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Praise for Quick Start Guide to Large Language Models

“By balancing the potential of both open- and closed-source models, Quick Start Guide to Large 
Language Models stands as a comprehensive guide to understanding and using LLMs, bridging the 
gap between theoretical concepts and practical application.”

—Giada Pistilli, Principal Ethicist at Hugging Face 

“A refreshing and inspiring resource. Jam-packed with practical guidance and clear explanations 
that leave you smarter about this incredible new field.”

—Pete Huang, author of The Neuron

“When it comes to building large language models (LLMs), it can be a daunting task to find 
comprehensive resources that cover all the essential aspects. However, my search for such a 
resource recently came to an end when I discovered this book. 

“One of the stand-out features of Sinan is his ability to present complex concepts in a 
straightforward manner. The author has done an outstanding job of breaking down intricate 
ideas and algorithms, ensuring that readers can grasp them without feeling overwhelmed. Each 
topic is carefully explained, building upon examples that serve as steppingstones for better 
understanding. This approach greatly enhances the learning experience, making even the most 
intricate aspects of LLM development accessible to readers of varying skill levels. 

“Another strength of this book is the abundance of code resources. The inclusion of practical 
examples and code snippets is a game-changer for anyone who wants to experiment and apply 
the concepts they learn. These code resources provide readers with hands-on experience, allowing 
them to test and refine their understanding. This is an invaluable asset, as it fosters a deeper 
comprehension of the material and enables readers to truly engage with the content.

“In conclusion, this book is a rare find for anyone interested in building LLMs. Its 
exceptional quality of explanation, clear and concise writing style, abundant code resources, 
and comprehensive coverage of all essential aspects make it an indispensable resource. Whether 
you are a beginner or an experienced practitioner, this book will undoubtedly elevate your 
understanding and practical skills in LLM development. I highly recommend Quick Start Guide 
to Large Language Models to anyone looking to embark on the exciting journey of building LLM 
applications.”

—Pedro Marcelino, Machine Learning Engineer,  
Co-Founder and CEO @overfit.study

“Ozdemir’s book cuts through the noise to help readers understand where the LLM revolution 
has come from—and where it is going. Ozdemir breaks down complex topics into practical 
explanations and easy-to-follow code examples.”

 —Shelia Gulati, Former GM at Microsoft and  
current Managing Director of Tola Capital
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Foreword

Though the use of large language models (LLMs) has been growing in the past five years, 
interest exploded with the release of OpenAI’s ChatGPT. This AI chatbot showcased the power 
of LLMs and introduced an easy-to-use interface that enabled people from all walks of life to 
take advantage of this game-changing tool. Now that this subset of natural language processing 
(NLP) has become one of the most discussed areas of machine learning, many people are 
looking to incorporate it into their own offerings. This technology truly feels like it could be 
artificial intelligence, even though in most cases it is simply predicting sequential tokens using a 
probabilistic model.

Quick Start Guide to Large Language Models is an excellent overview of the concept of LLMs and 
how to use them on a practical level, for both programmers and non-programmers alike. The mix 
of explanations, visual representations, and practical code examples makes for an engaging and 
easy read that encourages you to keep turning the page. Sinan Ozdemir covers many topics in 
an engaging fashion, making this one of the best resources available to learn about LLMs, their 
capabilities, and ways to engage with them to get the best results.

Sinan deftly moves between different aspects of LLMs, giving the reader all the information 
they need to use LLMs effectively. Starting with a discussion of where LLMs sit within NLP and 
an explanation of Transformers and encoders, he goes on to discuss transfer learning and fine-
tuning, embeddings, attention, and tokenization in an approachable manner. He then covers 
many other aspects of LLMs, including the trade-offs between open-source and commercial 
options; how to make effective use of vector databases (a very popular topic in its own right); 
writing your own APIs with Fast API; creating embeddings; and putting LLMs into production, 
something that can prove challenging for any type of machine learning project.

A great part of this book is the coverage of using both visual interfaces—such as ChatGPT—
and programmatic interfaces. Sinan includes helpful Python code that is approachable and 
clearly illustrates what is being done. His coverage of prompt engineering illuminates how to get 
dramatically better results from LLMs. Better yet, he demonstrates how to provide those prompts 
both in the visual GUI and through the Python Open AI library.

This book is so transformative that I was tempted to use ChatGPT to write this Foreword as 
a demonstration of everything I had learned. That is a testament to it being so well written, 
engaging, and informative. While I may have felt enabled to do so, I wrote the Foreword myself  
to articulate my thoughts and experiences about LLMs in the most authentic and personal way  
I knew. Except for the last part of that last sentence, that was written by ChatGPT, just because  
I could.

For someone looking to learn about any of the many aspects of LLMs, this is the book. It will 
help you understand the models and know how to effectively use them in your day-to-day life. 
Perhaps most importantly, you will enjoy the journey. 

—Jared Lander, Series Editor
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Preface

Hello! My name is Sinan Ozdemir. I’m a former theoretical mathematician turned university 
lecturer turned AI enthusiast turned successful startup founder/AI textbook author/venture 
capitalist advisor. Today I am also your tour guide through the vast museum of knowledge that is 
large language model (LLM) engineering and applications. The purposes of this book are twofold: 
to demystify the field of LLMs and to equip you with practical knowledge to be able to start 
experimenting, coding, and building with LLMs.

But this isn’t a classroom, and I’m not your typical professor. I’m here not to shower you with 
complicated terminology. Instead, my aim is to make complex concepts digestible, relatable, and 
more importantly, applicable.

Frankly, that’s enough about me. This book isn’t for me—it’s for you. I want to give you some 
tips on how to read this book, reread this book (if I did my job right), and make sure you are 
getting everything you need from this text.

Audience and Prerequisites
Who is this book for, you ask? Well, my answer is simple: anyone who shares a curiosity about 
LLMs, the willing coder, the relentless learner. Whether you’re already entrenched in machine 
learning or you’re on the edge, dipping your toes into this vast ocean, this book is your guide, 
your map to navigate the waters of LLMs.

However, I’ll level with you: To get the most out of this journey, having some experience with 
machine learning and Python will be incredibly beneficial. That’s not to say you won’t survive 
without it, but the waters might seem a bit choppy without these tools. If you’re learning on the 
go, that’s great, too! Some of the concepts we’ll explore don’t necessarily require heavy coding, 
but most do.

I’ve also tried to strike a balance in this book between deep theoretical understanding and 
practical hands-on skills. Each chapter is filled with analogies to make the complex simple, 
followed by code snippets to bring the concepts to life. In essence, I’ve written this book as your 
LLM lecturer + TA, aiming to simplify and demystify this fascinating field, rather than shower you 
with academic jargon. I want you to walk away from each chapter with a clearer understanding of 
the topic and knowledge of how to apply it in real-world scenarios.

