
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780135346563
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780135346563
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780135346563

Praise for Quick Start Guide to Large Language Models

“By balancing the potential of both open- and closed-source models, Quick Start Guide to Large
Language Models stands as a comprehensive guide to understanding and using LLMs, bridging the
gap between theoretical concepts and practical application.”

—Giada Pistilli, Principal Ethicist at Hugging Face

“A refreshing and inspiring resource. Jam-packed with practical guidance and clear explanations
that leave you smarter about this incredible new field.”

—Pete Huang, author of The Neuron

“When it comes to building large language models (LLMs), it can be a daunting task to find
comprehensive resources that cover all the essential aspects. However, my search for such a
resource recently came to an end when I discovered this book.

“One of the stand-out features of Sinan is his ability to present complex concepts in a
straightforward manner. The author has done an outstanding job of breaking down intricate
ideas and algorithms, ensuring that readers can grasp them without feeling overwhelmed. Each
topic is carefully explained, building upon examples that serve as steppingstones for better
understanding. This approach greatly enhances the learning experience, making even the most
intricate aspects of LLM development accessible to readers of varying skill levels.

“Another strength of this book is the abundance of code resources. The inclusion of practical
examples and code snippets is a game-changer for anyone who wants to experiment and apply
the concepts they learn. These code resources provide readers with hands-on experience, allowing
them to test and refine their understanding. This is an invaluable asset, as it fosters a deeper
comprehension of the material and enables readers to truly engage with the content.

“In conclusion, this book is a rare find for anyone interested in building LLMs. Its
exceptional quality of explanation, clear and concise writing style, abundant code resources,
and comprehensive coverage of all essential aspects make it an indispensable resource. Whether
you are a beginner or an experienced practitioner, this book will undoubtedly elevate your
understanding and practical skills in LLM development. I highly recommend Quick Start Guide
to Large Language Models to anyone looking to embark on the exciting journey of building LLM
applications.”

—Pedro Marcelino, Machine Learning Engineer,
Co-Founder and CEO @overfit.study

“Ozdemir’s book cuts through the noise to help readers understand where the LLM revolution
has come from—and where it is going. Ozdemir breaks down complex topics into practical
explanations and easy-to-follow code examples.”

 —Shelia Gulati, Former GM at Microsoft and
current Managing Director of Tola Capital

9780135346563_web.indb 1 28/08/24 1:04 PM

T he Pearson Addison-Wesley Data & Analytics Series provides readers with
practical knowledge for solving problems and answering questions with data.
Titles in this series primarily focus on three areas:

1. Infrastructure: how to store, move, and manage data

2. Algorithms: how to mine intelligence or make predictions based on data

3. Visualizations: how to represent data and insights in a meaningful and
compelling way

The series aims to tie all three of these areas together to help the reader build
end-to-end systems for fighting spam; making recommendations; building
personalization; detecting trends, patterns, or problems; and gaining insight
from the data exhaust of systems and user interactions.

Visit informit.com/awdataseries for a complete list of available publications.

Make sure to connect with us!
i n f o r m i t . c o m / c o n n e c t

The Pearson Addison-Wesley
Data & Analytics Series

A01_Ozdemir_FM_pi-xxii.indd 4 17/08/23 2:06 PM9780135346563_web.indb 2 28/08/24 1:04 PM

http://informit.com/awdataseries
http://informit.com/connect

Quick Start Guide
to Large Language

Models
Strategies and Best

Practices for ChatGPT,
Embeddings, Fine-Tuning,

and Multimodal AI

Second Edition

Sinan Ozdemir

Hoboken, New Jersey

9780135346563_web.indb 3 28/08/24 1:04 PM

Cover image: Nadun prabodana / Shutterstock

Permissions and credits appear on page 361, which is a continuation of this copyright page.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic
versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Please contact us with concerns about any potential bias at pearson.com/report-bias.html.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2024943924

Copyright © 2025 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request forms
and the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit
www.pearson.com/permissions.

ISBN-13: 978-0-13-534656-3
ISBN-10: 0-13-534656-8

$PrintCode

9780135346563_web.indb 4 28/08/24 1:04 PM

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://pearson.com/report-bias.html
http://informit.com/aw
http://www.pearson.com/permissions

Contents

Foreword xi

Preface xiii

Acknowledgments xix

About the Author xxi

I Introduction to Large Language Models 1

1 Overview of Large Language Models 3
What Are Large Language Models? 4

Definition of LLMs 6
Popular Modern LLMs 7

BERT 8
The GPT Family and ChatGPT 8
T5 9
Key Characteristics of LLMs 11
How LLMs Work 14

Applications of LLMs 25
Classical NLP Tasks 26
Free-Text Generation 28
Information Retrieval/Neural Semantic
Search 30
Chatbots 30

Summary 31

2 Semantic Search with LLMs 33
Introduction 33
The Task 34

Asymmetric Semantic Search 35
Solution Overview 36
The Components 37

Text Embedder 37
Document Chunking 42

9780135346563_web.indb 5 28/08/24 1:04 PM

Vector Databases 49
Re-ranking the Retrieved Results 50
API 51

Putting It All Together 53
Performance 53

The Cost of Closed-Source Components 57
Summary 58

3 First Steps with Prompt Engineering 59
Introduction 59
Prompt Engineering 59

Alignment in Language Models 60
Just Ask 61
When “Just Asking” Isn’t Enough 63
Few-Shot Learning 64
Output Formatting 65
Prompting Personas 66
Chain-of-Thought Prompting 68
Example: Basic Arithmetic 68

Working with Prompts Across Models 70
Chat Models versus Completion Models 70
Cohere’s Command Series 71
Open-Source Prompt Engineering 72

Summary 74

4 The AI Ecosystem: Putting the Pieces Together 75
Introduction 75
The Ever-Shifting Performance of Closed-Source AI 76
AI Reasoning versus Thinking 77
Case Study 1: Retrieval Augmented Generation 79

The Sum of Our Parts: The Retriever and the
Generator 80
Evaluating a RAG System 85

Case Study 2: Automated AI Agents 87
Thought → Action → Observation →
Response 87
Evaluating an AI Agent 92

Conclusion 93

Contentsvi

9780135346563_web.indb 6 28/08/24 1:04 PM

viiContents

II Getting the Most Out of LLMs 95

5 Optimizing LLMs with Customized Fine-Tuning 97
Introduction 97
Transfer Learning and Fine-Tuning: A Primer 99

The Fine-Tuning Process Explained 99
Closed-Source Pre-trained Models as a
Foundation 102

A Look at the OpenAI Fine-Tuning API 102
The OpenAI Fine-Tuning API 102
Case Study: App Review Sentiment
Classification 103
Guidelines and Best Practices for Data 104

Preparing Custom Examples with the OpenAI CLI 104
Setting Up the OpenAI CLI 108

Hyperparameter Selection and
Optimization 108

Our First Fine-Tuned LLM 109
Evaluating Fine-Tuned Models with Quantitative
Metrics 109
Qualitative Evaluation Techniques 114
Integrating Fine-Tuned OpenAI Models into
Applications 116
OpenAI Versus Open-Source Autoencoding
BERT 117

Summary 119

6 Advanced Prompt Engineering 121
Introduction 121
Prompt Injection Attacks 121
Input/Output Validation 123

Example: Using NLI to Build Validation
Pipelines 124

Batch Prompting 126
Prompt Chaining 128

Chaining to Prevent Prompt Stuffing 131
Example: Chaining for Safety Using Multimodal
LLMs 133

Case Study: How Good at Math Is AI? 135
Our Dataset: MathQA 135

Summary 145

9780135346563_web.indb 7 28/08/24 1:04 PM

Contentsviii

7 Customizing Embeddings and Model Architectures 147
Introduction 147
Case Study: Building a Recommendation System 148

Setting Up the Problem and the Data 148
Defining the Problem of Recommendation 149
A 10,000-Foot View of Our Recommendation
System 152
Generating a Custom Description Field to
Compare Items 155
Setting a Baseline with Foundation
Embedders 157
Preparing Our Fine-Tuning Data 157
Fine-Tuning Open-Source Embedders Using
Sentence Transformers 161
Summary of Results 163

Summary 166

8 AI Alignment: First Principles 167
Introduction 167
Aligned to Whom and to What End? 167

Instructional Alignment 168
Behavior Alignment 169
Style Alignment 170
Value Alignment 171

Alignment as a Bias Mitigator 173
The Pillars of Alignment 176

Data 176
Training/Tuning Models 180
Evaluation 182
Our Three Pillars of Alignment 194

Constitutional AI: A Step Toward Self-Alignment 195
Conclusion 198

III Advanced LLM Usage 199

9 Moving Beyond Foundation Models 201
Introduction 201
Case Study: Visual Q/A 201

Introduction to Our Models: The Vision
Transformer, GPT-2, and DistilBERT 203

9780135346563_web.indb 8 28/08/24 1:04 PM

ixContents

Hidden States Projection and Fusion 206
Cross-Attention: What Is It, and Why Is It
Critical? 207
Our Custom Multimodal Model 210
Our Data: Visual QA 213
The VQA Training Loop 214
Summary of Results 215

Case Study: Reinforcement Learning from
Feedback 218

Our Model: FLAN-T5 220
Our Reward Model: Sentiment and Grammar
Correctness 221
Transformer Reinforcement Learning 223
The RLF Training Loop 223
Summary of Results 226

