions 206 NaN, NEGATIVE INFINITY, POSITIVE INFINITY values 14
DecimalFormat class 86 parseDouble method 29
declaration-site variance 227 streams of 294
decomposition toString method 29
of classes 58 type conversions of 21
decrement operator 20 double brace initialization 146
decrementExact method 21 DoubleAccumulator, DoubleAdder classes 379
deep copies 161 DoubleConsumer, DoubleXxxOperator, DoublePredicate,
deepToString method 156 DoubleSupplier, DoubleToXxxFunction interfaces 129
default keyword 114, 407 DoubleFunction interface 129, 231
default label (in switch) 40 doubles 295
default methods 114, 116 DoubleStream interface 294
conflicts of 115, 154 DoubleSummaryStatistics class 287, 295
in interfaces 160 downstream collectors 290, 297
defaultCharset method 305 Driver.parentLogger method 441
defaultReadObject method 339, 343 dropWhile method =279
defaultWriteObject method 339 dynamic method lookup 145, 230, 231
defensive programming 205
deferred execution 126 E
defineClass method 440
delete, deletelfExists methods (Files) 316 E 21
delimiters, for scanners 307 e E

@deprecated annotation 100, 408, 409 conversion characters 38

Index 457

Eclipse 5
effectively final variables 133
efficiency, and final modifier 148
element 366, 416, 417
Elements 400, 407
else keyword 40
em 99
empty method
of Optional 284
of Stream 273
empty string 27, 156
concatenating 28
encapsulation 64, 423, 424, 425, 433
Encodings. See Character encodings
end 331, 333
End-of-line character. See Line feed
endsWith method 29
enhanced for loop 52, 57, 133
for collections 251
for enumerations 164
for iterators 182
for paths 314
enhanced form 42,171
Entry 228
entrySet method 258
enum keyword 18, 164, 165
enum instances
adding methods to 166
construction 166
referred by name 168
enumeration sets 265
enumerations 164
annotating 402
comparing 164, 165
constructing 165
customizing serialization of 341
defining 18
nested inside classes 167
serialization of 341
static members of 167
traversing instances of 164
using in switch 167
EnumMap, EnumSet classes 265
environment variables 390
equality, testing for 23
equals method
final 159
null-safe 158
of Arrays 158
of Double 158
of Object 155, 159
of Objects 158
of records 79
of String 27
of subclasses vs. superclass 158
of wrapper classes 51
overriding 157, 159
symmetric 159
values from different classes and 159
equalsIgnoreCase method 28

Error class 194

error messages, for generic methods 221
errorReader method 389

errors

AbstractMethodError 114
AssertionError 206

even numbers 20

Exception class 194

exceptionally 373, 374
exceptionallyCompose method 374
exceptions 193

annotating 404
ArrayIndexQutOfBoundsException 48
ArrayStoreException 145, 223, 235
CancellationException 371
catching 197, 202

chaining 202

checked 186, 194, 197
(lassCastException 110, 232
ClassNotFoundException 195
CloneNotSupportedException 162, 165
combining in a superclass 196
ConcurrentModificationException 252, 367
creating 196

documenting 197
ExecutionException 353
FileNotFoundException 195
generic types and 237
hierarchy of 194
IllegalArgumentException 206
IllegalStateException 287, 365
InaccessibleObjectException 184, 434
IndexOutOfBoundsException 205
InterruptedException 355
InvalidClassException 343
InvalidPathException 313
I0Exception 195, 200, 307
NoSuchElementException 283, 366
NullPointerException 27, 50, 68, 76, 195, 205, 255,
280

NumberFormatException 195
ReflectiveOperationException 175
rethrowing 200, 203
RuntimeException 194
SecurityException 184
ServletException 203
suppressed 200

throwing 194

TimeoutException 353

uncaught 204

unchecked 194
UncheckedIOException 307

exec 388

Executable class

getModifiers method 187
getName method 187
getParameters method 183, 187
ExecutableElement interface 416
ExecutionException class 353
Executor interface 372

executor services 351, 370
ExecutorCompletionService class 354
Executors class

newFixedThreadPool method 351
newVirtualThreadPerTaskExecutor method 351
ExecutorService interface

execute method 2351

invokeAll, invokeAny methods 354
exhaustiveness 41
exists 315, 317
exitValue method 391
exports keyword 426, 429, 432
qualified 442
extends keyword 112, 142, 221, 226
Externalizable interface, read/writeExternal
methods 340

F

F 14,38
factory methods 73, 85
failures, logging 202
false literal 15
as default value 75, 77
Field class 183
get method 184, 186
getBoolean, getByte, getChar, getDouble, getFloat, getlnt,
getlLong methods 184, 186
getModifiers, getName methods
getShort method 184, 186
getType method 183
set, setXxx methods 186
fields 141
enumerating 183
final 359
provided 150
public 183
retrieving values of 184
setting 185
transient 338
File class 315
file attributes
copying 316
filtering paths by 318
file handlers 214
file pointers 311
file.separator package 261
FileChannel class
get, getXxx methods 312
lock method 312
open method 311
put, putXxx methods 312
trylock method 312
FileFilter interface 129
FileHandler class 213, 215
FileNotFoundException class 195
files
archiving 320
channels to 311

183, 186

checking for existence 195, 315, 317

closing 198

copy method 304, 315, 320

copying 315

createTempXxx methods 315

createXxx methods 315

creating 313, 317

delete, deleteIfExists methods 316

deleting 316

empty 315

encoding of 304, 305

exists method 315, 317

find method 317, 318

isDirectory, isRegularFile methods 315, 317

lines method 274, 297, 306

list method 317

locking 312

memory-mapped 297, 311

move method 315

moving 315

newBufferedReader method 307

newBufferedWriter method 307, 316

newXxxStream methods 302, 316, 336

random-access 311

read method 303

readAl1Bytes method 303

readAllLines method 306

reading from/writing to 36, 195, 303

readNBytes method 303

skipNBytes method 303

temporary 315

walk method 317, 320

walkFileTree method 317, 319

write method 308, 316
FileSystem, FileSystems classes 320
FileVisitor interface 319
fill method

of Arrays 53

of Collections
Filter class 215

of Optional 282

of Stream 272, 276, 280
filtering 292
final keyword 17, 77, 148
final fields 359
final methods 363
final variables 359, 362
finalize 155
finally keyword 200

for locks 380

return statements in 201
financial calculations 14
find 317, 318
findAl1l method 332
findAny method 280
findClass method 179
findFirst method 182, 280
first 254
flag bits, sequences of 262
flatMap method

53, 250

of Optional 284, 285
of Stream 277
flatMapping method 291
flip 263
float type 13, 51
streams of 294
type conversions of 21
floating-point types 13
binary number system and 14
comparing 118
division of 20
formatting for output 38
in hexadecimal notation 14
type conversions of 21
floor 254
floorMod method 20
for keyword 43, 44
declaring variables for 47
enhanced 52, 57, 133, 164, 251, 314
multiple variables in 44
forEach method
of ArrayList 124
of Map 257
of Stream 286
forEachOrdered method 286
foreachXxx methods (ConcurrentHashMap) 365
ForkJoinPool class 372
commonPool method 298, 370
format specifiers 37
formatted 39
formatted output 37
Formatter class 215
forms, posting data from 322, 324
forName method
of Charset 306
of Class 174, 175, 176, 179, 180, 195, 204
frequency 250
Function interface 128, 287
function types 121, 127
functional interfaces 123, 409, 410
as method parameters 224
common 128
contravariant in parameter types 225
for primitive types 129
implementing 130

