
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780135336021
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780135336021
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780135336021

Exam Ref DP-600
Implementing Analytics
Solutions Using
Microsoft Fabric

Daniil Maslyuk
Johnny Winter
Štěpán Rešl

Exam Ref DP-600 Implementing Analytics Solutions
Using Microsoft Fabric
Published with the authorization of Microsoft Corporation by:
Pearson Education, Inc.

Copyright © 2025 by Pearson Education, Inc.

Hoboken, New Jersey

All rights reserved. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms, and the appropriate contacts within the
Pearson Education Global Rights & Permissions Department, please visit
www.pearson.com/permissions.

No patent liability is assumed with respect to the use of the information con-
tained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

ISBN-13: 978-0-13-533602-1
ISBN-10: 0-13-533602-3

Library of Congress Control Number: 2024912313

$PrintCode

TRADEMARKS

Microsoft and the trademarks listed at http://www.microsoft.com on the
“Trademarks” webpage are trademarks of the Microsoft group of companies.
All other marks are property of their respective owners.

WARNING AND DISCLAIMER

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The author, the publisher, and Microsoft Corporation shall have
neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book or from
the use of the programs accompanying it.

SPECIAL SALES

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearson.com.

CREDITS

EDITOR-IN-CHIEF
Brett Bartow

EXECUTIVE EDITOR
Loretta Yates

ASSOCIATE EDITOR
Shourav Bose

DEVELOPMENT EDITOR
Songlin Qiu

MANAGING EDITOR
Sandra Schroeder

SENIOR PROJECT EDITOR
Tracey Croom

COPY EDITOR
Linda Laflamme

INDEXER
Timothy Wright

PROOFREADER
Donna E. Mulder

TECHNICAL EDITOR
Nuric Ugarte

EDITORIAL ASSISTANT
Cindy Teeters

COVER DESIGNER
Twist Creative, Seattle

COMPOSITOR
codeMantra

GRAPHICS
codeMantra

FIGURE CREDIT
Figure 2.38 The Apache
Software Foundation

http://www.pearson.com/permissions
http://www.microsoft.com
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Contents at a glance

Introduction xiii

CHAPTER 1 Plan, implement, and manage a solution for data analytics 1

CHAPTER 2 Prepare and serve data 61

CHAPTER 3 Implement and manage semantic models 143

CHAPTER 4 Explore and analyze data 261

CHAPTER 5 Exam DP-600: Implementing Analytics Solutions Using
Microsoft Fabric updates 299

Index 305

v

Contents

 Introduction xiii
Organization of this book xiii

Preparing for the exam xiii

Microsoft certifications xiv

Access the exam updates chapter and online references xiv

Errata, updates, & book support xv

Stay in touch xv

Chapter 1 Plan, implement, and manage a solution for
data analytics 1

Skill 1.1: Plan a data analytics environment .1

Identify requirements for a solution, including
components, features, performance, and capacity
stock-keeping units (SKUs) 2

Recommend settings in the Fabric admin portal 4

Choose a data gateway type 14

Create a custom Power BI report theme 20

Skill 1.2: Implement and manage a data analytics environment 25

Implement workspace- and item-level access controls for
Fabric items 26

Implement data sharing for workspaces, warehouses, and
lakehouses 28

Manage Sensitivity Labels in semantic models and lakehouses 30

Configure Fabric-enabled workspace settings 33

Manage Fabric capacity 37

Skill 1.3: Manage the analytics development lifecycle 39

Implement version control for a workspace 40

Create and manage a Power BI Desktop project (.pbip) 42

Plan and implement deployment solutions 44

Perform impact analysis of downstream dependencies from
lakehouses, data warehouses, dataflows, and semantic models 47

Contentsvi

Deploy and manage semantic models by using the
XMLA endpoint 50

Create and update reusable assets, including Power BI
template (.pbit) files, Power BI data source (.pbids) files,
and shared semantic models 52

Chapter summary . 55

Thought experiment . 57

Thought experiment answers . 58

Chapter 2 Prepare and serve data 61
Skill 2.1: Create objects in a lakehouse or warehouse . 61

Ingest data by using a data pipeline, dataflow, or notebook 62

Create and manage shortcuts 74

Implement file partitioning for analytics workloads in a
lakehouse 76

Create views, functions, and stored procedures 79

Enrich data by adding new columns or tables 84

Skill 2.2: Copy data . 87

Choose an appropriate method for copying data from a
Fabric data source to a lakehouse or warehouse 87

Copy data by using a data pipeline, dataflow, or notebook 89

Implement fast copy when using dataflows 95

Add stored procedures, notebooks, and dataflows to a
data pipeline 99

Schedule data pipelines 105

Schedule dataflows and notebooks 106

Skill 2.3: Transform data . 108

Implement a data cleansing process 109

Implement a star schema for a lakehouse or warehouse,
including Type 1 and Type 2 slowly changing dimensions 111

Implement bridge tables for a lakehouse or warehouse 113

Denormalize data 116

Aggregate or de-aggregate data 117

Merge or join data 120

Identify and resolve duplicate data, missing data, or
null values 122

Contents vii

Convert data types by using SQL or PySpark 125

Filter data 128

Skill 2.4: Optimize performance . 132

Identify and resolve data loading performance
bottlenecks in dataflows, notebooks, and SQL queries 133

Implement performance improvements in dataflows,
notebooks, and SQL queries 133

Identify and resolve issues with the structure or size of
Delta table files (including V-Order and optimized writes) 135

Chapter summary . 137

Thought experiment . 139

Thought experiment answers .141

Chapter 3 Implement and manage semantic models 143
Skill 3.1: Design and build semantic models. 143

Choose a storage mode, including Direct Lake 144

Identify use cases for DAX Studio and Tabular Editor 2 145

Implement a star schema for a semantic model 148

Implement relationships, such as bridge tables and
many-to-many relationships 148

Write calculations that use DAX variables and functions,
such as iterators, table filtering, windowing, and information
functions 150

Implement calculation groups, dynamic strings, and
field parameters 231

Design and build a large-format semantic model 236

Design and build composite models that include
aggregations 238

Implement dynamic row-level security and object-level
security 240

Validate row-level security and object-level security 246

Skill 3.2: Optimize enterprise-scale semantic models 248

Implement performance improvements in queries and
report visuals 248

Improve DAX performance by using DAX Studio 249

Optimize a semantic model by using Tabular Editor 2 250

Implement incremental refresh 251

Contentsviii

Chapter summary . 256

Thought experiment . 258

Thought experiment answers . 260

Chapter 4 Explore and analyze data 261
Skill 4.1: Perform exploratory analytics . 261

Implement descriptive and diagnostic analytics 261

Integrate prescriptive and predictive analytics into a
visual or report 266

Profile data 270

Skill 4.2: Query data by using SQL . 281

Query a lakehouse in Fabric using SQL queries or the
visual query editor 282

Query a warehouse in Fabric using SQL queries or the
visual query editor 288

Connect to and query datasets by using the XMLA endpoint 290

Chapter summary . 295

Thought experiment . 296

Thought experiment answers . 297

Chapter 5 Exam DP-600: Implementing Analytics Solutions
Using Microsoft Fabric updates 299

The purpose of this chapter . 299

About possible exam updates 300

Impact on you and your study plan 300

News and commentary about the exam objective updates 300

Updated technical content . 301

Objective mapping . 301

Index 305

ix

Acknowledgments

Daniil Maslyuk

I’d like to acknowledge the team at Pearson who made this book happen, including Loretta
Yates, who trusted us to write this book, and Shourav Bose, who managed the project. Songlin,
Nuric, and Linda, the editors, made this book a better read. And I’d like to thank my co-authors,
Johnny and Štěpán, without whom I wouldn’t have been able to write this book.

Johnny Winter

I’d like to thank my co-authors Daniil and Štěpán for their ongoing advice and support, and
Daniil in particular for inviting me to join the project. Thanks to our sponsoring editor Shourav
for his support and patience. Special thanks to my wife Amanda for being supportive and
allowing me the time and space to complete my contributions to the book, which often ate
into our spare time. I’d also like to thank my employers, Advancing Analytics, a great bunch of
colleagues and, dare I say it, friends. They have supported me in attending Fabric community
events, given me the opportunity to get hands on with Fabric and learn the platform end to
end, and supported me with my Fabric Analytics Engineer certification.

