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2
How to Think in Terms 

of Objects

In Chapter 1, “Introduction to Object-Oriented Concepts,” you learned the fundamental object-
oriented (OO) concepts. The rest of the book delves more deeply into these concepts and intro-
duces several others. Many factors go into a good design, whether it is an OO design or not. The 
fundamental unit of OO design is the class. The desired end result of OO design is a robust and 
functional object model—in other words, a complete system.

As with most things in life, there is no single right or wrong way to approach a problem. There 
are usually many ways to tackle the same problem. So when attempting to design an OO solu-
tion, don’t get hung up in trying to do a perfect design the first time (there will always be room 
for improvement). What you really need to do is brainstorm and let your thought process go in 
different directions. Do not try to conform to any standards or conventions when trying to solve 
a problem because the whole idea is to be creative. 

In fact, at the start of the process, don’t even begin to consider a specific programming language. 
The first order of business is to identify and solve business problems. Work on the conceptual 
analysis and design first. Think about specific technologies only when they are fundamental to the 
business problem. For example, you can’t design a wireless network without wireless technology. 
However, it is often the case that you will have more than one software solution to consider.

Thus, before you start to design a system, or even a class, think the problem through and have 
some fun! In this chapter we explore the fine art and science of OO thinking.

Any fundamental change in thinking is not trivial. As a case in point, a lot has been mentioned 
about the move from structured to OO development. As was mentioned earlier, one side effect 
of this debate is the misconception that structured and object-oriented development are mutu-
ally exclusive. This is not the case. As we know from our discussion on wrappers, structured and 
object-oriented development coexist. In fact, when you write an OO application, you are using 
structured constructs everywhere. I have never seen a program, OO or otherwise, that does not 
use loops, if-statements, and so on. Yet making the switch to OO design does require a different 
type of investment.
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Changing from FORTRAN to COBOL, or even to C, requires you to learn a new language; 
however, making the move from COBOL to C++, C# .NET, Visual Basic .NET, Objective-C, Swift, or 
Java requires you to learn a new thought process. This is where the overused phrase OO paradigm 
rears its ugly head. When moving to an OO language, you must first go through the investment 
of learning OO concepts and the corresponding thought process. If this paradigm shift does not 
take place, one of two things will happen: Either the project will not truly be OO in nature (for 
example, it will use C++ without using OO constructs) or the project will be a complete object-
disoriented mess.

Three important things you can do to develop a good sense of the OO thought process are 
covered in this chapter:

 Knowing the difference between the interface and implementation

 Thinking more abstractly

 Giving the user the minimal interface possible

We have already touched on some of these concepts in Chapter 1, “Introduction to 
 Object-Oriented Concepts,” and we now go into much more detail.

Knowing the Difference Between the Interface 

and the Implementation

As we saw in Chapter 1, one of the keys to building a strong OO design is to understand the differ-
ence between the interface and the implementation. Thus, when designing a class, what the user 
needs to know and, perhaps of more importance, what the user does not need to know are of vital 
importance. The data hiding mechanism inherent with encapsulation is the means by which 
nonessential data is hidden from the user.

 

Caution

Do not confuse the concept of the interface with terms like graphical user interface (GUI). 
Although a GUI is, as its name implies, an interface, the term interfaces, as used here, is more 
general in nature and is not restricted to a graphical interface.  

Remember the toaster example in Chapter 1? The toaster, or any appliance for that matter, is 
plugged into the interface, which is the electrical outlet—see Figure 2.1. All appliances gain 
access to the required electricity by complying with the correct interface: the electrical outlet. 
The toaster doesn’t need to know anything about the implementation or how the electricity is 
produced. For all the toaster cares, a coal plant or a nuclear plant could produce the electricity—
the appliance does not care which, as long as the interface works as specified, correctly and safely.
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Requesting
Object

Interface
Implementation

Figure 2.1 Power plant revisited.