How to Approach This Book
If you have some experience with machine learning, you’ll find the journey a bit easier than if you 
are starting without it. Still, the path is open to anyone who can code in Python and is ready to 
learn. This book allows for different levels of involvement, depending on your background, your 
aims, and your available time. You can dive deep into the practical sections, experimenting with 
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xiv Preface

the code and tweaking the models, or you can engage with the theoretical parts, getting a solid 
understanding of how LLMs function without writing a single line of code. The choice is yours.

As you navigate through the book, remember that every chapter attempts to build upon 
previous work. The knowledge and skills you gain in one section will become valuable tools in 
the subsequent ones. The challenges you will face are part of the learning process. You might 
find yourself puzzled, frustrated, and even stuck at times. When I was developing the visual 
question-answering (VQA) system for this book, I faced repeated failures. The model would 
spew out nonsense, the same phrases over and over again. But then, after many iterations, it 
started generating meaningful output. That moment of triumph, the exhilaration of achieving 
a breakthrough, was worth every failed attempt. This book will offer you similar challenges and, 
consequently, similar triumphs.

Overview
The book is organized into four parts.

Part I: Introduction to Large Language Models
The Part I chapters provide an introduction to LLMs. From prompt engineering and the 
underlying attention mechanism of the Transformer architecture to applications in retrieval 
augmented generation (RAG) and agents, Part I delivers the foundational knowledge you need to 
get set up and running with LLMs as quickly as possible.

Chapter 1: Overview of Large Language Models

This chapter provides a broad overview of the world of LLMs. It covers the basics: what they 
are, how they work, and why they’re important. By the end of the chapter, you’ll have a solid 
foundation to understand the rest of the book.

Chapter 2: Semantic Search with LLMs

Building on the foundations laid in Chapter 1, Chapter 2 dives into how LLMs can be used for one 
of the most impactful applications of LLMs—semantic search. We will work on creating a search 
system that understands the meaning of your query rather than just matching keywords.

Chapter 3: First Steps with Prompt Engineering

The art and science of crafting effective prompts is essential for harnessing the power of LLMs. 
Chapter 3 provides a practical introduction to prompt engineering, with guidelines and 
techniques for getting the most out of your LLMs.

Chapter 4: The AI Ecosystem: Putting the Pieces Together

Chapter 4 showcases two in-depth case studies: building a RAG pipeline and building an agent 
using what we’ve learned in the previous chapters.

Part II: Getting the Most Out of LLMs
Part II steps things up another level; it focuses on helping you fine-tune LLMs and embed models 
to get the most out of your AI systems.
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xvPreface

Chapter 5: Optimizing LLMs with Customized Fine-Tuning

One size does not fit all in the world of LLMs. Chapter 5 covers how to fine-tune LLMs using your 
own datasets, with hands-on examples and exercises that will have you customizing models in no 
time.

Chapter 6: Advanced Prompt Engineering

We take a deeper dive into the world of prompt engineering in Chapter 6. This chapter explores 
advanced strategies and techniques that can help you get even more out of your LLMs—for 
example, output validation and semantic few-shot learning.

Chapter 7: Customizing Embeddings and Model Architectures

In Chapter 7, we explore the more technical side of LLMs. We cover how to modify model 
architectures and embeddings to better suit your specific use-cases and requirements. We also 
adapt LLM architectures to fit our needs while fine-tuning a recommendation engine that 
outperforms OpenAI’s models.

Chapter 8: AI Alignment: First Principles

This chapter takes a step back to examine the fundamental processes in place to make AI systems 
more useful, less harmful, and all-around easier to work with. The goal is to dissect the concept of 
alignment in a way that highlights the differences and similarities in LLMs across organizations.

Part III: Advanced LLM Usage
Part III follows through with designing and evaluating customized LLM architectures, training 
instruction-aligned chatbots from scratch using RLHF, and quantizing/distilling LLMs for 
maximum efficiency in production.

Chapter 9: Moving Beyond Foundation Models

Chapter 9 explores some of the next-generation models and architectures that are pushing 
the boundaries of what’s possible with LLMs. In this chapter, we combine multiple LLMs and 
establish a framework for building our own custom LLM architectures using PyTorch. This chapter 
also introduces the use of reinforcement learning from feedback to align LLMs to our needs.

Chapter 10: Advanced Open-Source LLM Fine-Tuning

Chapter 10 provides hands-on guidelines and examples for fine-tuning advanced open-source 
LLMs, with a focus on practical implementation. We fine-tune LLMs using not only generic 
language modeling, but also advanced methods like reinforcement learning from feedback to 
create our very own instruction-aligned LLM based on Meta’s Llama-3 model—an LLM we call 
SAWYER.

Chapter 11: Moving LLMs into Production

This chapter explores the practical considerations of deploying LLMs in production 
environments. We’ll cover how to scale models, handle real-time requests, and ensure our models 
are robust and reliable while optimizing for speed and memory consumption.
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Chapter 12: Evaluating LLMs

As the name suggests, this final chapter aims to solidify the process and framework around 
evaluation of LLMs by examining topics such as benchmarking, model probing, and model 
calibration for more trustworthy AI predictions.

Part IV: Appendices
The three appendices include a list of FAQs, a glossary of terms, and an LLM archetype reference.

Appendix A: LLM FAQs

As a consultant, engineer, and teacher, I get a lot of questions about LLMs on a daily basis.  
I compiled some of the more impactful questions here.

Appendix B: LLM Glossary

The glossary provides a high-level reference to some of the main terms used throughout this 
book.

Appendix C: LLM Application Archetypes

We build many applications using LLMs in this book, so Appendix C is meant to be a jumping-off 
point for anyone looking to build an application of their own. For some common applications of 
LLMs, this appendix will suggest which LLMs to focus on and which data you might need, as well 
as which common pitfalls you might face and how to deal with them.

Unique Features
“What sets this book apart from others?”, I hear you ask. First, I’ve brought together a diverse 
array of experiences into this work: from my background in theoretical math, my venture into 
the world of startups, and my experiences as a former college lecturer, to my current roles as an 
entrepreneur, machine learning engineer, and venture capital advisor. Each of these experiences 
has shaped my understanding of LLMs, and I’ve poured all that knowledge into this book.

One unique feature you’ll find in this book is the real-world application of concepts. And  
I mean it when I say “real-world”: This book is filled with practical, hands-on experiences to help 
you understand the reality of working with LLMs.

Moreover, this book isn’t just about understanding the field as it stands today. As I often say, 
the world of LLMs changes by the hour. Even so, some fundamentals remain constant, and I make 
it a point to highlight those throughout the book. This way, you’re prepared not just for the here 
and now, but also for the future.

In essence, this book reflects not just my knowledge, but also my passion for building with AI 
and LLMs. It’s a distillation (pun intended—see Chapter 11) of my experiences, my insights, and 
my excitement for the possibilities that LLMs open up for us. It’s an invitation for you to join me 
in exploring this fascinating, fast-evolving field.
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Summary
Here we are, at the end of the preface, or the beginning of our journey together, depending on 
how you look at it. You’ve got a sense of who I am, why this book exists, what to expect, and how 
to get the most out of it.