Štěpán Rešl

I want to acknowledge my friends and colleagues from DataBrothers for their endless support
and encouragement in co-authoring this book and for allowing me to share my thoughts and
ideas: Adam, Róza, Míra, Janek, and Lukáš. I especially want to thank my brother Matěj, who
stood behind me all the time and helped me organize everything in my work schedule so that
I could participate in this book. I also would like to thank my co-authors Daniil and Johnny for
their support, cheerful mindset, and advice during this whole project.

xi

About the Authors

DANIIL MASLYUK is an independent business intelligence consultant, trainer, and speaker
who specializes in Microsoft Power BI. Daniil blogs at xxlbi.com and tweets as @DMaslyuk.

JOHNNY WINTER is a data and analytics consultant who has been working with business
intelligence software since 2007, specializing in the Microsoft data platform since 2016. He’s a
self-confessed business intelligence geek, and in his spare time runs the website and YouTube
channel Greyskull Analytics, where he likes to nerd out about all things analytics.

ŠTĚPÁN REŠL is a lead technical consultant and a Microsoft MVP in the Data Platform
category. As a technical consultant, Štěpán focuses on assisting medium and large organiza-
tions in deploying and maintaining their data solutions. He is also a speaker and co-organizer
of conferences. In his spare time, he runs a blog called DataMeerkat, where he focuses on
topics related to data analytics.

http://xxlbi.com

xiii

Introduction

This book covers all the skills measured in the exam DP-600: Implementing Analytics
Solutions Using Microsoft Fabric. In each chapter, you’ll find a combination of step-by-step

instructional content and related high-level theoretical material. The aim is to show you the
settings you need to select and buttons you need to click to carry out the tasks required, as
well as to cover key concepts that you need to understand when designing an analytics
solution. Ultimately, we cover not only the how, but also the why.

This book covers every major topic area found on the exam, but it does not cover every
exam question. Only the Microsoft exam team has access to the exam questions, and Microsoft
regularly adds new questions to the exam, making it impossible to cover specific questions.
You should consider this book a supplement to your relevant real-world experience and other
study materials. If you encounter a topic in this book that you do not feel completely comfort-
able with, use the “Need more review?” links you’ll find in the text to find more information
and take the time to research and study the topic.

Organization of this book

This book is organized by the “Skills measured” list published for the exam. The “Skills
measured” list is available for each exam on the Microsoft Learn website: microsoft.com/learn.
Each chapter in this book corresponds to a major topic area in the list, and the technical tasks
in each topic area determine a chapter’s organization. If an exam covers six major topic areas,
for example, the book will contain six chapters.

Preparing for the exam

Microsoft certification exams are a great way to build your resume and let the world know
about your level of expertise. Certification exams validate your on-the-job experience and
product knowledge. Although there is no substitute for on-the-job experience, preparation
through study and hands-on practice can help you prepare for the exam. This book is not
designed to teach you new skills.

We recommend that you augment your exam preparation plan by using a combination of
available study materials and courses. For example, you might use the Exam Ref and another
study guide for your at-home preparation and take a Microsoft Official Curriculum course for
the classroom experience. Choose the combination that you think works best for you. Learn
more about available classroom training, online courses, and live events at microsoft.com/learn.

http://microsoft.com/learn
http://microsoft.com/learn

Introductionxiv

Note that this Exam Ref is based on publicly available information about the exam and the
authors’ experience. To safeguard the integrity of the exam, authors do not have access to the
live exam.

Microsoft certifications

Microsoft certifications distinguish you by proving your command of a broad set of skills and
experience with current Microsoft products and technologies. The exams and corresponding
certifications are developed to validate your mastery of critical competencies as you design
and develop, or implement and support, solutions with Microsoft products and technologies
both on-premises and in the cloud. Certification brings a variety of benefits to the individual
and to employers and organizations.

Access the exam updates chapter and online references

The final chapter of this book, “Exam DP-600: Implementing Analytics Solutions Using Micro-
soft Fabric updates,” will provide information about changes to content, such as additions of
new exam topics, removal of content from the exam objectives, and revised mapping of exam
objectives to chapter content. The chapter will be made available from the link below as exam
updates are released.

Throughout this book are addresses to webpages that the author has recommended you
visit for more information. Some of these links can be very long and painstaking to type, so
we’ve shortened them for you to make them easier to visit. We’ve also compiled them into a
single list that readers of the print edition can refer to while they read.

The URLs are organized by chapter and heading. Every time you come across a URL in the
book, find the hyperlink in the list to go directly to the webpage.

Download the Exam Updates chapter and the URL list at MicrosoftPressStore.com/ERDP600/
downloads.

MORE INFO ALL MICROSOFT CERTIFICATIONS

For information about Microsoft certifications, including a full list of available certifications,
go to microsoft.com/learn.

http://MicrosoftPressStore.com/ERDP600/downloads
http://MicrosoftPressStore.com/ERDP600/downloads
http://microsoft.com/learn

Introduction xv

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion content. You
can access updates to this book—in the form of a list of submitted errata and their related
corrections—at:

MicrosoftPressStore.com/ERDP600/errata

If you discover an error that is not already listed, please submit it to us at the same page.

For additional book support and information, please visit MicrosoftPressStore.com/Support.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
support.microsoft.com.

Stay in touch

Let’s keep the conversation going! We’re on X/Twitter: twitter.com/MicrosoftPress.

http://MicrosoftPressStore.com/ERDP600/errata
http://MicrosoftPressStore.com/Support
http://support.microsoft.com
http://twitter.com/MicrosoftPress

61

C H A P T E R 2

Prepare and serve data
For data to be used to get answers, it needs to be modeled, prepared, cleaned, orchestrated,
and provided so that the right users can get to it when they need it. As part of the prepara-
tion process, you often need to decide what transformation tool to use, whether to duplicate
the data, how the partitions should be created, which transformations to use, and how to
control the transformations to ensure the correct continuity of individual operations between
individual states. At the same time, you want to undertake these steps via the most efficient
means possible, ensuring optimal usage of your Microsoft Fabric resources.

Skills covered in this chapter:
 ■ Skill 2.1: Create objects in a lakehouse or warehouse

 ■ Skill 2.2: Copy data

 ■ Skill 2.3: Transform data

 ■ Skill 2.4: Optimize performance

Skill 2.1: Create objects in a lakehouse or warehouse

With data coming from various sources and in multiple formats, you need somewhere to
store it so that it can then be processed into the appropriate form, format, and style of stor-
age most suitable for its subsequent use. You need to get the data into a unified OneLake
environment, which then makes it possible to use no-code, low-code, and even full-code
transformations to process the data. Once the data is in OneLake, it is not duplicated in
multiple places, because OneLake uses shortcuts to point to specific locations of data rather
than creating additional instances of that data when it’s needed by other items.

This skill covers how to:

 ■ Ingest data by using a data pipeline, dataflow, or notebook

 ■ Create and manage shortcuts

 ■ Implement file partitioning for analytics workloads in a lakehouse

 ■ Create views, functions, and stored procedures

 ■ Enrich data by adding new columns or tables

CHAPTER 2 Prepare and serve data62

Ingest data by using a data pipeline, dataflow, or notebook
Fabric provides three basic ways to retrieve data from existing storage and systems: data
pipelines, dataflows, and notebooks. Each item uses a different user approach and targets
different types of users.

Data pipelines
A data pipeline is an item from the Data Factory experience that acts as an orchestration
component. It can run other items and services and be scheduled to run at specific times.
To start creating a pipeline, select New > Data pipeline, give the pipeline a name, then select
Create. In Figure 2-1, you can see the blank canvas of the data pipeline editor.

FIGURE 2-1 Blank data pipeline canvas in the data pipeline editor

Within the Fabric services, the Copy Activity feature uses the Data Movement service and
allows you to get data from child nodes, bring it to the Fabric environment, and save it. You
can specify the data be saved in the original data format or first converted to another format
or directly to Delta Parquet tables within Lakehouse Explorer. You can set up Copy Activity by
selecting either:

 ■ Add pipeline activity (works on the canvas)

 ■ Copy data (launches a wizard)

Neither method requires code from you to retrieve the data and convert it to the desired
format. In addition to lakehouses, Copy Activity can also work and ingest data from other
Fabric items, such as warehouses.

NOTE CSV FILE SAMPLE

If you want to try the following examples on your own, you can find the CSV file at github.com/
tirnovar/dp-600/blob/main/data/sales.

http://github.com/tirnovar/dp-
http://github.com/tirnovar/dp-

Skill 2.1: Create objects in a lakehouse or warehouse CHAPTER 2 63

EXAMPLE OF HOW TO INGEST DATA TO LAKEHOUSE BY PIPELINE
To upload data, open or create a pipeline in the workspace. In this pipeline, you can ingest your
data by following these steps:

1. Select Copy data from the blank canvas (Figure 2-2).

FIGURE 2-2 Quick actions appear only if the pipeline is empty.

