
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780135350607
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780135350607
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780135350607

Exam Ref DP-100
Designing and
Implementing a Data
Science Solution on Azure

Dayne Sorvisto

Exam Ref DP-100 Designing and Implementing a Data
Science Solution on Azure
Published with the authorization of Microsoft Corporation by:
Pearson Education, Inc.

Copyright © 2025 by Pearson Education, Inc.

Hoboken, New Jersey

All rights reserved. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms, and the appropriate contacts within
the Pearson Education Global Rights & Permissions Department, please visit
www.pearson.com/global-permission-granting.html.

No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of the
information contained herein.

ISBN-13: 978-0-13-535060-7
ISBN-10: 0-13-535060-3

Library of Congress Control Number: 2024946348

$PrintCode

TRADEMARKS

Microsoft and the trademarks listed at http://www.microsoft.com on the
“Trademarks” webpage are trademarks of the Microsoft group of companies.
All other marks are property of their respective owners.

WARNING AND DISCLAIMER

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The author, the publisher, and Microsoft Corporation shall have
neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book or from
the use of the programs accompanying it.

SPECIAL SALES

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

CREDITS

EDITOR-IN-CHIEF
Brett Bartow

EXECUTIVE EDITOR
Loretta Yates

ASSOCIATE EDITOR
Shourav Bose

DEVELOPMENT EDITOR
Songlin Qiu

MANAGING EDITOR
Sandra Schroeder

SENIOR PROJECT EDITOR
Tracey Croom

TECHNICAL EDITOR
Francesco Esposito

COPY EDITOR
Dan Foster

INDEXER
Timothy Wright

PROOFREADER
Barbara Mack

EDITORIAL ASSISTANT
Cindy Teeters

COVER DESIGNER
Twist Creative, Seattle

COMPOSITOR AND
GRAPHICS
codeMantra

http://www.pearson.com/global-permission-granting.html
http://www.microsoft.com
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Contents at a glance

About the Author	 xi

Introduction	 xiii

CHAPTER 1	 Design and prepare a machine learning solution	 1

CHAPTER 2	 Explore data and train models	 41

CHAPTER 3	 Prepare a model for deployment	 81

CHAPTER 4	 Deploy and retrain a model	 119

CHAPTER 5	 Exam DP-100: Designing and Implementing a
Data Science Solution on Azure—updates	 159

Index	 165

This page intentionally left blank

Contents

	 Introduction	 xiii
Organization of this book	 xiii

Preparing for the exam	 xiii

Microsoft certifications	 xiv

Access the Exam Updates chapter and online references	 xiv

Errata, updates, & book support	 xv

Stay in touch	 xv

Chapter 1	 Design and prepare a machine learning solution	 1
Skill 1.1: Design a machine learning solution. 2

Determine the appropriate compute specifications for a
training workload	 2

Describe model deployment requirements	 10

Select a development approach for building or training
a model	 14

Skill 1.2: Manage an Azure Machine Learning workspace. 15

Create an Azure Machine Learning workspace	 15

Set up Git integration for source control	 20

Skill 1.3: Manage data in an Azure Machine Learning workspace 23

Select Azure storage resources	 23

Register and maintain datastores	 25

Create and manage data assets	 27

Skill 1.4: Manage compute for experiments in Azure Machine Learning 28

Create compute targets for experiments and training	 28

Select an environment for a machine learning use case	 32

Configure attached compute resources, including
Apache Spark pools	 33

Monitor compute utilization	 36

Chapter summary . 37

Thought experiment. 38

Thought experiment answers . 39
v

Contentsvi

Chapter 2	 Explore data and train models	 41
Skill 2.1: Explore data by using data assets and datastores. 42

Access and wrangle data during interactive development	 42

Wrangle interactive data with Apache Spark	 44

Skill 2.2: Create models by using the Azure Machine
Learning Designer. 47

Create a training pipeline	 48

Consume data assets from the Designer	 49

Use custom code components in Designer	 49

Evaluate the model, including responsible AI guidelines	 51

Skill 2.3: Use automated machine learning to explore
optimal models. 54

Use automated machine learning for tabular data	 55

Select and understand training options, including
preprocessing and algorithms	 57

Evaluate an automated machine learning run, including
responsible AI guidelines	 60

Use automated machine learning for computer vision	 64

Use automated machine learning for natural language
processing (NLP)	 67

Skill 2.4: Use notebooks for custom model training. 69

Develop code by using a compute instance	 69

Track model training by using MLflow	 72

Evaluate a model	 73

Train a model by using Python SDKv2	 74

Use the terminal to configure a compute instance	 75

Skill 2.5: Tune hyperparameters with Azure Machine Learning 76

Select a sampling method	 76

Define the primary metric	 78

Define early termination options	 78

Chapter summary . 79

Thought experiment. 79

Thought experiment answers . 80

Contents vii

Chapter 3	 Prepare a model for deployment	 81
Skill 3.1: Run model training scripts . 81

Configure job run settings for a script	 82

Configure the compute for a job run	 84

Consume data from a data asset in a job	 84

Run a script as a job by using Azure Machine Learning	 84

Use MLflow to log metrics from a job run	 86

Use logs to troubleshoot job run errors	 88

Configure an environment for a job run	 93

Define parameters for a job	 94

Skill 3.2: Implement training pipelines . 94

Create a pipeline	 95

Pass data between steps in a pipeline	 100

Run and schedule a pipeline	 101

Monitor pipeline runs	 103

Create custom components	 107

Use component-based pipelines	 109

Skill 3.3: Manage models in Azure Machine Learning. 110

Describe MLflow model output	 112

Identify an appropriate framework to package a model	 113

Assess a model by using responsible AI guidelines	 114

Chapter summary . 115

Thought experiment. 115

Thought experiment answers . 116

Chapter 4	 Deploy and retrain a model	 119
Skill 4.1: Deploy a model . 120

Configure settings for online deployment	 122

Configure the compute for a batch deployment	 127

Deploy a model to an online endpoint	 128

Deploy a model to a batch endpoint	 133

Test an online deployed service	 137

Invoke the batch endpoint to start a batch scoring job	 139

Contentsviii

Skill 4.2: Apply machine learning operations (MLOps) practices 140

Trigger an Azure Machine Learning job, including from
Azure DevOps or GitHub	 142

Automate model retraining based on new data additions or
data changes	 147

Define event-based retraining triggers	 148

Chapter summary . 156

Thought experiment. 157

Thought experiment answers . 158

Chapter 5	 Exam DP-100: Designing and Implementing a
Data Science Solution on Azure—updates	 159

The purpose of this chapter. 159

About possible exam updates	 160

Impact on you and your study plan	 160

News and commentary about the exam objective updates. 160

Updated technical content. 161

Objective mapping. 161

Index	 165

ix

Acknowledgments

I’d like to thank my mom Allison and wife Kirsten for their insights, love, and support during the
development of this book. I would also like to acknowledge my late grandfather Bruce for his
advice and motivation and my dog Lucy for all the hours she kept me company while writing.

This page intentionally left blank

xi

About the Author

DAYNE SORVISTO is a seasoned data engineer and technical author (MLOps Lifecycle Toolkit).
Dayne has held senior technical positions including Staff Data Engineer, Software Developer,
and Senior Machine Learning Engineer, and has a Master’s degree in Pure Mathematics.
You can connect with Dayne on LinkedIn at linkedin.com/in/daynesorvisto or visit his website
wyattsolutions.co to learn more.

http://linkedin.com/in/daynesorvisto
http://wyattsolutions.co

This page intentionally left blank

xiii

Introduction

This book is intended to cover all the skills measured in the exam DP-100 Designing and
Implementing a Data Science Solution on Azure. You’ll find in each chapter a combination

of step-by-step instructional content as well as accompanying high-level theoretical material.
The aim is to show you the buttons you need to click in order to carry out the tasks required
as well as covering key concepts that you need to understand when designing a data science
solution. Ultimately, we cover not only the how but also the why.

This book is written for IT professionals who intend to take the DP-100 exam as well as data
engineers, data scientists, and other data professionals who want to learn to design and imple-
ment a data science solution in Azure. In addition to the exam material, the book is meant to
enrich your knowledge of Azure Machine Learning by using it to implement machine learning
operations in Azure and to design end-to-end data science solutions.

This book covers every major topic area found on the exam, but it does not cover every
exam question. Only the Microsoft exam team has access to the exam questions, and Microsoft
regularly adds new questions to the exam, making it impossible to cover specific questions.
You should consider this book a supplement to your relevant real-world experience and other
study materials. If you encounter a topic in this book that you do not feel completely comfort-
able with, use the “Need more review?” links you’ll find in the text to find more information
and take the time to research and study the topic.

Organization of this book

This book is organized by the “Skills measured” list published for the exam. The “Skills
measured” list is available for each exam on the Microsoft Learn website: microsoft.com/learn.
Each chapter in this book corresponds to a major topic area in the list, and the technical tasks
in each topic area determine a chapter’s organization. If an exam covers six major topic areas,
for example, the book will contain six chapters.

Preparing for the exam

Microsoft certification exams are a great way to build your résumé and let the world know
about your level of expertise. Certification exams validate your on-the-job experience and
product knowledge. Although there is no substitute for on-the-job experience, preparation
through study and hands-on practice can help you prepare for the exam. This book is not
designed to teach you new skills.

http://microsoft.com/learn

Introductionxiv

We recommend that you augment your exam preparation plan by using a combination of
available study materials and courses. For example, you might use the Exam Ref and another
study guide for your at-home preparation and take a Microsoft Official Curriculum course for
the classroom experience. Choose the combination that you think works best for you. Learn
more about available classroom training, online courses, and live events at microsoft.com/learn.

Note that this Exam Ref is based on publicly available information about the exam and the
author’s experience. To safeguard the integrity of the exam, authors do not have access to the
live exam.