Now, the rest is up to you. I invite you to jump in, to immerse yourself in the world of LLMs. 
Whether you’re a seasoned data scientist or a curious enthusiast, there’s something in here for 
you. I encourage you to engage with the book actively—to run the code, tweak it, break it, and put 
it back together. Explore, experiment, make mistakes, learn.

Let’s dive in!

Register your copy of Quick Start Guide to Large Language Models, Second Edition, on the 
InformIT site for convenient access to updates and/or corrections as they become available.  
To start the registration process, go to informit.com/quickstart2 and log in or create an 
account. The product ISBN (9780135346563) will already be populated. Click Submit. 
If you would like to be notified of exclusive offers on new editions and updates, please check 
the box to receive email from us.
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3
First Steps with Prompt 

Engineering

Introduction
In Chapter 2, we built an asymmetric semantic search system that leveraged the power 
of large language models (LLMs) to quickly and efficiently find relevant documents 
based on natural language queries using LLM-based embedding engines. The system 
was able to understand the meaning behind the queries and retrieve accurate results, 
thanks to the pre-training of the LLMs on vast amounts of text.

However, building an effective LLM-based application can require more than just 
plugging in a pre-trained model and retrieving results—what if we want to parse them 
for a better user experience? We might also want to lean on the learnings of massively 
large language models to help complete the loop and create a useful end-to-end 
LLM-based application. This is where prompt engineering comes into the picture.

Prompt Engineering
Prompt engineering involves crafting inputs to LLMs (prompts) that effectively 
communicate the task at hand to the LLM, leading it to return accurate and useful 
outputs (Figure 3.1). Prompt engineering is a skill that requires an understanding of  
the nuances of language, the specific domain being worked on, and the capabilities 
and limitations of the LLM being used.

In this chapter, we will begin to discover the art of prompt engineering, exploring 
techniques and best practices for crafting effective prompts that lead to accurate and 
relevant outputs. We will cover topics such as structuring prompts for different types 
of tasks, fine-tuning models for specific domains, and evaluating the quality of LLM 
outputs. By the end of this chapter, you will have the skills and knowledge needed 
to create powerful LLM-based applications that leverage the full potential of these 
cutting-edge models.

9780135346563_web.indb   59 28/08/24   1:05 PM



60 Chapter 3  First Steps with Prompt Engineering

Figure 3.1 Prompt engineering is how we construct inputs to LLMs to get the desired  
output.

Alignment in Language Models
To understand why prompt engineering is crucial to LLM-application development, 
we first must understand not only how LLMs are trained, but how they are aligned to 
human input. Alignment in language models refers to how the model understands 
and responds to input prompts that are “in line with” (at least according to the people 
in charge of aligning the LLM) what the user expected. In standard language modeling, 
a model is trained to predict the next word or sequence of words based on the context 
of the preceding words. However, this approach alone does not allow for specific 
instructions or prompts to be answered by the model, which can limit its usefulness for 
certain applications.

Prompt engineering can be challenging if the language model has not been aligned 
with the prompts, as it may generate irrelevant or incorrect responses. However, 
some language models have been developed with extra alignment features, such as 
Constitutional AI-driven Reinforcement Learning from AI Feedback (RLAIF) from 
Anthropic or Reinforcement Learning from Human Feedback (RLHF) in OpenAI’s GPT 
series, which can incorporate explicit instructions and feedback into the model’s train-
ing. These alignment techniques can improve the model’s ability to understand and 
respond to specific prompts, making them more useful for applications such as  
question-answering or language translation (Figure 3.2).

This chapter focuses on language models that have not only been trained with an 
autoregressive language modeling task, but also been aligned to answer instructional 
prompts. These models have been developed with the goal of improving their ability to 
understand and respond to specific instructions or tasks. Such models include GPT-4 
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and ChatGPT (closed-source models from OpenAI), Llama-3-Instruct (an open-weights 
model from Meta), Google’s closed-source Gemini, and Cohere’s command series  
(a closed-source model). All of these models have been trained using large amounts of 
data and techniques such as transfer learning and fine-tuning to be more effective at 
generating responses to instructional prompts. Through this exploration, we will see 
the beginnings of fully working NLP products and features that utilize these models, 
and gain a deeper understanding of how to leverage aligned language models’ full 
capabilities.

Just Ask
The first and most important rule of prompt engineering for instruction-aligned 
language models is to be clear and direct about what you are asking for. When we give 
an LLM a task to complete, we want to ensure that we are communicating that task as 
clearly as possible. This is especially true for simple tasks that are straightforward for 
the LLM to accomplish.

In the case of asking GPT-3 to correct the grammar of a sentence, a direct  
instruction of “Correct the grammar of this sentence” is all you need to get a clear and 
accurate response. The prompt should also clearly indicate the phrase to be corrected 
(Figure 3.3).

Figure 3.2 The original GPT-3 model, which was released in 2020, is a pure autoregressive 
language model; it tries to “complete the thought” and gives misinformation quite freely. 
In January 2022, GPT-3’s first aligned version was released (InstructGPT) and was able to 
answer questions in a more succinct and accurate manner.
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Figure 3.3 The best way to get started with an LLM aligned to answer queries from humans 
is to simply ask.

 

Note

Many figures in this chapter are screenshots of an LLM’s playground. Experimenting with 
prompt formats in the playground or via an online interface can help identify effective 
approaches, which can then be tested more rigorously using larger data batches and the 
code/API for optimal output.

To be even more confident in the LLM’s response, we can provide a clear indication  
of the input and output for the task by adding prefixes to structure the inputs and 
outputs. Let’s consider another simple example—asking gpt-3.5-turbo-instruct to  
translate a sentence from English to Turkish.

A simple “just ask” prompt for this task will consist of three elements:

QQ A direct instruction: “Translate from English to Turkish.” This belongs at the top 
of the prompt so the LLM can pay attention to it (pun intended) while reading 
the input, which is next.

QQ The English phrase we want translated preceded by “English: ”, which is our 
clearly designated input.

QQ A space designated for the LLM to give its answer, to which we will add the 
intentionally similar prefix “Turkish: ”.

These three elements are all part of a direct set of instructions with an organized 
answer area. If we give a GPT model (gpt-3.5-turbo-instruct) this clearly constructed 
prompt, it will be able to recognize the task being asked of it and fill in the answer 
correctly (Figure 3.4).

We can expand on this even further by asking GPT-3.5-turbo-instruct to output 
multiple options for our corrected grammar, with the results being formatted as a 
numbered list (Figure 3.5).

When it comes to prompt engineering, the rule of thumb is simple: When in doubt, 
just ask. Providing clear and direct instructions is crucial to getting the most accurate 
and useful outputs from an LLM.
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Figure 3.4 This more fleshed-out version of our “just ask” prompt has three components: a 
clear and concise set of instructions, our input prefixed by an explanatory label, and a prefix 
for our output followed by a colon and no further whitespace.

Figure 3.5 Part of giving clear and direct instructions is telling the LLM how to structure the 
output. In this example, we ask gpt-3.5-turbo-instruct to give grammatically correct versions 
as a numbered list.