2. Search and choose data sources, such as Azure Data Lake Storage Gen2 shown in
Figure 2-3.

FIGURE 2-3 Filtered data sources

3. Select Create a new connection (Figure 2-4), fill in your URL, and sign in.

CHAPTER 2 Prepare and serve data64

FIGURE 2-4 Create a new connection. Blank fields in the wizard preview require values in the proper
format to help you.

4. Choose data to import. For example, Figure 2-5 shows a file named Sales selected.

FIGURE 2-5 CSV preview of a selected file

5. Select Lakehouse as a data destination. You can use the search feature to quickly find a
specific data destination (Figure 2-6).

Skill 2.1: Create objects in a lakehouse or warehouse CHAPTER 2 65

FIGURE 2-6 Searching for lakehouse in data destinations

6. Select the existing lakehouse or create a new one (Figure 2-7).

FIGURE 2-7 Creating a new lakehouse

7. Map data to columns in a table or create a new table and define column names and
their data types (Figure 2-8).

FIGURE 2-8 Preview of column mapping

8. Select Save + Run.

The pipeline will be immediately blocked among the items to be launched. After a while, the
status of the ongoing data migration and the operation’s result will be displayed.

CHAPTER 2 Prepare and serve data66

Dataflows
An item that uses Power Query Online, DataFlow Gen2 allows you to use all existing data
connectors, including a connection to on-premises data using an on-premises data gateway.
Figure 2-9 shows how DataFlow Gen2 looks when you open it for the first time.

FIGURE 2-9 Empty canvas of DataFlow Gen2

While working with data, DataFlow Gen2 uses two additional items for staging: An auto-
matically generated lakehouse serves as Staging Storage, and a warehouse serves as Staging
Compute and can be used to write to the data destination. Figure 2-10 illustrates the process.

Data
Source

Mashup Engine
(Data Movement + Compute)

Warehouse
(Staging Compute)

Output
Destination

Dataflow Engine

Lakehouse
(Staging Storage)

FIGURE 2-10 Dataflow engine schema

Skill 2.1: Create objects in a lakehouse or warehouse CHAPTER 2 67

When data enters the dataflow engine, the mashup engine based on staging can distribute
the data to Staging Storage and Staging Compute or directly transform it and then save it to
a destination. You can set data destinations within dataflows separately for each query. Your
current destination choices are lakehouse, warehouse, Azure SQL database, and Azure Data
Explorer (Kusto). If queries have disabled staging, these items are unused, and everything
is calculated in memory (Figure 2-11), which on a smaller data sample can better impact the
consumed CUs capacity and, simultaneously, the speed. If you have a larger sample of data or a
sample requiring more transformations and even combining data from different sources, then
the impact can be precisely the opposite.

Data
Source

Mashup Engine
Output

Destination

Staging Disabled

FIGURE 2-11 Disabled staging

Because dataflows use Power Query Online, you can create transformations using a
graphical interface or directly with the M language in Advanced editor, Script view, or
Step script.

EXAMPLE OF HOW TO INGEST DATA TO LAKEHOUSE BY DATAFLOWS
To open a new DataFlow Gen2:

1. Select the “Get data from another source” link in DataFlow Gen2.

2. Search for Azure Data Lake Storage Gen2 (Figure 2-12) and select it from the
New sources section.

3. Create a new connection in a new window (Figure 2-13), select Next, and then select
Create.

NEED MORE REVIEW? M FORMULA LANGUAGE

For a definition of M formula language, please visit learn.microsoft.com/powerquery-m.

http://learn.microsoft.com/powerquery-m

CHAPTER 2 Prepare and serve data68

FIGURE 2-12 Choose a data source wizard

FIGURE 2-13 Connection settings

4. Filter the files. If you have the file names, you can filter by the Name column in
Figure 2-14; otherwise, you can use the column Folder Path to select the data
container/folder destination.

5. If you are selecting just one file, you can directly select the value [Binary] in the Content
column, and Power Query will extract data for you. Otherwise, use the Combine icon
next to the column name (two arrows pointing down), set the file origin if necessary, and
select OK. Figure 2-15 shows a preview of the data.

Skill 2.1: Create objects in a lakehouse or warehouse CHAPTER 2 69

FIGURE 2-14 Filter using the Name column.

FIGURE 2-15 Data preview

6. Prepare the data, select the plus icon (right corner) to add a data destination, and then
choose Lakehouse (Figure 2-16).

CHAPTER 2 Prepare and serve data70

FIGURE 2-16 Possible data destinations

7. Create your connection for all lakehouses, or use the one you already have.

8. Search for your lakehouse (Figure 2-17), and choose a table to insert data or create a
new one.

FIGURE 2-17 Destination target

9. Disable Use automatic settings. Select Replace and Dynamic schema. Set data types
of all inserted columns or select columns that will be used with selected data types as a
schema for the new table. You can see the full settings in Figure 2-18.

Skill 2.1: Create objects in a lakehouse or warehouse CHAPTER 2 71

FIGURE 2-18 Destination settings

10. Disable staging of the query by right-clicking a query in the Queries pane and toggling
off Enable staging.

11. Publish the dataflow, and refresh it.

The table is created and filled with data as soon as the dataflow is updated. You can update
your dataflow manually, or you can set regular updates. Because users often need to branch out
individual transformation processes, timing all items separately can be problematic. That’s why
using the orchestration capabilities of a data pipeline is good, as they can also run dataflows.

Notebooks
Notebooks are items that are used primarily for creating Apache Spark jobs and machine learn-
ing experiments. A notebook itself does not allow you to perform data transformations using
the UI. Instead, you must use of one of the supported scripting languages:

 ■ PySpark (Python)

 ■ Spark SQL

 ■ Spark (Scala)

 ■ SparkR (R)

You can use these languages in individual code cells that can be executed independently
regardless of their order or run sequentially. If a notebook is started using a pipeline, for
example, then all cells are executed in their order. Individual code cells can reuse previous
cells’ variables and outputs, so combining individual scripting languages is possible to obtain
a result. In addition to these languages, you can also use Markdown notepads. However, it is
possible to create notes in code cells according to the rules of the chosen language.

Notebooks are extended with the Data Wrangler tool, which allows you to perform
transformation and explorer operations with data using a graphical interface similar to Power
Query. It currently allows editing data loaded as pandas DataFrame and Spark DataFrame.

CHAPTER 2 Prepare and serve data72

Notebooks allow the use of many libraries, which are ready-made collections of code for
the user. You can use three types of libraries:

 ■ Built-in These are pre-installed libraries for each Fabric Spark runtime, according to its
settings. For specific details, consult “Apache Spar Runtimes in Fabric” at learn.microsoft.
com/en-us/fabric/data-engineering/runtime.

 ■ Public These libraries are stored in public repositories like PyPI or Conda. Public
libraries must be installed within individual notebook runs or in advance in the runtime
via a custom environment or workspace default environment.

 ■ Custom These are libraries created within the organization or provided by any
developer. You can use .whl libraries for Python, .jar for Java, or .tar.gz for R.

You can use the code below to inline call pieces of libraries for notebook purposes. The first
line imports the full library, and the second imports only specifically named functions from a
library:

import {name-of-package-from-library} [as {user-defined-name-of-package}]
from {name-of-package-from-library} import {name-of-function}

Also, thanks to libraries, notebooks can get data from a large number of source locations
and can also get it to a lot of destinations. Thus, notebooks use Fabric capacity for their opera-
tion, and the admin should monitor this use of capacity to prevent a possible shortage.

EXAMPLE OF HOW TO INGEST DATA TO A LAKEHOUSE BY A NOTEBOOK
Open a blank notebook, and follow these steps:

1. Insert the following code into the first cell:

azure_data_lake_gen2_name = "<name-of-your-ADLG2>"
blob_container_name = "<container-name>"
file_name = "<file-name>"
path = f'abfss://{blob_container_name}@{azure_data_lake_gen2_name}.dfs.core.
windows.net/{file_name}'

2. Fill variables by your content.

3. Create a new Code cell.

4. Insert the following code:

df = spark.read.format('csv').options(header='True',inferSchema='True').load(path)

5. Add a lakehouse by selecting Lakehouse in Explorer.

6. Select Add in the left of the window (Figure 2-19).

NEED MORE REVIEW? DATA WRANGLER

To find more information about Data Wrangler, please read “How to accelerate Data Prep with
Data Wrangler in Microsoft Fabric” at learn.microsoft.com/fabric/data-science/data-wrangler.

