
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780135328378
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780135328378
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780135328378

Core Java

Volume I—Fundamentals

Thirteenth Edition

Cay S. Horstmann

Hoboken, New Jersey

Cover image: Jon Chica/Shutterstock
Figure 1.1: Sourceforge
Figures 2.2, 3.2-3.5, 4.9, 5.4, 7.2, 10.5, 10.6, 11.1: Oracle Corporation
Figures 2.3-2.6, 12.2: Eclipse Foundation, Inc.
Figure 4.2: Violet UML Editor
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.
The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.
The views expressed in this book are those of the author and do not necessarily reflect the views of Oracle.
For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or
(800) 382-3419.
For government sales inquiries, please contact governmentsales@pearsoned.com. For questions about sales
outside the U.S., please contact intlcs@pearson.com.
Please contact us with concerns about any potential bias at pearson.com/report-bias.html.
Visit us on the Web: informit.com/aw
Copyright © 2025 Pearson Education, Inc.
Portions copyright © 1996-2013 Oracle and/or its affiliates. All Rights Reserved.
Oracle America Inc. does not make any representations or warranties as to the accuracy, adequacy or
completeness of any information contained in this work, and is not responsible for any errors or omissions.
Microsoft and/or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose. All such
documents and related graphics are provided "as is" without warranty of any kind. Microsoft and/or its
respective suppliers hereby disclaim all warranties and conditions with regard to this information, including all
warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular
purpose, title and non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for any
special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or
profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with
the use or performance of information available from the services. The documents and related graphics
contained herein could include technical inaccuracies or typographical errors. Changes are periodically added to
the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes in the
product(s) and/or the program(s) described herein at any time. Partial screen shots may be viewed in full within
the software version specified.
Microsoft® Windows®, and Microsoft Office® are registered trademarks of the Microsoft Corporation in the
U.S.A. and other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft
Corporation.
All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by
any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions,
request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions
Department, please visit www.pearson.com/permissions.
ISBN-13: 978-0-13-532837-8
ISBN-10: 0-13-532837-3
$PrintCode

Table of Contents
Preface.. xiii

To the Reader.. xiii
A Tour of This Book .. xiv
Conventions .. xvi
Sample Code .. xvii

Acknowledgments... xix
1. An Introduction to Java..1

1.1. Java as a Programming Platform ..1
1.2. The Java “White Paper” Buzzwords ..2

1.2.1. Simple ..2
1.2.2. Object-Oriented..3
1.2.3. Distributed ...3
1.2.4. Robust ..3
1.2.5. Secure ..4
1.2.6. Architecture-Neutral ..4
1.2.7. Portable ..5
1.2.8. Interpreted ...6
1.2.9. High-Performance ..6
1.2.10. Multithreaded...6
1.2.11. Dynamic..7

1.3. Java Applets and the Internet ...7
1.4. A Short History of Java ...8
1.5. Common Misconceptions about Java ..12

2. The Java Programming Environment ..15
2.1. Installing the Java Development Kit ...15

2.1.1. Downloading the JDK ...15
2.1.2. Setting Up the JDK...16
2.1.3. Installing Source Files and Documentation18

2.2. Using the Command-Line Tools ..19
2.3. Using an Integrated Development Environment24
2.4. JShell ...25

3. Fundamental Programming Structures in Java...31
3.1. A Simple Java Program ...31
3.2. Comments ...35
3.3. Data Types ..36

3.3.1. Integer Types ...36
3.3.2. Floating-Point Types...38
3.3.3. The char Type ...39
3.3.4. Unicode and the char Type ...41
3.3.5. The boolean Type...43

3.4. Variables and Constants..43
3.4.1. Declaring Variables ..43
3.4.2. Initializing Variables...45
3.4.3. Constants ...46
3.4.4. Enumerated Types ...47

3.5. Operators ..48
3.5.1. Arithmetic Operators ...48
3.5.2. Mathematical Functions and Constants...................................49
3.5.3. Conversions between Numeric Types51
3.5.4. Casts...52
3.5.5. Assignment...53
3.5.6. Increment and Decrement Operators54
3.5.7. Relational and boolean Operators ...54
3.5.8. The Conditional Operator...55
3.5.9. Switch Expressions ..55
3.5.10. Bitwise Operators...57
3.5.11. Parentheses and Operator Hierarchy58

3.6. Strings...59
3.6.1. Concatenation ..60
3.6.2. Splitting Strings ...61
3.6.3. Indexes and Substrings ..62
3.6.4. Strings Are Immutable ...63
3.6.5. Testing Strings for Equality ...65
3.6.6. Empty and Null Strings..66
3.6.7. The String API ..66
3.6.8. Reading the Online API Documentation...................................68
3.6.9. Building Strings ...70
3.6.10. Text Blocks ...73

3.7. Input and Output ..76
3.7.1. Reading Input...76
3.7.2. Formatting Output ...79
3.7.3. File Input and Output...83

3.8. Control Flow ...85
3.8.1. Block Scope..86
3.8.2. Conditional Statements..86
3.8.3. Loops ..90
3.8.4. Determinate Loops ...95
3.8.5. Multiple Selections with switch ..99
3.8.6. Statements That Break Control Flow.....................................104

3.9. Big Numbers ...107
3.10. Arrays..110

3.10.1. Declaring Arrays ..111
3.10.2. Accessing Array Elements..112
3.10.3. The “for each” Loop ...113
3.10.4. Array Copying ..114
3.10.5. Command-Line Arguments...116
3.10.6. Array Sorting..117
3.10.7. Multidimensional Arrays ..119
3.10.8. Ragged Arrays..122

4. Objects and Classes...127
4.1. Introduction to Object-Oriented Programming127

4.1.1. Classes ...128

iv Table of Contents

4.1.2. Objects ...129
4.1.3. Identifying Classes ...130
4.1.4. Relationships between Classes ..130

4.2. Using Predefined Classes ...132
4.2.1. Objects and Object Variables ...132
4.2.2. The LocalDate Class of the Java Library136
4.2.3. Mutator and Accessor Methods ...138

4.3. Defining Your Own Classes ...142
4.3.1. An Employee Class ..142
4.3.2. Use of Multiple Source Files ..145
4.3.3. Dissecting the Employee Class ...146
4.3.4. First Steps with Constructors ..147
4.3.5. Declaring Local Variables with var...148
4.3.6. Working with null References ..149
4.3.7. Implicit and Explicit Parameters..151
4.3.8. Benefits of Encapsulation...152
4.3.9. Class-Based Access Privileges..154
4.3.10. Private Methods ...155
4.3.11. Final Instance Fields ..156

4.4. Static Fields and Methods ..157
4.4.1. Static Fields ...157
4.4.2. Static Constants ...158
4.4.3. Static Methods ...159
4.4.4. Factory Methods...160
4.4.5. The main Method...161

4.5. Method Parameters...164
4.6. Object Construction ..171

4.6.1. Overloading ..171
4.6.2. Default Field Initialization ...172
4.6.3. The Constructor with No Arguments173
4.6.4. Explicit Field Initialization ...174
4.6.5. Parameter Names...175
4.6.6. Calling Another Constructor ..176
4.6.7. Initialization Blocks..176
4.6.8. Object Destruction and the finalize Method182

4.7. Records ...182
4.7.1. The Record Concept...183
4.7.2. Constructors: Canonical, Compact, and Custom185

4.8. Packages ...188
4.8.1. Package Names ..188
4.8.2. Class Importation ...189
4.8.3. Static Imports...191
4.8.4. Addition of a Class into a Package ...192
4.8.5. Package Access ..195
4.8.6. The Class Path..197
4.8.7. Setting the Class Path ..199

4.9. JAR Files..200

Table of Contents v

4.9.1. Creating JAR files ...200
4.9.2. The Manifest ..201
4.9.3. Executable JAR Files ..202
4.9.4. Multi-Release JAR Files..203
4.9.5. A Note about Command-Line Options....................................205

4.10. Documentation Comments..206
4.10.1. Comment Insertion...207
4.10.2. Class Comments ...207
4.10.3. Method Comments ...208
4.10.4. Field Comments ...209
4.10.5. Package Comments ..209
4.10.6. HTML Markup..210
4.10.7. Links...210
4.10.8. General Comments...212
4.10.9. Code Snippets ..212
4.10.10. Comment Extraction ..213

4.11. Class Design Hints ..214
5. Inheritance ..217

5.1. Classes, Superclasses, and Subclasses...217
5.1.1. Defining Subclasses ...218
5.1.2. Overriding Methods ...219
5.1.3. Subclass Constructors..221
5.1.4. Inheritance Hierarchies ...225
5.1.5. Polymorphism...226
5.1.6. Understanding Method Calls ...228
5.1.7. Preventing Inheritance: Final Classes and Methods..............231
5.1.8. Casting ...234
5.1.9. Pattern Matching for instanceof ...236
5.1.10. Protected Access ..239

5.2. Object: The Cosmic Superclass ...240
5.2.1. Variables of Type Object ...240
5.2.2. The equals Method..241
5.2.3. Equality Testing and Inheritance ...242
5.2.4. The hashCode Method...246
5.2.5. The toString Method...250

5.3. Generic Array Lists ...257
5.3.1. Declaring Array Lists ...258
5.3.2. Accessing Array List Elements...260
5.3.3. Compatibility between Typed and Raw Array Lists264

5.4. Object Wrappers and Autoboxing ...265
5.5. Methods with a Variable Number of Arguments270
5.6. Abstract Classes..271
5.7. Enumeration Classes ..277
5.8. Sealed Classes ..282
5.9. Pattern Matching ..288

5.9.1. Null Handling ...289
5.9.2. Guards ..290

vi Table of Contents

5.9.3. Exhaustiveness...290
5.9.4. Dominance..292
5.9.5. Patterns and Constants ..293
5.9.6. Variable Scope and Fallthrough ...293

5.10. Reflection ..296
5.10.1. The Class Class ...297
5.10.2. A Primer on Declaring Exceptions300
5.10.3. Resources ...301
5.10.4. Using Reflection to Analyze the Capabilities of Classes304
5.10.5. Using Reflection to Analyze Objects at Runtime..................311
5.10.6. Using Reflection to Write Generic Array Code316
5.10.7. Invoking Arbitrary Methods and Constructors320

5.11. Design Hints for Inheritance ..324
6. Interfaces, Lambda Expressions, and Inner Classes ...327

6.1. Interfaces ..327
6.1.1. The Interface Concept..327
6.1.2. Properties of Interfaces..335
6.1.3. Interfaces and Abstract Classes...337
6.1.4. Static and Private Methods ..338
6.1.5. Default Methods...339
6.1.6. Resolving Default Method Conflicts.......................................340
6.1.7. Interfaces and Callbacks..342
6.1.8. The Comparator Interface ...345
6.1.9. Object Cloning..347

6.2. Lambda Expressions ...354
6.2.1. Why Lambdas? ...354
6.2.2. The Syntax of Lambda Expressions355
6.2.3. Functional Interfaces ...358
6.2.4. Function Types ...359
6.2.5. Method References ..361
6.2.6. Constructor References ...365
6.2.7. Variable Scope..366
6.2.8. Processing Lambda Expressions ..369
6.2.9. Creating Comparators..373

6.3. Inner Classes ..375
6.3.1. Use of an Inner Class to Access Object State376
6.3.2. Special Syntax Rules for Inner Classes..................................380
6.3.3. Are Inner Classes Useful? Actually Necessary? Secure?381
6.3.4. Local Inner Classes ..382
6.3.5. Accessing Variables from Outer Methods383
6.3.6. Anonymous Inner Classes ..385
6.3.7. Static Classes ...389

6.4. Service Loaders ..393
6.5. Proxies ..395

6.5.1. When to Use Proxies ..396
6.5.2. Creating Proxy Objects ..396
6.5.3. Properties of Proxy Classes..400

Table of Contents vii

7. Exceptions, Assertions, and Logging...403
7.1. Dealing with Errors...403

7.1.1. The Classification of Exceptions ..405
7.1.2. Declaring Checked Exceptions...407
7.1.3. How to Throw an Exception ...409
7.1.4. Creating Exception Classes..411

7.2. Catching Exceptions ...412
7.2.1. Catching an Exception ...412
7.2.2. Catching Multiple Exceptions ..414
7.2.3. Rethrowing and Chaining Exceptions417
7.2.4. The finally Clause..418
7.2.5. The try-with-Resources Statement...421
7.2.6. Analyzing Stack Trace Elements..423

7.3. Tips for Using Exceptions ...427
7.4. Using Assertions ...431

7.4.1. The Assertion Concept ...431
7.4.2. Assertion Enabling and Disabling ..432
7.4.3. Using Assertions for Parameter Checking434
7.4.4. Using Assertions for Documenting Assumptions435

7.5. Logging ...436
7.5.1. Should You Use the Java Logging Framework?436
7.5.2. Logging 101 ...437
7.5.3. The Platform Logging API ..438
7.5.4. Logging Configuration ...440
7.5.5. Log Handlers..441
7.5.6. Filters and Formatters ...444
7.5.7. A Logging Recipe ...445

7.6. Debugging Tips ...452
8. Generic Programming ...459

8.1. Why Generic Programming? ...459
8.1.1. The Advantage of Type Parameters459
8.1.2. Who Wants to Be a Generic Programmer?.............................461

8.2. Defining a Simple Generic Class...462
8.3. Generic Methods...464
8.4. Bounds for Type Variables ..465
8.5. Generic Code and the Virtual Machine...468

8.5.1. Type Erasure ..468
8.5.2. Translating Generic Expressions ...469
8.5.3. Translating Generic Methods...470
8.5.4. Calling Legacy Code...472
8.5.5. Generic Record Patterns ..474

8.6. Inheritance Rules for Generic Types ..474
8.7. Wildcard Types ...477

8.7.1. The Wildcard Concept ..477
8.7.2. Supertype Bounds for Wildcards..478
8.7.3. Unbounded Wildcards ..482
8.7.4. Wildcard Capture ...482

viii Table of Contents

8.8. Restrictions and Limitations ...485
8.8.1. Type Parameters Cannot Be Instantiated with Primitive
Types ..485
8.8.2. Runtime Type Inquiry Only Works with Raw Types...............485
8.8.3. You Cannot Create Arrays of Parameterized Types486
8.8.4. Varargs Warnings ...487
8.8.5. Generic Varargs Do Not Spread Primitive Arrays..................488
8.8.6. You Cannot Instantiate Type Variables489
8.8.7. You Cannot Construct a Generic Array490
8.8.8. Type Variables Are Not Valid in Static Contexts of Generic
Classes ...492
8.8.9. You Cannot Throw or Catch Instances of a Generic Class492
8.8.10. You Can Defeat Checked Exception Checking493
8.8.11. Beware of Clashes after Erasure..495
8.8.12. Type Inference in Generic Record Patterns is Limited496

8.9. Reflection and Generics ..498
8.9.1. The Generic Class Class..498
8.9.2. Using Class<T> Parameters for Type Matching.......................499
8.9.3. Generic Type Information in the Virtual Machine500
8.9.4. Type Literals ..504

9. Collections ...511
9.1. The Java Collections Framework ..511

9.1.1. Separating Collection Interfaces and Implementation511
9.1.2. The Collection Interface ...514
9.1.3. Iterators ...515
9.1.4. Generic Utility Methods ...518

9.2. Interfaces in the Collections Framework..521
9.3. Concrete Collections...525

9.3.1. Linked Lists ..526
9.3.2. Array Lists ..537
9.3.3. Hash Sets ...537
9.3.4. Tree Sets ..542
9.3.5. Queues and Deques..545
9.3.6. Priority Queues ..547

9.4. Maps ...548
9.4.1. Basic Map Operations ..549
9.4.2. Updating Map Entries ..552
9.4.3. Map Views ..554
9.4.4. Weak Hash Maps..557
9.4.5. Linked Hash Sets and Maps...557
9.4.6. Enumeration Sets and Maps ..559
9.4.7. Identity Hash Maps ..560

9.5. Copies and Views ..562
9.5.1. Small Collections..562
9.5.2. Unmodifiable Copies and Views...565
9.5.3. Subranges ..566
9.5.4. Sets From Boolean-Valued Maps..567

Table of Contents ix

9.5.5. Reversed Views ..568
9.5.6. Checked Views ...568
9.5.7. Synchronized Views ...569
9.5.8. A Note on Optional Operations ..569

9.6. Algorithms...574
9.6.1. Why Generic Algorithms?...574
9.6.2. Sorting and Shuffling ...576
9.6.3. Binary Search...578
9.6.4. Simple Algorithms..580
9.6.5. Bulk Operations..582
9.6.6. Converting between Collections and Arrays..........................583
9.6.7. Writing Your Own Algorithms ..584

9.7. Legacy Collections ..586
9.7.1. The Hashtable Class...587
9.7.2. Enumerations ...587
9.7.3. Property Maps..588
9.7.4. System Properties ..590
9.7.5. Stacks ...593
9.7.6. Bit Sets ...593

10. Concurrency ..599
10.1. Running Threads...599
10.2. Thread States..605

10.2.1. New Threads ..605
10.2.2. Runnable Threads ..605
10.2.3. Blocked and Waiting Threads...606
10.2.4. Terminated Threads ...608

10.3. Thread Properties ...608
10.3.1. Virtual Threads...608
10.3.2. Thread Interruption ...609
10.3.3. Daemon Threads ..613
10.3.4. Thread Names and Ids ...613
10.3.5. Handlers for Uncaught Exceptions614
10.3.6. Thread Priorities ..615
10.3.7. Thread Factories and Builders ...616

10.4. Coordinating Tasks ...618
10.4.1. Callables and Futures ..618
10.4.2. Executors ...621
10.4.3. Invoking a Group of Tasks..625
10.4.4. Thread-Local Variables...631
10.4.5. The Fork-Join Framework...632

10.5. Synchronization ..635
10.5.1. An Example of a Race Condition ..636
10.5.2. The Race Condition Explained ...638
10.5.3. Lock Objects...640
10.5.4. Condition Objects...644
10.5.5. Deadlocks ...649
10.5.6. The synchronized Keyword...652

x Table of Contents

10.5.7. Synchronized Blocks ..657
10.5.8. The Monitor Concept ...659
10.5.9. Volatile Fields ...660
10.5.10. Final Fields...661
10.5.11. Atomics...662
10.5.12. On-Demand Initialization ...664
10.5.13. Safe Publication ...665
10.5.14. Sharing with Thread-Local Variables666

10.6. Thread-Safe Collections ..667
10.6.1. Blocking Queues...668
10.6.2. Efficient Maps, Sets, and Queues ..674
10.6.3. Atomic Update of Map Entries ...676
10.6.4. Bulk Operations on Concurrent Hash Maps679
10.6.5. Concurrent Set Views...682
10.6.6. Copy on Write Arrays ...682
10.6.7. Parallel Array Algorithms...682
10.6.8. Older Thread-Safe Collections ...684

10.7. Asynchronous Computations ..685
10.7.1. Completable Futures..685
10.7.2. Composing Completable Futures ...687
10.7.3. Long-Running Tasks in User-Interface Callbacks694

10.8. Processes ..702
10.8.1. Building a Process..702
10.8.2. Running a Process..704
10.8.3. Process Handles ...706

11. Annotations..711
11.1. Using Annotations...711

11.1.1. Annotation Elements ..712
11.1.2. Multiple and Repeated Annotations.....................................713
11.1.3. Annotating Declarations...713
11.1.4. Annotating Type Uses ..714
11.1.5. Making Receivers Explicit..716

11.2. Defining Annotations ..717
11.3. Annotations in the Java API ..720

11.3.1. Annotations for Compilation ..721
11.3.2. Meta-Annotations ...723

11.4. Processing Annotations at Runtime..725
11.5. Source-Level Annotation Processing ..729

11.5.1. Annotation Processors..729
11.5.2. The Language Model API ...730
11.5.3. Using Annotations to Generate Source Code.......................731

11.6. Bytecode Engineering...736
11.6.1. Modifying Class Files ...736
11.6.2. Modifying Bytecodes at Load Time743

12. The Java Platform Module System...747
12.1. The Module Concept ...747
12.2. Naming Modules...748

Table of Contents xi

12.3. The Modular “Hello, World!” Program ...749
12.4. Requiring Modules..751
12.5. Exporting Packages ..753
12.6. Modular JARs ..757
12.7. Modules and Reflective Access...759
12.8. Automatic Modules ...762
12.9. The Unnamed Module...764
12.10. Command-Line Flags for Migration..765
12.11. Transitive and Static Requirements ...766
12.12. Qualified Exporting and Opening ...768
12.13. Service Loading ..769
12.14. Tools for Working with Modules ...772

Appendix..775
Index..781

xii Table of Contents

Preface
To the Reader
In late 1995, the Java programming language burst onto the Internet scene and gained
instant celebrity status. The promise of Java technology was that it would become the
universal glue that connects users with information wherever it comes from—web servers,
databases, information providers, or any other imaginable source. Indeed, Java is in a
unique position to fulfill this promise. It is an extremely solidly engineered language that
has gained wide acceptance. Its built-in security and safety features are reassuring both to
programmers and to the users of Java programs. Java has built-in support for advanced
programming tasks, such as network programming, database connectivity, and
concurrency.

Since 1995, over twenty revisions of the Java Development Kit have been released. The
Application Programming Interface (API) has grown from about a hundred to over 4,000
classes. The API now spans such diverse areas as concurrent programming, collections,
user interface construction, database management, internationalization, security, and XML
processing.

The book that you are reading right now is the first volume of the thirteenth edition of Core
Java. Each edition closely followed a release of the Java Development Kit, and each time, I
rewrote the book to take advantage of the newest Java features. This edition has been
updated to reflect the features of Java 21.

As with the previous editions, this book still targets serious programmers who want to put
Java to work on real projects. I think of you, the reader, as a programmer with a solid
background in a programming language other than Java. I assume that you don't like books
filled with toy examples (such as toasters, zoo animals, or "nervous text"). You won't find
any of these in the book. My goal is to enable you to fully understand the Java language
and library, not to give you an illusion of understanding.

In this book you will find lots of sample code demonstrating almost every language and
library feature. The sample programs are purposefully simple to focus on the major points,
but, for the most part, they aren't fake and they don't cut corners. They should make good
starting points for your own code.

I assume you are willing, even eager, to learn about all the features that the Java language
puts at your disposal. In this volume, you will find a detailed treatment of

▪ Object-oriented programming
▪ Reflection and proxies
▪ Interfaces and inner classes
▪ Exception handling
▪ Generic programming
▪ The collections framework
▪ Concurrency

▪ Annotations
▪ The Java platform module system

With the explosive growth of the Java class library, a one-volume treatment of all the
features of Java that serious programmers need to know is simply not possible. Hence, the
book is broken up into two volumes. This first volume concentrates on the fundamental
concepts of the Java language. The second volume, Core Java, Volume II: Advanced
Features, goes further into the most important libraries.

For twelve editions, user-interface programming was considered fundamental, but the time
has come to recognize that it is no more, and to move it into the second volume. That
volume includes detailed discussions of these topics:

▪ The Stream API
▪ File processing and regular expressions
▪ Databases
▪ XML processing
▪ Scripting and Compiling APIs
▪ Internationalization
▪ Network programming
▪ Graphical user interface design
▪ Graphics programming
▪ Native methods

When writing a book, errors and inaccuracies are inevitable. I'd very much like to know
about them. But, of course, I'd prefer to learn about each of them only once. You will find a
list of frequently asked questions and bug fixes at https://horstmann.com/corejava.
Strategically placed at the end of the errata page (to encourage you to read through it
first) is a form you can use to report bugs and suggest improvements. Please don't be
disappointed if I don't answer every query or don't get back to you immediately. I do read
all e-mail and appreciate your input to make future editions of this book clearer and more
informative.

A Tour of This Book
Chapter 1 gives an overview of the capabilities of Java that set it apart from other
programming languages. The chapter explains what the designers of the language set out
to do and to what extent they succeeded. A short history of Java follows, detailing how Java
came into being and how it has evolved.

In Chapter 2, you will see how to download and install the JDK and the program examples
for this book. Then I'll guide you through compiling and running a console application and
a graphical application. You will see how to use the plain JDK, a Java IDE, and the JShell
tool.

xiv Preface

https://horstmann.com/corejava

Chapter 3 starts the discussion of the Java language. In this chapter, I cover the basics:
variables, loops, and simple functions. If you are a C or C++ programmer, this is smooth
sailing because the syntax for these language features is essentially the same as in C. If
you come from a non-C background such as Visual Basic, you will want to read this chapter
carefully.

Object-oriented programming (OOP) is now in the mainstream of programming practice,
and Java is an object-oriented programming language. Chapter 4 introduces
encapsulation, the first of two fundamental building blocks of object orientation, and the
Java language mechanism to implement it—that is, classes and methods. In addition to the
rules of the Java language, you will also find advice on sound OOP design. Finally, I cover
the marvelous javadoc tool that formats your code comments as a set of hyperlinked web
pages. If you are familiar with C++, you can browse through this chapter quickly.
Programmers coming from a non-object-oriented background should expect to spend some
time mastering the OOP concepts before going further with Java.

Classes and encapsulation are only one part of the OOP story, and Chapter 5 introduces
the other—namely, inheritance. Inheritance lets you take an existing class and modify it
according to your needs. This is a fundamental technique for programming in Java. The
inheritance mechanism in Java is quite similar to that in C++. Once again, C++
programmers can focus on the differences between the languages.

Chapter 6 shows you how to use Java's notion of an interface. Interfaces let you go beyond
the simple inheritance model of Chapter 5. Mastering interfaces allows you to have full
access to the power of Java's completely object-oriented approach to programming. After
covering interfaces, I move on to lambda expressions, a concise way for expressing a block
of code that can be executed at a later point in time. I then explain a useful technical
feature of Java called inner classes.

Chapter 7 discusses exception handling—Java's robust mechanism to deal with the fact
that bad things can happen to good programs. Exceptions give you an efficient way of
separating the normal processing code from the error handling. Of course, even after
hardening your program by handling all exceptional conditions, it still might fail to work as
expected. Then the chapter moves on to logging. In the final part of this chapter, I give you
a number of useful debugging tips.

Chapter 8 gives an overview of generic programming. Generic programming makes your
programs easier to read and safer. I show you how to use strong typing and remove
unsightly and unsafe casts, and how to deal with the complexities that arise from the need
to stay compatible with older versions of Java.

The topic of Chapter 9 is the collections framework of the Java platform. Whenever you
want to collect multiple objects and retrieve them later, you should use a collection that is
best suited for your circumstances, instead of just tossing the elements into an array. This
chapter shows you how to take advantage of the standard collections that are prebuilt for
your use.

Preface xv

Chapter 10 covers concurrency, which enables you to program tasks to be done in
parallel. This is an important and exciting application of Java technology in an era where
processors have multiple cores that you want to keep busy.

In Chapter 11, you will learn about annotations, which allow you to add arbitrary
information (sometimes called metadata) to a Java program. We show you how annotation
processors can harvest these annotations at the source or class file level, and how
annotations can be used to influence the behavior of classes at runtime. Annotations are
only useful with tools, and we hope that our discussion will help you select useful
annotation processing tools for your needs.

In Chapter 12, you will learn about the Java Platform Module System that facilitates an
orderly evolution of the Java platform and core libraries. This module system provides
encapsulation for packages and a mechanism for describing module requirements. You will
learn the properties of modules so that you can decide whether to use them in your own
applications. Even if you decide not to, you need to know the new rules so that you can
interact with the Java platform and other modularized libraries.

The Appendix lists the reserved words of the Java language.

Conventions
As is common in many computer books, I use monospace type to represent computer code.

Note: Notes are tagged with "note" icons that look like this.

Tip: Tips are tagged with "tip" icons that look like this.

Caution: When there is danger ahead, I warn you with a "caution" icon.

Preview Note: Preview features that are slated to become a part of the language or
API in the future are labeled with this icon.

C++ Note: There are many C++ notes that explain the differences between Java
and C++. You can skip over them if you don't have a background in C++ or if you

xvi Preface

consider your experience with that language a bad dream of which you'd rather not
be reminded.

Java comes with a large programming library, or Application Programming Interface (API).
When using an API call for the first time, I add a short summary description at the end of
the section. These descriptions are a bit more informal but, hopefully, also a little more
informative than those in the official online API documentation. The names of interfaces
are in italics, just like in the official documentation. The number after a class, interface, or
method name is the JDK version in which the feature was introduced, as shown in the
following example:

Application Programming Interface 21

Programs whose source code is on the book's companion web site are presented as listings,
for instance:

Listing 1.1 NotHelloWorld.java

1 void main()
2 {
3 System.out.println("We will not use 'Hello, World!'");
4 }

Sample Code
The web site for this book at https://horstmann.com/corejava contains all sample code from
the book. See Chapter 2 for more information on installing the Java Development Kit and
the sample code.

Preface xvii

https://horstmann.com/corejava

Acknowledgments
Writing a book is always a monumental effort, and rewriting it doesn't seem to be much
easier, especially with the continuous change in Java technology. Making a book a reality
takes many dedicated people, and it is my great pleasure to acknowledge the contributions
of the entire Core Java team.

