
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780135181966
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780135181966
https://plusone.google.com/share?url=http://www.informit.com/title/9780135181966
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780135181966
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780135181966/Free-Sample-Chapter

The Object-Oriented
Thought Process

Fifth Edition

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi

Mexico City • São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

The Object-Oriented
Thought Process

Fifth Edition

Matt Weisfeld

Editor-in-Chief

Mark Taub

Development Editor

Mark Taber

Managing Editor

Sandra Schroeder

Senior Project Editor

Tonya Simpson

Indexer

Erika Millen

Proofreader

Abigail Manheim

Technical Reviewer

John Upchurch

Editorial Assistant

Cindy Teeters

Cover Designer

Chuti Prasertsith

Compositor

codeMantra

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2019930825

Copyright © 2019 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education
Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-518196-6

ISBN-10: 0-13-518196-8

1 19

Microsoft and/or its respective suppliers make no representations about the suitability
of the information contained in the documents and related graphics published as part
of the services for any purpose. All such documents and related graphics are provided
“as is” without warranty of any kind. Microsoft and/ or its respective suppliers hereby
disclaim all warranties and conditions with regard to this information, including all
warranties and conditions of merchantability, whether express, implied or statutory, fitness
for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its
respective sup-pliers be liable for any special, indirect or consequential damages or any
damages whatsoever resulting from loss of use, data or profits, whether in an action of
contract, negligence or other tortious action, arising out of or in connection with the use or
performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies
or typographical errors. Changes are periodically added to the information herein. Microsoft
and/or its respective sup-pliers may make improvements and/or changes in the product(s)
and/or the program(s) described herein at any time. Partial screenshots may be viewed in
full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in
the U.S.A. and other countries. Screenshots and icons reprinted with permission from
the Microsoft Corporation. This book is not sponsored or endorsed by or affiliated
with the Microsoft Corporation.

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/



To Sharon, Stacy, Stephanie, and Paulo



Contents at a Glance

Introduction 1

 1 Introduction to Object-Oriented Concepts 5

 2 How to Think in Terms of Objects 33

 3 More Object-Oriented Concepts 47

 4 The Anatomy of a Class 67

 5 Class Design Guidelines 77

 6 Designing with Objects 91

 7 Mastering Inheritance and Composition 105

 8 Frameworks and Reuse: Designing with Interfaces and
Abstract Classes 125

 9 Building Objects and Object-Oriented Design 147

 10 Design Patterns 161

 11 Avoiding Dependencies and Highly Coupled Classes 175

 12 The SOLID Principles of Object-Oriented Design 187

 Index 205

Table of Contents

Introduction 1

This Book’s Scope 1

What’s New in the Fifth Edition 2

The Intended Audience 3

The Book’s Approach 4

Source Code Used in This Book 4

 1 Introduction to Object-Oriented Concepts 5

The Fundamental Concepts 5

Objects and Legacy Systems 6

Procedural Versus OO Programming 7

Moving from Procedural to Object-Oriented Development 11

Procedural Programming 11

OO Programming 11

What Exactly Is an Object? 12

Object Data 12

Object Behaviors 13

What Exactly Is a Class? 16

Creating Objects 17

Attributes 18

Methods 19

Messages 19

Using Class Diagrams as a Visual Tool 19

Encapsulation and Data Hiding 20

Interfaces 20

Implementations 21

A Real-World Example of the Interface/Implementation Paradigm 21

A Model of the Interface/Implementation Paradigm 22

Inheritance 23

Superclasses and Subclasses 24

Abstraction 25

Is-a Relationships 26

Polymorphism 27

Composition 30

Abstraction 30

Has-a Relationships 31

Conclusion 31

 2 How to Think in Terms of Objects 33

Knowing the Difference Between the Interface and the
Implementation 34

The Interface 36

The Implementation 36

An Interface/Implementation Example 36

Using Abstract Thinking When Designing Interfaces 41

Providing the Absolute Minimal User Interface Possible 42

Determining the Users 43

Object Behavior 44

Environmental Constraints 44

Identifying the Public Interfaces 44

Identifying the Implementation 45

Conclusion 46

References 46

 3 More Object-Oriented Concepts 47

Constructors 47

When Is a Constructor Called? 48

What’s Inside a Constructor? 48

The Default Constructor 48

Using Multiple Constructors 49

The Design of Constructors 53

Error Handling 54

Ignoring the Problem 54

Checking for Problems and Aborting the Application 54

Checking for Problems and Attempting to Recover 54

Throwing an Exception 55

The Importance of Scope 57

Local Attributes 58

Object Attributes 59

Class Attributes 61

Operator Overloading 62

viii Contents

ixContents

Multiple Inheritance 63

Object Operations 63

Conclusion 65

References 65

 4 The Anatomy of a Class 67

The Name of the Class 67

Comments 69

Attributes 69

Constructors 71

Accessors 73

Public Interface Methods 75

Private Implementation Methods 76

Conclusion 76

References 76

 5 Class Design Guidelines 77

Modeling Real-World Systems 77

Identifying the Public Interfaces 78

The Minimum Public Interface 78

Hiding the Implementation 79

Designing Robust Constructors (and Perhaps Destructors) 80

Designing Error Handling into a Class 81

Documenting a Class and Using Comments 81

Building Objects with the Intent to Cooperate 82

Designing with Reuse in Mind 82

Designing with Extensibility in Mind 83

Making Names Descriptive 83

Abstracting Out Nonportable Code 84

Providing a Way to Copy and Compare Objects 84

Keeping the Scope as Small as Possible 84

Designing with Maintainability in Mind 86

Using Iteration in the Development Process 86

Testing the Interface 86

Using Object Persistence 88

Serializing and Marshaling Objects 89

Conclusion 90

References 90

x Contents

 6 Designing with Objects 91

Design Guidelines 91

Performing the Proper Analysis 95

Developing a Statement of Work 95

Gathering the Requirements 95

Developing a System Prototype 96

Identifying the Classes 96

Determining the Responsibilities of Each Class 96

Determining How the Classes Collaborate with Each Other 96

Creating a Class Model to Describe the System 96

Prototyping the User Interface in Code 97

Object Wrappers 97

Structured Code 98

Wrapping Structured Code 99

Wrapping Nonportable Code 101

Wrapping Existing Classes 101

Conclusion 102

References 103

 7 Mastering Inheritance and Composition 105

Reusing Objects 105

Inheritance 106

Generalization and Specialization 109

Design Decisions 110

Composition 112

Representing Composition with UML 113

Why Encapsulation Is Fundamental to OO 115

How Inheritance Weakens Encapsulation 115

A Detailed Example of Polymorphism 117

Object Responsibility 118

Abstract Classes, Virtual Methods, and Protocols 121

Conclusion 123

References 123

 8 Frameworks and Reuse: Designing with Interfaces and Abstract

Classes 125

Code: To Reuse or Not to Reuse? 125

What Is a Framework? 126

xiContents

What Is a Contract? 128

Abstract Classes 128

Interfaces 131

Tying It All Together 133

The Compiler Proof 135

Making a Contract 136

System Plug-in Points 138

An E-Business Example 139

An E-Business Problem 139

The Non-Reuse Approach 139

An E-Business Solution 141

The UML Object Model 142

Conclusion 146

References 146

 9 Building Objects and Object-Oriented Design 147

Composition Relationships 148

Building in Phases 149

Types of Composition 151

Aggregations 151

Associations 152

Using Associations and Aggregations Together 153

Avoiding Dependencies 154

Cardinality 155

Multiple Object Associations 157

Optional Associations 158

Tying It All Together: An Example 159

Conclusion 160

References 160

 10 Design Patterns 161

Why Design Patterns? 162

Smalltalk’s Model/View/Controller 163

Types of Design Patterns 164

Creational Patterns 165

Structural Patterns 169

Behavioral Patterns 171

xii Contents

Antipatterns 173

Conclusion 174

References 174

 11 Avoiding Dependencies and Highly Coupled Classes 175

Composition versus Inheritance and Dependency Injection 177

1) Inheritance 177

2) Composition 179

Dependency Injection 182

Conclusion 185

References 185

 12 The SOLID Principles of Object-Oriented Design 187

The SOLID Principles of Object-Oriented Design 188

1) SRP: Single Responsibility Principle 188

2) OCP: Open/Close Principle 192

3) LSP: Liskov Substitution Principle 194

4) IPS: Interface Segregation Principle 197

5) DIP: Dependency Inversion Principle 198

Conclusion 204

References 204

 Index 205

Acknowledgments

As with the first four editions, this book required the combined efforts of many people. I would
like to take the time to acknowledge as many of these people as possible, for without them, this
book would never have happened.

