
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780135166314
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780135166314
https://plusone.google.com/share?url=http://www.informit.com/title/9780135166314
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780135166314
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780135166314/Free-Sample-Chapter

Core Java

Volume II–Advanced Features

Eleventh Edition

This page intentionally left blank

Core Java

Volume II–Advanced Features

Eleventh Edition

Cay S. Horstmann

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact intlcs@pearson.com.

Visit us on the Web: informit.com

Library of Congress Preassigned Control Number: 2018963595

Copyright © 2019 Pearson Education Inc.

Portions copyright © 1996-2013 Oracle and/or its affiliates. All Rights Reserved.

Oracle America Inc. does not make any representations or warranties as to the accuracy, adequacy or
completeness of any information contained in this work, and is not responsible for any errors or omissions.

Microsoft and/or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose. All such
documents and related graphics are provided "as is" without warranty of any kind. Microsoft and/or its
respective suppliers hereby disclaim all warranties and conditions with regard to this information, including
all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular
purpose, title and non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for
any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data
or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection
with the use or performance of information available from the services. The documents and related graphics
contained herein could include technical inaccuracies or typographical errors. Changes are periodically
added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or
changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be
viewed in full within the software version specified.

Microsoft® Windows®, and Microsoft Office® are registered trademarks of the Microsoft Corporation in the
U.S.A. and other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft
Corporation.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-516631-4
ISBN-10: 0-13-516631-4

1 19

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com
http://www.pearsoned.com/permissions/

Contents

xvPreface ...

xxiAcknowledgments ...

1Chapter 1: Streams ..

2From Iterating to Stream Operations ...1.1
5Stream Creation ...1.2

11The filter, map, and flatMap Methods ...1.3
12Extracting Substreams and Combining Streams1.4
14Other Stream Transformations ...1.5
15Simple Reductions ..1.6
16The Optional Type ...1.7
17Getting an Optional Value ..1.7.1
17Consuming an Optional Value ..1.7.2
18Pipelining Optional Values ..1.7.3
19How Not to Work with Optional Values1.7.4
20Creating Optional Values ..1.7.5
21Composing Optional Value Functions with flatMap1.7.6
22Turning an Optional into a Stream1.7.7
25Collecting Results ...1.8
30Collecting into Maps ..1.9
34Grouping and Partitioning ..1.10
36Downstream Collectors ...1.11
41Reduction Operations ..1.12
43Primitive Type Streams ...1.13
48Parallel Streams ..1.14

55Chapter 2: Input and Output ..

56Input/Output Streams ..2.1
56Reading and Writing Bytes ..2.1.1
59The Complete Stream Zoo ...2.1.2

v

63Combining Input/Output Stream Filters2.1.3
68Text Input and Output ...2.1.4
68How to Write Text Output ..2.1.5
70How to Read Text Input ..2.1.6
72Saving Objects in Text Format ..2.1.7
75Character Encodings ...2.1.8
78Reading and Writing Binary Data ..2.2
78The DataInput and DataOutput interfaces2.2.1
80Random-Access Files ..2.2.2
85ZIP Archives ..2.2.3
88Object Input/Output Streams and Serialization2.3
88Saving and Loading Serializable Objects2.3.1

93
Understanding the Object Serialization File
Format ..

2.3.2

100Modifying the Default Serialization Mechanism2.3.3
102Serializing Singletons and Typesafe Enumerations2.3.4
103Versioning ..2.3.5
106Using Serialization for Cloning ...2.3.6
109Working with Files ...2.4
109Paths ...2.4.1
112Reading and Writing Files ...2.4.2
113Creating Files and Directories ...2.4.3
114Copying, Moving, and Deleting Files2.4.4
116Getting File Information ...2.4.5
118Visiting Directory Entries ...2.4.6
120Using Directory Streams ..2.4.7
123ZIP File Systems ..2.4.8
124Memory-Mapped Files ...2.5
125Memory-Mapped File Performance2.5.1
132The Buffer Data Structure ..2.5.2
134File Locking ...2.6
137Regular Expressions ...2.7
137The Regular Expression Syntax ...2.7.1
142Matching a String ...2.7.2
145Finding Multiple Matches ..2.7.3

Contentsvi

147Splitting along Delimiters ..2.7.4
148Replacing Matches ..2.7.5

153Chapter 3: XML ...

154Introducing XML ..3.1
156The Structure of an XML Document ...3.2
159Parsing an XML Document ...3.3
169Validating XML Documents ..3.4
171Document Type Definitions ..3.4.1
179XML Schema ...3.4.2
182A Practical Example ..3.4.3
188Locating Information with XPath ...3.5
193Using Namespaces ...3.6
196Streaming Parsers ...3.7
197Using the SAX Parser ...3.7.1
202Using the StAX Parser ..3.7.2
206Generating XML Documents ..3.8
206Documents without Namespaces3.8.1
207Documents with Namespaces ...3.8.2
208Writing Documents ...3.8.3
210Writing an XML Document with StAX3.8.4
215An Example: Generating an SVG File3.8.5
216XSL Transformations ..3.9

227Chapter 4: Networking ...

227Connecting to a Server ..4.1
227Using Telnet ..4.1.1
230Connecting to a Server with Java4.1.2
232Socket Timeouts ..4.1.3
234Internet Addresses ..4.1.4
236Implementing Servers ..4.2
236Server Sockets ...4.2.1
239Serving Multiple Clients ..4.2.2
243Half-Close ..4.2.3
244Interruptible Sockets ...4.2.4
251Getting Web Data ..4.3

viiContents

251URLs and URIs ..4.3.1
254Using a URLConnection to Retrieve Information4.3.2
261Posting Form Data ..4.3.3
271The HTTP Client ..4.4
278Sending E-Mail ...4.5

283Chapter 5: Database Programming ..

284The Design of JDBC ...5.1
285JDBC Driver Types ...5.1.1
286Typical Uses of JDBC ...5.1.2
287The Structured Query Language ..5.2
293JDBC Configuration ...5.3
294Database URLs ..5.3.1
294Driver JAR Files ..5.3.2
294Starting the Database ...5.3.3
295Registering the Driver Class ..5.3.4
296Connecting to the Database ..5.3.5
299Working with JDBC Statements ...5.4
299Executing SQL Statements ...5.4.1
303Managing Connections, Statements, and Result Sets5.4.2
304Analyzing SQL Exceptions ...5.4.3
306Populating a Database ...5.4.4
310Query Execution ...5.5
311Prepared Statements ...5.5.1
317Reading and Writing LOBs ..5.5.2
319SQL Escapes ..5.5.3
321Multiple Results ..5.5.4
322Retrieving Autogenerated Keys ...5.5.5
322Scrollable and Updatable Result Sets ..5.6
323Scrollable Result Sets ...5.6.1
325Updatable Result Sets ...5.6.2
329Row Sets ..5.7
330Constructing Row Sets ...5.7.1
330Cached Row Sets ..5.7.2
334Metadata ..5.8
344Transactions ..5.9

Contentsviii

344Programming Transactions with JDBC5.9.1
345Save Points ..5.9.2
345Batch Updates ...5.9.3
348Advanced SQL Types ...5.9.4
349Connection Management in Web and Enterprise Applications ..5.10

353Chapter 6: The Date and Time API ..

354The Time Line ..6.1
358Local Dates ...6.2
364Date Adjusters ..6.3
365Local Time ..6.4
367Zoned Time ..6.5
371Formatting and Parsing ...6.6
376Interoperating with Legacy Code ...6.7

379Chapter 7: Internationalization ..

380Locales ...7.1
380Why Locales? ...7.1.1
381Specifying Locales ...7.1.2
384The Default Locale ...7.1.3
384Display Names ..7.1.4
387Number Formats ...7.2
387Formatting Numeric Values ...7.2.1
393Currencies ..7.2.2
394Date and Time ..7.3
402Collation and Normalization ..7.4
409Message Formatting ...7.5
409Formatting Numbers and Dates ..7.5.1
411Choice Formats ...7.5.2
413Text Input and Output ...7.6
414Text Files ..7.6.1
414Line Endings ..7.6.2
414The Console ..7.6.3
415Log Files ...7.6.4
415The UTF-8 Byte Order Mark ..7.6.5
416Character Encoding of Source Files7.6.6
417Resource Bundles ...7.7

ixContents

417Locating Resource Bundles ..7.7.1
418Property Files ..7.7.2
419Bundle Classes ..7.7.3
421A Complete Example ...7.8

439Chapter 8: Scripting, Compiling, and Annotation Processing

440Scripting for the Java Platform ...8.1
440Getting a Scripting Engine ...8.1.1
441Script Evaluation and Bindings ...8.1.2
444Redirecting Input and Output ...8.1.3
444Calling Scripting Functions and Methods8.1.4
446Compiling a Script ..8.1.5
447An Example: Scripting GUI Events8.1.6
452The Compiler API ..8.2
453Invoking the Compiler ...8.2.1
453Launching a Compilation Task ...8.2.2
454Capturing Diagnostics ..8.2.3
454Reading Source Files from Memory8.2.4
455Writing Byte Codes to Memory ..8.2.5
457An Example: Dynamic Java Code Generation8.2.6
463Using Annotations ..8.3
464An Introduction into Annotations8.3.1
465An Example: Annotating Event Handlers8.3.2
471Annotation Syntax ..8.4
471Annotation Interfaces ...8.4.1
473Annotations ...8.4.2
475Annotating Declarations ..8.4.3
476Annotating Type Uses ..8.4.4
477Annotating this ..8.4.5
478Standard Annotations ..8.5
480Annotations for Compilation ...8.5.1
480Annotations for Managing Resources8.5.2
481Meta-Annotations ...8.5.3
484Source-Level Annotation Processing ..8.6
484Annotation Processors ...8.6.1
485The Language Model API ..8.6.2

Contentsx

486Using Annotations to Generate Source Code8.6.3
489Bytecode Engineering ..8.7
490Modifying Class Files ...8.7.1
495Modifying Bytecodes at Load Time8.7.2

499Chapter 9: The Java Platform Module System ...