A large number of individuals at Pearson provided valuable assistance but managed to stay
behind the scenes. I'd like them all to know how much I appreciate their efforts. As always,
my warm thanks go to my editor, Greg Doench, for steering the book through the writing
and production process, and for allowing me to be blissfully unaware of the existence of all
those folks behind the scenes. I am very grateful to Julie Nahil for production support, to
Dmitry Kirsanov and Alina Kirsanova for copyediting the manuscript, and to Clovis L.
Tondo for reviewing the final content. I wrote the book using HTML and CSS, and Prince
(https://princexml.com) turned it into PDF—a workflow that I highly recommend. My thanks
also to my coauthor of earlier editions, Gary Cornell, who has since moved on to other
ventures.

Thanks to the many readers of earlier editions who reported errors and made lots of
thoughtful suggestions for improvement. I am particularly grateful to the excellent
reviewing team who went over the manuscript with an amazing eye for detail and saved me
from many embarrassing errors.

Reviewers of this and earlier editions include Chuck Allison (Utah Valley University), Lance
Andersen (Oracle), Gail Anderson (Anderson Software Group), Paul Anderson (Anderson
Software Group), Alec Beaton (IBM), Cliff Berg, Andrew Binstock (Oracle), Joshua Bloch,
David Brown, Corky Cartwright, Frank Cohen (PushToTest), Chris Crane (devXsolution), Dr.
Nicholas J. De Lillo (Manhattan College), Rakesh Dhoopar (Oracle), Ahmad R. Elkomey,
Robert Evans (Senior Staff, The Johns Hopkins University Applied Physics Lab), David
Geary (Clarity Training), Jim Gish (Oracle), Brian Goetz (Oracle), Angela Gordon, Dan
Gordon (Electric Cloud), Rob Gordon, John Gray (University of Hartford), Cameron Gregory
(olabs.com), Andrzej Grzesik, Marty Hall (coreservlets.com, Inc.), Vincent Hardy (Adobe
Systems), Dan Harkey (San Jose State University), Steve Haines, William Higgins (IBM),
Marc Hoffmann (mtrail), Vladimir Ivanovic (PointBase), Jerry Jackson (CA Technologies),
Heinz Kabutz (Java Specialists), Stepan V. Kalinin (I-Teco/Servionica LTD), Tim Kimmet
(Walmart), John Kostaras, Jerzy Krolak, Chris Laffra, Charlie Lai (Apple), Angelika Langer,
Jeff Langr (Langr Software Solutions), Doug Langston, Hang Lau (McGill University), Mark
Lawrence, Doug Lea (SUNY Oswego), Gregory Longshore, Bob Lynch (Lynch Associates),
Philip Milne (consultant), Mark Morrissey (The Oregon Graduate Institute), Mahesh
Neelakanta (Florida Atlantic University), José Paumard (Oracle), Hao Pham, Paul Philion,
Blake Ragsdell, Ylber Ramadani (Ryerson University), Stuart Reges (University of Arizona),
Simon Ritter (Azul Systems), Rich Rosen (Interactive Data Corporation), Peter Sanders
(ESSI University, Nice, France), Dr. Paul Sanghera (San Jose State University and Brooks
College), Paul Sevinc (Teamup AG), Devang Shah (Sun Microsystems), Yoshiki Shibata,
Richard Slywczak (NASA/Glenn Research Center), Bradley A. Smith, Steven Stelting
(Oracle), Christopher Taylor, Luke Taylor (Valtech), George Thiruvathukal, Kim Topley
(StreamingEdge), Janet Traub, Paul Tyma (consultant), Christian Ullenboom, Peter van der

https://princexml.com/

Linden, Joe Wang (Oracle), Sven Woltmann, Burt Walsh, Dan Xu (Oracle), and John Zavgren
(Oracle).

Cay Horstmann
Düsseldorf, Germany
October 2023

xx Acknowledgments

Interfaces, Lambda Expressions, and
Inner Classes
You have now learned about classes and inheritance, the key concepts of object-oriented
programming in Java. This chapter shows you several advanced techniques that are
commonly used. Despite their less obvious nature, you will need to master them to
complete your Java tool chest.

The first technique, called interfaces, is a way of describing what classes should do,
without specifying how they should do it. A class can implement one or more interfaces.
You can then use objects of these implementing classes whenever conformance to the
interface is required. After discussing interfaces, we move on to lambda expressions, a
concise way to create blocks of code that can be executed at a later point in time. Using
lambda expressions, you can express code that uses callbacks or variable behavior in an
elegant and concise fashion.

We then discuss the mechanism of inner classes. Inner classes are technically somewhat
complex—they are defined inside other classes, and their methods can access the fields of
the surrounding class. Inner classes are useful when you design collections of cooperating
classes.

This chapter concludes with a discussion of proxies, objects that implement arbitrary
interfaces. A proxy is a very specialized construct that is useful for building system-level
tools. You can safely skip that section on first reading.

6.1. Interfaces
In the following sections, you will learn what Java interfaces are and how to use them. You
will also find out how interfaces have been made more powerful in recent versions of Java.

6.1.1. The Interface Concept

In the Java programming language, an interface is not a class but a set of requirements for
the classes that want to conform to the interface.

Typically, the supplier of some service states: “If your class conforms to a particular
interface, then I’ll perform the service.” Let’s look at a concrete example. The sort method

CHAPTER 6

of the Arrays class promises to sort an array of objects, but under one condition: The
objects must belong to classes that implement the Comparable interface.

Here is what the Comparable interface looks like:

public interface Comparable
{

int compareTo(Object other);
}

In the interface, the compareTo method is abstract—it has no implementation. A class that
implements the Comparable interface needs to have a compareTo method, and the method
must have an Object parameter and return an integer. Otherwise, the class is also
abstract—that is, you cannot construct any objects.

Note: As of Java 5, the Comparable interface has been enhanced to be a generic type.

public interface Comparable<T>
{

int compareTo(T other); // parameter has type T
}

For example, a class that implements Comparable<Employee> must supply a method

int compareTo(Employee other)

You can still use the “raw” Comparable type without a type parameter. Then the
compareTo method has a parameter of type Object, and you have to manually cast that
parameter of the compareTo method to the desired type. I will do just that for a little
while so that you don't have to worry about two new concepts at the same time.

All methods of an interface are automatically public. For that reason, it is not necessary to
supply the keyword public when declaring a method in an interface.

Of course, there is an additional requirement that the interface syntax cannot express:
When calling x.compareTo(y), the compareTo method must compare the two objects and return
an indication whether x or y is larger. The method is supposed to return a negative number
if x is smaller than y, zero if they are equal, and a positive number otherwise.

This particular interface has a single method. Some interfaces have multiple methods. As
you will see later, interfaces can also define constants. What is more important, however, is
what interfaces cannot supply. Interfaces never have instance fields. Before Java 8, all
methods in an interface were abstract. As you will see in Section 6.1.4 and Section 6.1.5, it
is now possible to have other methods in interfaces. Of course, those methods cannot refer
to instance fields—interfaces don't have any.

328 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

Now, suppose we want to use the sort method of the Arrays class to sort an array of Employee
objects. Then the Employee class must implement the Comparable interface.

To make a class implement an interface, you carry out two steps:

1. You declare that your class intends to implement the given interface.
2. You supply definitions for all methods in the interface.

To declare that a class implements an interface, use the implements keyword:

class Employee implements Comparable

Of course, now the Employee class needs to supply the compareTo method. Let’s suppose that
we want to compare employees by their salary. Here is an implementation of the compareTo
method:

public int compareTo(Object otherObject)
{

Employee other = (Employee) otherObject;
return Double.compare(salary, other.salary);

}

Here, we use the static Double.compare method that returns a negative if the first argument
is less than the second argument, 0 if they are equal, and a positive value otherwise.

Caution: In the interface declaration, the compareTo method was not declared public
because all methods in an interface are automatically public. However, when
implementing the interface, you must declare the method as public. Otherwise, the
compiler assumes that the method has package access—the default for a class. The
compiler then complains that you're trying to supply a more restrictive access
privilege.

We can do a little better by supplying a type parameter for the generic Comparable interface:

class Employee implements Comparable<Employee>
{

public int compareTo(Employee other)
{

return Double.compare(salary, other.salary);
}
. . .

}

Note that the unsightly cast of the Object parameter has gone away.

6.1 ▪ Interfaces 329

Tip: The compareTo method of the Comparable interface returns an integer. If the
objects are not equal, it does not matter what negative or positive value you return.
This flexibility can be useful when you are comparing integer fields. For example,
suppose each employee has a unique integer id and you want to sort by the
employee ID number. Then you can simply return id - other.id. That value will be
some negative value if the first ID number is less than the other, 0 if they are the
same ID, and some positive value otherwise. However, there is one caveat: The
range of the integers must be small enough so that the subtraction does not
overflow. If you know that the IDs are not negative or that their absolute value is at
most (Integer.MAX_VALUE - 1) / 2, you are safe. Otherwise, call the static
Integer.compare method.

Of course, the subtraction trick doesn’t work for floating-point numbers. The
difference salary - other.salary can round to 0 if the salaries are close together but
not identical. The call Double.compare(x, y) simply returns -1 if x < y or 1 if x > y.

Note: The documentation of the Comparable interface suggests that the compareTo
method should be compatible with the equals method. That is, x.compareTo(y) should
be zero exactly when x.equals(y). Most classes in the Java API that implement
Comparable follow this advice.

A notable exception is BigDecimal. Consider x = new BigDecimal("1.0") and y = new
BigDecimal("1.00"). Then x.equals(y) is false because the numbers differ in precision.
But x.compareTo(y) is zero. Ideally, it shouldn't be, but there is no obvious way of
deciding which one should come first.

Another exception is StringBuilder, which implements Comparable but does not
override equals:

StringBuilder x = new StringBuilder("Hello");
StringBuilder y = new StringBuilder("Hello");
x.equals(y) // false
x.compareTo(y) // 0

Caution: There are minor differences between comparison operators with double
operand and the corresponding methods of the Double class.

The first issue is negative zero, or -0.0. When compared with a relational operator
such as == or <, it is indistinguishable from 0.0:

-0.0 == 0.0 // true
-0.0 < 0.0 // false

330 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

However, wrapped into Double instances, they are different:

Double.valueOf(-0.0).equals(Double.valueOf(0.0)) // false
Double.valueOf(-0.0).compareTo(Double.valueOf(0.0)) // -1

The other issue is Double.NaN. Any comparison with a relational operator where an
operand is NaN returns false:

Double.NaN == Double.NaN // false
Double.NaN < Double.NaN // false

However, wrapped into a Double value, it behaves differently:

Double.valueOf(Double.NaN).equals(Double.valueOf(Double.NaN)) // true
Double.valueOf(Double.NaN).compareTo(Double.valueOf(Double.NaN)) // 0

The static Double.compare method follows the logic of the wrapper class:

Double.compare(-0.0, 0.0) // -1

Remarkably, Double.NaN is deemed larger than Double.POSITIVE_INFINITY:

Double.compare(Double.POSITIVE_INFINITY, Double.NaN) // -1

Note that the equals method of a record with double components uses Double.compare.

Now you saw what a class must do to avail itself of the sorting service—it must implement
a compareTo method. That’s eminently reasonable. There needs to be some way for the sort
method to compare objects. But why can’t the Employee class simply provide a compareTo
method without implementing the Comparable interface?

The reason for interfaces is that the Java programming language is strongly typed. When
making a method call, the compiler needs to be able to check that the method actually
exists. Somewhere in the sort method will be statements like this:

if (a[i].compareTo(a[j]) > 0)
{

// rearrange a[i] and a[j]
. . .

}

The compiler must know that a[i] actually has a compareTo method. If a is an array of
Comparable objects, then the existence of the method is assured because every class that
implements the Comparable interface must supply the method.

6.1 ▪ Interfaces 331

Note: You would expect that the sort method in the Arrays class is defined to accept
a Comparable[] array so that the compiler can complain if anyone ever calls sort with
an array whose element type doesn’t implement the Comparable interface. Sadly, that
is not the case. Instead, the sort method accepts an Object[] array and uses a clumsy
cast:

// approach used in the standard library--not recommended
if (((Comparable) a[i]).compareTo(a[j]) > 0)
{

// rearrange a[i] and a[j]
. . .

}

If a[i] does not belong to a class that implements the Comparable interface, the virtual
machine throws an exception.

Listing 6.1 presents the full code for sorting an array of instances of the class Employee
(Listing 6.2).

Listing 6.1 interfaces/EmployeeSortTest.java

1 package interfaces;
2
3 import java.util.*;
4
5 /**
6 * This program demonstrates the use of the Comparable interface.
7 * @version 1.30 2004-02-27
8 * @author Cay Horstmann
9 */

10 public class EmployeeSortTest
11 {
12 public static void main(String[] args)
13 {
14 var staff = new Employee[3];
15
16 staff[0] = new Employee("Harry Hacker", 35000);
17 staff[1] = new Employee("Carl Cracker", 75000);
18 staff[2] = new Employee("Tony Tester", 38000);
19
20 Arrays.sort(staff);
21
22 // print out information about all Employee objects
23 for (Employee e : staff)
24 System.out.println("name=" + e.getName() + ",salary=" + e.getSalary());
25 }
26 }

332 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

Listing 6.2 interfaces/Employee.java

1 package interfaces;
2
3 public class Employee implements Comparable<Employee>
4 {
5 private String name;
6 private double salary;
7
8 public Employee(String name, double salary)
9 {

10 this.name = name;
11 this.salary = salary;
12 }
13
14 public String getName()
15 {
16 return name;
17 }
18
19 public double getSalary()
20 {
21 return salary;
22 }
23
24 public void raiseSalary(double byPercent)
25 {
26 double raise = salary * byPercent / 100;
27 salary += raise;
28 }
29
30 /**
31 * Compares employees by salary.
32 * @param other another Employee object
33 * @return a negative value if this employee has a lower salary than
34 * other, 0 if the salaries are the same, a positive value otherwise
35 */
36 public int compareTo(Employee other)
37 {
38 return Double.compare(salary, other.salary);
39 }
40 }

java.lang.Comparable<T> 1.0

▪ int compareTo(T other)
compares this object with other and returns a negative integer if this object is less
than other, zero if they are equal, and a positive integer otherwise.

6.1 ▪ Interfaces 333

java.util.Arrays 1.2

▪ static void sort(Object[] a)
sorts the elements in the array a. All elements in the array must belong to classes that
implement the Comparable interface, and they must all be comparable to each other.

java.lang.Integer 1.0

▪ static int compare(int x, int y) 7
returns a negative integer if x < y, zero if x and y are equal, and a positive integer
otherwise.

java.lang.Double 1.0

▪ static int compare(double x, double y) 1.4
returns a negative integer if x < y, zero if x and y are equal, and a positive integer
otherwise.

Note: According to the language standard: “The implementor must ensure
sgn(x.compareTo(y)) = -sgn(y.compareTo(x)) for all x and y. (This implies that
x.compareTo(y) must throw an exception if y.compareTo(x) throws an exception.)” Here,
sgn is the sign of a number: sgn(n) is –1 if n is negative, 0 if n equals 0, and 1 if n is
positive. In plain English, if you flip the arguments of compareTo, the sign (but not
necessarily the actual value) of the result must also flip.

As with the equals method, problems can arise when inheritance comes into play.

Since Manager extends Employee, it implements Comparable<Employee> and not
Comparable<Manager>. If Manager chooses to override compareTo, it must be prepared to
compare managers to employees. It can’t simply cast an employee to a manager:

class Manager extends Employee
{

public int compareTo(Employee other)
{

Manager otherManager = (Manager) other; // NO
. . .

}
. . .

}

334 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

That violates the “antisymmetry” rule. If x is an Employee and y is a Manager, then the
call x.compareTo(y) doesn’t throw an exception—it simply compares x and y as
employees. But the reverse, y.compareTo(x), throws a ClassCastException.

This is the same situation as with the equals method discussed in Chapter 5, and the
remedy is the same. There are two distinct scenarios.

If subclasses have different notions of comparison, then you should outlaw
comparison of objects that belong to different classes. Each compareTo method should
start out with the test

if (getClass() != other.getClass()) throw new ClassCastException();

If there is a common algorithm for comparing subclass objects, simply provide a
single compareTo method in the superclass and declare it as final.

For example, suppose you want managers to be better than regular employees,
regardless of salary. What about other subclasses such as Executive and Secretary? If
you need to establish a pecking order, supply a method such as rank in the Employee
class. Have each subclass override rank, and implement a single compareTo method
that takes the rank values into account.

6.1.2. Properties of Interfaces

Interfaces are not classes. In particular, you can never use the new operator to instantiate
an interface:

x = new Comparable(. . .); // ERROR

However, even though you can’t construct interface objects, you can still declare interface
variables.

Comparable x; // OK

An interface variable must refer to an object of a class that implements the interface:

x = new Employee(. . .); // OK provided Employee implements Comparable

Next, just as you use instanceof to check whether an object is of a specific class, you can
use instanceof to check whether an object implements an interface:

if (anObject instanceof Comparable) { . . . }

Just as you can build hierarchies of classes, you can extend interfaces. This allows for
multiple chains of interfaces that go from a greater degree of generality to a greater
degree of specialization. For example, suppose you had an interface called Moveable.

6.1 ▪ Interfaces 335

public interface Moveable
{

void move(double x, double y);
}

Then, you could imagine an interface called Powered that extends it:

public interface Powered extends Moveable
{

double milesPerGallon();
}

Although you cannot put instance fields in an interface, you can supply constants in them.
For example:

public interface Powered extends Moveable
{

double milesPerGallon();
double SPEED_LIMIT = 95; // a public static final constant

}

Just as methods in an interface are automatically public, fields are always public static
final.

Note: It is legal to tag interface methods as public, and fields as public static final.
Some programmers do that, either out of habit or for greater clarity. However, the
Java Language Specification recommends that the redundant keywords not be
supplied, and I follow that recommendation.

While each class can have only one superclass, classes can implement multiple interfaces.
This gives you the maximum amount of flexibility in defining a class’s behavior. For
example, the Java programming language has an important interface built into it, called
Cloneable. (This interface is discussed in detail in Section 6.1.9.) If your class implements
Cloneable, the clone method in the Object class will make an exact copy of your class’s
objects. If you want both cloneability and comparability, simply implement both interfaces.
Use commas to separate the interfaces that you want to implement:

class Employee implements Cloneable, Comparable

Note: Records and enumeration classes cannot extend other classes (since they
implicitly extend the Record and Enum class). However, they can implement interfaces.

336 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

Note: Interfaces can be sealed. As with sealed classes, the direct subtypes (which
can be classes or interfaces) must be declared in a permits clause or be located in the
same source file.

6.1.3. Interfaces and Abstract Classes

If you read the section about abstract classes in Chapter 5, you may wonder why the
designers of the Java programming language bothered with introducing the concept of
interfaces. Why can’t Comparable simply be an abstract class:

abstract class Comparable // why not?
{

public abstract int compareTo(Object other);
}

The Employee class would then simply extend this abstract class and supply the compareTo
method:

class Employee extends Comparable // why not?
{

public int compareTo(Object other) { . . . }
}

There is, unfortunately, a major problem with using an abstract base class to express a
generic property. A class can only extend a single class. Suppose the Employee class already
extends a different class, say, Person. Then it can’t extend a second class.

class Employee extends Person, Comparable // ERROR

But each class can implement as many interfaces as it likes:

class Employee extends Person implements Comparable // OK

Other programming languages, in particular C++, allow a class to have more than one
superclass. This feature is called multiple inheritance. The designers of Java chose not to
support multiple inheritance, because it makes the language either very complex (as in
C++) or less efficient (as in Eiffel).

Instead, interfaces afford most of the benefits of multiple inheritance while avoiding the
complexities and inefficiencies.

C++ Note: C++ has multiple inheritance and all the complications that come with
it, such as virtual base classes, dominance rules, and transverse pointer casts. Few

6.1 ▪ Interfaces 337

C++ programmers use multiple inheritance, and some say it should never be used.
Other programmers recommend using multiple inheritance only for the “mix-in”
style of inheritance. In the mix-in style, a primary base class describes the parent
object, and additional base classes (the so-called mix-ins) may supply auxiliary
characteristics. That style is similar to a Java class with a single superclass and
additional interfaces.

Tip: You have seen the CharSequence interface in Chapter 3. Both String and
StringBuilder (as well as a few more esoteric string-like classes) implement this
interface. The interface contains methods that are common to all classes that
manage sequences of characters. A common interface encourages programmers to
write methods that use the CharSequence interface. Those methods work with
instances of String, StringBuilder, and the other string-like classes.

Sadly, the CharSequence interface is rather paltry. You can get the length, iterate over
the code points or code units, extract subsequences, and lexicographically compare
two sequences. Java 17 adds an isEmpty method.

If you process strings, and those operations suffice for your tasks, accept
CharSequence instances instead of strings.

6.1.4. Static and Private Methods

As of Java 8, you are allowed to add static methods to interfaces. There was never a
technical reason why this should be outlawed. It simply seemed to be against the spirit of
interfaces as abstract specifications.

Previously, it had been common to place static methods in companion classes. In the
standard library, you'll find pairs of interfaces and utility classes such as
Collection/Collections.

As an example, you can construct a path to a file or directory from a URI, or from a
sequence of strings, using static methods in the Path interface:

public interface Path
{

public static Path of(URI uri) { . . . }
public static Path of(String first, String... more) { . . . }
. . .

}

In previous versions of Java, there was a separate Paths class to hold these methods.
Nowadays, there is no longer a reason to provide a separate companion class for utility
methods.

338 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

Methods in an interface can be private. A private method can be static or an instance
method. Since private methods can only be used in the methods of the interface itself, their
use is limited to being helper methods for the other methods of the interface.

6.1.5. Default Methods

You can supply a default implementation for any interface method. You must tag such a
method with the default modifier.

public interface Comparable<T>
{

default int compareTo(T other) { return 0; }
// by default, all elements are the same

}

Of course, that is not very useful since every realistic implementation of Comparable would
override this method. But there are other situations where default methods can be useful.
For example, in Chapter 9 you will see an Iterator interface for visiting elements in a data
structure. It declares a remove method as follows:

public interface Iterator<E>
{

boolean hasNext();
E next();
default void remove() { throw new UnsupportedOperationException("remove"); }
. . .

}

If you implement an iterator, you need to provide the hasNext and next methods. There are
no defaults for these methods—they depend on the data structure that you are traversing.
But if your iterator is read-only, you don't have to worry about the remove method.

A default method can call other methods. For example, a Collection interface can define a
convenience method

public interface Collection
{

int size(); // an abstract method
default boolean isEmpty() { return size() == 0; }
. . .

}

Then a programmer implementing Collection doesn't have to worry about implementing an
isEmpty method.

6.1 ▪ Interfaces 339

Note: The Collection interface in the Java API does not actually do this. Instead,
there is a class AbstractCollection that implements Collection and defines isEmpty in
terms of size. Implementors of a collection are advised to extend AbstractCollection.
That technique is obsolete. Just implement the methods in the interface.

An important use for default methods is interface evolution. Consider, for example, the
Collection interface that has been a part of Java for many years. Suppose that a long time
ago, you provided a class

public class Bag implements Collection

Later, in Java 8, a stream method was added to the interface.

Suppose the stream method was not a default method. Then the Bag class would no longer
compile since it doesn't implement the new method. Adding a nondefault method to an
interface is not source-compatible.

But suppose you don't recompile the class and simply use an old JAR file containing it. The
class will still load, even with the missing method. Programs can still construct Bag
instances, and nothing bad will happen. (Adding a method to an interface is binary
compatible.) However, if a program calls the stream method on a Bag instance, an
AbstractMethodError occurs.

Making the method a default method solves both problems. The Bag class will again
compile. And if the class is loaded without being recompiled and the stream method is
invoked on a Bag instance, the Collection.stream method is called.

6.1.6. Resolving Default Method Conflicts

What happens if the exact same method is defined as a default method in one interface and
then again as a method of a superclass or another interface? Languages such as Scala and
C++ have complex rules for resolving such ambiguities. Fortunately, the rules in Java are
much simpler. Here they are:

1. Superclasses win. If a superclass provides a concrete method, default methods with
the same name and parameter types are simply ignored.

2. Interfaces clash. If an interface provides a default method, and another interface
contains a method with the same name and parameter types (default or not), then
you must resolve the conflict by overriding that method.

Let’s look at the second rule. Consider two interfaces with a getName method:

interface Person
{

default String getName() { return ""; }

340 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

}

interface Named
{

default String getName() { return getClass().getName() + "_" + hashCode(); }
}

What happens if you form a class that implements both of them?

class Student implements Person, Named { . . . }

The class inherits two inconsistent getName methods provided by the Person and Named
interfaces. Instead of choosing one over the other, the Java compiler reports an error and
leaves it up to the programmer to resolve the ambiguity. Simply provide a getName method
in the Student class. In that method, you can choose one of the two conflicting methods, like
this:

class Student implements Person, Named
{

public String getName() { return Person.super.getName(); }
. . .

}

Now assume that the Named interface does not provide a default implementation for getName:

interface Named
{

String getName();
}

Can the Student class inherit the default method from the Person interface? This might be
reasonable, but the Java designers decided in favor of uniformity. It doesn’t matter how two
interfaces conflict. If at least one interface provides an implementation, the compiler
reports an error, and the programmer must resolve the ambiguity.

If neither interface provides a default for a shared method, then there is no conflict. An
implementing class has two choices: implement the method, or leave it unimplemented. In
the latter case, the class is itself abstract.

We just discussed name clashes between two interfaces. Now consider a class that extends
a superclass and implements an interface, inheriting the same method from both. For
example, suppose that Person is a class and Student is defined as

class Student extends Person implements Named { . . . }

In that case, only the superclass method matters, and any default method from the
interface is simply ignored. In our example, Student inherits the getName method from Person,

6.1 ▪ Interfaces 341

and it doesn’t make any difference whether the Named interface provides a default for
getName or not. This is the “class wins” rule.

The “class wins” rule ensures compatibility with old versions of Java. If you add default
methods to an interface, it has no effect on code that worked before there were default
methods.

Caution: You can never make a default method that redefines one of the methods in
the Object class. For example, you can’t define a default method for toString or
equals, even though that might be attractive for interfaces such as List. As a
consequence of the “class wins” rule, such a method could never win against
Object.toString or Object.equals.

6.1.7. Interfaces and Callbacks

A common pattern in programming is the callback pattern. In this pattern, you specify the
action that should occur whenever a particular event happens. For example, you may want
a particular action to occur when a button is clicked or a menu item is selected. However,
as you have not yet seen how to implement user interfaces, we will consider a similar but
simpler situation.

The javax.swing package contains a Timer class that is useful if you want to be notified
whenever a time interval has elapsed. For example, if a part of your program contains a
clock, you can ask to be notified every second so that you can update the clock face.

When you construct a timer, you set the time interval and tell it what it should do whenever
the time interval has elapsed.

How do you tell the timer what it should do? In many programming languages, you supply
the name of a function that the timer should call periodically. However, the classes in the
Java standard library take an object-oriented approach. You pass an object of some class.
The timer then calls one of the methods on that object. Passing an object is more flexible
than passing a function because the object can carry additional information.

Of course, the timer needs to know what method to call. The timer requires that you
specify an object of a class that implements the ActionListener interface of the
java.awt.event package. Here is that interface:

public interface ActionListener
{

void actionPerformed(ActionEvent event);
}

The timer calls the actionPerformed method when the time interval has expired.

342 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

Suppose you want to print a message “At the tone, the time is . . .”, followed by a beep,
once every second. You would define a class that implements the ActionListener interface.
You would then place whatever statements you want to have executed inside the
actionPerformed method.

class TimePrinter implements ActionListener
{

public void actionPerformed(ActionEvent event)
{

System.out.println("At the tone, the time is "
+ Instant.ofEpochMilli(event.getWhen()));

Toolkit.getDefaultToolkit().beep();
}

}

Note the ActionEvent parameter of the actionPerformed method. This parameter gives
information about the event, such as the time when the event happened. The call
event.getWhen() returns the event time, measured in milliseconds since the “epoch” (January
1, 1970). By passing it to the static Instant.ofEpochMilli method, we get a more readable
description.

Next, construct an object of this class and pass it to the Timer constructor.

var listener = new TimePrinter();
Timer t = new Timer(1000, listener);

The first argument of the Timer constructor is the time interval that must elapse between
notifications, measured in milliseconds. We want to be notified every second. The second
argument is the listener object.

Finally, start the timer.

t.start();

Every second, a message like

At the tone, the time is 2017-12-16T05:01:49.550Z

is displayed, followed by a beep.

Caution: Be sure to import javax.swing.Timer. There is also a java.util.Timer class
that is slightly different.

Listing 6.3 puts the timer and its action listener to work. After the timer is started, the
program puts up a message dialog and waits for the user to click the OK button to stop.

6.1 ▪ Interfaces 343

While the program waits for the user, the current time is displayed every second. (If you
omit the dialog, the program would terminate as soon as the main method exits.)