First and foremost, I would like to thank my wife Sharon for all her help. Not only did she provide
support and encouragement throughout this lengthy process, she is also the first line editor for all
my writing.

I would also like to thank my mom and the rest of my family for their continued support.

It is hard to believe that the work on the first edition of this book began in 1998. For all these
years, I have thoroughly enjoyed working with everyone at Pearson—on all five editions. Working
with editors Mark Taber and Tonya Simpson on this edition has been a pleasure.

A special thanks goes to Jon Upchurch for his expertise with much of the code as well as the
technical editing of the manuscript. Jon’s insights into an amazing range of technical topics have
been of great help to me.

Finally, thanks to my daughters, Stacy and Stephanie, and my cat, Paulo, for always keeping me
on my toes.

About the Author

Matt Weisfeld is a college professor, software developer, and author based in Cleveland, Ohio.
Prior to teaching college full time, he spent 20 years in the information technology industry as
a software developer, entrepreneur, and adjunct professor. Weisfeld holds an MS in computer
science and an MBA. Besides several editions of The Object-Oriented Thought Process, Matt has
authored two other software development books and published many articles in magazines and
journals, such as informit.com, developer.com, Dr. Dobb’s Journal, The C/C++ Users Journal, Software
Development Magazine, Java Report, and the international journal Project Management.

http://informit.com
http://developer.com

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d like
to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did or didn’t like
about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book.

When you write, please be sure to include this book’s title and author as well as your name and
email address. We will carefully review your comments and share them with the author and
editors who worked on the book.

Email: community@informit.com

Reader Services

Visit our website and register this book at www.informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

mailto:community@informit.com
http://www.informit.com/register

Figure Credits

Cover image © SOMRERK WITTHAYANANT/Shutterstock.

Figure 8.1, screenshot of Microsoft word copyright © Microsoft 2019.

Figure 8.2, screenshot of API documentation copyright © 1993, 2018, Oracle.

2
How to Think in Terms

of Objects

In Chapter 1, “Introduction to Object-Oriented Concepts,” you learned the fundamental object-
oriented (OO) concepts. The rest of the book delves more deeply into these concepts and intro-
duces several others. Many factors go into a good design, whether it is an OO design or not. The
fundamental unit of OO design is the class. The desired end result of OO design is a robust and
functional object model—in other words, a complete system.

As with most things in life, there is no single right or wrong way to approach a problem. There
are usually many ways to tackle the same problem. So when attempting to design an OO solu-
tion, don’t get hung up in trying to do a perfect design the first time (there will always be room
for improvement). What you really need to do is brainstorm and let your thought process go in
different directions. Do not try to conform to any standards or conventions when trying to solve
a problem because the whole idea is to be creative.

In fact, at the start of the process, don’t even begin to consider a specific programming language.
The first order of business is to identify and solve business problems. Work on the conceptual
analysis and design first. Think about specific technologies only when they are fundamental to the
business problem. For example, you can’t design a wireless network without wireless technology.
However, it is often the case that you will have more than one software solution to consider.

Thus, before you start to design a system, or even a class, think the problem through and have
some fun! In this chapter we explore the fine art and science of OO thinking.

Any fundamental change in thinking is not trivial. As a case in point, a lot has been mentioned
about the move from structured to OO development. As was mentioned earlier, one side effect
of this debate is the misconception that structured and object-oriented development are mutu-
ally exclusive. This is not the case. As we know from our discussion on wrappers, structured and
object-oriented development coexist. In fact, when you write an OO application, you are using
structured constructs everywhere. I have never seen a program, OO or otherwise, that does not
use loops, if-statements, and so on. Yet making the switch to OO design does require a different
type of investment.

34 Chapter 2 How to Think in Terms of Objects

Changing from FORTRAN to COBOL, or even to C, requires you to learn a new language;
however, making the move from COBOL to C++, C# .NET, Visual Basic .NET, Objective-C, Swift, or
Java requires you to learn a new thought process. This is where the overused phrase OO paradigm
rears its ugly head. When moving to an OO language, you must first go through the investment
of learning OO concepts and the corresponding thought process. If this paradigm shift does not
take place, one of two things will happen: Either the project will not truly be OO in nature (for
example, it will use C++ without using OO constructs) or the project will be a complete object-
disoriented mess.

Three important things you can do to develop a good sense of the OO thought process are
covered in this chapter:

 Knowing the difference between the interface and implementation

 Thinking more abstractly

 Giving the user the minimal interface possible

We have already touched on some of these concepts in Chapter 1, “Introduction to
 Object-Oriented Concepts,” and we now go into much more detail.

Knowing the Difference Between the Interface

and the Implementation

As we saw in Chapter 1, one of the keys to building a strong OO design is to understand the differ-
ence between the interface and the implementation. Thus, when designing a class, what the user
needs to know and, perhaps of more importance, what the user does not need to know are of vital
importance. The data hiding mechanism inherent with encapsulation is the means by which
nonessential data is hidden from the user.

Caution

Do not confuse the concept of the interface with terms like graphical user interface (GUI).
Although a GUI is, as its name implies, an interface, the term interfaces, as used here, is more
general in nature and is not restricted to a graphical interface.

Remember the toaster example in Chapter 1? The toaster, or any appliance for that matter, is
plugged into the interface, which is the electrical outlet—see Figure 2.1. All appliances gain
access to the required electricity by complying with the correct interface: the electrical outlet.
The toaster doesn’t need to know anything about the implementation or how the electricity is
produced. For all the toaster cares, a coal plant or a nuclear plant could produce the electricity—
the appliance does not care which, as long as the interface works as specified, correctly and safely.

35Knowing the Difference Between the Interface and the Implementation

Requesting
Object

Interface
Implementation

Figure 2.1 Power plant revisited.

As another example, consider an automobile. The interface between you and the car includes
components such as the steering wheel, gas pedal, brake, and ignition switch. For most people,
aesthetic issues aside, the main concern when driving a car is that the car starts, accelerates, stops,
steers, and so on. The implementation, basically the stuff that you don’t see, is of little concern
to the average driver. In fact, most people would not even be able to identify certain components,
such as the catalytic converter and gasket. However, any driver would recognize and know how to
use the steering wheel because this is a common interface. By installing a standard steering wheel
in the car, manufacturers are assured that the people in their target market will be able to use the
system.

If, however, a manufacturer decided to install a joystick in place of the steering wheel, most
drivers would balk at this, and the automobile might not be a big seller (except possibly gamers).
On the other hand, as long as the performance and aesthetics didn’t change, the average driver
would not notice whether the manufacturer changed the engine (part of the implementation) of
the automobile.

It must be stressed that the interchangeable engines must be identical in every way—as far as the
interface goes. Replacing a four-cylinder engine with an eight-cylinder engine would change the
rules and likely would not work with other components that interface with the engine, just as
changing the current from AC to DC would affect the rules in the power plant example.

The engine is part of the implementation, and the steering wheel is part of the interface.
A change in the implementation should have no impact on the driver, whereas a change to
the interface might. The driver would notice an aesthetic change to the steering wheel, even if
it performs in a similar manner. It must be stressed that a change to the engine that is noticeable
by the driver breaks this rule. For example, a change that would result in noticeable loss of power
is actually impacting the interface.

What Users See

When we talk about users in this chapter, we primarily mean designers and developers—not
necessarily end users. Thus, when we talk about interfaces in this context, we are talking about
class interfaces, not GUIs.

Properly constructed classes are designed in two parts—the interface and the implementation.

36 Chapter 2 How to Think in Terms of Objects

The Interface

The services presented to an end user constitute the interface. In the best case, only the services
the end user needs are presented. Of course, which services the user needs might be a matter of
opinion. If you put 10 people in a room and ask each of them to do an independent design, you
might receive 10 totally different designs—and there is nothing wrong with that. However, as
a general rule, the interface to a class should contain only what the user needs to know. In the
toaster example, the user needs to know only that the toaster must be plugged into the interface
(which in this case is the electrical outlet) and how to operate the toaster itself.

Identifying the User

Perhaps the most important consideration when designing a class is identifying the audience,
or users, of the class.