500The Module Concept ...9.1
501Naming Modules ..9.2
502The Modular “Hello, World!” Program ..9.3
504Requiring Modules ...9.4
506Exporting Packages ..9.5
510Modular JARs ..9.6
511Modules and Reflective Access ...9.7
515Automatic Modules ..9.8
517The Unnamed Module ...9.9
518Command-Line Flags for Migration ...9.10
519Transitive and Static Requirements ...9.11
521Qualified Exporting and Opening ..9.12
522Service Loading ..9.13
524Tools for Working with Modules ...9.14

529Chapter 10: Security ...

530Class Loaders ..10.1
530The Class-Loading Process ..10.1.1
532The Class Loader Hierarchy ..10.1.2
534Using Class Loaders as Namespaces10.1.3
534Writing Your Own Class Loader10.1.4
541Bytecode Verification ..10.1.5
546Security Managers and Permissions ...10.2
546Permission Checking ..10.2.1
547Java Platform Security ..10.2.2
551Security Policy Files ..10.2.3
559Custom Permissions ...10.2.4
560Implementation of a Permission Class10.2.5
566User Authentication ...10.3
566The JAAS Framework ...10.3.1
573JAAS Login Modules ..10.3.2

xiContents

582Digital Signatures ...10.4
583Message Digests ..10.4.1
587Message Signing ...10.4.2
589Verifying a Signature ..10.4.3
592The Authentication Problem ...10.4.4
594Certificate Signing ..10.4.5
596Certificate Requests ..10.4.6
597Code Signing ...10.4.7
599Encryption ...10.5
600Symmetric Ciphers ...10.5.1
602Key Generation ...10.5.2
607Cipher Streams ..10.5.3
608Public Key Ciphers ...10.5.4

613Chapter 11: Advanced Swing and Graphics ...

613Tables ..11.1
614A Simple Table ..11.1.1
618Table Models ...11.1.2
622Working with Rows and Columns11.1.3
622Column Classes ...11.1.3.1
623Accessing Table Columns11.1.3.2
624Resizing Columns ..11.1.3.3
625Resizing Rows ..11.1.3.4
626Selecting Rows, Columns, and Cells11.1.3.5
627Sorting Rows ..11.1.3.6
628Filtering Rows ..11.1.3.7
630Hiding and Displaying Columns11.1.3.8
639Cell Rendering and Editing ...11.1.4
639Rendering Cells ...11.1.4.1
641Rendering the Header ...11.1.4.2
641Editing Cells ...11.1.4.3
642Custom Editors ..11.1.4.4
652Trees ..11.2
654Simple Trees ..11.2.1
663Editing Trees and Tree Paths11.2.1.1
672Node Enumeration ..11.2.2

Contentsxii

674Rendering Nodes ..11.2.3
677Listening to Tree Events ..11.2.4
684Custom Tree Models ..11.2.5
693Advanced AWT ..11.3
694The Rendering Pipeline ..11.3.1
696Shapes ..11.3.2
697The Shape Class Hierarchy11.3.2.1
698Using the Shape Classes11.3.2.2
714Areas ..11.3.3
715Strokes ..11.3.4
724Paint ...11.3.5
727Coordinate Transformations ..11.3.6
733Clipping ...11.3.7
735Transparency and Composition ..11.3.8
744Raster Images ..11.4
745Readers and Writers for Images ..11.4.1

745
Obtaining Readers and Writers for Image File
Types ...

11.4.1.1

747
Reading and Writing Files with Multiple
Images ...

11.4.1.2

756Image Manipulation ..11.4.2
756Constructing Raster Images11.4.2.1
763Filtering Images ...11.4.2.2
772Printing ..11.5
772Graphics Printing ..11.5.1
782Multiple-Page Printing ..11.5.2
792Print Services ...11.5.3
796Stream Print Services ...11.5.4
799Printing Attributes ..11.5.5

809Chapter 12: Native Methods ..

810Calling a C Function from a Java Program12.1
817Numeric Parameters and Return Values12.2
819String Parameters ...12.3
825Accessing Fields ..12.4
825Accessing Instance Fields ...12.4.1

xiiiContents

829Accessing Static Fields ..12.4.2
831Encoding Signatures ...12.5
832Calling Java Methods ...12.6
833Instance Methods ..12.6.1
834Static Methods ...12.6.2
835Constructors ..12.6.3
835Alternative Method Invocations ..12.6.4
840Accessing Array Elements ...12.7
844Handling Errors ..12.8
849Using the Invocation API ..12.9
855A Complete Example: Accessing the Windows Registry12.10
855Overview of the Windows Registry12.10.1
856A Java Platform Interface for Accessing the Registry12.10.2

857
Implementation of Registry Access Functions as
Native Methods ...

12.10.3

873Index ...

Contentsxiv

Preface

To the Reader

The book you have in your hands is the second volume of the eleventh edition
of Core Java, fully updated for Java SE 11. The first volume covers the essential
features of the language; this volume deals with the advanced topics that a
programmer needs to know for professional software development. Thus, as
with the first volume and the previous editions of this book, we are still tar-
geting programmers who want to put Java technology to work in real projects.

As is the case with any book, errors and inaccuracies are inevitable. Should
you find any in this book, we would very much like to hear about them. Of
course, we would prefer to hear about them only once. For this reason, we
have put up a web site at http://horstmann.com/corejava with a FAQ, bug fixes, and
workarounds. Strategically placed at the end of the bug report web page (to
encourage you to read the previous reports) is a form that you can use to
report bugs or problems and to send suggestions for improvements for future
editions.

About This Book

The chapters in this book are, for the most part, independent of each other.
You should be able to delve into whatever topic interests you the most and
read the chapters in any order.

In Chapter 1, you will learn all about the Java stream library that brings a
modern flavor to processing data, by specifying what you want without de-
scribing in detail how the result should be obtained. This allows the stream
library to focus on an optimal evaluation strategy, which is particularly
advantageous for optimizing concurrent computations.

The topic of Chapter 2 is input and output handling (I/O). In Java, all input
and output is handled through input/output streams. These streams (not to
be confused with those in Chapter 1) let you deal, in a uniform manner, with
communications among various sources of data, such as files, network con-
nections, or memory blocks. We include detailed coverage of the reader and

xv

http://horstmann.com/corejava

writer classes that make it easy to deal with Unicode. We show you what
goes on under the hood when you use the object serialization mechanism,
which makes saving and loading objects easy and convenient. We then move
on to regular expressions and working with files and paths. Throughout this
chapter, you will find welcome enhancements in recent Java versions.

Chapter 3 covers XML. We show you how to parse XML files, how to generate
XML, and how to use XSL transformations. As a useful example, we show
you how to specify the layout of a Swing form in XML. We also discuss the
XPath API, which makes finding needles in XML haystacks much easier.

Chapter 4 covers the networking API. Java makes it phenomenally easy to
do complex network programming. We show you how to make network
connections to servers, how to implement your own servers, and how to
make HTTP connections. This chapter includes coverage of the new HTTP
client.

Chapter 5 covers database programming. The main focus is on JDBC, the
Java database connectivity API that lets Java programs connect to relational
databases. We show you how to write useful programs to handle realistic
database chores, using a core subset of the JDBC API. (A complete treatment
of the JDBC API would require a book almost as big as this one.) We finish
the chapter with a brief introduction into hierarchical databases and discuss
JNDI (the Java Naming and Directory Interface) and LDAP (the Lightweight
Directory Access Protocol).

Java had two prior attempts at libraries for handling date and time. The third
one was the charm in Java 8. In Chapter 6, you will learn how to deal with
the complexities of calendars and time zones, using the new date and time
library.

Chapter 7 discusses a feature that we believe can only grow in importance:
internationalization. The Java programming language is one of the few lan-
guages designed from the start to handle Unicode, but the internationalization
support on the Java platform goes much further. As a result, you can interna-
tionalize Java applications so that they cross not only platforms but country
boundaries as well. For example, we show you how to write a retirement
calculator that uses either English, German, or Chinese languages.

Chapter 8 discusses three techniques for processing code. The scripting and
compiler APIs allow your program to call code in scripting languages such
as JavaScript or Groovy, and to compile Java code. Annotations allow you to
add arbitrary information (sometimes called metadata) to a Java program. We

Prefacexvi

show you how annotation processors can harvest these annotations at the
source or class file level, and how annotations can be used to influence
the behavior of classes at runtime. Annotations are only useful with tools,
and we hope that our discussion will help you select useful annotation
processing tools for your needs.