Listing 6.3 timer/TimerTest.java

1 package timer;
2
3 /**
4 @version 1.02 2017-12-14
5 @author Cay Horstmann
6 */
7
8 import java.awt.*;
9 import java.awt.event.*;

10 import java.time.*;
11 import javax.swing.*;
12
13 public class TimerTest
14 {
15 public static void main(String[] args)
16 {
17 var listener = new TimePrinter();
18
19 // construct a timer that calls the listener once every second
20 var timer = new Timer(1000, listener);
21 timer.start();
22
23 // keep program running until the user selects "OK"
24 JOptionPane.showMessageDialog(null, "Quit program?");
25 System.exit(0);
26 }
27 }
28
29 class TimePrinter implements ActionListener
30 {
31 public void actionPerformed(ActionEvent event)
32 {
33 System.out.println("At the tone, the time is " + Instant.ofEpochMilli(event.getWhen()));
34 Toolkit.getDefaultToolkit().beep();
35 }
36 }

javax.swing.JOptionPane 1.2

▪ static void showMessageDialog(Component parent, Object message)
displays a dialog box with a message prompt and an OK button. The dialog is centered
over the parent component. If parent is null, the dialog is centered on the screen.

344 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

javax.swing.Timer 1.2

▪ Timer(int interval, ActionListener listener)
constructs a timer that notifies listener whenever interval milliseconds have elapsed.

▪ void start()
starts the timer. Once started, the timer calls actionPerformed on its listeners.

▪ void stop()
stops the timer. Once stopped, the timer no longer calls actionPerformed on its
listeners.

java.awt.Toolkit 1.0

▪ static Toolkit getDefaultToolkit()
gets the default toolkit. A toolkit contains information about the GUI environment.

▪ void beep()
emits a beep sound.

6.1.8. The Comparator Interface

In Section 6.1.1, you have seen how you can sort an array of objects, provided they are
instances of classes that implement the Comparable interface. For example, you can sort an
array of strings since the String class implements Comparable<String>, and the
String.compareTo method compares strings in dictionary order.

Now suppose we want to sort strings by increasing length, not in dictionary order. We can't
have the String class implement the compareTo method in two ways—and at any rate, the
String class isn't ours to modify.

To deal with this situation, there is a second version of the Arrays.sort method whose
parameters are an array and a comparator—an instance of a class that implements the
Comparator interface.

public interface Comparator<T>
{

int compare(T first, T second);
}

To compare strings by length, define a class that implements Comparator<String>:

class LengthComparator implements Comparator<String>
{

public int compare(String first, String second)
{

6.1 ▪ Interfaces 345

return first.length() - second.length();
}

}

To actually do the comparison, you need to make an instance:

var comp = new LengthComparator();
if (comp.compare(words[i], words[j]) > 0) . . .

Contrast this call with words[i].compareTo(words[j]). The compare method is called on the
comparator object, not the string itself.

Note: Even though the LengthComparator object has no state, you still need to make
an instance of it. You need the instance to call the compare method—it is not a static
method.

To sort an array, pass a LengthComparator object to the Arrays.sort method:

String[] friends = { "Peter", "Paul", "Mary" };
Arrays.sort(friends, new LengthComparator());

Now the array is either ["Paul", "Mary", "Peter"] or ["Mary", "Paul", "Peter"].

You will see in Section 6.2 how to use a Comparator much more easily with a lambda
expression.

Note: The String class provides a Comparator for case-insensitive comparison. Here is
how you can use it:

Arrays.sort(friends, String.CASE_INSENSITIVE_ORDER);

Caution: Do not try to shuffle an array by sorting it with a comparator that
randomly returns positive or negative integers.

There are three rules that a comparator needs to fulfill:

1. Reflexivity: When x and y are equal, the comparator yields 0.
2. Antisymmetry: When swapping the arguments of the comparator, the sign of

the result is swapped.
3. Transitivity: When x comes before y and y comes before z, then x must come

before z.

346 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

The algorithm that Arrays.sort uses (called “Timsort”) doesn't check these rules for
all elements, but it can sometimes detect a rule violation at a trivial cost. Then it
throws an exception with the message “Comparison method violates its general
contract!”. With an array of 1,000 elements, the chance of this occurring with a
random comparator is over 10%.

The Collections.shuffle method randomly shuffles a list. To shuffle an array, first turn
it into a list and then shuffle that.

6.1.9. Object Cloning

In this section, we discuss the Cloneable interface that indicates that a class has provided a
safe clone method. Since cloning is not all that common, and the details are quite technical,
you may just want to glance at this material until you need it.

To understand what cloning means, recall what happens when you make a copy of a
variable holding an object reference. The original and the copy are references to the same
object (see Figure 6.1). This means a change to either variable also affects the other.

var original = new Employee("John Public", 50000);
Employee copy = original;
copy.raiseSalary(10); // oops--also changed original

If you would like copy to be a new object that begins its life being identical to original but
whose state can diverge over time, use the clone method.

Employee copy = original.clone();
copy.raiseSalary(10); // OK--original unchanged

But it isn’t quite so simple. The clone method is a protected method of Object, which means
that your code cannot simply call it. Only the Employee class can clone Employee objects.
There is a reason for this restriction. Think about the way in which the Object class can
implement clone. It knows nothing about the object at all, so it can make only a field-by-
field copy. If all instance fields in the object are numbers or other basic types, copying the
fields is just fine. But if the object contains references to subobjects, then copying the field
gives you another reference to the same subobject, so the original and the cloned objects
still share some information.

To visualize that, consider the Employee class that was introduced in Chapter 4. Figure 6.2
shows what happens when you use the clone method of the Object class to clone such an
Employee object. As you can see, the default cloning operation is “shallow”—it doesn’t clone
objects that are referenced inside other objects. (The figure shows a shared Date object. For
reasons that will become clear shortly, this example uses a version of the Employee class in
which the hire day is represented as a Date.)

6.1 ▪ Interfaces 347

Figure 6.1: Copying and cloning

Does it matter if the copy is shallow? It depends. If the subobject shared between the
original and the shallow clone is immutable, then the sharing is safe. This certainly
happens if the subobject belongs to an immutable class, such as String. Alternatively, the
subobject may simply remain constant throughout the lifetime of the object, with no
mutators touching it and no methods yielding a reference to it.

Quite frequently, however, subobjects are mutable, and you must redefine the clone method
to make a deep copy that clones the subobjects as well. In our example, the hireDay field is

348 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

Figure 6.2: A shallow copy

a Date, which is mutable, so it too must be cloned. (For that reason, this example uses a
field of type Date, not LocalDate, to demonstrate the cloning process. Had hireDay been an
instance of the immutable LocalDate class, no further action would have been required.)

For every class, you need to decide whether

1. The default clone method is good enough;
2. The default clone method can be patched up by calling clone on the mutable

subobjects; or
3. clone should not be attempted.

The third option is actually the default. To choose either the first or the second option, a
class must

1. Implement the Cloneable interface; and
2. Redefine the clone method with the public access modifier.

Note: The clone method is declared protected in the Object class, so that your code
can’t simply call anObject.clone(). But aren’t protected methods accessible from any
subclass, and isn’t every class a subclass of Object? Fortunately, the rules for

6.1 ▪ Interfaces 349

protected access are more subtle (see Chapter 5). A subclass can call a protected
clone method only to clone its own objects. You must redefine clone to be public to
allow objects to be cloned by any method.

In this case, the appearance of the Cloneable interface has nothing to do with the normal
use of interfaces. In particular, it does not specify the clone method—that method is
inherited from the Object class. The interface merely serves as a tag, indicating that the
class designer understands the cloning process. Objects are so paranoid about cloning that
they generate a checked exception if an object requests cloning but does not implement
that interface.

Note: The Cloneable interface is one of a handful of tagging interfaces that Java
provides. (Some programmers call them marker interfaces.) Recall that the usual
purpose of an interface such as Comparable is to ensure that a class implements a
particular method or set of methods. A tagging interface has no methods; its only
purpose is to allow the use of instanceof in a type inquiry:

if (obj instanceof Cloneable) . . .

I recommend that you do not use tagging interfaces in your own programs.

Even if the default (shallow copy) implementation of clone is adequate, you still need to
implement the Cloneable interface, redefine clone to be public, and call super.clone(). Here
is an example:

class Employee implements Cloneable
{

// public access, change return type
public Employee clone() throws CloneNotSupportedException
{

return (Employee) super.clone();
}
. . .

}

Note: Note that in the Object class, the clone method has return type Object. In a
subclass, you can specify the correct return type for your clone methods. This is an
example of covariant return types (see Chapter 5).

The clone method that you just saw adds no functionality to the shallow copy provided by
Object.clone. It merely makes the method public. To make a deep copy, you have to work
harder and clone the mutable instance fields.

350 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

Here is an example of a clone method that creates a deep copy:

class Employee implements Cloneable
{

. . .
public Employee clone() throws CloneNotSupportedException
{

// call Object.clone()
Employee cloned = (Employee) super.clone();

// clone mutable fields
cloned.hireDay = (Date) hireDay.clone();

return cloned;
}

}

The clone method of the Object class threatens to throw a CloneNotSupportedException—it
does that whenever clone is invoked on an object whose class does not implement the
Cloneable interface. Of course, the Employee and Date classes implement the Cloneable
interface, so the exception won’t be thrown. However, the compiler does not know that.
Therefore, we declared the exception:

public Employee clone() throws CloneNotSupportedException

Note: Would it be better to catch the exception instead? (See Chapter 7 for details
on catching exceptions.)

public Employee clone()
{

try
{

Employee cloned = (Employee) super.clone();
. . .

}
catch (CloneNotSupportedException e) { return null; }
// this won't happen, since we are Cloneable

}

This is appropriate for final classes. Otherwise, it is better to leave the throws
specifier in place. That gives subclasses the option of throwing a
CloneNotSupportedException if they can’t support cloning.

You have to be careful about cloning of subclasses. For example, once you have defined the
clone method for the Employee class, anyone can use it to clone Manager objects. Can the

6.1 ▪ Interfaces 351

Employee clone method do the job? It depends on the fields of the Manager class. In our case,
there is no problem because the bonus field has primitive type. But Manager might have
acquired fields that require a deep copy or are not cloneable. There is no guarantee that
the implementor of the subclass has fixed clone to do the right thing. For that reason, the
clone method is declared as protected in the Object class. But you don’t have that luxury if
you want the users of your classes to invoke clone.

Should you implement clone in your own classes? If your clients need to make deep copies,
then you probably should. Some authors feel that you should avoid clone altogether and
instead implement another method for the same purpose. I agree that clone is rather
awkward, but you’ll run into the same issues if you shift the responsibility to another
method. At any rate, cloning is less common than you may think. Less than five percent of
the classes in the standard library implement clone.

The program in Listing 6.4 clones an instance of the class Employee (Listing 6.5), then
invokes two mutators. The raiseSalary method changes the value of the salary field,
whereas the setHireDay method changes the state of the hireDay field. Neither mutation
affects the original object because clone has been defined to make a deep copy.

Note: All array types have a clone method that is public, not protected. You can use
it to make a new array that contains copies of all elements. For example:

int[] luckyNumbers = { 2, 3, 5, 7, 11, 13 };
int[] cloned = luckyNumbers.clone();
cloned[5] = 12; // doesn't change luckyNumbers[5]

Listing 6.4 clone/CloneTest.java

1 package clone;
2
3 /**
4 * This program demonstrates cloning.
5 * @version 1.11 2018-03-16
6 * @author Cay Horstmann
7 */
8 public class CloneTest
9 {

10 public static void main(String[] args) throws CloneNotSupportedException
11 {
12 var original = new Employee("John Q. Public", 50000);
13 original.setHireDay(2000, 1, 1);
14 Employee copy = original.clone();
15 copy.raiseSalary(10);
16 copy.setHireDay(2002, 12, 31);
17 System.out.println("original=" + original);

352 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

18 System.out.println("copy=" + copy);
19 }
20 }

Listing 6.5 clone/Employee.java

1 package clone;
2
3 import java.time.*;
4 import java.util.*;
5
6 public class Employee implements Cloneable
7 {
8 private String name;
9 private double salary;

10 private Date hireDay;
11
12 public Employee(String name, double salary)
13 {
14 this.name = name;
15 this.salary = salary;
16 hireDay = new Date();
17 }
18
19 public Employee clone() throws CloneNotSupportedException
20 {
21 // call Object.clone()
22 Employee cloned = (Employee) super.clone();
23
24 // clone mutable fields
25 cloned.hireDay = (Date) hireDay.clone();
26
27 return cloned;
28 }
29
30 /**
31 * Set the hire day to a given date.
32 * @param year the year of the hire day
33 * @param month the month of the hire day
34 * @param day the day of the hire day
35 */
36 public void setHireDay(int year, int month, int day)
37 {
38 long epochMillis = LocalDate.of(year, month, day)
39 .atStartOfDay(ZoneId.systemDefault())
40 .toEpochSecond() * 1000;
41
42 // example of instance field mutation
43 hireDay.setTime(epochMillis);
44 }

6.1 ▪ Interfaces 353

45
46 public void raiseSalary(double byPercent)
47 {
48 double raise = salary * byPercent / 100;
49 salary += raise;
50 }
51
52 public String toString()
53 {
54 return "Employee[name=" + name + ",salary=" + salary + ",hireDay=" + hireDay + "]";
55 }
56 }

6.2. Lambda Expressions
In the following sections, you will learn how to use lambda expressions for defining blocks
of code with a concise syntax, and how to write code that consumes lambda expressions.

6.2.1. Why Lambdas?

A lambda expression is a block of code that you can pass around so it can be executed
later, once or multiple times. Before getting into the syntax (or even the curious name),
let’s step back and observe where we have used such code blocks in Java.

In Section 6.1.7, you saw how to do work in timed intervals. Put the work into the
actionPerformed method of an ActionListener:

class Worker implements ActionListener
{

public void actionPerformed(ActionEvent event)
{

// do some work
}

}

Then, when you want to repeatedly execute this code, you construct an instance of the
Worker class. You then submit the instance to a Timer object.

The key point is that the actionPerformed method contains code that you want to execute
later.

Or consider sorting with a custom comparator. If you want to sort strings by length instead
of the default dictionary order, you can pass a Comparator object to the sort method:

class LengthComparator implements Comparator<String>
{

public int compare(String first, String second)

354 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

{
return first.length() - second.length();

}
}
. . .
Arrays.sort(strings, new LengthComparator());

The compare method isn't called right away. Instead, the sort method keeps calling the
compare method, rearranging the elements if they are out of order, until the array is sorted.
You give the sort method a snippet of code needed to compare elements, and that code is
integrated into the rest of the sorting logic, which you’d probably not care to reimplement.

Both examples have something in common. A block of code was passed to someone—a
timer, or a sort method. That code block was called at some later time.

In early versions of Java, giving someone a block of code was not easy. You couldn’t just
pass code blocks around. Java is an object-oriented language, so you had to construct an
object belonging to a class that has a method with the desired code.

In other languages, it is possible to work with blocks of code directly. The Java designers
have resisted adding this feature for a long time. After all, a great strength of Java is its
simplicity and consistency. A language can become an unmaintainable mess if it includes
every feature that yields marginally more concise code. However, in those other languages
it isn’t just easier to spawn a thread or to register a button click handler; large swaths of
their APIs are simpler, more consistent, and more powerful. In Java, one could have written
similar APIs taking objects of classes that implement a particular interface, but such APIs
would be unpleasant to use.

For some time, the question was not whether to augment Java for functional programming,
but how to do it. It took several years of experimentation before a design emerged that is a
good fit for Java. In the next section, you will see how you can work with blocks of code in
Java.

6.2.2. The Syntax of Lambda Expressions

Consider again the sorting example from the preceding section. We pass code that checks
whether one string is shorter than another. We compute

first.length() - second.length()

What are first and second? They are both strings. Java is a strongly typed language, and we
must specify that as well:

(String first, String second) ->
first.length() - second.length()

6.2 ▪ Lambda Expressions 355

You have just seen your first lambda expression. Such an expression is simply a block of
code, together with the specification of any variables that must be passed to the code.

Why the name? Many years ago, before there were any computers, the logician Alonzo
Church wanted to formalize what it means for a mathematical function to be effectively
computable. (Curiously, there are functions that are known to exist, but nobody knows how
to compute their values.) He used the Greek letter lambda (λ) to mark parameters. Had he
known about the Java API, he would have written

λfirst.λsecond.first.length() - second.length()

Note: Why the letter λ? Did Church run out of other letters of the alphabet?
Actually, the venerable Principia Mathematica used the ^ accent to denote free
variables, which inspired Church to use an uppercase lambda Λ for parameters. But
in the end, he switched to the lowercase version. Ever since, an expression with
parameter variables has been called a lambda expression.

What you have just seen is a simple form of lambda expressions in Java: parameters, the ->
arrow, and an expression. If the code carries out a computation that doesn’t fit in a single
expression, write it exactly like you would have written a method: enclosed in {} and with
explicit return statements. For example,

(String first, String second) ->
{

if (first.length() < second.length()) return -1;
else if (first.length() > second.length()) return 1;
else return 0;

}

If a lambda expression has no parameters, you still supply empty parentheses, just as with
a parameterless method:

() -> { return 1 + (int)(Math.random() * 6); }

If the parameter types of a lambda expression can be inferred, you can omit them. For
example,

Comparator<String> comp =
(first, second) // same as (String first, String second)

-> first.length() - second.length();

Here, the compiler can deduce that first and second must be strings because the lambda
expression is assigned to a string comparator. (We will have a closer look at this
assignment in the next section.)

356 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

If a method has a single parameter with inferred type, you can even omit the parentheses:

ActionListener listener = event ->
System.out.println("The time is "

+ Instant.ofEpochMilli(event.getWhen()));
// instead of (event) -> . . . or (ActionEvent event) -> . . .

You never specify the result type of a lambda expression. It is always inferred from context.
For example, the expression

(String first, String second) -> first.length() - second.length()

can be used in a context where a result of type int is expected.

Finally, you can use var to denote an inferred type. This isn't common. The syntax was
invented for attaching annotations (see Chapter 11):

(@NonNull var first, @NonNull var second) -> first.length() - second.length()

Note: It is illegal for a lambda expression to return a value in some branches but not
in others. For example, (int x) -> { if (x >= 0) return 1; } is invalid.

Preview Note: If a parameter of a lambda expression is never used, you can denote
it with an underscore:

ActionListener listener = _ ->
System.out.println("The action occurred at " + Instant.now());

Comparator<String> comp = (_, _) -> 0;

This is a preview feature in Java 21.

The program in Listing 6.6 shows how to use lambda expressions for a comparator and an
action listener.

Listing 6.6 lambda/LambdaTest.java

1 package lambda;
2
3 import java.util.*;
4
5 import javax.swing.*;
6 import javax.swing.Timer;
7

6.2 ▪ Lambda Expressions 357

8 /**
9 * This program demonstrates the use of lambda expressions.

10 * @version 1.0 2015-05-12
11 * @author Cay Horstmann
12 */
13 public class LambdaTest
14 {
15 public static void main(String[] args)
16 {
17 var planets = new String[] { "Mercury", "Venus", "Earth", "Mars",
18 "Jupiter", "Saturn", "Uranus", "Neptune" };
19 System.out.println(Arrays.toString(planets));
20 System.out.println("Sorted in dictionary order:");
21 Arrays.sort(planets);
22 System.out.println(Arrays.toString(planets));
23 System.out.println("Sorted by length:");
24 Arrays.sort(planets, (first, second) -> first.length() - second.length());
25 System.out.println(Arrays.toString(planets));
26
27 var timer = new Timer(1000, event ->
28 System.out.println("The time is " + new Date()));
29 timer.start();
30
31 // keep program running until user selects "OK"
32 JOptionPane.showMessageDialog(null, "Quit program?");
33 System.exit(0);
34 }
35 }

6.2.3. Functional Interfaces

As we discussed, there are many existing interfaces in Java that encapsulate blocks of
code, such as ActionListener or Comparator. Lambdas are compatible with these interfaces.

You can supply a lambda expression whenever an object of an interface with a single
abstract method is expected. Such an interface is called a functional interface.

Note: You may wonder why a functional interface must have a single abstract
method. Aren’t all methods in an interface abstract? Actually, it has always been
possible for an interface to redeclare methods from the Object class such as toString
or clone, and these declarations do not make the methods abstract. (Some interfaces
in the Java API redeclare Object methods in order to attach javadoc comments.
Check out the Comparator API for an example.) More importantly, as you saw in
Section 6.1.5, interfaces can declare nonabstract methods.

358 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

To demonstrate the conversion to a functional interface, consider the Arrays.sort method.
Its second parameter requires an instance of Comparator, an interface with a single method.
Simply supply a lambda:

Arrays.sort(words,
(first, second) -> first.length() - second.length());

Behind the scenes, the Arrays.sort method receives an object of some class that
implements Comparator<String>. Invoking the compare method on that object executes the
body of the lambda expression. The management of these objects and classes is completely
implementation-dependent, and it can be much more efficient than using traditional inner
classes. It is best to think of a lambda expression as a function, not an object, and to accept
that it can be passed to a functional interface.

This conversion to interfaces is what makes lambda expressions so compelling. The syntax
is short and simple. Here is another example:

var timer = new Timer(1000, event ->
{

System.out.println("At the tone, the time is "
+ Instant.ofEpochMilli(event.getWhen()));

Toolkit.getDefaultToolkit().beep();
});

That’s a lot easier to read than the alternative with a class that implements the
ActionListener interface.

In fact, conversion to a functional interface is the only thing that you can do with a lambda
expression in Java. In other programming languages that support function literals, you can
declare function types such as (String, String) -> int, declare variables of those types, and
use the variables to save function expressions. However, the Java designers decided to
stick with the familiar concept of interfaces instead of adding function types to the
language.

Note: You can’t even assign a lambda expression to a variable of type Object—Object
is not a functional interface.

6.2.4. Function Types

The Java API defines a number of very generic functional interfaces in the
java.util.function package. One of the interfaces, BiFunction<T, U, R>, describes functions
with parameter types T and U and return type R. You can save your string comparison
lambda in a variable of that type:

6.2 ▪ Lambda Expressions 359

BiFunction<String, String, Integer> comp =
(first, second) -> first.length() - second.length();

Note that this interface does not help you with sorting. There is no Arrays.sort method that
wants a BiFunction. If you have used a functional programming language before, you may
find this curious. But for Java programmers, it’s pretty natural. An interface such as
Comparator has a specific purpose, not just a method with given parameter and return types.
When you want to do something with lambda expressions, you still want to keep the
purpose of the expression in mind, and have a specific functional interface for it.

A particularly useful interface in the java.util.function package is Predicate:

public interface Predicate<T>
{

boolean test(T t);
// additional default and static methods

}

The ArrayList class has a removeIf method whose parameter is a Predicate. It is specifically
designed to pass a lambda expression. For example, the following statement removes all
null values from an array list:

list.removeIf(e -> e == null);

Another useful functional interface is Supplier<T>:

public interface Supplier<T>
{

T get();
}

A supplier has no parameters and yields a value of type T when the get method is called:

Supplier<Integer> die = () -> (int)(Math.random() * 6) + 1;
int outcome = die.get();

Suppliers are used for lazy evaluation. For example, consider the call

LocalDate hireDay = Objects.requireNonNullElse(day,
LocalDate.of(1970, 1, 1));

This is not optimal. We expect that day is rarely null, so we only want to construct the
default LocalDate when necessary. By using the supplier, we can defer the computation:

LocalDate hireDay = Objects.requireNonNullElseGet(day,
() -> LocalDate.of(1970, 1, 1));

360 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

The requireNonNullElseGet method only calls the supplier when the value is needed.

Functional interfaces that involve primitive types are a little cumbersone. Consider a
function consuming an int and yielding an object of type T. You could use a
Function<Integer, T>, but then the argument must be boxed in each call. Instead, there is a
functional interface IntFunction<T>. Conversely, if a function has a return value of type int,
the ToIntFunction<T> interface is more efficient than Function<T, Integer>. Finally, if both
argument and return value are int, there is an IntUnaryOperator interface.

As the user of an API, you don't usually care about this subtlety. Consider the Arrays.setAll
method. It sets all values of an array to the result of a function whose argument is the
array index. Here, we set all elements to the square of the index:

var values = new int[100];
Arrays.setAll(values, i -> i * i); // [0, 1, 4, 9, 16, . . ., 9801]

There are overloaded versions of setAll for arrays of type int[], long[], double[], and a
generic array T[]. Here, the int[] overload has as second parameter an IntUnaryOperator.
But as the user of the method, you don't care. You just supply the lambda expression, which
you can do without worrying about the difference between primitive types and their
wrapper classes.

Caution: It is nice that a lambda expression can match primitive and wrapper types
in a functional interface. But it is an error if both matches could occur. Consider a
utility class that provides these methods:

public static int[] fill(int n, IntUnaryOperator op)
public static Object[] fill(int n, IntFunction<Object> op)

A call fill(n, i -> i * i) will not compile since it is ambiguous.

You can catch such problems in your API by compiling with the -Xlint or
-Xlint:overloads flag.

6.2.5. Method References

Sometimes, a lambda expression involves a single method. For example, suppose you
simply want to print the event object whenever a timer event occurs. Of course, you could
call

var timer = new Timer(1000, event -> System.out.println(event));

It would be nicer if you could just pass the println method to the Timer constructor. Here is
how you do that:

6.2 ▪ Lambda Expressions 361

var timer = new Timer(1000, System.out::println);

The expression System.out::println is a method reference. It directs the compiler to
produce an instance of a functional interface, overriding the single abstract method of the
interface to call the given method. In this example, an ActionListener is produced whose
actionPerformed(ActionEvent e) method calls System.out.println(e).

Note: Like a lambda expression, a method reference is not an object. It gives rise to
an object when assigned to a variable whose type is a functional interface.

Note: There are ten overloaded println methods in the PrintStream class (of which
System.out is an instance). The compiler needs to figure out which one to use,
depending on context. In our example, the method reference System.out::println
must be turned into an ActionListener instance with a method

void actionPerformed(ActionEvent e)

The println(Object x) method is selected from the ten overloaded println methods
since Object is the best match for ActionEvent. When the actionPerformed method is
called, the event object is printed.

Now suppose we assign the same method reference to a different functional
interface:

Runnable task = System.out::println;

The Runnable functional interface has a single abstract method with no parameters

void run()

In this case, the println() method with no parameters is chosen. Calling task.run()
prints a blank line to System.out.

As another example, suppose you want to sort strings regardless of letter case. You can
pass this method expression:

Arrays.sort(strings, String::compareToIgnoreCase)

As you can see from these examples, the :: operator separates the method name from the
name of an object or class. There are three variants:

1. object::instanceMethod
2. Class::instanceMethod
3. Class::staticMethod

362 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

In the first variant, the method reference is equivalent to a lambda expression whose
parameters are passed to the method. In the case of System.out::println, the object is
System.out, and the method expression is equivalent to x -> System.out.println(x).

In the second variant, the first parameter becomes the implicit parameter of the method.
For example, String::compareToIgnoreCase is the same as (x, y) -> x.compareToIgnoreCase(y).

In the third variant, all parameters are passed to the static method: Math::pow is equivalent
to (x, y) -> Math.pow(x, y).

Table 6.1 walks you through additional examples.

Note that a lambda expression can only be rewritten as a method reference if the body of
the lambda expression calls a single method and doesn't do anything else. Consider the
lambda expression

s -> s.length() == 0

There is a single method call. But there is also a comparison, so you can't use a method
reference here.

Table 6.1: Method Reference Examples

Method
Reference

Equivalent
Lambda

Expression
Notes

separator::equals x ->
separator.equals(x)

This is a method expression with an
object and an instance method. The
lambda parameter is passed as the
explicit parameter of the method.

String::strip x -> x.strip()
This is a method expression with a class
and an instance method. The lambda
parameter becomes the implicit
parameter.

String::concat (x, y) ->
x.concat(y)

Again, we have an instance method, but
this time, with an explicit parameter. As
before, the first lambda parameter
becomes the implicit parameter, and the
remaining ones are passed to the
method.

Integer.valueOf x ->
Integer.valueOf(x)

This is a method expression with a
static method. The lambda parameter is
passed to the static method.

6.2 ▪ Lambda Expressions 363

Method
Reference

Equivalent
Lambda

Expression
Notes

Integer.sum (x, y) ->
Integer.sum(x, y)

This is another static method, but this
time with two parameters. Both lambda
parameters are passed to the static
method. The Integer.sum method was
specifically created to be used as a
method reference. As a lambda, you
could just write (x, y) -> x + y.

String::new x -> new String(x)
This is a constructor reference—see
Section 6.2.6. The lambda parameters
are passed to the constructor.

String[]::new n -> new String[n]
This is an array constructor
reference—see Section 6.2.6. The
lambda parameter is the array length.

Note: When there are multiple overloaded methods with the same name, the
compiler will try to find from the context which one you mean. For example, there
are two versions of the Math.max method, one for integers and one for double values.
Which one gets picked depends on the method parameters of the functional
interface to which Math::max is converted. Just like lambda expressions, method
references don’t live in isolation. They are always turned into instances of functional
interfaces.