M02_Maslyuik_C02_p061-142.indd 72 17/07/24 2:03 PM

http://learn.microsoft.com/en-us/fabric/data-engineering/runtime
http://learn.microsoft.com/en-us/fabric/data-engineering/runtime
http://{azure_data_lake_gen2_name}.dfs.core.windows.net/
http://{azure_data_lake_gen2_name}.dfs.core.windows.net/
http://learn.microsoft.com/fabric/data-science/data-wrangler

Skill 2.1: Create objects in a lakehouse or warehouse CHAPTER 2 73

FIGURE 2-19 Preview of data in a notebook

7. In the popup, choose if you want to create a new lakehouse or use an existing one
(Figure 2-20).

FIGURE 2-20 Add lakehouse options

8. Your decision in step 7 will stop the current Spark session. You need to confirm this by
selecting the Stop now button.

9. Create a new Code cell, and insert the following code:

df.write.mode("overwrite").format("delta").saveAsTable('salesByNotebook')

10. Select Run all.

Once selected, the lakehouse will create a new table named salesbyNotebook with the
schema defined by the data frame. In addition, you can use the function saveAsTable to save;
the input would look like save(’Table/salesByNotebook’). There is often no need to overwrite
all data stored in tables, so you can use mode(’append’) just to add new rows. If you want to save
data not as a table but as a file, you can use save(’Files/<name-of-folder-for-files>’).
The result would then look like:

df.write.format("csv").save("Files/SalesData")
df.write.format("parquet").save("Files/SalesData")

CHAPTER 2 Prepare and serve data74

Create and manage shortcuts
Shortcuts are objects in OneLake that point to other storage locations. They appear as
folders in OneLake; any experience or service with access to OneLake can use them. OneLake
shortcuts behave similarly to Microsoft Windows shortcuts. They’re independent objects
from the target to which they are just pointing. If you delete a shortcut, the target remains
unaffected. The shortcut can break if you move, rename, or delete a target path.

Shortcuts can be created in lakehouse or KQL (Kusto Query Language) databases,
and you can use them as data directly in OneLake. Any Fabric service can use them without
necessarily copying data directly from a data source. Shortcuts can be created as:

 ■ Table shortcut

 ■ File shortcut

Thanks to the ability to create shortcuts with data stored directly in OneLake, you can reuse
data between lakehouses stored in different workspaces. These shortcuts can be generated
from a lakehouse, warehouse, or KQL database. They can also access data for notebook
transformations or other Fabric items.

EXAMPLE OF HOW TO CREATE A SHORTCUT INSIDE A LAKEHOUSE
You can create a shortcut if you own a lakehouse by following these steps:

1. Open Lakehouse Explorer.

2. Right-click a directory within the Explorer pane, or select the ellipsis icon that appears
when you hover over the Tables or Files main folder.

3. Select New shortcut (Figure 2-21).

FIGURE 2-21 Creating a new shortcut

Skill 2.1: Create objects in a lakehouse or warehouse CHAPTER 2 75

4. Select a source of data, such as Azure Data Lake Storage Gen2 (Figure 2-22).

FIGURE 2-22 Shortcut wizard

5. Fill in the connection settings.

6. Name the shortcut, and set the subpath to your data.

7. Select the new shortcut folder to preview the data (Figure 2-23).

FIGURE 2-23 Data preview

As you can see in Figure 2-24, shortcuts are indicated by a folder icon similar to the one
used for Tables and Files but with an added link symbol. This icon is attached to the original
icon and can recognize data connected as shortcuts. To delete a shortcut, select the ellipsis
icon displayed after hovering over the shortcut name and select the Delete option.

FIGURE 2-24 Icon previews

CHAPTER 2 Prepare and serve data76

Implement file partitioning for analytics workloads in a
lakehouse
A crucial technique in data management, data partitioning involves dividing a large dataset
into smaller, more manageable subsets known as partitions. Each partition holds a portion of
the data, which can be stored and processed independently.

Partitions are represented as folders that contain Parquet files that all meet the same
partition condition. A partition condition uses data in a selected column (or columns) because
multiple partitions are supported. Based on them, you can create a partition folder with an
exact name pattern: <partition-name>=<value>. For example, Figure 2-25 shows a preview of
COUNTRY partitions. Note that a partition folder must contain at least one file; empty partition
folders are automatically removed.

FIGURE 2-25 Deployed COUNTRY partitions

Not every column can be used as a partition column, because partition columns must have
one of the following data types:

 ■ String

 ■ Integer

 ■ Boolean

 ■ DateTime

If a column contains empty values, one more partition with a condition equal to
__HIVE_DEFAULT_PARTITION__ will be created.

Delta tables are also filed by composition so that the same principle can be applied to them.
However, the Copy Activity options within pipelines, DataFlow Gen2, and notebooks currently
allow you to create partitions using Copy Activity (only for tables) and notebook (for tables
and files).

Skill 2.1: Create objects in a lakehouse or warehouse CHAPTER 2 77

EXAMPLE OF IMPLEMENTING PARTITIONS BY COPY ACTIVITY IN A PIPELINE
Open the new data pipeline in the same workspace as a lakehouse, which will be used as a data
destination, and then follow these steps:

1. Add a Copy Activity by selecting Add pipeline activity > Copy data. Under Source,
select Sample dataset, select Browse, and then choose a dataset, such as NYC
Taxi – Green (Parquet), as shown in Figure 2-26.

FIGURE 2-26 Inserting a sample dataset as a data store type

2. Under Destination, select a destination lakehouse.

3. Open Advanced options.

4. Enable partitions.

5. Add partitions columns (Figure 2-27).

FIGURE 2-27 Enabling partitions and assigned columns from the data source

6. Select Run.

This run’s result will look the same in the Lakehouse Explorer as the run without partitions.
The difference occurs when you select the created table’s ellipsis and select View files. The
result will then look similar to Figure 2-28.

CHAPTER 2 Prepare and serve data78

FIGURE 2-28 Implemented partitions on a table with a blank value

EXAMPLE OF IMPLEMENTING PARTITIONS USING FABRIC NOTEBOOKS
Create and open a new notebook in a workspace where is also a lakehouse that might be used
as a data destination, and then follow these steps:

1. Connect to the lakehouse with the data ingested by the previous pipeline.

2. Delete all default cells, and create one new Code cell.

3. Insert the following code:

df = spark.sql("SELECT * FROM nyc")
df.write.partitionBy("vendorID","tripType","paymentType").mode("overwrite").
parquet("Files/nyc")

4. Select Run.

The function partitionBy from step 3 creates partitions based on the column names
inserted, which in this case are vendorID, tripType, and paymentType. These appear both in
Lakehouse Explorer (Figure 2-29) and a notebook’s Lakehouse Preview.

FIGURE 2-29 Preview of partitions in Lakehouse Explorer

Skill 2.1: Create objects in a lakehouse or warehouse CHAPTER 2 79

Create views, functions, and stored procedures
Fabric lakehouses that use SQL analytic endpoints and warehouses both support the creation
of views, functions, and stored procedures. Three components are integral parts of a SQL
database:

 ■ View A virtual table whose content is pre-defined by a query

 ■ Function A user-defined function that accepts parameters, performs an action, such
as a complex calculation, and returns the result as a scalar value or a table

 ■ Stored procedure A block of T-SQL code stored in a database that the client can
execute

All of them can be created using the SQL query editor either directly in the SQL analytic
endpoint interface via the SQL query of the mentioned items or by using SQL Management
Studio or Azure Data Studio. You can create views and stored procedures using templates
also. To access them, hover over their respective folder, and then select the ellipsis icon that
appears (Figure 2-30). Note that the Refresh option in the resulting menu refreshes only the
preview of the data, not the data itself.

FIGURE 2-30 Quick options for creating a Stored Procedure

 NOTE CSV FILE SAMPLE

The data in the following examples are created from the CSV file found at
github.com/tirnovar/dp-600/blob/main/data/sales.

http://github.com/tirnovar/dp-

CHAPTER 2 Prepare and serve data80

Views
You can create a view in two ways: using a SQL command in the SQL query editor or a visual
query, which is a no-code option that uses Diagram view in Power Query and is shown in
Figure 2-31.

FIGURE 2-31 Diagram experience with data preview of a visual query

You can open the entire Power Query Online window, but you risk using an untranslatable
operation. Power Query provides you with a data preview during each transformation step,
allowing you to navigate your data easily and see what is happening. If you only use operations
that Power Query can convert to SQL, you can save your results by selecting the Save as view
button. (If you use a nontranslatable operation, an information banner will immediately tell
you.) The Save as view popup is shown in Figure 2-32.