As another example, consider an automobile. The interface between you and the car includes 
components such as the steering wheel, gas pedal, brake, and ignition switch. For most people, 
aesthetic issues aside, the main concern when driving a car is that the car starts, accelerates, stops, 
steers, and so on. The implementation, basically the stuff that you don’t see, is of little concern 
to the average driver. In fact, most people would not even be able to identify certain components, 
such as the catalytic converter and gasket. However, any driver would recognize and know how to 
use the steering wheel because this is a common interface. By installing a standard steering wheel 
in the car, manufacturers are assured that the people in their target market will be able to use the 
system.

If, however, a manufacturer decided to install a joystick in place of the steering wheel, most 
drivers would balk at this, and the automobile might not be a big seller (except possibly gamers). 
On the other hand, as long as the performance and aesthetics didn’t change, the average driver 
would not notice whether the manufacturer changed the engine (part of the implementation) of 
the automobile. 

It must be stressed that the interchangeable engines must be identical in every way—as far as the 
interface goes. Replacing a four-cylinder engine with an eight-cylinder engine would change the 
rules and likely would not work with other components that interface with the engine, just as 
changing the current from AC to DC would affect the rules in the power plant example.

The engine is part of the implementation, and the steering wheel is part of the interface. 
A change in the implementation should have no impact on the driver, whereas a change to 
the interface might. The driver would notice an aesthetic change to the steering wheel, even if 
it performs in a similar manner. It must be stressed that a change to the engine that is noticeable 
by the driver breaks this rule. For example, a change that would result in noticeable loss of power 
is actually impacting the interface.

 

What Users See

When we talk about users in this chapter, we primarily mean designers and developers—not 
necessarily end users. Thus, when we talk about interfaces in this context, we are talking about 
class interfaces, not GUIs.  

Properly constructed classes are designed in two parts—the interface and the implementation.



36 Chapter 2  How to Think in Terms of Objects 

The Interface

The services presented to an end user constitute the interface. In the best case, only the services 
the end user needs are presented. Of course, which services the user needs might be a matter of 
opinion. If you put 10 people in a room and ask each of them to do an independent design, you 
might receive 10 totally different designs—and there is nothing wrong with that. However, as 
a general rule, the interface to a class should contain only what the user needs to know. In the 
toaster example, the user needs to know only that the toaster must be plugged into the interface 
(which in this case is the electrical outlet) and how to operate the toaster itself.

 

Identifying the User

Perhaps the most important consideration when designing a class is identifying the audience, 
or users, of the class.  

The Implementation

The implementation details are hidden from the user. One goal regarding the implementation 
should be kept in mind: A change to the implementation should not require a change to the user’s 
code. This might seem a bit confusing, but this goal is at the heart of the design issue. 

 

Good Interfaces

If the interface is designed properly, a change to the implementation should not require a 
change to the user’s code.  

Remember that the interface includes the syntax to call a method and return a value. If this inter-
face does not change, the user does not care whether the implementation is changed. As long as 
the programmer can use the same syntax and retrieve the same value, that’s all that matters.

We see this all the time when using a cell phone. To make a call, the interface is simple—we either 
dial a number or select an entry in the contact list. Yet, if the provider updates the software, 
it doesn’t change the way you make a call. The interface stays the same regardless of how the 
implementation changes. However, I can think of one situation when the provider did change 
the interface—when my area code changed. Fundamental interface changes, like an area code 
change, do require the users to change behavior. Businesses try to keep these types of changes to a 
minimum, for some customers will not like the change or perhaps not put up with the hassle.  

Recall that in the toaster example, although the interface is always the electric outlet, the imple-
mentation could change from a coal power plant to a nuclear power plant without affecting the 
toaster. One very important caveat should be made here: The coal or nuclear plant must also 
conform to the interface specification. If the coal plant produces AC power but the nuclear plant 
produces DC power, a problem exists. The bottom line is that both the user and the implementa-
tion must conform to the interface specification.

An Interface/Implementation Example

Let’s create a simple (if not very functional) database reader class. We’ll write some Java code that 
will retrieve records from the database. As we’ve discussed, knowing your end users is always the 
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most important issue when doing any kind of design. You should do some analysis of the situa-
tion and conduct interviews with end users, and then list the requirements for the project. The 
following are some requirements we might want to use for the database reader:

 We must be able to open a connection to the database.