The Implementation

The implementation details are hidden from the user. One goal regarding the implementation
should be kept in mind: A change to the implementation should not require a change to the user’s
code. This might seem a bit confusing, but this goal is at the heart of the design issue.

Good Interfaces

If the interface is designed properly, a change to the implementation should not require a
change to the user’s code.

Remember that the interface includes the syntax to call a method and return a value. If this inter-
face does not change, the user does not care whether the implementation is changed. As long as
the programmer can use the same syntax and retrieve the same value, that’s all that matters.

We see this all the time when using a cell phone. To make a call, the interface is simple—we either
dial a number or select an entry in the contact list. Yet, if the provider updates the software,
it doesn’t change the way you make a call. The interface stays the same regardless of how the
implementation changes. However, I can think of one situation when the provider did change
the interface—when my area code changed. Fundamental interface changes, like an area code
change, do require the users to change behavior. Businesses try to keep these types of changes to a
minimum, for some customers will not like the change or perhaps not put up with the hassle.

Recall that in the toaster example, although the interface is always the electric outlet, the imple-
mentation could change from a coal power plant to a nuclear power plant without affecting the
toaster. One very important caveat should be made here: The coal or nuclear plant must also
conform to the interface specification. If the coal plant produces AC power but the nuclear plant
produces DC power, a problem exists. The bottom line is that both the user and the implementa-
tion must conform to the interface specification.

An Interface/Implementation Example

Let’s create a simple (if not very functional) database reader class. We’ll write some Java code that
will retrieve records from the database. As we’ve discussed, knowing your end users is always the

37Knowing the Difference Between the Interface and the Implementation

most important issue when doing any kind of design. You should do some analysis of the situa-
tion and conduct interviews with end users, and then list the requirements for the project. The
following are some requirements we might want to use for the database reader:

 We must be able to open a connection to the database.

 We must be able to close the connection to the database.

 We must be able to position the cursor on the first record in the database.

 We must be able to position the cursor on the last record in the database.

 We must be able to find the number of records in the database.

 We must be able to determine whether there are more records in the database (that is, if we
are at the end).

 We must be able to position the cursor at a specific record by supplying the key.

 We must be able to retrieve a record by supplying a key.

 We must be able to get the next record, based on the position of the cursor.

With these requirements in mind, we can make an initial attempt to design the database reader
class by creating possible interfaces for these end users.

In this case, the database reader class is intended for programmers who require use of a database.
Thus, the interface is essentially the application-programming interface (API) that the program-
mer will use. These methods are, in effect, wrappers that enclose the functionality provided by
the database system. Why would we do this? We explore this question in much greater detail later
in the chapter; the short answer is that we might need to customize some database functionality.
For example, we might need to process the objects so that we can write them to a relational
database. Writing this middleware is not trivial as far as design and coding go, but it is a real-life
example of wrapping functionality. More important, we may want to change the database engine
itself without having to change the code.

Figure 2.2 shows a class diagram representing a possible interface to the DataBaseReader class.

+open:void
+close:void
+goToFirst:void
+goToLast:void
+howManyRecords:int
+areThereMoreRecords:boolean
+positionRecord:void
+getRecord:String
+getNextRecord:String

DataBaseReader

Figure 2.2 A Unified Modeling Language class diagram for the DataBaseReader class.

38 Chapter 2 How to Think in Terms of Objects

Note that the methods in this class are all public (remember that there are plus signs next to the
names of methods that are public interfaces). Also note that only the interface is represented; the
implementation is not shown. Take a minute to determine whether this class diagram generally
satisfies the requirements outlined earlier for the project. If you find out later that the diagram
does not meet all the requirements, that’s okay; remember that OO design is an iterative process,
so you do not have to get it exactly right the first time.

Public Interface

Remember, an application programmer can access it, and thus, it is considered part of the
class interface. Do not confuse the term interface with the keyword interface used in Java
and .NET—which is discussed in later chapters.

For each of the requirements we listed, we need a corresponding method that provides the
functionality we want. Now you need to ask a few questions:

 To effectively use this class, do you, as a programmer, need to know anything else about it?

 Do you need to know how the internal database code opens the database?

 Do you need to know how the internal database code physically positions itself over a
specific record?

 Do you need to know how the internal database code determines whether any more
records are left?

On all counts the answer is a resounding no! You don’t need to know any of this information.
All you care about is that you get the proper return values and that the operations are performed
correctly. In fact, the application programmer will most likely be at least one more abstract level
away from the implementation. The application will use your classes to open the database, which
in turn will invoke the proper database API.

Minimal Interface

Although perhaps extreme, one way to determine the minimalist interface is to initially provide the
user no public interfaces. Of course, the class will be useless; however, this forces the user to
come back to you and say, “Hey, I need this functionality.” Then you can negotiate. Thus, you add
interfaces only when it is requested. Never assume that the user needs something.

Creating wrappers might seem like overkill, but there are many advantages to writing them. To
illustrate, there are many middleware products on the market today. Consider the problem of
mapping objects to a relational database. OO databases have never caught on; however, theoreti-
cally they may be perfect for OO applications. However, one small problem exists: Most compa-
nies have years of data in legacy relational database systems. How can a company embrace OO
technologies and stay on the cutting edge while retaining its data in a relational database?

First, you can convert all your legacy, relational data to a brand-new OO database. However,
anyone who has suffered the acute (and chronic) pain of any data conversion knows that this is to
be avoided at all costs. Although these conversions can take large amounts of time and effort, all
too often they never work properly.

39Knowing the Difference Between the Interface and the Implementation

Second, you can use a middleware product to seamlessly map the objects in your application code
to a relational model. This is a much better solution since relational databases are so prevalent.
Some might argue that OO databases are much more efficient for object persistence than rela-
tional databases. In fact, many development systems seamlessly provide this service.

Object Persistence

Object persistence refers to the concept of saving the state of an object so that it can be
restored and used at a later time. An object that does not persist basically dies when it goes
out of scope. For example, the state of an object can be saved in a database.

However, in the current business environment, relational-to-object mapping is a great solution.
Many companies have integrated these technologies. It is common for a company to have a
website front-end interface with data on a mainframe.

If you create a totally OO system, an OO database might be a viable (and better performing)
option; however, OO databases have not experienced anywhere near the growth that OO
languages have.

Standalone Application

Even when creating a new OO application from scratch, it might not be easy to avoid legacy
data. Even a newly created OO application is most likely not a standalone application and
might need to exchange information stored in relational databases (or any other data storage
device, for that matter).

Let’s return to the database example. Figure 2.2 shows the public interface to the class, and nothing
else. When this class is complete, it will probably contain more methods, and it will certainly
contain attributes. However, as a programmer using this class, you do not need to know anything
about these private methods and attributes. You certainly don’t need to know what the code looks
like within the public methods. You simply need to know how to interact with the interfaces.

What would the code for this public interface look like (assume that we start with a Oracle
database example)? Let’s look at the open() method:

public void open(String Name){

 /* Some application-specific processing */

 /* call the Oracle API to open the database */

 /* Some more application-specific processing */

};

In this case, you, wearing your programmer’s hat, realize that the open method requires String
as a parameter. Name, which represents a database file, is passed in, but it’s not important to
explain how Name is mapped to a specific database for this example. That’s all we need to know.
Now comes the fun stuff—what really makes interfaces so great!

40 Chapter 2 How to Think in Terms of Objects

Just to annoy our users, let’s change the database implementation. Last night we translated all the
data from an Oracle database to an SQLAnywhere database (we endured the acute and chronic
pain). It took us hours—but we did it.

Now the code looks like this:

public void open(String Name){

 /* Some application-specific processing

 /* call the SQLAnywhere API to open the database */

 /* Some more application-specific processing */

};

To our great chagrin, this morning not one user complained. This is because even though the
implementation changed, the interface did not! As far as the user is concerned, the calls are still
the same. The code change for the implementation might have required quite a bit of work (and
the module with the one-line code change would have to be rebuilt), but not one line of
application code that uses this DataBaseReader class needed to change.

Code Recompilation

Dynamically loaded classes are loaded at runtime—not statically linked into an executable file.
When using dynamically loaded classes, like Java and .NET do, no user classes would have to be
recompiled. However, in statically linked languages such as C++, a link is required to bring in the
new class.

By separating the user interface from the implementation, we can save a lot of headaches down
the road. In Figure 2.3, the database implementations are transparent to the end users, who see
only the interface.