Another approach is to use the SQL query editor, where you can write and execute all your
queries. These queries can also be stored as a personal queries alias, My queries, or as Shared
queries, which all users with the right to access that item (SQL endpoint or warehouse) can see
and potentially use if they have permission to execute SQL queries. This option contains a Save
as view button next to the Run button. You can save any selected part of the code to create
a new view. You can, therefore, test even more complex queries or perform different queries
simultaneously. When you find a specific part of the code that suits you and returns the correct
results, you can create a view from it, as shown in Figure 2-33.

Skill 2.1: Create objects in a lakehouse or warehouse CHAPTER 2 81

FIGURE 2-32 SQL Preview in the Save as view

FIGURE 2-33 Selected T-SQL that will be used as a view

CHAPTER 2 Prepare and serve data82

As with a visual query, you still need to set the view’s name (Figure 2-34). You can also take
another look at the code that will be used.

FIGURE 2-34 T-SQL preview in Save as view window

Of course, you have the option to create views directly using CREATE VIEW using the
following syntax:

 CREATE [OR ALTER] VIEW [schema_name .] view_name [(column_name [,...n])]
AS <select_statement> [;]
<select_statement> ::=
 [WITH <common_table_expression> [,...n]]
 <select_criteria>

NEED MORE REVIEW? T-SQL VIEWS

For more information about views, please visit learn.microsoft.com/sql/t-sql/statements/
create-view-transact-sql.

http://learn.microsoft.com/sql/t-sql/statements/create-view-transact-sql
http://learn.microsoft.com/sql/t-sql/statements/create-view-transact-sql

Skill 2.1: Create objects in a lakehouse or warehouse CHAPTER 2 83

Functions
Functions cannot be defined using a visual query, so you must use the T-SQL syntax directly
within the SQL query option using the function syntax:

CREATE FUNCTION [schema_name.] function_name ([{ @parameter_name [AS] parameter_
data_type [= default] } [,...n]])
RETURNS TABLE
 [WITH SCHEMABINDING] [AS]
RETURN [(] select_stmt [)] [;]

Alternatively, you could use another tool, such as Azure Data Studio or SQL Management
Studio.

Stored Procedures
Stored procedures cannot be created using a visual query either. T-SQL syntax must be used
here as well:

CREATE [OR ALTER] { PROC | PROCEDURE } [schema_name.] procedure_name
 [{ @parameter data_type } [OUT | OUTPUT]] [,...n]
AS
{ [BEGIN] sql_statement [;][,...n] [END] } [;]

You can also create stored procedures using a shortcut that prepares the piece of code.
To use this shortcut, follow these steps:

1. Open Warehouse Explorer.

2. Right-click the Stored Procedures folder or the ellipsis that appear after hovering
over it.

3. Select New stored procedure.

To use this shortcut as a SQL query in Warehouse Explorer:

1. Open Warehouse Explorer.

2. Expand more options at the New SQL query.

3. Select Stored procedure.

Both approaches create the code shown in Figure 2-35 as a new SQL query. You can then
edit your code and prepare it to do exactly what you need.

NEED MORE REVIEW? FUNCTIONS

For more information about functions, please visit learn.microsoft.com/sql/t-sql/statements/
create-function-sql-data-warehouse.

http://learn.microsoft.com/sql/t-sql/statements/create-function-sql-data-warehouse
http://learn.microsoft.com/sql/t-sql/statements/create-function-sql-data-warehouse

CHAPTER 2 Prepare and serve data84

FIGURE 2-35 Create a stored procedure template

Enrich data by adding new columns or tables
As you prepare the data based on the input scenarios, it may sometimes correspond to how it
will need to look in the end. Often, though, additional columns or tables will need to be added
and existing ones modified or removed. Microsoft Fabric, within its ingest items and T-SQL,
allows you to enrich the data and thus compile the resulting views containing precisely what is
needed.

Remember that Warehouse Explorer and SQL endpoint currently do not support ALTER
TABLE ADD COLUMN within the lakehouse and warehouse data items. Therefore, extending tables
with additional columns by T-SQL is impossible; instead, you must delete the table and create it
again. Within Lakehouse Explorer, however, you can edit the Delta tables schema using
notebooks or SparkJobs.

The withColumn() and select() functions can extend existing DataFrames. The select()
function allows you to define the columns you want to keep from the existing DataFrame. At
the same time, it allows the columns defined below to be renamed, be retyped, or to perform
some function with them, such as explode(). This feature allows you to select the same column

NEED MORE REVIEW? STORED PROCEDURES

For more information about stored procedures, please visit learn.microsoft.com/sql/t-sql/
statements/create-procedure-transact-sql.

NOTE AZURE DATA STUDIO AND SQL MANAGEMENT STUDIO

A SQL endpoint and warehouse can be connected using Azure Data Studio or SQL Manage-
ment Studio. These tools provide you with various ready-made templates for creating views,
functions, and stored procedures from their environment.

http://learn.microsoft.com/sql/t-sql/statements/create-procedure-transact-sql
http://learn.microsoft.com/sql/t-sql/statements/create-procedure-transact-sql

Skill 2.1: Create objects in a lakehouse or warehouse CHAPTER 2 85

twice, expanding the DataFrame with a new column. The function withColumn() returns a new
DataFrame by adding a column or replacing the existing one with the same name.

Consider a few examples of using these functions:

df.select("id","name") # Will select only two columns from whole DataFrame
df.select("*",(df.UnitPrice-df.ProductionPrice).alias('ProductMargin')) # Calculates new
column based on two existing and will contain all previous columns
df.withColumn('ProductMargin', df.UnitPrice – df.ProductionPrice) # Calculates new
column based on two existingwithColumn('UnitPrice', df.UnitPrice + 10) # Replaces
current column UnitPrice with new values

To modify the existing schema of existing tables using the schema of extended DataFrames,
you can use two options parameters of the options() function:

 ■ mergeSchema Expands the existing schema with the schema of the Spark frame being
written

 ■ overwriteSchema Overwrites the schema of the existing Delta table with the schema of
the written Spark frame

For example, you could use:

df.write.mode("overwrite").option("mergeSchema", "true").saveAsTable("sales")
df.write.model("overwrite").option("overwriteSchema", "true").saveAsTable("sales")

As shown in the previous section, you can create a table using Copy Activity, DataFlow
Gen2, or notebooks directly based on the data. You can also ingest data using a data pipeline,
dataflow, or notebook. At the same time, you can create a new table using T-SQL within the
Warehouse Explorer.

1. Select New SQL query to expand it.

2. Select Table (Figure 2-36).

NEED MORE REVIEW? FUNCTION EXPLODE()

For the Spark definition of function explode(), please visit spark.apache.org/docs/3.1.3/api/
python/reference/api/pyspark.sql.functions.explode.html.

IMPORTANT REMOVING EXISTING COLUMNS BY overwriteSchema

Suppose an existing column is eliminated by overwriteSchema but not existing Parquet (like
meanwhile Append mode). In that case, the data will not be discarded and will still be part of
existing Parquet files. Only from the schema’s point of view does the given column no longer
exist, and it is not usually possible to query it.

http://spark.apache.org/docs/3
http://3/api/python/reference/api/pyspark.sql.functions.explode.html
http://3/api/python/reference/api/pyspark.sql.functions.explode.html

305

Index

A
access control

protected labels, 30
workspace-level, 26–28

accuracy, data, 109
ADDCOLUMNS function, 184–185
admin portal, 4

Data model settings, 12
Endorsement and discovery settings, 10
Export and Sharing settings, 7–9
Fabric settings, 4–6
Git integration settings, 13–14
Information Protection settings, 6–8
Integration settings, 10–11
OneLake settings, 13
Scale-out settings, 12
Workspace settings, 6

aggregate data, 117–119
aggregation table, 238–239
ALL function, 176–178
ALLEXCEPT function, 179
ALLNOBLANKROW function, 178
ALLSELECTED function, 215–216
analytics

descriptive, 261–262
data visualization, 262
reports, 263
summary statistics, 262

diagnostic, 264
anomaly detection, 264–265
cohort analysis, 264
hypotheses, 264
techniques, 264

exploratory, 261
predictive, 266, 267
prescriptive, 266, 269

anomaly detection, 264–265
apps, Microsoft Fabric Capacity Metrics, 3
assigning, Sensitivity Labels, 30–32

audit, data, 110
Azure DevOps, 46–47

B
binning, 165–168
bottlenecks, performance, 133
BPA (Best Practice Analyzer), 250
bridge table, 113–116, 150
budget, data analytics solution, 4
bursting, 3