Note: Sometimes, the API contains methods that are specifically intended to be used
as method references. For example, the Objects class has a method isNull to test
whether an object reference is null. At first glance, this doesn't seem useful because
the test obj == null is easier to read than Objects.isNull(obj). But you can pass the
method reference to any method with a Predicate parameter. For example, to remove
all null references from a list, you can call

list.removeIf(Objects::isNull);
// A bit easier to read than list.removeIf(e -> e == null);

Note: There is a tiny difference between a method reference with an object and its
equivalent lambda expression. Consider a method reference such as
separator::equals. If separator is null, forming separator::equals immediately throws a

364 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

NullPointerException. The lambda expression x -> separator.equals(x) only throws a
NullPointerException if it is invoked.

You can capture the this parameter in a method reference. For example, this::equals is the
same as x -> this.equals(x). It is also valid to use super. The method expression

super::instanceMethod

uses this as the target and invokes the superclass version of the given method. Here is an
artificial example that shows the mechanics:

class Greeter
{

public void greet(ActionEvent event)
{

System.out.println("Hello, the time is "
+ Instant.ofEpochMilli(event.getWhen()));

}
}

class RepeatedGreeter extends Greeter
{

public void greet(ActionEvent event)
{

var timer = new Timer(1000, super::greet);
timer.start();

}
}

When the RepeatedGreeter.greet method starts, a Timer is constructed that executes the
super::greet method on every timer tick.

6.2.6. Constructor References

Constructor references are just like method references, except that the name of the
method is new. For example, Person::new is a reference to a Person constructor. Which
constructor? It depends on the context. Suppose you have a list of strings. Then you can
turn it into an array of Person objects, by calling the constructor on each of the strings, with
the following invocation:

ArrayList<String> names = . . .;
Stream<Person> stream = names.stream().map(Person::new);
List<Person> people = stream.toList();

We will discuss the details of the stream, map, and toList methods in Chapter 1 of Volume II.
For now, what’s important is that the map method calls the Person(String) constructor for
each list element. If there are multiple Person constructors, the compiler picks the one with

6.2 ▪ Lambda Expressions 365

a String parameter because it infers from the context that the constructor is called with a
string.

You can form constructor references with array types. For example, int[]::new is a
constructor reference with one parameter: the length of the array. It is equivalent to the
lambda expression n -> new int[n].

Array constructor references are useful to overcome a limitation of Java. As you will see in
Chapter 8, it is not possible to construct an array of a generic type T. (The expression new
T[n] is an error since it would be “erased” to new Object[n]). That is a problem for library
authors. For example, suppose we want to have an array of Person objects. The Stream
interface has a toArray method that returns an Object array:

Object[] people = stream.toArray();

But that is unsatisfactory. The user wants an array of references to Person, not references to
Object. The stream library solves that problem with constructor references. Pass
Person[]::new to the toArray method:

Person[] people = stream.toArray(Person[]::new);

The toArray method invokes this constructor to obtain an array of the correct type. Then it
fills and returns the array.

Caution: Sometimes, it is surprising which overloaded variant is chosen when
passing a method or constructor reference. Consider this code snippet:

var dates = new Date[100];
Arrays.setAll(dates, Date::new);

At first glance, it looks as if all elements would be set to the current date, by calling
the no-argument constructor new Date() each time. But actually, the second
parameter of setAll is an IntFunction, which receives the index of the element.
Therefore, an entirely different constructor is invoked, new Date(i), where i ranges
from 0 to 99. That constructor sets the date to a given number of milliseconds from
the “epoch,” January 1, 1970.

6.2.7. Variable Scope

Often, you want to be able to access variables from an enclosing method or class in a
lambda expression. Consider this example:

public static void repeatMessage(String text, int delay)
{

ActionListener listener = event ->

366 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

{
System.out.println(text);
Toolkit.getDefaultToolkit().beep();

};
new Timer(delay, listener).start();

}

Consider a call

repeatMessage("Hello", 1000); // prints Hello every 1,000 milliseconds

Now look at the variable text inside the lambda expression. Note that this variable is not
defined in the lambda expression. Instead, it is a parameter variable of the repeatMessage
method.

If you think about it, something nonobvious is going on here. The code of the lambda
expression may run long after the call to repeatMessage has returned and the parameter
variables are gone. How does the text variable stay around?

To understand what is happening, we need to refine our understanding of a lambda
expression. A lambda expression has three ingredients:

1. A block of code
2. Parameters
3. Values for the free variables—that is, the variables that are not parameters and not

defined inside the code

In our example, the lambda expression has one free variable, text. The data structure
representing the lambda expression must store the values for the free variables—in our
case, the string "Hello". We say that such values have been captured by the lambda
expression. (It's an implementation detail how that is done. For example, one can translate
a lambda expression into an object with a single method, so that the values of the free
variables are copied into instance variables of that object.)

Note: The technical term for a block of code together with the values of the free
variables is a closure. If someone gloats that their language has closures, rest
assured that Java has them as well. In Java, lambda expressions are closures.

As you have seen, a lambda expression can capture the value of a variable in the enclosing
scope. In Java, to ensure that the captured value is well-defined, there is an important
restriction. In a lambda expression, you can only reference variables whose value doesn't
change. For example, the following is illegal:

6.2 ▪ Lambda Expressions 367

public static void countDown(int start, int delay)
{

ActionListener listener = event ->
{

start--; // ERROR: Can't mutate captured variable
System.out.println(start);

};
new Timer(delay, listener).start();

}

There is a reason for this restriction. Mutating variables in a lambda expression is not safe
when multiple actions are executed concurrently. This won't happen for the kinds of
actions that we have seen so far, but in general, it is a serious problem. See Chapter 10 for
more information on this important issue.

It is also illegal to refer, in a lambda expression, to a variable that is mutated outside. For
example, the following is illegal:

public static void repeat(String text, int count)
{

for (int i = 1; i <= count; i++)
{

ActionListener listener = event ->
{

System.out.println(i + ": " + text);
// ERROR: Cannot refer to changing i

};
new Timer(1000, listener).start();

}
}

The rule is that any captured variable in a lambda expression must be effectively final. An
effectively final variable is a variable that is never assigned a new value after it has been
initialized. In our case, text always refers to the same String object, and it is OK to capture
it. However, the value of i is mutated, and therefore i cannot be captured.

The body of a lambda expression has the same scope as a nested block. The same rules for
name conflicts and shadowing apply. It is illegal to declare a parameter or a local variable
in the lambda that has the same name as a local variable.

Path first = Path.of("/usr/bin");
Comparator<String> comp =

(first, second) -> first.length() - second.length();
// ERROR: Variable first already defined

Inside a method, you can’t have two local variables with the same name, and therefore, you
can’t introduce such variables in a lambda expression either.

368 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

When you use the this keyword in a lambda expression, you refer to the this parameter of
the method that creates the lambda. For example, consider

public class Application
{

public void init()
{

ActionListener listener = event ->
{

System.out.println(this.toString());
. . .

}
. . .

}
}

The expression this.toString() calls the toString method of the Application object, not the
ActionListener instance. There is nothing special about the use of this in a lambda
expression. The scope of the lambda expression is nested inside the init method, and this
has the same meaning anywhere in that method.

6.2.8. Processing Lambda Expressions

Up to now, you have seen how to produce lambda expressions and pass them to a method
that expects a functional interface. Now let us see how to write methods that can consume
lambda expressions.

The point of using lambdas is deferred execution. After all, if you wanted to execute some
code right now, you’d do that, without wrapping it inside a lambda. There are many
reasons for executing code later, such as:

▪ Running the code in a separate thread
▪ Running the code multiple times
▪ Running the code at the right point in an algorithm (for example, the comparison

operation in sorting)
▪ Running the code when something happens (a button was clicked, data has arrived,

and so on)
▪ Running the code only when necessary

Let's look at a simple example. Suppose you want to repeat an action n times. The action
and the count are passed to a repeat method:

repeat(10, () -> System.out.println("Hello, World!"));

To accept the lambda, we need to pick (or, in rare cases, provide) a functional interface.
Table 6.2 lists the most important functional interfaces that are provided in the Java API. In
this case, we can use the Runnable interface:

6.2 ▪ Lambda Expressions 369

public static void repeat(int n, Runnable action)
{

for (int i = 0; i < n; i++) action.run();
}

Note that the body of the lambda expression is executed when action.run() is called.

Now let's make this example a bit more sophisticated. We want to tell the action in which
iteration it occurs. For that, we need to pick a functional interface that has a method with
an int parameter and a void return. The standard interface for processing int values is

public interface IntConsumer
{

void accept(int value);
}

Here is the improved version of the repeat method:

public static void repeat(int n, IntConsumer action)
{

for (int i = 0; i < n; i++) action.accept(i);
}

And here is how you call it:

repeat(10, i -> System.out.println("Countdown: " + (9 - i)));

Table 6.2: Common Functional Interfaces

Functional
Interface

Parameter
Types

Return
Type

Abstract
Method
Name

Description Other
Methods

Runnable none void run

Runs an
action
without
parameters or
return value

Supplier<T> none T get
Supplies a
value of type
T

Consumer<T> T void accept
Consumes a
value of type
T

andThen

370 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

Functional
Interface

Parameter
Types

Return
Type

Abstract
Method
Name

Description Other
Methods

BiConsumer<T, U> T, U void accept
Consumes
values of
types T and U

andThen

Function<T, R> T R apply
A function
with
parameter of
type T

compose,
andThen,
identity

BiFunction<T, U,
R> T, U R apply

A function
with
parameters of
types T and U

andThen

UnaryOperator<T> T T apply
A unary
operator on
the type T

compose,
andThen,
identity

BinaryOperator<T> T, T T apply
A binary
operator on
the type T

andThen,
maxBy,
minBy

Predicate<T> T boolean test
A
boolean-valued
function

and, or,
negate,
isEqual,
not

BiPredicate<T, U> T, U boolean test

A
boolean-valued
function with
two
parameters

and, or,
negate

Table 6.3 lists the 34 available specializations for primitive types int, long, and double. As
you will see in Chapter 8, it is more efficient to use these specializations than the generic
interfaces. For that reason, I used an IntConsumer instead of a Consumer<Integer> in the
example of the preceding section.

6.2 ▪ Lambda Expressions 371

Table 6.3: Functional Interfaces for Primitive Types
p, q is int, long, double; P, Q is Int, Long, Double

Functional
Interface

Parameter
Types

Return
Type

Abstract Method
Name

BooleanSupplier none boolean getAsBoolean

PSupplier none p getAsP

PConsumer p void accept

ObjPConsumer<T> T, p void accept

PFunction<T> p T apply

PToQFunction p q applyAsQ

ToPFunction<T> T p applyAsP

ToPBiFunction<T, U> T, U p applyAsP

PUnaryOperator p p applyAsP

PBinaryOperator p, p p applyAsP

PPredicate p boolean test

Tip: Use the standard interfaces for function types whenever you can. For example,
suppose you write a method to process files that match a certain criterion. There is a
legacy interface java.io.FileFilter. But if you use the standard Predicate<File>
interface, you can take advantage of methods for creating, adapting, and combining
predicates. The only reason not to do so would be if you already have many useful
methods producing FileFilter instances.

Note: Most of the standard functional interfaces have nonabstract methods for
producing or combining functions. For example, Predicate.isEqual(a) is the same as
a::equals, but it also works if a is null. There are default methods and, or, negate for
combining predicates. For example, Predicate.isEqual(a).or(Predicate.isEqual(b)) is
the same as x -> a.equals(x) || b.equals(x).

Note: If you design your own interface with a single abstract method, you can tag it
with the @FunctionalInterface annotation. This has two advantages. The compiler

372 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

gives an error message if you accidentally add another abstract method. And the
javadoc page includes a statement that your interface is a functional interface.

It is not required to use the annotation. Any interface with a single abstract method
is, by definition, a functional interface. But using the @FunctionalInterface annotation
is a good idea.

Note: Some programmers love chains of method calls, such as

String input = " 618970019642690137449562111 ";
boolean isPrime = input.strip().transform(BigInteger::new).isProbablePrime(20);

The transform method of the String class (added in Java 12) applies a Function to the
string and yields the result. You could have equally well written

boolean prime = new BigInteger(input.strip()).isProbablePrime(20);

But then your eyes jump inside-out and left-to-right to find out what happens first
and what happens next: Calling strip, then constructing the BigInteger, and finally
testing if it is a probable prime.

I am not sure that the eyes-jumping-inside-out-and-left-to-right is a huge problem.
But if you prefer the orderly left-to-right sequence of chained method calls, then
transform is your friend.

Sadly, it only works for strings. Why isn't there a
transform(java.util.function.Function) method in the Object class?

The Java API designers weren't fast enough. They had one chance to do this
right—in Java 8, when the java.util.function.Function interface was added to the API.
Up to that point, nobody could have added a transform(java.util.function.Function)
method to their own classes. But in Java 12, it was too late. Someone somewhere
could have defined transform(java.util.function.Function) in their class, with a
different meaning. Admittedly, it is unlikely that this ever happened, but there is no
way to know.

That is how Java works. It takes its commitments seriously, and won't renege on
them for convenience.

6.2.9. Creating Comparators

The Comparator interface has a number of convenient static methods for creating
comparators. These methods are intended to be used with lambda expressions or method
references.

6.2 ▪ Lambda Expressions 373

The static comparing method takes a “key extractor” function that maps a type T to a
comparable type (such as String). The function is applied to the objects to be compared,
and the comparison is then made on the returned keys. For example, suppose you have an
array of Person objects. Here is how you can sort them by name:

Arrays.sort(people, Comparator.comparing(Person::getName));

This is certainly much easier than implementing a Comparator by hand. Moreover, the code
is clearer since it is obvious that we want to compare people by name.

You can chain comparators with the thenComparing method for breaking ties. For example,

Arrays.sort(people,
Comparator.comparing(Person::getLastName)

.thenComparing(Person::getFirstName));

If two people have the same last name, then the second comparator is used.

There are a few variations of these methods. You can specify a comparator to be used for
the keys that the comparing and thenComparing methods extract. For example, here we sort
people by the length of their names:

Arrays.sort(people, Comparator.comparing(Person::getName,
(s, t) -> Integer.compare(s.length(), t.length())));

Moreover, both the comparing and thenComparing methods have variants that avoid boxing of
int, long, or double values:

Arrays.sort(people, Comparator.comparing(Person::getName,
Comparator.comparingInt(String::length)))

A shorter but perhaps less elegant way of producing the preceding operation would be:

Arrays.sort(people, Comparator.comparingInt(p -> p.getName().length()));

If your key function can return null, you will like the nullsFirst and nullsLast adapters.
These static methods take an existing comparator and modify it so that it doesn’t throw an
exception when encountering null values but ranks them as smaller or larger than regular
values. For example, suppose getMiddleName returns a null when a person has no middle
name. Then you can use Comparator.comparing(Person::getMiddleName, Comparator.nullsFirst(.
. .)).

The nullsFirst method needs a comparator—in this case, one that compares two strings.
The naturalOrder method makes a comparator for any class implementing Comparable. A
Comparator.<String>naturalOrder() is what we need. (See Chapter 8 for an explanation of this
syntax. Fortunately, the generic type can usually be inferred.) Here is the complete call for

374 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

sorting by potentially null middle names. I use a static import of java.util.Comparator.*, to
make the expression more legible.

Arrays.sort(people, comparing(Person::getMiddleName, nullsFirst(naturalOrder())));

The static reverseOrder method gives the reverse of the natural order. To reverse any
comparator, use the reversed instance method. For example, naturalOrder().reversed() is the
same as reverseOrder().

6.3. Inner Classes
An inner class is a class that is defined inside another class. Why would you want to do
that? There are two reasons:

▪ Inner classes can be hidden from other classes in the same package.
▪ Inner class methods can access the data from the scope in which they are

defined—including the data that would otherwise be private.

Inner classes used to be very important for concisely implementing callbacks, but
nowadays lambda expressions do a much better job. Still, inner classes can be very useful
for structuring your code. The following sections walk you through all the details.

C++ Note: C++ has nested classes. A nested class is contained inside the scope of
the enclosing class. Here is a typical example: A linked list class defines a nested
class to hold the nodes.

template<typename T>
class LinkedList
{
public:

class Node // a nested class
{
public:

. . .
private:

T data;
Node* next;

};
. . .

private:
Node* head;
Node* tail;

};

6.3 ▪ Inner Classes 375

Nested classes are similar to inner classes in Java. However, the Java inner classes
have an additional feature that makes them richer and more useful than nested
classes in C++. An object that comes from an inner class has an implicit reference
to the outer class object that instantiated it. Through this pointer, it gains access to
the total state of the outer object. For example, in Java, the Iterator class would not
need an explicit pointer to the LinkedList into which it points.

In Java, nested classes that are declared as static do not have this added pointer.
They are the Java analog to nested classes in C++.

6.3.1. Use of an Inner Class to Access Object State

The syntax for inner classes is rather complex. For that reason, I present a simple but
somewhat artificial example to demonstrate the use of inner classes. Let's refactor the
TimerTest example and extract a TalkingClock class. The constructor for a talking clock has
two parameters: the interval between announcements and a flag to turn beeps on or off.

public class TalkingClock
{

private int interval;
private boolean beep;

public TalkingClock(int interval, boolean beep) { . . . }
public void start() { . . . }

public class TimePrinter implements ActionListener
// an inner class

{
. . .

}
}

Note that the TimePrinter class is now located inside the TalkingClock class. This does not
mean that every TalkingClock has a TimePrinter instance field. As you will see, the
TimePrinter objects are constructed by methods of the TalkingClock class.

Here is the TimePrinter class in greater detail. Note that the actionPerformed method checks
the beep flag before emitting a beep.

public class TimePrinter implements ActionListener
{

public void actionPerformed(ActionEvent event)
{

System.out.println("At the tone, the time is "
+ Instant.ofEpochMilli(event.getWhen()));

376 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

Figure 6.3: An inner class object has a reference to an outer class object.

if (beep) Toolkit.getDefaultToolkit().beep();
}

}

Something surprising is going on. The TimePrinter class has no instance field or variable
named beep. Instead, beep refers to the field of the TalkingClock object that created this
TimePrinter. As you can see, an inner class method gets to access both its own instance
fields and those of the outer object creating it.

For this to work, an object of an inner class always gets an implicit reference to the object
that created it (see Figure 6.3).

This reference is invisible in the definition of the inner class. However, to illuminate the
concept, let us call the reference to the outer object outer. Then the actionPerformed method
is equivalent to the following:

public void actionPerformed(ActionEvent event)
{

System.out.println("At the tone, the time is "
+ Instant.ofEpochMilli(event.getWhen()));

if (outer.beep) Toolkit.getDefaultToolkit().beep();
}

The outer class reference is set in the constructor. The compiler modifies all inner class
constructors, adding a parameter for the outer class reference. The TimePrinter class

6.3 ▪ Inner Classes 377

defines no constructors; therefore, the compiler synthesizes a no-argument constructor,
generating code like this:

public TimePrinter(TalkingClock clock) // automatically generated code
{

outer = clock;
}

Again, please note that outer is not a Java keyword. We just use it to illustrate the
mechanism involved in an inner class.

When a TimePrinter object is constructed in the start method, the compiler passes the this
reference to the current talking clock into the constructor:

var listener = new TimePrinter(this); // parameter automatically added

Listing 6.7 shows the complete program that tests the inner class. Have another look at the
access control. Had the TimePrinter class been a regular class, it would have needed to
access the beep flag through a public method of the TalkingClock class. Using an inner class
is an improvement. There is no need to provide accessors that are of interest only to one
other class.

Note: We could have declared the TimePrinter class as private. Then only TalkingClock
methods would be able to construct TimePrinter objects. Only inner classes can be
private. Regular classes always have either package or public access.

Listing 6.7 innerClass/InnerClassTest.java

1 package innerClass;
2
3 import java.awt.*;
4 import java.awt.event.*;
5 import java.time.*;
6
7 import javax.swing.*;
8
9 /**

10 * This program demonstrates the use of inner classes.
11 * @version 1.11 2017-12-14
12 * @author Cay Horstmann
13 */
14 public class InnerClassTest
15 {
16 public static void main(String[] args)
17 {

378 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

18 var clock = new TalkingClock(1000, true);
19 clock.start();
20
21 // keep program running until the user selects "OK"
22 JOptionPane.showMessageDialog(null, "Quit program?");
23 System.exit(0);
24 }
25 }
26
27 /**
28 * A clock that prints the time in regular intervals.
29 */
30 class TalkingClock
31 {
32 private int interval;
33 private boolean beep;
34
35 /**
36 * Constructs a talking clock.
37 * @param interval the interval between messages (in milliseconds)
38 * @param beep true if the clock should beep
39 */
40 public TalkingClock(int interval, boolean beep)
41 {
42 this.interval = interval;
43 this.beep = beep;
44 }
45
46 /**
47 * Starts the clock.
48 */
49 public void start()
50 {
51 var listener = new TimePrinter();
52 var timer = new Timer(interval, listener);
53 timer.start();
54 }
55
56 public class TimePrinter implements ActionListener
57 {
58 public void actionPerformed(ActionEvent event)
59 {
60 System.out.println("At the tone, the time is "
61 + Instant.ofEpochMilli(event.getWhen()));
62 if (beep) Toolkit.getDefaultToolkit().beep();
63 }
64 }
65 }

6.3 ▪ Inner Classes 379

6.3.2. Special Syntax Rules for Inner Classes

In the preceding section, we explained the outer class reference of an inner class by calling
it outer. Actually, the proper syntax for the outer reference is a bit more complex. The
expression

OuterClass.this

denotes the outer class reference. For example, you can write the actionPerformed method of
the TimePrinter inner class as

public void actionPerformed(ActionEvent event)
{

. . .
if (TalkingClock.this.beep) Toolkit.getDefaultToolkit().beep();

}

Conversely, you can write the inner object constructor more explicitly, using the syntax

outerObject.new InnerClass(construction arguments)

For example:

ActionListener listener = this.new TimePrinter();

Here, the outer class reference of the newly constructed TimePrinter object is set to the this
reference of the method that creates the inner class object. This is the most common case.
As always, the this. qualifier is redundant. However, it is also possible to set the outer
class reference to another object by explicitly naming it. For example, since TimePrinter is a
public inner class, you can construct a TimePrinter for any talking clock:

var jabberer = new TalkingClock(1000, true);
TalkingClock.TimePrinter listener = jabberer.new TimePrinter();

Note that you refer to an inner class as

OuterClass.InnerClass

when it occurs outside the scope of the outer class.

Note: As of Java 16, inner classes can have static members. Previously, static
methods in inner classes were disallowed, and static fields declared in an inner class
had to be final and initialized with a compile-time constant.

380 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

Static methods of an inner class can access static fields and methods from the inner
class or enclosing classes.

6.3.3. Are Inner Classes Useful? Actually Necessary? Secure?

When inner classes were added to the Java language in Java 1.1, many programmers
considered them a major new feature that was out of character with the Java philosophy of
being simpler than C++. The inner class syntax is undeniably complex. (It gets more
complex as we study anonymous inner classes later in this chapter.) It is not obvious how
inner classes interact with other features of the language, such as access control and
security.

Inner classes are translated into regular class files with $ (dollar signs) separating the
outer and inner class names. For example, the TimePrinter class inside the TalkingClock class
is translated to a class file TalkingClock$TimePrinter.class. To see this at work, try the
following experiment: run the ReflectionTest program of Chapter 5, and give it the class
TalkingClock$TimePrinter to reflect upon. Alternatively, simply use the javap utility:

javap -private ClassName

Note: If you use UNIX, remember to escape the $ character when you supply the
class name on the command line. That is, run the ReflectionTest or javap program as

java --classpath .:../v1ch05 reflection.ReflectionTest \
innerClass.TalkingClock\$TimePrinter

or

javap -private innerClass.TalkingClock\$TimePrinter

You will get the following printout:

public class innerClass.TalkingClock$TimePrinter
implements java.awt.event.ActionListener

{
final innerClass.TalkingClock this$0;
public innerClass.TalkingClock$TimePrinter(innerClass.TalkingClock);
public void actionPerformed(java.awt.event.ActionEvent);

}

You can plainly see that the compiler has generated an additional instance field, this$0, for
the reference to the outer class. (The name this$0 is synthesized by the compiler—you
cannot refer to it in your code.) You can also see the TalkingClock parameter for the
constructor.

6.3 ▪ Inner Classes 381

Note: Since Java 18, the this$0 field is only provided when it is actually needed. It is
dropped if no methods of the inner class access the outer class.

If the compiler can automatically do this transformation, couldn’t you simply program the
same mechanism by hand? Let’s try it. We would make TimePrinter a regular class, outside
the TalkingClock class. When constructing a TimePrinter object, we pass it the this reference
of the object that is creating it.

class TalkingClock
{

. . .
public void start()
{

var listener = new TimePrinter(this);
var timer = new Timer(interval, listener);
timer.start();

}
}

class TimePrinter implements ActionListener
{

private TalkingClock outer;
. . .
public TimePrinter(TalkingClock clock)
{

outer = clock;
}

}

Now let us look at the actionPerformed method. It needs to access outer.beep.

if (outer.beep) . . . // ERROR

Here we run into a problem. The inner class can access the private data of the outer class,
but our external TimePrinter class cannot.

Thus, inner classes are genuinely more powerful than regular classes because they have
more access privileges.

6.3.4. Local Inner Classes

If you look carefully at the code of the TalkingClock example, you will find that you need the
name of the type TimePrinter only once: when you create an object of that type in the start
method.

382 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

In a situation like this, you can define the class locally in a single method.

public void start()
{

class TimePrinter implements ActionListener
{

public void actionPerformed(ActionEvent event)
{

System.out.println("At the tone, the time is "
+ Instant.ofEpochMilli(event.getWhen()));

if (beep) Toolkit.getDefaultToolkit().beep();
}

}

var listener = new TimePrinter();
var timer = new Timer(interval, listener);
timer.start();

}

Local classes are never declared with an access specifier (that is, public or private). Their
scope is always restricted to the block in which they are declared.

Local classes have one great advantage: They are completely hidden from the outside
world—not even other code in the TalkingClock class can access them. No method except
start has any knowledge of the TimePrinter class.

6.3.5. Accessing Variables from Outer Methods

Local classes have another advantage over other inner classes. Not only can they access
the fields of their outer classes; they can even access local variables! However, those local
variables must be effectively final. That means, they may never change once they have
been assigned.

Here is a typical example. Let’s move the interval and beep parameters from the
TalkingClock constructor to the start method.

public void start(int interval, boolean beep)
{

class TimePrinter implements ActionListener
{

public void actionPerformed(ActionEvent event)
{

System.out.println("At the tone, the time is "
+ Instant.ofEpochMilli(event.getWhen()));

if (beep) Toolkit.getDefaultToolkit().beep();
}

}

6.3 ▪ Inner Classes 383

var listener = new TimePrinter();
var timer = new Timer(interval, listener);
timer.start();

}

Note that the TalkingClock class no longer needs to store a beep instance field. It simply
refers to the beep parameter variable of the start method.

Maybe this should not be so surprising. The line

if (beep) . . .

is, after all, ultimately inside the start method, so why shouldn’t it have access to the value
of the beep variable?

To see why there is a subtle issue here, let’s consider the flow of control more closely.

1. The start method is called.
2. The object variable listener is initialized by a call to the constructor of the inner

class TimePrinter.
3. The listener reference is passed to the Timer constructor, the timer is started, and

the start method exits. At this point, the beep parameter variable of the start
method no longer exists.

4. A second later, the actionPerformed method executes if (beep) . . .

For the code in the actionPerformed method to work, the TimePrinter class must have copied
the beep field as a local variable of the start method, before the beep parameter value went
away. That is indeed exactly what happens. In our example, the compiler synthesizes the
name TalkingClock$1TimePrinter for the local inner class. If you use the ReflectionTest
program or the javap utility again to spy on the TalkingClock$1TimePrinter class, you will get
the following output:

class TalkingClock$1TimePrinter
{

TalkingClock$1TimePrinter();

public void actionPerformed(java.awt.event.ActionEvent);

final boolean val$beep;
final TalkingClock this$0;

}

When an object is created, the current value of the beep variable is stored in the val$beep
field. As of Java 11, this happens with “nest mate” access. Previously, the inner class
constructor had an additional parameter to set the field. Either way, the inner class field
persists even if the local variable goes out of scope.

384 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

6.3.6. Anonymous Inner Classes

When using local inner classes, you can often go a step further. If you want to make only a
single object of this class, you don’t even need to give the class a name. Such a class is
called an anonymous inner class.

public void start(int interval, boolean beep)
{

var listener = new ActionListener()
{

public void actionPerformed(ActionEvent event)
{

System.out.println("At the tone, the time is "
+ Instant.ofEpochMilli(event.getWhen()));

if (beep) Toolkit.getDefaultToolkit().beep();
}

};
var timer = new Timer(interval, listener);
timer.start();

}

This syntax is very cryptic indeed. What it means is this: Create a new object of a class that
implements the ActionListener interface, where the required method actionPerformed is the
one defined inside the braces { }.