In Chapter 9, you will learn about the Java Platform Module System that was
introduced in Java 9 to facilitate an orderly evolution of the Java platform and
core libraries. This module system provides encapsulation for packages and a
mechanism for describing module requirements. You will learn the properties
of modules so that you can decide whether to use them in your own applica-
tions. Even if you decide not to, you need to know the new rules so that you
can interact with the Java platform and other modularized libraries.

Chapter 10 takes up the Java security model. The Java platform was designed
from the ground up to be secure, and this chapter takes you under the hood
to see how this design is implemented. We show you how to write your own
class loaders and security managers for special-purpose applications. Then,
we take up the security API that allows for such important features as message
and code signing, authorization and authentication, and encryption. We
conclude with examples that use the AES and RSA encryption algorithms.

Chapter 11 contains all the Swing material that didn’t make it into Volume I,
especially the important but complex tree and table components. We also
cover the Java 2D API, which you can use to create realistic drawings and
special effects. Of course, not many programmers need to program Swing
user interfaces these days, so we pay particular attention to features that are
useful for images that can be generated on a server.

Chapter 12 takes up native methods, which let you call methods written for
a specific machine such as the Microsoft Windows API. Obviously, this feature
is controversial: Use native methods, and the cross-platform nature of Java
vanishes. Nonetheless, every serious programmer writing Java applications
for specific platforms needs to know these techniques. At times, you need to
turn to the operating system’s API for your target platform when you interact
with a device or service that is not supported by Java. We illustrate this by
showing you how to access the registry API in Windows from a Java program.

As always, all chapters have been completely revised for the latest version
of Java. Outdated material has been removed, and the new APIs of Java 9,
10, and 11 are covered in detail.

xviiPreface

Conventions

As is common in many computer books, we use monospace type to represent
computer code.

NOTE: Notes are tagged with “note” icons that look like this.

TIP: Tips are tagged with “tip” icons that look like this.

CAUTION: When there is danger ahead, we warn you with a “caution” icon.

C++NOTE: There are a number of C++ notes that explain the difference between
the Java programming language and C++. You can skip them if you aren’t
interested in C++.

Java comes with a large programming library, or Application Programming
Interface (API). When using an API call for the first time, we add a short
summary description at the end of the section. These descriptions are a bit
more informal but, we hope, also a little more informative than those in the
official online API documentation. The names of interfaces are in italics, just
like in the official documentation. The number after a class, interface, or
method name is the JDK version in which the feature was introduced.

Application Programming Interface 1.2

Programs whose source code is included in the companion code for this book
are listed as examples, for instance

Listing 1.1 ScriptTest.java

You can download the companion code from http://horstmann.com/corejava.

Prefacexviii

http://horstmann.com/corejava

This page intentionally left blank

Acknowledgments

Writing a book is always a monumental effort, and rewriting doesn’t seem
to be much easier, especially with such a rapid rate of change in Java technol-
ogy. Making a book a reality takes many dedicated people, and it is my great
pleasure to acknowledge the contributions of the entire Core Java team.

A large number of individuals at Pearson provided valuable assistance, but
they managed to stay behind the scenes. I’d like them all to know how much
I appreciate their efforts. As always, my warm thanks go to my editor, Greg
Doench, for steering the book through the writing and production process,
and for allowing me to be blissfully unaware of the existence of all those
folks behind the scenes. I am very grateful to Julie Nahil for production
support, and to Dmitry Kirsanov and Alina Kirsanova for copyediting and
typesetting the manuscript.

Thanks to the many readers of earlier editions who reported embarrassing
errors and made lots of thoughtful suggestions for improvement. I am partic-
ularly grateful to the excellent reviewing team that went over the manuscript
with an amazing eye for detail and saved me from many more embarrassing
errors.

Reviewers of this and earlier editions include Chuck Allison (Contributing
Editor, C/C++ Users Journal), Lance Anderson (Oracle), Alec Beaton (Point-
Base, Inc.), Cliff Berg (iSavvix Corporation), Joshua Bloch, David Brown,
Corky Cartwright, Frank Cohen (PushToTest), Chris Crane (devXsolution),
Dr. Nicholas J. De Lillo (Manhattan College), Rakesh Dhoopar (Oracle), Robert
Evans (Senior Staff, The Johns Hopkins University Applied Physics Lab),
David Geary (Sabreware), Jim Gish (Oracle), Brian Goetz (Oracle), Angela
Gordon, Dan Gordon, Rob Gordon, John Gray (University of Hartford),
Cameron Gregory (olabs.com), Steve Haines, Marty Hall (The Johns Hopkins
University Applied Physics Lab), Vincent Hardy, Dan Harkey (San Jose State
University), William Higgins (IBM), Vladimir Ivanovic (PointBase), Jerry
Jackson (ChannelPoint Software), Tim Kimmet (Preview Systems), Chris Laffra,
Charlie Lai, Angelika Langer, Doug Langston, Hang Lau (McGill University),
Mark Lawrence, Doug Lea (SUNY Oswego), Gregory Longshore, Bob Lynch
(Lynch Associates), Philip Milne (consultant), Mark Morrissey (The Oregon
Graduate Institute), Mahesh Neelakanta (Florida Atlantic University), Hao
Pham, Paul Philion, Blake Ragsdell, Ylber Ramadani (Ryerson University),

xxi

http://olabs.com

Stuart Reges (University of Arizona), Simon Ritter, Rich Rosen (Interactive
Data Corporation), Peter Sanders (ESSI University, Nice, France), Dr. Paul
Sanghera (San Jose State University and Brooks College), Paul Sevinc (Teamup
AG), Yoshiki Shabata, Devang Shah, Richard Slywczak (NASA/Glenn Research
Center), Bradley A. Smith, Steven Stelting, Christopher Taylor, Luke Taylor
(Valtech), George Thiruvathukal, Kim Topley (author of Core JFC, Second Edi-
tion), Janet Traub, Paul Tyma (consultant), Christian Ullenboom, Peter van
der Linden, Burt Walsh, Joe Wang (Oracle), and Dan Xu (Oracle).

Cay Horstmann
San Francisco, California
December 2018

Acknowledgmentsxxii

2CHAPTER

Input and Output

In this chapter

• 2.1 Input/Output Streams, page 56

• 2.2 Reading and Writing Binary Data, page 78

• 2.3 Object Input/Output Streams and Serialization, page 88

• 2.4 Working with Files, page 109

• 2.5 Memory-Mapped Files, page 124

• 2.6 File Locking, page 134

• 2.7 Regular Expressions, page 137

In this chapter, we cover the Java Application Programming Interfaces (APIs)
for input and output. You will learn how to access files and directories and
how to read and write data in binary and text format. This chapter also shows
you the object serialization mechanism that lets you store objects as easily
as you can store text or numeric data. Next, we will turn to working with
files and directories. We finish the chapter with a discussion of regular expres-
sions, even though they are not actually related to input and output. We
couldn’t find a better place to handle that topic, and apparently neither could
the Java team—the regular expression API specification was attached to a
specification request for “new I/O” features.

55

2.1 Input/Output Streams

In the Java API, an object from which we can read a sequence of bytes is
called an input stream. An object to which we can write a sequence of bytes
is called an output stream. These sources and destinations of byte sequences
can be—and often are—files, but they can also be network connections and
even blocks of memory. The abstract classes InputStream and OutputStream are the
basis for a hierarchy of input/output (I/O) classes.

NOTE: These input/output streams are unrelated to the streams that you saw
in the preceding chapter. For clarity, we will use the terms input stream, output
stream, or input/output stream whenever we discuss streams that are used for
input and output.

Byte-oriented input/output streams are inconvenient for processing information
stored in Unicode (recall that Unicode uses multiple bytes per character).
Therefore, a separate hierarchy provides classes, inheriting from the abstract
Reader and Writer classes, for processing Unicode characters. These classes have
read and write operations that are based on two-byte char values (that is,
UTF-16 code units) rather than byte values.

2.1.1 Reading and Writing Bytes

The InputStream class has an abstract method:

abstract int read()

This method reads one byte and returns the byte that was read, or -1 if it
encounters the end of the input source. The designer of a concrete input
stream class overrides this method to provide useful functionality. For example,
in the FileInputStream class, this method reads one byte from a file. System.in is a
predefined object of a subclass of InputStream that allows you to read information
from “standard input,” that is, the console or a redirected file.

The InputStream class also has nonabstract methods to read an array of bytes
or to skip a number of bytes. Since Java 9, there is a very useful method to
read all bytes of a stream:

byte[] bytes = in.readAllBytes();

There are also methods to read a given number of bytes—see the API notes.

These methods call the abstract read method, so subclasses need to override
only one method.

Chapter 2 Input and Output56

http://System.in

Similarly, the OutputStream class defines the abstract method

abstract void write(int b)

which writes one byte to an output location.

If you have an array of bytes, you can write them all at once:

byte[] values = . . .;
out.write(values);

The transferTo method transfers all bytes from an input stream to an output
stream:

in.transferTo(out);

Both the read and write methods block until the byte is actually read or written.
This means that if the input stream cannot immediately be accessed (usually
because of a busy network connection), the current thread blocks. This gives
other threads the chance to do useful work while the method is waiting for
the input stream to become available again.