Microsoft certifications

Microsoft certifications distinguish you by proving your command of a broad set of skills and
experience with current Microsoft products and technologies. The exams and corresponding
certifications are developed to validate your mastery of critical competencies as you design
and develop, or implement and support, solutions with Microsoft products and technologies
both onpremises and in the cloud. Certification brings a variety of benefits to the individual
and to employers and organizations.

Access the Exam Updates chapter and online references

The final chapter of this book, “Exam DP-100: Designing and Implementing a Data Science
Solution on Azure—updates” will be used to provide information about new content per new
exam topics, content that has been removed from the exam objectives, and revised mapping
of exam objectives to chapter content. The chapter will be made available from the link below
as exam updates are released.

Throughout this book are addresses to webpages that the author has recommended you
visit for more information. Some of these links can be very long and painstaking to type, so
we’ve shortened them for you to make them easier to visit. We’ve also compiled them into a
single list that readers of the print edition can refer to while they read.

MORE INFO  ALL MICROSOFT CERTIFICATIONS

For information about Microsoft certifications, including a full list of available certifications,
go to microsoft.com/learn.

http://microsoft.com/learn
http://microsoft.com/learn

Introduction xv

The URLs are organized by chapter and heading. Every time you come across a URL in the
book, find the hyperlink in the list to go directly to the webpage.

Download the Exam Updates chapter and the URL list at
MicrosoftPressStore.com/ERDP100/downloads

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion content. You
can access updates to this book—in the form of a list of submitted errata and their related
corrections—at:

MicrosoftPressStore.com/ERDP100/errata

If you discover an error that is not already listed, please submit it to us at the same page.

For additional book support and information, please visit MicrosoftPressStore.com/Support.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
support.microsoft.com.

Stay in touch

Let’s keep the conversation going! We’re on X / Twitter: twitter.com/MicrosoftPress.

http://MicrosoftPressStore.com/ERDP100/downloads
http://MicrosoftPressStore.com/ERDP100/errata
http://MicrosoftPressStore.com/Support
http://support.microsoft.com
http://twitter.com/MicrosoftPress

This page intentionally left blank

C H A P T E R 2

Explore data and train models
We’re about to dive deep into the heart of the machine learning lifecycle: exploring data and
training models. This chapter is designed to equip you with the skills and knowledge needed
to handle data effectively and create optimized machine learning models using Azure
Machine Learning.

Data exploration is the first step in any successful machine learning project. It’s where
you’ll get to know your data, understand its characteristics, and prepare it for modeling.
You’ll learn how to access and wrangle data using Azure’s data assets and datastores, making
your data ready for the challenges ahead.

Model training is where the magic happens. You’ll discover how to create models using
the Azure Machine Learning Designer, leverage the power of automated machine learning
for various data types, and even dive into custom model training using notebooks and
Python SDKv2. We’ll also cover hyperparameter tuning, a crucial step in optimizing your
models for better performance.

By the end of this chapter, you’ll have a solid understanding of how to explore data and
train models in Azure Machine Learning, setting the stage for deploying and managing your
models in the real world.

EXAM TIP

Follow the steps outlined in Skill 2.1 and Skill 2.2 to understand how to create models,
data assets, and datastores in Azure Machine Learning Designer and by using the Python
SDKv2. While you may prefer one over the other, pay close attention to the wording on the
exam when a question asks about the Azure Machine Learning Designer or the SDK since it
might impact how you answer the question.

Skills covered in this chapter:
■■ Skill 2.1: Explore data by using data assets and datastores

■■ Skill 2.2: Create models by using the Azure Machine Learning Designer

■■ Skill 2.3: Use automated machine learning to explore optimal models

■■ Skill 2.4: Use notebooks for custom model training

■■ Skill 2.5: Tune hyperparameters with Azure Machine Learning

41

CHAPTER 2   Explore data and train models42

As you journey through this chapter, remember that exploring data and training models are
iterative processes. With each iteration, you’ll gain deeper insights into your data and refine
your models for better accuracy and performance. After acquiring the five skills in this chapter,
you will be able to combine them to build training pipelines using automated machine learning
and tune hyperparameters to iteratively improve the model performance using Azure Machine
Learning.

Skill 2.1: Explore data by using data assets and
datastores

In the process of developing a machine learning model, one of the first steps is exploring and
understanding the data you’re working with. Skill 2.1 focuses on the exploration of data using
Azure Machine Learning’s data assets and datastores. This skill is essential for data scientists
and analysts who need to access, wrangle, and prepare data for model training. By mastering
these techniques, you’ll be able to create a solid foundation for building accurate and efficient
machine learning models.

Access and wrangle data during interactive development
In this section, you’ll learn how to access data stored in Azure Machine Learning datastores and
perform data wrangling operations interactively. This is crucial for exploratory data analysis
and preprocessing steps before model training.

Imagine you’re working on a project to predict customer churn based on historical trans-
action data. You need to access this data from an Azure Blob Storage, clean it, and perform
feature engineering to prepare it for model training. You’ll use Python in a Jupyter Notebook
environment within Azure Machine Learning to load the data, handle missing values, encode
categorical variables, and normalize numerical features.

This skill covers how to:
■■ Access and wrangle data during interactive development

■■ Wrangle interactive data with Apache Spark

NEED MORE REVIEW?  WRANGLING DATA IN AZURE MACHINE LEARNING

You can read more about wrangling data in Azure Machine learning at https://
learn.microsoft.com/en-us/azure/machine-learning/how-to-access-data-interactives

http://learn.microsoft.com/en-us/azure/machine-learning/how-to-access-data-interactives
http://learn.microsoft.com/en-us/azure/machine-learning/how-to-access-data-interactives

Skill 2.1: Explore data by using data assets and datastores   CHAPTER 2 43

To demonstrate the end-to-end process of exploring data and training a model to predict
customer churn using Azure Machine Learning, we’ll go through the following steps:

1.	 Before you begin, make sure you have an Azure Machine Learning workspace set up.
You can create one using the Azure portal or the Azure Machine Learning SDK. For
detailed instructions, see the section “Manage an Azure Machine Learning workspace”
in Chapter 1.

2.	 Create a datastore: Link your Azure Blob Storage account to your Azure Machine Learn-
ing workspace by creating a datastore. For a review of managing data in Azure Machine
Learning, see Chapter 1, “Manage data in an Azure Machine Learning workspace.” For
convenience, here are the instructions for creating a datastore:

1.	 Navigate to the Datastores section in the left menu and select the Datastores
option under the Data section.

2.	 Add a new datastore by clicking the New Datastore (+) button at the top of the
Datastores page.

3.	 Access and explore data: Use the Azure Machine Learning SDK to access your data and
perform exploratory data analysis (EDA) using Pandas.

4.	 Preprocess and prepare data: Clean the data, handle missing values, encode categorical
variables, and normalize numerical features.

Listing 2-1 shows a sample code snippet that demonstrates these steps: Setting up your
Azure Machine Learning workspace, creating and accessing a datastore, and preprocessing
data. Next, we will show how to implement these steps using Workspace and Datastore objects.

LISTING 2-1  Implementing preprocessing steps needed to train a model

from azureml.core import Workspace, Datastore
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

Set up your Azure Machine Learning workspace
subscription_id = 'your-subscription-id'
resource_group = 'your-resource-group'
workspace_name = 'your-workspace-name'
workspace = Workspace(subscription_id, resource_group, workspace_name)

Create a datastore (if not already created)
datastore_name = 'your-datastore-name'
container_name = 'your-container-name'
account_name = 'your-storage-account-name'
datastore = Datastore.register_azure_blob_container(workspace=workspace,
datastore_name=datastore_name,
container_name=container_name,
account_name=account_name)

CHAPTER 2   Explore data and train models44

Access data from the datastore
datastore_path = [(datastore, 'path/to/your/data.csv')]
data = Dataset.Tabular.from_delimited_files(path=datastore_path)
df = data.to_pandas_dataframe()

Explore and preprocess the data (assuming 'Churn' is the target variable and it's a
binary classification problem)
df.fillna(df.mean(), inplace=True) # Handle missing values
df = pd.get_dummies(df, drop_first=True) # Encode categorical variables
X = df.drop('Churn', axis=1)
y = df['Churn']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,
random_state=42)

Normalize the data
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)

Train a Logistic Regression model we imported
logreg = LogisticRegression()
logreg.fit(X_train_scaled, y_train)
Predict on the test set
y_pred = logreg.predict(X_test_scaled)
Evaluate the model
accuracy = accuracy_score(y_test, y_pred) print(f'Accuracy: {accuracy:.2f}')

In this example, we’ve used a logistic regression model for simplicity, but you can replace it
with any other model suitable for your use case. Remember to adjust the data preprocessing
steps according to the specific requirements of your dataset and the model you choose.

Wrangle interactive data with Apache Spark
Apache Spark is a powerful tool for handling large-scale data processing and analysis. In this
topic, you’ll explore how to use Apache Spark within Azure Machine Learning to wrangle data
interactively.

Consider a scenario where you’re dealing with a massive dataset of social media posts,
and you need to perform sentiment analysis. The dataset is too large to process on a single
machine, so you decide to use Apache Spark to process and clean the data in parallel. The deci-
sion to use Spark is reasonable if you have more than 20 GB of data, for example, where the
data is too large to fit completely in memory on a single machine. You can also use Spark for
much larger data volumes up to petabytes of data. You’ll learn how to initialize a Spark session
in Azure Machine Learning, read the data, and perform text preprocessing tasks like tokeniza-
tion, stopword removal, and stemming. Figure 2-1 shows the workflow.