In general, the syntax is

new SuperType(construction arguments)
{

inner class methods and data
}

Here, SuperType can be an interface, such as ActionListener; then, the inner class
implements that interface. SuperType can also be a class; then, the inner class extends that
class.

An anonymous inner class cannot have constructors because the name of a constructor
must be the same as the name of a class, and the class has no name. Instead, the
construction arguments are given to the superclass constructor. In particular, whenever an
inner class implements an interface, it cannot have any construction arguments.
Nevertheless, you must supply a set of parentheses as in

new InterfaceType()
{

methods and data
}

6.3 ▪ Inner Classes 385

You have to look carefully to see the difference between the construction of a new object of
a class and the construction of an object of an anonymous inner class extending that class.

var queen = new Person("Mary");
// a Person object

var count = new Person("Dracula") { . . . };
// an object of an inner class extending Person

If the closing parenthesis of the construction argument list is followed by an opening
brace, then an anonymous inner class is being defined.

Note: Even though an anonymous class cannot have constructors, you can provide
an object initialization block:

var count = new Person("Dracula")
{

{ initialization }
. . .

};

Listing 6.8 contains the complete source code for the talking clock program with an
anonymous inner class. If you compare this program with Listing 6.7, you will see that in
this case, the solution with the anonymous inner class is quite a bit shorter and, hopefully,
with some practice, as easy to comprehend.

For many years, Java programmers routinely used anonymous inner classes for event
listeners and other callbacks. Nowadays, you are better off using a lambda expression. For
example, the start method from the beginning of this section can be written much more
concisely with a lambda expression like this:

public void start(int interval, boolean beep)
{

var timer = new Timer(interval, event ->
{

System.out.println("At the tone, the time is "
+ Instant.ofEpochMilli(event.getWhen()));

if (beep) Toolkit.getDefaultToolkit().beep();
});

timer.start();
}

Note: If you store an anonymous class instance in a variable defined with var, the
variable knows about added methods or fields:

386 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

var bob = new Object() { String name = "Bob"; }
System.out.println(bob.name);

If you declare bob as having type Object, then bob.name does not compile.

The object constructed with new Object() { String name = "Bob"; } has type “Object
with a Sting name field.” This is a nondenotable type—a type that you cannot express
with Java syntax. Nevertheless, the compiler understands the type, and it can set it
as the type for the bob variable.

Note: The following trick, called double brace initialization, takes advantage of the
inner class syntax. Suppose you want to construct an array list and pass it to a
method:

var friends = new ArrayList<String>();
friends.add("Harry");
friends.add("Tony");
invite(friends);

If you don't need the array list again, it would be nice to make it anonymous. But
then how can you add the elements? Here is how:

invite(new ArrayList<String>() {{ add("Harry"); add("Tony"); }});

Note the double braces. The outer braces make an anonymous subclass of ArrayList.
The inner braces are an object initialization block (see Chapter 4).

In practice, this trick is rarely useful. More likely than not, the invite method is
willing to accept any List<String>, and you can simply pass List.of("Harry", "Tony").

Caution: It is often convenient to make an anonymous subclass that is almost, but
not quite, like its superclass. But you need to be careful with the equals method. In
Chapter 5, I recommended that your equals methods use a test

if (getClass() != other.getClass()) return false;

An anonymous subclass will fail this test.

Tip: When you produce logging or debugging messages, you often want to include
the name of the current class, such as

System.err.println("Something awful happened in " + getClass());

6.3 ▪ Inner Classes 387

But that fails in a static method. After all, the call to getClass calls this.getClass(),
and a static method has no this. Use the following expression instead:

new Object(){}.getClass().getEnclosingClass() // gets class of static method

Here, new Object(){} makes an anonymous object of an anonymous subclass of Object,
and getEnclosingClass gets its enclosing class—that is, the class containing the static
method.

Listing 6.8 anonymousInnerClass/AnonymousInnerClassTest.java

1 package anonymousInnerClass;
2
3 import java.awt.*;
4 import java.awt.event.*;
5 import java.time.*;
6
7 import javax.swing.*;
8
9 /**

10 * This program demonstrates anonymous inner classes.
11 * @version 1.12 2017-12-14
12 * @author Cay Horstmann
13 */
14 public class AnonymousInnerClassTest
15 {
16 public static void main(String[] args)
17 {
18 var clock = new TalkingClock();
19 clock.start(1000, true);
20
21 // keep program running until the user selects "OK"
22 JOptionPane.showMessageDialog(null, "Quit program?");
23 System.exit(0);
24 }
25 }
26
27 /**
28 * A clock that prints the time in regular intervals.
29 */
30 class TalkingClock
31 {
32 /**
33 * Starts the clock.
34 * @param interval the interval between messages (in milliseconds)
35 * @param beep true if the clock should beep
36 */
37 public void start(int interval, boolean beep)

388 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

38 {
39 var listener = new ActionListener()
40 {
41 public void actionPerformed(ActionEvent event)
42 {
43 System.out.println("At the tone, the time is "
44 + Instant.ofEpochMilli(event.getWhen()));
45 if (beep) Toolkit.getDefaultToolkit().beep();
46 }
47 };
48 var timer = new Timer(interval, listener);
49 timer.start();
50 }
51 }

6.3.7. Static Classes

Occasionally, you may want to nest one class inside another, but you don’t need the nested
class to have a reference to the outer class object. You can suppress the generation of that
reference by declaring the nested class static.

The Java Language Specification uses the term “nested class” for any class that is declared
inside another class or interface, “static class” for a (necessarily nested) static class, and
“inner class” for a nested class that is not static.

Here is a typical example of where you would want to do this. In an ArrayAlg class, we have
a task that finds a range of elements of an array. Then you need to return the start and the
end of the range. We can achieve that by defining a class Range that holds two values:

class Range
{

private int from;
private int to;

public Range(int from) { . . . }
public void extend() { . . . }
. . .

}

Of course, Range is an exceedingly common name, and in a large project, it is quite possible
that some other programmer had the same bright idea and defined another Range class in
the same package. We can solve this potential name clash by making Range a public inner
class inside ArrayAlg. Then the class will be known to the public as ArrayAlg.Range:

ArrayAlg.Range r = ArrayAlg.longestRun(numbers);

6.3 ▪ Inner Classes 389

However, unlike the inner classes used in previous examples, we do not want to have a
reference to any other object inside a Range object. That reference can be suppressed by
declaring the nested class static:

class ArrayAlg
{

public static class Range
{

. . .
}
. . .

}

A static class is exactly like an inner class, except that an object of a static class does not
have a reference to the outer class object that generated it. In our example, we must use a
static class because the nested class instance is constructed inside a static method:

public static Pair longestRun(double[] values)
{

. . .
Range current = new Range(. . .);
. . .
if (. . .) longest = current;
. . .
return longest;

}

Had the Range class not been declared as static, the compiler would have flagged the
constructor call as an error. After all, there is no implicit object of type ArrayAlg available to
initialize the inner class instance.

You should use a static class whenever a nested class does not need to access an outer
class object.

Here, I purposefully made the Range class mutable. It might be better to make the Range
class immutable, and to declare it as a record. A record is automatically static.

Note: Just like records, interfaces and enumerations that are declared inside a class
or interface are automatically static.

In fact,

390 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

Note: Classes that are declared inside an interface are automatically static and
public.

Note: Prior to Java 16, it was not possible to declare a static class inside an inner
class. This restriction has now been removed.

Listing 6.9 contains the complete source code of the ArrayAlg class and the nested Pair
class.

Listing 6.9 staticInnerClass/StaticInnerClassTest.java

1 package staticInnerClass;
2
3 /**
4 * This program demonstrates the use of static inner classes.
5 * @version 1.1 2023-12-19
6 * @author Cay Horstmann
7 */
8 public class StaticInnerClassTest
9 {

10 public static void main(String[] args)
11 {
12 double[] numbers = { 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6 };
13 ArrayAlg.Range r = ArrayAlg.longestRun(numbers);
14 System.out.println("from = " + r.getFrom());
15 System.out.println("to = " + r.getTo());
16 }
17 }
18
19 class ArrayAlg
20 {
21 /**
22 * A range of index values.
23 */
24 public static class Range
25 {
26 private int from;
27 private int to;
28
29 /**
30 * Constructs a range of length 1.
31 * @param from the initial index value of this range
32 */
33 public Range(int from)
34 {
35 this.from = from;

6.3 ▪ Inner Classes 391

36 this.to = from + 1;
37 }
38
39 /**
40 * Extends this range by one element.
41 */
42 public void extend()
43 {
44 this.to++;
45 }
46
47 /**
48 * Gets the starting index value of this range.
49 * @return the starting index
50 */
51 public int getFrom()
52 {
53 return from;
54 }
55
56 /**
57 * Gets the first index past the end of this range.
58 * @return the past-the-end index
59 */
60 public int getTo()
61 {
62 return to;
63 }
64
65 /**
66 * Returns the number of elements in this range.
67 * @return the number of elements
68 */
69 public int length()
70 {
71 return to - from;
72 }
73 }
74
75 /**
76 * A "run" is a sequence of repeating adjacent elements. For example, in the array
77 * 1 2 3 3 3 4 4, the runs are (trivially) 1 and 2, and 3 3 3 3 and 4 4.
78 * Returns the range of the longest run.
79 * @param values an array of length at least 1
80 * @return the range of the longest run
81 */
82 public static Range longestRun(double[] values)
83 {
84 Range longest = new Range(0);
85 Range current = new Range(0);
86 for (int i = 1; i < values.length; i++)
87 {

392 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

88 if (values[i] == values[i - 1]) current.extend();
89 else
90 {
91 if (longest.length() < current.length()) longest = current;
92 current = new Range(i);
93 }
94 }
95 if (longest.length() < current.length()) longest = current;
96 return longest;
97 }
98 }

6.4. Service Loaders
Sometimes, you develop an application with a service architecture. There are platforms
that encourage this approach, such as OSGi (https://osgi.org), which are used in
development environments, application servers, and other complex applications. Such
platforms go well beyond the scope of this book, but the JDK also offers a simple
mechanism for loading services, described here. This mechanism is well supported by the
Java Platform Module System—see Chapter 12.

Often, when providing a service, a program wants to give the service designer some
freedom of how to implement the service's features. It can also be desirable to have
multiple implementations to choose from. The ServiceLoader class makes it easy to load
services that conform to a common interface.

Define an interface (or, if you prefer, a superclass) with the methods that each instance of
the service should provide. For example, suppose your service provides encryption.

package serviceLoader;

public interface Cipher
{

byte[] encrypt(byte[] source, byte[] key);
byte[] decrypt(byte[] source, byte[] key);
int strength();

}

The service provider supplies one or more classes that implement this service, for example

package serviceLoader.impl;

public class CaesarCipher implements Cipher
{

public byte[] encrypt(byte[] source, byte[] key)
{

var result = new byte[source.length];

6.4 ▪ Service Loaders 393

https://osgi.org/

for (int i = 0; i < source.length; i++)
result[i] = (byte)(source[i] + key[0]);

return result;
}

public byte[] decrypt(byte[] source, byte[] key)
{

return encrypt(source, new byte[] { (byte) -key[0] });
}

public int strength() { return 1; }
}

The implementing classes can be in any package, not necessarily the same package as the
service interface. Each of them must have a no-argument constructor.

Now add the names of the classes to a UTF-8 encoded text file in the META-INF/services
directory whose name matches the fully qualified interface name. In our example, the file
META-INF/services/serviceLoader.Cipher would contain the line

serviceLoader.impl.CaesarCipher

In this example, we provide a single implementing class. You could also provide multiple
classes and later pick among them.

With this preparation done, the program initializes a service loader as follows:

public static ServiceLoader<Cipher> cipherLoader = ServiceLoader.load(Cipher.class);

This should be done just once in the program.

The iterator method of the service loader returns an iterator through all provided
implementations of the service. (See Chapter 9 for more information about iterators.) It is
easiest to use an enhanced for loop to traverse them. In the loop, pick an appropriate
object to carry out the service.

public static Cipher getCipher(int minStrength)
{

for (Cipher cipher : cipherLoader) // implicitly calls cipherLoader.iterator()
{

if (cipher.strength() >= minStrength) return cipher;
}
return null;

}

Alternatively, you can use streams (see Chapter 1 of Volume II) to locate the desired
service. The stream method yields a stream of ServiceLoader.Provider instances. That

394 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

interface has methods type and get for getting the provider class and the provider instance.
If you select a provider by type, then you just call type and no service instances are
unnecessarily instantiated.

public static Optional<Cipher> getCipher2(int minStrength)
{

return cipherLoader.stream()
.filter(descr -> descr.type() == serviceLoader.impl.CaesarCipher.class)
.findFirst()
.map(ServiceLoader.Provider::get);

}

Finally, if you are willing to take any service instance, simply call findFirst:

Optional<Cipher> cipher = cipherLoader.findFirst();

The Optional class is explained in Chapter 1 of Volume II.

java.util.ServiceLoader<S> 1.6

▪ static <S> ServiceLoader<S> load(Class<S> service)
creates a service loader for loading the classes that implement the given service
interface.

▪ Iterator<S> iterator()
yields an iterator that lazily loads the service classes. That is, a class is loaded
whenever the iterator advances.

▪ Stream<ServiceLoader.Provider<S>> stream() 9
returns a stream of provider descriptors, so that a provider of a desired class can be
loaded lazily.

▪ Optional<S> findFirst() 9
finds the first available service provider, if any.

java.util.ServiceLoader.Provider<S> 9

▪ Class<? extends S> type()
gets the type of this provider.

▪ S get()
gets an instance of this provider.

6.5. Proxies
In the final section of this chapter, we discuss proxies. You can use a proxy to create, at
runtime, new classes that implement a given set of interfaces. Proxies are only necessary
when you don’t yet know at compile time which interfaces you need to implement. This is

6.5 ▪ Proxies 395

not a common situation for application programmers, so feel free to skip this section if you
are not interested in advanced wizardry. However, for certain systems programming
applications, the flexibility that proxies offer can be very important.

6.5.1. When to Use Proxies

Suppose you want to construct an object of a class that implements one or more interfaces
whose exact nature you may not know at compile time. This is a difficult problem. To
construct an actual class, you can simply use the newInstance method or use reflection to
find a constructor. But you can’t instantiate an interface. You need to define a new class in
a running program.

To overcome this problem, some programs generate code, place it into a file, invoke the
compiler, and then load the resulting class file. Naturally, this is slow, and it also requires
deployment of the compiler together with the program. The proxy mechanism is a better
solution. The proxy class can create brand-new classes at runtime. Such a proxy class
implements the interfaces that you specify. In particular, the proxy class has the following
methods:

▪ All methods required by the specified interfaces; and
▪ All methods defined in the Object class (toString, equals, and so on).

However, you cannot define new code for these methods at runtime. Instead, you must
supply an invocation handler. An invocation handler is an object of any class that
implements the InvocationHandler interface. That interface has a single method:

Object invoke(Object proxy, Method method, Object[] args)

Whenever a method is called on the proxy object, the invoke method of the invocation
handler gets called, with the Method object and arguments of the original call. The
invocation handler must then figure out how to handle the call.

6.5.2. Creating Proxy Objects

To create a proxy object, use the newProxyInstance method of the Proxy class. The method
has three parameters:

▪ A class loader. As part of the Java security model, different class loaders can be
used for platform and application classes, classes that are downloaded from the
Internet, and so on. We will discuss class loaders in Chapter 9 of Volume II. In this
example, we specify the "system class loader" that loads platform and application
classes.

▪ An array of Class objects, one for each interface to be implemented.
▪ An invocation handler.

396 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

There are two remaining questions. How do we define the handler? And what can we do
with the resulting proxy object? The answers depend, of course, on the problem that we
want to solve with the proxy mechanism. Proxies can be used for many purposes, such as

▪ Routing method calls to remote servers
▪ Associating user interface events with actions in a running program
▪ Tracing method calls for debugging purposes

In our example program, we use proxies and invocation handlers to trace method calls. We
define a TraceHandler wrapper class that stores a wrapped object. Its invoke method simply
prints the name and arguments of the method to be called and then calls the method with
the wrapped object as the implicit argument.

class TraceHandler implements InvocationHandler
{

private Object target;

public TraceHandler(Object t)
{

target = t;
}

public Object invoke(Object proxy, Method m, Object[] args)
throws Throwable

{
// print method name and arguments
. . .
// invoke actual method
return m.invoke(target, args);

}
}

Here is how you construct a proxy object that causes the tracing behavior whenever one of
its methods is called:

Object value = . . .;
// construct wrapper
var handler = new TraceHandler(value);
// construct proxy for one or more interfaces
var interfaces = new Class[] { Comparable.class };
Object proxy = Proxy.newProxyInstance(

ClassLoader.getSystemClassLoader(),
new Class[] { Comparable.class }, handler);

Now, whenever a method from one of the interfaces is called on proxy, the method name
and arguments are printed out and the method is then invoked on value.

6.5 ▪ Proxies 397

In the program shown in Listing 6.10, we use proxy objects to trace a binary search. We fill
an array with proxies to the integers 1 . . . 1000. Then we invoke the binarySearch method
of the Arrays class to search for a random integer in the array. Finally, we print the
matching element.

var elements = new Object[1000];
// fill elements with proxies for the integers 1 . . . 1000
for (int i = 0; i < elements.length; i++)
{

Integer value = i + 1;
elements[i] = Proxy.newProxyInstance(. . .); // proxy for value;

}

// construct a random integer
Integer key = (int) (Math.random() * elements.length) + 1;

// search for the key
int result = Arrays.binarySearch(elements, key);

// print match if found
if (result >= 0) System.out.println(elements[result]);

The Integer class implements the Comparable interface. The proxy objects belong to a class
that is defined at runtime. (It has a name such as $Proxy0.) That class also implements the
Comparable interface. However, its compareTo method calls the invoke method of the proxy
object’s handler.

Note: As you saw earlier in this chapter, the Integer class actually implements
Comparable<Integer>. However, at runtime, all generic types are erased and the proxy
is constructed with the class object for the raw Comparable class.

The binarySearch method makes calls like this:

if (elements[i].compareTo(key) < 0) . . .

Since we filled the array with proxy objects, the compareTo calls the invoke method of the
TraceHandler class. That method prints the method name and arguments and then invokes
compareTo on the wrapped Integer object.

Finally, at the end of the sample program, we call

System.out.println(elements[result]);

The println method calls toString on the proxy object, and that call is also redirected to the
invocation handler.

398 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

Here is the complete trace of a program run:

500.compareTo(288)
250.compareTo(288)
375.compareTo(288)
312.compareTo(288)
281.compareTo(288)
296.compareTo(288)
288.compareTo(288)
288.toString()

You can see how the binary search algorithm homes in on the key by cutting the search
interval in half in every step. Note that the toString method is proxied even though it does
not belong to the Comparable interface—as you will see in the next section, certain Object
methods are always proxied.

Listing 6.10 proxy/ProxyTest.java

1 package proxy;
2
3 import java.lang.reflect.*;
4 import java.util.*;
5
6 /**
7 * This program demonstrates the use of proxies.
8 * @version 1.02 2021-06-16
9 * @author Cay Horstmann

10 */
11 public class ProxyTest
12 {
13 public static void main(String[] args)
14 {
15 var elements = new Object[1000];
16
17 // fill elements with proxies for the integers 1 . . . 1000
18 for (int i = 0; i < elements.length; i++)
19 {
20 Integer value = i + 1;
21 var handler = new TraceHandler(value);
22 Object proxy = Proxy.newProxyInstance(
23 ClassLoader.getSystemClassLoader(),
24 new Class[] { Comparable.class }, handler);
25 elements[i] = proxy;
26 }
27
28 // construct a random integer
29 Integer key = (int) (Math.random() * elements.length) + 1;
30

6.5 ▪ Proxies 399

31 // search for the key
32 int result = Arrays.binarySearch(elements, key);
33
34 // print match if found
35 if (result >= 0) System.out.println(elements[result]);
36 }
37 }
38
39 /**
40 * An invocation handler that prints out the method name and parameters, then
41 * invokes the original method.
42 */
43 class TraceHandler implements InvocationHandler
44 {
45 private Object target;
46
47 /**
48 * Constructs a TraceHandler.
49 * @param t the implicit parameter of the method call
50 */
51 public TraceHandler(Object t)
52 {
53 target = t;
54 }
55
56 public Object invoke(Object proxy, Method m, Object[] args) throws Throwable
57 {
58 // print implicit argument
59 System.out.print(target);
60 // print method name
61 System.out.print("." + m.getName() + "(");
62 // print explicit arguments
63 if (args != null)
64 {
65 for (int i = 0; i < args.length; i++)
66 {
67 System.out.print(args[i]);
68 if (i < args.length - 1) System.out.print(", ");
69 }
70 }
71 System.out.println(")");
72
73 // invoke actual method
74 return m.invoke(target, args);
75 }
76 }

6.5.3. Properties of Proxy Classes

Now that you have seen proxy classes in action, let's go over some of their properties.
Remember that proxy classes are created on the fly in a running program. However, once

400 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

they are created, they are regular classes, just like any other classes in the virtual
machine.

All proxy classes extend the class Proxy. A proxy class has only one instance field—the
invocation handler, which is defined in the Proxy superclass. Any additional data required to
carry out the proxy objects’ tasks must be stored in the invocation handler. For example,
when we proxied Comparable objects in the program shown in Listing 6.10, the TraceHandler
wrapped the actual objects.

All proxy classes override the toString, equals, and hashCode methods of the Object class. Like
all proxy methods, these methods simply call invoke on the invocation handler. The other
methods of the Object class (such as clone and getClass) are not redefined.

The names of proxy classes are not defined. The Proxy class in Oracle’s virtual machine
generates class names that begin with the string $Proxy.

There is only one proxy class for a particular class loader and ordered set of interfaces.
That is, if you call the newProxyInstance method twice with the same class loader and
interface array, you get two objects of the same class. You can also obtain that class with
the getProxyClass method:

Class proxyClass = Proxy.getProxyClass(null, interfaces);

A proxy class is always public and final. If all interfaces that the proxy class implements
are public, the proxy class does not belong to any particular package. Otherwise, all
non-public interfaces must belong to the same package, and the proxy class will also belong
to that package.

You can test whether a particular Class object represents a proxy class by calling the
isProxyClass method of the Proxy class.

Note: Calling a default method of a proxy triggers the invocation handler. To
actually invoke the method, use the static invokeDefault method of the
InvocationHandler interface. For example, here is an invocation handler that calls the
default methods and passes the abstract methods to another target:

InvocationHandler handler = (proxy, method, args) ->
{

if (method.isDefault())
return InvocationHandler.invokeDefault(proxy, method, args)

else
return method.invoke(target, args);

}

6.5 ▪ Proxies 401

java.lang.reflect.InvocationHandler 1.3

▪ Object invoke(Object proxy, Method method, Object[] args)
define this method to contain the action that you want carried out whenever a method
was invoked on the proxy object.

▪ static Object invokeDefault(Object proxy, Method method, Object... args) 16
invokes a default method of the proxy instance with the given arguments, bypassing
the invocation handler.

java.lang.reflect.Proxy 1.3

▪ static Class<?> getProxyClass(ClassLoader loader, Class<?>... interfaces)
returns the proxy class that implements the given interfaces.

▪ static Object newProxyInstance(ClassLoader loader, Class<?>[] interfaces,
InvocationHandler handler)
constructs a new instance of the proxy class that implements the given interfaces. All
methods call the invoke method of the given handler object.

▪ static boolean isProxyClass(Class<?> cl)
returns true if cl is a proxy class.

This ends the final chapter on the object-oriented features of the Java programming
language. Interfaces, lambda expressions, and inner classes are concepts that you will
encounter frequently, whereas cloning, service loaders, and proxies are advanced
techniques that are of interest mainly to library designers and tool builders, not application
programmers. You are now ready to learn how to deal with exceptional situations in your
programs in Chapter 7.

402 Chapter 6 ▪ Interfaces, Lambda Expressions, and Inner Classes

Index
Symbols
! operator 54, 59
!= operator 54, 59, 97
""". . .""" (triple quotes, for text blocks) 73
". . ." (single quotes, for strings) 35
(number sign)

in javadoc hyperlinks 211
printf flag 81

$ (dollar sign)
delimiter, for inner classes 381
in variable names 44
printf flag 81

% (percent sign)
arithmetic operator 48, 59
conversion character 80

& (ampersand)
bitwise operator 57, 59
in bounding types 466
in reference parameters (C++) 169

&& operator 54, 59
> (right angle bracket)

in shell syntax 85, 454
relational operator 54, 59

>& (shell syntax) 454
>>, >>> operators 57, 59
>= operator 54, 59
< (left angle bracket)

in shell syntax 85
printf flag 81
relational operator 54, 59

<< operator 57, 59
<. . .> (angle brackets) 258, 462
<= operator 54, 59
', " (single, double quote), escape sequences for 40
((left parenthesis) 81

printf flag 81
(. . .) (parentheses)

empty, in method calls 35
for casts 52, 59, 234
for operator hierarchy 58

* (asterisk)
arithmetic operator 48, 59
for annotation processors 729
in class path 198
in imports 189

+ (plus sign)
arithmetic operator 48, 52, 59
for objects and strings 60, 251, 252
printf flag 81

++ operator 54, 59
, (comma)

operator (C++) 59
printf flag 81

- (minus sign)
arithmetic operator 48, 59

printf flag 81
-> operator

in lambda expressions 355
in switch expressions 103

-- operator 54, 59
. (period) 197, 198
... (ellipsis) 270
.class extension 32
.exe extension 203
.java extension 32
/ (slash) 48, 59
/* . . . */ comments 35
/** . . . */ (Javadoc comment delimiters) 35, 206,

207
// comments 35
0, 0b, 0B, 0x, 0X prefixes (in integers) 37
0, printf flag 81
2> (shell syntax) 454
: (colon)

in assertions 432
in class path (UNIX) 197
inheritance token (C++) 218

:: (C++ operator) 151, 160, 221, 361
; (semicolon)

in class path (Windows) 197
in statements 34, 43

= operator 45, 53
== operator 54, 59

for class objects 298
for enumerated types 278
for floating-point numbers 97
for identity hash maps 560
for strings 65
wrappers and 266

? (question mark)
for wildcard types 477

?: operator 55, 59
with pattern matching 237

@ (at sign) 207, 208
in java command-line options 766

[. . .] (brackets)
empty, in generics 464
for arrays 112, 115

\ (backslash)
escape sequence for 40
in file names 83
in text blocks 74

\b (backslash character literal) 40
\f (form feed character literal) 40
\n (newline character literal) 40, 74
\r (carriage return character literal) 40
\s (space character literal) 40, 75
\t (tab character literal) 40
\u (Unicode character literal) 40, 41
^ (caret) 57, 59, 356
_ (underscore)

as a reserved word 779

delimiter, in number literals 37
in instance field names (C++) 176

{. . .} (braces)
double, in inner classes 387
for blocks 33, 34, 86
for enumerated type 47
in annotation elements 713
in lambda expressions 356

| operator 57, 59
|| operator 54, 59
~ operator 57, 59
🍺 42

A
A, a conversion characters 80
abstract keyword 271, 775
Abstract classes 271

extending 273
interfaces and 328, 337
no instantiating for 273
object variables of 273

Abstract methods 272
in functional interfaces 358

AbstractCollection class 340, 519, 532
AbstractProcessor class 729
acceptEither method 690
Access modifiers

checking 304
final 46, 156, 231, 335, 383, 661
private 146, 195, 378
protected 239, 324, 351
public 31, 32, 47, 144, 147, 195, 328, 329
public static final 336
redundant 336
static 33, 34, 157
static final 46
void 33, 34

AccessibleObject class
canAccess, trySetAccessible methods 316
setAccessible method 312, 316

Accessor methods 138, 152, 153, 478
accumulate method

of LongAccumulator 664
accumulateAndGet method 663
ActionListener interface

actionPerformed method 342, 343, 354, 376, 377,
382, 385
implementing 359

ActiveX 4
add method

of ArrayList 258, 264
of BigDecimal 110
of BigInteger 110
of BlockingQueue 668, 669
of Collection 514, 519, 520, 522
of GregorianCalendar 139
of HashSet 539
of List 523, 535

of ListIterator 529, 530, 536
of LongAdder 663
of Queue 546
of Set 524

addAll method
of ArrayList 461
of Collection 519, 521
of Collections 582
of List 535

addExact method 51
addFirst method

of LinkedList 536
of SequencedCollection 546

Addition 48, 59
for different numeric types 52
for objects and strings 60, 251, 252

addLast method
of LinkedList 536
of SequencedCollection 546

addShutdownHook method 182
addSuppressed method 423, 425
Adobe Flash 7
Agent code 743, 744
Aggregation 130
Algorithms 127

for binary search 578
for shuffling 577
for sorting 576
QuickSort 117, 576
simple, in the Java Collections Framework 580
writing 584