C
CALCULATE function, 171–173, 211–215
calculated column

circular dependency, 173–174
creating, 153
grouping values, 162

binning, 165–168
IF function, 162–163
List group type, 168
SWITCH function, 163–165
using Power BI interface, 165

calculated table, 174, 204–206
CALCULATETABLE function, 179–180
calculation groups, 231–234
CALENDAR function, 192–194
CALENDARAUTO function, 193
capacity, Fabric, 3
CAST() function, 125–127
cast() function, 127–128
certification, 9
choosing, gateway type, 14
circular dependency, 173–174

306

COALESCE() function

creating
calculated column, 153–154
data pipeline, 62
functions, 83
shortcuts, 74–75
stored procedures, 83–84
tables, 85–87
views, 80–82

CROSSJOIN function, 188–189
CU (capacity unit) seconds, 3

D
data

accuracy, 109
aggregation, 117–119
audit, 110
completeness, 109–110, 277–279
consistency, 110
copying, 87–88
denormalization, 116–117
filtering, 128

using M formula language, 130–131
using PySpark, 131–132
using T-SQL, 128–130

joining, 120
merging, 120–122
quality, 110
relationships, 281
security, 2–3
sharing, 28–29
uniformity, 110
validity, 109
variety, 2
velocity, 2
volume, 2

data analytics solution
configure Fabric-enabled workspace settings,
33–36
implement data sharing, 28–29
implement workspace- and item-level access
controls for Fabric items, 26–28
manage Fabric capacity, 37–39
manage the analytics development lifecycle, 39–40

create and manage a Power BI Desktop project,
42–43
deployment rules, 46

COALESCE() function, 125
code

DAX, variables, 169–170
formatting, 158

cohort analysis, 264
column/s

adding, 84–87
calculated, 153

circular dependency, 173–174
grouping values, 162–168

fully qualified syntax, 155
measures, 206–208

versus calculated columns, 208
dynamic strings, 234
implicit, 231
Opening Profit, 220
using CALCULATE function, 211–215

object-level security, 243–244
commands

Fabric
OPTIMIZE, 135–137
VACUUM, 135–137

SQL
CREATE FUNCTION, 83
CREATE VIEW, 82

composite model, aggregations, 238–239
compute, bursting, 3
conditional queries, 289–290
consistency, data, 110
conversion, data type, 151

using PySpark, 127–128
using SQL, 125–127

CONVERT() function, 125–127
copying data, 87–88

fast copy, 95–99
between lakehouses

using a notebook, 92–95
using data pipeline, 89–91
using DataFlow Gen2, 91–93

corr() function, 281
COUNT function, 209
COUNTAX function, 209
COUNTBLANK function, 209–210
counting values in DAX, 208–211
COUNTROWS function, 209
COUNTX function, 209
CREATE FUNCTION command, 83
CREATE VIEW command, 82

307

DAX

implement version control for a workspace, 40–42
plan and implement deployment solutions, 44–47

planning, 1, 2–3
add a data source to a gateway, 18–19
budget, 4
choose a data gateway type, 14. See also gateway
create a custom Power BI report theme, 20–25
CU (capacity unit) seconds, 3
Fabric capacity, 3
Fabric SKU, 3
Fabric workload, 3
licensing, 4
manage data source users, 19
manage gateway settings, 16–17
manage gateway users, 17
recommend settings in the Fabric admin portal,
4–14. See also settings
skillsets, 3
tenant administration for gateways, 15–16
use a gateway, 19–20

Sensitivity Labels, 30
assigning, 30–32
inheritance, 32–33
protected, 30

data distribution, 274–278
data model, 143

field parameters, 235–236
settings, 12

data partitioning, 76. See also partition/s
data pipeline

adding a dataflow, 102–103
adding a notebook, 103–104
adding a pipeline activity, 99–100
adding a stored procedure, 100–102
copying data between lakehouses, 89–91
creating, 62
editor, 62
implementing partitions by Copy Activity, 77–78
ingesting data to lakehouse, 63–65
scheduling, 105
Transform group, 100

data profiling, 270
data pattern, 280
outputs, 270
tools, 270

data sources, connectivity
Direct Lake, 145
DirectQuery, 144–145

data statistics, 271–274

data type
conversion, 151

implicit, 155–156
using PySpark, 127–128
using SQL, 125–127

DAX, 151
data visualization, 262
data warehouse, 2–3

bridge table, 113
copying data to, 87–88
data sharing, 28–29
Direct Lake, 144
impact analysis, 49
querying, 288–290
star schema, 111

denormalization of data, 116–117
dimension table, 111–112
fact table, 111–112
SCD (slowly changing dimension), 112–113

Data Wrangler, 71, 275–276, 277–278
dataflow/s, 3, 66–67

adding to a data pipeline, 102–103
checking for duplicate data, 122–123
copying data between lakehouses, 91–93
fast copy, 95–99
ingesting data to lakehouse, 67–71
performance guidelines, 133–134
refresh history, 97
scheduling, 106–108

DataFrame, adding columns, 84–87
DATATABLE function, 202–204
date and time functions, 160–161
DATEADD function, 220–222
DATESBETWEEN function, 223–224
DATESINPERIOD function, 224
DATESMTD function, 218
DATESQTD function, 218
DATESYTD function, 218
DAX, 143, 270

calculated column, creating, 153–154
counting values, 208–211
data types, 151, 155–156
functions

ADDCOLUMNS, 184–185
ALL, 176–178
ALLEXCEPT, 179
ALLNOBLANKROW, 178
ALLSELECTED, 215–216
AND, 153

308

DAX, continued

UNION, 195–196
USERNAME, 242
USERPRINCIPALNAME, 242
VALUES, 180
window, 228–230
WINDOW, 229–230

null values, handling, 152
operators, 152–153
query/ies

DEFINE, 293
EVALUATE statement, 292–293
ORDER BY, 293
parameters, 294–295
START AT, 294

Time Intelligence, 216–224
variables, 169–170

DAX Formatter, 157–158
DAX Studio, 146, 249–250, 291–292
de-aggregation, 117–119
delta file format, 2
Delta table, 135
denormalization of data, 116–117
dependency, circular, 173–174
Deployment Pipeline, perform impact analysis of
downstream dependencies, 47–55
deployment rules, 46
describe() function, 262
descriptive analytics, 261–262

data visualization, 262
reports, 263
summary statistics, 262

development lifecycle, 39
create and manage a Power BI Desktop project, 42–43
implement version control for a workspace, 40–42
perform impact analysis of downstream
dependencies, 47–55
plan and implement deployment solutions, 44–47

diagnostic analytics, 264
anomaly detection, 264–265
cohort analysis, 264
hypotheses, 264
techniques, 264

Direct Lake, 144, 145
advantages, 145
disadvantages, 145

DirectQuery, 144
advantages, 144–145
disadvantages, 145

disconnected tables, passing filters from, 226–230

DAX, continued
CALCULATE, 171–173
CALCULATETABLE, 179–180
CALENDAR, 192–194
CALENDARAUTO, 193
COUNT, 209
COUNTAX, 209
COUNTBLANK, 209–210
COUNTROWS, 209
COUNTX, 209
CROSSJOIN, 188–189
DATATABLE, 202–204
date and time, 160–161
DATEADD, 220–222
DATESBETWEEN, 223–224
DATESINPERIOD, 224
DISTINCT, 180
DISTINCTCOUNT, 210–211
EXCEPT, 198–199
FILTER, 174–176
FIND, 156–157
FORMAT, 151–152
GENERATEALL, 189–190
GENERATESERIES, 190–192
IF, 162–163
IFERROR, 157
INDEX, 229
information, 230–231
INTERSECT, 196–198, 226–227
LEN, 156, 158
LOOKUPVALUE, 161–162
mathematical, 159–160
NATURALINNERJOIN, 199–201
NATURALLEFTOUTERJOIN, 201–202
OFFSET, 229
RANK, 228–229
RELATED, 155
RELATEDTABLE, 155
ROW, 194
row context, 170–174
ROWNUMBER, 228–229
SELECTCOLUMNS, 185–187
SELECTEDVALUE, 225–226
SUBSTITUTE, 158–159
SUMMARIZE, 181–184
SUMMARIZECOLUMNS, 184
SWITCH, 163–165
TOPN, 187–188
TREATAS, 227–228