 We must be able to close the connection to the database.

 We must be able to position the cursor on the first record in the database.

 We must be able to position the cursor on the last record in the database.

 We must be able to find the number of records in the database.

 We must be able to determine whether there are more records in the database (that is, if we 
are at the end).

 We must be able to position the cursor at a specific record by supplying the key.

 We must be able to retrieve a record by supplying a key.

 We must be able to get the next record, based on the position of the cursor.

With these requirements in mind, we can make an initial attempt to design the database reader 
class by creating possible interfaces for these end users.

In this case, the database reader class is intended for programmers who require use of a database. 
Thus, the interface is essentially the application-programming interface (API) that the program-
mer will use. These methods are, in effect, wrappers that enclose the functionality provided by 
the database system. Why would we do this? We explore this question in much greater detail later 
in the chapter; the short answer is that we might need to customize some database functionality. 
For example, we might need to process the objects so that we can write them to a relational 
database. Writing this middleware is not trivial as far as design and coding go, but it is a real-life 
example of wrapping functionality. More important, we may want to change the database engine 
itself without having to change the code.

Figure 2.2 shows a class diagram representing a possible interface to the DataBaseReader class.

+open:void
+close:void
+goToFirst:void
+goToLast:void
+howManyRecords:int
+areThereMoreRecords:boolean
+positionRecord:void
+getRecord:String
+getNextRecord:String

DataBaseReader

Figure 2.2 A Unified Modeling Language class diagram for the DataBaseReader class.
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Note that the methods in this class are all public (remember that there are plus signs next to the 
names of methods that are public interfaces). Also note that only the interface is represented; the 
implementation is not shown. Take a minute to determine whether this class diagram generally 
satisfies the requirements outlined earlier for the project. If you find out later that the diagram 
does not meet all the requirements, that’s okay; remember that OO design is an iterative process, 
so you do not have to get it exactly right the first time.

 

Public Interface

Remember, an application programmer can access it, and thus, it is considered part of the 
class interface. Do not confuse the term interface with the keyword interface used in Java 
and .NET—which is discussed in later chapters.  

For each of the requirements we listed, we need a corresponding method that provides the 
functionality we want. Now you need to ask a few questions:

 To effectively use this class, do you, as a programmer, need to know anything else about it?

 Do you need to know how the internal database code opens the database?

 Do you need to know how the internal database code physically positions itself over a 
specific record?

 Do you need to know how the internal database code determines whether any more 
records are left?

On all counts the answer is a resounding no! You don’t need to know any of this information. 
All you care about is that you get the proper return values and that the operations are performed 
correctly. In fact, the application programmer will most likely be at least one more abstract level 
away from the implementation. The application will use your classes to open the database, which 
in turn will invoke the proper database API.

 

Minimal Interface

Although perhaps extreme, one way to determine the minimalist interface is to initially provide the 
user no public interfaces. Of course, the class will be useless; however, this forces the user to 
come back to you and say, “Hey, I need this functionality.” Then you can negotiate. Thus, you add 
interfaces only when it is requested. Never assume that the user needs something.  

Creating wrappers might seem like overkill, but there are many advantages to writing them. To 
illustrate, there are many middleware products on the market today. Consider the problem of 
mapping objects to a relational database. OO databases have never caught on; however, theoreti-
cally they may be perfect for OO applications. However, one small problem exists: Most compa-
nies have years of data in legacy relational database systems. How can a company embrace OO 
technologies and stay on the cutting edge while retaining its data in a relational database?

First, you can convert all your legacy, relational data to a brand-new OO database. However, 
anyone who has suffered the acute (and chronic) pain of any data conversion knows that this is to 
be avoided at all costs. Although these conversions can take large amounts of time and effort, all 
too often they never work properly.
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Second, you can use a middleware product to seamlessly map the objects in your application code 
to a relational model. This is a much better solution since relational databases are so prevalent. 
Some might argue that OO databases are much more efficient for object persistence than rela-
tional databases. In fact, many development systems seamlessly provide this service.