Skill 2.1: Explore data by using data assets and datastores   CHAPTER 2 45

Start

Initialize Spark Session in Azure ML

Read Social Media Posts Data

Perform Tokenization

Remove Stopwords

Perform Stemming

Sentiment Analysis

End

FIGURE 2-1  Workflow for sentiment analysis solution in Apache Spark

To use Apache Spark pools within Azure Machine Learning for wrangling a large dataset of
social media posts stored in a datastore, you can follow these steps, which include creating a
Spark pool and creating a datastore.

1.	 Set Up Your Azure Machine Learning Workspace: Make sure you have an Azure Machine
Learning workspace set up.

2.	 Create a Datastore: Link your Azure Blob Storage account (where your social media posts
dataset is stored) to your Azure Machine Learning workspace by creating a datastore.

3.	 Create a Spark Pool: In the Azure portal, navigate to your Azure Synapse Analytics work-
space and create a Spark pool. You can check to make sure the Spark pool is correctly
configured by verifying the node count, node size, and other settings on the Spark pool
configuration page.

If you followed the above instructions to configure your datastore and have created a Spark
pool, then you are ready to use the Spark pool to read the large dataset from the datastore,
perform text preprocessing tasks like tokenization, stopword removal, and stemming, and
prepare the data for sentiment analysis. Before reading the code in Listing 2-2, you should have
a conceptual understanding of Spark’s execution model to understand how model training
can be distributed using a feature like Spark pools. Figure 2-2 illustrates how Spark’s execution
model is built on the concept of a directed acyclic graph (DAG) internally.

Listing 2-2 demonstrates how to use the Spark pool to read the large dataset from the
datastore, perform text preprocessing tasks like tokenization, stopword removal, and
stemming, and prepare the data for sentiment analysis.

CHAPTER 2   Explore data and train models46

Start

End

Initialize Spark Session

Create DAG of Task Stages

Complex Job: Multiple Stage Execution

Simple Job: Single Stage Execution

Shuffle and Sort Data

Execute Parallel Tasks

Aggregate Results

FIGURE 2-2  Workflow using Spark’s directed acyclic graph (DAG) for task execution

LISTING 2-2  Spark pool for reading large datasets from the datastore and preprocessing tasks

from azureml.core import Workspace, Datastore
from azureml.core.compute import SynapseCompute
from azureml.core.compute_target import ComputeTargetException
from pyspark.sql import SparkSession
from pyspark.ml.feature import Tokenizer, StopWordsRemover, HashingTF, IDF

Set up your Azure Machine Learning workspace
subscription_id = 'your-subscription-id'
resource_group = 'your-resource-group'
workspace_name = 'your-workspace-name'
workspace = Workspace(subscription_id, resource_group, workspace_name)

Create a Spark pool (if not already created)
spark_pool_name = "synapse-spark-pool"
try:
 spark_pool = SynapseCompute(workspace=workspace,
 name=spark_pool_name)
 print('Found existing Spark pool.')
except ComputeTargetException:
 print('Creating a new Spark pool.')
 spark_pool_config = SynapseCompute.
provisioning_configuration(compute_pool_name=spark_pool_name)
 spark_pool = ComputeTarget.create(workspace, spark_pool_name, spark_pool_config)
 spark_pool.wait_for_completion(show_output=True)

Skill 2.2: Create models by using the Azure Machine Learning Designer   CHAPTER 2 47

Create a datastore (if not already created)
datastore_name = 'your-datastore-name'
container_name = 'your-container-name'
account_name = 'your-storage-account-name'
datastore = Datastore.register_azure_blob_container(workspace=workspace,
datastore_name=datastore_name,
container_name=container_name,
account_name=account_name)

Initialize a Spark session
spark = SparkSession.builder.getOrCreate()

Access data from the datastore
datastore_path = f"abfss://{container_name}@{account_name}.dfs.core.windows.net/path/to/
your/social_media_posts.csv"
data = spark.read.option("header", "true").csv(datastore_path)

Preprocess the data
tokenizer = Tokenizer(inputCol="post", outputCol="tokens")
tokenized_data = tokenizer.transform(data)
remover = StopWordsRemover(inputCol="tokens", outputCol="filtered_tokens")
filtered_data = remover.transform(tokenized_data)
hashingTF = HashingTF(inputCol="filtered_tokens", outputCol="raw_features")
featurized_data = hashingTF.transform(filtered_data)
idf = IDF(inputCol="raw_features", outputCol="features")
idf_model = idf.fit(featurized_data)
final_data = idf_model.transform(featurized_data)

In this example, we used PySpark’s Tokenizer, StopWordsRemover, HashingTF, and IDF to
preprocess the text data. You can replace these with any other preprocessing steps suitable
for your use case. After preprocessing, the final_data DataFrame (remember this is a Spark
dataframe) will be ready for sentiment analysis or any other machine learning tasks.

Skill 2.2: Create models by using the Azure Machine
Learning Designer

The Azure Machine Learning Designer enables you to create models for use in a training
pipeline. In order to do this, we need to also be able to consume data assets such as training,
validation, and test data in the Designer. These data assets can be used in the training pipeline,
with inputs and outputs defined between steps. In this skill, you will develop the techniques
and knowledge necessary to start building end-to-end data science solutions in Azure.

This skill covers how to:

■■ Create a training pipeline

■■ Consume data assets from the Designer

■■ Use custom code components in Designer

■■ Evaluate the model, including responsible AI guidelines

CHAPTER 2   Explore data and train models48

Create a training pipeline
A training pipeline in Azure Machine Learning Designer is a sequence of steps to prepare
data, train a model, and evaluate its performance. It provides a visual and modular approach
to building machine learning workflows. We will first log in to the Azure portal, create a new
Azure workspace, compute resources, and then design a pipeline:

1.	 Log in to the Azure portal and create a new Azure Machine Learning workspace with
the necessary configurations.

2.	 Create compute resources.

3.	 Navigate to the Compute page in Azure Machine Learning Studio and set up a compute
cluster for training your model.

4.	 Design Your Pipeline:

a.	 Go to the Designer page and create a new pipeline (see Figure 2-3).

b.	 Drag and drop modules onto the canvas to define your workflow, including data
preprocessing, model training, and evaluation steps.

5.	 Configure and Run.

Set up the properties for each module, such as selecting the algorithm for the Train Model
module and defining the evaluation metrics in the Evaluate Model module.

Submit the pipeline as an experiment and monitor its progress. Once the experiment is
complete, examine the output of the Evaluate Model module to assess the performance of
your trained model.

FIGURE 2-3  Creating a new pipeline

Skill 2.2: Create models by using the Azure Machine Learning Designer   CHAPTER 2 49

Consume data assets from the Designer
Data assets are important components of a training pipeline. They include datasets, data
transformations, and data connections that are used throughout the pipeline to train and
evaluate the model. You can use the Data page in Azure Machine Learning Studio to create
new datasets or import existing ones. Supported data sources include web files, datastores,
and local files.

Preprocessing data for model training
In the following steps, we will utilize modules to clean and transform data. Next, we will
configure these modules to handle missing values and employ other modules to split data and
eventually connect the final preprocessed data to our Train Model module for training. Here is
a more detailed set of instructions you can follow on your own:

1.	 Utilize modules in Azure Machine Learning Studio such as Select Columns in Dataset
and Normalize Data to clean and transform your data before training. The modules
are in the module panel on the left side of the workspace, organized under category
headings.

2.	 Configure these modules to select relevant features, handle missing values, and scale
numerical data.

3.	 Employ the Split Data module to divide your dataset into training and validation sets.

4.	 Connect your preprocessed and split datasets to the Train Model module.

5.	 Ensure that the data flows correctly through the pipeline to provide the model with the
necessary input for training.

Data assets form the backbone of a training pipeline in Azure Machine Learning Designer.

Proper management and utilization of these assets, from creation to preprocessing and
splitting, are key to building an effective machine learning model.

Use custom code components in Designer
While Azure Machine Learning Designer provides a wide range of built-in modules, you may
encounter scenarios where custom processing is required. Custom code components allow you
to integrate Python or R scripts into your pipeline to perform specialized tasks.

Incorporating custom code
One way to use custom code in an Azure Machine Learning training pipeline is via a script. You
can develop a Python or R script that performs the desired data processing or analysis task. For
example, you might write a script to perform a unique data transformation or to generate cus-
tom features. More specifically, you can use the Execute Python Script module (see Figure 2-4).
In the following steps, you will use an Execute Python Script module to upload your script and
configure it. The configuration will involve both input and output ports. You can integrate this

CHAPTER 2   Explore data and train models50

script module with the rest of your pipeline by connecting an output of a previous module with
the input of this module, and the output of your script module with subsequent modules.

1.	 Add the Execute Python Script module to your pipeline in the Designer.

2.	 Upload your script to the module and configure any necessary input and output ports.

3.	 Connect the output of a previous module (e.g., data preprocessing) to the input of the
Execute Python Script module.

4.	 Ensure that the output of your custom script is connected to subsequent modules for
further processing or model training.

FIGURE 2-4  Using a custom Python script in Azure ML Designer

Notice that steps 3 and 4 are necessary to integrate your Python Script module with the
rest of the pipeline, connecting output of the previous modules (which could itself be another
data preprocessing step) to the input of your custom Python Script module (see Figure 2-5).
Remember to connect the output of your custom module to the input of the next or subse-
quent module as well. It might seem obvious, but this is a subtle step because you can form
DAGs (directed acyclic graphs) by connecting your module as inputs to many subsequent
modules. The concept of a DAG is used when building pipelines that can have many parallel
steps and can, for example, fan out. In addition to the fan-out pattern, a DAG can be used as a
powerful abstraction for building sequential steps—steps that fan in or converge and manage
parallelism and dependencies in your pipeline.

Run your pipeline to test the custom code component and, if necessary, iteratively refine
it. Make any necessary adjustments to ensure that it performs as expected within the context
of your workflow. Figure 2-5 shows how to connect inputs and outputs using a Python Script
module.