@FunctionalInterface annotation 130, 409, 410, 411

functions 63
higher-order 134
Functions. See Methods
Future interface 354
cancel, isCancelled, isDone methods 353
get method 353, 369
futures 353
completable 369, 375

G

9,6
conversion characters 38

gadget chains 345
garbage collector 267
generate 273, 294
@Generated annotation 409, 410
generators, converting to streams 296
generic classes 50, 220
constructing objects of 220
information available at runtime 239
instantiating 220
generic collections 268
generic constructors 240
generic methods 220
calling 221
declaring 221
information available at runtime 239
generic type declarations 240, 241
generic types 117
annotating 403
arrays of 126
casting 232
exceptions and 237
inJVM 228
invariant 223, 225
lambda expressions and 225
reflection and 238
restrictions on 231
GenericArrayType interface 240
get method
of Array 189
of ArrayList 51
of BitSet 263
of Field 184, 186, 312
of Future 353, 369

of List 248

of LongAccumulator 378
of Map 255, 256

of Optional 283, 285
of Path 314

of ServicelLoader.Provider 182

of Supplier 128
GET requests 323
getAndXxx methods (AtomicXxx) 377
getAnnotation, getAnnotationsByType methods

of AnnotatedConstruct 417

of AnnotatedElement 413, 415
getAsXxx methods

of OptionalXxx 295

of XxxSupplier 129
getAudioClip method 178
getAverage method 287
getBoolean method

of Array 189

of Field 184, 186

of FileChannel 312
getByte method

of Array 189

of Field 184, 186

of FileChannel 312
getCanonicalName method 175, 176
getChar method

of Array 189

of Field 184, 186

of FileChannel 312
getClass method 148, 155, 158, 174, 233, 238
getClassLoader method 177
getComponentType method 176, 188
getConstructor(s) methods (Class)

239
getContextClassLoader method 180
getCountry method 289
getCurrencyInstance method 85
getDay0f Xxx methods

of LocalDate 65
getDeclaredAnnotationXxx methods

(AnnotatedElement) 413, 415
getDeclaredConstructor(s) methods (Class) 177, 183,

239
getDeclaredField(s) methods (Class) 177
getDeclaredMethod(s) methods (Class) 177, 185
getDeclaringClass method

of Class 176

of Enum 165
getDefault method

of RandomGenerator 7
getDouble method

of Array 189

of Field 184, 186

of FileChannel 312
getElementsAnnotatedWith method 417
getEnclosedElements method 417
getEnclosingXxx methods (Class) 176
getEnumConstants method 239
getErrorStream method 389, 390
getField(s) methods (Class) 177, 183

getLongThreadID method 216
getMax method 287
getMessage method 216

getMethod(s) methods (Class) 177, 183, 185

getModifiers method

of Class 176

of Constructor 183

of Executable 187

of Field 183, 186

of Method 183
getMonthValue method

of LocalDate 65
getName method

of Class 174, 176

of Constructor 183

of Executable 187

of Field 183, 186

of Method 183

of Parameter 187

of Path 314

of PropertyDescriptor 188

of System.Logger 210
getOrDefault method 255, 256
getOutputStream method

of Process 389

of URLConnection 321
getPackage method 176
getPackageName method 176
getParameters method

of Executable 183, 187

of LogRecord 216
getParent method 314
getPath method 320
getPercentInstance method 85

getFileName method 314
getFilePointer method 311
getFloat method

of Array 189

of Field 184, 186

getPermittedSubclasses method 176
getProperties method 261
getProperty method 179, 205, 261
getPropertyDescriptors method 188
getPropertyType, getReadMethod methods

of FileChannel 312
getHead method 215
getHeaderFields method 321
getInputStream method

of Process 389

of RL 321

of URLConnection 322
getInstant method 216
getInt method

of Array 189

of Field 184, 186

of FileChannel 312
getInterfaces method 176
getLength method 189
getLevel method 216
getLogger method 208, 210
getLoggerName method 216
getLong method

of Array 189

of Field 184, 186

of FileChannel 312

(PropertyDescriptor) 188
getQualifiedName method 417
getRecordComponents method 177
getResource method 178
getResourceAsStream method

of Class 177,178

of Module 435

getResourceBundle, getResourceBundleName methods

(LogRecord) 216

getRoot method 314
getSequenceNumber method 216
getShort method

of Array 189

of Field 184, 186

of FileChannel 312
getSimpleName method

of Class 176

of Element 417

getSourceXxxName methods (LogRecord) 216

getSuperclass method 176, 239
getSuppressed method 200

getTail method 215 modular 426
Getter/setter pairs. See Properties helper methods 228
getThrown method 216 hexadecimal numbers 13, 14
getType method formatting for output 38
of Field 183 higher 254
of Parameter 187 higher-order functions 134
getTypeName method 176 hn, hr elements (HTML) 99
getTypeParameters method 240 Hoare, Tony 382
getURLs method 179 HTML
getValue method 65 generating documentation in 419
getWriteMethod method 188 including code in 34
Goetz, Brian 349 HTTP connections 321
graphemeClusters method HTTP/2 support 321
of String 279 HttpClient class 321, 324
group 331, 333 enabling logging for 324
grouping 289 newBuilder, newHttpClient methods 322, 370
classifier functions of 289 HttpHeaders class 324
reducing to numbers 290 HttpResponse interface 323, 324
groupingBy method 289, 292 HttpURLConnection class 321
groupingByConcurrent method 290, 297 hyperlinks
GUI in documentation comments 101
callbacks in 120 regular expressions for 325

long-running tasks in 375

H I

IDE 3,5
h, H conversion characters 38 identity method
handle 374 of Function 128, 287
Hansen, Per Brinch 382 of UnaryOperator 128
hash 160 identity values 293
hash codes 159 if keyword 39, 40
computing in String class 160 ifPresent, ifPresentOrElse methods (Optional) 281
formatting for output 38 I1legalArgumentException class 206
hash functions 159, 253 IllegalStateException class 287, 365
hash maps ImageIcon class 178
concurrent 363 images, locating 178
weak 267 img 99
hash tables 252 immutability 362
hashCode method immutable classes 362
of Arrays 160 implements keyword 107, 108
of Enum 165 import keyword 8, 91
of Object 155, 157, 159 no annotations for 404
of records 79 static 92
HashMap class 255 import static 168
null values in 256 InaccessibleObjectException class 184, 434
HashSet class 252 increment 378
readObject, writeObject methods 339 increment operator 20
Hashtable class 382 incrementAndGet method 377
hasNext method incrementExact method 21
declaring 107 index0f method
of Iterator 251 of List 248
of Scanner 36, 307 of String 29
hasNextXxx methods (Scanner) 36, 307 index0fSubList method 250
headMap method 268 IndexOutOfBoundsException class 205
headSet method info 392
of NavigableSet 254 Information hiding. See Encapsulation
of SortedSet 254, 268 inheritance 142, 163
heap pollution 232, 268 classes win rule 154, 160