Algorithms + Data Structures = Programs
(Wirth) 127

Algorithms in C++ (Sedgewick) 576
allOf method

of CompletableFuture 690
of EnumSet 561

allProcesses method 706, 709
Amazon 15
and, andNot methods (BitSet) 594
Andreessen, Mark 9
Android 14, 695
AnnotatedConstruct interface 730
AnnotatedElement interface 726, 727

getAnnotation method 729
getAnnotations method 729
getAnnotationsByType method 729
getDeclaredAnnotations method 729
isAnnotationPresent method 728

Annotation interface
extending 719
methods of 720

Annotation interfaces 717
Annotation processors 729

at bytecode level 736
Annotations 473

accessing 719
applicability of 721
container 723, 726
declaration 713

782 Index

documented 721, 723
generating source code with 731
inherited 721, 723, 726
key/value pairs in 712, 719
meta 717, 724
modifiers and 715
multiple 713
processing

at runtime 725
source-level 729

repeatable 713, 721, 723, 724, 726
standard 720
type use 714

Anonymous arrays 111
Anonymous inner classes 385
Antisymmetry rule 335
anyOf method 690
Apache

Commons CSV library 763
append method

of StringBuilder 71, 73
appendCodePoint method 73
Applets 7, 13

changing warning string in 196
running in a browser 7

Application Programming Interfaces (APIs), online
documentation for 66, 68

Applications
compiling/launching from the command line 19, 32
debugging 21, 403
executing

without a separate Java runtime 773
extensible 230
for different Java releases 203
localizing 133, 302
managing in JVM 456
monitoring 743, 744
responsive 694
terminating 34, 149
testing 431

applyToEither method 690
Arguments 35

of ProcessHandle.Info 710
string 35
variable number of 270

Arguments. See Parameters
Arithmetic operators 48

accuracy of 49
autoboxing with 266
combining with assignment 53
precedence of 59

Array class 316
get, getXxx, set, setXxx methods 320
getLength method 317, 318, 320
newInstance method 317, 320

Array lists 537
anonymous 387
capacity of 259
elements of

accessing 260

adding 258, 262
removing 262
traversing 262

generic 257
raw vs. typed 264

Array variables 111
ArrayBlockingQueue class 669, 673
ArrayDeque class 545, 547

as a concrete collection type 525
ArrayIndexOutOfBoundsException class 113, 406, 408
ArrayList class 113, 257, 459, 526

add method 258, 264
addAll method 461
as a concrete collection type 525
declaring with var 258
ensureCapacity method 259, 260
get, set methods 260, 264
iterating over 516
remove method 262, 264
removeIf method 360
size, trimToSize methods 259, 260
synchronized 684
toArray method 491

Arrays 112
annotating 715
anonymous 111
circular 514
cloning 352
converting to collections 583
copying 114

on write 682
creating 111
elements of

computing in parallel 683
numbering 113
remembering types of 228
removing from the middle 526, 528
traversing 113, 121

equality testing for 245, 246
generic methods for 316
hash codes of 249, 250
in command-line arguments 116
initializing 111, 113
length of 113

equal to 0 112
increasing 115

multidimensional 119, 124, 245, 252
not of generic types 366, 475, 486, 490
of integers 252
of subclass/superclass references 227
of wildcard types 487
out-of-bounds access in 406
parallel operations on 682
printing 121, 252
ragged 122
size of 259, 317

setting at runtime 257
sorting 117, 332, 682

Arrays class
asList method 572

Index 783

binarySearch method 398, 580
copyOf method 114, 119, 316
copyOfRange method 119
deepEquals method 245
deepToString method 121, 252
equals method 119, 245, 246
fill method 119
hashCode method 249, 250
parallelXxx methods 682
sort method 117, 119, 329, 332, 334, 355, 359
toString method 114, 119

ArrayStoreException class 228, 475, 486, 488
arrayType method 317, 320
ASCII 41
asIterator method 587, 588
asList method 572
ASM library 736
assert keyword 431, 775
Assertions 431

checking 714
checking parameters with 434
defined 431
documenting assumptions with 435
enabling/disabling 432, 434

Assignment 45, 53
Asynchronous computations 685
Asynchronous methods 618
AsyncTask class (Android) 695
atan, atan2 methods (Math) 49
Atomic operations 662

client-side locking for 658
in concurrent hash maps 676
performance of 663

AtomicType classes 662
@author annotation 212, 214
Autoboxing 265
AutoCloseable interface 421

close method 421, 423
await method 606, 649

of Condition 645
awaitTermination method 625
Azul 15

B
B, b conversion characters 80
Base classes. See Superclasses
BASE64Encoder class 753
Basic multilingual planes 41
Batch files 199
Beans class 201
beep method

of Toolkit 345
BiConsumer interface 370
BiFunction interface 359, 370
BIG-5 41
BigDecimal class 107

add, compareTo, subtract, multiply, divide, mod
methods 110

BigInteger class 107, 110
add, compareTo, subtract, multiply, divide, mod, sqrt
methods 110
valueOf method 107, 110

Binary search 578
BinaryOperator interface 370
binarySearch method

of Arrays 398, 580
of Collections 578

BiPredicate interface 370
Bit masks 57
Bit sets 593
BitSet class 511, 593

methods of 594
Bitwise operators 57, 59
Blank lines, printing 35
Blocking queues 668
BlockingDeque interface, methods of 674
BlockingQueue interface

add, element, peek, remove methods 668, 669
offer, poll, put, take methods 668, 669, 673

Blocks 33, 34, 86
nested 86
synchronized 657

boolean type 43, 775
converting from boolean 265
default initialization of 172
formatting output for 80
hashCode method 250
no casting to numeric types for 53

boolean operators 54, 59
Bounded collections 514
Bounds checking 115
break keyword 100, 107, 775

labeled/unlabeled 105
not allowed in switch expressions 104

Bridge methods 471, 472, 496
Buckets (of hash tables) 538
Bulk operations 582
byte type 36, 775

converting from byte 265
hashCode method 250
toUnsignedInt method 38

Bytecode files 32
Bytecodes

engineering 736
at load time 743, 744

C
C

assert macro in 432
function pointers in 320
integer types in 5, 37

C# 7
foreach loop in 85
polymorphism in 233
useful features of 10

C++

784 Index

#include in 190
>> operator in 58
, (comma) operator in 59
:: operator in 151, 221
access privileges in 155
algorithms in 575
arrays in 115, 125
bitset template in 594
boolean values in 43
classes in 34, 375
copy constructors in 136
dynamic binding in 223
dynamic casts in 236
exceptions in 406, 409, 410, 414
fields in

instance 174, 176
static 160

for loop in 85, 95
function pointers in 320
inheritance in 218, 226, 337
integer types in 5, 37
iterators as parameters in 587
methods in

accessor 139
default 340
destructor 182
static 160

namespace directive in 190
new operator in 148
NULL pointer in 135
object pointers in 135
operator overloading in 108
passing parameters in 167, 169
performance of, compared to Java 595
polymorphism in 233
protected modifier in 239
pure virtual functions (= 0) in 274
references in 135
Standard Template Library in 511, 516
static member functions in 34
strings in 64, 65
superclasses in 222
syntax of 2
templates in 10, 463, 466, 469
this pointer in 176
type parameters in 465
using directive in 190
variables in 46

redefining in nested blocks 86
vector template in 260
virtual constructors in 299
void* pointer in 240

C, c conversion characters 80
CachedRowSetImpl class 753
Calendar class 136

get/setTime methods 231
Calendars

displaying 139, 141
vs. time measurement 137

Call by reference 164

Call by value 164
Callable interface 625

call method 618, 620
wrapper for 619

Callables 618
Callbacks 342
CamelCase 32
canAccess method 316
cancel method 618, 620, 623

of Future 697
CancellationException class 697
Cardinality 594
Carriage return character 40
case keyword 56, 99, 775
cast method 499

of Class 499
Casts 52, 234

annotating 715
bad 406
checking before attempting 235

catch keyword 412, 775
annotating parameters of 713

ceiling method
of NavigableSet 545

char type 39, 775
Character class

converting from char 265
hashCode method 250
isJavaIdentifierXxx methods 44

Characters
escape sequences for 40
exotic 42
formatting output for 80

charAt method 62, 67
CharSequence interface 68, 338
Checked exceptions 298, 300

applicability of 429
declaring 407
suppressing with generics 493

Checked views 568
checkedCollection methods (Collections) 572
Checker Framework 714
checkFromIndexSize, checkFromToIndex, checkIndex methods

(Objects) 430
Child classes. See Subclasses
children method

of ProcessHandle 706, 709
ChronoLocalDate 481
Church, Alonzo 356
Circular arrays 514
Clark, Jim 9
class keyword 31, 297, 775

arrayType method 317, 320
cast method 499
componentType method 320
forName method 297, 300
getClass method 297
getComponentType method 317, 320
getConstructor method 300, 499
getConstructors method 304, 309

Index 785

getDeclaredConstructor method 499
getDeclaredConstructors method 304, 309
getDeclaredMethods method 304, 309, 321
getEnumConstants method 499
getField, getDeclaredField methods 316
getFields, getDeclaredFields methods 304, 309, 313,
316
getGenericXxx methods 508
getImage method 302
getMethod method 321
getMethods method 304, 309
getName method 257, 297, 298
getPackageName method 310
getRecordComponents method 310
getResource, getResourceAsStream methods 302, 303
getResourceAsStream method 761
getSuperclass method 257, 499
getTypeParameters method 508
isArray method 319
isEnum, isInterface, isRecord methods 309
newInstance method 299, 499

Class constants 46
Class declarations

annotations in 713, 723
Class diagrams 131, 132
Class files 192, 197

compiling 32
format of 736
locating 198, 199
modifying 736
names of 32, 144
transformers for 743

Class literals
no annotations for 715

Class loaders 396, 432
Class path 197, 200
Class wins rule 342
Class<T> parameters 499
ClassCastException class 235, 317, 335, 475, 491, 499,

569
Classes 31, 128, 217

abstract 271, 328, 337
access privileges for 154
adding to packages 192
capabilities of 304
companion 338, 340
constructors for 146
defining 142

at runtime 396
deprecated 720, 721
designing 130, 214
documentation comments for 207, 211
encapsulation of 129, 152, 747
extending 129
final 231, 351
generic 257, 258, 462, 476, 490, 498, 501
immutable 156, 183, 325
implementing multiple interfaces 336, 337
importing 189
inner 375

instances of 128, 133
legacy 184
loading 455
multiple source files for 145
names of 21, 31, 188, 216

full package 189
nested 715
number of basic types in 215
objects of, at runtime 311
package scope of 195
parameters in 151
predefined 132
private methods in 155
protected 239
public 189, 207
relationships between 130
sealed 282
sharing, among programs 197
unit testing 161
wrapper 265

ClassLoader class 436
CLASSPATH 199
clear method

of BitSet 594
of Collection 519, 521

clearAssertionStatus method 436
Client-side locking 657, 658
clone method

of array types 352
of Object 154, 347, 358

Cloneable interface 347
CloneNotSupportedException class 350, 351
close method 624

of AutoCloseable 421, 423
of Closeable 422
of Handler 450

Closures 367
Code errors 404
Code generator tools 722
Code planes 42
Code points, code units 42, 62
Collection interface 514, 522, 532

add method 514, 519, 520, 522
addAll method 519, 521
clear method 519, 521
contains, containsAll methods 519, 520, 532
equals method 519
generic 518, 521
implementing 340
isEmpty method 339, 519, 520
iterator method 514, 520
remove method 519, 521
removeAll method 519, 521
removeIf method 521, 582
retain method 519
retainAll method 521
size method 519, 520
stream method 340
toArray method 262, 519, 521, 584

Collections class 511

786 Index

algorithms for 574
bounded 514
bulk operations in 582
concrete 525
concurrent modifications of 532
converting to arrays 583
debugging 532
elements of

inserting 522
maximum 574
removing 518
traversing 515, 516

interfaces for 511
legacy 586
mutable 564
ordered 523, 529
performance of 523, 539
searching in 578
sorted 542
thread-safe 569, 667
type parameters for 461
using for method parameters 585

Collections class 577
addAll method 582
binarySearch method 578
checkedCollection methods 572
copy method 581
disjoint method 582
emptyCollection methods 572
enumeration method 587, 588
fill method 581
frequency method 582
indexOfSubList method 582
lastIndexOfSubList method 582
list method 588
max, min methods 581
nCopies method 564, 572
replaceAll method 582
reverse method 582
rotate method 582
shuffle method 577, 578
sort method 576
swap method 582
synchronizedCollection methods 569, 571, 685
unmodifiableCollection methods 565, 566, 571

command method
of ProcessHandle.Info 710

Command line
arguments in 116
compiling/launching from 19, 32

commandLine method
of ProcessHandle.Info 710

Comments 35
automatic documentation and 35, 206
blocks of 35
not nesting 36
to the end of line 35

Commons CSV library 763
Companion classes 338, 340
Comparable interface 328, 398, 466, 539, 576

compareTo method 328, 333, 466, 480
Comparator interface 345, 354, 373, 552, 576

chaining comparators in 374
comparing method 374
lambda expressions and 358
naturalOrder method 374
nullFirst/Last methods 374
of SortedSet 545
reversed, reverseOrder methods 375, 576, 578
thenComparing method 374

compare method (integer types) 334, 359
compareAndSet method 662
compareTo method

in subclasses 335
of BigDecimal 110
of BigInteger 110
of Comparable 328, 333, 466, 480
of Enum 282
of String 67

Compilation errors 24
Compiler

autoboxing in 267
bridge methods in 471
command-line options of 455
creating bytecode files in 32
deducting method types in 465
enforcing throws specifiers in 413
error messages in 24, 408
just-in-time 5, 6, 13, 152, 233, 595
launching 19
optimizing method calls in 6, 233
overloading resolution in 228
shared strings in 64, 65
translating typed array lists in 265
type parameters in 460
warnings in 102, 265
whitespace in 33

CompletableFuture class 687
acceptEither method 690
allOf, anyOf methods 690
applyToEither method 690
exceptionally, exceptionallyCompose methods 689,
690
handle method 689
orTimeout method 689
runAfterXxx methods 690
thenAccept, thenAcceptBoth, thenCombine, thenRun
methods 689
thenApply, thenApplyAsync, thenCompose methods 688,
689
whenComplete method 689

CompletionStage interface 691
Components (of records) 183
componentType method 320
Computations

asynchronous 685
performance of 49, 50
truncated 49

compute, computeIfXxx methods
of ConcurrentHashMap 677

Index 787

of Map 554
Concrete collections 525
Concrete methods 273
Concurrent hash maps

atomic updates in 676
bulk operations on 679
efficiency of 675
size of 674
vs. synchronization wrappers 684

Concurrent modification detection 532
Concurrent programming 6, 599, 705

records in 185
synchronization in 635

Concurrent sets 682
ConcurrentHashMap class 674

atomic updates in 676
compute, computeIfXxx methods 677, 678
forEach method 679
forEach, forEachXxx methods 681
get method 676
keySet, newKeySet methods 682
mappingCount method 674
merge method 677, 678
organizing buckets as trees in 675
put, putIfAbsent methods 676
reduce, reduceXxx methods 679, 681
replace method 676
search, searchXxx methods 679, 681

ConcurrentLinkedQueue class 674
ConcurrentModificationException class 532, 675, 684
ConcurrentSkipListMap/Set classes 674
Condition interface 652

await method 606, 649
signal method 649
signal, signalAll methods 650
signalAll method 649
vs. synchronization methods 654

Condition objects 644
Condition variables 644
Conditional operator 55

with pattern matching 237
Conditional statements 86
Configuration files

editing 440
Console class

of System 79
printing output to 31, 79
reading input from 76

Console class 78
readLine/Password methods 79

ConsoleHandler class 441, 444, 451
const keyword 47, 775
Constants 46

documentation comments for 209
names of 46
public 47, 158
static 158

Constructor class 304
getDeclaringClass method 310
getModifiers, getName methods 304, 310

getXxxTypes methods 310
newInstance method 300

Constructor expressions 489
Constructor references 365

annotating 715
Constructors 146, 148, 171

annotating 713, 715
calling another constructor in 176
canonical, compact, custom 185
defined 133
documentation comments for 207
field initialization in 172, 174
final 304
initialization blocks in 176
names of 133, 147
no-argument 173, 221, 394
overloading 171
parameter names in 175
private 304
protected 207
public 207, 304
with super keyword 221

Consumer interface 370
Consumer threads 668
contains method

of Collection 519, 520, 532
of HashSet 539

containsAll method 519, 520, 532
containsKey/Value methods (Map) 551
continue keyword 106, 107, 775

not allowed in switch expressions 104
Control flow 85

block scope 86
breaking 104
conditional statements 86
loops 90

determinate 95
“for each” 113

multiple selections 99
Conversion characters 80
Cooperative scheduling 606
Coordinated Universal Time (UTC) 136
Copies 562

unmodifiable 565, 570
copy method

of Collections 581
copyOf method

of Arrays 114, 119, 316
of EnumSet 561
of List, Map, Set 565, 570
of Map.Entry 557

copyOfRange method 119
CopyOnWriteArrayList class 682, 684
CopyOnWriteArraySet class 682
CORBA 747
Cornell, Gary 1
Corruption of data 636, 640
cos method

of Math 49
Count of Monte Cristo, The (Dumas) 696, 698

788 Index

Covariant return types 472
CSV files 763
Ctrl+\, for thread dump 650
Ctrl+C, for program termination 637, 647
current method

of ProcessHandle 706, 709
of ThreadLocalRandom 667

currentThread method 609

D
d conversion character 80
D, d suffixes (for double numbers) 38
Daemon threads 613
Data types 36

boolean type 43
casting between 52
char type 39
conversions between 51, 234
floating-point 38
integer 36

Databases 711
DataFlavor class 748
Date class 136

getDay/Month/Year methods (deprecated) 138
toString method 133

Date and time
formatting output for 80
hash codes for 248
no built-in types for 133

Deadlocks 646, 649
Debugging 7, 452

collections 532
debuggers for 452
generic types 568
GUI programs 412
including class names in 387
messages for 411
reflection for 312
trapping program errors in a file for 454
when running applications in terminal window 21

Decrement operators 54
decrementExact method 51
Deep copies 348
deepEquals method 245
deepToString method 121, 252
default keyword 100, 339, 775

sealed classes and 284
Default for annotation element 719
Default methods 339

conflicts in 340
Deferred execution 369
delete method

of StringBuilder 73
Dependence 130
@Deprecated annotation 720, 721
Deprecated methods 138
Deque interface 545

methods of 547

Deques 545
Derived classes. See Subclasses
descendants method

of ProcessHandle 706, 709
destroy, destroyForcibly methods (Process) 705, 709
Determinate loops 95
Development environments

choosing 19
in terminal window 21
integrated 24

Device errors 404
Dialogs

centering 344
Diamond syntax 258

with anonymous subclasses 460
Digital signatures 4
Directories

starting, for a launched program 84
working, for a process 702

directory method 708
of ProcessBuilder 702

disjoint method
of Collections 582

divide method
of BigDecimal 110
of BigInteger 110

Division 48
do/while loop 92, 93, 775
Documentation comments 35, 206

extracting 213
for fields 209
for methods 208
for packages 209
general 212
HTML markup in 210
hyperlinks in 211
inserting 207
links to other files in 212
overview 214

@Documented annotation 721, 723
doInBackground method 696, 697, 701
double type 38, 775

arithmetic computations with 48
compare method 334
converting from double 265
converting to other numeric types 51
hashCode method 250
POSITIVE_INFINITY, NEGATIVE_INFINITY, NaN
constants 39

Double brace initialization 387
Double-precision numbers 38
DoubleAccumulator, DoubleAdder classes 664
Doubly linked lists 526
Dynamic binding 223, 228
Dynamic languages 7

E
E

Index 789

constant (Math) 50
E, e conversion characters 39, 80
Eclipse 19, 24, 452

Adoptium 15
configuring projects in 26
editing source files in 27
error messages in 24, 25
IDE 756
imports in 190
Yasson framework 761

Effectively final variables 422
Eiffel programming language 337
element method 730, 731

of BlockingQueue 668, 669
of Queue 546

Elements 712
else keyword 87, 88, 775
else if 88, 90
Emoji characters 42
emptyCollection methods (Collections) 572
EmptyStackException class 428, 430
Encapsulation 129, 747

benefits of 152
compile-time 765
protected instance fields and 324

endsWith method 67
ensureCapacity method 259, 260
Enterprise Edition 10
entry method

of Map 564, 571
EntryLogger 743
EntryLoggingAgent.mf 743
entrySet method 554, 556
enum keyword 47, 277, 775

compareTo, ordinal methods 282
toString, valueOf methods 279, 281

Enumerated types 47
equality testing for 278
in switch statement 56

Enumeration interface 511, 587
asIterator method 587, 588
hasMoreElements, nextElement methods 516, 587
of Collections 588

Enumeration maps/sets 559
Enumerations 277

always final 234
annotating 713
declared inside a class 390
implementing interfaces 336
legacy 587

EnumMap class 559, 562
as a concrete collection type 525

EnumSet class 559
allOf, copyOf, noneOf, of, range methods 561
as a concrete collection type 525

environment method
of ProcessBuilder 708

Environment variables, modifying 704
EOFException class 409, 410
Epoch 136

equals method 342
hashCode method and 248, 249
implementing 244
inheritance and 242
of Annotation 720
of Arrays 119, 245, 246
of Collection 519
of Object 241, 246, 256, 566
of proxy classes 401
of records 184, 242
of Set 524
of String 65, 67
redefining 248, 249
wrappers and 267

equalsIgnoreCase method 65, 67
Error class 405
Errors

checking, in mutator methods 153
code 404
compilation 24
device 404
internal 405, 408, 434
messages for 415
NoClassDefFoundError 21
physical limitations 404
user input 404

Escape sequences 40
Exception class 406, 426
Exception handlers 300, 404
Exception specification 407
exceptionally, exceptionallyCompose methods

(CompletableFuture) 689, 690
Exceptions 405

annotating 715
ArrayIndexOutOfBoundsException 113, 406, 408
ArrayStoreException 228, 475, 486, 488
CancellationException 697
catching 149, 300, 351, 408, 412
changing type of 417
checked 298, 300, 406, 409, 427, 429
ClassCastException 235, 317, 335, 475, 491, 499, 569
CloneNotSupportedException 350, 351
ConcurrentModificationException 532, 675, 684
creating classes for 410, 411
documentation comments for 208
EmptyStackException 428, 430
EOFException 409, 410
FileNotFoundException 407, 409
finally clause in 418
generics in 493
hierarchy of 405, 429
IllegalAccessException 312, 316
IllegalStateException 518, 521, 536, 546, 547, 668
InaccessibleObjectException 312
InterruptedException 601, 609, 618
InvocationTargetException 299
IOException 84, 407, 409, 413, 422
logging 446
micromanaging 428
NoSuchElementException 515, 521, 536, 546, 547

790 Index

NullPointerException 149, 150, 164, 267, 364, 406,
430
NumberFormatException 429
out-of-bounds 430
propagating 413, 430
rethrowing and chaining 417, 454
RuntimeException 406, 429
ServletException 417
squelching 429
stack trace for 423
“throw early, catch late” 431
throwing 300, 409
TimeoutException 618
tips for using 427
type variables in 492
uncaught 454, 608, 614
unchecked 300, 406, 408, 429
unexpected 446
UnsupportedOperationException 556, 566, 569, 571
variables for, implicitly final 415
vs. simple tests 427
wrapping 417

exec method
of Runtime 702

Executable class 321
Executable JAR files 202
ExecutableElement interface 730
execute method 697

of SwingWorker 702
ExecutorCompletionService class 625

poll, submit, take methods 630
Executors class 621

groups of tasks, controlling 625
Executors class, newXxx methods 621, 624
ExecutorService interface 624

awaitTermination method 625
close method 624
invokeAny/All methods 625, 630
shutdown method 623, 624
shutdownNow method 623
submit method 622, 624

exit method
of System 34

Exit codes 34
exitValue method 705, 709
exp method

of Math 50
Explicit parameters 151
Exploratory programming 6
exports keyword 753, 755, 756, 768, 776
Expressions 53
extends keyword 217, 466, 776

F
F, f conversion characters 80
F, f suffixes (for floatnumbers) 38
Factory methods 160
Fair locks 644

Fallthrough behavior 100
false literal 776
fdlibm library 50
Field class 304

get method 311, 316
getDeclaringClass method 310
getModifiers, getName methods 304, 310
getType method 304
set method 316

Fields
adding, in subclasses 221
annotating 713
default initialization of 172
documentation comments for 207, 209
final 158, 231
instance 129, 147, 152, 156, 174, 214
private 214, 219, 220
protected 207, 239, 324
public 207, 209
public static final 336
static 157, 178, 191, 492
volatile 660
with the null value 150

File handlers 442, 444
FileHandler class 442, 444, 451
FileNotFoundException class 407, 409
Files class

locating 84
names of 21, 83
reading 83

all words from 422
in a separate thread 696

writing 83
fill method

of Arrays 119
of Collections 581

Filter class 444
isLoggable method 452

final keyword 46, 231, 776
checking 304
for fields in interfaces 336
for instance fields 156
for methods in superclass 335
for shared fields 661
inner classes and 383

finalize method
of Object 182

finally keyword 418, 776
return statements in 420
unlock operation in 641
without catch 420

Financial calculations 39
findFirst method 395
first method

of SortedSet 545
First Person, Inc. 9
firstKey method 552
Flags, for formatted output 81
float type 38, 776

converting from float 265

Index 791

converting to other numeric types 51
hashCode method 250
POSITIVE_INFINITY, NEGATIVE_INFINITY, NaN
constants 39

Floating-point numbers 38
arithmetic computations with 48
converting from/to integers 234
equality of 97
formatting output for 80
rounding 39, 52

floor method
of NavigableSet 545

floorMod method 48
flush method

of Handler 450
for keyword 95, 776

comma-separated expressions in 59
defining variables inside 97
for collections 515

“for each” loop 114
for array lists 262
for collections 515, 684
for multidimensional arrays 121

forEach method
of ConcurrentHashMap 679, 681
of Map 551
of StackWalker 426

forEachRemaining method 515, 521
Fork-join framework 632
Form feed character 40
Format specifiers (printf) 80, 82
format, formatted, formatTo methods (String) 82
formatMessage method 452
Formattable interface 81
Formatter class 444
Formatter class, methods of 452
forName method 297, 300
frequency method

of Collections 582
Function interface 370, 373
Functional interfaces 358, 721, 722

abstract methods in 358
annotating 372
conversion to 359
generic 359
using supertype bounds in 481

@FunctionalInterface annotation 372, 721, 722, 723
Functions. See Methods
Future interface 625

cancel, get methods 618, 620, 623, 697
isCancelled, isDone methods 618, 620, 623

Futures 618
combining 690
completable 687

FutureTask class 618

G
G, g conversion characters 80

Garbage collection 64, 136
hash maps and 557

GB18030 41
General Public License (GPL) 13
@Generated annotation 721, 722
Generic programming 459

arrays and 366, 490
classes in 257, 258, 462

extending/implementing other generic
classes 476

no throwing or catching instances of 492
collection interfaces in 583
converting to raw types 475
debugging 568
expressions in 469
in JVM 468, 500
inheritance rules for 474, 476
legacy code and 472
methods in 464, 470, 518
reflection and 498
required skill levels for 461
static fields or methods and 492
type erasure in 468, 485, 490

clashes after 495
type matching in 499
vs. inheritance 459
wildcard types in 477

Generic types
annotating 715

GenericArrayType interface 500, 501
getGenericComponentType method 509

get method
of Array 320
of ArrayList 260, 264
of BitSet 594
of ConcurrentHashMap 676
of Field 311, 316
of Future 618, 620, 623, 697
of LinkedList 533
of List 523, 536
of LongAccumulator 664
of Map 522, 549, 551
of Paths 338
of ServiceLoader.Provider 394, 395
of ThreadLocal 632
of Vector 658

getAccessor method 310
getActualTypeArguments method (ParameterizedType) 509
getAndType methods (AtomicType) 663
getAnnotation method 729
getAnnotation, getAnnotationsByType methods

of AnnotatedConstruct 730
of AnnotatedElement 726, 727

getAnnotations method 729
getAnnotationsByType method 729
getBoolean method

of Array 320
getBounds method (TypeVariable) 508
getByte method 320
getCause method 425

792 Index

getChar method 320
getClass method

always returning raw types 486
of Class 297
of Object 256

getClassName method
of StackFrame 426
of StackTraceElement 427

getComponentType method 317, 320
getConstructor method 300, 499
getConstructors method 304, 309
getDay method 138
getDayXxx methods (LocalDate) 137, 142
getDeclaredAnnotations method 729
getDeclaredAnnotationXxx methods