Oracle DB2 SQLAny

Interface

User
Code

User
Code

Figure 2.3 The interface.

41Using Abstract Thinking When Designing Interfaces

Using Abstract Thinking When Designing Interfaces

One of the main advantages of OO programming is that classes can be reused. In general, reus-
able classes tend to have interfaces that are more abstract than concrete. Concrete interfaces tend
to be very specific, whereas abstract interfaces are more general. However, simply stating that a
highly abstract interface is more useful than a highly concrete interface, although often true, is
not always the case.

It is possible to write a very useful, concrete class that is not at all reusable. This happens all the
time, and nothing is wrong with it in some situations. However, we are now in the design busi-
ness and want to take advantage of what OO offers us. So our goal is to design abstract, highly
reusable classes—and to do this we will design highly abstract user interfaces. To illustrate the
difference between an abstract and a concrete interface, let’s create a taxi object. It is much more
useful to have an interface such as “drive me to the airport” than to have separate interfaces such
as “turn right,” “turn left,” “start,” “stop,” and so on, because as illustrated in Figure 2.4, all the
user wants to do is get to the airport.

Take me to the Airport

Abstract

TAXI

Figure 2.4 An abstract interface.

When you emerge from your hotel, throw your bags into the back seat of the taxi, and get in, the
cabbie will turn to you and ask, “Where do you want to go?” You reply, “Please take me to the
airport.” (This assumes, of course, that there is only one major airport in the city. In Chicago you
would have to say, “Please take me to Midway Airport” or “Please take me to O’Hare.”) You might
not even know how to get to the airport yourself, and even if you did, you wouldn’t want to have
to tell the cabbie when to turn and which direction to turn, as illustrated in Figure 2.5. How the

42 Chapter 2 How to Think in Terms of Objects

cabbie implements the actual drive is of no concern to you, the passenger. (However, the fare
might become an issue at some point, if the cabbie cheats and takes you the long way to
the airport.)

Turn Right

Not So Abstract

TAXI

Turn Left

Turn Right

Turn LeftTurn Left

Figure 2.5 A not-so-abstract interface.

Now, where does the connection between abstract and reuse come in? Ask yourself which of
these two scenarios is more reusable, the abstract or the not-so-abstract? To put it more simply,
which phrase is more reusable: “Take me to the airport,” or “Turn right, then right, then left,
then left, then left”? Obviously, the first phrase is more reusable. You can use it in any city,
whenever you get into a taxi and want to go to the airport. The second phrase will work only in
a specific case. Thus, the abstract interface “Take me to the airport” is generally the way to go for
a good, reusable OO design whose implementation would be different in Chicago, New York, or
Cleveland.

Providing the Absolute Minimal User Interface Possible

When designing a class, the general rule is to always provide the user with as little knowledge of
the inner workings of the class as possible. To accomplish this, follow these simple rules:

 Give the users only what they absolutely need. In effect, this means the class has as few
interfaces as possible. When you start designing a class, start with a minimal interface. The
design of a class is iterative, so you will soon discover that the minimal set of interfaces
might not suffice. This is fine.

43Providing the Absolute Minimal User Interface Possible

■ It is better to have to add interfaces because users really need it than to give the users
more interfaces than they need. At times it is highly problematic for the user to have
access to certain interfaces. For example, you don’t want an interface that provides salary
information to all users—only the ones who need to know.

 For the moment, let’s use a hardware example to illustrate our software example. Imagine
handing a user a PC box without a monitor or a keyboard. Obviously, the PC would be
of little use. You have just provided the user with the minimal set of interfaces to the PC.
However, this minimal set is insufficient, and it immediately becomes necessary to add
interfaces.

 Public interfaces define what the users can access. If you initially hide the entire class
from the user by making the interfaces private, when programmers start using the class,
you will be forced to make certain methods public—these methods thus become the
public interface.

 It is vital to design classes from a user’s perspective and not from an information systems
viewpoint. Too often designers of classes (not to mention any other kind of software)
design the class to make it fit into a specific technological model. Even if the designer
takes a user’s perspective, it is still probably a technician user’s perspective, and the class
is designed with an eye on getting it to work from a technology standpoint and not from
ease of use for the user.

 Make sure when you are designing a class that you go over the requirements and the
design with the people who will actually use it—not just developers (this includes
all levels of testing). The class will most likely evolve and need to be updated when a
prototype of the system is built.

Determining the Users

Let’s look again at the taxi example. We have already decided that the users are the ones who will
actually use the system. This said, the obvious question is, who are the users?

The first impulse is to say the customers. This is only about half right. Although the customers are
certainly users, the cabbie must be able to successfully provide the service to the customers. In
other words, providing an interface that would, no doubt, please the customer, such as “Take me
to the airport for free,” is not going to go over well with the cabbie. Thus, in reality, to build a real-
istic and usable interface, both the customer and the cabbie must be considered users.

In short, any object that sends a message to the taxi object is considered a user (and yes, the users
are objects, too). Figure 2.6 shows how the cabbie provides a service.

Looking Ahead

The cabbie is most likely an object as well.

44 Chapter 2 How to Think in Terms of Objects

Cabbie Customer

TAXI

Engage Service:
As long as I don't pay too much!!

Provide Service:
As long as I make a profit

Figure 2.6 Providing services.

Object Behavior

Identifying the users is only a part of the exercise. After the users are identified, you must deter-
mine the behaviors of the objects. From the viewpoint of all the users, begin identifying the
purpose of each object and what it must do to perform properly. Note that many of the initial
choices will not survive the final cut of the public interface. These choices are identified by
gathering requirements using various methods such as UML Use Cases.

Environmental Constraints

In their book Object-Oriented Design in Java, Gilbert and McCarty point out that the environment
often imposes limitations on what an object can do. In fact, environmental constraints are almost
always a factor. Computer hardware might limit software functionality. For example, a system
might not be connected to a network, or a company might use a specific type of printer. In the
taxi example, the cab cannot drive on a road if a bridge is out, even if it provides a quicker way to
the airport.

Identifying the Public Interfaces

With all the information gathered about the users, the object behaviors, and the environment,
you need to determine the public interfaces for each user object. So think about how you would
use the taxi object:

 Get into the taxi.

 Tell the cabbie where you want to go.

 Pay the cabbie.

 Give the cabbie a tip.

 Get out of the taxi.

What do you need to do to use the taxi object?

 Have a place to go.

 Hail a taxi.

 Pay the cabbie money.

45Providing the Absolute Minimal User Interface Possible

Initially, you think about how the object is used and not how it is built. You might discover that
the object needs more interfaces, such as “Put luggage in the trunk” or “Enter into a mindless
conversation with the cabbie.” Figure 2.7 provides a class diagram that lists possible methods for
the Cabbie class.

+hailTaxi:void
+enterTaxi:void
+greetCabbie:void
+specifyDestination:void
+payCabbie:void
+tipCabbie:void
+leaveTaxi:void

Cabbie

Figure 2.7 The methods in a Cabbie class.

As is always the case, nailing down the final interface is an iterative process. For each interface,
you must determine whether the interface contributes to the operation of the object. If it does
not, perhaps it is not necessary. Many OO texts recommend that each interface model only one
behavior. This returns us to the question of how abstract we want to get with the design. If we
have an interface called enterTaxi(), we certainly do not want enterTaxi() to have logic in it
to pay the cabbie. If we do this, not only is the design somewhat illogical, but there is virtually no
way that a user of the class can tell what has to be done to pay the cabbie.

Identifying the Implementation

After the public interfaces are chosen, you need to identify the implementation. After the class is
designed and all the methods required to operate the class properly are in place, the specifics of
how to get the class to work are considered.

Technically, anything that is not a public interface can be considered the implementation. This
means that the user will never see any of the methods that are considered part of the imple-
mentation, including the method’s signature (which includes the name of the method and the
parameter list), as well as the actual code inside the method.

It is possible to have a private method that is used internally by the class. Any private method is
considered part of the implementation given that the user will never see it and thus will not have
access to it. For example, a class may have a changePassword() method; however, the same class
may have a private method that encrypts the password. This method would be hidden from the
user and called only from inside the changePassword() method.

The implementation is totally hidden from the user. The code within public methods is a part of
the implementation because the user cannot see it. (The user should see only the calling structure
of an interface—not the code inside it.)