Hello, World! program 1 default methods and 154

@Inherited annotation 409, 412 comparing 118
initCause method 203 computing 20, 21
initialization blocks 76 formatting for output 37
static 84 in hexadecimal notation 13
inlining 148 reading/writing 310, 311
inner classes 94 type conversions of 21
anonymous 137 values of
invoking methods of outer classes 96 even/odd 20
local 133, 136 signed 13
syntax for 97 interface keyword 107, 405, 406, 407
input sealed 152
reading 35, 306 interface methods 114, 116
splitting along delimiters 333 interfaces 106
input prompts 37 annotating 402, 403
input streams 301 compatibility of 114
copying 304 declarations of 106
obtaining 302 defining variables in 112
reading from 302 documentation comments for 98
inputReader method 389 evolution of 114
InputStream class 302 extending 112
transferTo method 304 functional 123, 409, 410
InputStreamReader class 306 implementing 107
INSTANCE 341 multiple 112
instance methods 6, 70 methods of 107, 108
instance variables 68, 71 nested, enumerating 183
abstract classes and 149 no instance variables in 113
annotating 402 no redefining methods of the Object class in 160
comparing 158 views of 267
default values of 75 interrupted 356
final 77 interrupted status 356
in records 79, 81 InterruptedException class 355
initializing 76, 144 intersects 264
not accessible from static methods 85 IntFunction interface 129, 231
of deserialized objects 341, 343 IntPredicate interface 129
protected 149 intrinsic locks 380
setting 74 ints 295
transient 338 IntSequence 108, 137
vs. local 75 IntStream interface 294
instanceof keyword 110, 146, 158, 159 parallel method 295
annotating 404 IntSummaryStatistics class 287, 295
with pattern matching 110 IntSupplier, IntToXxxFunction,
instances 2,6 IntUnaryOperator interfaces 129
instruction reordering 358 InvalidClassException class 343
int type 12 InvalidPathException class 313
functional interfaces for 129 InvocationHandler interface 190
processing values of 127 invoke 185, 187
random number generator for 7 invokeAll, invokeAny methods (ExecutorService) 354
streams of 294 I0Exception class 195, 307
type conversions of 21 addSuppressed, getSuppressed methods 200
using class literals with 175 isAbstract method 177, 183
IntBinaryOperator interface 129 isAlive method
IntConsumer interface 127, 129 of Process 391
Integer class 51 of ProcessHandle 393
compare method 118 of Thread 385
MAX VALUE, MIN VALUE constants 12 isAnnotation method 176
parseInt method 29, 195 isAnonymousClass method 176
toString method 28 isArray method 176, 188
unsigned division in 13 isAssignableFrom method 176
xxxUnsigned methods 21 isCancelled method 353

integer types 12 isDirectory method 315, 317

isDone method modular 436
of CompletableFuture 371 processing order of 89
of Future 353 resources in 178
isEmpty method scanning for deprecated elements 409
of BitSet 264 Java 3
of Collection 246 --add-exports, --add-opens options 440
of Map 257 --add-module option 437
isEnum method 176 --illegal-access option 439
isEqual method 129 -cp (--class-path, -classpath) option 89
isFinite, isInfinite methods (Double) 14 -da (-disableassertions) option 207
isInstance method 176 -ea (-enableassertions) option 206
isInterface method 177, 183 -esa (-enablesystemassertions) option 207
isInterrupted method 356 -m, -p (--module, --module-path) options 426, 436
isLocalClass method 176 compatibility with older versions of 153, 154, 228
isLoggable method online API documentation on 30, 32
of Filter 215 option files for 440
of System.Logger 210 option names in 88
isMemberClass method 176 strongly typed 15
isNamePresent method 187 Unicode support in 30
isNative method 177,183 uniformity of 2, 116
isNull method 124 Java Persistence Architecture 399
ISO 8601 format 410 Java Platform Module System 423
ISO 8859-1 encoding 305, 309 layersin 437
isPresent method 283, 285 migration to 437, 439
isPrimitive method 176 no support for versioning in 425, 427, 436
isPrivate, isProtected, isPublic methods (Modifier) 177, service loading in 443
183 java.awt package 90, 424
isRecord method 176 java.awt.geom package 338
isRegularFile method 315, 317 java.base package 428
isSealed method 176 java.class.path package 261
isStatic, isStrict, isSynchronized methods java.desktop package 428
(Modifier) 177,183 java.home package 261
isSynthetic method 176 java.io.tmpdir package 261
isVolatile method 177, 183 java.lang, java.lang.annotation packages 408
Iterable interface 251, 314 java.lang.reflect package 183
iterator method 251 java.logging package 441
iterate 274, 279, 294, 368 java.time package
iterator method immutability of classes 362
next, hasNext methods 251 java.util package 8, 367
of Collection 247 java.util.concurrent package 363, 366
of ServicelLoader 182 java.util.concurrent.atomic package 376
of Stream 286 java.util.logging package 207, 211
remove, removelf methods 251 java.util.random package 106
iterators 251, 286 java.version package 261
converting to streams 275, 296 JavaBeans 187
invalid 252 javac 3
traversing 182 -author option 102
weakly consistent 367 -cp (--class-path, -classpath) option 89
-d option 87, 102
J -link, -linksource options 102
-parameters option 183
jar 87 -processor option 416
--module-version option 436 -version option 102
-C option 436 ~ -XprintRounds option 419
-d option 436 javadoc 98 o
JAR files 87 including annotations in 411
dependencies in 444 JavaFX 120, 376
for split packages 436 javan.log files 213
manifest for 438 JavaServer Faces framework 259

javax.annotation package 408

javax.swing package 428
JAXB 433
JCommander 399
jconsole 213
jdeprscan 409
jdeps 444
JDK 3
obsolete features in 424
JEP 246 (platform logging API) 207
jlink 445
jmod 446
job scheduling 266
join method
of String 26
of Thread 385
joining 287
JPA 433
JShell 8
imported packagesin 11
loading modules into 437
JSON 150
JUnit 399, 400

K

key/value pairs
in annotations 400, 407
inmaps 254

removed by garbage collector 267

Key/value pairs. See Properties
keySet method

of ConcurrentHashMap 367

of Map 258, 267
keywords 16

contextual 153

L

L 13
L64X128MixRandom 106
labeled statements 45, 46
lambda expressions 121
annotating targets for 410
capturing variables in 132
executing 127
for loggers 209
generic types and 225
parameters of 122
processing 126
return type of 122
scope of 131
this reference in 131
throwing exceptions in 197
using with streams 276, 368
language codes 289
language model API 416
last 254
lastIndex0f method
of List 248