When “Just Asking” Isn’t Enough
It’s tempting to simply ask powerful models like GPT-4, members of the Anthropic 
Claude 3 family, or Meta AI’s Llama 3 to solve your problems for you. But that won’t 
always work out in our favor. The LLM might now know the style in which we want 
it to write a LinkedIn post, or it might not understand how succinct you want your 
answers to be. In extreme cases, the model might get updated by the model provider 
and suddenly be terrible at a task you were doing just yesterday (we will explore this in 
more detail in the next chapter). 

Instead of relying on a model alone, we can employ prompting techniques designed 
to add guardrails to the behavior of an LLM or teach an LLM to do a task the way the 
prompter intended. We can accomplish these feats through in-context learning—
prompting the LLM to learn a task without requiring any fine-tuning whatsoever. One 
of these techniques is called few-shot learning.
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Few-Shot Learning
When it comes to more complex tasks that require a deeper understanding of a task, 
giving an LLM a few examples can go a long way toward helping the LLM produce 
accurate and consistent outputs. Few-shot learning is a powerful technique that 
involves providing an LLM with a few examples of a task to help it understand the 
context and nuances of the problem.

Few-shot learning has been a major focus of research in the field of LLMs. The 
creators of GPT-3 even recognized the potential of this technique, which is evident 
from the fact that the original GPT-3 research paper was titled “Language Models Are 
Few-Shot Learners.”

Few-shot learning is particularly useful for tasks that require a certain tone, syntax, 
or style, and for fields where the language used is specific to a particular domain. Figure 
3.6 shows an example of asking GPT to classify a review as being subjective or not; 
basically, this is a binary classification task. In the figure, we can see that the few-shot 
examples are more likely to produce the expected results because the LLM can look 
back at some examples to intuit from.

As we learn more prompting techniques, it’s important to know that a combina-
tion of techniques will usually yield the best results from a prompt. Figure 3.7 shows 
an example of using both output structuring and few-shot learning in a GPT-4 prompt 
converting a natural language query to a Google Sheets formula.

Figure 3.6 A simple binary classification for whether a given review is subjective or not. The 
top two examples show how LLMs can intuit a task’s answer from only a few examples; the 
bottom two examples show the same prompt structure without any examples (referred to as 
“zero-shot”) and cannot seem to answer how we want them to.
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Figure 3.7 A structured few-shot prompt in GPT-4 generating Google Sheets formulas from a 
natural language query.

Few-shot learning opens up new possibilities for how we can interact with LLMs. 
With this technique, we can provide an LLM with an understanding of a task without 
explicitly providing instructions, making it more intuitive and user-friendly. This 
breakthrough capability has paved the way for the development of a wide range of 
LLM-based applications, from chatbots to language translation tools.

Output Formatting
LLMs can generate text in a variety of formats—sometimes too much variety, in fact. 
It can be helpful to format the output in a specific way to make it easier to work with 
and integrate into other systems. We saw this kind of formatting at work earlier in this 
chapter when we asked GPT-3.5-turbo-instruct to give us an answer in a numbered list. 
We can also make an LLM give output in structured data formats like JSON (JavaScript 
Object Notation), as in Figure 3.8.

By generating LLM output in structured formats, developers can more easily extract 
specific information and pass it on to other services. Additionally, using a structured 
format can help ensure consistency in the output and reduce the risk of errors or 
inconsistencies when working with the model.
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Figure 3.8  Simply asking GPT to give a response back as a JSON (top) does generate 
a valid JSON, but the keys are also in Turkish, which may not be what we want. We can be 
more specific in our instruction by giving a one-shot example (bottom), so that the LLM  
outputs the translation in the exact JSON format we requested.

Prompting Personas
Specific word choices in our prompts can greatly influence the output of the model. 
Even small changes to the prompt can lead to vastly different results. For example, 
adding or removing a single word can cause the LLM to shift its focus or change its 
interpretation of the task. In some cases, this may result in incorrect or irrelevant 
responses; in other cases, it may produce the exact output desired.

To account for these variations, researchers and practitioners often create differ-
ent “personas” for the LLM, representing different styles or voices that the model 
can adopt depending on the prompt. These personas can be based on specific topics, 
genres, or even fictional characters, and are designed to elicit specific types of responses 
from the LLM (Figure 3.9). By taking advantage of personas, LLM developers can better 
control the output of the model and end users of the system can get a more unique and 
tailored experience.
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Figure 3.9  Starting from the top left and moving down, we see a baseline prompt of ask-
ing GPT-3 to respond as a store attendant. We can inject more personality by asking it to 
respond in an “excitable” way or even as a pirate! We can also abuse this system by asking 
the LLM to respond in a rude manner or even horribly as an anti-vegan. Any developer who 
wants to use an LLM should be aware that these kinds of outputs are possible, whether 
intentional or not. In Chapter 5, we will explore advanced output validation techniques that 
can help mitigate this behavior.
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Personas may not always be used for positive purposes. Just as with any tool or 
technology, some people may use LLMs to evoke harmful messages, as we did when 
we asked the LLM to imitate an anti-vegan person in Figure 3.9. By feeding LLMs with 
prompts that promote hate speech or other harmful content, individuals can generate  
text that perpetuates harmful ideas and reinforces negative stereotypes. Creators of  
LLMs tend to take steps to mitigate this potential misuse, such as implementing 
content filters and working with human moderators to review the output of the model. 
Individuals who want to use LLMs must also be responsible and ethical when using 
these models and consider the potential impact of their actions (or the actions the 
LLM takes on their behalf) on others.

On the topic of considering our actions when using LLMs, it turns out this is also great 
advice to give to LLMs. Our final technique of this chapter will take a step into revealing 
the inner reasoning skills of LLMs by forcing them to say the quiet part out loud.

Chain-of-Thought Prompting
Chain-of-thought prompting is a method that forces LLMs to reason through a series 
of steps, resulting in more structured, transparent, and precise outputs. The goal is to 
break down complex tasks into smaller, interconnected subtasks, allowing the LLM 
to address each subtask in a step-by-step manner. This not only helps the model to 
“focus” on specific aspects of the problem, but also encourages it to generate intermedi-
ate outputs, making it easier to identify and debug potential issues along the way.

Another significant advantage of chain-of-thought prompting is the improved inter-
pretability and transparency of the LLM-generated response. By offering insights into 
the model’s reasoning process, we, as users, can better understand and qualify how 
the final output was derived, which promotes trust in the model’s decision-making 
abilities.

Example: Basic Arithmetic
Some models have been specifically trained to reason through problems in a step- 
by-step manner, including GPT-3.5 and GPT-4 (both chat models), but not all of them 
have. Figure 3.10 demonstrates this by showing how GPT-3.5 doesn’t need to be explic-
itly told to reason through a problem to give step-by-step instructions, whereas gpt-
3.5-turbo-instruct (a completion model) needs to be asked to reason through a chain of 
thought or else it won’t naturally give one. In general, tasks that are more complicated 
and can be broken down into digestible subtasks are great candidates for chain- 
of-thought prompting.