Carefully configure each module in your pipeline. Double-check the parameters and
settings to ensure they are appropriate for your data and the problem you’re solving.

Skill 2.2: Create models by using the Azure Machine Learning Designer   CHAPTER 2 51

Execute_Python_Script

Input 1 Input 2 Zip Bundle

VisualizationOutput 1

Python_Script

Process Inputs Generate Outputs and Visualizations

FIGURE 2-5  Connecting inputs and outputs in Python Script modules in the Designer

Verify that all modules are correctly connected in the pipeline. The output of one module
should correctly feed into the input of the next. In the next section, we will look at a more
robust procedure for evaluating the model and using responsible AI guidelines.

Evaluate the model, including responsible AI guidelines
Model evaluation is a critical step in the training pipeline. It helps you assess the performance
of your model and ensure that it aligns with Responsible AI principles. Our first step is to
understand how to evaluate the model using evaluation metrics.

Evaluation metrics
There is a module called the Evaluate Model. You can add this module to your pipeline after
the training and scoring steps. This module provides various metrics such as accuracy, preci-
sion, recall, and F1 score to assess the performance of your classification model.

What does Evaluate Model do, and why should we use it? We can analyze the results of our
models by examining the output of the Evaluate Model module to understand how well your
model is performing.

Responsible AI considerations
Microsoft developed a standard called the Responsible AI Standard. This is a framework for
building AI systems according to six principles:

■■ Model fairness

■■ Reliability and safety

IMPORTANT  MODEL METRICS AND THEIR USES IN PIPELINES

Remember to pay attention to metrics that are particularly important for your specific use
case and objectives.

CHAPTER 2   Explore data and train models52

■■ Privacy and security

■■ Inclusiveness

■■ Transparency

■■ Accountability

EXAM TIP 

Understand each of the six responsible AI guidelines for the exam. The six responsible
AI guidelines are not just useful for your exam but are an important concept for ensuring
that your solution meets ethical standards and complies with privacy, security, and safety
guidelines.

We can look at some of these principles in more detail and how we can practice the guide-
lines when designing our data science solutions in Azure by incorporating specific modules
into our pipeline. Figure 2-6 illustrates the relationship between the responsible AI guidelines.

 Model Fairness

Reliability and Safety Implementation: Ensure fair treatment

 Privacy and Security Implementation: Enhance system stability

 Inclusiveness Implementation: Protect data privacy

 Transparency Implementation: Include diverse groups

Accountability Implementation: Clarify AI decisions

 Implementation: Uphold ethical standards

FIGURE 2-6  Pillars of the Responsible AI Guidelines from Microsoft

Fairness
When evaluating your model’s predictions, it’s important to integrate the fairness guideline
to assess fairness across different demographic groups. This module helps detect any dispari-
ties and allows you to address them effectively, ensuring that your model maintains equity
and avoids perpetuating biases. Considering demographic factors such as race or gender in

Skill 2.2: Create models by using the Azure Machine Learning Designer   CHAPTER 2 53

prediction assessment provides valuable insights into potential biases, enabling proactive steps
to mitigate them. This approach promotes inclusivity and fairness, which are fundamental
principles in AI development and deployment.

Analyzing predictions through a demographic lens offers a deeper understanding of your
model’s performance. It helps uncover and rectify any underlying biases within your data or
algorithm, ultimately leading to more just and reliable outcomes. Incorporating fairness into
your evaluation process allows you to enhance the credibility and reliability of your model
while promoting social responsibility in AI development. This approach increases the trust in
your model’s outputs but also contributes to creating a more equitable landscape in the
applications where it’s utilized.

Explainability
When exploring your model’s predictions, using the Model Interpretability module provides
insights into how the model makes decisions. This tool helps you understand the factors
influencing these decisions, fostering transparency in the process. Transparency is key for
stakeholders to grasp how the model reaches its conclusions, building trust and facilitating
informed decision-making.

However, it’s important to distinguish between model interpretability and fairness assess-
ment. While interpretability focuses on understanding the model’s decision-making process,
fairness evaluation examines whether these predictions exhibit biases across different demo-
graphic groups. Both are vital for model evaluation, serving distinct purposes. Interpretability
aids in comprehending how the model functions internally, while fairness assessment ensures
equitable outcomes for all demographic groups. Thus, integrating both modules into your
evaluation process offers a holistic view of your model’s performance and its impact on diverse
populations.

Privacy and security
Ensure that your model adheres to privacy and security guidelines, particularly when handling
sensitive data. Implement appropriate measures to protect data confidentiality and integrity.

Incorporating custom code components in your training pipeline allows you to extend the
functionality of Azure Machine Learning Designer with specialized processing tasks.

Evaluating your model with a focus on performance metrics and Responsible AI principles
ensures that your model is not only accurate but also fair, transparent, and secure. Figure 2-7
illustrates the process of making decisions on model fairness.

CHAPTER 2   Explore data and train models54

Start

Define Fairness Criteria

Collect Diverse & Representative Data

Preprocess Data (Bias Mitigation)

Train Model

Evaluate Model Fairness

Adjust Model Based on Fairness Metrics

Reevaluate Model Fairness

Decision Point

Deploy Model

Fair Enough

Not Fair

FIGURE 2-7  Ensuring model fairness in AI training

Skill 2.3: Use automated machine learning to explore
optimal models

Azure Machine Learning service’s automated ML capability is based on a breakthrough from the
Microsoft Research division. It is distinct from competing solutions in the market. The approach
combines ideas from collaborative filtering and Bayesian optimization. This combination allows it
to search an enormous space of possible machine learning pipelines intelligently and efficiently.
Essentially, it acts as a recommender system for machine learning pipelines. Just as streaming
services recommend movies for users, automated ML recommends machine learning pipelines
for datasets.

Skill 2.3: Use automated machine learning to explore optimal models   CHAPTER 2 55

Use automated machine learning for tabular data
Imagine you’re a data scientist working for a telecom company. Your task is to develop a
machine learning model to predict customer churn based on various customer attributes. You
decide to use Azure Machine Learning’s Automated Machine Learning (AutoML) feature to
quickly build and deploy the model. We’ll break this down into setting up your environment,
preparing your tabular data, and then using AutoML on your tabular data by looking at a real-
world scenario.

Working with tabular data in Azure Machine Learning
This section covers how you can use objects like MLTable for data processing. The MLTable
object can be used with your tabular data (for example, a CSV file containing customer churn
data). MLTable is a feature of Azure Machine Learning that allows you to define and save a
series of data loading steps for tabular data. This makes it easier to reproduce data loading
in different environments and share it with team members. MLTable supports various data
sources, including CSV and Parquet files. Figure 2-8 shows selecting AutoML in the Designer.

FIGURE 2-8  AutoML in the workspace

This skill covers how to:
■■ Use automated machine learning for tabular data

■■ Select and understand training options, including preprocessing and algorithms

■■ Evaluate an automated machine learning run, including responsible AI guidelines

■■ Use automated machine learning for computer vision

■■ Use automated machine learning for natural language processing (NLP)

CHAPTER 2   Explore data and train models56

Here’s how you can use MLTable with AutoML for tabular data:

1.	 Define Data Loading Steps: Use the mltable Python SDK (to clarify, mltable must be used
via Python and not the UI) to define the steps for loading and preprocessing your data.
This includes specifying the data source, filtering rows, selecting columns, and creating
new columns based on the data.

2.	 Save Data Loading Steps: Once you have defined the data loading steps, you can save
them into an MLTable file. This file contains the serialized steps, making it easy to
reproduce the data loading process.

3.	 Load Data into a Pandas DataFrame: You can load the data defined by an MLTable into
a Pandas DataFrame. This is useful for exploring the data and performing additional
preprocessing before training a model.

4.	 Use MLTable with AutoML: When setting up an AutoML experiment for tabular data,
you can use an MLTable as the data input. AutoML will automatically apply the data
loading steps defined in the MLTable and use the resulting DataFrame for model
training.

5.	 Create a Data Asset: To share the MLTable with team members and ensure
reproducibility, you can create a data asset in Azure Machine Learning. This stores the
MLTable in cloud storage and makes it accessible through a friendly name and version
number.

6.	 Use Data Asset in Jobs: You can reference the data asset in Azure Machine Learning
jobs, such as training or inference jobs. This allows you to use the same data loading
steps consistently across different experiments and pipelines.

Here’s an example of how to turn a CSV file into an MLTable using the SDK:

import mltable
Define the data source (CSV file)
paths = [{'file': 'path/to/your/data.csv'}]
Create an MLTable from the CSV file
tbl = mltable.from_delimited_files(paths)
Apply any additional data loading steps (e.g., filtering, column selection)
tbl = tbl.filter("col('some_column') > 0")
tbl = tbl.select_columns(["column1", "column2"])
Save the data loading steps into an MLTable file
tbl.save("./your_mltable_directory")

In this example, the CSV file is turned into an MLTable with some filtering and column
selection steps. The resulting MLTable can then be used with AutoML for training machine
learning models on tabular data.

Now that we understand how to work with tabular data in a pipeline, we can look at some
specific scenarios for using AutoML on tabular data for a customer churn prediction pipeline.
You can also use the Designer with AutoML and tabular data. Figure 2-9 shows creating a new
AutoML run in the Designer.

Skill 2.3: Use automated machine learning to explore optimal models   CHAPTER 2 57

FIGURE 2-9  Advanced Features of Automated Machine Learning for model development

Select and understand training options, including
preprocessing and algorithms
Automated Machine Learning (AutoML) in Azure Machine Learning is a powerful tool that
automates the process of selecting the best machine learning algorithms and hyperparam-
eters for your data. This simplifies the machine learning workflow, making it accessible to data
scientists, analysts, and developers, regardless of their expertise in machine learning. In the fol-
lowing section, we will look at automating machine learning concepts including training data,
validation, featurization, preprocessing, distributed training, model selection, and ensemble
learning in the context of Azure’s AutoML capabilities.