Summary 228

10 Advanced Open-Source LLM Fine-Tuning 229
Introduction 229
Example: Anime Genre Multilabel Classification with
BERT 230

Using the Jaccard Score to Measure
Performance for Multilabel Genre Prediction of
Anime Titles 230
A Simple Fine-Tuning Loop 232
General Tips for Fine-Tuning Open-Source
LLMs 234
Summary of Results 240

Example: LaTeX Generation with GPT2 244
Prompt Engineering for Open-Source
Models 245
Summary of Results 248

Sinan’s Attempt at Wise Yet Engaging Responses:
SAWYER 248

Step 1: Supervised Instruction
Fine-Tuning 251
Step 2: Reward Model Training 257
Step 3: Reinforcement Learning from
(Estimated) Human Feedback 262
Summary of Results 265
Updating Our LLM with Fresh Knowledge 269

Summary 271

9780135346563_web.indb 9 28/08/24 1:04 PM

Contentsx

11 Moving LLMs into Production 275
Introduction 275
Deploying Closed-Source LLMs to Production 275

Cost Projections 275
API Key Management 276

Deploying Open-Source LLMs to Production 276
Preparing a Model for Inference 276
Interoperability 277
Quantization 278
Knowledge Distillation 283
Cost Projections with LLMs 292
Pushing to Hugging Face 293

Summary 297

12 Evaluating LLMs 299
Introduction 299
Evaluating Generative Tasks 300

Generative Multiple Choice 301
Free Text Response 304
Benchmarking 306

Evaluating Understanding Tasks 317
Embeddings 317
Calibrated Classification 320
Probing LLMs for a World Model 324

Conclusion 328
Keep Going! 329

IV Appendices 331

A LLM FAQs 333

B LLM Glossary 339

C LLM Application Archetypes 345

Index 349

9780135346563_web.indb 10 28/08/24 1:04 PM

Foreword

Though the use of large language models (LLMs) has been growing in the past five years,
interest exploded with the release of OpenAI’s ChatGPT. This AI chatbot showcased the power
of LLMs and introduced an easy-to-use interface that enabled people from all walks of life to
take advantage of this game-changing tool. Now that this subset of natural language processing
(NLP) has become one of the most discussed areas of machine learning, many people are
looking to incorporate it into their own offerings. This technology truly feels like it could be
artificial intelligence, even though in most cases it is simply predicting sequential tokens using a
probabilistic model.

Quick Start Guide to Large Language Models is an excellent overview of the concept of LLMs and
how to use them on a practical level, for both programmers and non-programmers alike. The mix
of explanations, visual representations, and practical code examples makes for an engaging and
easy read that encourages you to keep turning the page. Sinan Ozdemir covers many topics in
an engaging fashion, making this one of the best resources available to learn about LLMs, their
capabilities, and ways to engage with them to get the best results.

Sinan deftly moves between different aspects of LLMs, giving the reader all the information
they need to use LLMs effectively. Starting with a discussion of where LLMs sit within NLP and
an explanation of Transformers and encoders, he goes on to discuss transfer learning and fine-
tuning, embeddings, attention, and tokenization in an approachable manner. He then covers
many other aspects of LLMs, including the trade-offs between open-source and commercial
options; how to make effective use of vector databases (a very popular topic in its own right);
writing your own APIs with Fast API; creating embeddings; and putting LLMs into production,
something that can prove challenging for any type of machine learning project.

A great part of this book is the coverage of using both visual interfaces—such as ChatGPT—
and programmatic interfaces. Sinan includes helpful Python code that is approachable and
clearly illustrates what is being done. His coverage of prompt engineering illuminates how to get
dramatically better results from LLMs. Better yet, he demonstrates how to provide those prompts
both in the visual GUI and through the Python Open AI library.

This book is so transformative that I was tempted to use ChatGPT to write this Foreword as
a demonstration of everything I had learned. That is a testament to it being so well written,
engaging, and informative. While I may have felt enabled to do so, I wrote the Foreword myself
to articulate my thoughts and experiences about LLMs in the most authentic and personal way
I knew. Except for the last part of that last sentence, that was written by ChatGPT, just because
I could.

For someone looking to learn about any of the many aspects of LLMs, this is the book. It will
help you understand the models and know how to effectively use them in your day-to-day life.
Perhaps most importantly, you will enjoy the journey.

—Jared Lander, Series Editor

9780135346563_web.indb 11 28/08/24 1:04 PM

9780135346563_web.indb 12 28/08/24 1:04 PM

This page intentionally left blank

Preface

Hello! My name is Sinan Ozdemir. I’m a former theoretical mathematician turned university
lecturer turned AI enthusiast turned successful startup founder/AI textbook author/venture
capitalist advisor. Today I am also your tour guide through the vast museum of knowledge that is
large language model (LLM) engineering and applications. The purposes of this book are twofold:
to demystify the field of LLMs and to equip you with practical knowledge to be able to start
experimenting, coding, and building with LLMs.

But this isn’t a classroom, and I’m not your typical professor. I’m here not to shower you with
complicated terminology. Instead, my aim is to make complex concepts digestible, relatable, and
more importantly, applicable.

Frankly, that’s enough about me. This book isn’t for me—it’s for you. I want to give you some
tips on how to read this book, reread this book (if I did my job right), and make sure you are
getting everything you need from this text.

Audience and Prerequisites
Who is this book for, you ask? Well, my answer is simple: anyone who shares a curiosity about
LLMs, the willing coder, the relentless learner. Whether you’re already entrenched in machine
learning or you’re on the edge, dipping your toes into this vast ocean, this book is your guide,
your map to navigate the waters of LLMs.

However, I’ll level with you: To get the most out of this journey, having some experience with
machine learning and Python will be incredibly beneficial. That’s not to say you won’t survive
without it, but the waters might seem a bit choppy without these tools. If you’re learning on the
go, that’s great, too! Some of the concepts we’ll explore don’t necessarily require heavy coding,
but most do.

I’ve also tried to strike a balance in this book between deep theoretical understanding and
practical hands-on skills. Each chapter is filled with analogies to make the complex simple,
followed by code snippets to bring the concepts to life. In essence, I’ve written this book as your
LLM lecturer + TA, aiming to simplify and demystify this fascinating field, rather than shower you
with academic jargon. I want you to walk away from each chapter with a clearer understanding of
the topic and knowledge of how to apply it in real-world scenarios.

How to Approach This Book
If you have some experience with machine learning, you’ll find the journey a bit easier than if you
are starting without it. Still, the path is open to anyone who can code in Python and is ready to
learn. This book allows for different levels of involvement, depending on your background, your
aims, and your available time. You can dive deep into the practical sections, experimenting with

9780135346563_web.indb 13 28/08/24 1:04 PM

xiv Preface

the code and tweaking the models, or you can engage with the theoretical parts, getting a solid
understanding of how LLMs function without writing a single line of code. The choice is yours.

As you navigate through the book, remember that every chapter attempts to build upon
previous work. The knowledge and skills you gain in one section will become valuable tools in
the subsequent ones. The challenges you will face are part of the learning process. You might
find yourself puzzled, frustrated, and even stuck at times. When I was developing the visual
question-answering (VQA) system for this book, I faced repeated failures. The model would
spew out nonsense, the same phrases over and over again. But then, after many iterations, it
started generating meaningful output. That moment of triumph, the exhilaration of achieving
a breakthrough, was worth every failed attempt. This book will offer you similar challenges and,
consequently, similar triumphs.

Overview
The book is organized into four parts.

Part I: Introduction to Large Language Models
The Part I chapters provide an introduction to LLMs. From prompt engineering and the
underlying attention mechanism of the Transformer architecture to applications in retrieval
augmented generation (RAG) and agents, Part I delivers the foundational knowledge you need to
get set up and running with LLMs as quickly as possible.

Chapter 1: Overview of Large Language Models

This chapter provides a broad overview of the world of LLMs. It covers the basics: what they
are, how they work, and why they’re important. By the end of the chapter, you’ll have a solid
foundation to understand the rest of the book.

Chapter 2: Semantic Search with LLMs

Building on the foundations laid in Chapter 1, Chapter 2 dives into how LLMs can be used for one
of the most impactful applications of LLMs—semantic search. We will work on creating a search
system that understands the meaning of your query rather than just matching keywords.

Chapter 3: First Steps with Prompt Engineering

The art and science of crafting effective prompts is essential for harnessing the power of LLMs.
Chapter 3 provides a practical introduction to prompt engineering, with guidelines and
techniques for getting the most out of your LLMs.

Chapter 4: The AI Ecosystem: Putting the Pieces Together

Chapter 4 showcases two in-depth case studies: building a RAG pipeline and building an agent
using what we’ve learned in the previous chapters.

Part II: Getting the Most Out of LLMs
Part II steps things up another level; it focuses on helping you fine-tune LLMs and embed models
to get the most out of your AI systems.

9780135346563_web.indb 14 28/08/24 1:04 PM

xvPreface

Chapter 5: Optimizing LLMs with Customized Fine-Tuning

One size does not fit all in the world of LLMs. Chapter 5 covers how to fine-tune LLMs using your
own datasets, with hands-on examples and exercises that will have you customizing models in no
time.

Chapter 6: Advanced Prompt Engineering

We take a deeper dive into the world of prompt engineering in Chapter 6. This chapter explores
advanced strategies and techniques that can help you get even more out of your LLMs—for
example, output validation and semantic few-shot learning.