The available method lets you check the number of bytes that are currently
available for reading. This means a fragment like the following is unlikely to
block:

int bytesAvailable = in.available();
if (bytesAvailable > 0)
{
 var data = new byte[bytesAvailable];
 in.read(data);
}

When you have finished reading or writing to an input/output stream, close
it by calling the close method. This call frees up the operating system resources
that are in limited supply. If an application opens too many input/output
streams without closing them, system resources can become depleted. Closing
an output stream also flushes the buffer used for the output stream: Any bytes
that were temporarily placed in a buffer so that they could be delivered as a
larger packet are sent off. In particular, if you do not close a file, the last
packet of bytes might never be delivered. You can also manually flush the
output with the flush method.

Even if an input/output stream class provides concrete methods to work with
the raw read and write functions, application programmers rarely use them.
The data that you are interested in probably contain numbers, strings, and
objects, not raw bytes.

572.1 Input/Output Streams

Instead of working with bytes, you can use one of many input/output classes
that build upon the basic InputStream and OutputStream classes.

java.io.InputStream 1.0

• abstract int read()

reads a byte of data and returns the byte read; returns -1 at the end of the input
stream.

• int read(byte[] b)

reads into an array of bytes and returns the actual number of bytes read, or -1
at the end of the input stream; this method reads at most b.length bytes.

• int read(byte[] b, int off, int len)
• int readNBytes(byte[] b, int off, int len) 9

reads up to len bytes, if available without blocking (read), or blocking until all
values have been read (readNBytes). Values are placed into b, starting at off.
Returns the actual number of bytes read, or -1 at the end of the input stream.

• byte[] readAllBytes() 9

yields an array of all bytes that can be read from this stream.

• long transferTo(OutputStream out) 9

transfers all bytes from this input stream to the given output stream, returning
the number of bytes transferred. Neither stream is closed.

• long skip(long n)

skips n bytes in the input stream, returns the actual number of bytes skipped
(which may be less than n if the end of the input stream was encountered).

• int available()

returns the number of bytes available, without blocking (recall that blocking
means that the current thread loses its turn).

• void close()

closes the input stream.

• void mark(int readlimit)

puts a marker at the current position in the input stream (not all streams support
this feature). If more than readlimit bytes have been read from the input stream,
the stream is allowed to forget the marker.

• void reset()

returns to the last marker. Subsequent calls to read reread the bytes. If there is
no current marker, the input stream is not reset.

• boolean markSupported()

returns true if the input stream supports marking.

Chapter 2 Input and Output58

http://java.io

java.io.OutputStream 1.0

• abstract void write(int n)

writes a byte of data.

• void write(byte[] b)
• void write(byte[] b, int off, int len)

writes all bytes, or len bytes starting at off, in the array b.

• void close()

flushes and closes the output stream.

• void flush()

flushes the output stream—that is, sends any buffered data to its destination.

2.1.2 The Complete Stream Zoo

Unlike C, which gets by just fine with a single type FILE*, Java has a whole
zoo of more than 60 (!) different input/output stream types (see Figures 2.1
and 2.2).

Let’s divide the animals in the input/output stream zoo by how they are used.
There are separate hierarchies for classes that process bytes and characters.
As you saw, the InputStream and OutputStream classes let you read and write indi-
vidual bytes and arrays of bytes. These classes form the basis of the hierarchy
shown in Figure 2.1. To read and write strings and numbers, you need more
capable subclasses. For example, DataInputStream and DataOutputStream let you read
and write all the primitive Java types in binary format. Finally, there are
input/output streams that do useful stuff; for example, the ZipInputStream and
ZipOutputStream let you read and write files in the familiar ZIP compression format.

For Unicode text, on the other hand, you can use subclasses of the abstract
classes Reader and Writer (see Figure 2.2). The basic methods of the Reader and
Writer classes are similar to those of InputStream and OutputStream.

abstract int read()
abstract void write(int c)

The read method returns either a UTF-16 code unit (as an integer between 0
and 65535) or -1 when you have reached the end of the file. The write method
is called with a Unicode code unit. (See Volume I, Chapter 3 for a discussion
of Unicode code units.)

There are four additional interfaces: Closeable, Flushable, Readable, and Appendable
(see Figure 2.3). The first two interfaces are very simple, with methods

void close() throws IOException

592.1 Input/Output Streams

http://java.io

Figure 2.1 Input and output stream hierarchy

and

void flush()

respectively. The classes InputStream, OutputStream, Reader, and Writer all implement
the Closeable interface.

Chapter 2 Input and Output60

Figure 2.2 Reader and writer hierarchy

NOTE: The java.io.Closeable interface extends the java.lang.AutoCloseable interface.
Therefore, you can use the try-with-resources statement with any Closeable.
Why have two interfaces? The closemethod of the Closeable interface only throws
an IOException, whereas the AutoCloseable.closemethod may throw any exception.

OutputStream and Writer implement the Flushable interface.

The Readable interface has a single method

int read(CharBuffer cb)

612.1 Input/Output Streams

http://java.io

Figure 2.3 The Closeable, Flushable, Readable, and Appendable interfaces

The CharBuffer class has methods for sequential and random read/write access.
It represents an in-memory buffer or a memory-mapped file. (See Section 2.5.2,
“The Buffer Data Structure,” on p. 132 for details.)

The Appendable interface has two methods for appending single characters and
character sequences:

Appendable append(char c)
Appendable append(CharSequence s)

The CharSequence interface describes basic properties of a sequence of char values.
It is implemented by String, CharBuffer, StringBuilder, and StringBuffer.

Of the input/output stream classes, only Writer implements Appendable.

java.io.Closeable 5.0

• void close()

closes this Closeable. This method may throw an IOException.

Chapter 2 Input and Output62

http://java.io

java.io.Flushable 5.0

• void flush()

flushes this Flushable.

java.lang.Readable 5.0

• int read(CharBuffer cb)

attempts to read as many char values into cb as it can hold. Returns the number
of values read, or -1 if no further values are available from this Readable.

java.lang.Appendable 5.0

• Appendable append(char c)
• Appendable append(CharSequence cs)

appends the given code unit, or all code units in the given sequence, to this
Appendable; returns this.

java.lang.CharSequence 1.4

• char charAt(int index)

returns the code unit at the given index.

• int length()

returns the number of code units in this sequence.

• CharSequence subSequence(int startIndex, int endIndex)

returns a CharSequence consisting of the code units stored from index startIndex
to endIndex - 1.

• String toString()

returns a string consisting of the code units of this sequence.

2.1.3 Combining Input/Output Stream Filters

FileInputStream and FileOutputStream give you input and output streams attached to
a disk file. You need to pass the file name or full path name of the file to the
constructor. For example,

632.1 Input/Output Streams

http://java.io

var fin = new FileInputStream("employee.dat");

looks in the user directory for a file named employee.dat.

TIP: All the classes in java.io interpret relative path names as starting from
the user’s working directory. You can get this directory by a call to System
.getProperty("user.dir").

CAUTION: Since the backslash character is the escape character in Java
strings, be sure to use \\ for Windows-style path names (for example,
C:\\Windows\\win.ini). In Windows, you can also use a single forward slash
(C:/Windows/win.ini) becausemostWindows file-handling system calls will interpret
forward slashes as file separators. However, this is not recommended—the
behavior of the Windows system functions is subject to change. Instead, for
portable programs, use the file separator character for the platform on which
your program runs. It is available as the constant string java.io.File.separator.

Like the abstract InputStream and OutputStream classes, these classes only support
reading and writing at the byte level. That is, we can only read bytes and
byte arrays from the object fin.

byte b = (byte) fin.read();

As you will see in the next section, if we just had a DataInputStream, we could
read numeric types:

DataInputStream din = . . .;
double x = din.readDouble();

But just as the FileInputStream has no methods to read numeric types, the
DataInputStream has no method to get data from a file.

Java uses a clever mechanism to separate two kinds of responsibilities. Some
input streams (such as the FileInputStream and the input stream returned by the
openStream method of the URL class) can retrieve bytes from files and other
more exotic locations. Other input streams (such as the DataInputStream) can as-
semble bytes into more useful data types. The Java programmer has to com-
bine the two. For example, to be able to read numbers from a file, first create
a FileInputStream and then pass it to the constructor of a DataInputStream.

var fin = new FileInputStream("employee.dat");
var din = new DataInputStream(fin);
double x = din.readDouble();

Chapter 2 Input and Output64

http://java.io
http://java.io

If you look at Figure 2.1 again, you can see the classes FilterInputStream and
FilterOutputStream. The subclasses of these classes are used to add capabilities
to input/output streams that process bytes.

You can add multiple capabilities by nesting the filters. For example, by de-
fault, input streams are not buffered. That is, every call to read asks the oper-
ating system to dole out yet another byte. It is more efficient to request blocks
of data instead and store them in a buffer. If you want buffering and the data
input methods for a file, use the following rather monstrous sequence of
constructors:

var din = new DataInputStream(
 new BufferedInputStream(
 new FileInputStream("employee.dat")));

Notice that we put the DataInputStream last in the chain of constructors because
we want to use the DataInputStream methods, and we want them to use the
buffered read method.