■■ Automated Machine Learning  AutoML in Azure provides various training options to
cater to different requirements and preferences. These options are designed to opti-
mize the model development process, ensuring efficiency and effectiveness in training
machine learning models.

■■ Training Data and Validation  AutoML allows users to provide training data in differ-
ent formats, including MLTable for tabular data. Users can specify separate datasets for
training and validation or let AutoML automatically split the training data for validation
purposes. This helps in evaluating the model’s performance and avoiding overfitting.
For time-series forecasting, AutoML supports advanced configurations like rolling-
origin cross-validation to ensure robust model evaluation.

■■ Featurization and Preprocessing  AutoML automates the featurization and prepro-
cessing steps, which are crucial for preparing the data for model training. This includes
handling missing values, encoding categorical variables, and scaling numerical features.
Users can customize these steps by specifying featurization settings, such as blocking
certain transformers or defining custom transformations. This flexibility allows users to
tailor the data preprocessing to their specific needs, ensuring that the input data is in
the optimal format for training.

CHAPTER 2   Explore data and train models58

■■ Distributed Training  For large datasets and complex models, AutoML supports
distributed training. This allows the training process to be distributed across multiple
compute nodes, significantly reducing the training time. Users can specify the number
of nodes to use for training, enabling parallel execution of model training. Distributed
training is particularly beneficial for tasks like deep learning and NLP, where the
computational requirements are high.

■■ Model Selection and Hyperparameter Tuning  AutoML automates the selection of
machine learning algorithms and the tuning of hyperparameters. It iterates through a
predefined list of algorithms and tests different hyperparameter combinations to find
the best-performing model. Users can control the number of iterations and set limits on
the training time to manage computational resources effectively.

■■ Ensemble Models  AutoML supports ensemble models, which combine predictions
from multiple models to improve accuracy. It uses techniques like voting and stacking
to create ensembles, automatically selecting the best models to include in the ensemble
based on their performance.

Table 2-1 outlines the algorithms that are supported by Automated Machine Learning
(AutoML) in Azure Machine Learning for various learning tasks.

TABLE 2-1  Automated Machine Learning algorithms

Task Type Algorithms

Classification - Logistic Regression*
- Light GBM*
- Gradient Boosting*
- Decision
Tree*
- K Nearest Neighbors*
- Linear SVC*
- Support Vector
Classification (SVC)
- Random Forest
- Extremely Randomized Trees*
-
Xgboost*
- Naive Bayes*
- Stochastic Gradient Descent (SGD)*

Regression - Elastic Net*
- Light GBM*
- Gradient Boosting*
- Decision Tree*
- K
Nearest Neighbors*
- LARS Lasso*
- Stochastic Gradient Descent (SGD)
-
Random Forest
- Extremely Randomized Trees
- Xgboost*
- Xgboost

Time Series
Forecasting

- AutoARIMA
- Prophet
- Elastic Net
- Light GBM
- K Nearest
Neighbors
- Decision Tree
- LARS Lasso
- Extremely Randomized
Trees*
- Random Forest
- TCNForecaster
- Gradient Boosting
-
ExponentialSmoothing
- SeasonalNaive
- Average
- Naive
-
SeasonalAverage

Image Classification - MobileNet
- ResNet
- ResNeSt
- SE-ResNeXt50
- ViT

Image Classification
Multi-label

Refer to ClassificationMultilabelPrimaryMetrics Enum

Image Object
Detection

- YOLOv5
- Faster RCNN ResNet FPN
- RetinaNet ResNet FPN

NLP Text Classification
Multi-label

Refer to supported algorithms for NLP tasks

NLP Text Named Entity
Recognition (NER)

Refer to supported algorithms for NLP tasks

Algorithms marked with an asterisk (*) are default models.

Skill 2.3: Use automated machine learning to explore optimal models   CHAPTER 2 59

For NLP tasks, AutoML supports a range of pretrained text DNN models, including but not
limited to BERT, GPT-4, RoBERTa, T5, and LaMDA.

Before showing an example of how you can select and use various training options in Auto-
mated Machine Learning (AutoML) with the Azure Machine Learning Python SDK v2, we need
to list some of the options that are available:

■■ Primary Metric  This is the metric that AutoML will optimize for model selection.
Common metrics include accuracy for classification tasks and mean_squared_error for
regression tasks.

■■ Validation Strategy  AutoML supports several validation strategies such as cross-
validation and train-validation splits. This helps in evaluating the model’s performance
on unseen data.

■■ Max Trials  This specifies the maximum number of different algorithm and parameter
combinations that AutoML will try before selecting the best model.

■■ Max Concurrent Trials  This is the maximum number of trials that can run in parallel,
which can speed up the training process.

■■ Timeout  You can set a maximum amount of time for the AutoML experiment. Once
the time limit is reached, AutoML will stop trying new models.

■■ Featurization  AutoML can automatically preprocess and featurize the input data,
which includes handling missing values, encoding categorical variables, and more.

The following code example shows how to configure these training options in AutoML using
the Azure Machine Learning Python SDK:

from azure.ai.ml import MLClient
from azure.ai.ml.constants import AssetTypes
from azure.ai.ml import automl, Input
from azure.identity import DefaultAzureCredential

Set up the MLClient
credential = DefaultAzureCredential()
subscription_id = "your-subscription-id"
resource_group = "your-resource-group"
workspace_name = "your-workspace-name"
ml_client = MLClient(credential, subscription_id, resource_group, workspace_name)

Define the training data
training_data_input = Input(type=AssetTypes.MLTABLE, path="./data/training_data/")

Configure the AutoML job
automl_job = automl.classification(
compute="your-compute-cluster",
experiment_name="automl_classification_example",

NEED MORE REVIEW?  OFFICIAL ALGORITHM LIST

If you’d like to read further about what algorithms are supported by AutoML, the
list is maintained at https://learn.microsoft.com/en-us/azure/machine-learning/
how-to-configure-auto-train?view=azureml-api-2&tabs=python#supported-algorithms

https://learn.microsoft.com/en-us/azure/machine-learning/how-to-configure-auto-train?view=azureml-api-2&tabs=python#supported-algorithms
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-configure-auto-train?view=azureml-api-2&tabs=python#supported-algorithms

CHAPTER 2   Explore data and train models60

training_data=training_data_input,
target_column_name="target",
primary_metric="accuracy",
validation_data_split=0.2,
max_trials=100,
max_concurrent_trials=4,
timeout_minutes=60,
enable_model_explainability=True
)

Submit the AutoML job
submitted_job = ml_client.jobs.create_or_update(automl_job)
print(f"Submitted job: {submitted_job}")

Get the URL to monitor the job
print(f"Monitor your job at: {submitted_job.services['Studio'].endpoint}")

In this example, we’ve configured the primary metric as accuracy, set a validation data split
of 20%, limited the maximum number of trials to 100, allowed up to 4 trials to run concurrently,
and set a timeout of 60 minutes. We’ve also enabled model explainability to interpret the
model’s predictions.

You can adjust these options based on your specific requirements and the nature of your
dataset. Whether you’re a seasoned data scientist or a developer new to machine learning,
AutoML provides the tools you need to develop and deploy machine learning models with
ease. In the next section, we will look at the last piece of the above example: evaluating an
Automated Machine Learning Run according to responsible AI guidelines.

Evaluate an automated machine learning run, including
responsible AI guidelines
Depending on the type of machine learning task (classification, regression, etc.), different
metrics are used to evaluate the model’s performance.

Classification metrics
Classification metrics include accuracy, precision, and recall having specific meaning as ratios
of true and false positives to actual positive predictions as well as metrics like F1 Score and
AUC-ROC, or area under the receiver-operating curve. Monitoring the performance of your
classification models using accuracy, F1 Score, or AUC-ROC to detect model drift and to decide
when to retrain the model are concepts we will explore in later chapters, so it is important to
understand the definitions for the following classification metrics:

■■ Accuracy  Proportion of correct predictions

■■ Precision  Ratio of true positives to all positive predictions

■■ Recall  Ratio of true positives to all actual positives

■■ F1 Score  Harmonic mean of precision and recall

■■ AUC-ROC  Area under the Receiver Operating Characteristic curve

Skill 2.3: Use automated machine learning to explore optimal models   CHAPTER 2 61

Regression Metrics
Not all supervised machine learning problems are classification problems. Regression prob-
lems could involve predicting a continuous response variable—for example, forecasting
demand for a new product line requires its own set of performance metrics to measure the
error between predicted and actual values. Here are a few important regression metrics that
you could encounter frequently in the real world as well as on exam questions:

■■ Mean Absolute Error (MAE)  Average of absolute differences between predicted and
actual values

■■ Mean Squared Error (MSE)  Average of squared differences between predicted and
actual values

■■ Root Mean Squared Error (RMSE)  Square root of MSE

■■ R-squared  Proportion of variance in the dependent variable that is predictable from
the independent variables

Using evaluation metrics in AutoML
When you run an AutoML experiment, it automatically calculates and logs these metrics for
each model. You can access these metrics through the Azure Machine Learning Studio or
programmatically using the SDK.

Visualizations for model evaluation
AutoML provides various visualizations to help you understand the model’s performance:

■■ Confusion Matrix  For classification tasks, this shows the number of correct and
incorrect predictions for each class.

■■ ROC Curve  For binary classification, this plots the true positive rate against the false
positive rate at various threshold levels.

■■ Precision-Recall Curve  For binary classification, this shows the trade-off between
precision and recall for different threshold levels.

■■ Residuals Plot  For regression tasks, this shows the difference between actual and
predicted values.

After the AutoML run is complete, you can retrieve the best model based on the primary
metric you specified. You can then evaluate this model on a test dataset to get a sense of its
real-world performance.