46 Chapter 2 How to Think in Terms of Objects

This means that, theoretically, anything that is considered the implementation might change
without affecting how the user interfaces with the class. This assumes, of course, that the imple-
mentation is providing the answers the user expects.

Whereas the interface represents how the user sees the object, the implementation is really the
nuts and bolts of the object. The implementation contains the code that represents that state of
an object.

Conclusion

In this chapter, we have explored three areas that can get you started on the path to thinking in
an OO way. Remember that there is no firm list of issues pertaining to the OO thought process.
Doing things in an OO way is more of an art than a science. Try to think of your own ways to
describe OO thinking.

In Chapter 3, “More Object-Oriented Concepts,” we discuss the object life cycle: it is born,
it lives, and it dies. While it is alive, it might transition through many states. For example, a
DataBaseReader object is in one state if the database is open and another state if the database is
closed. How this is represented depends on the design of the class.

References

Fowler, Martin. 2003. UML Distilled, Third Edition. Boston, MA: Addison-Wesley Professional.

Gilbert, Stephen, and Bill McCarty. 1998. Object-Oriented Design in Java. Berkeley, CA: The
Waite Group Press (Pearson Education).

Meyers, Scott. 2005. Effective C++, Third Edition. Boston, MA: Addison-Wesley Professional.

Index

Symbols
{ } (braces), 58

+ (plus sign), 62

/ (slash), comment notations using, 69

A
aborting applications, 54

abstraction

abstract classes

interfaces compared to, 133–135

overview of, 121–123, 128–131

abstract factory design pattern, 165

abstract interfaces, 41–42

abstract methods, 129

nonportable code, 84

overview of, 25–26, 30–31

accessor methods, 13–14, 73–75

adapter design pattern, 169–171

aggregations

association and, 153

concept of, 112–113, 151–152, 153, 180

Alexander, Christopher, 162

Ambler, Scott, 173

analysis, role in system design, 95

antipatterns, 173–174

applications

aborting, 54

recovering, 54–55

“The Architecture of Complexity”

(Simon), 149

206 artifacts

Cabbie class

accessors, 73

attributes, 69–71

class diagram, 115–116

comments, 69

constructors

default, 49

example of, 47–48

overview of, 71–72

name, 68

overloaded methods, 50

calcArea() method, 188–189

CalculateAreas class, 189, 190–191, 192

CalculatePay() method, 14

calling constructors, 48

Car class, 137, 138

cardinality, 155–157

Cat class, 199, 202

catch keyword, 55–57

catching exceptions, 56–57

categories, design pattern, 164–165

CatNoise class, 201, 204

chain of response, 171

CIRCLE class, 167–169

Circle class, 27–30, 119, 130–131, 189

class diagrams

cardinality in, 156–157

composition, 113–114

creating, 51–52

DataBaseReader class, 51

Dog class, 159

e-business case study, 142–146

CustList class, 143

DonutShop class, 143–144

PizzaShop class, 144

Shop class, 142

overview of, 19–20, 92

artifacts

Reuseless, 173

Robust, 173

associations

aggregation and, 153

concept of, 112–113, 152–153

multiple object, 157–158

optional, 158–159

attributes

class, 18, 61–62, 69–71

importance of, 57–58

initialization of, 48

local, 58–59

object, 12, 59–61

public versus private, 20

static, 83

B
base classes, 24–25

behavioral inheritance, 63

behavioral patterns

categories of, 171–172

iterator, 172–173

behaviors, object. See also methods

overview of, 13–16, 44

separating out, 200–202

bitwise copies, 64

builder design pattern, 165

buyInventory() method, 142

C
C / C++ development. See OO (object-

oriented) development

C# development. See OO (object-oriented)

development

C++ Report, 173

207classes

definition of, 105

dependencies, 154–155

example of, 112, 159–160

object reuse, 105–106

overview of, 30

relationships, 148–149

constructors

calling, 48

default, 48–49

design of, 53–54, 80–81

example of, 71–72

injection by, 184

lack of, 71

multiple, 49–50, 72

overview of, 47–48

purpose of, 48

return values, 47

Count, 49–50

CustList, 143

data hiding, 20

database reader example, 36–40

DataBaseReader

class diagrams, 51

constructors, 52

overview of, 36–40

testing, 87–88

definition of, 16–17

design guidelines, 10

code reuse, 82

comments, 81–82

constructors/destructors, 80–81

copying and comparison, 84

extensibility, 83

implementation, hiding, 79–80

interaction, 82

maintainability, 86

marshalling, 89

naming conventions, 83–84

class keyword, 67–69

classes. See also interfaces; methods;

objects

abstract. See also abstraction

interfaces compared to, 133–135

overview of, 121–123, 128–131

attributes

class scope, 61–62

example of, 69–71

initialization of, 48

local scope, 58–59

object scope, 59–61

overview of, 18, 61–62

public versus private, 20

Cabbie

accessors, 73

attributes, 69–71

class diagram, 115–116

comments, 69

constructors, 47–49, 71–72

name, 68

overloaded methods, 50

CalculateAreas, 189, 190–191, 192

Car, 137, 138

Cat, 199, 202

CatNoise, 201, 204

Circle, 27–30, 119, 130–131, 167–169, 189

comments

design guidelines, 81–82

notation, 69

number of, 82

composition

advantages of, 175–177

aggregations, 112–113, 151–152, 153

associations, 112–113, 152–153,
157–159

building in phases, 149–151

cardinality, 155–157

class diagrams, 113–114

208 classes

nonportable code, 84

object persistence, 88–89

public interface, 78–79

real-world system modeling, 77–78

scope, 84–85

serialization, 89

stubs, 86–88

top-down, 77

destructors, 80–81

Dog

class diagram, 159–160

contract, 137–138

defining, 134

dependency injection, 182–184

design decisions, 110–112

generalization-specialization,
109–110

inheritance, 107–109

DonutShop, 143–144

Employee

behaviors, 13–16

cardinality, 155–157

multiple object associations,
157–158

optional associations, 158–159

encapsulation

importance of, 113–114

inheritance weakened by, 115–117

overview of, 20

error handling

applications, aborting, 54

design guidelines, 81

exceptions, catching, 56–57

exceptions, throwing, 55–57

ignoring problems, 54

overview of, 54

recovery, 54–55

Head, 133

highly coupled, 86, 175–177. See also
dependencies

identifying, 96

implementation

characteristics of, 36

hiding, 79–80

inheritance

advantages and limitations, 106–109

behavioral, 63

composition as alternative to,
175–177, 179–182

definition of, 105

design decisions, 110–112

example of, 159–160, 177–179

generalization-specialization,
109–110

implementation, 63

multiple, 26, 63, 131–132

object reuse, 105–106

overview of, 23–24

polymorphism, 27–30

relationships, 131, 147

single, 26

subclasses, 24–25

superclasses, 24–25

weakened by encapsulation, 115–117

Integer, 169–170

interface/implementation paradigm

model of, 22–23

overview of, 21

real-world example, 21–22

interfaces

abstract, 41–42

characteristics of, 36

database reader example, 36–40

design guidelines, 41–42

extending, 79

IMammal, 197

209classes

implementation versus, 34–35

ISP (Interface Segregation Principle),
197–198

IWalkable, 183–184

minimum public, 78–79

overview of, 20–21, 131–132

prototypes, 97

public, 44–45, 75

testing, 86–88

Iterator, 172

MailTool, 170

MainApplication, 98

MakingNoise, 200

Mammal, 203

composition, 179–182

defining, 133

inheritance, 178–179

interfaces for, 197–198

makeNoise() method, 199

Math, 85

messages, 19

model of, 96–97

MyMailTool, 170–171

names, 67–69

Number

class attributes, 61–62

local attributes, 58–59

object attributes, 59–61

objects, creating from, 17–18

OpenClosed, 192, 194

Person

attributes, 18

class diagram, 19–20

creating, 18

extensibility, 83

methods, 19

PizzaShop, 144

Planet, 136, 137

polymorphism

object responsibility, 118–119

overview of, 117

Rectangle, 117, 119, 130–131, 192,
194–197

references, 64

relationships

has-a, 31

is-a, 26–27, 107

scope, 84–85

setters, injection by, 184

Shape, 165

calcArea() method, 188

child classes, 167–168

class hierarchy, 128–131

factory method design pattern,
165–169

generate() method, 167

is-a relationships, 26–27

polymorphism, 27–30, 117–121

ShapeFactory class, 168–169

ShapeCalculator, 192

ShapeFactory, 168–169

Shop, 142

SomeMath, 100

Sound, 101

Square, 22–23, 167–169

Star, 119

superclasses, 53

Swimmable, 181

TestBeep, 101

TestFactoryPattern, 169

TestMammal, 200, 201–202, 203–204

TestMath, 100

TestShape, 119–121, 190, 191

TestShop, 145–146

Triangle, 120, 167–169

Whale, 181

210 classes

Window, 117

wrapping, 101–102

Coad, Peter, 106, 115

code reuse. See also abstraction;