Chapter 7: Customizing Embeddings and Model Architectures

In Chapter 7, we explore the more technical side of LLMs. We cover how to modify model
architectures and embeddings to better suit your specific use-cases and requirements. We also
adapt LLM architectures to fit our needs while fine-tuning a recommendation engine that
outperforms OpenAI’s models.

Chapter 8: AI Alignment: First Principles

This chapter takes a step back to examine the fundamental processes in place to make AI systems
more useful, less harmful, and all-around easier to work with. The goal is to dissect the concept of
alignment in a way that highlights the differences and similarities in LLMs across organizations.

Part III: Advanced LLM Usage
Part III follows through with designing and evaluating customized LLM architectures, training
instruction-aligned chatbots from scratch using RLHF, and quantizing/distilling LLMs for
maximum efficiency in production.

Chapter 9: Moving Beyond Foundation Models

Chapter 9 explores some of the next-generation models and architectures that are pushing
the boundaries of what’s possible with LLMs. In this chapter, we combine multiple LLMs and
establish a framework for building our own custom LLM architectures using PyTorch. This chapter
also introduces the use of reinforcement learning from feedback to align LLMs to our needs.

Chapter 10: Advanced Open-Source LLM Fine-Tuning

Chapter 10 provides hands-on guidelines and examples for fine-tuning advanced open-source
LLMs, with a focus on practical implementation. We fine-tune LLMs using not only generic
language modeling, but also advanced methods like reinforcement learning from feedback to
create our very own instruction-aligned LLM based on Meta’s Llama-3 model—an LLM we call
SAWYER.

Chapter 11: Moving LLMs into Production

This chapter explores the practical considerations of deploying LLMs in production
environments. We’ll cover how to scale models, handle real-time requests, and ensure our models
are robust and reliable while optimizing for speed and memory consumption.

9780135346563_web.indb 15 28/08/24 1:04 PM

xvi Preface

Chapter 12: Evaluating LLMs

As the name suggests, this final chapter aims to solidify the process and framework around
evaluation of LLMs by examining topics such as benchmarking, model probing, and model
calibration for more trustworthy AI predictions.

Part IV: Appendices
The three appendices include a list of FAQs, a glossary of terms, and an LLM archetype reference.

Appendix A: LLM FAQs

As a consultant, engineer, and teacher, I get a lot of questions about LLMs on a daily basis.
I compiled some of the more impactful questions here.

Appendix B: LLM Glossary

The glossary provides a high-level reference to some of the main terms used throughout this
book.

Appendix C: LLM Application Archetypes

We build many applications using LLMs in this book, so Appendix C is meant to be a jumping-off
point for anyone looking to build an application of their own. For some common applications of
LLMs, this appendix will suggest which LLMs to focus on and which data you might need, as well
as which common pitfalls you might face and how to deal with them.

Unique Features
“What sets this book apart from others?”, I hear you ask. First, I’ve brought together a diverse
array of experiences into this work: from my background in theoretical math, my venture into
the world of startups, and my experiences as a former college lecturer, to my current roles as an
entrepreneur, machine learning engineer, and venture capital advisor. Each of these experiences
has shaped my understanding of LLMs, and I’ve poured all that knowledge into this book.

One unique feature you’ll find in this book is the real-world application of concepts. And
I mean it when I say “real-world”: This book is filled with practical, hands-on experiences to help
you understand the reality of working with LLMs.

Moreover, this book isn’t just about understanding the field as it stands today. As I often say,
the world of LLMs changes by the hour. Even so, some fundamentals remain constant, and I make
it a point to highlight those throughout the book. This way, you’re prepared not just for the here
and now, but also for the future.

In essence, this book reflects not just my knowledge, but also my passion for building with AI
and LLMs. It’s a distillation (pun intended—see Chapter 11) of my experiences, my insights, and
my excitement for the possibilities that LLMs open up for us. It’s an invitation for you to join me
in exploring this fascinating, fast-evolving field.

9780135346563_web.indb 16 28/08/24 1:04 PM

xviiPreface

Summary
Here we are, at the end of the preface, or the beginning of our journey together, depending on
how you look at it. You’ve got a sense of who I am, why this book exists, what to expect, and how
to get the most out of it.

Now, the rest is up to you. I invite you to jump in, to immerse yourself in the world of LLMs.
Whether you’re a seasoned data scientist or a curious enthusiast, there’s something in here for
you. I encourage you to engage with the book actively—to run the code, tweak it, break it, and put
it back together. Explore, experiment, make mistakes, learn.

Let’s dive in!

Register your copy of Quick Start Guide to Large Language Models, Second Edition, on the
InformIT site for convenient access to updates and/or corrections as they become available.
To start the registration process, go to informit.com/quickstart2 and log in or create an
account. The product ISBN (9780135346563) will already be populated. Click Submit.
If you would like to be notified of exclusive offers on new editions and updates, please check
the box to receive email from us.

9780135346563_web.indb 17 28/08/24 1:04 PM

http://informit.com/quickstart2

9780135346563_web.indb 12 28/08/24 1:04 PM

This page intentionally left blank

Acknowledgments

Family: To my immediate family members: Thank you, Mom, for being a constant embodiment
of the power and influence of teaching. It was your passion for education that made me realize
the profound value of sharing knowledge, which I now strive to do in my work. Dad, your keen
interest in new technologies and their potential has always inspired me to push the boundaries in
my own field. To my sister, your continual reminders to consider the human impact of my work
have kept me grounded. Your insights have made me more conscious of the ways in which my
work touches people’s lives.

Home: To my life-partner, Elizabeth, your patience and understanding have been invaluable
as I immersed myself into countless nights of writing and coding. Thank you for enduring my
ramblings and helping me make sense of complex ideas. You have been a pillar of support,
a sounding board, and a beacon of light when the path seemed blurry. Your steadfastness
throughout this journey has been my inspiration, and this work would not be what it is
without you.

Book publication process: A heartfelt thanks to Debra Williams Cauley for providing me
with the opportunity to contribute to the AI and LLM communities. The growth I’ve experienced
as an educator and writer during this process is immeasurable. My deepest apologies for those
few (or more) missed deadlines as I found myself lost in the intricacies of LLMs and fine-tuning.
I also owe a debt of gratitude to Jon Krohn for recommending me for this journey and for his
continuous support.

9780135346563_web.indb 19 28/08/24 1:04 PM

9780135346563_web.indb 12 28/08/24 1:04 PM

This page intentionally left blank

About the Author

Sinan Ozdemir holds a master’s degree in pure mathematics and is a successful AI entrepreneur
and venture capital advisor. His first foray into data science and machine learning (ML) came
during his time as a lecturer at Johns Hopkins University, a period during which he began
inventing multiple patents in the field of AI.

Sinan later decided to switch gears and ventured into the fast-paced world of startups,
setting up base in a California tech hotspot, San Francisco. It was here that he founded Kylie.ai,
an innovative platform that fused the capabilities of conversational AI with robotic process
automation (RPA). Kylie.ai was an early generative AI player in the mid-2010s; it was soon noticed
for its distinct value proposition and was eventually acquired. It was during this period that Sinan
began authoring numerous textbooks about data science, AI, and ML.

His mission is to remain on top of advancements in the field and impart that knowledge to
others, a philosophy that he carries forward from his days as a university lecturer. Currently, in
his role of CTO at LoopGenius—a venture-backed startup—Sinan finds himself at the center of a
team solving the problem of automated advertising for businesses and individuals alike.

9780135346563_web.indb 21 28/08/24 1:04 PM

9780135346563_web.indb 12 28/08/24 1:04 PM

This page intentionally left blank

3
First Steps with Prompt

Engineering

Introduction
In Chapter 2, we built an asymmetric semantic search system that leveraged the power
of large language models (LLMs) to quickly and efficiently find relevant documents
based on natural language queries using LLM-based embedding engines. The system
was able to understand the meaning behind the queries and retrieve accurate results,
thanks to the pre-training of the LLMs on vast amounts of text.

However, building an effective LLM-based application can require more than just
plugging in a pre-trained model and retrieving results—what if we want to parse them
for a better user experience? We might also want to lean on the learnings of massively
large language models to help complete the loop and create a useful end-to-end
LLM-based application. This is where prompt engineering comes into the picture.

Prompt Engineering
Prompt engineering involves crafting inputs to LLMs (prompts) that effectively
communicate the task at hand to the LLM, leading it to return accurate and useful
outputs (Figure 3.1). Prompt engineering is a skill that requires an understanding of
the nuances of language, the specific domain being worked on, and the capabilities
and limitations of the LLM being used.

In this chapter, we will begin to discover the art of prompt engineering, exploring
techniques and best practices for crafting effective prompts that lead to accurate and
relevant outputs. We will cover topics such as structuring prompts for different types
of tasks, fine-tuning models for specific domains, and evaluating the quality of LLM
outputs. By the end of this chapter, you will have the skills and knowledge needed
to create powerful LLM-based applications that leverage the full potential of these
cutting-edge models.

9780135346563_web.indb 59 28/08/24 1:05 PM

60 Chapter 3 First Steps with Prompt Engineering

Figure 3.1 Prompt engineering is how we construct inputs to LLMs to get the desired
output.