Sometimes you’ll need to keep track of the intermediate input streams when
chaining them together. For example, when reading input, you often need to
peek at the next byte to see if it is the value that you expect. Java provides
the PushbackInputStream for this purpose.

var pbin = new PushbackInputStream(
 new BufferedInputStream(
 new FileInputStream("employee.dat")));

Now you can speculatively read the next byte

int b = pbin.read();

and throw it back if it isn’t what you wanted.

if (b != '<') pbin.unread(b);

However, reading and unreading are the only methods that apply to a push-
back input stream. If you want to look ahead and also read numbers, then
you need both a pushback input stream and a data input stream reference.

var din = new DataInputStream(
pbin = new PushbackInputStream(

 new BufferedInputStream(
 new FileInputStream("employee.dat"))));

Of course, in the input/output libraries of other programming languages,
niceties such as buffering and lookahead are automatically taken care of—so
it is a bit of a hassle to resort, in Java, to combining stream filters. However,
the ability to mix and match filter classes to construct useful sequences of

652.1 Input/Output Streams

input/output streams does give you an immense amount of flexibility. For
example, you can read numbers from a compressed ZIP file by using the
following sequence of input streams (see Figure 2.4):

var zin = new ZipInputStream(new FileInputStream("employee.zip"));
var din = new DataInputStream(zin);

(See Section 2.2.3, “ZIP Archives,” on p. 85 for more on Java’s handling of
ZIP files.)

Figure 2.4 A sequence of filtered input streams

java.io.FileInputStream 1.0

• FileInputStream(String name)
• FileInputStream(File file)

creates a new file input stream using the file whose path name is specified by
the name string or the file object. (The File class is described at the end of this
chapter.) Path names that are not absolute are resolved relative to the working
directory that was set when the VM started.

Chapter 2 Input and Output66

http://java.io

java.io.FileOutputStream 1.0

• FileOutputStream(String name)
• FileOutputStream(String name, boolean append)
• FileOutputStream(File file)
• FileOutputStream(File file, boolean append)

creates a new file output stream specified by the name string or the file object.
(The File class is described at the end of this chapter.) If the append parameter
is true, an existing file with the same name will not be deleted and data will
be added at the end of the file. Otherwise, this method deletes any existing
file with the same name.

java.io.BufferedInputStream 1.0

• BufferedInputStream(InputStream in)

creates a buffered input stream. A buffered input stream reads bytes from a
stream without causing a device access every time. When the buffer is empty,
a new block of data is read into the buffer.

java.io.BufferedOutputStream 1.0

• BufferedOutputStream(OutputStream out)

creates a buffered output stream. A buffered output stream collects bytes to be
written without causing a device access every time. When the buffer fills up or
when the stream is flushed, the data are written.

java.io.PushbackInputStream 1.0

• PushbackInputStream(InputStream in)
• PushbackInputStream(InputStream in, int size)

constructs an input stream with one-byte lookahead or a pushback buffer of
specified size.

• void unread(int b)

pushes back a byte, which is retrieved again by the next call to read.

672.1 Input/Output Streams

http://java.io
http://java.io
http://java.io
http://java.io

2.1.4 Text Input and Output

When saving data, you have the choice between binary and text formats. For
example, if the integer 1234 is saved in binary, it is written as the sequence of
bytes 00 00 04 D2 (in hexadecimal notation). In text format, it is saved as the
string "1234". Although binary I/O is fast and efficient, it is not easily readable
by humans. We first discuss text I/O and cover binary I/O in Section 2.2,
“Reading and Writing Binary Data,” on p. 78.

When saving text strings, you need to consider the character encoding. In the
UTF-16 encoding that Java uses internally, the string "José" is encoded as 00 4A
00 6F 00 73 00 E9 (in hex). However, many programs expect that text files use a
different encoding. In UTF-8, the encoding most commonly used on the Inter-
net, the string would be written as 4A 6F 73 C3 A9, without the zero bytes for
the first three letters and with two bytes for the é character.

The OutputStreamWriter class turns an output stream of Unicode code units into
a stream of bytes, using a chosen character encoding. Conversely, the
InputStreamReader class turns an input stream that contains bytes (specifying
characters in some character encoding) into a reader that emits Unicode code
units.

For example, here is how you make an input reader that reads keystrokes
from the console and converts them to Unicode:

var in = new InputStreamReader(System.in);

This input stream reader assumes the default character encoding used by the
host system. On desktop operating systems, that can be an archaic encoding
such as Windows 1252 or MacRoman. You should always choose a specific
encoding in the constructor for the InputStreamReader, for example:

var in = new InputStreamReader(new FileInputStream("data.txt"), StandardCharsets.UTF_8);

See Section 2.1.8, “Character Encodings,” on p. 75 for more information on
character encodings.

The Reader and Writer classes have only basic methods to read and write indi-
vidual characters. As with streams, you use subclasses for processing strings
and numbers.

2.1.5 How to Write Text Output

For text output, use a PrintWriter. That class has methods to print strings and
numbers in text format. In order to print to a file, construct a PrintStream from
a file name and a character encoding:

var out = new PrintWriter("employee.txt", StandardCharsets.UTF_8);

Chapter 2 Input and Output68

http://InputStreamReader(System.in

To write to a print writer, use the same print, println, and printf methods that
you used with System.out. You can use these methods to print numbers (int,
short, long, float, double), characters, boolean values, strings, and objects.

For example, consider this code:

String name = "Harry Hacker";
double salary = 75000;
out.print(name);
out.print(' ');
out.println(salary);

This writes the characters

Harry Hacker 75000.0

to the writer out. The characters are then converted to bytes and end up in
the file employee.txt.

The println method adds the correct end-of-line character for the target system
("\r\n" on Windows, "\n" on UNIX) to the line. This is the string obtained by
the call System.getProperty("line.separator").

If the writer is set to autoflush mode, all characters in the buffer are sent to
their destination whenever println is called. (Print writers are always buffered.)
By default, autoflushing is not enabled. You can enable or disable autoflushing
by using the PrintWriter(Writer writer, boolean autoFlush) constructor:

var out = new PrintWriter(
 new OutputStreamWriter(
 new FileOutputStream("employee.txt"), StandardCharsets.UTF_8),
 true); // autoflush

The print methods don’t throw exceptions. You can call the checkError method
to see if something went wrong with the output stream.

NOTE: Java veterans might wonder whatever happened to the PrintStream class
and to System.out. In Java 1.0, the PrintStream class simply truncated all Unicode
characters to ASCII characters by dropping the top byte. (At the time, Unicode
was still a 16-bit encoding.) Clearly, that was not a clean or portable approach,
and it was fixed with the introduction of readers and writers in Java 1.1. For
compatibility with existing code, System.in, System.out, and System.err are still
input/output streams, not readers and writers. But now the PrintStream class in-
ternally converts Unicode characters to the default host encoding in the same
way the PrintWriter does. Objects of type PrintStream act exactly like print writers
when you use the print and println methods, but unlike print writers they allow
you to output raw bytes with the write(int) and write(byte[]) methods.

692.1 Input/Output Streams

http://System.in

java.io.PrintWriter 1.1

• PrintWriter(Writer out)
• PrintWriter(Writer writer)

creates a new PrintWriter that writes to the given writer.

• PrintWriter(String filename, String encoding)
• PrintWriter(File file, String encoding)

creates a new PrintWriter that writes to the given file, using the given character
encoding.

• void print(Object obj)

prints an object by printing the string resulting from toString.

• void print(String s)

prints a string containing Unicode code units.

• void println(String s)

prints a string followed by a line terminator. Flushes the output stream if it is
in autoflush mode.

• void print(char[] s)

prints all Unicode code units in the given array.

• void print(char c)

prints a Unicode code unit.

• void print(int i)
• void print(long l)
• void print(float f)
• void print(double d)
• void print(boolean b)

prints the given value in text format.

• void printf(String format, Object... args)

prints the given values as specified by the format string. See Volume I, Chapter 3
for the specification of the format string.

• boolean checkError()

returns true if a formatting or output error occurred. Once the output stream
has encountered an error, it is tainted and all calls to checkError return true.

2.1.6 How to Read Text Input

The easiest way to process arbitrary text is the Scanner class that we used
extensively in Volume I. You can construct a Scanner from any input stream.

Chapter 2 Input and Output70

http://java.io

Alternatively, you can read a short text file into a string like this:

var content = new String(Files.readAllBytes(path), charset);

But if you want the file as a sequence of lines, call

List<String> lines = Files.readAllLines(path, charset);

If the file is large, process the lines lazily as a Stream<String>:

try (Stream<String> lines = Files.lines(path, charset))
{
 . . .
}

You can also use a scanner to read tokens—strings that are separated by a
delimiter. The default delimiter is white space. You can change the delimiter
to any regular expression. For example,

Scanner in = . . .;
in.useDelimiter("\\PL+");

accepts any non-Unicode letters as delimiters. The scanner then accepts tokens
consisting only of Unicode letters.