object reuse

advantages and limitations, 125

contracts

defining, 136–138

overview of, 128

as system plug-in points, 138–139

design guidelines for, 82

e-business case study

code reuse for, 141–142

non-reuse approach, 139–141

scenario, 139

UML object model, 142–146

frameworks, 126–127

interfaces

abstract, 41–42

abstract classes compared to,
133–135

characteristics of, 36

database reader example, 36–40

design guidelines, 41–42

extending, 79

IMammal, 197

implementation versus, 34–35

interface/implementation paradigm,
21–23

is-a relationships, 135–136

ISP (Interface Segregation Principle),
197–198

IWalkable, 183–184

minimum public interface, 78–79

overview of, 20–21, 131–132

prototypes, 97

public, 44–45, 75

terminology, 131

testing, 86–88

UML diagrams, 132

command design pattern, 171

comments

design guidelines, 81–82

notation, 69

number of, 82

communication, object-to-object, 10–11

comparing objects, 84

composition, 30

advantages of, 175–177

aggregations

association and, 153

concept of, 112–113, 151–152, 153

associations

aggregation and, 153

concept of, 112–113, 152–153

multiple object, 157–158

optional, 158–159

building in phases, 149–151

cardinality, 155–157

class diagrams, 113–114

definition of, 105

dependencies, avoiding, 154–155

example of, 112, 159–160, 179–182

object reuse, 105–106

relationships, 148–149

concatenation of strings, 62

conditions, 98–99

consequences, 162

constraints, environmental, 44

constructors

calling, 48

default, 48–49

design of, 53–54, 80–81

example of, 71–72

injection, 80

211design

injection by, 184, 199

lack of, 71

multiple, 49–50, 72

overview of, 47–48

purpose of, 48

return values, 47

contracts

defining, 136–138

overview of, 128

as system plug-in points, 138–139

copies, 64–65

copying objects, 84

Count class, 49–50

coupling, 86, 175–177

“Creating Chaos” (Johnson), 173

creational patterns

categories of, 165

factory method, 165

curly braces ({}), 58

CustList class, 143

customers, 79

D
data hiding, 9, 20

data transfer objects (DTOs), 78

DataBaseReader class

class diagram, 51

constructors, 52

overview of, 36–40

testing, 87–88

databases. See also DataBaseReader class

NoSQL, 89

relational, 89

declaring methods

private implementation methods, 76

public interface methods, 75

static, 73–74

decoupling. See dependencies

deep copies, 64

default constructors, 48–49

definition inheritance. See inheritance

dependencies, 154–155. See also

dependency injection; inheritance

composition, 30

advantages of, 175–177

example of, 179–182

DIP (Dependency Inversion Principle), 3

dependency injection and, 202–204

initial example, 199–200

overview of, 198–199

separating out behavior, 200–202

inheritance

composition as alternative to,
175–177, 179–182

issues with, 179–182

dependency injection, 182–184

by constructor, 80, 184, 199

definition of, 198

DIP (Dependency Inversion Principle),
3, 202–204

initial example, 199–200

overview of, 198–199

separating out behavior, 200–202

example of, 182–184

by parameters, 199

by setter, 184

Dependency Inversion Principle. See DIP

(Dependency Inversion Principle)

design

classes, 10

code reuse, 82

comments, 81–82

constructors/destructors, 80–81

copying and comparison, 84

extensibility, 83

212 design

identifying, 96

implementation, hiding, 79–80

interaction, 82

maintainability, 86

naming conventions, 83–84

nonportable code, 84

public interface, 78–79

real-world system modeling, 77–78

scope, 84–85

comments, 81–82

constructors, 53–54

error handling, 81

global data, 8–9, 85

guidelines and best practices

iteration in, 86

marshalling, 89

object persistence, 88–89

serialization, 89

stubs, 86–88

top-down design, 77

inheritance, 110–112

interfaces, 41–42

objects, 12

patterns

adapter, 169–171

advantages of, 162

antipatterns, 173–174

best practices, 161

categories of, 164–165

elements of, 162

factory method, 165–169

iterator, 172–173

MVC (Model/View/Controller),
163–164

overview of, 161–162

SOLID principles

DIP (Dependency Inversion
Principle), 198–204

ISP (Interface Segregation Principle),
197–198

LSP (Liskov Substitution Principle),
194–197

OCP (Open/Close Principle),
192–194

overview of, 187–188

SRP (Single Responsibility Principle),
187–188

system

analysis, 95

building in phases, 149–151

class identification, 96

class model, 96–97

object wrappers, 97–102

OO design process, 91–94

requirements documents, 95

safety versus economics, 94

SOW (statement of work), 95

system prototypes, 96

user interface prototypes, 97

waterfall model, 92–93

design patterns

adapter, 169–171

advantages of, 162

antipatterns, 173–174

best practices, 161

categories of, 164–165

elements of, 162

factory method, 165–169

iterator, 172–173

MVC (Model/View/Controller), 163–164

overview of, 161–162

Design Patterns (Gamma et al), 161–162.

See also design patterns

destructors, 80–81

diagrams, class

cardinality in, 156–157

composition, 113–114

213extensibility

creating, 51–52

DataBaseReader class, 37, 51

Dog class, 156–157, 159

e-business case study, 142–146

CustList class, 143

DonutShop class, 143–144

PizzaShop class, 144

Shop class, 142

overview of, 19–20, 92

diagrams, interface, 132

Dictionary.com, 128

DIP (Dependency Inversion Principle), 3

dependency injection, 202–204

initial example, 199–200

overview of, 198–199

separating out behavior, 200–202

documentation. See also diagrams, class

amount of, 82

comments

design guidelines, 81–82

notation, 69

requirements documents, 95

SOW (statement of work), 95

Dog class, 182, 184

class diagram, 159–160

defining, 134, 137, 138

design decisions, 110–112

generalization-specialization, 109–110

inheritance, 107–109

domains, mixing, 155

DonutShop class, 143–144

draw() method, 119, 128–131

DTOs (data transfer objects), 78

E
e-business case study

code reuse for, 141–142

non-reuse approach, 139–141

scenario, 139

UML object model, 142–146

CustList class, 143

DonutShop class, 143–144

PizzaShop class, 144

Shop class, 142

economics, safety versus, 94

Effective C++ (Meyers), 63, 78, 109

Employee class

behaviors, 13–16

cardinality, 155–157

multiple object associations, 157–158

optional associations, 158–159

Employee object, 14

encapsulation

definition of, 10

importance of, 113–114

inheritance weakened by, 115–117

overview of, 20

enums, 167

environmental constraints, 44

error handling

aborting application, 54

design guidelines, 81

exceptions

catching, 56–57

throwing, 55–57

ignoring problems, 54

overview of, 54

recovery, 54–55

exceptions

catching, 56–57

throwing, 55–57

extensibility

design guidelines, 83

interfaces, 79

http://Dictionary.com

214 factory method design pattern

F
factory method design pattern, 165–169

flat file systems, 89

fragility, 187

frameworks, 126–127

G
Gamma, Erich, 161–162

Gang of Four, 161–162

garbage collection, 80

generalization-specialization, 109–110

generate() method, 167–168

generateHeat() method, 133

getArea() method, 29–30

getInventory() method, 142

getMail() method, 171

getSize() method, 133

getSocialSecurityNumber(), 14

getters, 13–14, 73–74

Gilbert, Stephen, 115

giveDestination() method, 75, 76

global data, 8–9, 85

GoF (Gang of Four), 161–162

H
handling errors. See error handling

has-a relationships, 31

hasMoreElements() method, 173

Head class, 133

Helm, Richard, 161–162

hiding

data, 9

implementation, 79–80

highly coupled classes, 86, 175–177.