Alignment in Language Models
To understand why prompt engineering is crucial to LLM-application development,
we first must understand not only how LLMs are trained, but how they are aligned to
human input. Alignment in language models refers to how the model understands
and responds to input prompts that are “in line with” (at least according to the people
in charge of aligning the LLM) what the user expected. In standard language modeling,
a model is trained to predict the next word or sequence of words based on the context
of the preceding words. However, this approach alone does not allow for specific
instructions or prompts to be answered by the model, which can limit its usefulness for
certain applications.

Prompt engineering can be challenging if the language model has not been aligned
with the prompts, as it may generate irrelevant or incorrect responses. However,
some language models have been developed with extra alignment features, such as
Constitutional AI-driven Reinforcement Learning from AI Feedback (RLAIF) from
Anthropic or Reinforcement Learning from Human Feedback (RLHF) in OpenAI’s GPT
series, which can incorporate explicit instructions and feedback into the model’s train-
ing. These alignment techniques can improve the model’s ability to understand and
respond to specific prompts, making them more useful for applications such as
question-answering or language translation (Figure 3.2).

This chapter focuses on language models that have not only been trained with an
autoregressive language modeling task, but also been aligned to answer instructional
prompts. These models have been developed with the goal of improving their ability to
understand and respond to specific instructions or tasks. Such models include GPT-4

9780135346563_web.indb 60 28/08/24 1:05 PM

61Prompt Engineering

and ChatGPT (closed-source models from OpenAI), Llama-3-Instruct (an open-weights
model from Meta), Google’s closed-source Gemini, and Cohere’s command series
(a closed-source model). All of these models have been trained using large amounts of
data and techniques such as transfer learning and fine-tuning to be more effective at
generating responses to instructional prompts. Through this exploration, we will see
the beginnings of fully working NLP products and features that utilize these models,
and gain a deeper understanding of how to leverage aligned language models’ full
capabilities.

Just Ask
The first and most important rule of prompt engineering for instruction-aligned
language models is to be clear and direct about what you are asking for. When we give
an LLM a task to complete, we want to ensure that we are communicating that task as
clearly as possible. This is especially true for simple tasks that are straightforward for
the LLM to accomplish.

In the case of asking GPT-3 to correct the grammar of a sentence, a direct
instruction of “Correct the grammar of this sentence” is all you need to get a clear and
accurate response. The prompt should also clearly indicate the phrase to be corrected
(Figure 3.3).

Figure 3.2 The original GPT-3 model, which was released in 2020, is a pure autoregressive
language model; it tries to “complete the thought” and gives misinformation quite freely.
In January 2022, GPT-3’s first aligned version was released (InstructGPT) and was able to
answer questions in a more succinct and accurate manner.

9780135346563_web.indb 61 28/08/24 1:05 PM

62 Chapter 3 First Steps with Prompt Engineering

Figure 3.3 The best way to get started with an LLM aligned to answer queries from humans
is to simply ask.

Note

Many figures in this chapter are screenshots of an LLM’s playground. Experimenting with
prompt formats in the playground or via an online interface can help identify effective
approaches, which can then be tested more rigorously using larger data batches and the
code/API for optimal output.

To be even more confident in the LLM’s response, we can provide a clear indication
of the input and output for the task by adding prefixes to structure the inputs and
outputs. Let’s consider another simple example—asking gpt-3.5-turbo-instruct to
translate a sentence from English to Turkish.

A simple “just ask” prompt for this task will consist of three elements:

QQ A direct instruction: “Translate from English to Turkish.” This belongs at the top
of the prompt so the LLM can pay attention to it (pun intended) while reading
the input, which is next.

QQ The English phrase we want translated preceded by “English: ”, which is our
clearly designated input.

QQ A space designated for the LLM to give its answer, to which we will add the
intentionally similar prefix “Turkish: ”.

These three elements are all part of a direct set of instructions with an organized
answer area. If we give a GPT model (gpt-3.5-turbo-instruct) this clearly constructed
prompt, it will be able to recognize the task being asked of it and fill in the answer
correctly (Figure 3.4).

We can expand on this even further by asking GPT-3.5-turbo-instruct to output
multiple options for our corrected grammar, with the results being formatted as a
numbered list (Figure 3.5).

When it comes to prompt engineering, the rule of thumb is simple: When in doubt,
just ask. Providing clear and direct instructions is crucial to getting the most accurate
and useful outputs from an LLM.

9780135346563_web.indb 62 28/08/24 1:05 PM

63Prompt Engineering

Figure 3.4 This more fleshed-out version of our “just ask” prompt has three components: a
clear and concise set of instructions, our input prefixed by an explanatory label, and a prefix
for our output followed by a colon and no further whitespace.

Figure 3.5 Part of giving clear and direct instructions is telling the LLM how to structure the
output. In this example, we ask gpt-3.5-turbo-instruct to give grammatically correct versions
as a numbered list.

When “Just Asking” Isn’t Enough
It’s tempting to simply ask powerful models like GPT-4, members of the Anthropic
Claude 3 family, or Meta AI’s Llama 3 to solve your problems for you. But that won’t
always work out in our favor. The LLM might now know the style in which we want
it to write a LinkedIn post, or it might not understand how succinct you want your
answers to be. In extreme cases, the model might get updated by the model provider
and suddenly be terrible at a task you were doing just yesterday (we will explore this in
more detail in the next chapter).

Instead of relying on a model alone, we can employ prompting techniques designed
to add guardrails to the behavior of an LLM or teach an LLM to do a task the way the
prompter intended. We can accomplish these feats through in-context learning—
prompting the LLM to learn a task without requiring any fine-tuning whatsoever. One
of these techniques is called few-shot learning.

9780135346563_web.indb 63 28/08/24 1:05 PM

64 Chapter 3 First Steps with Prompt Engineering

Few-Shot Learning
When it comes to more complex tasks that require a deeper understanding of a task,
giving an LLM a few examples can go a long way toward helping the LLM produce
accurate and consistent outputs. Few-shot learning is a powerful technique that
involves providing an LLM with a few examples of a task to help it understand the
context and nuances of the problem.

Few-shot learning has been a major focus of research in the field of LLMs. The
creators of GPT-3 even recognized the potential of this technique, which is evident
from the fact that the original GPT-3 research paper was titled “Language Models Are
Few-Shot Learners.”

Few-shot learning is particularly useful for tasks that require a certain tone, syntax,
or style, and for fields where the language used is specific to a particular domain. Figure
3.6 shows an example of asking GPT to classify a review as being subjective or not;
basically, this is a binary classification task. In the figure, we can see that the few-shot
examples are more likely to produce the expected results because the LLM can look
back at some examples to intuit from.

As we learn more prompting techniques, it’s important to know that a combina-
tion of techniques will usually yield the best results from a prompt. Figure 3.7 shows
an example of using both output structuring and few-shot learning in a GPT-4 prompt
converting a natural language query to a Google Sheets formula.

Figure 3.6 A simple binary classification for whether a given review is subjective or not. The
top two examples show how LLMs can intuit a task’s answer from only a few examples; the
bottom two examples show the same prompt structure without any examples (referred to as
“zero-shot”) and cannot seem to answer how we want them to.

9780135346563_web.indb 64 28/08/24 1:05 PM

65Prompt Engineering

Figure 3.7 A structured few-shot prompt in GPT-4 generating Google Sheets formulas from a
natural language query.

Few-shot learning opens up new possibilities for how we can interact with LLMs.
With this technique, we can provide an LLM with an understanding of a task without
explicitly providing instructions, making it more intuitive and user-friendly. This
breakthrough capability has paved the way for the development of a wide range of
LLM-based applications, from chatbots to language translation tools.

Output Formatting
LLMs can generate text in a variety of formats—sometimes too much variety, in fact.
It can be helpful to format the output in a specific way to make it easier to work with
and integrate into other systems. We saw this kind of formatting at work earlier in this
chapter when we asked GPT-3.5-turbo-instruct to give us an answer in a numbered list.
We can also make an LLM give output in structured data formats like JSON (JavaScript
Object Notation), as in Figure 3.8.

By generating LLM output in structured formats, developers can more easily extract
specific information and pass it on to other services. Additionally, using a structured
format can help ensure consistency in the output and reduce the risk of errors or
inconsistencies when working with the model.

9780135346563_web.indb 65 28/08/24 1:05 PM

66 Chapter 3 First Steps with Prompt Engineering

Figure 3.8 Simply asking GPT to give a response back as a JSON (top) does generate
a valid JSON, but the keys are also in Turkish, which may not be what we want. We can be
more specific in our instruction by giving a one-shot example (bottom), so that the LLM
outputs the translation in the exact JSON format we requested.

Prompting Personas
Specific word choices in our prompts can greatly influence the output of the model.
Even small changes to the prompt can lead to vastly different results. For example,
adding or removing a single word can cause the LLM to shift its focus or change its
interpretation of the task. In some cases, this may result in incorrect or irrelevant
responses; in other cases, it may produce the exact output desired.

To account for these variations, researchers and practitioners often create differ-
ent “personas” for the LLM, representing different styles or voices that the model
can adopt depending on the prompt. These personas can be based on specific topics,
genres, or even fictional characters, and are designed to elicit specific types of responses
from the LLM (Figure 3.9). By taking advantage of personas, LLM developers can better
control the output of the model and end users of the system can get a more unique and
tailored experience.