(AnnotatedElement) 726, 727
getDeclaredConstructor method 499
getDeclaredConstructors method 304, 309
getDeclaredField method 316
getDeclaredFields method 304, 309, 313, 316
getDeclaredMethods method 304, 309, 321
getDeclaringClass method

of java.lang.reflect 310
of StackFrame 426

getDefaultToolkit method 345
getDefaultUncaughtExceptionHandler method 615
getDouble method

of Array 320
getElementsAnnotatedWith method 730
getEnclosedElements method 731
getEnumConstants method 499
getErrorStream method 703, 704, 708
getExceptionTypes method 310
getField method 316
getFields method 304, 309, 316
getFileName method

of StackFrame 426
of StackTraceElement 427

getFilter method
of Handler 450

getFirst method 546
getFloat method

of Array 320
getFormatter method 450
getGenericComponentType method (GenericArrayType) 509
getGenericXxx methods (Class) 508
getGenericXxx methods (Method) 508
getGlobal method 453
getHead method 445, 452
getImage method

of Class 302
getInputStream method 703, 708
getInstance method 423, 426
getInstant method 451
getInt method

of Array 320
getKey method 556
getLast method 546
getLength method 317, 318, 320
getLevel method

of Handler 450
of LogRecord 451

getLineNumber method
of StackFrame 426
of StackTraceElement 427

getLogger method 437, 439
getLoggerName method 451
getLong method

of Array 320
getLongThreadID method 452
getLowerBounds method (WildcardType) 508
getMessage method

of LogRecord 451
of Throwable 411

getMethod method 321
getMethodName method

of StackFrame 427
of StackTraceElement 427

getMethods method 304, 309
getMillis method 451
getModifiers method

of java.lang.reflect 310
of java.lang.reflect.Member 304

getMonth method 138
getMonthXxx methods (LocalDate) 137, 142
getName method

of Class 257, 297, 298
of java.lang.reflect 310
of java.lang.reflect.Member 304
of RecordComponent 310
of System.Logger 450
of TypeVariable 508

getOrDefault method 551
getOutputStream method 703, 708
getOwnerType method (ParameterizedType) 509
getPackageName method 310
getParameters method 451
getParameterTypes method 310
getProperties method 590, 591
getProperty method

of Properties 589, 590
of System 84

getProxyClass method 401, 402
getQualifiedName method 731
getRawType method (ParameterizedType) 509
getRecordComponents method 310
getResource, getResourceAsStream methods (Class) 302,

303
getResourceAsStream method (Class, Module) 761
getResourceBundle, getResourceBundleName methods

(LogRecord) 451
getReturnType method 310
getSequenceNumber method 452
getShort method 320
getSimpleName method

of Element 731
getSourceXxxName methods (LogRecord) 451
getStackTrace method 424, 425
getState method

of SwingWorker 702

Index 793

of Thread 608
getSuperclass method 257, 499
getSuppressed method 423, 425
getTail method 445, 452
Getters/setters, generated automatically 734
getThrown method 451
getTime method 231
getType method

of Field 304
of RecordComponent 310

getTypeParameters method
of Class 508
of Method 508

getUncaughtExceptionHandler method 615
getUpperBounds method (WildcardType) 508
getValue method

of Map.Entry 556
getYear method

of Date (deprecated) 138
of LocalDate 137, 142

GMT (Greenwich Mean Time) 136
Goetz, Brian 599, 660
Gosling, James 8, 9
goto keyword 85, 104, 776
Graphical User Interface

debugging 412
long-running tasks in 694

Green project 8, 9
GregorianCalendar class 139

add method 139
constructors for 137, 171

GUI. See Graphical User Interface

H
H, h conversion characters 80
handle method

of CompletableFuture 689
Handler class

close method 450
flush method 450
get/setFilter methods 450
get/setFormatter methods 450
get/setLevel methods 450
publish method 450

Hansen, Per Brinch 659, 660
hash method

of Objects 248, 250
Hash codes 246, 537

default 247
formatting output for 80

Hash collisions 248, 538
Hash maps 549

concurrent 674
identity 560
linked 557
setting 549
vs. tree maps 549
weak 557

Hash sets 537
linked 557

Hash tables 537, 538
legacy 587
load factor of 539
rehashing 539

hashCode method 246, 720
equals method and 248, 249
null-safe 248
of Arrays 249, 250
of Boolean, Byte, Character, Double, Float, Integer, Long,
Short 250
of LocalDate 248
of Object 250, 542
of Objects 248, 250
of proxy classes 401
of records 184, 249
of Set 524
of String 537

HashMap class 549, 551
as a concrete collection type 525

HashSet class 539, 541
add, contains methods 539
as a concrete collection type 525
iterating over 516

Hashtable class 511, 586, 587, 684
as a concrete collection type 525
synchronized methods 587

hasMoreElements method 516, 587
hasNext method

of Iterator 515, 516, 521
of Scanner 78

hasNextXxx methods (Scanner) 79
hasPrevious method 530, 536
“Has–a” relationship 130
headMap method

of NavigableMap 573
of SortedMap 567, 573

headSet method
of NavigableSet 567, 573
of SortedSet 567, 573

Heap 547
Helper methods 155, 339, 483
Hexadecimal numbers

formatting output for 80
prefix for 37

HexFormat class 80
higher method

of NavigableSet 545
Hoare, Tony 659
Hold count 643
HotJava browser 9
Hotspot just-in-time compiler 16, 595
HTML 10, 12

generating documentation in 733
in javadoc comments 210

794 Index

I
Identifiers 775
Identity hash maps 560
identityHashCode method 560, 562
IdentityHashMap class 560

as a concrete collection type 525
IEEE 754 specification 39, 50
if keyword 86, 776
IllegalAccessException class 312, 316
IllegalStateException class 518, 521, 536, 546, 547,

668
Immutable classes 156, 325
Implementations 511
implements keyword 329, 776
Implicit parameters 151

none, in static methods 159
state of 453

import keyword 189, 776
no annotations for 715

InaccessibleObjectException class 312
increment method

of LongAdder 663
Increment operators 54
Incremental linking 6
incrementAndGet method 662
incrementExact method 51
Indentation, in text blocks 75
Index class 112, 212
indexOf method

of List 536
of String 67

indexOfSubList method 582
Inferred types 357
info method

of ProcessHandle 709
Information hiding. See Encapsulation
Inheritance 130, 217

design hints for 324
equality testing and 242
hierarchies of 225
multiple 226, 337
preventing 231
private fields and 219
vs. type parameters 459, 474

@Inherited annotation 721, 723
inheritIO method 708
initCause method 425
Initialization blocks 176

static 178
Inlining 6, 233
Inner classes 375

accessing object state with 376
anonymous 385
applicability of 381
defined 375
local 382
private 378
static 376, 389

syntax of 380
translated into regular classes 381
vs. lambda expressions 359

Input, reading 76
insert method

of StringBuilder 73
Instance fields 129

final 156
initializing 176, 215

explicit 174
names of 184
not present in interfaces 328, 336
private 147, 214
protected 324
public 147
shadowing 148, 175
values of 152, 153
volatile 660
vs. local variables 148, 151, 173

instanceof keyword 59, 235, 245, 335, 776
annotating 715
pattern matching for 236

Instances 128
creating on the fly 299

Instrumentation API 743
int type 36, 776

converting to other numeric types 51
fixed size for 5
platform-independent 37

Integer class
compare method 334, 359
converting from int 265
hashCode method 250
intValue method 269
parseInt method 268, 269
toString method 269
valueOf method 269

Integer types 36
arithmetic computations with 48
arrays of 252
computations of 51
converting from/to floating-point 234
formatting output for 80
no unsigned types in Java 38

Integrated Development Environment (IDE) 24
IntelliJ IDEA 24
interface keyword 328, 717, 719, 776
Interface types 514
Interface variables 335
Interfaces 327

abstract classes and 337
annotating 713, 715
binary- vs. source-compatible 340
callbacks and 342
constants in 336
declared inside a class 390
documentation comments for 207
evolution of 340
extending 335
for custom algorithms 584

Index 795

functional 358, 721, 722
implementing 329, 335, 338
methods in

clashes between 340
nonabstract 358
private 339
static 338

no instance fields in 328, 336
properties of 335
public 207
sealed 337
tagging 350, 469, 523
vs. implementations 511

Internal errors 405, 408, 434
Internationalization. See Localization
Internet Explorer 7
Interpreted languages 13
Interpreter 6
interrupt method

of Thread 609
interrupted method

of Thread 611, 613
InterruptedException class 601, 609, 618
Intrinsic locks 652, 659, 661
Introduction to Algorithms (Cormen et al.) 542
intValue method 269
Invocation handlers 396
InvocationHandler interface 396, 401, 402
InvocationTargetException class 299
invoke method

of InvocationHandler 396, 401, 402
of Method 320

invokeAny/All methods (ExecutorService) 625, 630
invokeDefault method 402
IOException class 84, 407, 409, 413, 422
isAbstract method 311
isAlive method 705, 709
isAnnotationPresent method 728
isArray method 319
isBlank method 67
isCancelled, isDone methods (Future) 618, 620, 623
isEmpty method

of Collection 339, 519, 520
of String 67

isEnum method 309
isFinal method 304, 311
isInterface method

of Class 309
of Modifier 311

isInterrupted method 609
isJavaIdentifierXxx methods (Character) 44
isLoggable method

of Filter 444
of System.Logger 450

isLoggable method (Filter) 452
isNaN method 39
isNative method 311
isNativeMethod method

of StackFrame 427
of StackTraceElement 427

ISO 8601 format 722
ISO 8859-1 41, 589
isPrivate, isProtected, isPublic methods (Modifier) 304,

311
isProxyClass method 401, 402
isRecord method 309
isStatic, isStrict, isSynchronized methods

(Modifier) 311
isVolatile method 311
“Is–a” relationship 130, 226, 324
Iterable interface 113
iterator method 515

“for each” loop 515
forEachRemaining method 515, 521
generic 518
hasNext method 515, 516, 521
next method 515, 518, 521
of Collection 514, 520
of ServiceLoader 395
remove method 515, 517, 518, 521

Iterators 515
being between elements 516
weakly consistent 675

IzPack 203

J
J#, J++ programming languages 7
jar 200, 757

command-line options of 201, 202, 205
Jar Bundler 203
JAR files 197, 200

analyzing dependencies of 772, 773
creating 200
executable 202
file resources in 761
in jre/lib/ext directory 200
manifest of 201, 762
META-INF/services directory 770
modular 757, 763
multi-release 203
resources and 301
scanning for deprecated elements 721

Java 19
--add-exports option 765
--add-opens option 765
--illegal-access option 765
--module, --module-path options 750
-javaagent option 743
architecture-neutral object file format of 5
as a programming platform 1
available under GPL 13
backward compatibility of 203, 237, 373, 459
basic syntax of 31, 142
case-sensitiveness of 21, 31, 43, 587
command-line options of 205, 432
design of 2
documentation for 18
dynamic 7

796 Index

history of 8
interpreter in 6
libraries in 3, 10, 12

installing 18
misconceptions about 12
networking capabilities of 3
no multiple inheritance in 337
no operator overloading in 108
no unsigned types in 38
reliability of 4
security of 4, 14
simplicity of 2, 355
strongly typed 36, 331
versions of 10, 11
vs. C++ 2, 595

Java bug parade 32
Java Collections Framework 511

algorithms in 574
converting to/from arrays in 583
copies and views in 562
interfaces in 521

vs. implementations 511
legacy classes in 586
operations in

bulk 582
optional 569

vs. traditional collections libraries 516
Java Concurrency in Practice (Goetz) 599
Java Development Kit (JDK) 5, 15

documentation in 68
downloading 15
installation of 15

default 200
obsolete features in 747
setting up 16

Java Language Specification 32
Java Memory Model and Thread Specification 660
Java Persistence Architecture 711
Java Platform Module System 747, 774

migration to 762, 766
Java Runtime Environment (JRE) 16
Java Virtual Machine (JVM) 5

generics in 468, 500
launching 19
managing applications in 456
method tables in 229
thread priority levels in 616
truncating computations in 49
watching class loading in 455

Java Virtual Machine Specification 32, 736
java.awt package 748
java.awt.Toolkit class 345
java.desktop module 766, 767
java.io.Console class 79
java.io.PrintWriter class 85
java.lang.annotation package 720
java.lang.annotation.Annotation interface 720
java.lang.Boolean class 250
java.lang.Byte class 250
java.lang.Character class 250

java.lang.Class class 257, 300, 303, 309, 310, 316,
319, 508

java.lang.ClassLoader class 436
java.lang.Comparable interface 333
java.lang.Double class 250, 334
java.lang.Enum class 281
java.lang.Exception class 426
java.lang.Float class 250
java.lang.Integer class 250, 269, 334
java.lang.Long class 250
java.lang.Object class 129, 250, 256, 542
java.lang.ref.Cleaner class 182
java.lang.reflect package 304, 316
java.lang.reflect.AccessibleObject class 316
java.lang.reflect.AnnotatedElement interface 728, 729
java.lang.reflect.Array class 320
java.lang.reflect.Constructor class 300, 310
java.lang.reflect.Field class 310, 316
java.lang.reflect.GenericArrayType interface 509
java.lang.reflect.InvocationHandler interface 402
java.lang.reflect.Method class 310, 324, 508
java.lang.reflect.Modifier class 311
java.lang.reflect.ParameterizedType interface 509
java.lang.reflect.Proxy class 402
java.lang.reflect.RecordComponent class 310
java.lang.reflect.TypeVariable interface 508
java.lang.reflect.WildcardType interface 508
java.lang.RuntimeException class 426
java.lang.Short class 250
java.lang.StackTraceElement class 427
java.lang.StackWalker class 426
java.lang.StackWalker.StackFrame interface 426, 427
java.lang.String class 67, 68
java.lang.StringBuilder class 73
java.lang.System class 79, 562, 591
java.lang.Throwable class 300, 411, 425
java.logging module 767
java.math.BigDecimal class 110
java.math.BigInteger class 110
java.nio.file.Path interface 85
java.se module 767
java.text.NumberFormat class 270
java.time.LocalDate class 142
java.util.ArrayDeque class 547
java.util.ArrayList class 260, 264
java.util.Arrays class 119, 246, 250, 334, 572
java.util.BitSet class 594
java.util.Collection interface 520, 521, 582
java.util.Collections class 571, 572, 577, 578, 579,

581, 582, 588, 685
java.util.Comparator interface 578
java.util.concurrent package 640

efficient collections in 674
java.util.concurrent.ArrayBlockingQueue class 673
java.util.concurrent.atomic package 662
java.util.concurrent.BlockingDeque interface 674
java.util.concurrent.BlockingQueue interface 673
java.util.concurrent.Callable interface 620
java.util.concurrent.ExecutorCompletionService

class 630

Index 797

java.util.concurrent.Executors class 624
java.util.concurrent.ExecutorService interface 624,

630
java.util.concurrent.Future interface 620
java.util.concurrent.FutureTask class 620
java.util.concurrent.LinkedBlockingDeque class 673
java.util.concurrent.LinkedBlockingQueue class 673
java.util.concurrent.locks.Condition interface 649
java.util.concurrent.locks.Lock interface 643, 649
java.util.concurrent.locks.ReentrantLock class 643
java.util.concurrent.PriorityBlockingQueue class 673
java.util.concurrent.ThreadLocalRandom class 667
java.util.concurrent.TransferQueue interface 674
java.util.Deque interface 547
java.util.Enumeration interface 587
java.util.EnumMap class 562
java.util.EnumSet class 561
java.util.function package 359
java.util.HashMap class 551
java.util.HashSet class 541
java.util.IdentityHashMap class 562
java.util.Iterator interface 521
java.util.LinkedHashMap class 561
java.util.LinkedHashSet class 561
java.util.LinkedList class 536
java.util.List interface 535, 570, 572, 578, 582
java.util.ListIterator interface 536
java.util.logging package 436, 440
java.util.logging.ConsoleHandler class 451
java.util.logging.FileHandler class 451
java.util.logging.Filter interface 452
java.util.logging.Formatter class 452
java.util.logging.Handler class 450
java.util.logging.LogRecord class 451
java.util.Map interface 551, 554, 556, 571
java.util.NavigableMap interface 573
java.util.NavigableSet interface 545, 573
java.util.Objects class 164, 246
java.util.PriorityQueue class 548
java.util.Properties class 590
java.util.Queue interface 546
java.util.random.RandomGenerator interface 181
java.util.Scanner class 78, 79, 85
java.util.SequencedCollection interface 546
java.util.Set interface 570
java.util.SortedMap interface 552, 573
java.util.SortedSet interface 545, 573
java.util.Stack class 593
java.util.Timer class 343
java.util.TreeMap class 552
java.util.TreeSet class 545
java.util.WeakHashMap class 560
javac 19

-processor option 729
-XprintRounds option 733
current directory in 198

javadoc 206
command-line options of 214
comments in 207, 209

extracting 213

overview 214
redeclaring Object methods for 358

HTML markup in 210
including annotations in 723
links in 211, 212
online documentation of 214

JavaFX 695
javafx.css.CssParser class 203
javan.log files 442
javap 204, 381
JavaScript 14
javax.annotation package 720
javax.swing.JOptionPane class 344
javax.swing.SwingWorker class 701
javax.swing.Timer class 343, 345
JAXB 759
JCommander 711
jconsole 441, 456, 649, 650
jdeprscan 721
jdeps 772, 773
JEP 264 (platform logging API) 437
jimage 774
jlink 773
jmod 774
JMOD files 774
Jmol applet 7
join method

of String 68
of Thread 606, 608

JOptionPane class
showMessageDialog method 344

JShell 6, 25
JShell, loading modules into 759
JSlider class

setLabelTable method 472
JSON 282
JSON-B 759, 761
JUnit 711, 712
JUnit framework 453
Just-in-time compiler 5, 6, 13, 152, 233, 595
JVM

specification for 736

K
Key/value pairs

in annotations 712, 719
keySet method

of ConcurrentHashMap 682
of Map 554, 556

Keywords 775
hyphenated 285
not used 47
redundant 336
reserved 31, 44
restricted 775

Knuth, Donald 104
KOI-8 41

798 Index

L
L, l suffixes (for long integers) 37
Lambda expressions 354

accessing variables in 366
annotating targets for 722
atomic updates with 663
capturing values by 367
for loggers 439
functional interfaces and 358
method references and 361
not for variables of type Object 359
parameter types of 356
processing 369
result type of 357
scope of 368
syntax of 355
this keyword in 369
vs. inner classes 359
vs. method references 364

Langer, Angelika 509
Language model API 730
last method

of SortedSet 545
lastIndexOf method

of List 536
of String 67

lastIndexOfSubList method 582
lastKey method 552
Launch4J 203
Legacy classes 184

generics and 472
Legacy collections 586

bit sets 593
enumerations 587
hash tables 587
property maps 588
stacks 593

length method
of arrays 113
of BitSet 594
of String 62, 66, 67
of StringBuilder 73

Line feed character
escape sequence for 40
in output 35, 74
in text blocks 73

@link annotation 211
Linked hash maps/sets 557
Linked lists 526

concurrent modifications of 532
doubly linked 526
printing 534
random access in 533, 574
removing elements from 526

LinkedBlockingDeque class 673
LinkedBlockingQueue class 669, 673
LinkedHashMap class 557, 561

access vs. insertion order in 558

as a concrete collection type 525
removeEldestEntry method 559, 561

LinkedHashSet class 557, 561
as a concrete collection type 525

LinkedList class 526, 532, 545
addFirst/Last methods 536
as a concrete collection type 525
get method 533
getFirst/Last methods 536
listIterator method 530
next/previousIndex methods 533
removeAll method 534
removeFirst/Last methods 537

Linux
IDEs for 24
JDK in 15
no thread priorities in OpenJDK VM for 616
paths in 197, 199
troubleshooting Java programs in 21

List class 523
add method 523, 535
addAll method 535
copyOf method 565, 570
get method 523, 536
indexOf, lastIndexOf methods 536
listIterator method 535
of Collections 588
of method 562, 570, 584
remove method 523, 535
replaceAll method 582
set method 523, 536
sort method 578
subList method 566, 572

ListIterator interface 532
add method 529, 530, 536
hasPrevious method 530, 536
next/previousIndex methods 536
of LinkedList 530
of List 535
previous method 530, 536
remove method 530
set method 531, 536

Lists 523
modifiable/resizable 577
unmodifiable 570
with given elements 562

load method
of Properties 589, 590
of ServiceLoader 395

Load time 743
Local inner classes 382

accessing variables from outer methods in 383
Local variables

annotating 473, 713, 714
vs. instance fields 148, 151, 173

LocalDate class 136
getXxx methods 137, 142
hashCode method 248
minusDays method 142
now, of methods 137, 142

Index 799

plusDays method 137, 142
processing arrays of 481

Locales 82
Localization 133, 302
Lock interface 652

await method 645
lock method 643
newCondition method 645, 649
signal method 646
signalAll method 645
tryLock method 606
unlock method 641, 643
vs. synchronization methods 654

Locks 640
client-side 658
condition objects for 644
deadlocks 646, 649
fair 644
hold count for 643
in synchronized blocks 657
intrinsic 652, 659, 661
not with try-with-resources statement 641
not wrapper objects for 267
reentrant 643

Log file pattern variables 444
Log handlers 441

filtering/formatting 444
Log messages, adding to classes 736
log, log10 methods (Math) 50
Log4j 436
Logback 436
@LogEntry annotation 736
Logger class

getGlobal method 453
Logger interface (System) 437

getName method 450
isLoggable method 450
log method 437, 450

Loggers
filtering/formatting 444
hierarchy of 441
naming 437

Logging 436
configuring 440, 441
including class names in 387
levels of 438, 441
messages for 252
recipe for 445

Logging proxy 453
Logical “and”, “or” 54
Logical conditions 43
LogRecord class, methods of 451
long type 36, 776

converting from long 265
hashCode method 250
platform-independent 37

Long Term Support (LTS) 16
LongAccumulator class, methods of 664
LongAdder class 663, 677

add, increment, sum methods 663

Loops
break statements in 104
continue statements in 106, 107
determinate (for) 95
“for each” 113
while 90

lower method
of NavigableSet 545

M
Mac OS X

executing JARs in 203
IDEs for 24
JDK in 15

main ,method
declared public 32

main method 161
body of 33
declared static void 33, 34
not defined 142, 179
separate for each class 453
String[] args parameter of 116
tagged with throws 84

make tool 146
MANIFEST.MF 201

editing 202
newline characters in 203

Map interface 522
compute, computeIfXxx methods 554
containsKey/Value methods 551
copyOf method 565, 571
entry method 564, 571
entrySet method 554, 556
forEach method 551
get method 522, 549, 551
getOrDefault method 551
keySet method 554, 556
merge method 554
of method 563, 564, 571
ofEntries method 564, 571
put method 522, 549, 551
putAll method 551
putIfAbsent method 554
remove method 550
replaceAll method 554
values method 554, 556

Map.Entry interface 554, 556
copyOf, getKey, get/setValue methods 556

mappingCount method 674
Maps 548

adding/retrieving objects to/from 549
concurrent 674
garbage collecting 557
hash vs. tree 549
implementations for 549
keys for 550

enumerating 555
subranges of 567

800 Index

unmodifiable 571
with given key/value pairs 562

Marker interfaces 350
Math class 28, 49

E, PI static constants 50, 158
floorMod method 48
log, log10 methods 50
pow method 49, 159
round method 52
sqrt method 49, 321, 322
trigonometric functions 49
xxxExact methods 51

max method
of Collections 581

Maximum value, computing 463
merge method

of ConcurrentHashMap 677, 678
of Map 554

Merge sort algorithm 576
Meta-annotations 717, 724
META-INF 202
META-INF/versions directory 203
Method class 304

getDeclaringClass method 310
getGenericXxx methods 508
getModifiers, getName methods 304, 310
getReturnType method 310
getTypeParameters method 508
getXxxTypes methods 310
invoke method 320
toString method 304

Method parameters. See Parameters
Method pointers 320, 321, 322
Method references 361

annotating 715
this, super parameters in 365
vs. lambda expressions 364

Method tables 229
MethodHandles class 762
Methods 129

abstract 272
in functional interfaces 358

accessor 138, 152, 153, 478
adding logging messages to 736
adding, in subclasses 221
annotating 713
applying to objects 133
asynchronous 618
body of 33, 34
bridge 471, 472, 496
calling by reference vs. by value 164
casting 234
chaining calls of 373
concrete 273
conflicts in 340
consistent 242
default 339
deprecated 138, 720, 721
destructor 182
documentation comments for 207, 211

dynamic binding for 223, 228
error checking in 153
exception specification in 407
factory 160
final 229, 233, 304, 335
generic 464, 470, 518
getters/setters, generated automatically 734
helper 155, 483
inlining 6, 233
invoking 35, 320
mutator 138, 153, 478
names of 184, 216
overloading 172
overriding 219, 246, 325, 720, 721

exceptions and 409
return type and 470

package scope of 195
passing objects to 133
private 155, 229, 304, 339
protected 207, 239, 324, 351
public 207, 304, 329
reflexive 242
return type of 172, 229
signature of 172, 229
static 159, 191, 229, 492, 654

adding to interfaces 338
symmetric 242
tracing 397
transitive 242
used for serialization 720, 722
utility 338
varargs 270, 487
visibility of, in subclasses 230

Micro Edition 10, 16
Microsoft

ActiveX 4
C# 7, 10, 233
Internet Explorer 7
J#, J++ 7
JDK in 15
.NET platform 5
Visual Basic 2, 133
Visual Studio 19

Microsoft Windows. See Windows operating system
min method

of Collections 581
Minimum value, computing 463
minusDays method 142
mod method

of BigDecimal 110
of BigInteger 110

Modifier class
isXxx methods 304, 311
toString method 311

module keyword 750, 777
Module class

getResourceAsStream method 761
Module path 200
module-info.class 758, 762
module-info.java 749, 763

Index 801

Modules 10, 197, 747, 774
accessing 759, 765, 766
automatic 762, 765
declaration of 750, 751
explicit 764
exporting packages 753
loading into JShell 759
migration to 762, 766
naming 748, 762
not passing access rights 753
open 761
opening packages in 760
packages with the same names in 756
qualified exports of 768
requiring 751
service implementations and 770
tools for 772
unnamed 312, 764
versioning 748, 751

Modulus 48
Monitor concept 659
Mosaic 9
Multi-release JARs 203
Multidimensional arrays 119, 124

printing 252
ragged 122

Multiple inheritance 337
not supported in Java 226

Multiple selections 99
Multiplication 48
multiply method

of BigDecimal 110
of BigInteger 110

multiplyExact method 51
Multitasking 599
Multithreading 6, 599

deadlocks in 646, 649
deferred execution in 369
performance and 643, 663, 669
preemptive vs. cooperative scheduling for 605
synchronization in 635
using pools for 621

Mutator methods 138, 478
error checking in 153

N
n conversion character 80
NaN 39
native keyword 776
naturalOrder method 374
Naughton, Patrick 8, 9
NavigableMap interface 524

headMap, subMap, tailMap methods 573
NavigableSet interface 524, 543

ceiling, floor methods 545
headSet, subSet, tailSet methods 567, 573
higher, lower methods 545
pollFirst/Last methods 545

nCopies method 564, 572
negateExact method 51
Negation operator 54
Negative infinity 39
Nested classes

annotating 715
.NET platform 5
NetBeans 19, 24, 452
Netscape 9

LiveScript/JavaScript 14
Navigator browser 7

Networking 3
new keyword 59, 133, 147, 776

in constructor references 365
not for interfaces 335
return value of 135
with arrays 111
with generic classes 258
with threads 605

newCachedThreadPool method 621, 624
newCondition method 645, 649
newFixedThreadPool method 621, 624
newInstance method

of Array 317, 320
of Class 299, 499
of Constructor 300

newKeySet method 682
Newline. See Line feed character
newProxyInstance method 396, 401, 402
newScheduledThreadPool method 621
newSingleThreadXxx methods (Executors) 621, 624
next method

of Iterator 515, 518, 521
of Scanner 78

nextDouble method 76, 78
nextElement method 516, 587
nextIndex method

of LinkedList 533
of ListIterator 536

nextInt method
of RandomGenerator 179, 181
of Scanner 76, 78

nextLine method 76, 78
No-argument constructors 173, 221, 394
NoClassDefFoundError class 21
non-sealed keyword 285, 776
noneOf method 561
@NonNull annotation 714
NoSuchElementException class 515, 521, 536, 546, 547
Notepad 21
notify, notifyAll methods (Objects) 656
notify, notifyAll methods (of Object) 653
now method

of LocalDate 137, 142
null literal 135, 776

as a reference 149
equality testing to 242

nullFirst/Last methods (Comparator) 374
NullPointerException class 57, 149, 150, 164, 267, 364,

406, 430

802 Index

Number class 265
NumberFormat class

factory methods 160
parse method 270

NumberFormatException class 429
Numbers

floating-point 38, 48, 52, 80, 97, 234
generated random 667
hexadecimal 37, 80
octal 37, 80
prime 594
rounding 39, 52, 110
unsigned 38

Numeric types
casting 52
comparing 54, 374
converting

to other numeric types 51, 234
to strings 268

default initialization of 172
fixed sizes for 5
precision of 79, 107
printing 79

O
o conversion character 80
Oak 9, 406
Object class 129, 240, 656

clone method 154, 347, 358
equals method 241, 246, 256, 342, 566
getClass method 256
hashCode method 247, 250, 542
no redefining for methods of 342
notify, notifyAll methods 653, 656
toString method 250, 342, 358
wait method 606, 653, 657