309

function/s

display() function, 262, 274, 279
DISTINCT function, 180
DISTINCTCOUNT function, 210–211
DP-600 Implementing Analytics Solutions Using
Microsoft Fabric exam

objective mapping, 301–303
updates, 300–301

dtypes() function, 271
duplicate data, checking for

in dataflows, 122–123
in SQL and PySpark, 123–124

dynamic RLS (row-level security), 241–243
dynamic strings, 234

E
endorsement, settings, 10
endpoint, XMLA (XML for Analysis), 10–11, 50–52, 291
enterprise-scale semantic model, optimizing query and
report performance, 248–249
EVALUATE statement, 292–293
evaluation context, 170–174
Excel, data analysis, 11
EXCEPT function, 198–199
explicit measures, 208
exploratory analytics, 261
Export and Sharing settings, 7–9
expr() function, 127–128
extending tables, 84–87

F
Fabric

admin portal, 4. See also admin portal
capacity, 3, 37–39
Deployment Pipelines, 44–47
experiences, 2
implement workspace- and item-level access con-
trols, 26–28
OPTIMIZE command, 135–137
settings, 4–6
shared semantic model, 54–55
SKU (stock keeping unit), 3

fast copy, 95–99
field parameters, 235–236
filter context, 170–174
filter data, 128

using M formula language, 130–131
using PySpark, 131–132
using T-SQL, 128–130

filter() function, 131–132
FILTER function, 174–176
filters, passing from disconnected tables, 226–230
FIND function, 156–157
fixing implicit measures, 208
FORMAT function, 151–152
formatting, code, 158
formulas. See also functions

DAX, variables, 169–170
evaluation context, 170–174

full outer join, 120
AND function, 153
function/s, 79

corr(), 281
creating, 83
DAX

ADDCOLUMNS, 184–185
ALL, 176–178
ALLEXCEPT, 179
ALLNOBLANKROW, 178
ALLSELECTED, 215–216
AND, 153
CALCULATE, 171–173
CALCULATETABLE, 179–180
CALENDAR, 192–194
CALENDARAUTO, 193
COALESCE(), 125
COUNT, 209
COUNTAX, 209
COUNTBLANK, 209–210
COUNTROWS, 209
COUNTX, 209
CROSSJOIN, 188–189
DATATABLE, 202–204
date and time, 160–161
DATEADD, 220–222
DATESBETWEEN, 223–224
DATESINPERIOD, 224
DATESMTD, 218
DATESQTD, 218
DATESYTD, 218
DISTINCT, 180
DISTINCTCOUNT, 210–211
EXCEPT, 198–199
FILTER, 174–176
FIND, 156–157

310

function/s, continued

na.fill(), 125
summary(), 271

QuickVisualize(), 263
select(), 84–85
SQL

CAST(), 125–127
CONVERT(), 125–127

Table.Profile(), 273, 277–278
Table.Schema(), 273
withColumn(), 84–85

G
gateway, 19–20

adding a data source, 18–19
choosing, 14
data source users, 19
installation, 15–16
Personal mode, 15
settings, 16–17
Standard mode, 15
tenant administration, 15
users, 17
VNet, 16

GENERATEALL function, 189–190
GENERATESERIES function, 190–192
Git integration, 13–14, 40
governance, 4, 7, 25
grouping values, 162

binning, 165–168
IF function, 162–163
List group type, 168
SWITCH function, 163–165
using Power BI interface, 165

H
heat map, 281
histogram, 274, 276–277
hypotheses, 264

I
IF function, 162–163
IFERROR function, 157
impact analysis of downstream dependencies, 47–49

function/s, continued
FORMAT, 151–152
GENERATEALL, 189–190
GENERATESERIES, 190–192
IF, 162–163
IFERROR, 157
INDEX, 229
information, 230–231
INTERSECT, 196–198, 226–227
LEN, 156, 158
LOOKUPVALUE, 159–161
mathematical, 159–160
NATURALINNERJOIN, 199–201
NATURALLEFTOUTERJOIN, 201–202
OFFSET, 229
OPENINGBALANCEMONTH, 218
RANK, 228–229
RELATED, 155
RELATEDTABLE, 155
ROW, 194
row context, 170–174
ROWNUMBER, 228–229
SELECTCOLUMNS, 185–187
SELECTEDVALUE, 225–226
SUBSTITUTE, 158–159
SUMMARIZE, 181–184
SUMMARIZECOLUMNS, 184
SWITCH, 163–165
Time Intelligence, 216–224
TOPN, 187–188
TREATAS, 227–228
UNION, 195–196
USERNAME, 242
USERPRINCIPALNAME, 242
VALUES, 180
window, 228–230
WINDOW, 229–230

display(), 279
filter context, 170–174
Inspect(), 274–275, 278–279
MLflow, PREDICT, 267
options(), 85
PySpark

cast(), 127–128
describe(), 262
display(), 262, 274
dtypes(), 271
expr(), 127–128
filter(), 131–132

311

merging data

implementing
partitions

using Copy Activity in a pipeline, 77–78
using Fabric notebooks, 78

star schema, 148
implicit measures, 231
implicit type conversion, 155–156
importing

data to Power BI, 144
libraries to notebook, 72

inactive relationships, 224–225
incremental refresh, 251–252

creating the RangeStart and RangeEnd
parameters, 252
filtering by using the RangeStart and RangeEnd
parameters, 253–254
policies, 254–256
query folding, 256

INDEX function, 229
information functions, 230–231
Information Protection settings, 6–8
ingesting data

fast copy, 95–99
to lakehouse

using a notebook, 72–73
using data pipeline, 63–65
using dataflows, 67–71

inheritance, Sensitivity Label, 32–33
inner join, 120
Inspect() function, 274–275, 278–279
installation, gateway, 15–16
integration, settings, 10–11
IntelliSense, 154
INTERSECT function, 196–198, 226–227
item-level access control, 26–28

J
joins, 120, 121
JSON, editing Power BI theme file, 23–24

L
lakehouse/s, 2–3

bridge table, 113–116
copying data between

using a notebook, 92–95

using data pipeline, 89–91
using DataFlow Gen2, 91–93

copying data to, 87–88
data partitioning, 76
data sharing, 28–29
Direct Lake, 144
impact analysis, 49
ingesting data

by dataflows, 67–71
by pipeline, 63–65
using a notebook, 72–73

sample data, 89
shortcut, creating, 74–75
SQL queries, 282–284
star schema, 111

denormalization of data, 116–117
dimension table, 111–112
fact table, 111–112
SCD (slowly changing dimension), 112–113

large-format semantic model, building, 236–238
left anti join, 120
left outer join, 120
LEN function, 156, 158
library/ies

importing to notebook, 72
MatplotLib, 276–277
powerbiclient, 263
predictive analytics, 267

licensing, Power BI, 4
line charts, 267–268
Lineage view, workspace, 47
LOOKUPVALUE function, 159–161

M
M language, 130–131, 143
many-to-many relationship, 113, 148–150
mathematical functions, 159–160
MatplotLib library, 276–277
measures, 206–208

versus calculated columns, 208
dynamic strings, 234
implicit, 231
Opening Profit, 220
query-level, 293
using CALCULATE function, 211–215

membership, security role, 245–246
merging data, 120–122

312

metadata

using Copy Activity in a pipeline, 77–78
using Fabric notebooks, 78

passing filters from disconnected tables, 226–230
.pbids file, 52–54
performance

bottlenecks, 133
DAX, 249–250
notebook, best practices, 134
query, 248–249
report, optimizing, 248–249
semantic model, 250
SQL, best practices, 134

Personal mode, gateway, 15
pipeline, impact analysis, 49. See also data pipeline
planning a data analytics solution, 1, 2–3, 16

add a data source to a gateway, 18–19
budget, 4
choose a data gateway type, 14. See also gateway
create a custom Power BI report theme, 20–25
CU (capacity unit) seconds, 3
Fabric capacity, 3
Fabric SKU, 3
Fabric workload, 3
licensing, 4
manage data source users, 19
manage gateway settings, 16–17
manage gateway users, 17
recommend settings in the Fabric admin portal, 4–14.
See also settings
skillsets, 3
tenant administration for gateways, 15–16
use a gateway, 19–20

policies
incremental refresh, 254–256
Sensitivity Label, 30

Power BI. See also DAX; semantic model
creating a custom report theme, 20–21
data modeling, 143
Decomposition tree, 265
Direct Lake connectivity, 145
DirectQuery, 144

advantages, 144–145
disadvantages, 145

Forecasting, 268–269
impact analysis of downstream dependencies, 47–49
importing data, 144
Key influencer visual, 265
licensing, 4
report template, 52

metadata, 144
Microsoft Fabric Capacity Metrics, 3
MLflow, 266–267

N
na.fill() function, 125
NATURALINNERJOIN function, 199–201
NATURALLEFTOUTERJOIN function, 201–202
normalization, 116
notebook/s, 3

adding to a data pipeline, 103–104
copying data between lakehouses, 92–95
data distribution, 274–278
data statistics, 271–274
Data Wrangler tool, 71
impact analysis, 49
implementing partitions, 78
ingesting data to lakehouse, 72–73
libraries, 72
performance, best practices, 134
scheduling, 108
scripting language, 71

null values, handling, 124–125, 152

O
object-level security, 243–244, 246–248
OFFSET function, 229
OneLake

settings, 13
shortcuts, 74

Opening Profit measure, 220
OPENINGBALANCEMONTH function, 218
operators, DAX, 152–153
OPTIMIZE command, 135–137
options() function, 85
overwriteSchema parameter, options() function, 85