Here’s an example of how you can retrieve and evaluate the best model from an
AutoML run:

from azure.ai.ml import MLClient
from azure.ai.ml.constants import AssetTypes
from azure.ai.ml import automl, Input
from azure.identity import DefaultAzureCredential

Set up the MLClient
credential = DefaultAzureCredential()

CHAPTER 2   Explore data and train models62

subscription_id = "your-subscription-id"
resource_group = "your-resource-group"
workspace_name = "your-workspace-name"
ml_client = MLClient(credential, subscription_id, resource_group, workspace_name)

Get the best model from the AutoML run
best_model = ml_client.jobs.get_best_model(
experiment_name="automl_classification_example",
job_name="automl_job_name"
)

Evaluate the best model on a test dataset
test_data = Input(type=AssetTypes.MLTABLE, path="./data/test_data/")
evaluation_results = ml_client.jobs.evaluate(
model=best_model,
test_data=test_data
)

In this example, we retrieve the best model from a completed AutoML run and evaluate it
on a separate test dataset. The evaluation results provide metrics that help us understand the
model’s performance.

Predicting customer churn with Azure AutoML
Suppose you are a data scientist tasked with creating a machine learning model to predict
customer churn for a telecom company. To accomplish this, you decide to leverage Azure’s
Automated Machine Learning (AutoML) feature, which simplifies the process of building and
deploying models. Here’s a step-by-step guide to help you prepare tabular data for use with
Automated Machine Learning capabilities (see Figure 2-10 for an example using the Designer):

1.	 Set Up Your Environment: Create an Azure Machine Learning workspace. This is your
centralized environment for managing and monitoring your machine learning models.

2.	 Install the Azure Machine Learning SDK v2 for Python: Run pip install azure-ai-ml in
your terminal. This SDK enables you to interact with Azure Machine Learning services
and resources programmatically.

3.	 Prepare Your Tabular Data: Gather your dataset. Ensure that your dataset includes
various customer attributes and a churn label indicating whether the customer has
churned.

4.	 Format Your Data: Structure your data in a tabular format with rows representing
individual customers and columns representing attributes. The target column should
be the churn label.

5.	 Upload Your Dataset to Azure: Convert your dataset to an MLTable and upload it to
Azure. MLTable is a tabular data format supported by Azure AutoML.

NEED MORE REVIEW?  �AUTOMATING AND EVALUATING AUTOMATED MACHINE
LEARNING RUNS

You can read further about automating and evaluating machine learning runs at https://
learn.microsoft.com/en-us/azure/machine-learning/how-to-understand-automated-ml

http://learn.microsoft.com/en-us/azure/machine-learning/how-to-understand-automated-ml
http://learn.microsoft.com/en-us/azure/machine-learning/how-to-understand-automated-ml

Skill 2.3: Use automated machine learning to explore optimal models   CHAPTER 2 63

FIGURE 2-10  Data connection and feature preparation in Azure Machine Learning

Specify the task type as classification since you’re predicting a binary outcome (churn or no
churn). Choose accuracy as your primary metric to evaluate model performance. Also, decide
on your data splitting strategy (e.g., cross-validation or train-validation split). Determine the
maximum duration for the experiment (timeout minutes) and the maximum number of trials
(max trials). This helps in managing computational resources and experiment time.

Run your AutoML experiment
The following code shows how to use the Azure Machine Learning SDK to submit your AutoML
experiment for execution. The purpose of the code is to show in detail how to use AutoML,
including configuring limits like time outs and max trials. Keep an eye on the experiment’s
progress through the Azure Machine Learning Studio or SDK. You can review the performance
of different models as they are generated.

from azure.identity import DefaultAzureCredential
from azure.ai.ml import MLClient, automl, Input
from azure.ai.ml.constants import AssetTypes

Set up workspace
credential = DefaultAzureCredential()
subscription_id = "<SUBSCRIPTION_ID>"
resource_group = "<RESOURCE_GROUP>"
workspace = "<WORKSPACE_NAME>"
ml_client = MLClient(credential, subscription_id, resource_group, workspace)

Prepare data
train_data_input = Input(type=AssetTypes.MLTABLE, path="./data/customer_churn_data")

Configure AutoML experiment

CHAPTER 2   Explore data and train models64

classification_job = automl.classification(
compute="<COMPUTE_NAME>",
experiment_name="customer_churn_prediction",
training_data=train_data_input,
 target_column_name="Churn",
primary_metric="accuracy",
n_cross_validations=5
)

Set limits (optional)
classification_job.set_limits(
 timeout_minutes=60,
max_trials=20
)

Run the experiment
returned_job = ml_client.jobs.create_or_update(classification_job)
print(f"Created job: {returned_job}")

Use automated machine learning for computer vision
Imagine you are a data scientist tasked with developing a model to classify animal images. Your
goal is to utilize Azure Automated Machine Learning (AutoML) for computer vision tasks to
accomplish this.

Setting up the environment
To kickstart your machine learning journey, the first step is to establish an Azure Machine
Learning workspace, acting as a centralized hub for overseeing and tracking your machine
learning models’ progress. This workspace provides a unified platform for managing resources,
conducting experiments, and deploying models seamlessly. Following this, installing the Azure
Machine Learning CLI v2 and Python SDK v2 equips you with the necessary tools to interact
with Azure services efficiently. These resources empower you to leverage Azure’s capabilities
effectively, enabling streamlined development, deployment, and management of machine
learning solutions within your workspace.

Selecting the task type
In this project, the task type selected is image classification, which serves as a cornerstone
determining the approach and algorithms utilized by AutoML for model training. Image clas-
sification involves categorizing images into predefined classes or categories based on their
visual features. This choice significantly influences the techniques employed during the training
phase, as well as the algorithms leveraged to optimize model performance.

Image classification tasks typically require specialized algorithms capable of understanding
and extracting meaningful features from images to accurately classify them. AutoML, being an
automated machine learning platform, adapts its approach based on the specified task type.
For image classification, it employs algorithms specifically designed to process image data
efficiently, such as convolutional neural networks (CNNs). CNNs are particularly well-suited for

Skill 2.3: Use automated machine learning to explore optimal models   CHAPTER 2 65

image-related tasks due to their ability to automatically learn hierarchical representations of
visual features from the input images.

Furthermore, the choice of image classification as the task type underscores the importance
of selecting appropriate evaluation metrics and validation strategies tailored to this specific
problem domain. Metrics such as accuracy, precision, recall, and F1-score are commonly used
to assess the performance of image classification models. Additionally, techniques like cross-
validation or stratified sampling may be employed to ensure robust evaluation and prevent
overfitting. Therefore, the decision to focus on image classification guides the entire workflow
of model training within the AutoML framework, shaping the selection of algorithms, evalua-
tion metrics, and validation strategies to achieve optimal results.

Preparing the data
Your next step is to organize your labeled image data. Format this data into JSONL format,
ensuring that each line contains an image URL and the corresponding label. If your data is in
a different format, such as Pascal VOC or COCO, convert it to JSONL using available helper
scripts. A minimum of 10 images is recommended to start the training process. Here is an
example of JSONL format to help visualize what this looks like for an image URL and a label
that can have values “cat”, “dog”, “bird”, “car”, and “tree”:

{"image_url": "http://example.com/image1.jpg", "label": "cat"}
{"image_url": "http://example.com/image2.jpg", "label": "dog"}
{"image_url": "http://example.com/image3.jpg", "label": "bird"}
{"image_url": "http://example.com/image4.jpg", "label": "car"}
{"image_url": "http://example.com/image5.jpg", "label": "tree"}

Create an MLTable for your training and validation data using Azure CLI or Python SDK. This
involves specifying the path to your JSONL files and defining any necessary data transforma-
tions. MLTable serves as a structured representation of your data for AutoML.

Setting up compute for training
Choose a GPU-enabled compute target, such as the NC or ND series VMs, to train your computer
vision models. The choice of compute target affects the speed and efficiency of model training.

Configure your AutoML experiment by setting parameters like the task type, primary metric,
and job limits (e.g., timeout_minutes, max_trials, and max_concurrent_trials). This step involves
defining the boundaries and objectives of the model training process. Figure 2-11 shows the
menu for submitting an Automated ML Job including basic settings and Task settings like task
type mentioned previously.

Evaluating and deploying the model
After training, evaluate the best model based on the primary metric in accordance with the
responsible AI guidelines covered earlier. Register this model in your Azure Machine Learning
workspace and deploy it as a web service for making predictions. This final step makes your model
accessible for real-world applications. Figure 2-12 shows selecting computer vision task-specific
options in AutoML and the different options available as well as where to select data for training.

CHAPTER 2   Explore data and train models66

FIGURE 2-11  Submitting an AutoML job in Azure Machine Learning

FIGURE 2-12  Select a computer vision task type using AutoML

NEED MORE REVIEW?  COMPUTER VISION USING AUTOML

If you’d like to read further about compute vision using AutoML, the documentation is
maintained at https://learn.microsoft.com/en-us/azure/machine-learning/how-to-
auto-train-image-models

https://learn.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models
https://learn.microsoft.com/en-us/azure/machine-learning/how-to-auto-train-image-models

Skill 2.3: Use automated machine learning to explore optimal models   CHAPTER 2 67

Use automated machine learning for natural language
processing (NLP)
Imagine again that you are a data scientist aiming to develop a natural language process-
ing (NLP) model for classifying movie reviews into genres. You plan to use Azure Automated
Machine Learning (AutoML) for NLP tasks. Figure 2-13 shows the high-level architecture for
configuring AutoML to perform NLP tasks in Azure Machine Learning; however, in this chapter,
we’ll concentrate specifically on Automated Machine Learning for NLP tasks.