9780135346563_web.indb 66 28/08/24 1:06 PM

67Prompt Engineering

Figure 3.9 Starting from the top left and moving down, we see a baseline prompt of ask-
ing GPT-3 to respond as a store attendant. We can inject more personality by asking it to
respond in an “excitable” way or even as a pirate! We can also abuse this system by asking
the LLM to respond in a rude manner or even horribly as an anti-vegan. Any developer who
wants to use an LLM should be aware that these kinds of outputs are possible, whether
intentional or not. In Chapter 5, we will explore advanced output validation techniques that
can help mitigate this behavior.

9780135346563_web.indb 67 28/08/24 1:06 PM

68 Chapter 3 First Steps with Prompt Engineering

Personas may not always be used for positive purposes. Just as with any tool or
technology, some people may use LLMs to evoke harmful messages, as we did when
we asked the LLM to imitate an anti-vegan person in Figure 3.9. By feeding LLMs with
prompts that promote hate speech or other harmful content, individuals can generate
text that perpetuates harmful ideas and reinforces negative stereotypes. Creators of
LLMs tend to take steps to mitigate this potential misuse, such as implementing
content filters and working with human moderators to review the output of the model.
Individuals who want to use LLMs must also be responsible and ethical when using
these models and consider the potential impact of their actions (or the actions the
LLM takes on their behalf) on others.

On the topic of considering our actions when using LLMs, it turns out this is also great
advice to give to LLMs. Our final technique of this chapter will take a step into revealing
the inner reasoning skills of LLMs by forcing them to say the quiet part out loud.

Chain-of-Thought Prompting
Chain-of-thought prompting is a method that forces LLMs to reason through a series
of steps, resulting in more structured, transparent, and precise outputs. The goal is to
break down complex tasks into smaller, interconnected subtasks, allowing the LLM
to address each subtask in a step-by-step manner. This not only helps the model to
“focus” on specific aspects of the problem, but also encourages it to generate intermedi-
ate outputs, making it easier to identify and debug potential issues along the way.

Another significant advantage of chain-of-thought prompting is the improved inter-
pretability and transparency of the LLM-generated response. By offering insights into
the model’s reasoning process, we, as users, can better understand and qualify how
the final output was derived, which promotes trust in the model’s decision-making
abilities.

Example: Basic Arithmetic
Some models have been specifically trained to reason through problems in a step-
by-step manner, including GPT-3.5 and GPT-4 (both chat models), but not all of them
have. Figure 3.10 demonstrates this by showing how GPT-3.5 doesn’t need to be explic-
itly told to reason through a problem to give step-by-step instructions, whereas gpt-
3.5-turbo-instruct (a completion model) needs to be asked to reason through a chain of
thought or else it won’t naturally give one. In general, tasks that are more complicated
and can be broken down into digestible subtasks are great candidates for chain-
of-thought prompting.

Prompting techniques like few-shot learning, chain-of-thought prompting, and
formatting aren’t just there to make our model outputs more accurate. Don’t get
me wrong, they do that. But they also help us provide guardrails to help ensure our
models act according to our expectations. Prompting techniques also help with
interoperability—moving prompts between models without having to rewrite them
from scratch.

9780135346563_web.indb 68 28/08/24 1:06 PM

69Prompt Engineering

Figure 3.10 (Top) A basic arithmetic question with multiple-choice options proves to be
too difficult for DaVinci. (Middle) When we ask gpt-3.5-turbo-instruct to first think about the
question by adding “Reason through step by step” at the end of the prompt, we are using a
chain-of-thought prompt and the model gets it right! (Bottom) ChatGPT and GPT-4 don’t need
to be told to reason through the problem, because they are already aligned to think through
the chain of thought.

9780135346563_web.indb 69 28/08/24 1:06 PM

70 Chapter 3 First Steps with Prompt Engineering

Working with Prompts Across Models
Whether a prompt works well depends heavily on the architecture and training of the
language model it’s being run against, meaning that what works for one model may not
work for another. GPT-3.5, GPT-4, Llama-3, Gemini, and models in the Claude 3 series all
have different underlying architectures, pre-training data sources, and training approaches,
which in turn impact the effectiveness of prompts when working with them. While some
prompts that utilize guardrails such as few-shot learning may transfer between models,
others may need to be adapted or reengineered to work with a specific model family.

Chat Models versus Completion Models
Many examples we’ve seen in this chapter come from completion models like gpt-3-5.
turbo-instruct, which take in a blob of text as a prompt. Some LLMs can take in more
than just a single prompt. Chat models like gpt-3.5, gpt-4, and llama-3 are aligned to
conversational dialogue and generally take in a system prompt and multiple “user”
and “assistant” prompts (Figure 3.11).The system prompt is meant to be a general direc-
tive for the conversation and will generally include overarching rules and personas to
follow. The user and assistant prompts are messages between the user and the LLM,
respectively. Under the hood, the model is still taking in a single prompt formatted
using special tokens so effectively that the prompts are more similar than they are
different. This is why prompting techniques like structuring and few-shot learning
work across chat or completion models. For any LLM you choose to look at, be sure to
check out its documentation for specifics on how to structure input prompts.

Figure 3.11 GPT-4 takes in an overall system prompt as well as any number of user and
assistant prompts that simulate an ongoing conversation.

9780135346563_web.indb 70 28/08/24 1:06 PM

71Working with Prompts Across Models

Cohere’s Command Series
We’ve already seen Cohere’s command series of models in action in this chapter. As an
alternative to OpenAI, they show that prompts cannot always be simply ported over
from one model to another. Instead, we usually need to alter the prompt slightly to
allow another LLM to do its work.

Let’s return to our simple translation example. Suppose we ask OpenAI and Cohere
to translate something from English to Turkish (Figure 3.12).

Figure 3.12 OpenAI’s InstructGPT LLM can take a translation instruction without much
hand-holding, whereas the Cohere command model seems to require a bit more structure.
Another point in the column for why prompting matters for interoperability!

9780135346563_web.indb 71 28/08/24 1:06 PM

72 Chapter 3 First Steps with Prompt Engineering

It seems that the Cohere model in Figure 3.12 required a bit more structuring than
the OpenAI version. That doesn’t mean that the Cohere is worse than gpt-3.5-turbo-
instruct; it just means that we need to think about how our prompt is structured for
a given LLM. If anything, this means that prompting well makes it easier to choose
between models by bringing forth the best performance from any LLM.

Open-Source Prompt Engineering
It wouldn’t be fair to discuss prompt engineering and not mention open-source
models like GPT-J and FLAN-T5. When working with them, prompt engineering is a
critical step to get the most out of their pre-training and fine-tuning (a topic that we
will start to cover in Chapter 4). These models can generate high-quality text output
just like their closed-source counterparts. However, unlike closed-source models, open-
source models offer greater flexibility and control over prompt engineering, enabling
developers to customize prompts and tailor output to specific use-cases during
fine-tuning.

For example, a developer working on a medical chatbot may want to create
prompts that focus on medical terminology and concepts, whereas a developer
working on a language translation model may want to create prompts that emphasize
grammar and syntax. With open-source models, developers have the flexibility to fine-
tune prompts to their specific use-cases, resulting in more accurate and relevant text
output.

Another advantage of prompt engineering in open-source models is the ability to
collaborate with other developers and researchers. Open-source models have a large
and active community of users and contributors, which allows developers to share
their prompt engineering strategies, receive feedback, and collaborate on improving
the overall performance of the model. This collaborative approach to prompt engineer-
ing can lead to faster progress and more significant breakthroughs in natural language
processing research.

It pays to remember how open-source models were pre-trained and fine-tuned (if
they were at all). For example, GPT-J is an autoregressive language model, so we’d
expect techniques like few-shot prompting to work better than simply asking a direct
instructional prompt. In contrast, FLAN-T5 was specifically fine-tuned with instruc-
tional prompting in mind, so while few-shot learning will still be on the table, we can
also rely on the simplicity of just asking (Figure 3.13).

9780135346563_web.indb 72 28/08/24 1:06 PM

73Working with Prompts Across Models

Figure 3.13 Open-source models can vary dramatically in how they were trained and how
they expect prompts. GPT-J, which is not instruction aligned, has a hard time answering a
direct instruction (bottom left). In contrast, FLAN-T5, which was aligned to instructions, does
know how to accept instructions (bottom right). Both models can intuit from few-shot learn-
ing, but FLAN-T5 seems to be having trouble with our subjective task. Perhaps it’s a great
candidate for some fine-tuning—coming soon to a chapter near you.

9780135346563_web.indb 73 28/08/24 1:06 PM

74 Chapter 3 First Steps with Prompt Engineering

Summary
Prompt engineering—the process of designing and optimizing prompts to improve
the performance of language models—can be fun, iterative, and sometimes tricky. We
saw many tips and tricks for how to get started, such as understanding alignment, just
asking, few-shot learning, output structuring, prompting personas, and working with
prompts across models.

There is a strong correlation between proficient prompt engineering and effective
writing. A well-crafted prompt provides the model with clear instructions, resulting in
an output that closely aligns with the desired response. When a human can compre-
hend and create the expected output from a given prompt, that outcome is indicative
of a well-structured and useful prompt for the LLM. However, if a prompt allows for
multiple responses or is in general vague, then it is likely too ambiguous for an LLM.
This parallel between prompt engineering and writing highlights that the art of writing
effective prompts is more like crafting data annotation guidelines or engaging in
skillful writing than it is similar to traditional engineering practices.