 

Object Persistence

Object persistence refers to the concept of saving the state of an object so that it can be 
restored and used at a later time. An object that does not persist basically dies when it goes 
out of scope. For example, the state of an object can be saved in a database.  

However, in the current business environment, relational-to-object mapping is a great solution. 
Many companies have integrated these technologies. It is common for a company to have a 
website front-end interface with data on a mainframe. 

If you create a totally OO system, an OO database might be a viable (and better performing) 
option; however, OO databases have not experienced anywhere near the growth that OO 
languages have. 

 

Standalone Application

Even when creating a new OO application from scratch, it might not be easy to avoid legacy 
data. Even a newly created OO application is most likely not a standalone application and 
might need to exchange information stored in relational databases (or any other data storage 
device, for that matter).  

Let’s return to the database example. Figure 2.2 shows the public interface to the class, and nothing 
else. When this class is complete, it will probably contain more methods, and it will certainly 
contain attributes. However, as a programmer using this class, you do not need to know anything 
about these private methods and attributes. You certainly don’t need to know what the code looks 
like within the public methods. You simply need to know how to interact with the interfaces.

What would the code for this public interface look like (assume that we start with a Oracle 
database example)? Let’s look at the open() method:

public void open(String Name){
 
        /* Some application-specific processing */
 
        /* call the Oracle API to open the database */
 
        /* Some more application-specific processing */
 
};

In this case, you, wearing your programmer’s hat, realize that the open method requires String 
as a parameter. Name, which represents a database file, is passed in, but it’s not important to 
explain how Name is mapped to a specific database for this example. That’s all we need to know. 
Now comes the fun stuff—what really makes interfaces so great!
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Just to annoy our users, let’s change the database implementation. Last night we translated all the 
data from an Oracle database to an SQLAnywhere database (we endured the acute and chronic 
pain). It took us hours—but we did it.

Now the code looks like this:

public void open(String Name){
 
        /* Some application-specific processing
 
        /* call the SQLAnywhere API to open the database */
 
        /* Some more application-specific processing */
 
};

To our great chagrin, this morning not one user complained. This is because even though the 
implementation changed, the interface did not! As far as the user is concerned, the calls are still 
the same. The code change for the implementation might have required quite a bit of work (and 
the module with the one-line code change would have to be rebuilt), but not one line of 
application code that uses this DataBaseReader class needed to change.

 

Code Recompilation

Dynamically loaded classes are loaded at runtime—not statically linked into an executable file. 
When using dynamically loaded classes, like Java and .NET do, no user classes would have to be 
recompiled. However, in statically linked languages such as C++, a link is required to bring in the 
new class.  

By separating the user interface from the implementation, we can save a lot of headaches down 
the road. In Figure 2.3, the database implementations are transparent to the end users, who see 
only the interface.

Oracle DB2 SQLAny

Interface

User
Code

User
Code

Figure 2.3 The interface.
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Using Abstract Thinking When Designing Interfaces

One of the main advantages of OO programming is that classes can be reused. In general, reus-
able classes tend to have interfaces that are more abstract than concrete. Concrete interfaces tend 
to be very specific, whereas abstract interfaces are more general. However, simply stating that a 
highly abstract interface is more useful than a highly concrete interface, although often true, is 
not always the case.

It is possible to write a very useful, concrete class that is not at all reusable. This happens all the 
time, and nothing is wrong with it in some situations. However, we are now in the design busi-
ness and want to take advantage of what OO offers us. So our goal is to design abstract, highly 
reusable classes—and to do this we will design highly abstract user interfaces. To illustrate the 
difference between an abstract and a concrete interface, let’s create a taxi object. It is much more 
useful to have an interface such as “drive me to the airport” than to have separate interfaces such 
as “turn right,” “turn left,” “start,” “stop,” and so on, because as illustrated in Figure 2.4, all the 
user wants to do is get to the airport.

Take me to the Airport

Abstract

TAXI

Figure 2.4 An abstract interface.