Calling the next method yields the next token:

while (in.hasNext())
{
 String word = in.next();
 . . .
}

Alternatively, you can obtain a stream of all tokens as

Stream<String> words = in.tokens();

In early versions of Java, the only game in town for processing text input was
the BufferedReader class. Its readLine method yields a line of text, or null when no
more input is available. A typical input loop looks like this:

InputStream inputStream = . . .;
try (var in = new BufferedReader(new InputStreamReader(inputStream, charset)))
{
 String line;
 while ((line = in.readLine()) != null)
 {

do something with line
 }
}

712.1 Input/Output Streams

Nowadays, the BufferedReader class also has a lines method that yields a
Stream<String>. However, unlike a Scanner, a BufferedReader has no methods for
reading numbers.

2.1.7 Saving Objects in Text Format

In this section, we walk you through an example program that stores an array
of Employee records in a text file. Each record is stored in a separate line. Instance
fields are separated from each other by delimiters. We use a vertical bar (|)
as our delimiter. (A colon (:) is another popular choice. Part of the fun is that
everyone uses a different delimiter.) Naturally, we punt on the issue of what
might happen if a | actually occurs in one of the strings we save.

Here is a sample set of records:

Harry Hacker|35500|1989-10-01
Carl Cracker|75000|1987-12-15
Tony Tester|38000|1990-03-15

Writing records is simple. Since we write to a text file, we use the PrintWriter
class. We simply write all fields, followed by either a | or, for the last field,
a newline character. This work is done in the following writeData method that
we add to our Employee class:

public static void writeEmployee(PrintWriter out, Employee e)
{
 out.println(e.getName() + "|" + e.getSalary() + "|" + e.getHireDay());
}

To read records, we read in a line at a time and separate the fields. We use
a scanner to read each line and then split the line into tokens with the
String.split method.

public static Employee readEmployee(Scanner in)
{
 String line = in.nextLine();
 String[] tokens = line.split("\\|");
 String name = tokens[0];
 double salary = Double.parseDouble(tokens[1]);
 LocalDate hireDate = LocalDate.parse(tokens[2]);
 int year = hireDate.getYear();
 int month = hireDate.getMonthValue();
 int day = hireDate.getDayOfMonth();
 return new Employee(name, salary, year, month, day);
}

The parameter of the split method is a regular expression describing the
separator. We discuss regular expressions in more detail at the end of this
chapter. As it happens, the vertical bar character has a special meaning in

Chapter 2 Input and Output72

regular expressions, so it needs to be escaped with a \ character. That character
needs to be escaped by another \, yielding the "\\|" expression.

The complete program is in Listing 2.1. The static method

void writeData(Employee[] e, PrintWriter out)

first writes the length of the array, then writes each record. The static method

Employee[] readData(BufferedReader in)

first reads in the length of the array, then reads in each record. This turns
out to be a bit tricky:

int n = in.nextInt();
in.nextLine(); // consume newline
var employees = new Employee[n];
for (int i = 0; i < n; i++)
{
 employees[i] = new Employee();
 employees[i].readData(in);
}

The call to nextInt reads the array length but not the trailing newline character.
We must consume the newline so that the readData method can get the next
input line when it calls the nextLine method.

Listing 2.1 textFile/TextFileTest.java

 1 package textFile;
 2

 3 import java.io.*;
 4 import java.nio.charset.*;
 5 import java.time.*;
 6 import java.util.*;
 7

 8 /**
 9 * @version 1.15 2018-03-17
10 * @author Cay Horstmann
11 */
12 public class TextFileTest
13 {
14 public static void main(String[] args) throws IOException
15 {
16 var staff = new Employee[3];
17

18 staff[0] = new Employee("Carl Cracker", 75000, 1987, 12, 15);
19 staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
20 staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);

(Continues)

732.1 Input/Output Streams

http://java.io

Listing 2.1 (Continued)

21

22 // save all employee records to the file employee.dat
23 try (var out = new PrintWriter("employee.dat", StandardCharsets.UTF_8))
24 {
25 writeData(staff, out);
26 }
27

28 // retrieve all records into a new array
29 try (var in = new Scanner(
30 new FileInputStream("employee.dat"), "UTF-8"))
31 {
32 Employee[] newStaff = readData(in);
33

34 // print the newly read employee records
35 for (Employee e : newStaff)
36 System.out.println(e);
37 }
38 }
39

40 /**
41 * Writes all employees in an array to a print writer
42 * @param employees an array of employees
43 * @param out a print writer
44 */
45 private static void writeData(Employee[] employees, PrintWriter out)
46 throws IOException
47 {
48 // write number of employees
49 out.println(employees.length);
50

51 for (Employee e : employees)
52 writeEmployee(out, e);
53 }
54

55 /**
56 * Reads an array of employees from a scanner
57 * @param in the scanner
58 * @return the array of employees
59 */
60 private static Employee[] readData(Scanner in)
61 {
62 // retrieve the array size
63 int n = in.nextInt();
64 in.nextLine(); // consume newline
65

66 var employees = new Employee[n];

Chapter 2 Input and Output74

67 for (int i = 0; i < n; i++)
68 {
69 employees[i] = readEmployee(in);
70 }
71 return employees;
72 }
73

74 /**
75 * Writes employee data to a print writer
76 * @param out the print writer
77 */
78 public static void writeEmployee(PrintWriter out, Employee e)
79 {
80 out.println(e.getName() + "|" + e.getSalary() + "|" + e.getHireDay());
81 }
82

83 /**
84 * Reads employee data from a buffered reader
85 * @param in the scanner
86 */
87 public static Employee readEmployee(Scanner in)
88 {
89 String line = in.nextLine();
90 String[] tokens = line.split("\\|");
91 String name = tokens[0];
92 double salary = Double.parseDouble(tokens[1]);
93 LocalDate hireDate = LocalDate.parse(tokens[2]);
94 int year = hireDate.getYear();
95 int month = hireDate.getMonthValue();
96 int day = hireDate.getDayOfMonth();
97 return new Employee(name, salary, year, month, day);
98 }
99 }

2.1.8 Character Encodings

Input and output streams are for sequences of bytes, but in many cases you
will work with texts—that is, sequences of characters. It then matters how
characters are encoded into bytes.

Java uses the Unicode standard for characters. Each character, or “code point,”
has a 21-bit integer number. There are different character encodings—methods
for packaging those 21-bit numbers into bytes.

The most common encoding is UTF-8, which encodes each Unicode code
point into a sequence of one to four bytes (see Table 2.1). UTF-8 has the
advantage that the characters of the traditional ASCII character set, which
contains all characters used in English, only take up one byte each.

752.1 Input/Output Streams

Table 2.1 UTF-8 Encoding

EncodingCharacter Range

0a6a5a4a3a2a1a00. . .7F

110a10a9a8a7a6 10a5a4a3a2a1a080. . .7FF

1110a15a14a13a12 10a11a10a9a8a7a6 10a5a4a3a2a1a0800. . .FFFF

11110a20a19a18 10a17a16a15a14a13a12 10a11a10a9a8a7a6 10a5a4a3a2a1a010000. . .10FFFF

Table 2.2 UTF-16 Encoding

EncodingCharacter Range

a15a14a13a12a11a10a9a8 a7a6a5a4a3a2a1a00. . .FFFF

110110b19b18 b17b16a15a14a13a12a11a10 110111a9a8 a7a6a5a4a3a2a1a0
where b19b18b17b16 = a20a19a18a17a16 - 1

10000. . .10FFFF

Another common encoding is UTF-16, which encodes each Unicode code
point into one or two 16-bit values (see Table 2.2). This is the encoding used
in Java strings. Actually, there are two forms of UTF-16, called “big-endian”
and “little-endian.” Consider the 16-bit value 0x2122. In the big-endian format,
the more significant byte comes first: 0x21 followed by 0x22. In the little-endian
format, it is the other way around: 0x22 0x21. To indicate which of the two is
used, a file can start with the “byte order mark,” the 16-bit quantity 0xFEFF. A
reader can use this value to determine the byte order and then discard it.

CAUTION: Some programs, including Microsoft Notepad, add a byte order
mark at the beginning of UTF-8 encoded files. Clearly, this is unnecessary since
there are no byte ordering issues in UTF-8. But the Unicode standard allows
it, and even suggests that it’s a pretty good idea since it leaves little doubt
about the encoding. It is supposed to be removed when reading a UTF-8 en-
coded file. Sadly, Java does not do that, and bug reports against this issue are
closed as “will not fix.” Your best bet is to strip out any leading \uFEFF that you
find in your input.

In addition to the UTF encodings, there are partial encodings that cover a
character range suitable for a given user population. For example, ISO 8859-1
is a one-byte code that includes accented characters used in Western European
languages. Shift-JIS is a variable-length code for Japanese characters. A large
number of these encodings are still in widespread use.

Chapter 2 Input and Output76

There is no reliable way to automatically detect the character encoding from
a stream of bytes. Some API methods let you use the “default charset”—the
character encoding preferred by the operating system of the computer. Is that
the same encoding that is used by your source of bytes? These bytes may
well originate from a different part of the world. Therefore, you should always
explicitly specify the encoding. For example, when reading a web page, check
the Content-Type header.

NOTE: The platform encoding is returned by the static method Charset
.defaultCharset. The static method Charset.availableCharsets returns all available
Charset instances, as a map from canonical names to Charset objects.