of String 29
lastIndex0fSubList method 250
lazy operations 272, 276, 279, 333
length method
of arrays 48
of RandomAccessFile 311
of String 7, 33
Jdevel 212
lib/modules 446
limit 278, 297
line feed 34
character literal for 15
formatting for output 38
in regular expressions 329
line.separator package 262
lines method
of BufferedReader 307
of Files 274, 297, 306
@link annotation 101
linked lists 248, 252
LinkedBlockingQueue class 366, 384
LinkedHashMap class 259
LinkedList class 248
List class 226, 247, 248, 317
add, addAll, get, index0f, lastIndex0f, listIterator
methods 247
of method 51, 53, 248, 264
remove, replaceAll, set, sort methods 248
subList method 248, 267
ListIterator interface 252
lists
converting to streams 296
mutable 265
printing elements of 124
removing null values from 124
sublists of 267
unmodifiable views of 268
literals
character 14
floating-point 14
integer 13
string 27, 33
little-endian format 305
load 182, 444
load balancing 336
loadClass method 179
local classes 136
local variables 46
annotating 402, 403
vs. instance 75
LocalDate class 64
getXxx methods 65
now method 73, 85
of method 64, 73
plus, plusXxx methods 65, 66, 68
Locale class 288
getCountry method 289
locales 288, 291
LocalTime class
final 148

lock method

of FileChannel 312

of ReentrantLock 380
locks 361

error-prone 362

intrinsic 380

reentrant 379

releasing 201, 359
log handlers 213
filtering/formatting 215
Log4j 207

Logback 207

Logger class (java.util.logging) 441
Logger interface (System) 208, 211
getName method 210
isLoggable method 210

log method 208, 210
loggers

filtering/formatting 215
hierarchy of 212

naming 208

logging 207

configuring 211, 213
failures 202

levels of 209, 213

overriding methods for 148
LogRecord class, methods of 216
long type 12, 51

atomic operations on 377, 379
functional interfaces for 129
MAX VALUE, MIN VALUE constants 12
streams of 294

type conversions of 21
unsigned division in 13
xxxUnsigned methods 21
long-term persistence 342
LongAccumulator class 377
accumulate, get methods 378
LongAdder class 377, 379

add, increment, sum methods 378
threadsafe 380

LongConsumer, LongXxxOperator, LongPredicate, LongSupplier,

LongToXxxFunction interfaces 129
LongFunction interface 129, 231
longs 295
LongStream interface 294
LongSummaryStatistics class 287, 295
Lookup 435
lookup method (MethodHandles) 435
loops 43

exiting 44

infinite 44
lower 254

M

main 2,6
decomposing 58
string array parameter of 54

Map interface 249
clear method 257
compute method 257
computeIfXxx methods 257
containsXxx methods 257
entrySet method 258
forEach method 257
get, getOrDefault methods 255, 256
isEmpty method 257
keySet method 258, 267
merge method 255, 256
of method 258, 264
of Optional 282
of Stream 276
ofEntries method 264
put method 254, 256
putAll method 257
putIfAbsent method 256
remove method 257
replace, replaceAll methods 257
size method 257
values method 258, 267
mapping method 291
of Collectors 291
maps 254
concurrent 257, 289
empty 257
iterating over 258
of stream elements 287, 297
order of elementsin 259
views of 258
unmodifiable 268
mapToInt method 293
mapToXxx methods (XxxStream) 295
marker interfaces 162
Matcher class 330, 333
methods of 334
matcher, matches methods (Pattern) 330
MatchResult interface 331, 335
Math class
E constant 21
floorMod method 20
max, min methods 21
PI constant 21, 83, 92
pow method 21, 84, 92
round method 22
sqrt method 21
TAU constant 21
xxxExact methods 21, 23
max method
of Stream 280
of XxxStream 295
MAX VALUE 12
maxBy method
of BinaryOperator 129
of Collectors 291

memory
allocating 361
caching 358

concurrent access to 359

memory-mapped files 311
merge method

of ConcurrentHashMap 364

of Map 255, 256

Message 162, 163
meta-annotations 406, 412
META-INF/MANIFESTMF 438
META-INF/services 443
Method class 183

getModifiers, getName methods 183
invoke method 185, 187
method calls 6

receiver of 70

method expressions 124, 147
method references 124, 233
annotating 404
MethodHandles.lookup method 435
methods 2

abstract 123, 148
accessor 66, 79
annotating 236, 402
atomic 364

body of 69

chaining calls of 65
clashes of 236

compatible 160
declarations of 69

default 114, 116
deprecated 100, 408, 409
documentation comments for 98, 99
enumerating 183

factory 73, 85

final 148, 363

for throwing exceptions 204
header of 69

inlining 148

instance 70

invoking 185

modifying functions 135
mutator 66, 268, 363
naming 16, 79

native 84

overloading 74, 125

overriding 114, 143, 148, 197, 408, 409

parameters of 183

null checks for 204
passing arrays into 58
private 116
proxied 191
public 107, 108, 183
restricted to subclasses 149
return value of 2, 69
returning functions 134
static 58, 84, 85, 92, 113
storing in variables 7
symmetric 159
synchronized 381, 384
used for serialization 408, 410
utility 90
variable number of arguments of 59

Microsoft Notepad 305
Microsoft Windows
line endingin 34
path separatorin 89, 262
min method
of Math 21
of Stream 280
of XxxStream 295
MIN VALUE 12
minBy method
of BinaryOperator 129
of Collectors 291
Modifier class
isXxx methods 177, 183
toString method 177
modifiers, checking 183
module keyword 426
module path 426, 436, 438
module-info.class 426, 436
module-info.java 426
Module.getResourceAsStream method 435
modules 423
aggregator 441
annotating 427
automatic 437, 439
bundling up the minimal set of 445
declaration of 425, 426
documentation comments for 98, 102
explicit 439
illegal access to 439
inspecting files in 446
loading into JShell 437
naming 425, 438
open 434
reflective access for 184, 185
required 427, 440
tools for 444
transitive 440
unnamed 438
versioning and 425, 427, 436
monitors (classes) 382
move 315
multiplication 19
mutators 66
unmodifiable views and 268

n
conversion character 38

name 165

NaN 14

native encoding 305

native methods 84

naturalOrder method 136
navigable maps/sets 268
NavigableMap interface 367
NavigableSet interface 249, 253, 268
methods of 254

Index 467

nCopies method 248, 250 comparing against 158
negate 129 converting to strings 156
negateExact method 21 NullPointerException class 27, 50, 68, 76, 195, 205,
negative values 12 255
NEGATIVE INFINITY 14 vs. Optional 280
nested classes 92 nullsFirst, nullsLast methods (Comparator) 136
annotating 403 NumberFormat class
enumerating 183 getXxxInstance methods 85
inner 94 NumberFormatException class 195
public 93 numbers
static 93 average of 107, 108
new keyword 7, 15, 18, 74 big 24
as constructor reference 125 comparing 118
for anonymous classes 138 converting to strings 28
for arrays 48, 49, 56 default value of 75, 77
newBufferedReader method 307 even or odd 20
newBufferedWriter method 307, 316 formatting 37
newBuilder method 322, 370 from grouped elements 290
newFileSystem method 320 in regular expressions 327
newFixedThreadPool method non-negative 206, 262
of Executors 351 printing 37
newHttpClient method 322, 370 random 7, 106, 273, 278, 295
newInputStream method 302, 316, 336 reading/writing 307, 310, 311
newInstance method rounding 14, 22
of Array 189 type conversions of 21
of Class 186, 238 unsigned 13, 21
of Constructor 186, 187 with fractional parts 13
newkeySet method 367
newOutputStream method 302, 316, 336 (9)
newProxyInstance method 190
newVirtualThreadPerTaskExecutor method o 38
of Executors 351 Object class 154
next method clone method 150, 155, 161, 185
declaring 107 equals method 155, 159
of Tterator 251 finalize method 155
of Scanner 35 getClass method 148, 155, 158, 174, 233, 238
nextClearBit method 263 hashCode method 1_5_5’ 1_5_2, 159
nextDouble method notify, notifyAll methods 384
common for all generators 106 toString method 155, 157
of Scanner 35, 307 wait method 383, 384
nextInt method object references 66
common for all generators 106 attempting to change 72
of Scanner 35 default value of 75, 77
nextLine method 35 nll 67
nextSetBit method 263 passed by value 73
nominal typing 127 serialization and 337
non-sealed keyword 152 object-oriented programming 63
nonefatch method 281 encapsulation in 423, 424
none0f method 265 object-relational mappers 433
noninterference, of stream operations 276 ObjectInputStream class 336, 337
@NonNull annotation 403 defaultReadObject method 339, 343
normalize 314 readDouble method 339
NoSuchElementException class 283, 366 readFields method 343
notify, notifyAll methods (Object) 384 readObject method 337, 345
now method ObjectInputValidation interface 344, 345
of LocalDate 73, 85 ObjectOutputStream class 336
null literal 27, 67 defaultWriteObject method 339
as default value 75, 77 writeDouble method 339