When you emerge from your hotel, throw your bags into the back seat of the taxi, and get in, the 
cabbie will turn to you and ask, “Where do you want to go?” You reply, “Please take me to the 
airport.” (This assumes, of course, that there is only one major airport in the city. In Chicago you 
would have to say, “Please take me to Midway Airport” or “Please take me to O’Hare.”) You might 
not even know how to get to the airport yourself, and even if you did, you wouldn’t want to have 
to tell the cabbie when to turn and which direction to turn, as illustrated in Figure 2.5. How the 
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cabbie implements the actual drive is of no concern to you, the passenger. (However, the fare 
might become an issue at some point, if the cabbie cheats and takes you the long way to 
the airport.)

 

Turn Right

Not So Abstract

TAXI

Turn Left

Turn Right

Turn LeftTurn Left

Figure 2.5 A not-so-abstract interface.

Now, where does the connection between abstract and reuse come in? Ask yourself which of 
these two scenarios is more reusable, the abstract or the not-so-abstract? To put it more simply, 
which phrase is more reusable: “Take me to the airport,” or “Turn right, then right, then left, 
then left, then left”? Obviously, the first phrase is more reusable. You can use it in any city, 
whenever you get into a taxi and want to go to the airport. The second phrase will work only in 
a specific case. Thus, the abstract interface “Take me to the airport” is generally the way to go for 
a good, reusable OO design whose implementation would be different in Chicago, New York, or 
Cleveland.

Providing the Absolute Minimal User Interface Possible

When designing a class, the general rule is to always provide the user with as little knowledge of 
the inner workings of the class as possible. To accomplish this, follow these simple rules:

 Give the users only what they absolutely need. In effect, this means the class has as few 
interfaces as possible. When you start designing a class, start with a minimal interface. The 
design of a class is iterative, so you will soon discover that the minimal set of interfaces 
might not suffice. This is fine. 
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■ It is better to have to add interfaces because users really need it than to give the users 
more interfaces than they need. At times it is highly problematic for the user to have 
access to certain interfaces. For example, you don’t want an interface that provides salary 
information to all users—only the ones who need to know.

 For the moment, let’s use a hardware example to illustrate our software example. Imagine 
handing a user a PC box without a monitor or a keyboard. Obviously, the PC would be 
of little use. You have just provided the user with the minimal set of interfaces to the PC. 
However, this minimal set is insufficient, and it immediately becomes necessary to add 
interfaces.

 Public interfaces define what the users can access. If you initially hide the entire class 
from the user by making the interfaces private, when programmers start using the class, 
you will be forced to make certain methods public—these methods thus become the 
public interface.

 It is vital to design classes from a user’s perspective and not from an information systems 
viewpoint. Too often designers of classes (not to mention any other kind of software) 
design the class to make it fit into a specific technological model. Even if the designer 
takes a user’s perspective, it is still probably a technician user’s perspective, and the class 
is designed with an eye on getting it to work from a technology standpoint and not from 
ease of use for the user.

 Make sure when you are designing a class that you go over the requirements and the 
design with the people who will actually use it—not just developers (this includes 
all levels of testing). The class will most likely evolve and need to be updated when a 
prototype of the system is built.

Determining the Users

Let’s look again at the taxi example. We have already decided that the users are the ones who will 
actually use the system. This said, the obvious question is, who are the users?

The first impulse is to say the customers. This is only about half right. Although the customers are 
certainly users, the cabbie must be able to successfully provide the service to the customers. In 
other words, providing an interface that would, no doubt, please the customer, such as “Take me 
to the airport for free,” is not going to go over well with the cabbie. Thus, in reality, to build a real-
istic and usable interface, both the customer and the cabbie must be considered users. 

In short, any object that sends a message to the taxi object is considered a user (and yes, the users 
are objects, too). Figure 2.6 shows how the cabbie provides a service.

 

Looking Ahead

The cabbie is most likely an object as well.  
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Cabbie Customer

TAXI

Engage Service:
As long as I don't pay too much!!

Provide Service:
As long as I make a profit

Figure 2.6 Providing services.