CAUTION: The Oracle implementation of Java has a system property
file.encoding for overriding the platform default. This is not an officially
supported property, and it is not consistently followed by all parts of Oracle’s
implementation of the Java library. You should not set it.

The StandardCharsets class has static variables of type Charset for the character
encodings that every Java virtual machine must support:

StandardCharsets.UTF_8
StandardCharsets.UTF_16
StandardCharsets.UTF_16BE
StandardCharsets.UTF_16LE
StandardCharsets.ISO_8859_1
StandardCharsets.US_ASCII

To obtain the Charset for another encoding, use the static forName method:

Charset shiftJIS = Charset.forName("Shift-JIS");

Use the Charset object when reading or writing text. For example, you can turn
an array of bytes into a string as

var str = new String(bytes, StandardCharsets.UTF_8);

TIP: As of Java 10, all methods in the java.io package allow you to specify a
character encoding with a Charset object or a string. Choose the StandardCharsets
constants, so that any spelling errors are caught at compile time.

CAUTION: Somemethods (such as the String(byte[]) constructor) use the default
platform encoding if you don’t specify any; others (such as Files.readAllLines)
use UTF-8.

772.1 Input/Output Streams

http://java.io

2.2 Reading and Writing Binary Data

Text format is convenient for testing and debugging because it is humanly
readable, but it is not as efficient as transmitting data in binary format. In the
following sections, you will learn how to perform input and output with
binary data.

2.2.1 The DataInput and DataOutput interfaces
The DataOutput interface defines the following methods for writing a number,
a character, a boolean value, or a string in binary format:

writeChars writeFloat
writeByte writeDouble
writeInt writeChar
writeShort writeBoolean
writeLong writeUTF

For example, writeInt always writes an integer as a 4-byte binary quantity re-
gardless of the number of digits, and writeDouble always writes a double as an
8-byte binary quantity. The resulting output is not human-readable, but it will
use the same space for each value of a given type and reading it back in
will be faster than parsing text.

NOTE: There are two different methods of storing integers and floating-point
numbers in memory, depending on the processor you are using. Suppose, for
example, you are working with a 4-byte int, such as the decimal number 1234,
or 4D2 in hexadecimal (1234 = 4 × 256 + 13 × 16 + 2). This value can be stored
in such a way that the first of the four bytes in memory holds the most significant
byte (MSB) of the value: 00 00 04 D2. This is the so-called big-endian method.
Or, we can start with the least significant byte (LSB) first: D2 04 00 00. This is
called, naturally enough, the little-endian method. For example, the SPARC
uses big-endian; the Pentium, little-endian. This can lead to problems. When
a file is saved from C or C++ file, the data are saved exactly as the processor
stores them. That makes it challenging to move even the simplest data files
from one platform to another. In Java, all values are written in the big-endian
fashion, regardless of the processor. That makes Java data files platform-
independent.

The writeUTF method writes string data using a modified version of the 8-bit
Unicode Transformation Format. Instead of simply using the standard UTF-8
encoding, sequences of Unicode code units are first represented in UTF-16,
and then the result is encoded using the UTF-8 rules. This modified encoding

Chapter 2 Input and Output78

is different for characters with codes higher than 0xFFFF. It is used for backward
compatibility with virtual machines that were built when Unicode had not
yet grown beyond 16 bits.

Since nobody else uses this modification of UTF-8, you should only use the
writeUTF method to write strings intended for a Java virtual machine—for exam-
ple, in a program that generates bytecodes. Use the writeChars method for other
purposes.

To read the data back in, use the following methods defined in the DataInput
interface:

readInt readDouble
readShort readChar
readLong readBoolean
readFloat readUTF

The DataInputStream class implements the DataInput interface. To read binary
data from a file, combine a DataInputStream with a source of bytes such as a
FileInputStream:

var in = new DataInputStream(new FileInputStream("employee.dat"));

Similarly, to write binary data, use the DataOutputStream class that implements
the DataOutput interface:

var out = new DataOutputStream(new FileOutputStream("employee.dat"));

java.io.DataInput 1.0

• boolean readBoolean()
• byte readByte()
• char readChar()
• double readDouble()
• float readFloat()
• int readInt()
• long readLong()
• short readShort()

reads in a value of the given type.

• void readFully(byte[] b)

reads bytes into the array b, blocking until all bytes are read.

• void readFully(byte[] b, int off, int len)

places up to len bytes into the array b, starting at off, blocking until all bytes
are read.

(Continues)

792.2 Reading and Writing Binary Data

http://java.io

java.io.DataInput 1.0 (Continued)

• String readUTF()

reads a string of characters in the “modified UTF-8” format.

• int skipBytes(int n)

skips n bytes, blocking until all bytes are skipped.

java.io.DataOutput 1.0

• void writeBoolean(boolean b)
• void writeByte(int b)
• void writeChar(int c)
• void writeDouble(double d)
• void writeFloat(float f)
• void writeInt(int i)
• void writeLong(long l)
• void writeShort(int s)

writes a value of the given type.

• void writeChars(String s)

writes all characters in the string.

• void writeUTF(String s)

writes a string of characters in the “modified UTF-8” format.

2.2.2 Random-Access Files

The RandomAccessFile class lets you read or write data anywhere in a file. Disk
files are random-access, but input/output streams that communicate with a
network socket are not. You can open a random-access file either for reading
only or for both reading and writing; specify the option by using the string
"r" (for read access) or "rw" (for read/write access) as the second argument in
the constructor.

var in = new RandomAccessFile("employee.dat", "r");
var inOut = new RandomAccessFile("employee.dat", "rw");

When you open an existing file as a RandomAccessFile, it does not get deleted.

A random-access file has a file pointer that indicates the position of the next
byte to be read or written. The seek method can be used to set the file pointer
to an arbitrary byte position within the file. The argument to seek is a long
integer between zero and the length of the file in bytes.

Chapter 2 Input and Output80

http://java.io
http://java.io

The getFilePointer method returns the current position of the file pointer.

The RandomAccessFile class implements both the DataInput and DataOutput interfaces.
To read and write from a random-access file, use methods such as readInt/
writeInt and readChar/writeChar that we discussed in the preceding section.

Let’s walk through an example program that stores employee records in a
random-access file. Each record will have the same size. This makes it easy
to read an arbitrary record. Suppose you want to position the file pointer to
the third record. Simply set the file pointer to the appropriate byte position
and start reading.

long n = 3;
in.seek((n - 1) * RECORD_SIZE);
var e = new Employee();
e.readData(in);

If you want to modify the record and save it back into the same location,
remember to set the file pointer back to the beginning of the record:

in.seek((n - 1) * RECORD_SIZE);
e.writeData(out);

To determine the total number of bytes in a file, use the length method. The
total number of records is the length divided by the size of each record.

long nbytes = in.length(); // length in bytes
int nrecords = (int) (nbytes / RECORD_SIZE);

Integers and floating-point values have a fixed size in binary format, but we
have to work harder for strings. We provide two helper methods to write and
read strings of a fixed size.

The writeFixedString writes the specified number of code units, starting at the
beginning of the string. If there are too few code units, the method pads
the string, using zero values.

public static void writeFixedString(String s, int size, DataOutput out)
 throws IOException
{
 for (int i = 0; i < size; i++)
 {
 char ch = 0;
 if (i < s.length()) ch = s.charAt(i);
 out.writeChar(ch);
 }
}

The readFixedString method reads characters from the input stream until it has
consumed size code units or until it encounters a character with a zero value.

812.2 Reading and Writing Binary Data

Then, it skips past the remaining zero values in the input field. For added
efficiency, this method uses the StringBuilder class to read in a string.

public static String readFixedString(int size, DataInput in)
 throws IOException
{
 var b = new StringBuilder(size);
 int i = 0;
 var done = false;
 while (!done && i < size)
 {
 char ch = in.readChar();
 i++;
 if (ch == 0) done = true;
 else b.append(ch);
 }
 in.skipBytes(2 * (size - i));
 return b.toString();
}

We placed the writeFixedString and readFixedString methods inside the DataIO helper
class.

To write a fixed-size record, we simply write all fields in binary.

DataIO.writeFixedString(e.getName(), Employee.NAME_SIZE, out);
out.writeDouble(e.getSalary());
LocalDate hireDay = e.getHireDay();
out.writeInt(hireDay.getYear());
out.writeInt(hireDay.getMonthValue());
out.writeInt(hireDay.getDayOfMonth());

Reading the data back is just as simple.

String name = DataIO.readFixedString(Employee.NAME_SIZE, in);
double salary = in.readDouble();
int y = in.readInt();
int m = in.readInt();
int d = in.readInt();

Let us compute the size of each record. We will use 40 characters for the
name strings. Therefore, each record will contain 100 bytes:

• 40 characters = 80 bytes for the name
• 1 double = 8 bytes for the salary
• 3 int = 12 bytes for the date

The program shown in Listing 2.2 writes three records into a data file and
then reads them from the file in reverse order. To do this efficiently requires
random access—we need to get to the last record first.