Prompting techniques like few-shot learning, chain-of-thought prompting, and 
formatting aren’t just there to make our model outputs more accurate. Don’t get 
me wrong, they do that. But they also help us provide guardrails to help ensure our 
models act according to our expectations. Prompting techniques also help with 
interoperability—moving prompts between models without having to rewrite them 
from scratch.
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Figure 3.10 (Top) A basic arithmetic question with multiple-choice options proves to be 
too difficult for DaVinci. (Middle) When we ask gpt-3.5-turbo-instruct to first think about the 
question by adding “Reason through step by step” at the end of the prompt, we are using a 
chain-of-thought prompt and the model gets it right! (Bottom) ChatGPT and GPT-4 don’t need 
to be told to reason through the problem, because they are already aligned to think through 
the chain of thought.
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Working with Prompts Across Models
Whether a prompt works well depends heavily on the architecture and training of the 
language model it’s being run against, meaning that what works for one model may not 
work for another. GPT-3.5, GPT-4, Llama-3, Gemini, and models in the Claude 3 series all 
have different underlying architectures, pre-training data sources, and training approaches, 
which in turn impact the effectiveness of prompts when working with them. While some 
prompts that utilize guardrails such as few-shot learning may transfer between models, 
others may need to be adapted or reengineered to work with a specific model family.

Chat Models versus Completion Models
Many examples we’ve seen in this chapter come from completion models like gpt-3-5.
turbo-instruct, which take in a blob of text as a prompt. Some LLMs can take in more 
than just a single prompt. Chat models like gpt-3.5, gpt-4, and llama-3 are aligned to 
conversational dialogue and generally take in a system prompt and multiple “user” 
and “assistant” prompts (Figure 3.11).The system prompt is meant to be a general direc-
tive for the conversation and will generally include overarching rules and personas to 
follow. The user and assistant prompts are messages between the user and the LLM, 
respectively. Under the hood, the model is still taking in a single prompt formatted 
using special tokens so effectively that the prompts are more similar than they are 
different. This is why prompting techniques like structuring and few-shot learning 
work across chat or completion models. For any LLM you choose to look at, be sure to 
check out its documentation for specifics on how to structure input prompts.

Figure 3.11 GPT-4 takes in an overall system prompt as well as any number of user and 
assistant prompts that simulate an ongoing conversation.
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Cohere’s Command Series
We’ve already seen Cohere’s command series of models in action in this chapter. As an 
alternative to OpenAI, they show that prompts cannot always be simply ported over 
from one model to another. Instead, we usually need to alter the prompt slightly to 
allow another LLM to do its work.

Let’s return to our simple translation example. Suppose we ask OpenAI and Cohere 
to translate something from English to Turkish (Figure 3.12).

Figure 3.12 OpenAI’s InstructGPT LLM can take a translation instruction without much 
hand-holding, whereas the Cohere command model seems to require a bit more structure. 
Another point in the column for why prompting matters for interoperability!
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It seems that the Cohere model in Figure 3.12 required a bit more structuring than 
the OpenAI version. That doesn’t mean that the Cohere is worse than gpt-3.5-turbo-
instruct; it just means that we need to think about how our prompt is structured for 
a given LLM. If anything, this means that prompting well makes it easier to choose 
between models by bringing forth the best performance from any LLM.

Open-Source Prompt Engineering
It wouldn’t be fair to discuss prompt engineering and not mention open-source  
models like GPT-J and FLAN-T5. When working with them, prompt engineering is a 
critical step to get the most out of their pre-training and fine-tuning (a topic that we 
will start to cover in Chapter 4). These models can generate high-quality text output 
just like their closed-source counterparts. However, unlike closed-source models, open-
source models offer greater flexibility and control over prompt engineering, enabling 
developers to customize prompts and tailor output to specific use-cases during 
fine-tuning.

For example, a developer working on a medical chatbot may want to create  
prompts that focus on medical terminology and concepts, whereas a developer 
working on a language translation model may want to create prompts that emphasize 
grammar and syntax. With open-source models, developers have the flexibility to fine-
tune prompts to their specific use-cases, resulting in more accurate and relevant text 
output.

Another advantage of prompt engineering in open-source models is the ability to 
collaborate with other developers and researchers. Open-source models have a large 
and active community of users and contributors, which allows developers to share 
their prompt engineering strategies, receive feedback, and collaborate on improving 
the overall performance of the model. This collaborative approach to prompt engineer-
ing can lead to faster progress and more significant breakthroughs in natural language 
processing research.

It pays to remember how open-source models were pre-trained and fine-tuned (if 
they were at all). For example, GPT-J is an autoregressive language model, so we’d 
expect techniques like few-shot prompting to work better than simply asking a direct 
instructional prompt. In contrast, FLAN-T5 was specifically fine-tuned with instruc-
tional prompting in mind, so while few-shot learning will still be on the table, we can 
also rely on the simplicity of just asking (Figure 3.13).
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Figure 3.13 Open-source models can vary dramatically in how they were trained and how 
they expect prompts. GPT-J, which is not instruction aligned, has a hard time answering a 
direct instruction (bottom left). In contrast, FLAN-T5, which was aligned to instructions, does 
know how to accept instructions (bottom right). Both models can intuit from few-shot learn-
ing, but FLAN-T5 seems to be having trouble with our subjective task. Perhaps it’s a great 
candidate for some fine-tuning—coming soon to a chapter near you.
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Summary
Prompt engineering—the process of designing and optimizing prompts to improve 
the performance of language models—can be fun, iterative, and sometimes tricky. We 
saw many tips and tricks for how to get started, such as understanding alignment, just 
asking, few-shot learning, output structuring, prompting personas, and working with 
prompts across models. 

There is a strong correlation between proficient prompt engineering and effective 
writing. A well-crafted prompt provides the model with clear instructions, resulting in 
an output that closely aligns with the desired response. When a human can compre-
hend and create the expected output from a given prompt, that outcome is indicative 
of a well-structured and useful prompt for the LLM. However, if a prompt allows for 
multiple responses or is in general vague, then it is likely too ambiguous for an LLM. 
This parallel between prompt engineering and writing highlights that the art of writing 
effective prompts is more like crafting data annotation guidelines or engaging in  
skillful writing than it is similar to traditional engineering practices.