Prompt engineering is an important process for improving the performance of
language models. By designing and optimizing prompts, you can ensure that your
language models will better understand and respond to user inputs. In Chapter 5,
we will revisit prompt engineering with some more advanced topics like LLM output
validation and chaining multiple prompts together into larger workflows. In our next
chapter, we will build our own retrieval augmented generation (RAG) chatbot using
GPT-4’s prompt interface, which is able to utilize the API we built in Chapter 2.

9780135346563_web.indb 74 28/08/24 1:06 PM

9780135346563_web.indb 12 28/08/24 1:04 PM

This page intentionally left blank

Index

A
accuracy, 239–240, 323

multilabel anime genre prediction, 231

training, 110

Ada-002, 157

advanced open-source LLM fine-tuning, 229,
238–239, 240, 249. See also multilabel anime
genre classification

adjusting batch sizes, 236

data preparation, 234–236

dynamic padding, 236–238

feature engineering, 234–236

gradient accumulation, 236

LaTex generation with GPT2, 244–248

mixed-precision training, 238

model freezing, 239–240

reinforcement learning from human feedback,
262–265

reward model training, 257–262

supervised instruction fine-tuning, xref

AI

agent, 87–93

bias, 186

constitutional, 195–198

generative, 28

algorithm/s, 5, 41

ML, 183

semantic, 36

alignment, 23–24, 60, 167–168, 190–191, 341,344

behavior, 169–170

as a bias mitigator, 173–176

GPT-3, 60

instructional, 168

pillars of, 176–184. See also pillars of alignment

style, 170–171

transparency and, 180

value, 171–173

all-mpnet-base-v2, 41, 163

Altman, Sam, 171

ANNOY, 50

Apache 2.0 License, 294

API, 51

Fine-Tuning, 18

key management, 276

app_reviews dataset, 103

applications, integrating fine-tuned models, 116–117

architecture, 160–161

chained LLM, 130

language model, 70

arithmetic

just asking, 136

question-answering, 135–136

assistant prompt, 70

asymmetric semantic search, 35–37

attacks, prompt injection, 121–123

attention, 18–20, 339–340

cross-, 207, 208–209, 210

Query, Key, and Value components, 207–210

self-, 5–6

AUC (area under the curve), 231

autoencoding language models, 7, 11, 16, 117, 340

automation, 4, 190

AutoModelforCausalLM class, 246–247

autoregressive language modeling, 6, 11, 60–61,
117, 340

with GPT-2, 247

pre-training, 16

9780135346563_web.indb 349 28/08/24 1:12 PM

350 Index

B
Babbage model, 97–98, 111, 323

backpropagation, 17

BART-MNLI, 124–126

batch prompting, 126–127

batch size, 100, 108, 236, 342

behavior alignment, 169–170

benchmarking, 306–307

pitfalls, 314–316

quantized models, 281–283

task-specific, 316–317

against truthful Q/A, 307–314

BERT (Bidirectional Encoder Representations from
Transformer), 3, 8, 100

attention, 19

bi-encoder, 40–41

DistilBERT, 117–118, 203

embeddings, 21

layers, freezing, 239–240

pre-training, 15–16

sentiment classification, 190–194

bias

AI, 186

casing, 22

LLMs, 173–176

positional, 189–190

bi-encoder, 40–41, 142, 157

changing the max sequence length, 160–161

fine-tuning, 150–151, 161–162

open-source, 142, 157

BioGPT, 24–25

BM25, 50

BookCorpus, 14

C
calibrated classification, 320–323

calibration curves, 323

cardiffnlp/twitter-roberta-base-sentiment LLM, 221

cased tokenization, 22

casing, 22

causal language modeling, 246–247

chaining, prompt, 128–131

chain-of-thought prompting, 79, 135

positional bias, 189–190

solving the MathQA task, 138–141

chat model, 70

chatbot

RAG, 81–85

Tay, 183–184

chatbots, 4, 30–31

ChatGPT, 28–30, 175, 218–219

class

AutoModelforCausalLM, 246–247

DistillationTrainer, 285

DistillationTrainingArguments, 285

SentenceTransformer, 41

Trainer, 261

classification, 97–98. See also sentiment
classification

calibrated, 320–323

multilabel, 230. See also multilabel anime
genre classification

text, 320

CLI (command-line interface), OpenAI, 108

closed-source LLMs, moving into production, 275

API key management, 276

cost projections, 275–276

clustering, 46–48

code

agent prompt, 88

Asking Llama-2 what kinds of jobs men and
women enjoy and excel at, 173–174

autoregressive language modeling with GPT-
2, 247

calculating OpenAI and open-source LLM
similarities, 313

chunking the textbook with and without over-
lap, 43–44

clustering based on open-source, OpenAI, and
Cohere embeddings, 318–319

converting the genre prediction model to
ONNX, 277

custom reward pairwise log loss, 261

defining custom metrics for multilabel genre
prediction, 231–232

9780135346563_web.indb 350 28/08/24 1:12 PM

351Index

defining distillation training arguments and
trainer, 285–287

defining the RLF training loop with TRL,
225–226

evaluating a multiple-choice question with
Mistral Instruct v0.2, 303–304

FastAPI, 51–53

fine-tuning a bi-encoder using custom data,
161–162

fine-tuning SAWYER to have more encoded
knowledge, 271

generating a JSON file for sentiment training
data, 106–107

generating custom descriptions from multiple
anime fields, 156–157

getting text embeddings from a pre-trained
bi-encoder with the sentence_transformer
package,41

getting text embeddings from OpenAI, 39–40,
54–55

getting token probabilities from OpenAI API,
114–116

GPT-3.5 Turbo Red-Teaming, 183–184

GPT-4 RAG bot, 82–83

ingesting an entire textbook, 42–43

load and use QLoRA Llama-3 model + SFT,
256–257

load Llama-3–8B-Instruct with and without
quantization, 278–279

making our first fine-tuning job creation call,
109

parsing the Visual QA files, 213–214

pushing models and tokenizers to Hugging
Face, 295

reinforcement learning from human feedback
(RLHF), 263–265

revealing LLMs’ hidden states, 210

reward system, 221–222

running the distillation process, 289

running through a test set with prompt vari-
ants, 140

semantically deduping a corpus using a bi-
encoder, 234–235

setting up a custom dataset for LaTeX genera-
tion, 246

snippet of the multimodal model, 211–213

statistically load-quantized LoRA model + SFT,
254–255

training loop for VQA, 214–215

transforming preference scores to a paired
comparison score, 188–189

using a Hugging Face inference endpoint to
classify text, 296–297

using DataCollatorWithPadding for dynamic
padding, 237–238

using LIME to diagnose attributable tokens to
a classification result, 191–192

using the genre predictor, 243–244

Cohere command model, 71–72

collaborative filtering, 150–152

item-based, 150

user-based, 150

completion model, 70

completion-only loss masking, 252–253

compute_loss function, 285

constitutional AI, 195–198

content-based recommendations, 150–152

context, 12–14, 78, 155

Copilot, 3–4

corpora, 14, 18–19, 341

cosine similarity, 38–39, 150

cost projections

closed-source LLMs, 275–276

open-source LLMs, 292–293

cross-attention, 207–210

cross-encoder, re-ranking results, 50

cross-entropy loss, 219

“A Cross-Verified Database of Notable People,
3500 BC–2018 AD”, 324

D
data, 176–177

collator, 232

high-quality, 180

human preference, 177–178

labeling, 99

preparation, 234–236

selecting for fine-tuning, 104

value-targeted, 178–180

9780135346563_web.indb 351 28/08/24 1:12 PM

352 Index

database, vector, 30

dataset

app_reviews, 103

MathQA, 135–138

multimodal VQA system, 213–214

MyAnimeList 2020, 148, 232

removing duplicates, 104

splitting, 104

decoder, 11

deep learning, 5, 6, 236

dependencies, 18–19

Devin, 316

direct instruction, 62

DistilBERT, 117–118, 203, 323

distillation, 283, 343–344

multilabel anime genre predictor, 285–287

results summary, 290–292

running the process, 288–289

task-specific versus task-agnostic, 283–285

temperature, 287–288

DistillationTrainer class, 285

DistillationTrainingArguments class, 285

document chunking, 42

clustering, 46–48

comparing methods, 49

delimiters, 44

max token window, 42–44

natural whitespace, 44–46

overlapping window, 42–44

domain-specific LLMs, 24

duplicates, removing from dataset, 104

dynamic padding, 236–238

E
ECE (expected calibration error), 320–322

ecosystem, 75, 176

embedders/embeddings, 20, 317–320. See also
document chunking

cost, 57–58

fine-tuning, 161–163

recommendation system, 151, 163

embedding engines, OpenAI, 39–40

“Embeddings”, 37

EMR (electronic medical record), 4

encode function, 41

encoder, 11

encoding, 25

English Wikipedia, 14

epoch, 100, 108, 342–343

.eval() method, 276, 277

evaluation, 100, 163, 182–183

AI agent, 92–93

generative multiple choice, 301–304

n-gram, 306

output text, 218

qualitative, 109–110, 114–116

quantitative, 109–113

red-teaming, 183–184

rubric, 304, 306

semantic embedding, 304, 306

using LLMs, 185

explicit feedback, 177

exploration, 150, 165–166

F
FastAPI, 51–53, 57

feature engineering, 234–236

feedback, 177, 218–219. See also RLF
(reinforcement learning from feedback)