See also dependencies

hybrid apps, 7

I
ignoring problems, 54

IMammal interface, 197

immobility, 187

implementations. See also inheritance

characteristics of, 36

database reader example, 36–40

hiding, 79–80

identifying, 45–46

interface/implementation paradigm

model of, 22–23

overview of, 21

real-world example, 21–22

interfaces versus, 34–35

private implementation methods, 76

inheritance. See also composition;

encapsulation

advantages and limitations, 106–109

behavioral, 63

composition as alternative to, 175–177,
179–182

definition of, 105

design decisions, 110–112

example of, 159–160

generalization-specialization, 109–110

implementation, 63

is-a relationships, 107

multiple, 26, 63, 131–132

object reuse, 105–106

overview of, 23–24

polymorphism, 27–30

relationships, 26–27, 131, 135–136, 147

single, 26

weakened by encapsulation, 115–117

init keyword, 47

initialization, attribute, 48

injection, dependency. See dependency

injection

215Liskov Substitution Principle (LSP)

Integer class, 169–170

interaction, design guidelines for, 82

Interface Segregation Principle (ISP), 3,

197–198

interfaces

abstract, 41–42

abstract classes compared to, 133–135

characteristics of, 36

database reader example, 36–40

design guidelines, 41–42

extending, 79

IMammal, 197

interface/implementation paradigm,
34–35

model of, 22–23

overview of, 21

real-world example, 21–22

is-a relationships, 135–136

ISP (Interface Segregation Principle),
197–198

IWalkable, 183–184

Nameable, 132, 136, 137

overview of, 20–21, 131–132

prototypes, 97

public, 44–45

methods, 75

minimum public interface, 78–79

terminology, 131

testing, 86–88

UML diagrams, 132

internal customers, 79

interpreter design pattern, 171

Inversion of Control (IoC), 72

IOC (inversion of control), 182

IPS. See Interface Segregation

Principle (ISP)

is-a relationships, 26–27, 107, 135–136

ISP (Interface Segregation Principle), 3,

197–198

iterate() method, 173

iterations, 86, 99

Iterator class, 172

iterator design pattern, 172–173

IWalkable interface, 183–184

J
Java. See OO (object-oriented) development

Java Design (Coad and Mayfield), 106

Java development. See OO (object-oriented)

development

Java Primer Plus (Tyma, Torok, and

Downing), 54

Johnson, Johnny, 173

Johnson, Ralph, 161–162

K
keywords. See also methods

catch, 55–57

class, 68

classes, 67–69

init, 47

new, 47, 53, 165, 169, 181

null, 71–72

private, 69–71, 76

public, 75–76

static, 61–62, 69–71, 74–75

this, 60

try, 55–57

Koenig, Andrew, 173

L
Larman, Craig, 1

leaks, memory, 81

legacy systems, OO (object-oriented)

concepts with, 6–7

Liskov Substitution Principle (LSP), 3, 109,

194–197

216 local attributes

local attributes, 58–59

LSP. See Liskov Substitution Principle (LSP)

M
MailTool class, 170

MainApplication class, 98

maintainability, 86

makeNoise() method, 133, 199

MakingNoise class, 200

Mammal class, 203

composition, 179–182

defining, 133

inheritance, 178–179

interfaces for, 197–198

makeNoise() method, 199

marshalling objects, 89

Martin, Robert, 7, 187

Math class, 85

Mayfield, Mark, 106, 115

McMarty, Bill, 115

mediator design pattern, 172

memento design pattern, 172

memory leaks, 81

messages, 19

methods, 13. See also keywords

abstract, 129

accessors, 13–14, 73–75

buyInventory(), 142

calcArea(), 188–189

CalculatePay(), 14

constructors

calling, 48

default, 48–49

design of, 53–54, 80–81

example of, 71–72

injection by, 184

lack of, 71

multiple, 49–50, 72

overview of, 47–48

purpose of, 48

return values, 47

destructors, 80–81

draw(), 119, 128–131

generate(), 167–168

generateHeat(), 133

getArea(), 29–30

getInventory(), 142

getMail(), 171

getSize(), 133

getSocialSecurityNumber(), 14

getters, 13–14, 73–74

giveDestination(), 75, 76

hasMoreElements(), 173

iterate(), 173

makeNoise(), 133, 199

mutators, 13–14

open(), 39–40

overloading, 50–51

overview of, 19

private implementation, 76

public interface, 75

retrieveMail(), 170

setSize(), 133

setters, 13–14, 73–74, 184

setWalker(), 184–185

signatures, 50–51

static, 74–75, 83

turnRight(), 76

virtual, 121–123

walk(), 183

Meyers, Scott, 63, 78, 109

middleware, 37–39

minimum public interface, 78–79

mobile web, 7

modeling tools, 15

217objects

Model/View/Controller (MVC) design

pattern, 163–164

multiple constructors, 49–50, 72

multiple inheritance, 26, 63, 131–132

multiple object associations, 157–158

mutator methods, 13–14

MVC (Model/View/Controller) design

pattern, 163–164

MyMailTool class, 170–171

N
Nameable interface, 132, 136, 137

naming conventions

classes, 67–69

design guidelines for, 83–84

patterns, 162

new keyword, 47, 53, 165, 169, 181

nonportable code, 84, 101

NoSQL databases, 89

null value, 71–72

Number class

class attributes, 61–62

local attributes, 58–59

object attributes, 59–61

O
object attributes, 59–61

The Object Primer (Ambler), 86

object reuse, 105–106, 204

composition, 30

advantages of, 175–177

aggregation, 112–113, 151–152

aggregations, 153

association, 112–113

associations, 152–153, 157–159

building in phases, 149–151

cardinality, 155–157

class diagrams, 113–114

definition of, 105

dependencies, avoiding, 154–155

example of, 112, 159–160, 179–182

object reuse, 105–106

relationships, 148–149

inheritance. See also composition

behavioral, 63

composition as alternative to,
175–177, 179–182

definition of, 105

design decisions, 110–112

example of, 159–160

generalization-specialization,
109–110

implementation, 63

is-a relationships, 26–27

multiple, 26, 63

object reuse, 105–106

overview of, 23–24

polymorphism, 27–30

relationships, 147

single, 26

object wrappers

definition of, 7

design guidelines, 97–98

for existing classes, 101–102

for nonportable code, 101

overview of, 97–98

for structured code, 98–100

Objective-C, 2

Object-Oriented Design in Java (Gilbert and

McCarty), 44, 54, 64, 78, 155

object-oriented development. See OO

(object-oriented) development

objects. See also classes; methods; object

reuse

attributes, 12

class scope, 61–62

example of, 69–71

218 objects

initialization of, 48

local, 58–59

object scope, 59–61

public versus private, 20

behaviors, 13–16, 44

comparing, 84

copies, 64–65

copying, 84

creating, 17–18

definition of, 8, 12

design, 12

Employee, 14

marshalling, 89

object-to-object communication, 10–11

operations, 63–65

Payroll, 14

persistence, 39, 88–89

properties, 13

responsibility, 118–119

scope

class attributes, 61–62

importance of, 57–58

local attributes, 58–59

object attributes, 59–61

serialization, 89

wrappers

definition of, 7

design guidelines, 97–98

observer design pattern, 172

OCP. See Open/Close Principle

OO (object-oriented) development, 11. See
also abstraction; classes; code reuse;