Prompt engineering is an important process for improving the performance of 
language models. By designing and optimizing prompts, you can ensure that your 
language models will better understand and respond to user inputs. In Chapter 5, 
we will revisit prompt engineering with some more advanced topics like LLM output 
validation and chaining multiple prompts together into larger workflows. In our next 
chapter, we will build our own retrieval augmented generation (RAG) chatbot using 
GPT-4’s prompt interface, which is able to utilize the API we built in Chapter 2.
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pushing models and tokenizers to Hugging 
Face, 295

reinforcement learning from human feedback 
(RLHF), 263–265

revealing LLMs’ hidden states, 210

reward system, 221–222

running the distillation process, 289

running through a test set with prompt vari-
ants, 140

semantically deduping a corpus using a bi-
encoder, 234–235

setting up a custom dataset for LaTeX genera-
tion, 246

snippet of the multimodal model, 211–213

statistically load-quantized LoRA model + SFT, 
254–255

training loop for VQA, 214–215

transforming preference scores to a paired 
comparison score, 188–189

using a Hugging Face inference endpoint to 
classify text, 296–297

using DataCollatorWithPadding for dynamic 
padding, 237–238

using LIME to diagnose attributable tokens to 
a classification result, 191–192

using the genre predictor, 243–244

Cohere command model, 71–72

collaborative filtering, 150–152

item-based, 150

user-based, 150

completion model, 70

completion-only loss masking, 252–253

compute_loss function, 285

constitutional AI, 195–198

content-based recommendations, 150–152

context, 12–14, 78, 155

Copilot, 3–4

corpora, 14, 18–19, 341

cosine similarity, 38–39, 150

cost projections

closed-source LLMs, 275–276

open-source LLMs, 292–293

cross-attention, 207–210

cross-encoder, re-ranking results, 50

cross-entropy loss, 219

“A Cross-Verified Database of Notable People, 
3500 BC–2018 AD”, 324

D
data, 176–177

collator, 232

high-quality, 180

human preference, 177–178

labeling, 99

preparation, 234–236

selecting for fine-tuning, 104

value-targeted, 178–180
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database, vector, 30

dataset

app_reviews, 103

MathQA, 135–138

multimodal VQA system, 213–214

MyAnimeList 2020, 148, 232

removing duplicates, 104

splitting, 104

decoder, 11

deep learning, 5, 6, 236

dependencies, 18–19

Devin, 316

direct instruction, 62

DistilBERT, 117–118, 203, 323

distillation, 283, 343–344

multilabel anime genre predictor, 285–287

results summary, 290–292

running the process, 288–289

task-specific versus task-agnostic, 283–285

temperature, 287–288

DistillationTrainer class, 285

DistillationTrainingArguments class, 285

document chunking, 42

clustering, 46–48

comparing methods, 49

delimiters, 44

max token window, 42–44

natural whitespace, 44–46

overlapping window, 42–44

domain-specific LLMs, 24

duplicates, removing from dataset, 104

dynamic padding, 236–238

E
ECE (expected calibration error), 320–322

ecosystem, 75, 176

embedders/embeddings, 20, 317–320. See also 
document chunking

cost, 57–58

fine-tuning, 161–163

recommendation system, 151, 163

embedding engines, OpenAI, 39–40

“Embeddings”, 37

EMR (electronic medical record), 4

encode function, 41

encoder, 11

encoding, 25

English Wikipedia, 14

epoch, 100, 108, 342–343

.eval() method, 276, 277

evaluation, 100, 163, 182–183

AI agent, 92–93

generative multiple choice, 301–304

n-gram, 306

output text, 218

qualitative, 109–110, 114–116

quantitative, 109–113

red-teaming, 183–184

rubric, 304, 306

semantic embedding, 304, 306

using LLMs, 185

explicit feedback, 177

exploration, 150, 165–166

F
FastAPI, 51–53, 57

feature engineering, 234–236

feedback, 177, 218–219. See also RLF 
(reinforcement learning from feedback)

few-shot learning, 64–65, 79, 135, 141–142

finance industry, large language model/s, 4

fine-tuned models, OpenAI, integrating into 
applications, 116–117

fine-tuning, 17–19, 24, 25, 30, 97, 99, 101, 109, 
341. See also advanced open-source LLM fine-
tuning; OpenAI, fine-tuning API

bi-encoder, 150–151, 161–162

collecting labeled data, 100

cost of, 113

cross-encoder, 50

evaluation and iteration, 100

hyperparameter selection, 100

language model with reinforcement learning, 
219

LLMs (large language models), 55

9780135346563_web.indb   352 28/08/24   1:12 PM



353Index

model adaptation, 100

model implementation and further training, 
100

multilabel anime genre prediction, 232–233

selecting data, 104

supervised, 180–181

Fine-Tuning API, 18

FLAN-T5, 72–73, 220–221, 226–228

forward method, 210–211

foundation embedders, 147, 157

foundational models

FLAN-T5, 72–73, 220–221, 226–228

multimodal VQA (visual question-answering) 
system, 203–206

free text response, 306

free-text generation, 28–30

freezing, 239

function

compute_loss, 285

encode, 41

get_embeddings, 40

prepare_df_for_openai, 105

softmax, 287–288

G
Gemini, 3, 175–176

generative AI, 28

generative tasks, 299, 300, 301–304

generator, 80, 86

get_embeddings function, 40

“Ghost in the Machine Has an American Accent: 
Value Conflict in GPT-3”, 171–172

GitHub, Copilot, 3–4

GNU General Public License, 294

Google, Gemini, 3, 175–176

GPT (Generative Pre-trained Transformer), 3, 6, 8

GPT-2, 204–206, 244–248. See also LaTex

GPT-3, alignment, 60

gpt-3.5-turbo-instruct, 31

GPT-4, scale supervision, 185–190

GPT-J, 72–73

gradient accumulation, 236

gradients, 17

grammar score, output text, 221

Grok, 170–171

ground truth, 124, 304

H
hallucination, 79–80, 132

healthcare industry, large language model/s, 4

high-quality data, 180

“How Is ChatGPT’s Behavior Changing over 
Time?”, 76–77

Hugging Face, 18, 24, 191, 251, 293

inference endpoint, 295–297

licensing, 294

preparing your model, 293

Trainer utility, 232–233

Transformers library, 295

human language-to-human language translation, 27

human language-to-SQL translation, 27–28

human preference data, 177–178

hyperparameter, 342

selection, 100, 108–109, 162, 287–288

temperature, 287–288

hypothesis, 124–125

I
image preprocessing, ViT (Vision Transformer), 

203–205

Imagenet, 203

implicit feedback, 177

incremental/online learning, 343

inference, 276–277

endpoint, 295–297

optimizing with quantization, 279

information retrieval, 30, 85–86

information retrieval system, 25

input/output validation, 123–126

installing, OpenAI CLI, 108

InstructGPT, 71

instructional alignment, 168

interoperability, 68–70, 277
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interpretability, model, 191

in-text learning, 63

item-based collaborative filtering, 150

J
Jaccard score, 151, 157–160, 230–231, 239–240, 

279–281

JSONL (newline-delimited JSON), 105–106

“just ask” prompt, 61–62, 136, 136, 138

K
Kaggle, 148

KL-divergence, 224

knowledge distillation. See distillation

L
labeled data, 99, 100, 124–125, 342

language model, 6, 218–219. See also LLMs (large 
language models)