Object Behavior

Identifying the users is only a part of the exercise. After the users are identified, you must deter-
mine the behaviors of the objects. From the viewpoint of all the users, begin identifying the 
purpose of each object and what it must do to perform properly. Note that many of the initial 
choices will not survive the final cut of the public interface. These choices are identified by 
gathering requirements using various methods such as UML Use Cases. 

Environmental Constraints

In their book Object-Oriented Design in Java, Gilbert and McCarty point out that the environment 
often imposes limitations on what an object can do. In fact, environmental constraints are almost 
always a factor. Computer hardware might limit software functionality. For example, a system 
might not be connected to a network, or a company might use a specific type of printer. In the 
taxi example, the cab cannot drive on a road if a bridge is out, even if it provides a quicker way to 
the airport.

Identifying the Public Interfaces

With all the information gathered about the users, the object behaviors, and the environment, 
you need to determine the public interfaces for each user object. So think about how you would 
use the taxi object:

 Get into the taxi.

 Tell the cabbie where you want to go.

 Pay the cabbie.

 Give the cabbie a tip.

 Get out of the taxi.

What do you need to do to use the taxi object?

 Have a place to go.

 Hail a taxi.

 Pay the cabbie money.



45Providing the Absolute Minimal User Interface Possible

Initially, you think about how the object is used and not how it is built. You might discover that 
the object needs more interfaces, such as “Put luggage in the trunk” or “Enter into a mindless 
conversation with the cabbie.” Figure 2.7 provides a class diagram that lists possible methods for 
the Cabbie class.

 

+hailTaxi:void
+enterTaxi:void
+greetCabbie:void
+specifyDestination:void
+payCabbie:void
+tipCabbie:void
+leaveTaxi:void

Cabbie

Figure 2.7 The methods in a Cabbie class.

As is always the case, nailing down the final interface is an iterative process. For each interface, 
you must determine whether the interface contributes to the operation of the object. If it does 
not, perhaps it is not necessary. Many OO texts recommend that each interface model only one 
behavior. This returns us to the question of how abstract we want to get with the design. If we 
have an interface called enterTaxi(), we certainly do not want enterTaxi() to have logic in it 
to pay the cabbie. If we do this, not only is the design somewhat illogical, but there is virtually no 
way that a user of the class can tell what has to be done to pay the cabbie.

Identifying the Implementation

After the public interfaces are chosen, you need to identify the implementation. After the class is 
designed and all the methods required to operate the class properly are in place, the specifics of 
how to get the class to work are considered.

Technically, anything that is not a public interface can be considered the implementation. This 
means that the user will never see any of the methods that are considered part of the imple-
mentation, including the method’s signature (which includes the name of the method and the 
parameter list), as well as the actual code inside the method. 

It is possible to have a private method that is used internally by the class. Any private method is 
considered part of the implementation given that the user will never see it and thus will not have 
access to it. For example, a class may have a changePassword() method; however, the same class 
may have a private method that encrypts the password. This method would be hidden from the 
user and called only from inside the changePassword() method. 

The implementation is totally hidden from the user. The code within public methods is a part of 
the implementation because the user cannot see it. (The user should see only the calling structure 
of an interface—not the code inside it.)
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This means that, theoretically, anything that is considered the implementation might change 
without affecting how the user interfaces with the class. This assumes, of course, that the imple-
mentation is providing the answers the user expects.

Whereas the interface represents how the user sees the object, the implementation is really the 
nuts and bolts of the object. The implementation contains the code that represents that state of 
an object.

Conclusion

In this chapter, we have explored three areas that can get you started on the path to thinking in 
an OO way. Remember that there is no firm list of issues pertaining to the OO thought process. 
Doing things in an OO way is more of an art than a science. Try to think of your own ways to 
describe OO thinking.

In Chapter 3, “More Object-Oriented Concepts,” we discuss the object life cycle: it is born, 
it lives, and it dies. While it is alive, it might transition through many states. For example, a 
DataBaseReader object is in one state if the database is open and another state if the database is 
closed. How this is represented depends on the design of the class.
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