Language
Setting

AzureML
Training Compute

Finetuned Model

Deploy

Evaluation
Metrics

DATA
PREPARATION CONFIGURATION & TRAINING EVALUATION

& DEPLOYMENT

Model FinetunePretrained Model
and Tokenizer

Data Validation

Datasets

FIGURE 2-13  NLP using AutoML

Setting up the environment
The first step is to create an Azure Machine Learning workspace, which acts as a centralized
platform for managing and overseeing NLP models. Additionally, configuring a GPU training
compute within the workspace enhances the efficiency of training large-scale NLP models by
harnessing the parallel processing power of GPUs. Moreover, installing the Azure Machine
Learning CLI v2 and Python SDK v2 equips you with essential tools to seamlessly interact with
Azure services. This facilitates smooth integration of NLP pipelines, experimentation, and
deployment processes within your workspace. Collectively, these resources empower you to
leverage Azure’s capabilities effectively for developing, fine-tuning, and deploying NLP
solutions with optimal performance and scalability.

Selecting the NLP task
For this project, choose text_classification as your NLP task. This task involves classifying
each movie review into a specific genre. Organize your dataset in a CSV format with columns
for the review text and the corresponding genre labels. Ensure that the data is labeled correctly
for the classification task. Figure 2-14 shows how to configure an AutoML experiment for an
NLP task.

This page intentionally left blank

165

Index

A
account keys, security, 26
ACI (Azure Container Instances), 13
AKS (Azure Kubernetes Service), 125–126

deploying models as Kubernetes pods, 126
managing and scaling model deployments, 126

algorithms, 5, 6, 57, 58
AmlCompute cluster, 9
Apache Spark

data wrangling, 44–47
execution model, 45
jobs, 35–36

resource access, 35–36
user identity passthrough, 36

pools, 33, 34–35
Application Insights

Azure Machine Learning integration, 103–104
querying and analyzing logs, 107

AUC-ROC, 60
authentication, pipeline, 143
automation

Azure Machine Learning
with GitHub, 144–147
using Azure DevOps, 143–144

model retraining, 147–148
AutoML, 6, 57

algorithms, 6, 58
evaluation metrics, 61–62
exploring optimal models, 54
limitations of model complexity, 6–7
max trials, 59
model evaluation, 73–74
for NLP, 67

configuring the AutoML experiment, 68–69
selecting the NLP task, 67–68
setting up the environment, 67

predicting customer churn, 62–63
selecting algorithms, 57

selecting training options, 57–58
setting up compute for training, 65–66
submitting a job, 66
using for computer vision, 64

evaluating and deploying the model,
65–66
preparing the data, 65
selecting the task type, 64–65
setting up the environment, 64

working with tabular data, 55–57
autoscaling, 8–9, 123

cost management, 9–10
training clusters, 8–9

az ml batch-deployment command, 137
az ml batch-endpoint create command, 134
az ml batch-endpoint delete command, 137
az ml compute create command, 133
az ml environment create command, 135
az ml job create command, 99
az ml online-endpoint delete command, 132–133
Azure CLI, 20

commands
az ml batch-deployment, 137
az ml batch-endpoint create, 134
az ml batch-endpoint delete, 137
az ml compute create, 133
az ml environment create, 135
az ml job create, 99
az ml online-endpoint delete, 132–133
execution context, 86
input format, 85
kubectl, 126
ssh, 92

deleting online endpoints, 132–133
interacting with the workspace, 19
running a pipeline, 99–100

Azure Container Registry, 13

166

Azure DevOps

setting the tracking URI, 87
tracking experiments, 112
tracking models for training, 72–73

MLOPs practices, 140–142
sampling

Bayesian, 77–78
grid, 77
random, 76–77

schedules, 102–103
SDK, 17–18, 20
selecting VM size, 7–8
Spark jobs, resource access, 35–36
Spark pool, 34–35
training pipeline, 94–95

creating, 95–99
custom code, 49–51
custom components, 107–108, 109–110
logging, 104–107
monitoring, 103
pass data between steps, 100–101
running with Azure CLI, 99–100
schedule, 101–103
steps and components, 98–99

workspace, 15
accessing the terminal, 75–76
connecting to, 19
creating, 15
organizing, 16–17
storage resources, 23–25
tasks performed in, 16

Azure Machine Learning Studio, 19–20
accessing logs, 90–91
modules, 49

Azure Monitor, 139. See also monitoring
Azure Pipelines, 141
Azure policies, 5

B
batch deployment, creating, 134–135. See also
deployment/s
batch endpoints, 121, 133–134
batch scoring job, 139
Bayesian sampling, 77–78
blob storage, 24
blue-green deployments, 125

Azure DevOps, 143
automating Azure Machine Learning, 143

configure secrets, 144
create a service connection, 143–144
define variables, 144

Azure Event Grid, 149
Azure Machine Learning, 109–110

Apache Spark integration, 33–34
automating

with Azure DevOps, 143–144
with GitHub, 144–147

automating with Azure DevOps, 144
AutoML. See AutoML
compute/compute targets, 2–3, 4

creating, 26–28
managed, 4–5
selecting for an experiment, 30–31
using in a Jupyter notebook, 17

datasets, creating, 27–28
datastore, 25

creating, 26
register and maintain, 25–26

deploying a model, 120–122
Designer, 47

creating a training pipeline, 48
custom code, 49–51
preprocessing data for model training, 49

environment, 32
creating, 32
curated, 32–33

Git integration, 20–22
hyperparameter tuning, 76
integrating with Application Insights, 103–104
job/s, 16. See also job/s

autotermination policy, 10
defining parameters, 94
Spark, 35–36
training, 82–83

managing models, 110–111
MLFlow, 111, 112

custom logging, 72–73
integrating into your training script, 86–87
logging methods, 88
logging metrics from a job run, 86
logging models, 114
model deployment, 112–113
output, 112

167

data science

C
centralized logging, 104
classification metrics, 60, 73
cloud environment, logging, 105
cluster

AKS (Azure Kubernetes Service), 125–126
compute, 8–9, 84

code
compute target, 30
configuring training options, 59–60
converting CSV file to MLTable, 56–57
creating an interactive PCP using Plotly, 155–156
custom, 49–51
defining script parameters, 94
implementing preprocessing steps needed to train a
model, 43–44
running your AutoML experiment, 63–64
ScriptRunConfig, 93–94
selecting compute targets for an experiment, 31
selecting the best model from an AutoML run, 61–62
Spark pool for reading large datasets and
preprocessing tasks, 45–47
submitting a AutoML NLP job, 68
working with tabular data, 100
YAML pipeline, 97

command/s
az ml batch-deployment, 137
az ml batch-endpoint create, 134
az ml batch-endpoint delete, 137
az ml compute create, 133
az ml environment create, 135
az ml job create, 99
az ml online-endpoint delete, 132–133
execution context, 86
input format, 85
kubectl, 126
ssh, 92

complexity, model, 5–7
components, YAML pipeline, 98–99
compute

Apache Spark pool, 33
autoscaling, 8–9
clusters, 8–9, 84
configuring for a job run, 84
managed, 4–5
resources, attaching to Jupyter notebook, 70–71
serverless, 5, 34
setting up for training, 65–66

targets, 4, 8
Azure Machine Learning, 2–3
creating, 26–28
idempotence, 30
selecting for an experiment, 30–31
selecting VM size, 7–8

unmanaged, 5
utilization, metrics, 36–37

Conda YAML file, 135
confusion matrix, 61
connecting to the workspace, 19
containerization, 126
context-aware MLOPs, 154
CPU-based instance types, 123–124
creating

batch deployment, 134–135
batch endpoint, 133–134
compute targets, 26–28
custom components, 107–108
datasets, 27–28
datastore, 26, 43
environment, 32
training pipeline, 48, 95–99
workspace, 15

cron, 102
CSV file, converting to MLTable, 56–57
curated environment, 32–33
custom code, 49–51
custom components, 109–110

creating, 107–108
registration, 108

custom dimensions, 106–107
customer churn, predicting, 62–63

D
DAG (directed acyclic graph), 50
data

accessing, 42
cleaning and preparation, 151
collection/ingestion, 150
exploration, 41, 42, 43
featurization, 59
preprocessing, 49
tabular, 55–57, 100
wrangling, 42, 44–47

data lake storage, 24
data science, 1

168

Databricks

E
early termination policy, 78
endpoints

batch, 121
online, 121

ensemble models, 58
environment, 32

Conda YAML file, 135
configuring for a job run, 93–94
configuring in Jupyter notebook, 70
creating, 32
curated, 32–33

errors, troubleshooting, 140
evaluation

metrics, 61–62
model, 51, 73–74, 151

event-based retraining triggers, 149
exam

deployment and management-related
questions, 120
multiple-choice questions, 2
objective mapping, 161–163
updates, 159–161

exceptions, 107
execution context, command, 86
experiment/s

creating compute targets, 28–30
debugging using SSH, 92
environment

creating, 32
curated, 32–33

reproducibility, 86
running, 63–64
selecting a target for, 30–31
timeout, 59
tracking, 112
tracking data, 28, 86

explainability, Responsible AI Standard, 53

F
F-1 score, 60
fairness, Responsible AI Standard, 52–53
feature engineering, 151
function

init(), 138
run(), 138

Databricks, 4
dataflows, 27
dataset/s, 27

creating, 27–28
downloading, 84
monitoring, 142
mounting, 84
size, 5, 6
tracking, 28

datastore, 25
creating, 26, 43
register and maintain, 25–26

debugging, using SSH, 91–93
deleting online endpoints, 132–133
deployment/s, 120–122, 152. See also AKS
(Azure Kubernetes Service)

adding to an endpoint, 136–137
AKS (Azure Kubernetes Service), 126, 127
batch, 127–128, 134–135
to a batch endpoint, 133

add deployments, 135–136
create a batch endpoint, 133–134
delete the batch endpoint and deployment, 137
run batch endpoints and access results,
135–136

configuration, 136
as Kubernetes pods, 126
online

instance types available, 123–124
production deployment strategies, 124–125
safe rollout strategy, 124
settings, 122–123
testing, 137–138

to an online endpoint, 128
define the deployment, 129–130
define the endpoint, 128–129
delete the endpoint and deployment,
132–133
deploy the model locally, 130
deploy the model to Azure, 131
monitor SLA and integrate with log analytics,
131–132

setting up AKS, 125–126
troubleshooting common errors, 140

distributed training, 58
Docker

build logs, 89
containerization, 126

downloading, dataset, 84

169

metric/s

G
get_by_name method, 27–28
Git, 20–22
GitHub

Actions, 143
automating Azure Machine Learning, 144–147

GPU
-based instance types, 123–124
-optimized VMs, 8

grid sampling, 77

H
HTTP status codes, 139
hyperparameter tuning, 76

Bayesian sampling, 77–78
define the primary metric, 78
grid sampling, 77
random sampling, 76–77