checking parameters for 204

468 Index

writeObject method 336, 339 atomic 361, 364, 376, 382
objects 2,63 bulk 365
calling methods on 7 lazy 272, 276, 279, 333
casting 109 parallel 368
checkIndex method 205 performed optimistically 377
cloning 161 stateless 296
comparing 51, 157 threadsafe 363
constructing 7, 73, 186 operators 18
converting cast 22
to JSON 433 precedence of 19
to strings 155 option files 440
converting to streams 274 Optional class 280, 285
deep/shallow copies of 161, 163 creating values of 284
deserialized 341, 343 empty method 284
equals method 158 filter method 282
hash method 160 flatMap method 284, 285
immutable 66 for empty streams 292, 293
initializing variables with 15 for processes 392
inspecting 184 get method 283, 285
invoking static methods on 85 ifPresent method 281
isNull method 124 ifPresentOrElse method 282
mutable 77 isPresent method 283, 285
requireNonNull, requireNonNullXxx methods 204 map method 282
serializable 336 of, ofNullable methods 284
sorting 117 or method 282
state of 63 orElse method 280
ObjXxxConsumer interfaces 129 orElseThrow method 281, 283
octal numbers 13 proper usage of 283
formatting for output 38 stream method 285
octonions 30 OptionalXxx classes 295
odd numbers 20 or method
of method of BitSet 263
of EnumSet 265 of Predicate, BiPredicate 129
of IntStream 294 order 312
of List 51, 53, 248, 264 ordinal 165
of LocalDate 64, 73 orElseThrow method 281, 283
of Map 258, 264 org.omg.corba package 424
of Optional 284 orTimeout method 374
of Path 313, 314, 320 0s.arch, 0s.name, 0s.version system properties 261
of ProcessHandle 392 OSGi 424
of Set 264 output
of Stream 273 formatted 37
ofEntries method 264 writing 307
offer 366 output streams 301
ofNullable method closing 303
of Optional 284 obtaining 302
of Stream 274, 286 writing to 303
ofString method 323 OutputStream class 336
onExit method write method 303
of Process 391 OutputStreamWriter class 307
of ProcessHandle 393 outputWriter method 389
open keyword 311 @verride annotation 144, 338, 341, 408, 409
open keyword 435 overriding 143
openConnection method 321 for logging/debugging 148
opens keyword 434 overview.html package 102
qualified 442
openStream method 302 P
Operation 166
operations package keyword 87

associative 293

package declarations 86
package-info.java 102, 402
packages 2, 86
accessing 90, 150, 424, 430, 431, 434, 437
adding classes to 91
annotating 402, 403
default 87
documentation comments for 98, 102
exporting 429, 435
naming 86
not nesting 86
split 436
parallel 295
parallel streams 368
parallelStream method 247, 272, 295, 368
parallelXxx methods (Arrays) 54, 369
@param annotation 99
Parameter class 187
parameter variables 72
annotating 402
scope of 47
Parameterized types. See Type parameters
ParameterizedType interface 240
Parent classes. See Superclasses
parentLogger method (Driver) 441
parseDouble method 29
parseInt method 29, 195
partitioning 362
partitioningBy method 289, 292
Pascal triangle 56
passwords 36
Path interface 114, 313
get method 314
getXxx methods 314
normalize method 314
of method 313, 314, 320
relativize method 314
resolve, resolveSibling methods 313
subpath method 314
toAbsolutePath, toFile methods 314
path separators 313
path.separator package 262
Paths class 114, 313
absolute vs. relative 313, 314
combining 314
filtering 318
resolving 313
taking apart 314
Pattern class
asMatchPredicate, asPredicate methods 331
compile method 330, 335
flags 335
matcher, matches methods 330
split method 333
splitAsStream method 274, 333
splitWithDelimiters method 333
pattern variables 215
Pattern.quote method 326
PECS (producer extends, consumer super) 225
peek method

of BlockingQueue 366
of Stream 279
performance
atomic operations and 377
big numbers and 24
combined operators and 20
memory caching and 358
permits keyword 152
@Persistent annotation 412
PI 21,83,692
Picocli 399
platform class loader 178
platform logging API 207, 212
Platform threads 350
plugins, loading 179
plus, plusXxx methods
of LocalDate 65, 66, 68
Point class 155
poll 366
pollXxx methods (NavigableSet) 254
pools, for parallel streams 298
pop 266
POSITIVE _INFINITY 14
POST requests 323
postVisitDirectory method 319
pow 21, 84, 92
predefined character classes 325, 327, 329
Predicate interface 123, 129
and method 129
isEqual method 129
or, negate methods 129
test method 129, 224
predicate functions 289
previous method
of ListIterator 252
previousClearBit method 263
previousSetBit method 263
preVisitDirectory method 319
primitive types 12
comparing 158
converting to strings 156
functions interfaces for 129
passed by value 73
streams of 293, 295
type parameters and 231
variables of, no updating for 72
wrapper classes for 51
printStackTrace method 204
PrintStream class 6, 156, 308
print method 6, 37, 207, 308
printf method 37, 38, 59, 308
println method 6, 7, 35, 37, 54, 124, 308
PrintWriter class 308
close method 198, 199
print method 308
printf method 308
println method 308
priority queues 266
private keyword 2, 90
for enum constructors 166