alignment, 60. See also alignment

autoencoding, 7

autoregressive, 6

fine-tuning with reinforcement learning, 219

pre-training, 219

LaTex, translating English to, 244–248

layers, BERT, freezing, 239–240

learning

few-shot, 64–65, 79, 141–142. See also few-shot 
learning

reinforcement, 180, 181–182

from scratch, 161

in-text, 63

transfer, 16–17, 99, 203. See also fine-tuning

learning rate, 100, 108, 342

library

ANNOY, 50

Pydantic data validation, 51

Sentence Transformers, 40–41, 50, 157, 
161–162

Transformers, 5–6, 295

TRL (Transformer Reinforcement Learning), 223

Weights and Biases, 232–233

licensing, 294

LIME (Local Interpretable Model-agnostic 
Explanations), 191–194

Llama, 10

alignment, 24

bias, 173–174

pre-training, 16

Llama-3, 263–265

alignment, 248–249

completion-only loss masking, 252–253

QLoRA, 253–257

reinforcement learning from human feedback, 
262–265

reward model training, 257–262

supervised instruction fine-tuning, 251–252

LLMs (large language models), 4, 6, 10–11, 15, 340. 
See also prompt engineering

alignment, 23–24, 167–176. See also pillars of 
alignment

all-mpnet-base-v2, 163

application archetypes, 345–347

applications, 25

architecture, 70

attention, 18–20

autoencoding, 7, 11

autoregressive, 6, 11

BART-MNLI, 124–126

BERT (Bidirectional Encoder Representations 
from Transformer), 3, 8

bias, 173–176

cardiffnlp/twitter-roberta-base-sentiment, 221

characteristics, 12–13

closed-source, moving into production, 275–276

Copilot, 3–4

domain-specific, 24

embeddings, 20

finance industry, 4

fine-tuning, 17–18, 25, 30, 55, 97

free-text generation, 28–30

Gemini, 3

GPT (Generative Pre-trained Transformer), 8

hallucination, 79–80, 132

healthcare industry, 4

InstructGPT, 71
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“needle in the haystack” problem, 132

open-source, moving into production, 276–
293. See also distillation

personas, 66–68

pre-training, 14–16

probing, 324–328

pushing to Hugging Face, 293

repositories, 5–6

reward model, 221

RLHF (reinforcement learning from human 
feedback), 23

sequence-to-sequence model, 11

specialization, 130

T5, 9–10, 27

textattack/roberta-base-CoLA, 221

thinking versus reasoning, 77–79

token, 6

tokenization, 21–23

transfer learning, 16–17

LoRA (low-rank adaptation), 253

loss function, 100, 218, 258–262

dividing by the temperature, 288

temperature-squared, 288

M
machine learning, transfer learning, 16–17

MathQA task and dataset, 135–138

chain-of-thought prompting, 138–141

few-shot examples, 141–142

just asking, 136, 138

results summary, 144–145

semantic search, 142–144

max token window chunking, 42–44

measuring, performance of fine-tuned models, 
109–113

Meta, BART, 3–4

method

.eval(), 276, 277

forward, 210–211

metrics, 304

accuracy, 110, 231, 239–240, 323

custom, 231–232

evaluation, 343

Jaccard score, 151, 157–160, 230–231

quantitative, 109–113

training loss, 240

validation loss, 242

MIT License, 294

mixed-precision training, 238

MLM (Masked Language Modeling) task, 15

MNLI (Multi-Genre Natural Language Inference), 
124

model/s. See also fine-tuning; LLMs (large 
language models)

adaptation, 100

all-mpnet-base-v2, 41

architecture, 160–161

calibration, 320

card, 294–295

ecosystem, 75

embedding, 148

fine-tuning. See fine-tuning

freezing, 239–240

implementation, 100

interpretability, 191

licensing, 294

pushing to a repository, 295

teacher/student, 288–289, 290, 292

values-targeted, 178

moderation service, OpenAI, 123

multilabel anime genre classification, 230

accuracy, 231

fine-tuning the model, 232–233

using the Jaccard score to measure perfor-
mance, 230–231

multimodal system

cross-attention, 208–209

prompt chaining, 134–135

VQA (visual question-answering). See VQA (visual 
question-answering) system

multiple choice, 301–304

multitask learning, 41

MyAnimeList 2020 dataset, 148, 232. See also 
recommendation system, building
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nearest-neighbor search, 50

“needle in the haystack” problem, 132

negative log-likelihood loss, 259

neural network, 18

neural semantic search, 30

n-gram, 6, 304, 306

NLI (natural language inference), building 
validation pipelines, 124–126

NLP (natural language processing), 3, 5

embeddings, 20

language modeling, 6

text classification, 26

translation tasks, 27–28

NLU (natural language understanding), 5

NPS (Net Promoter Score), 152, 163

NSP (Next Sentence Prediction) task, 15

O
offensive content, 123

identifying, 125–126

Tay chatbot, 183

ONNX, 277

OOV (out-of-vocabulary) phrases, 22

OpenAI, 108

Ada-002, 157

CLI (command-line interface), 108

ecosystem, 76

embedding engines, 39–40

“Embeddings”, 37

feedback, 177

fine-tuning, 102, 112–113

Fine-Tuning API, 18, 102, 104–107, 114–116

GPT (Generative Pre-trained Transformer), 3

InstructGPT, 71

moderation service, 123

“Training Language Models to Follow 
Instructions with Human Feedback”, 218–219

open-source, 204–206. See also advanced open-
source LLM fine-tuning

bi-encoder, 142, 157, 160–162

DistilBERT, 117–118

library, 50

LLMs, moving into production, 276–293

prompt engineering, 72–73

text embedder, bi-encoder, 40–41

o-shot prompt, 281

output text

evaluation, 218

formatting, 65

grammar score, 221

LaTex, 244–248

reward, 221, 226–228

sentiment, 221

overfitting, 100, 343

overlapping window chunking, 42–44

Owkin, 24

P
padding, 236

PALMS: Process for Adapting Language Models to 
Society, 178

parsing, dataset, 213–214

pattern exploitation, 150

performance. See also fine-tuning

benchmarking, 281–283, 306–317

DistilBERT, 117–118

evaluation, 100

of fine-tuned models, measuring, 109–113

frozen versus unfrozen model, 240–242

loss function, 100, 218

multimodal VQA (visual question-answering) 
system, 217–218

qualitative evaluation, 114–116

quantitative metrics, 109–113

XTREME benchmark, 53–55

personas, 66–68

Pgvector, 50

pillars of alignment, 194–195

data, 176–180

evaluation, 182–184

training/tuning models, 180–182
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Pinecone, 50, 57