few-shot learning, 64–65, 79, 135, 141–142

finance industry, large language model/s, 4

fine-tuned models, OpenAI, integrating into
applications, 116–117

fine-tuning, 17–19, 24, 25, 30, 97, 99, 101, 109,
341. See also advanced open-source LLM fine-
tuning; OpenAI, fine-tuning API

bi-encoder, 150–151, 161–162

collecting labeled data, 100

cost of, 113

cross-encoder, 50

evaluation and iteration, 100

hyperparameter selection, 100

language model with reinforcement learning,
219

LLMs (large language models), 55

9780135346563_web.indb 352 28/08/24 1:12 PM

353Index

model adaptation, 100

model implementation and further training,
100

multilabel anime genre prediction, 232–233

selecting data, 104

supervised, 180–181

Fine-Tuning API, 18

FLAN-T5, 72–73, 220–221, 226–228

forward method, 210–211

foundation embedders, 147, 157

foundational models

FLAN-T5, 72–73, 220–221, 226–228

multimodal VQA (visual question-answering)
system, 203–206

free text response, 306

free-text generation, 28–30

freezing, 239

function

compute_loss, 285

encode, 41

get_embeddings, 40

prepare_df_for_openai, 105

softmax, 287–288

G
Gemini, 3, 175–176

generative AI, 28

generative tasks, 299, 300, 301–304

generator, 80, 86

get_embeddings function, 40

“Ghost in the Machine Has an American Accent:
Value Conflict in GPT-3”, 171–172

GitHub, Copilot, 3–4

GNU General Public License, 294

Google, Gemini, 3, 175–176

GPT (Generative Pre-trained Transformer), 3, 6, 8

GPT-2, 204–206, 244–248. See also LaTex

GPT-3, alignment, 60

gpt-3.5-turbo-instruct, 31

GPT-4, scale supervision, 185–190

GPT-J, 72–73

gradient accumulation, 236

gradients, 17

grammar score, output text, 221

Grok, 170–171

ground truth, 124, 304

H
hallucination, 79–80, 132

healthcare industry, large language model/s, 4

high-quality data, 180

“How Is ChatGPT’s Behavior Changing over
Time?”, 76–77

Hugging Face, 18, 24, 191, 251, 293

inference endpoint, 295–297

licensing, 294

preparing your model, 293

Trainer utility, 232–233

Transformers library, 295

human language-to-human language translation, 27

human language-to-SQL translation, 27–28

human preference data, 177–178

hyperparameter, 342

selection, 100, 108–109, 162, 287–288

temperature, 287–288

hypothesis, 124–125

I
image preprocessing, ViT (Vision Transformer),

203–205

Imagenet, 203

implicit feedback, 177

incremental/online learning, 343

inference, 276–277

endpoint, 295–297

optimizing with quantization, 279

information retrieval, 30, 85–86

information retrieval system, 25

input/output validation, 123–126

installing, OpenAI CLI, 108

InstructGPT, 71

instructional alignment, 168

interoperability, 68–70, 277

9780135346563_web.indb 353 28/08/24 1:12 PM

354 Index

interpretability, model, 191

in-text learning, 63

item-based collaborative filtering, 150

J
Jaccard score, 151, 157–160, 230–231, 239–240,

279–281

JSONL (newline-delimited JSON), 105–106

“just ask” prompt, 61–62, 136, 136, 138

K
Kaggle, 148

KL-divergence, 224

knowledge distillation. See distillation

L
labeled data, 99, 100, 124–125, 342

language model, 6, 218–219. See also LLMs (large
language models)

alignment, 60. See also alignment

autoencoding, 7

autoregressive, 6

fine-tuning with reinforcement learning, 219

pre-training, 219

LaTex, translating English to, 244–248

layers, BERT, freezing, 239–240

learning

few-shot, 64–65, 79, 141–142. See also few-shot
learning

reinforcement, 180, 181–182

from scratch, 161

in-text, 63

transfer, 16–17, 99, 203. See also fine-tuning

learning rate, 100, 108, 342

library

ANNOY, 50

Pydantic data validation, 51

Sentence Transformers, 40–41, 50, 157,
161–162

Transformers, 5–6, 295

TRL (Transformer Reinforcement Learning), 223

Weights and Biases, 232–233

licensing, 294

LIME (Local Interpretable Model-agnostic
Explanations), 191–194

Llama, 10

alignment, 24

bias, 173–174

pre-training, 16

Llama-3, 263–265

alignment, 248–249

completion-only loss masking, 252–253

QLoRA, 253–257

reinforcement learning from human feedback,
262–265

reward model training, 257–262

supervised instruction fine-tuning, 251–252

LLMs (large language models), 4, 6, 10–11, 15, 340.
See also prompt engineering

alignment, 23–24, 167–176. See also pillars of
alignment

all-mpnet-base-v2, 163

application archetypes, 345–347

applications, 25

architecture, 70

attention, 18–20

autoencoding, 7, 11

autoregressive, 6, 11

BART-MNLI, 124–126

BERT (Bidirectional Encoder Representations
from Transformer), 3, 8

bias, 173–176

cardiffnlp/twitter-roberta-base-sentiment, 221

characteristics, 12–13

closed-source, moving into production, 275–276

Copilot, 3–4

domain-specific, 24

embeddings, 20

finance industry, 4

fine-tuning, 17–18, 25, 30, 55, 97

free-text generation, 28–30

Gemini, 3

GPT (Generative Pre-trained Transformer), 8

hallucination, 79–80, 132

healthcare industry, 4

InstructGPT, 71

9780135346563_web.indb 354 28/08/24 1:12 PM

355Index

Llama, 10

“needle in the haystack” problem, 132

open-source, moving into production, 276–
293. See also distillation

personas, 66–68

pre-training, 14–16

probing, 324–328

pushing to Hugging Face, 293

repositories, 5–6

reward model, 221

RLHF (reinforcement learning from human
feedback), 23

sequence-to-sequence model, 11

specialization, 130

T5, 9–10, 27

textattack/roberta-base-CoLA, 221

thinking versus reasoning, 77–79

token, 6

tokenization, 21–23

transfer learning, 16–17

LoRA (low-rank adaptation), 253

loss function, 100, 218, 258–262

dividing by the temperature, 288

temperature-squared, 288

M
machine learning, transfer learning, 16–17

MathQA task and dataset, 135–138

chain-of-thought prompting, 138–141

few-shot examples, 141–142

just asking, 136, 138

results summary, 144–145

semantic search, 142–144

max token window chunking, 42–44

measuring, performance of fine-tuned models,
109–113

Meta, BART, 3–4

method

.eval(), 276, 277

forward, 210–211

metrics, 304

accuracy, 110, 231, 239–240, 323

custom, 231–232

evaluation, 343

Jaccard score, 151, 157–160, 230–231

quantitative, 109–113

training loss, 240

validation loss, 242

MIT License, 294

mixed-precision training, 238

MLM (Masked Language Modeling) task, 15

MNLI (Multi-Genre Natural Language Inference),
124

model/s. See also fine-tuning; LLMs (large
language models)