P
Parquet file, 135
partition/s, 76

column, 76
condition, 76
implementing

313

security

RLS (row-level security), 240
shared semantic model, 54–55
theme editor, 22
theme file, editing, 23–24

Power BI Desktop
creating roles, 240–241
IntelliSense, 154
Performance Analyzer, 248–249
View as roles window, 246–247

Power Query, 80
Power Query Online, 285–288
powerbiclient library, 263
PREDICT function, 267
predictive analytics, 266

libraries, 267
line charts, 267–268

prescriptive analytics, 266, 269
primary key, 173
production environment, 44
protected Sensitivity Labels, 30
PySpark

cast() function, 127–128
checking for duplicate data, 123–124
converting data type, 127–128
creating a new table, 87
describe() function, 262
display() function, 262
dtypes() function, 271
filter() function, 131–132
filtering data, 131–132
na.fill() function, 125
null values, handling, 125

Q
quality, data, 110
query/ies. See also SQL

conditional, 289–290
DAX

DEFINE, 293
EVALUATE statement, 292–293
ORDER BY, 293
parameters, 294–295
START AT, 294

folding, 97, 133–134, 256
SQL, 282–284

QuickVisualize() function, 263

R
RANK function, 228–229
refresh history, dataflow, 97
RELATED function, 155
RELATEDTABLE function, 155
relationship/s, 148, 281

inactive, 224–225
many-to-many, 113, 148–150
virtual, 226–228

removing, duplicate data, 122–124
report/s, 263

optimizing performance, 248–249
Power BI, 20–21

create a custom theme using third-party
tools, 24–25
edit a theme JSON file, 23–24
.pbids file, 52–54
theme editor, 22

shared semantic model, 54–55
templates, 52

right anti join, 120
right outer join, 120
RLS (row-level security), 240

dynamic, 241–243
validating, 246–248

roles, creating in Power BI Desktop, 240–241
row context, 170–174
ROW function, 194
ROWNUMBER function, 228–229

S
Scale-out settings, 12
SCD (slowly changing dimension), 112–113
scheduling

data pipelines, 105
dataflows, 106–108
notebooks, 108

scripting language, 71
security

data, 2–3
groups, 246
object-level, 243–244, 246–248
role membership, 245–246
row-level, 240

dynamic, 241–243
validating, 246–248

314

select() function

creating, 74–75
creating a stored procedure, 83

SKU (stock keeping unit)
Fabric, 3
Fabric Capacity, 35

slicers, 235
smoothing, 3
Spark, settings, 34–35
SQL

checking for duplicate data, 123–124
commands

CREATE FUNCTION, 83
CREATE VIEW, 82

converting data type, 125–127
functions, 79

CAST(), 125–127
CONVERT(), 125–127

null values, handling, 125
performance, best practices, 134
Power Query, 80
queries, 282–284
query editor, 80, 284
stored procedure, 79, 83–84
tables, extending, 84–87
views, 79, 80–82
visual query, 80

standard deviation, 272
Standard mode, gateway, 15
star schema, 111

bridge table, 113–116
denormalization of data, 116–117
dimension table, 111–112
fact table, 111–112
implementing, 148
SCD (slowly changing dimension), 112–113

StarterPool, 34
statement, EVALUATE, 292–293
stored procedure, 79

adding to a data pipeline, 100–102
creating, 83–84

structured data, 2
SUBSTITUTE function, 158–159
SUMMARIZE function, 181–184
SUMMARIZECOLUMNS function, 184
summary() function, 271
summary statistics, 262
SWITCH function, 163–165

select() function, 84–85
SELECTCOLUMNS function, 185–187
SELECTEDVALUE function, 225–226
semantic model, 11

bridge table, 114–116, 150
choose a storage mode, 144
deployment and management using XMLA
endpoint, 50–52
enterprise-scale

optimizing DAX performance, 249–250
optimizing query and report performance,
248–249

implementing a star schema, 148
incremental refresh, 251–252

creating the RangeStart and RangeEnd
parameters, 252
filtering by using the RangeStart and RangeEnd
parameters, 253–254
query folding, 256

large-format, building, 236–238
optimizing, 250
relationships, 148

inactive, 224–225
many-to-many, 148–150

shared, 54–55
Sensitivity Labels, 6–7, 30

assigning, 30–32
default settings, 30
inheritance, 32–33
protected, 30

settings
Data model, 12
Endorsement and discovery, 10
Export and Sharing, 7–9
Fabric, 4–6
Fabric Capacity, 37–39
Fabric-enabled workspace, 33–36
gateway, 16–17
Git integration, 13–14
Information Protection, 6–8
Integration, 10–11
OneLake, 13
Scale-out, 12
Sensitivity Label, 30
Spark, 34–35
Workspace, 6

shared semantic model, 54–55
shortcuts, 74, 88, 288

315

workspace

T
Table.Profile() function, 273, 277–278
table/s. See also data model; relationships

aggregation, 238–239
bridge, 113–116, 150
calculated, 174, 204–206
calculated column, 153
columns

adding, 154–156
calculated, 153
fully qualified syntax, 155

creating, 85–87
Delta, 135
dimension, 111–113
disconnected, passing filters from, 226–230
duplicating, 174
extending, 84–87
fact, 111–112
measures, 206–208

versus calculated columns, 208
dynamic strings, 234
implicit, 231
Opening Profit, 220
using CALCULATE function, 211–215

merging, 120–122
object-level security, 243–244

Table.Schema() function, 273
Tabular Editor 2, 147–148, 250
tabular model, calculation groups, 231–234
template, report, 52
tenant administration, gateway, 15
test environment, 44
theme editor, Power BI, 22
third-party tools, theme generator, 24–25
Time Intelligence, 216–224
tools

data profiling, 270
Data Wrangler, 71, 275–276, 277–278
DAX Formatter, 157–158
DAX Studio, 146, 291–292
Tabular Editor 2, 147–148

TOPN function, 187–188
TREATAS function, 227–228
troubleshooting

Delta tables, 135–137
performance

dataflows, 133–134
notebook, 134
SQL, 134

T-SQL
creating a new table, 85–87
filtering data, 128–130
functions, creating, 83
stored procedure, creating, 83–84

U
uniformity, data, 110
UNION function, 195–196
unique record, 122
unstructured data, 2
updates, DP-600 Implementing Analytics Solutions
Using Microsoft Fabric exam, 300–301
USERNAME function, 242
USERPRINCIPALNAME function, 242

V
VACUUM command, 135–137
validating, row- and object-level security,
246–248
VALUES function, 180
variables

calculated table, 204–206
DAX, 169–170

version control, workspace, 40–42
View as roles window, Power BI Desktop,
246–247
views, 79, 80–82
virtual relationship, 226–228
visual query, 80
visual query editor, 284–290
VNet (virtual network), gateway, 16

W
what-if scenarios, 269
WHERE clause, 128–130
WINDOW function, 229–230
window functions, 228–230
withColumn() function, 84–85
workspace

connecting to, 50–51
Data model settings, 12
data sharing, 28–29

316

workspace, continued

X-Y-Z
XMLA (XML for Analysis), 10–11

endpoint, 50–52
connecting to a dataset, 291
deploy and manage semantic models, 50–52
querying a dataset, 292–293

workspace, continued
Fabric-enabled, 33–36
Git integration, 40
-level access control, 26–28
Lineage view, 47
settings, 6
version control, 40–42

	Cover
	Title Page
	Copyright Page
	Contents at a glance
	Contents
	Introduction
	Organization of this book
	Preparing for the exam
	Microsoft certifications
	Access the exam updates chapter and online references
	Errata, updates, & book support
	Stay in touch

	Chapter 2 Prepare and serve data
	Skill 2.1: Create objects in a lakehouse or warehouse
	Ingest data by using a data pipeline, dataflow, or notebook
	Create and manage shortcuts
	Implement file partitioning for analytics workloads in a lakehouse
	Create views, functions, and stored procedures
	Enrich data by adding new columns or tables

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