Object references
as method parameters 165
converting 234
default initialization of 172
modifying 165

Object traversal algorithms 560
Object variables 273

in predefined classes 132
initializing 134
setting to null 135
vs. C++ object pointers 135
vs. objects 134

Object-oriented programming (OOP) 3, 127, 217
passing objects in 342
time measurement in 137
vs. procedural 127

Object-relational mappers 759
Objects 127, 130

analyzing at runtime 311
applying methods to 133
behavior of 129
cloning 347

comparing 335
concatenating with strings 251, 252
constructing 128, 171
default hash codes of 247
destruction of 182
equality testing for 241, 246, 298
finalize method of 182
identity of 129
implementing an interface 335
in predefined classes 132
initializing 133
intrinsic locks of 652
passing to methods 133
references to 134
runtime type identification of 297
serializing 560
sorting 329
state of 129, 376
vs. object variables 134

Objects class
checkXxx methods 430
hash, hashCode methods 248, 250
requireNonNull method 150, 164, 430
requireNonNullElse method 150, 164

Octal numbers
formatting output for 80
prefix for 37

of method
of EnumSet 561
of List, Map, Set 562, 570, 584
of LocalDate 137, 142
of Path 83, 84, 85, 338
of ProcessHandle 706, 709
of RandomGenerator 181

ofEntries method 571
of Map 564

offer method
of BlockingQueue 668, 669, 673
of Queue 546

offerFirst/Last methods
of BlockingDeque 674
of Deque 547

On-demand initialization 664
onExit method 709
Online documentation 66, 68, 206, 214
open keyword 761, 777
OpenJ9 just-in-time compiler 16
OpenJDK 15, 16
opens keyword 760, 769, 777
Operators

arithmetic 48
bitwise 57, 59
boolean 54
hierarchy of 58
increment/decrement 54
no overloading for 108
relational 54

Optional operations 569
or method (BitSet) 594
Oracle 10

Index 803

Ordered collections 523, 529
ordinal method

of Enum 282
org.omg.corba package 747
orTimeout method 689
OSGi platform 393
Out-of-bounds exceptions 430
Output

formatting 79
statements in 60

Overloading resolution 172, 228
@Override annotation 246, 720, 721
overview.html file 214

P
p (hexadecimal floating-point literals) 39
package keyword 189, 192, 777
package-info.java 209, 714
package.html file 209
Packages 188, 747

accessing 195
adding classes into 192
annotating 713, 714
documentation comments for 207, 209
exporting 753
hidden 756
importing 189
names of 188, 297
opening 760
split 758
unnamed 192, 195, 214, 433

Parallelism threshold 680
parallelXxx methods (Arrays) 682
Parameter variables

annotating 713
Parameterized types. See Type parameters
ParameterizedType interface 500, 501

getXxx methods 509
Parameters 164

checking, with assertions 434
documentation comments for 208
explicit 151
implicit 151, 159, 453
modifying 165, 168
names of 175
using collection interfaces in 585
variable number of

passing generic types to 487
Parent classes. See Superclasses
parse method

of NumberFormat 270
parseInt method 268, 269
Pascal 8

compiled code in 5
passing parameters in 167

Passwords
reading from console 78, 79

Path interface, of method 83, 84, 85, 338

Paths class, get method 338
Pattern matching 236
Payne, Jonathan 9
peek method

of BlockingQueue 668, 669
of Queue 546
of Stack 593

peekFirst/Last methods (Deque) 547
Performance 6

computations and 49, 50
JAR files and 197
measuring 594, 597
multithreading and 643, 663, 669
of collections 523, 539, 675
of Java vs. C++ 595
of simple tests vs. catching exceptions 428

permits keyword 283, 337, 777
@Persistent annotation 723
Physical limitations 404
PI

constant (Math) 50, 158
Picocli 711
pid method

of ProcessHandle 709
Platform logging API 437, 440
plusDays method 137, 142
Point class 182, 184
poll method

of BlockingQueue 668, 669, 673
of ExecutorCompletionService 630
of Queue 546

pollFirst/Last methods
of Deque 547, 674
of NavigableSet 545

Polymorphism 223, 226, 284, 326
pop method

of Stack 593
Portability 5, 12, 48
Positive infinity 39
pow method

of Math 49, 159
Precision, of numbers 79
Preconditions 435
Predefined classes 132

mutator and accessor methods in 138
objects, object variables in 132

Predicate interface 360, 370
Preemptive scheduling 605
premain method (Instrumentation API) 743
previous method

of ListIterator 530, 536
previousIndex method

of LinkedList 533
of ListIterator 536

Prime numbers 594
Primitive types 36

as method parameters 165
comparing 374
converting to objects 265
final fields of 156

804 Index

not for type parameters 485
transforming hash map values to 681
values of, not object 240

Princeton University 4
print method

of System.out 35, 79
printf method

arguments of 270
conversion characters for 80
flags for 81
of System.out 79, 82

println method
of System.out 35, 76

printStackTrace method 300, 423, 454
PrintStream class

print method 436
PrintWriter class 83, 85
Priority queues 547
PriorityBlockingQueue class 669, 673
PriorityQueue class 548

as a concrete collection type 525
private keyword 146, 195, 378, 777

checking 304
for fields, in superclasses 220
for methods 155

Procedures 127
process method 702, 708, 709

destroy, destroyForcibly methods 705, 709
exitValue method 705, 709
getXxxStream methods 703, 704, 708
isAlive method 705, 709
of SwingWorker 696, 698, 702
onExit method 709
supportsNormalTermination method 709
toHandle method 706, 709
waitFor method 705, 709

ProcessBuilder class 702, 708
directory method 702, 708
environment method 708
inheritIO method 708
redirectXxx methods 703, 708
start method 704, 708
startPipeline method 704, 708

Processes 702
building 702
killing 705
running 704
vs. threads 599

ProcessHandle interface 709
allProcesses method 706, 709
children, descendants methods 706, 709
current method 706, 709
info method 709
of method 706, 709
pid method 709

ProcessHandle.Info interface 710
Processor interface 729
Producer threads 668
Programs. See Applications
Properties class 586

getProperty method 589, 590
load method 589, 590
setProperty method 590
store method 589, 590
stringPropertyNames method 590

@Property annotation 734
Property files

generating 733
Property maps 588

reading/writing 589
protected keyword 239, 324, 351, 777
provides keyword 771, 777
Proxies 395

properties of 400
purposes of 397

Proxy class 400
get/isProxyClass methods 401, 402
newProxyInstance method 396, 401, 402

public keyword 31, 47, 144, 147, 195, 329, 777
checking 304
for fields in interfaces 336
for main method 32
for only one class in source file 144
not specified for interfaces 328

publish method 702
of Handler 450
of SwingWorker 696

Pure virtual functions (C++) 274
push method

of Stack 593
put method

of BlockingQueue 668, 669, 673
of ConcurrentHashMap 676
of Map 522, 549, 551

putAll method 551
putFirst/Last methods (BlockingDeque) 674
putIfAbsent method

of ConcurrentHashMap 677
of Map 554

Q
Qualified exports 768
Queue class 545

implementing 512
methods of 546

Queues 511, 545
blocking 668
concurrent 674

QuickSort algorithm 117, 576

R
Race conditions 636, 640

and atomic operations 662
Ragged arrays 122
Random class

thread-safe 667
RandomAccess interface 523, 577, 579

Index 805

RandomGenerator interface
nextInt method 179, 181
of method 181

range method
of EnumSet 561

Raw types 468
converting type parameters to 475
type inquiring at runtime 485

readLine/Password methods (Console) 79
Receiver parameter 716
record keyword 777
RecordComponent class, getXxx methods 310
Records 182, 219

adding methods to 184
always final 234
declared inside a class 390
equals method of 242
hashCode method of 249
implementing interfaces 336
instance fields of 183, 184
toString method of 253

Rectangle class 543
Rectangles

comparing 543
Recursive computations 633
RecursiveAction, RecursiveTask classes 633
Red Hat 15
Red-black trees 542
redirectXxx methods (ProcessBuilder) 703, 708
reduce, reduceXxx methods (ConcurrentHashMap) 679, 681
Reentrant locks 643
ReentrantLock class 640
Reflection 217, 296

accessing
private members 759, 766

accessing nonpublic features with 312
analyzing

classes 304
objects, at runtime 311

generics and 316, 498
overusing 326
processing annotations with 725

Reinhold, Mark 10
Relational operators 54, 59
Relative resource names 302
remove method

of ArrayList 262, 264
of BlockingQueue 668, 669
of Collection 519, 521
of Iterator 515, 517, 518, 521
of List 523, 535
of ListIterator 530
of Map 550
of Queue 546
of ThreadLocal 632

removeAll method
of Collection 519, 521
of LinkedList 534

removeEldestEntry method 559, 561
removeFirst/Last methods

of LinkedList 537
of SequencedCollection 546

removeIf method
of ArrayList 360
of Collection 521, 582

repeat method
of String 61, 68

@Repeatable annotation 721, 723, 724
@RepeatedTest annotation 713
REPL 25
replace method

of ConcurrentHashMap 676
of String 67

replaceAll method
of Collections 582
of List 582
of Map 554

requireNonNull method 150, 164, 430
requireNonNullElse method 150, 164
requires keyword 751, 753, 755, 756, 762, 766
Reserved words. See Keywords
Resources 301

exhaustion of 405
in JAR files 761
localizing 302
names of 302

Restricted views 569
resume method

of Thread (deprecated) 608
retain method

of Collection 519
retainAll method 521
@Retention annotation 717, 721
return keyword 208, 777

in finally blocks 420
in lambda expressions 356
not allowed in switch expressions 104

Return types 229
covariant 472
documentation comments for 208
for overridden methods 470

Return values 135
reverse method

of Collections 582
reversed, reverseOrder methods (Comparator) 375, 576,

578
rotate method

of Collections 582
round method

of Math 52
RoundEnvironment interface 730
RoundingMode enumeration 110
rt.jar file

no longer present 774
run method

of Thread 601, 604
runAfterXxx methods (CompletableFuture) 690
runFinalizersOnExit method 182
Runnable interface 370, 599, 605

lambda expressions and 358

806 Index

run method 369, 605
Runtime class

adding shutdown hooks at 182
analyzing objects at 311
creating classes at 396
exec method 702
setting the size of an array at 257
type identification at 235, 297, 485

Runtime image file 774
RuntimeException class 406, 426, 429

S
S, s conversion characters 80, 81
@SafeVarargs annotation 487, 721, 722
Scala programming language 340
Scanner class 76, 83, 85

hasNext method 78
hasNextXxx methods 79
next method 78
nextXxx methods 76, 78

sealed keyword 283, 337, 777
search, searchXxx methods (ConcurrentHashMap) 679, 681
Security class 4, 14
@see annotation 210, 211
SequencedCollection interface

methods of 546
@Serial annotation 720, 722
Serialization 560
Service loaders 393, 769
ServiceLoader class 393, 395, 769

iterator, load methods 395
stream method 394, 395

ServiceLoader.Provider interface 395
ServiceLoader.Provider interface, methods of 394, 395
Services 393
ServletException 417
Servlets 417
set method

add, equals, hashCode, methods of 524
copyOf method 565, 570
of Array 320
of ArrayList 260, 264
of BitSet 594
of Field 316
of List 523, 536
of ListIterator 531, 536
of method 562, 570
of ThreadLocal 632
of Vector 658

setAccessible method 312, 316
setBoolean method 320
setByte, setChar methods (Array) 320
setClassAssertionStatus method 436
setDaemon method 613
setDefaultAssertionStatus method 436
setDefaultUncaughtExceptionHandler method 454, 614,

615
setDouble method 320

setFilter method
of Handler 450

setFloat method 320
setFormatter method 450
setInt method 320
setLabelTable method 472
setLevel method

of Handler 450
setLong method 320
setOut method 159
setPackageAssertionStatus method 436
setPriority method 616
setProperty method 440

of Properties 590
Sets 539

concurrent 674
intersecting 583
mutating elements of 540
subranges of 567
thread-safe 682
unmodifiable 570
with given elements 562

setShort method 320
setTime method 231
setUncaughtExceptionHandler method 615
setValue method 556
Shallow copies 347, 350
Shell

redirection syntax of 85
scripts for, generating 733
scripts in 199

Shift operators 57
short type 36, 777

converting from short 265
hashCode method 250

showMessageDialog method 344
shuffle method

of Collections 577, 578
Shuffling 577
shutdown method

of ExecutorService 623, 624
Shutdown hooks 182
shutdownNow method 623
Sieve of Eratosthenes benchmark 594, 597
signal method

of Condition 646, 649, 650
signalAll method 645, 649, 650
Signatures (of methods) 172, 229
Signatures. See Digital signatures
sin method

of Math 49
size method

of ArrayList 259, 260
of BitSet 594
of Collection 519, 520
of concurrent collections 674

sleep method
of Thread 601, 604, 610

SLF4J 437
Smart cards 3

Index 807

SOAP 748
SocketHandler class 442
sort method

of Arrays 117, 119, 329, 332, 334, 355, 359
of Collections 576
of List 578

SortedMap interface 524
comparator, first/lastKey methods 552
headMap, subMap, tailMap methods 567, 573

SortedSet interface 524
comparator, first, last methods 545
headSet, subSet, tailSet methods 567, 573

Sorting
algorithms for 117, 576
arrays 117, 332
assertions for 434
order of 576
people, by name 374
strings by length 345, 354, 356

Source code, generating 721, 722, 731
Source files 199

editing in Eclipse 27
installing 18

Space. See Whitespace
Special characters 40
Split packages 758
sqrt method

of BigInteger 110
of Math 49, 321, 322

src.zip file 18
Stack class 511, 586, 593

methods of 593
Stack trace 423, 649

no displaying to users 431
StackFrame

getXxx methods 426
isNativeMethod method 427
toString method 424, 427

Stacks 593
StackTraceElement class, methods of 427
StackWalker class 423

forEach method 426
getInstance method 423, 426
walk method 423, 426

Standard Edition 10, 16
Standard Java library

companion classes in 338
online API documentation for 66, 68, 206, 214

Standard Template Library (STL) 511, 516
start method

of ProcessBuilder 704, 708
of Thread 601, 604, 605
of Timer 345

Starting directory, for a launched program 84
startInstant method

of ProcessHandle.Info 710
startPipeline method 704, 708
startsWith method 67
Statements 34

conditional 86

in output 60
static keyword 46, 157, 768, 777

for fields in interfaces 336
for main method 33, 34

Static binding 229
Static constants 158

documentation comments for 209
Static fields 157

accessing, in static methods 159
importing 191
initializing 178
no type variables in 492

Static imports 191
Static methods 159

accessing static fields in 159
adding to interfaces 338
importing 191
no type variables in 492

Static nested classes 376, 389
Static variables 158
stop method

of Thread (deprecated) 608, 609
of Timer 345

store method
of Properties 588, 590

stream method
of BitSet 594
of Collection 340
of ServiceLoader 394, 395

Stream interface, toArray method 366
strictfp keyword 777
StrictMath class 49, 50
String class 59

charAt method 62, 67
compareTo method 67
endsWith method 67
equals, equalsIgnoreCase methods 65, 67
format, formatted, formatTo methods 82
hashCode method 246, 537
immutability of 63, 156, 231
implementing CharSequence 338
indexOf method 67, 172
isBlank, isEmpty methods 67
join method 68
lastIndexOf method 67
length method 62, 66, 67
repeat method 61, 68
replace method 67
startsWith method 67
strip method 68
stripLeading/Trailing methods 68
substring method 63, 68, 566
toLowerCase, toUpperCase methods 68
transform method 373
trim method 68

StringBuffer class 73
StringBuilder class 70

append method 71, 73
appendCodePoint method 73
delete method 73

808 Index

implementing CharSequence 338
insert method 73
length method 73
toString method 72, 73

stringPropertyNames method 590
Strings 59

building 70
code points/code units of 62
comparing 345
concatenating 60

with objects 251, 252
converting to numbers 268
empty 66, 67
equality of 65
formatting output for 79
immutability of 63
length of 63, 66
null 66
shared, in compiler 64, 65
sorting by length 345, 354, 356
spanning multiple lines 73
substrings of 63
using ". . ." for 35

strip method
of String 68

stripLeading/Trailing methods (String) 68
Strongly typed languages 36, 331
Subclasses 217

adding fields/methods to 221
anonymous 387, 460
cloning 351
comparing objects from 335
constructors for 221
defining 218
forbidding 282
inheriting annotations 721
method visibility in 230
no access to private fields of superclass 239
non-sealed 286
overriding superclass methods in 221

subList method (List) 566, 572
subMap method

of NavigableMap 573
of SortedMap 567, 573

submit method
of ExecutorCompletionService 630
of ExecutorService 622, 624

Subranges 566
subSet method

of NavigableSet 567, 573
of SortedSet 567, 573

Substitution principle 226
substring method

of String 63, 68, 566
subtract method

of BigDecimal 110
of BigInteger 110

subtractExact method 51
Subtraction 48
sum method

of LongAdder 663
Sun Microsystems 1, 4, 10, 13

HotJava browser 9
super keyword 220, 479, 778

in method references 365
vs. this 221

Superclass wins rule 340
Superclasses 217

accessing private fields of 220
annotating 715
common fields and methods in 273, 324
overriding methods of 246
throws specifiers in 409, 414

Supertype bounds 478
Supplier interface 370
supportsNormalTermination method 709
@SuppressWarnings annotation 102, 265, 473, 487, 493,

721, 722, 723
Surrogates area (Unicode) 42
suspend method

of Thread (deprecated) 608
swap method

of Collections 582
Swing 695
SwingWorker class 695

doInBackground method 696, 697, 701
execute method 697, 702
getState method 702
process, publish methods 696, 698, 702

switch keyword 55, 99, 778
enumerated constants in 56
throwing exceptions in 103
value of 56
with fallthrough 102, 103
with pattern matching 284

Synchronization 635
condition objects for 644
final fields and 661
in Vector 537
lock objects for 640
monitor concept for 659
race conditions in 636, 640, 662
volatile fields and 660

Synchronization wrappers 684
synchronized keyword 640, 652, 659, 778
Synchronized blocks 657
Synchronized views 569
synchronizedCollection methods (Collections) 569, 571,

685
System class

console method 79
exit method 34
getLogger method 437, 439
getProperties method 590, 591
getProperty method 84, 590, 591
identityHashCode method 560, 562
runFinalizersOnExit method 182
setOut method 159
setProperty method 440

System.err 441, 454

Index 809

System.in 76
System.Logger interface 437

getName method 450
isLoggable method 450
log method 437, 450

System.Logger.Level enumeration 438
System.out 35, 158, 436, 454

print method 79
printf method 79, 82, 270
println method 76

T
T, t conversion characters 80
Tab completion 28
Tabs, in text blocks 75
Tagging interfaces 350, 469, 523
tailMap method

of NavigableMap 573
of SortedMap 567, 573

tailSet method
of NavigableSet 567, 573
of SortedSet 567, 573

take method
of BlockingQueue 668, 669, 673
of ExecutorCompletionService 630

takeFirst/Last methods (BlockingDeque) 674
tan method

of Math 49
tar command 200
@Target annotation 717, 718, 721
Tasks

asynchronously running 618
controlling groups of 625
decoupling from mechanism of running 601
long-running 694
multiple 599
work stealing for 634

Template code bloat 469
Terminal window 21
@Test annotation 712, 717
Text blocks 73
thenAccept, thenAcceptBoth, thenCombine methods

(CompletableFuture) 689, 690
thenApply, thenApplyAsync methods

(CompletableFuture) 688, 689
thenComparing method 374
thenCompose method 689
thenRun method 689
this keyword 151, 175, 778

annotating 716
in first statement of constructor 176
in inner classes 380
in lambda expressions 369
in method references 365
vs. super 221

Thread class 604, 606, 608, 613, 615, 616
currentThread method 609
extending 601

get/setUncaughtExceptionHandler methods 615
getDefaultUncaughtExceptionHandler method 615
getState method 608
interrupt, isInterrupted methods 609
interrupted method 611, 613
join method 606, 608
methods with timeout 606
resume method 608
run method 601, 604
setDaemon method 613
setDefaultUncaughtExceptionHandler method 454, 614,
615
setPriority method 616
sleep method 601, 604, 610
start method 601, 604, 605, 606
stop method (deprecated) 608, 609
suspend method (deprecated) 608
yield method 606

Thread dump 650
Thread groups 615
Thread pools 621
Thread-safe collections 667

callables and futures 618
concurrent 674
copy on write arrays 682
synchronization wrappers 684

Thread.UncaughtExceptionHandler interface 614, 615
uncaughtException method 615

ThreadGroup class 615
uncaughtException method 615

ThreadLocal class 632
ThreadLocal class, methods of 632
ThreadLocalRandom class, current method 667
ThreadPoolExecutor class 621
Threads

accessing collections from 569, 667
blocked 606, 610
condition objects for 644
daemon 613
executing code in 369
idle 632
interrupting 609
listing all 650
locking 657
new 605
preemptive vs. cooperative scheduling for 605
priorities of 615
producer/customer 668
runnable 605
states of 605
synchronizing 635
terminated 601, 608, 609
thread-local variables in 666
timed waiting 606
unblocking 646
uncaught exceptions in 614
vs. processes 599
waiting 606, 645
work stealing for 634
worker 694

810 Index

throw keyword 409, 778
Throwable class 405, 429

add/getSuppressed methods 423, 425
get/initCause methods 425
getMessage method 411
getStackTrace method 424, 425
printStackTrace method 300, 423, 454
toString method 411

throws keyword 208, 301, 407, 778
for main method 84

Time measurement vs. calendars 137
Timed waiting threads 606
TimeoutException class 618, 690
Timer class 342, 354

start, stop methods 345
to keyword 778
toArray method

of ArrayList 491
of Collection 262, 519, 521, 584
of Stream 366

toHandle method 706, 709
toLowerCase method 68
Toolkit class

beep method 345
getDefaultToolkit method 345

toString method
adding to all classes 253
Formattable and 81
of Annotation 720
of Arrays 114, 119
of Date 133
of Enum 279, 281
of Integer 269
of Modifier 304, 311
of Object 250, 342
of proxy classes 401
of records 184, 253
of StackFrame 424, 427
of StackTraceElement 427
of StringBuilder 72, 73
of Throwable 411
redeclaring 358
working with any class 313

Total ordering 543
totalCpuDuration method

of ProcessHandle.Info 710
toUnsignedInt method 38
toUpperCase method 68
TraceHandler 397
TransferQueue interface 670

transfer, tryTransfer methods 674
transform method 373

of String 373
transient keyword 778
transitive keyword 767, 778
Tree maps 549
Tree sets 542

red-black 542
total ordering of 543
vs. priority queues 547

TreeMap class 524, 549, 552
as a concrete collection type 525
vs. HashMap 549

TreeSet class 524, 542
as a concrete collection type 525

Trigonometric functions 49
trim method

of String 68
trimToSize method 260
Troubleshooting. See Debugging
true literal 778
Truncated computations 49
try keyword 778
try-with-resources statement 421

effectively final variables in 422
no locks with 641

try/catch 412, 418
generics and 492
wrapping entire task in try block 428

try/finally 418
tryLock method 606
trySetAccessible method 316
Two-dimensional arrays 119, 124
type method 500, 501

of ServiceLoader.Provider 394, 395
Type bounds

annotating 715
Type erasure 468, 485

clashes after 495
Type parameters 257

annotating 713
converting to raw types 475
not for arrays 475, 486
not instantiated with primitive types 485
vs. inheritance 459

Type variables
bounds for 465
common names of 462
in exceptions 492
in static fields or methods 492
matching in generic methods 499
no instantiating for 489
replacing with bound types 468

TypeElement interface 731
Types. See Data types
TypeVariable interface 500, 501

getBounds, getName methods 508

U
UCSD Pascal system 5
UML (Unified Modeling Language) notation 131
UnaryOperator interface 370
uncaughtException method 615
Unchecked exceptions 300, 406, 408

applicability of 429
Unequality operator 54
Unicode 5, 39, 43, 59
Unit testing 161

Index 811

Unit tests 711
University of Illinois 9
UNIX 197, 199
unlock method

of Lock 641, 643
Unmodifiable copies 565, 570
Unmodifiable views 565
unmodifiableCollection methods (Collections) 565, 566,

571
Unnamed modules 312
Unnamed packages 192, 195, 214, 433
UnsupportedOperationException class 556, 564, 566, 569,

571
updateAndGet method 663
user method

of ProcessHandle.Info 710
User input 404
User Interface. See Graphical User Interface
User-defined types 267
uses keyword 770, 771, 778
“Uses–a” relationship 130
UTC (Coordinated Universal Time) 136
UTF-8 83
Utility classes/methods 338, 340

V
valueOf method

of BigInteger 107, 110
of Enum 279, 281
of Integer 269

values method
of Map 554, 556

var keyword 148, 357, 386, 778
diamond syntax and 258

Varargs methods 270
passing generic types to 487

Varargs parameters
safety of 721, 722

VarHandle class 313, 761
Variable handles 313, 761
VariableElement interface 730
Variables 43

accessing
from outer methods 383
in lambda expressions 366

annotating 473
copying 347
declarations of 43, 236
deprecated 720, 721
effectively final 368, 422
initializing 45, 215
local 148, 238, 473
mutating in lambda expressions 368
names of 43
package scope of 195
printing/logging values of 452
static 158
thread-local 666

Vector class 511, 586, 587, 658, 659, 684
for dynamic arrays 258
get, set methods 658
synchronization in 537

@version annotation 212, 214
Views 562

bulk operations for 583
checked 568
restricted 569
subranges of 566
synchronized 569
unmodifiable 565

Visual Basic
built-in date type in 133
syntax of 2

Visual Studio 19
void keyword 33, 34, 778
volatile keyword 660, 662, 778
Volatile fields 660
von der Ahé, Peter 465

W
wait method

of Object 606, 653, 657
Wait sets 645
waitFor method 705, 709
walk method

of StackWalker 423, 426
Warning messages 721
Warning messages, suppressing 722
Warnings

fallthrough behavior and 102
generic 265, 473, 487, 493
suppressing 487, 493
when using reflection 312

Weak hash maps 557
Weak references 557
WeakHashMap class 557, 560

as a concrete collection type 525
Weakly consistent iterators 675
WeakReference class 557
Web pages

dynamic 7
extracting links from 688
reading 695

whenComplete method 689
while keyword 90, 778
Whitespace

escape sequence for 40, 75
in text blocks 75
irrelevant to compiler 33
leading/trailing 68, 75

Wildcard types 461, 477
annotating 715
arrays of 487
capturing 482
supertype bounds for 478
unbounded 482

812 Index

WildcardType interface 500, 501
getLowerBounds, getUpperBounds methods 508

Windows operating system
executing JARs in 203
IDEs for 24
JDK in 15
paths in 197, 199
thread priority levels in 616

Windows. See Dialogs
Wirth, Niklaus 5, 9, 127
with keyword 779
withInitial method 667
Work stealing 634
Worker threads 694
Working directory, for a process 702
Wrappers 265

class constructors for 267
equality testing for 266
immutability of 265
locks and 267, 658

X
X, x conversion characters 80
XML 10, 12
XML descriptors, generating 733
XML/JSON binding 760
xor method (BitSet) 594

Y
Yasson 761
yield keyword 103, 779
yield method (Thread) 606

Z
ZIP archives

for JMOD files 774
ZIP format 197, 200

Index 813

	Cover
	Title Page
	Copyright Page
	Table of Contents
	Preface
	To the Reader
	A Tour of This Book
	Conventions
	Sample Code

	Acknowledgments
	6. Interfaces, Lambda Expressions, and Inner Classes
	6.1. Interfaces
	6.1.1. The Interface Concept
	6.1.2. Properties of Interfaces
	6.1.3. Interfaces and Abstract Classes
	6.1.4. Static and Private Methods
	6.1.5. Default Methods
	6.1.6. Resolving Default Method Conflicts
	6.1.7. Interfaces and Callbacks
	6.1.8. The Comparator Interface
	6.1.9. Object Cloning

	6.2. Lambda Expressions
	6.2.1. Why Lambdas?
	6.2.2. The Syntax of Lambda Expressions
	6.2.3. Functional Interfaces
	6.2.4. Function Types
	6.2.5. Method References
	6.2.6. Constructor References
	6.2.7. Variable Scope
	6.2.8. Processing Lambda Expressions
	6.2.9. Creating Comparators

	6.3. Inner Classes
	6.3.1. Use of an Inner Class to Access Object State
	6.3.2. Special Syntax Rules for Inner Classes
	6.3.3. Are Inner Classes Useful? Actually Necessary? Secure?
	6.3.4. Local Inner Classes
	6.3.5. Accessing Variables from Outer Methods
	6.3.6. Anonymous Inner Classes
	6.3.7. Static Classes

	6.4. Service Loaders
	6.5. Proxies
	6.5.1. When to Use Proxies
	6.5.2. Creating Proxy Objects
	6.5.3. Properties of Proxy Classes

	Index