positional bias, 189–190

PPO (proximal policy optimization), 263

precision, RAG system, 85

premise, 124–125

prepare_df_for_openai function, 105

pre-training, 14

all-mpnet-base-v2, 41

BERT (Bidirectional Encoder Representations 
from Transformer), 15–16

BioGPT, 24–25

language model, 219

preventing, prompt injection attacks, 123

probabilities, token, 114–116

probing LLMs, 324–328

production

closed-source LLM deployment, 275–276

open-source LLM deployment, 276–293

projection layers, 210

prompt engineering, 59, 74, 182, 341

alignment, 60–61, 167–176

assistant prompt, 70

batch prompting, 126–127

chain-of-thought prompting, 68, 79

Cohere’s command series, 71–72

collaborative approach, 72

direct instruction, 62

few-shot learning, 64–65, 79

input/output validation, 123–126

interoperability, 68–70

“just ask” prompt, 61–62

LaTeX generation, 245–248

open-source, 72–73

output formatting, 65

personas, 66–68

prompt chaining, 128–131, 133–135

solving the MathQA task, 138–142

system prompt, 70

in-text learning, 63

user prompt, 70

prompt/ing, 25

alignment, 23–24

chaining, 128–131, 133–135

injection attacks, 121–123

“just ask”, 136, 138

o-shot, 281

stuffing, 131–135

Pydantic data validation library, 51

PyTorch module, 210

Q
QLoRA, 253–257

qualitative evaluation, 109–110, 114–116

quantitative metrics, 109–113

quantization, 253–254, 278–279

benchmarking quantized models, 281–283

model output differences, 279–281

optimizing inference with, 279

question-answering, arithmetic, 135–136

R
RAG (retrieval augmented generation) system, 

79–80

AI agent, 87–93

chatbot, 81–85

generator, 80, 86

precision, 85

retriever, 80, 85–86

reasoning

AI agent, 88

versus thinking, 77–79

recall, 56

recommendation system

adjusting model architectures, 160–161

building, 148, 151–152

content versus collaborative recommendations, 
150–152

defining the problem of recommendation, 
149–150

embedders, 151, 163

exploration, 165–166

generating a custom description field to com-
pare items, 155–157

loading and splitting the anime data, 149
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preparing the fine-tuning data, 157–160

recommendation engine, 152–154

setting a baseline with foundation embedders, 
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setting up the problem and data, 148–149

summary of results, 163–165

user profile, 150

red-teaming, 183–184

reinforcement learning-based training, 219, 249

Render, 57

repositories, LLM, 5–6

re-ranking search results, 50

retriever, 80

precision, 85

testing, 85–86

reward model, 219, 221

code, 221–222

multimodal VQA (visual question-answering) 
system, 221

training, 257–262

RL (reinforcement learning), 23, 180

RLAIF (reinforcement learning from AI Feedback), 
60, 181–182, 341

RLF (reinforcement learning from feedback), 
218–219, 223–226, 265

RLHF (reinforcement learning from human 
feedback), 23, 60, 181, 218–219, 249, 262–265, 
341

RoBERTa, 16, 261

roberta-base model, 261

ROC (receiver operating characteristic), 231

rubric evaluation, 304, 306

rules, 19–20

S
SAWYER, 265–267. See also Llama-3

reinforcement learning from human feedback, 
262–265

reward model training, 257–262

supervised instruction fine-tuning, 251–257

updating, 269–270

scale supervision, 185–190

scikit-learn, 46

search engine, 34–35

search results, re-ranking, 50

self-attention, 5–6, 207–210

semantic deduping, 236

semantic embedding evaluation, 304, 306

semantic meaning, 12

semantic search, 30, 142–144

asymmetric, 35–37

cosine similarity, 38–39

cost of closed-source components, 57–58

recall, 56

text embedder, 37

text embeddings, 33–34

XTREME benchmark, 53–57

Sentence Transformers library, 40–41, 50, 157, 
161–162

SentenceTransformer class, 41

sentiment classification, 103, 221

guidelines and best practices for data, 104

hyperparameter selection and optimization, 
108–109

preparing custom examples with OpenAI CLI, 
104–107

using BERT, 190–194

sequence-to-sequence model, 11

SFT (supervised fine-tuning), 180

shuffling training data, 104

silhouette scores, 319

similarity

cosine, 38–39

Jaccard, 151, 157–160

softmax function, 287–288

special tokens, 21, 26

SQL, translating human language to, 27–28

student model, 288–289, 290, 292

style alignment, 170–171

supervised learning, 23

SWE-benchmark, 316

system prompt, 70

T
T5, 9–10, 27

task/s, 26

-agnostic distillation, 283–285, 344
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MathQA, 135–138

MLM (Masked Language Modeling), 15

NSP (Next Sentence Prediction), 15

RoBERTa, 16

-specific benchmarking, 316–317

-specific distillation, 283–285, 344

text classification, 26
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VQA (visual question-answering). See multi-
modal VQA (visual question-answering)

Tay, 183–184

teacher model, 288–289, 290

tensors, forward method, 210–211

test set, 99

testing
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retriever, 85–86

text classification, 26, 320, 320

text embedder/embeddings, 33–34, 37. See also 
document chunking

bi-encoder, 40–41

getting from OpenAI, 39–40

using entire document without chunking, 
48–49

textattack/roberta-base-CoLA LLM, 221

thinking, versus reasoning, 77–79

tokenization, 21–23

token/s, 6, 18–19

limit, 132

probabilities, 114–116

Query, Key, and Value, 207–210

special, 21, 26

tools, 87

AI agent, 89–92

Trainer, 232–233

Trainer class, 261

Trainer utility, 232–233

training. See also distillation

accuracy, 110

bi-encoder, 40

data, shuffling, 104

epoch, 108, 342–343

loss, 240

mixed-precision, 238

multimodal VQA (visual question-answering) 
system, 214–215

pre-, 14

reinforcement learning-based, 219

reward model, 257–262

RLF (reinforcement learning from feedback), 
223–226

training set, 99

TrainingArguments, 232

transfer learning, 16–17, 99, 203, 340. See also fine-
tuning

Transformer architecture, 3, 5–6, 11, 18–19, 339

BioGPT, 25

cross-attention, 207

cross-encoder, 50

decoder, 11

encoder, 11

Query, Key, and Value components, 207–210

self-attention, 5–6

ViT (Vision Transformer), 203–205

Transformers library, 5–6, 295

translation, 27–28, 71

English-to-LaTeX, 244–245

human language-to-human language, 27

human language-to-SQL, 27–28

transparency, and alignment, 180

TRL (Transformer Reinforcement Learning), 223

U
uncased tokenization, 22

underfitting, 100, 343

understanding, 5

context, 12–14

tasks, 317

user prompt, 70

user-based collaborative filtering, 150
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validation pipelines, building, 124–126

validation set, 99

value alignment, 171–173

value pluralism, 172

value-targeted data, 178–180

vector, 33, 37

magnitude, 39

normalized, 39

vector database, 30, 49–50

virtual assistants, 4

ViT (Vision Transformer), 203–205

VQA (visual question-answering) system,  
201–203, 220–221

code snippet, 211–213

cross-attention mechanism, 209, 210

dataset, 213–214

DistilBERT, 203

GPT-2, 204–206

hidden states projection and fusion, 206–207

performance, 217–218

results summary, 215–218

reward model, 221–222

training loop, 214–215

ViT (Vision Transformer), 203–205

W
WandB (Weights and Biases) library, 232–233

Weaviate, 50

Wiener, Norbert, “Some Moral and Technical 
Consequences of Automation”, 190

Wikipedia, 14
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