I
idempotence, 30
immutable deployments, 125
init() function, 138
installation, Python SDK 2.0, 17–18
interpretability, model, 53

J
job/s, 16, 95

autotermination policy, 10
batch scoring, 139
configuring compute for, 84
consuming data from a data asset, 84
metrics, 86
parameters, 94
Spark, 35–36

resource access, 35–36
user identity passthrough, 36

training, 84–86
configuring an environment for, 93–94
settings, 82–83

troubleshooting, 88–90
JSONL, 65

Jupyter notebook, 69
accessing the terminal, 75–76
attaching compute resources, 70–71
attaching to a compute instance, 69–70
configuring the environment, 70
preparing data for training, 71
using Azure ML compute, 17

K-L
kubectl commands, 126
Kubernetes, immutable deployments, 125

library, mlflow, 86
LLMs (large language models), 1
logistic regression model, 44
logs/logging

accessing in Azure ML Studio, 90–91
centralized, 104
MLFlow, 72–73
models, 87–88, 114
pipeline, 104–105

custom dimensions, 106–107
querying in Application Insights, 107

streaming to your terminal, 90
structured, 106
troubleshooting job run errors, 88–90

Low-Priority VM, 10

M
machine learning

algorithms, 58
automated, 54
lifecycle, 1
model. See model

MAE (mean absolute error), 61
managed compute targets, 5
method

get_by_name, 27–28
random_split(), 100
run.get_details(), 28
take_sample(), 100

metric/s, 88
classification, 60, 73
compute utilization, 36–37
evaluation, 61–62

170

metric/s, continued

mounting the dataset, 84
MSE (mean squared error), 61
multiple-choice questions, 2

N
NLP (natural language processing), configuring
AutoML for, 67

configuring the experiment, 68–69
selecting the NLP task, 67–68
setting up the environment, 67

O
online deployment

instance types available, 123–124
production deployment strategies, 124–125
safe rollout strategy, 124
settings, 122–123
testing, 137–138

online endpoints, 121
organizing a workspace, 16–17
overfitting, 5–6

P
parallelized training, 10
parameters, job, 94
Pareto tradeoffs, visualizing, 154–156
performance

autoscaling, 123
metric/s, 60

classification, 60, 73
compute utilization, 36–37
job. See job/s
primary, 59, 60
regression, 61

pipeline
authentication, 143
custom components, 97, 109–110

creating, 107–108
registration, 108

training, 94–95
creating, 48, 95–99
logging, 104–107
monitoring, 103

metric/s, continued
job. See job/s
primary, 59, 60, 78
regression, 61

Microsoft Fabric, 154
MLFlow, 111, 112

custom logging, 72–73
integrating into your training script, 86–87
logging methods, 88
logging metrics from a job run, 86
logging models, 114
model deployment, 112–113
output, 112
setting the tracking URI, 87
tracking experiments, 112
tracking models for training, 72–73

MLOPs (machine learning operations), 1, 119–120, 140–142
best practices, 150–153
context-aware, 154
emerging trends, 153–154
visualizing Pareto tradeoffs, 154–156

MLTable, 55–57
model/s. See also deployment; training

assessment, 114–115
complexity, 5–7
containerization, 126
deployment, 10–12, 112–113, 120–122

managed online endpoints, 12–13
packaging and containerization, 13
security and access control, 13
targets, 12

ensemble, 58
evaluation, 51, 73–74, 151
interpretability, 53
logging, 87–88, 114
logistic regression, 44
managing with Azure Machine Learning, 110–111
predicting customer churn, 62–63
retraining, 147–148
tracking for training, 72–73
troubleshooting common errors, 140

module/s
Azure Machine Learning Studio, 49
Evaluate Model, 51
Model Interpretability, 53

monitoring, 152
dataset, 142
SLA (service-level agreement), 131–132
training pipeline, 103

171

terminal

pass data between steps, 100–101
running with Azure CLI, 99–100
scheduling, 101–103
steps and components, 98–99

policy/ies, 5
data retention and deletion, 10
early termination, 78
job autotermination, 10

precision-recall curve, 61
predicting, customer churn, 62–63
preprocessing data for model training, 49
primary metric, 59, 60, 78
privacy, Responsible AI Standard, 53–54
production deployment strategies, 124–125
Python, 42

script, 49–50, 105
SDK 2.0

installing and interacting with, 17–18
training a model, 74–75

Q-R
querying logs in Application Insights, 107
quota change, 7

random sampling, 76–77
random_split() method, 100
recommender system, 54
registration, custom component, 108
regression metrics, 61
remote VM, 4
Reserved Instances, 10
residuals plot, 61
Responsible AI Standard, 51–52, 111

explainability, 53
fairness, 52–53
model assessment, 114–115
privacy and security, 53–54

retraining, 152
automation, 147–148
triggers, 148–150

RMSE (root mean squared error), 61
ROC curve, 61
rolling updates, 124
R-squared, 61
run() function, 138
run record, 16
run.get_details() method, 28

S
safe rollout strategy, 124
sampling

Bayesian, 77–78
grid, 77
random, 76–77

scaling, auto, 8–9
schedule, pipeline, 101–103
scoring script, testing, 138–139
ScriptRunConfig, 93–94
script/s. See also job/s

parameters, 94
Python, 49–50, 105
scoring, 138–139
training, 81–82

accessing data, 84
integrating MLFlow, 86–87
running as a job, 84–86
settings, 82–83

SDK, Azure Machine Learning, 17–18
secrets, 144
security

account keys, 26
authentication, 143
model deployment, 13
Responsible AI Standard, 53–54

sentiment analysis, 44–45
serverless compute, 5, 34
SLA (service-level agreement), monitoring, 131–132
Sobol sampling, 77
Spark pool, 34–35
Spark Pools, 4
SSH, for debugging, 91–93
ssh command, 92
storage, 23–25

datastore
creating, 26
register and maintain, 25–26

structured logging, 106

T
tabular data, 55–57
take_sample() method, 100
terminal

accessing, 75–76
streaming logs to, 90

172

testing

grid sampling, 77
random sampling, 76–77

U-V
unmanaged compute, 5
URIs, Azure storage service, 25

version control, 22
viewing, utilization metrics, 36–37
Visual Studio Code, 21
visualizations, 61–62, 155–156
visualizing Pareto tradeoffs, 154–156
VM (virtual machine)

GPU optimized, 8
Low-Priority, 10
remote, 4
size, 7, 8
types, 7–8

W
workload

autoscaling, 8–9
cost management, 9–10
training clusters, 8–9

compute specifications, 2–3
model complexity, 5–7
selecting VM size, 7–8

workspace, 15
accessing the terminal, 75–76
connecting to, 19
creating, 15
interacting with, 18, 19
organizing, 16–17
run record, 16
storage resources, 23–25
tasks performed in, 16

X-Y-Z
YAML

configuration file, 135
pipeline file, 96–99

testing
batch endpoint, 139
online deployment, 137–138
scoring script, 138–139

traces, 88, 107
tracking data in experiments, 28
training, 41, 57, 151

in batch, 12
clusters, 8–9
cost management, 10
development approach, 14
distributed, 58
jobs. See job/s
parallelized, 10
pipeline, 94–95

creating, 48, 95–99
custom components, 107–108, 109–110
logging, 104–107
modules, 50–51
monitoring, 103
pass data between steps, 100–101
running with Azure CLI, 99–100
schedule, 101–103
steps and components, 98–99

preparing data in Jupyter notebook, 71
preprocessing steps, 43–44
re-, 147–148, 152
script, 81–82

integrating MLFlow, 86–87
job run, 84–86
settings, 82–83

tracking models, 72–73
using Python SDKv2, 74–75
validation strategy, 59
workload. See also workload

autoscaling, 8–9
compute specifications, 2–3
model complexity, 5–7
selecting VM size, 7–8

transparency, 53
triggers, event-based retraining, 148–150
troubleshooting

common errors, 140
job run errors, 88–90

tuning hyperparameters, 76
Bayesian sampling, 77–78
define the primary metric, 78

	Cover
	Title Page
	Copyright Page
	Contents at a glance
	Contents
	Introduction
	Organization of this book
	Preparing for the exam
	Microsoft certifications
	Access the Exam Updates chapter and online references
	Errata, updates, & book support
	Stay in touch

	Chapter 2 Explore data and train models
	Skill 2.1: Explore data by using data assets and datastores
	Access and wrangle data during interactive development
	Wrangle interactive data with Apache Spark

	Skill 2.2: Create models by using the Azure Machine Learning Designer
	Create a training pipeline
	Consume data assets from the Designer
	Use custom code components in Designer
	Evaluate the model, including responsible AI guidelines

	Skill 2.3: Use automated machine learning to explore optimal models
	Use automated machine learning for tabular data
	Select and understand training options, including preprocessing and algorithms
	Evaluate an automated machine learning run, including responsible AI guidelines
	Use automated machine learning for computer vision
	Use automated machine learning for natural language processing (NLP)

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