470 Index

Process class 388 push 266
destroy, destroyForcibly methods 391 put method
errorReader method 389 of BlockingQueue 365
exitValue method 391 of FileChannel 312
getErrorStream method 389, 390 of Map 254, 256
getInputStream, getOutputStream methods 389 putAll method 257
inputReader method 389 putBoolean method
isAlive method 391 of FileChannel 312
onExit method 391 putByte method 312
outputWriter method 389 putChar method 312
supportsNormalTermination method 391 putDouble, putFloat methods
toHandle method 392 of FileChannel 312
waitFor method 391 putIfAbsent method
ProcessBuilder class 388 of ConcurrentHashMap 364
directory method 388 of Map 256
redirectXxx methods 389, 390 putInt, putLong methods
start, startPipeline methods 390 of FileChannel 312
processes 388 putShort method 312
building 388
getting info about 392 Q
killing 391
running 390 qualified exports 442
ProcessHandle interface 392 Queue class 249, 265
allProcesses method 392 synchronizing methods in 382
current method 392 using ArrayDeque with 266
destroy, destroyForcibly methods 393 quote method (Pattern) 326
info method 392 quoteReplacement method 334
isAlive method 393
of method 392 R

onExit method 393
supportsNormalTermination method 393
processing pipeline 371, 390
Processor interface 416
programming languages

functional 105

object-oriented 2

programs

compiling 3

configuration options for 260
packaging 446

responsive 375

running 3

testing 206
promises (in concurrent libraries) 370
properties 187, 260

race conditions 296, 359
Random class 7, 106
nextInt method 7
random numbers 7, 106
streams of 273, 278, 295
RandomAccess interface 248
RandomAccessFile class 311
getFilePointer method 311
length method 311
seek method 311
RandomGenerator interface 106
getDefault method 7
methods of 295
RandomNumbers 85

: range 265
loadmg from file 261 range, rangeClosed methods (XxxStream) 294
naming 188 ranges 267

read-only/write-only 187
testing for 224
property files
encoding 261
generating 419
protected keyword 149
Provider.get, Provider.type methods 182
provides keyword 444
Proxy class 190
newProxyInstance method 190
public keyword 2, 90
for interface methods 107, 108
method overriding and 144

converting to streams 296
raw types 228, 232
read method

of Files 303

of InputStream 302

of InputStreamReader 306
readALLXxx methods (Files) 303, 306
readByte, readChar methods (DataInput) 310
readDouble method

of DataInput 310

of ObjectInputStream 339
Reader class 306

Index 471

readers 301 replace method
readExternal method 340 of Map 257
readFields method 343 of String 29
readFloat, readFully methods (Datalnput) 310 replaceAll method
readInt method 310, 311 of Collections 249
readLine method of List 248
of BufferedReader 307 of Map 257
of Console 36 of Matcher 334, 335
readLong method 310 of String 334
read\NBytes method 303 replaceFirst method 335
readObject method requireNonNull, requireNonNullXxx methods (Objects) 204
of HashSet 339 requires keyword 426, 429, 432, 437, 440
of ObjectInputStream 337, 345 Reserved words. See Keywords
readPassword method 36 resolve, resolveSibling methods (Path) 313
readResolve method 341 resources 174
readShort method 310 loading 178, 435
readUnsignedXxx, readUTF methods (DataOutput) 310 managing 198
receiver parameters 70, 405 resume 385
records 78 retainAll method 246
customizing serialization of 341 @Retention annotation 406, 409
serializable 344 return keyword 58, 69, 99
redirection syntax 36 in finally blocks 201
redirectXxx methods (ProcessBuilder) 389, 390 in lambda expressions 122
reduce 292 return types, covariant 144, 231
reduceXxx methods (ConcurrentHashMap) 365 return values
reducing 292 as arrays 959
reductions 280, 292 missing 280
ReentrantlLock class 379 providing type of 58
lock, unlock methods 380 reverse 54, 250
reflection 183 reverse domain name convention 86, 425
generic types and 233, 238 reversed 135
module system and 184, 185, 433, 440 reverseOrder method 136
processing annotations with 413 rotate 250
security and 345 round 22
ReflectiveOperationException class 175 RoundEnvironment interface 417
regular expressions 325 roundoff errors 14
flags for 335 RowSetProvider class 440
groups in 332 runAfterXxx methods (CompletableFuture) 374, 375
replacing matches with 334 Runnable interface 119, 128, 352, 353
splitting input with 333 executing on the Ul thread 376
testing matches of 330, 332 run method 128, 350, 355, 385
turning into predicates 331 using class literals with 175
relational operators 23 runtime
relativize 314 availableProcessors method 351
remainderUnsigned method 21 exec method 388
remove method raw types at 232
of ArrayDeque 266 safety checks at 229
of ArrayList 51 runtime image file 446
of BlockingQueue 365 RuntimeException class 194
of Collection 246
of Iterator 251 S
of List 248
of Map - 257 s, S conversion characters 38
removeAll method 246 safety checks, as runtime 229
renovelf method @SafeVarargs annotation 235, 409, 410
of ArrayList 123 sample code 6
of Collection 246 Scala 227
of Iterator 251 Scanner class 35
@Repeatable annotation 409, 412 findAUl method 332

@RepeatedTest annotation 401

472 Index

hasNext, hasNextXxx methods 35, 307
next, nextXxx methods 35, 307
tokens method 274, 307

sealed keyword 152

sealed types 150

searchXxx methods (ConcurrentHashMap) 365

security 91, 344

SecurityException class 184
@see annotation 101

seek 311

sequences, producing 274
@Serial annotation 338, 341, 408, 410
serial numbers 337

Serializable interface 336
readResolve, writeReplace methods 341
serialization 336

filters for 345

serialVersionUID method 343
server-side software 336
Serviceloader class 181, 443
iterator method 182

load method 182, 444
ServicelLoader.Provider interface 182
services

configurable 181

loading 181, 443
ServletException 203

set method 249, 367

of Array 189

of ArrayList 51

of BitSet 263

of Field 186

of List 248

of ListIterator 252

of method 264

working with EnumSet 265
setAccessible method 184, 185, 186
setAll method 127

setBoolean, setByte, setChar methods
of Array 189

of Field 186
setClassAssertionStatus method 207
setContextClassLoader method 180
setDaemon method 388
setDefaultAssertionStatus method 207

setDefaultUncaughtExceptionHandler method 204

setDolutput method 321

setDouble, setFloat, setInt, setLong methods

of Array 189

of Field 186

setut method 84
setPackageAssertionStatus method 207
setProperty method 211
setRequestProperty method 321
sets 252

immutable 362

threadsafe 367
unmodifiable views of 268
setShort method

of Array 189

of Field 186
setUncaughtExceptionHandler method 385
shallow copies 161, 163
shared variables 359, 362

atomic mutations of 376

locking 379
shell

redirection syntax of 36

scripts for, generating 419
shift operators 24
Shift JIS encoding 305
short type 12, 51