dependencies; objects

abstraction

abstract classes, 121–123, 128–131,
133–135

abstract factory design pattern, 165

abstract interfaces, 41–42

abstract methods, 129

nonportable code, 84

overview of, 25–26, 30–31

advantages of, 11–12

comments

design guidelines, 81–82

notation, 69

number of, 82

composition, 30

advantages of, 175–177

aggregations, 112–113, 151–152, 153

associations, 112–113, 152–153,
157–159

building in phases, 149–151

cardinality, 155–157

class diagrams, 113–114

definition of, 105

dependencies, avoiding, 154–155

example of, 112, 159–160, 179–182

object reuse, 105–106

relationships, 148–149

contracts

defining, 136–138

overview of, 128

as system plug-in points, 138–139

data hiding, 9

e-business case study

code reuse for, 141–142

non-reuse approach, 139–141

scenario, 139

UML object model, 142–146

encapsulation

definition of, 10

importance of, 113–114

inheritance weakened by, 115–117

environmental constraints, 44

error handling

aborting application, 54

design guidelines, 81

219OO (object-oriented) development

exceptions, catching, 56–57

exceptions, throwing, 55–57

ignoring problems, 54

overview of, 54

recovery, 54–55

evolution of, 5

frameworks, 126–127

implementations

characteristics of, 36

database reader example, 36–40

hiding, 79–80

identifying, 45–46

interface/implementation paradigm,
21–23

interfaces versus, 34–35

private implementation methods,
76

inheritance

advantages and limitations,
106–109

behavioral, 63

composition as alternative to,
175–177, 179–182

definition of, 105

design decisions, 110–112

example of, 159–160, 177–179

generalization-specialization,
109–110

implementation, 63

multiple, 26, 63, 131–132

object reuse, 105–106

overview of, 23–24

polymorphism, 27–30

relationships, 131, 135–136, 147

single, 26

subclasses, 24–25

superclasses, 24–25

weakened by encapsulation,
115–117

interface/implementation paradigm

model of, 22–23

overview of, 21

real-world example, 21–22

interfaces

abstract, 41–42

abstract classes compared to,
133–135

characteristics of, 36

database reader example, 36–40

design guidelines, 41–42

extending, 79

IMammal, 197

implementation versus, 34–35

interface/implementation paradigm,
21–23

is-a relationships, 135–136

ISP (Interface Segregation Principle),
197–198

IWalkable, 183–184

minimum public interface, 78–79

overview of, 20–21, 131–132

prototypes, 97

public, 44–45, 75

terminology, 131

testing, 86–88

UML diagrams, 132

iteration in, 86

legacy systems and, 6–7

object-to-object communication, 10–11

operators, overloading, 62–63

polymorphism

object responsibility, 118–119

overview of, 117

procedural programming compared to,
7–11

relationships

has-a, 31

is-a, 26–27, 107

220 OO (object-oriented) development

scope

class attributes, 61–62

design guidelines, 84–85

importance of, 57–58

local attributes, 58–59

object attributes, 59–61

SOLID principles

DIP (Dependency Inversion
Principle), 198–204

ISP (Interface Segregation Principle),
197–198

LSP (Liskov Substitution Principle),
194–197

OCP (Open/Close Principle),
192–194

overview of, 187–188

SRP (Single Responsibility Principle),
188–191

stacks, 29

users, determining, 43–44

open() method, 39–40

Open/Close Principle, 192–194

Open/Close Principle (OCP), 3, 192–194

OpenClosed class, 192, 194

operations, object, 63–65

operators, overloading, 62–63

optional associations, 158–159

overloading

methods, 50–51

operators, 62–63

P
parameters, injection by, 199

parent class, 24–25

passing references, 71

A Pattern Language (Alexander), 162

patterns, design

adapter, 169–171

advantages of, 162

antipatterns, 173–174

best practices, 161

categories of, 164–165

elements of, 162

factory method, 165–169

iterator, 172–173

MVC (Model/View/Controller), 163–164

overview of, 161–162

Payroll object, 14

persistence, 39, 88–89

Person class

attributes, 18

class diagram, 19–20

creating, 18

extensibility, 83

methods, 19

PizzaShop class, 144

Planet class, 136, 137

plus sign (+), 62

polymorphism

object responsibility, 118–119

overview of, 27–30, 117

private attributes, 20

private implementation methods, 76

private keyword, 69–71, 76

problems, 162

procedural programming

data model, 11

OO (object-oriented) programming
compared to, 7–11

properties, object, 13

protocols, 121–123

prototype design pattern, 165

prototypes

system, 96

user interface, 97–98

public attributes, 20

public interfaces, 44–45, 75

public keyword, 75–76

221SOLID principles

Q-R
recovery, 54–55

Rectangle class, 117, 119, 130–131, 192,

194–197

references

classes and, 64

passing, 71

relational databases, 89

relationships

composition, 148–149

has-a, 31

inheritance, 131, 147

is-a, 26–27, 107, 135–136

requirements documents, 95

responsibility, SRP (Single Responsibility

Principle), 187–188

retrieveMail() method, 170

return values, 47

reuse of code. See code reuse

“Reuse Patterns and Antipatterns” (Ambler),

173

Reuseless Artifact, 173

rigidity, 187

Robust Artifacts, 173

S
safety, economics versus, 94

scope

class attributes, 61–62

design guidelines, 84–85

importance of, 57–58

local attributes, 58–59

object attributes, 59–61

separating out behavior, 200–202

sequences, 98–99

serialization, 89

setSize() method, 133

setters, 13–14, 73–74, 184

setWalker() method, 184–185

shallow copies, 64

Shape class, 165

calcArea() method, 188

child classes, 167–168

class hierarchy, 128–131

factory method design pattern, 165–169

generate() method, 167

is-a relationships, 26–27

polymorphism, 27–30, 117–121

ShapeFactory class, 168–169

ShapeCalculator class, 192

ShapeFactory class, 168–169

ShapeType enum, 167

Shop class, 142

signatures, 21, 50–51

Simon, Herbert, 149

single inheritance, 26

Single Responsibility Principle (SRP), 3,

187–188

singleton design pattern, 165

slash (/), 69

Smalltalk

development of, 163

MVC (Model/View/Controller) design
pattern, 164–165

SOLID principles, 2–3, 109

DIP (Dependency Inversion Principle)

dependency injection, 202–204

initial example, 199–200

overview of, 198–199

separating out behavior, 200–202

ISP (Interface Segregation Principle),
197–198

LSP (Liskov Substitution Principle),
194–197

OCP (Open/Close Principle), 192–194

222 SOLID principles

overview of, 187–188

SRP (Single Responsibility Principle),
187–188

solutions, 162

SomeMath class, 100

Sound class, 101

SOW (statement of work), 95

specialization, 109–110

Square class, 22–23, 167–169

SRP. See Single Responsibility Principle

(SRP)

stacks, 29

standalone applications, 39

Star class, 119

state design pattern, 172

statement of work (SOW), 95

static attributes, 83

static keyword, 61–62, 69–71, 74–75

static methods, 83

strategy design pattern, 172

strings, concatenation of, 62

structural patterns

adapter, 169–171

categories of, 169

structured code

conditions, 98–99

sequences, 98–99

wrapping, 99–100

stubs, 86–88

subclasses, 24–25

substitution, LSP (Liskov Substitution

Principle), 194–197

superclasses, 24–25, 53

Swift

exceptions, 55–57

init keyword, 47

multiple inheritance, 63

scope, 58

Swimmable class, 181

system design

analysis, 95

building in phases, 149–151

class identification, 96

class model, 96–97

object wrappers, 97–98

for existing classes, 101–102

for nonportable code, 101

overview of, 97–98

for structured code, 98–100

OO design process, 91–94

requirements documents, 95

safety versus economics, 94

SOW (statement of work), 95

system prototypes, 96

user interface prototypes, 97

waterfall model, 92–93

system prototypes, 96

T
template method, 172

TestBeep class, 101

TestFactoryPattern class, 169

testing interfaces, 86–88

TestMammal class, 200, 201–202,

203–204

TestMath class, 100

TestShape class, 119–121, 190, 191

TestShop class, 145–146

this keyword, 60

throwing exceptions, 55–57

top-down design, 77

Triangle class, 120, 167–169

troubleshooting. See error handling

try keyword, 55–57

try/catch blocks, 55–57

turnRight() method, 76

223Xerox PARC

New keyword, 47

operator overloading, 63

Vlissides, John, 161–162

W-X-Y-Z
walk() method, 183

waterfall model, 92–93

Whale class, 181

Window class, 117

word processing framework, 126–127

wrappers

advantages of, 38

design guidelines, 97–98

for existing classes, 101–102

for nonportable code, 101

overview of, 7, 97–98

for structured code, 98–100

Xerox PARC, 163

U
UML (Unified Modeling Language)

class diagrams, 14–15, 19–20, 92

creating, 51–52

DataBaseReader, 37

interface diagrams, 132

user interface prototypes, 97

users

customers versus, 79

determining, 43–44

V
variables, global, 85

virtual methods, 121–123

visitor design pattern, 172

Visual Basic .NET, 2

exceptions, 55–57

multiple inheritance, 63

	Cover
	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	2 How to Think in Terms of Objects
	Knowing the Difference Between the Interface and the Implementation
	The Interface
	The Implementation
	An Interface/Implementation Example

	Using Abstract Thinking When Designing Interfaces
	Providing the Absolute Minimal User Interface Possible
	Determining the Users
	Object Behavior
	Environmental Constraints
	Identifying the Public Interfaces
	Identifying the Implementation

	Conclusion
	References

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W-X-Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