adaptation, 100

all-mpnet-base-v2, 41

architecture, 160–161

calibration, 320

card, 294–295

ecosystem, 75

embedding, 148

fine-tuning. See fine-tuning

freezing, 239–240

implementation, 100

interpretability, 191

licensing, 294

pushing to a repository, 295

teacher/student, 288–289, 290, 292

values-targeted, 178

moderation service, OpenAI, 123

multilabel anime genre classification, 230

accuracy, 231

fine-tuning the model, 232–233

using the Jaccard score to measure perfor-
mance, 230–231

multimodal system

cross-attention, 208–209

prompt chaining, 134–135

VQA (visual question-answering). See VQA (visual
question-answering) system

multiple choice, 301–304

multitask learning, 41

MyAnimeList 2020 dataset, 148, 232. See also
recommendation system, building

9780135346563_web.indb 355 28/08/24 1:12 PM

356 Index

N
natural whitespace chunking, 44–46

nearest-neighbor search, 50

“needle in the haystack” problem, 132

negative log-likelihood loss, 259

neural network, 18

neural semantic search, 30

n-gram, 6, 304, 306

NLI (natural language inference), building
validation pipelines, 124–126

NLP (natural language processing), 3, 5

embeddings, 20

language modeling, 6

text classification, 26

translation tasks, 27–28

NLU (natural language understanding), 5

NPS (Net Promoter Score), 152, 163

NSP (Next Sentence Prediction) task, 15

O
offensive content, 123

identifying, 125–126

Tay chatbot, 183

ONNX, 277

OOV (out-of-vocabulary) phrases, 22

OpenAI, 108

Ada-002, 157

CLI (command-line interface), 108

ecosystem, 76

embedding engines, 39–40

“Embeddings”, 37

feedback, 177

fine-tuning, 102, 112–113

Fine-Tuning API, 18, 102, 104–107, 114–116

GPT (Generative Pre-trained Transformer), 3

InstructGPT, 71

moderation service, 123

“Training Language Models to Follow
Instructions with Human Feedback”, 218–219

open-source, 204–206. See also advanced open-
source LLM fine-tuning

bi-encoder, 142, 157, 160–162

DistilBERT, 117–118

library, 50

LLMs, moving into production, 276–293

prompt engineering, 72–73

text embedder, bi-encoder, 40–41

o-shot prompt, 281

output text

evaluation, 218

formatting, 65

grammar score, 221

LaTex, 244–248

reward, 221, 226–228

sentiment, 221

overfitting, 100, 343

overlapping window chunking, 42–44

Owkin, 24

P
padding, 236

PALMS: Process for Adapting Language Models to
Society, 178

parsing, dataset, 213–214

pattern exploitation, 150

performance. See also fine-tuning

benchmarking, 281–283, 306–317

DistilBERT, 117–118

evaluation, 100

of fine-tuned models, measuring, 109–113

frozen versus unfrozen model, 240–242

loss function, 100, 218

multimodal VQA (visual question-answering)
system, 217–218

qualitative evaluation, 114–116

quantitative metrics, 109–113

XTREME benchmark, 53–55

personas, 66–68

Pgvector, 50

pillars of alignment, 194–195

data, 176–180

evaluation, 182–184

training/tuning models, 180–182

9780135346563_web.indb 356 28/08/24 1:12 PM

357Index

Pinecone, 50, 57

positional bias, 189–190

PPO (proximal policy optimization), 263

precision, RAG system, 85

premise, 124–125

prepare_df_for_openai function, 105

pre-training, 14

all-mpnet-base-v2, 41

BERT (Bidirectional Encoder Representations
from Transformer), 15–16

BioGPT, 24–25

language model, 219

preventing, prompt injection attacks, 123

probabilities, token, 114–116

probing LLMs, 324–328

production

closed-source LLM deployment, 275–276

open-source LLM deployment, 276–293

projection layers, 210

prompt engineering, 59, 74, 182, 341

alignment, 60–61, 167–176

assistant prompt, 70

batch prompting, 126–127

chain-of-thought prompting, 68, 79

Cohere’s command series, 71–72

collaborative approach, 72

direct instruction, 62

few-shot learning, 64–65, 79

input/output validation, 123–126

interoperability, 68–70

“just ask” prompt, 61–62

LaTeX generation, 245–248

open-source, 72–73

output formatting, 65

personas, 66–68

prompt chaining, 128–131, 133–135

solving the MathQA task, 138–142

system prompt, 70

in-text learning, 63

user prompt, 70

prompt/ing, 25

alignment, 23–24

chaining, 128–131, 133–135

injection attacks, 121–123

“just ask”, 136, 138

o-shot, 281

stuffing, 131–135

Pydantic data validation library, 51

PyTorch module, 210

Q
QLoRA, 253–257

qualitative evaluation, 109–110, 114–116

quantitative metrics, 109–113

quantization, 253–254, 278–279

benchmarking quantized models, 281–283

model output differences, 279–281

optimizing inference with, 279

question-answering, arithmetic, 135–136

R
RAG (retrieval augmented generation) system,

79–80

AI agent, 87–93

chatbot, 81–85

generator, 80, 86

precision, 85

retriever, 80, 85–86

reasoning

AI agent, 88

versus thinking, 77–79

recall, 56

recommendation system

adjusting model architectures, 160–161

building, 148, 151–152

content versus collaborative recommendations,
150–152

defining the problem of recommendation,
149–150

embedders, 151, 163

exploration, 165–166

generating a custom description field to com-
pare items, 155–157

loading and splitting the anime data, 149

9780135346563_web.indb 357 28/08/24 1:12 PM

358 Index

preparing the fine-tuning data, 157–160

recommendation engine, 152–154

setting a baseline with foundation embedders,
157

setting up the problem and data, 148–149

summary of results, 163–165

user profile, 150

red-teaming, 183–184

reinforcement learning-based training, 219, 249

Render, 57

repositories, LLM, 5–6

re-ranking search results, 50

retriever, 80

precision, 85

testing, 85–86

reward model, 219, 221

code, 221–222

multimodal VQA (visual question-answering)
system, 221

training, 257–262

RL (reinforcement learning), 23, 180

RLAIF (reinforcement learning from AI Feedback),
60, 181–182, 341

RLF (reinforcement learning from feedback),
218–219, 223–226, 265

RLHF (reinforcement learning from human
feedback), 23, 60, 181, 218–219, 249, 262–265,
341

RoBERTa, 16, 261

roberta-base model, 261

ROC (receiver operating characteristic), 231

rubric evaluation, 304, 306

rules, 19–20

S
SAWYER, 265–267. See also Llama-3

reinforcement learning from human feedback,
262–265

reward model training, 257–262

supervised instruction fine-tuning, 251–257

updating, 269–270

scale supervision, 185–190

scikit-learn, 46

search engine, 34–35

search results, re-ranking, 50

self-attention, 5–6, 207–210

semantic deduping, 236

semantic embedding evaluation, 304, 306

semantic meaning, 12

semantic search, 30, 142–144

asymmetric, 35–37

cosine similarity, 38–39

cost of closed-source components, 57–58

recall, 56

text embedder, 37

text embeddings, 33–34

XTREME benchmark, 53–57

Sentence Transformers library, 40–41, 50, 157,
161–162

SentenceTransformer class, 41

sentiment classification, 103, 221

guidelines and best practices for data, 104

hyperparameter selection and optimization,
108–109

preparing custom examples with OpenAI CLI,
104–107

using BERT, 190–194

sequence-to-sequence model, 11

SFT (supervised fine-tuning), 180

shuffling training data, 104

silhouette scores, 319

similarity

cosine, 38–39

Jaccard, 151, 157–160

softmax function, 287–288

special tokens, 21, 26

SQL, translating human language to, 27–28

student model, 288–289, 290, 292

style alignment, 170–171

supervised learning, 23

SWE-benchmark, 316

system prompt, 70

T
T5, 9–10, 27

task/s, 26

-agnostic distillation, 283–285, 344

9780135346563_web.indb 358 28/08/24 1:12 PM

359Index

classification, 97–98

decomposition, 130

generative, 299, 300–306

MathQA, 135–138

MLM (Masked Language Modeling), 15

NSP (Next Sentence Prediction), 15

RoBERTa, 16

-specific benchmarking, 316–317

-specific distillation, 283–285, 344

text classification, 26

understanding, 317–320

VQA (visual question-answering). See multi-
modal VQA (visual question-answering)

Tay, 183–184

teacher model, 288–289, 290

tensors, forward method, 210–211

test set, 99

testing

generator, 86

retriever, 85–86

text classification, 26, 320, 320

text embedder/embeddings, 33–34, 37. See also
document chunking

bi-encoder, 40–41

getting from OpenAI, 39–40

using entire document without chunking,
48–49

textattack/roberta-base-CoLA LLM, 221

thinking, versus reasoning, 77–79

tokenization, 21–23

token/s, 6, 18–19

limit, 132

probabilities, 114–116

Query, Key, and Value, 207–210

special, 21, 26

tools, 87

AI agent, 89–92

Trainer, 232–233

Trainer class, 261

Trainer utility, 232–233

training. See also distillation

accuracy, 110

bi-encoder, 40

data, shuffling, 104

epoch, 108, 342–343

loss, 240

mixed-precision, 238

multimodal VQA (visual question-answering)
system, 214–215

pre-, 14

reinforcement learning-based, 219

reward model, 257–262

RLF (reinforcement learning from feedback),
223–226

training set, 99

TrainingArguments, 232

transfer learning, 16–17, 99, 203, 340. See also fine-
tuning

Transformer architecture, 3, 5–6, 11, 18–19, 339

BioGPT, 25

cross-attention, 207

cross-encoder, 50

decoder, 11

encoder, 11

Query, Key, and Value components, 207–210

self-attention, 5–6

ViT (Vision Transformer), 203–205

Transformers library, 5–6, 295

translation, 27–28, 71

English-to-LaTeX, 244–245

human language-to-human language, 27

human language-to-SQL, 27–28

transparency, and alignment, 180

TRL (Transformer Reinforcement Learning), 223

U
uncased tokenization, 22

underfitting, 100, 343

understanding, 5

context, 12–14

tasks, 317

user prompt, 70

user-based collaborative filtering, 150

9780135346563_web.indb 359 28/08/24 1:12 PM

360 Index

V
validation loss, 242

validation pipelines, building, 124–126

validation set, 99

value alignment, 171–173

value pluralism, 172

value-targeted data, 178–180

vector, 33, 37

magnitude, 39

normalized, 39

vector database, 30, 49–50

virtual assistants, 4

ViT (Vision Transformer), 203–205

VQA (visual question-answering) system,
201–203, 220–221

code snippet, 211–213

cross-attention mechanism, 209, 210

dataset, 213–214

DistilBERT, 203

GPT-2, 204–206

hidden states projection and fusion, 206–207

performance, 217–218

results summary, 215–218

reward model, 221–222

training loop, 214–215

ViT (Vision Transformer), 203–205

W
WandB (Weights and Biases) library, 232–233

Weaviate, 50

Wiener, Norbert, “Some Moral and Technical
Consequences of Automation”, 190

Wikipedia, 14

Word2vec, 12

X-Y-Z
XTREME benchmark, 53–55

9780135346563_web.indb 360 28/08/24 1:12 PM

	Cover
	Title Page
	Copyright Page
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Author
	3 First Steps with Prompt Engineering
	Introduction
	Prompt Engineering
	Alignment in Language Models
	Just Ask
	When “Just Asking” Isn’t Enough
	Few-Shot Learning
	Output Formatting
	Prompting Personas
	Chain-of-Thought Prompting
	Example: Basic Arithmetic

	Working with Prompts Across Models
	Chat Models versus Completion Models
	Cohere’s Command Series
	Open-Source Prompt Engineering

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