MAX_VALUE, MIN VALUE constants 12

streams of 294

type conversions of 22
short circuit evaluation 23
short-term persistence 342
shuffle 54, 250
SimpleFileVisitor class 319
@since annotation 100
singletons 341
size method

of ArrayList 51

of Collection 246

of Map 257
skip 278
skipNBytes method 303
sleep 355
SLF4] 207, 425
SOAP protocol 424
SocketHandler class 213
sort method

of Arrays 54, 118, 119, 123, 124

of Collections 54, 226, 227, 240, 250

of List 248
sorted 279
sorted maps 267, 268
sorted sets 249, 267

traversing 253

unmodifiable views of 268
sorted streams 296
SortedMap interface 268
SortedSet interface 249, 253

first method 254

headSet method 254, 268

last method 254

subSet, tailSet methods 254, 268
sorting

array lists 54

arrays 54,117

chaining comparators for 135

changing order of 134

streams 279

strings 28, 124
source code, generating 409, 410, 417
source files

documentation comments for 102

placing, in a file system 87
space flag (for output) 39
spaces

Index 473

in regular expressions 327
removing 29
split method
of Pattern 333
of String 26, 333
splitAsStream method 274, 333
spliterator 247
Spliterators class
spliteratorUnknownSize method 275
splitWithDelimiters method 333
SQL 34
sqrt 21
square root, computing 284
Stack class 265
stack trace 203, 205
StackWalker class 204
standard output 2
StandardCharsets class 305
start method
of Matcher, MatchResult 331, 333
of ProcessBuilder 390
of Thread 385
startPipeline method 390
startsWith method 29
stateless operations 296
statements, combining 48
static keyword 2,17, 58, 82, 167
for modules 442
static constants 83
static imports 92
static initialization 179
static methods 58, 84, 85
accessing static variables from 85
importing 92
in interfaces 113,114
static nested classes 93
static variables 82
accessing from static methods 85

importing 92
visibility of 359
stop 385

Stream interface
anyMatch method 281
collect method 286, 294
concat method 279
count method 272, 280
distinct method 279, 296
dropWhile method 278
empty method 273
filter method 272, 276, 280
findAny method 280
findFirst method 182, 280
flatMap method 277
forEach, forEachOrdered methods 286
generate method 273, 294
iterate method 274, 279, 294, 368
iterator method 286
limit method 278, 297
map method 276
mapToInt method 293

max, min methods 280
noneMatch method 281
of Arrays 273, 294

of BitSet 263

of Collection 247,272
of method 273

of Optional 285

of StreamSupport 275
ofNullable method 274, 286
peek method 279

reduce method 292

skip method 278

sorted method 279
takeWhile method 278
toArray method 126, 286
toList method 275
unordered method 296

streams 271, 276

collecting elements of 286, 289
combining 278

computing values from 292
converting to/from arrays 273, 286, 296, 369
creating 273

debugging 279

empty 273, 280, 292, 293
filtering 285

finite 274

flattening 277, 285

infinite 272, 273, 278, 279
intermediate operations for 273
locating services with 182
noninterference of 276

of primitive type values 293, 295
of random numbers 295

ordered 296

parallel 272, 280, 286, 289, 290, 293, 295, 368
processed lazily 272, 276, 279
reductions of 280

removing duplicates from 279
returned by Files.lines 297
sorting 279

splitting 278

summarizing 287, 295

terminal operation for 273, 280
transformations of 276, 295

vs. collections 272

StreamSupport class

stream method 275

String class 7, 29

charAt method 33

compareTo method 28, 117
compareToIgnoreCase method 124
contains method 29
endsWith method 29

equals method 27
equalsIgnoreCase method 28
final 148

formatted method 39
graphemeClusters method 279
hash codes 160

474 Index

immutability of 30, 362
index0f, lastIndexOf methods 29
join method 26
length method 7, 33
replace method 29
replaceAll method 334
split method 26, 333
startsWith method 29
substring method 26
toLowerCase method 29, 276
toUpperCase method 29
StringBuilder class 26
strings 7, 25
comparing 27
concatenating 25, 156
converting
from byte arrays 306
from objects 155
to numbers 28
converting to code points 277
empty 27, 28, 156
formatting for output 38
internal representation of 33
sorting 28, 124
splitting 26, 274
transforming to lower/uppercase 276
StringWriter class 309
strip 29
strong 99
subclasses 142
anonymous 146, 166
calling toString method in 156
constructors for 144
inheriting annotations 409
initializing instance variables in 144
methods in 142
preventing 148
public 144
superclass assignments in 145
subList method 248, 267
subMap method 268
subpath 314
subSet method
of NavigableSet 254
of SortedSet 254, 268
substring 26
subtractExact method 21
subtraction 19
accurate 25
not associative 293
subtypes 109
wildcards for 223
sum method
of LongAdder 378
of XxxStream 295
summarizingXxx methods (Collectors) 287, 291
summaryStatistics method 295
summingXxx methods (Collectors) 290
super keyword 115, 143, 144, 147, 224, 227
superclasses 142

annotating 403

calling equals method on 158

default methods of 154

methods of 143

public 144

serializability of 337
supertypes 109, 110, 112

wildcards for 224
Supplier interface 128, 370
supplyAsync method 370, 371
supportsNormalTermination method

of Process 391

of ProcessHandle 393
@SuppressWarnings annotation 232, 409, 410, 411, 427
suspend 385
swap 250
Swing GUI toolkit 120, 376
SwingConstants interface 112
SwingWorker class 376
switch keyword 40

enhanced 42,171

exhaustive 41

fall-through variant of 42

using enumerations in 167

with pattern matching 151
symbolic links 317, 318
synchronized keyword 379, 384
synchronized views 269
synchronizedXxx methods (Collections) 250
System class

getLogger method 208, 210

getProperties method 261

getProperty method 179, 205, 261

setQut method 84

setProperty method 211
system class loader 178, 180
system classes, enabling/disabling assertions for 207
system properties 261, 262
System.err 203, 213, 388
System.in 35
System.Logger interface 208, 211

getName method 210

isLoggable method 210

log method 208, 210
System.Logger.Level enumeration 209
System.out 6, 7, 17, 35, 38, 54, 59, 83, 124, 207, 308

T

t, T conversion characters 38
tab completion 10
tagging interfaces 162
tailMap method 268
tailSet method
of NavigableSet 254
of SortedSet 254, 268
take 365
takeWhile method 278
tar 87, 88

Index

@Target annotation 406, 409
tasks 350

canceling 354

combining results from 353
computationally intensive 351
coordinating work between 365
defining 119

executing 351

executing in a thread 120
groups of 387

long-running 375

running 350

submitting 353

vs. threads 351

working simultaneously 370
TAU 21
teeing 292
terminal window 3, 4

test method 400, 405, 406

of BiPredicate 129

of Predicate 129, 224

of XxxPredicate 129
text blocks 33

thenAccept method 369, 373
thenAcceptBoth method 374
thenApply, thenApplyAsync methods
(CompletableFuture) 372, 373
thenCombine method 374
thenComparing method 135
thenCompose method 373
thenRun method 374
third-party libraries 437, 438
this keyword 71

annotating 405

in constructors 75, 363

in lambda expressions 131
in method references 125
Thread class

getContextClassLoader method 180

interrupted, isInterrupted methods 356

isAlive method 385

join method 385

properties 387

resume method (deprecated) 385
setContextClassLoader method 180
setDaemon method 388

setDefaultUncaughtExceptionHandler method 204
setUncaughtExceptionHandler method 385

sleep method 355

start method 351, 385

stop, suspend methods (deprecated)
ThreadLocal class 386
ThreadLocalRandom. current method 387
threads 350, 384

atomic mutations in 376

daemon 388

groups of 387

interrupting 354, 355

locking 379

names of 387

385

platform 350

priorities of 387

race conditions in 296, 359

running tasks in 119

starting 385

states of 387

terminating 353

uncaught exception handlers of 388

virtual 350

visibility and 357, 381

vs. tasks 351

waiting on conditions 382

worker 375
throw keyword 194
Throwable class 194

in assertions 206

initCause method 203

no generic subtypes for 237

printStackTrace method 204
@throws annotation 99, 196, 197

type variables in 237
TimeoutException class 353
Timestamp class 159
toAbsolutePath method 314
toArray method

of Collection 247

of Stream 126, 286

of XxxStream 295
toByteArray method

of BitSet 263

of ByteArrayQutputStream 302
toCollection method 287
toConcurrentMap method 289
ToDoubleFunction interface 129, 231
toFile method 315
toGenericString method 176
toHandle method 392
toIntExact method 23
ToIntFunction interface 129, 231
tokens 274, 307
toList method 275
toLongArray method 263
ToLongFunction interface 129, 231
toLowerCase method 29, 276
toMap method 287
toPath method 315
toSet method 287, 290
toString method

calling from subclasses 156

of Arrays 54, 156

of BitSet 263

of Class 176

of Double 28

of Enum 165

of Integer 28

of Modifier 177

of Object 155, 157

of Point 155

of records 79
toUnsignedInt method 13

475

476 Index

toUpperCase method 29
transferTo method 304
transient keyword 338
transitive keyword 441
TreeMap class 255, 288
TreeSet class 252
Troubleshooting. See Debugging
true literal 15
try keyword 197, 202
for visiting directories 317
try-with-resources 198
closing output streams with 303
for file locking 312
trylock method 312
trySetAccessible method 184
Type interface 240
type bounds 221, 240
annotating 404
type erasure 228, 236
clashes after 236
type method (ServicelLoader.Provider) 182
type parameters 117, 220
annotating 402
primitive types and 220, 231
type variables
exceptions and 237
in static context 236
no instantiating of 233
wildcards with 226
TypeElement interface 417
TypeVariable interface 240

U

U+ 30
UnaryOperator interface 128
uncaught exception handlers 385, 388
unchecked exceptions 194
documenting 197
generic types and 238
UncheckedIOException class 307
Unicode 30, 294, 304
replacement character in 309
Unit tests 399
Unix
executable filesin 4
path separatorin 89, 262
wildcard in classpath in 89
unlock 380

unmodifiableXxx methods (Collections) 250

unordered 296
updateAndGet method 377
URI class 323

URL class 323

final 148

getInputStream method 321
openConnection method 321
openStream method 302
URLClassLoader class 179

URLConnection class 321
connect method 321
getHeaderFields method 321
getInputStream method 322
getOutputStream method 321
setDoOutput method 321
setRequestProperty method 321

URLs, reading from 302, 321

user.dir, user.home, user.name system properties 261

uses keyword 444

UTF-16 14, 30, 294, 305

in regular expressions 326
UTF-8 304

modified 310
Util.createlnstance 180
utility classes 90, 180

Vv

validateObject method 344, 345
valueOf method
of BitSet 264
of Enun 164, 165
values method
of Enun 164
of Map 258, 267
var keyword 15, 16
varargs parameters
declaring 59
safety of 409, 410
VarHandle class 435
variable handles 435
VariableElement interface 416
variables 7, 15
atomic mutations of 376
capturing, in lambda expressions 132
declaring 15,17
defined in interfaces 112
deprecated 100, 408, 409
documentation comments for 98, 100
effectively final 133
final 359, 362
holding object references 66
initializing 15, 17

instance 68, 71, 74, 77, 79, 81, 85, 144, 149, 158,

338, 341, 343

local 46

naming 16
parameter 72
private 68, 90

public static final 112
redefining 47

scope of 46, 90
shared 359, 362, 379
static 82, 85, 92, 359
thread-local 386
using an abstract class as type of 149
visibility of 357, 381
volatile 359

Index a77

@version annotation 99, 102 WindowAdapter class 114
versioning 342 WindowListener interface 114
views 267 words
virtual machine 3 in regular expressions 327

instruction reordering in 358 reading from a file 307
Virtual threads 350 working directory 314, 388
visibility 357 wrapper classes 51

guaranteed with locks 381 write method
visitFile, visitFileFailed methods (FileVisitor) 319 of Files 308, 316
void keyword 2, 58 of QutputStream 303

using class literals with 175 of Writer 307
volatile keyword 359 writeByte, writeChar methods (DataOutput) 310

writeDouble method
W of DataOutput 310
of ObjectOutputStream 339

wait 383, 384 writeExternal method 340
waitFor method 391 writeFloat, writeFully methods (DataOutput) 310
waiting on a condition 383 writeInt method 310, 311
walk 317, 320 writeLong method 310
walkFileTree method 317, 319 writeObject method
warning 409 of HashSet 339
warnings, suppressing 232, 235, 410 of ObjectOutputStream 336, 339
weak references 267 Writer class 307, 309
weaker access privilege 144 write method 307
WeakHashMap class 267 wrl.teReplace method 341
weakly consistent iterators 367 writers 301 , ,
WeakReference class 267 writeShort, writeUnsignedXxx, writeUTF methods
web pages (DataOutput) 310

extracting links from 371

reading 373, 375 X
whenComplete method 370, 373, 374
while keyword 43 X, X

breaking/continuing 45, 46 conversion characters 38

declaring variables for 47 XML descriptors, generating 419
white space xor 263

in regular expressions 327 Xoroshiro128PlusPlus 106

in text blocks 34

removing 29 Y
wildcards

annotating 404 yield keyword 42, 43

capturing 227 yield method (Thread) 351

for annotation processors 416

for types 223, 225 Z

in class path 89

unbounded 227

with imported classes 91

with type variables 226
WildcardType interface 240
Window class 90

ZIP file systems 320
ZipInputStream, ZipOutputStream classes 321

	Cover
	Title
	Copyright
	Dedication
	Table of Contents
	Preface
	Acknowledgments
	9. Processing Input and Output
	9.1. Input/Output Streams, Readers, and Writers
	9.1.1. Obtaining Streams
	9.1.2. Reading Bytes
	9.1.3. Writing Bytes
	9.1.4. Character Encodings
	9.1.5. Text Input
	9.1.6. Text Output
	9.1.7. Reading Character Input
	9.1.8. Reading and Writing Binary Data
	9.1.9. Random-Access Files
	9.1.10. Memory-Mapped Files
	9.1.11. File Locking

	9.2. Paths, Files, and Directories
	9.2.1. Paths
	9.2.2. Creating Files and Directories
	9.2.3. Copying, Moving, and Deleting Files
	9.2.4. Visiting Directory Entries
	9.2.5. ZIP File Systems

	9.3. HTTP Connections
	9.3.1. The URLConnection and HttpURLConnection Classes
	9.3.2. The HTTP Client API

	9.4. Regular Expressions
	9.4.1. The Regular Expression Syntax
	9.4.2. Testing a Match
	9.4.3. Finding All Matches
	9.4.4. Groups
	9.4.5. Splitting along Delimiters
	9.4.6. Replacing Matches
	9.4.7. Flags

	9.5. Serialization
	9.5.1. The Serializable Interface
	9.5.2. Transient Instance Variables
	9.5.3. The readObject and writeObject Methods
	9.5.4. The readExternal and writeExternal Methods
	9.5.5. The readResolve and writeReplace Methods
	9.5.6. Versioning
	9.5.7. Deserialization and Security

	9.6. Exercises

	Index