Chapter 2 Input and Output82

Listing 2.2 randomAccess/RandomAccessTest.java

 1 package randomAccess;
 2

 3 import java.io.*;
 4 import java.time.*;
 5

 6 /**
 7 * @version 1.14 2018-05-01
 8 * @author Cay Horstmann
 9 */
10 public class RandomAccessTest
11 {
12 public static void main(String[] args) throws IOException
13 {
14 var staff = new Employee[3];
15

16 staff[0] = new Employee("Carl Cracker", 75000, 1987, 12, 15);
17 staff[1] = new Employee("Harry Hacker", 50000, 1989, 10, 1);
18 staff[2] = new Employee("Tony Tester", 40000, 1990, 3, 15);
19

20 try (var out = new DataOutputStream(new FileOutputStream("employee.dat")))
21 {
22 // save all employee records to the file employee.dat
23 for (Employee e : staff)
24 writeData(out, e);
25 }
26

27 try (var in = new RandomAccessFile("employee.dat", "r"))
28 {
29 // retrieve all records into a new array
30

31 // compute the array size
32 int n = (int)(in.length() / Employee.RECORD_SIZE);
33 var newStaff = new Employee[n];
34

35 // read employees in reverse order
36 for (int i = n - 1; i >= 0; i--)
37 {
38 newStaff[i] = new Employee();
39 in.seek(i * Employee.RECORD_SIZE);
40 newStaff[i] = readData(in);
41 }
42

43 // print the newly read employee records
44 for (Employee e : newStaff)
45 System.out.println(e);
46 }
47 }

(Continues)

832.2 Reading and Writing Binary Data

http://java.io

Listing 2.2 (Continued)

48

49 /**
50 * Writes employee data to a data output
51 * @param out the data output
52 * @param e the employee
53 */
54 public static void writeData(DataOutput out, Employee e) throws IOException
55 {
56 DataIO.writeFixedString(e.getName(), Employee.NAME_SIZE, out);
57 out.writeDouble(e.getSalary());
58

59 LocalDate hireDay = e.getHireDay();
60 out.writeInt(hireDay.getYear());
61 out.writeInt(hireDay.getMonthValue());
62 out.writeInt(hireDay.getDayOfMonth());
63 }
64

65 /**
66 * Reads employee data from a data input
67 * @param in the data input
68 * @return the employee
69 */
70 public static Employee readData(DataInput in) throws IOException
71 {
72 String name = DataIO.readFixedString(Employee.NAME_SIZE, in);
73 double salary = in.readDouble();
74 int y = in.readInt();
75 int m = in.readInt();
76 int d = in.readInt();
77 return new Employee(name, salary, y, m - 1, d);
78 }
79 }

java.io.RandomAccessFile 1.0

• RandomAccessFile(String file, String mode)
• RandomAccessFile(File file, String mode)

opens the given file for random access. The mode string is "r" for read-only mode,
"rw" for read/write mode, "rws" for read/write mode with synchronous disk
writes of data and metadata for every update, and "rwd" for read/write mode
with synchronous disk writes of data only.

• long getFilePointer()

returns the current location of the file pointer.

(Continues)

Chapter 2 Input and Output84

http://java.io

java.io.RandomAccessFile 1.0 (Continued)

• void seek(long pos)

sets the file pointer to pos bytes from the beginning of the file.

• long length()

returns the length of the file in bytes.

2.2.3 ZIP Archives

ZIP archives store one or more files in a (usually) compressed format. Each ZIP
archive has a header with information such as the name of each file and the
compression method that was used. In Java, you can use a ZipInputStream to
read a ZIP archive. You need to look at the individual entries in the archive.
The getNextEntry method returns an object of type ZipEntry that describes the
entry. Read from the stream until the end, which is actually the end of
the current entry. Then call closeEntry to read the next entry. Do not close zin
until you read the last entry. Here is a typical code sequence to read through
a ZIP file:

var zin = new ZipInputStream(new FileInputStream(zipname));
ZipEntry entry;
while ((entry = zin.getNextEntry()) != null)
{

read the contents of zin
 zin.closeEntry();
}
zin.close();

To write a ZIP file, use a ZipOutputStream. For each entry that you want to place
into the ZIP file, create a ZipEntry object. Pass the file name to the ZipEntry
constructor; it sets the other parameters such as file date and decompression
method. You can override these settings if you like. Then, call the
putNextEntry method of the ZipOutputStream to begin writing a new file. Send the
file data to the ZIP output stream. When done, call closeEntry. Repeat for all
the files you want to store. Here is a code skeleton:

var fout = new FileOutputStream("test.zip");
var zout = new ZipOutputStream(fout);
for all files
{
 var ze = new ZipEntry(filename);
 zout.putNextEntry(ze);

send data to zout
 zout.closeEntry();
}
zout.close();

852.2 Reading and Writing Binary Data

http://java.io

NOTE: JAR files (which were discussed in Volume I, Chapter 4) are simply ZIP
files with a special entry—the so-called manifest. Use the JarInputStream and
JarOutputStream classes to read and write the manifest entry.

ZIP input streams are a good example of the power of the stream abstraction.
When you read data stored in compressed form, you don’t need to worry that
the data are being decompressed as they are being requested. Moreover, the
source of the bytes in a ZIP stream need not be a file—the ZIP data can come
from a network connection.

NOTE: Section 2.4.8, “ZIP File Systems,” on p. 123 shows how to access a
ZIP archive without a special API, using the FileSystem class of Java 7.

java.util.zip.ZipInputStream 1.1

• ZipInputStream(InputStream in)

creates a ZipInputStream that allows you to inflate data from the given InputStream.

• ZipEntry getNextEntry()

returns a ZipEntry object for the next entry, or null if there are no more entries.

• void closeEntry()

closes the current open entry in the ZIP file. You can then read the next entry
by using getNextEntry().

java.util.zip.ZipOutputStream 1.1

• ZipOutputStream(OutputStream out)

creates a ZipOutputStream that you can use to write compressed data to the
specified OutputStream.

• void putNextEntry(ZipEntry ze)

writes the information in the given ZipEntry to the output stream and positions
the stream for the data. The data can then be written by calling the write()
method.

(Continues)

Chapter 2 Input and Output86

java.util.zip.ZipOutputStream 1.1 (Continued)

• void closeEntry()

closes the currently open entry in the ZIP file. Use the putNextEntry method to
start the next entry.

• void setLevel(int level)

sets the default compression level of subsequent DEFLATED entries to a value
from Deflater.NO_COMPRESSION to Deflater.BEST_COMPRESSION. The default value is Deflater
.DEFAULT_COMPRESSION. Throws an IllegalArgumentException if the level is not valid.

• void setMethod(int method)

sets the default compression method for this ZipOutputStream for any entries that
do not specify a method; can be either DEFLATED or STORED.

java.util.zip.ZipEntry 1.1

• ZipEntry(String name)

constructs a ZIP entry with a given name.

• long getCrc()

returns the CRC32 checksum value for this ZipEntry.

• String getName()

returns the name of this entry.

• long getSize()

returns the uncompressed size of this entry, or -1 if the uncompressed size is
not known.

• boolean isDirectory()

returns true if this entry is a directory.

• void setMethod(int method)

sets the compression method for the entry to DEFLATED or STORED.

• void setSize(long size)

sets the size of this entry. Only required if the compression method is STORED.

• void setCrc(long crc)

sets the CRC32 checksum of this entry. Use the CRC32 class to compute this
checksum. Only required if the compression method is STORED.

872.2 Reading and Writing Binary Data

java.util.zip.ZipFile 1.1

• ZipFile(String name)
• ZipFile(File file)

creates a ZipFile for reading from the given string or File object.

• Enumeration entries()

returns an Enumeration object that enumerates the ZipEntry objects that describe
the entries of the ZipFile.

• ZipEntry getEntry(String name)

returns the entry corresponding to the given name, or null if there is no such
entry.

• InputStream getInputStream(ZipEntry ze)

returns an InputStream for the given entry.

• String getName()

returns the path of this ZIP file.

2.3 Object Input/Output Streams and Serialization

Using a fixed-length record format is a good choice if you need to store data
of the same type. However, objects that you create in an object-oriented
program are rarely all of the same type. For example, you might have an array
called staff that is nominally an array of Employee records but contains objects
that are actually instances of a subclass such as Manager.

It is certainly possible to come up with a data format that allows you to store
such polymorphic collections—but, fortunately, we don’t have to. The Java
language supports a very general mechanism, called object serialization, that
makes it possible to write any object to an output stream and read it again
later. (You will see in this chapter where the term “serialization” comes from.)

2.3.1 Saving and Loading Serializable Objects

To save object data, you first need to open an ObjectOutputStream object:

var out = new ObjectOutputStream(new FileOutputStream("employee.dat"));

Now, to save an object, simply use the writeObject method of the ObjectOutputStream
class as in the following fragment:

var harry = new Employee("Harry Hacker", 50000, 1989, 10, 1);
var boss = new Manager("Carl Cracker", 80000, 1987, 12, 15);

Chapter 2 Input and Output88

out.writeObject(harry);
out.writeObject(boss);

To read the objects back in, first get an ObjectInputStream object:

var in = new ObjectInputStream(new FileInputStream("employee.dat"));

Then, retrieve the objects in the same order in which they were written, using
the readObject method:

var e1 = (Employee) in.readObject();
var e2 = (Employee) in.readObject();

There is, however, one change you need to make to any class that you want
to save to an output stream and restore from an object input stream. The
class must implement the Serializable interface:

class Employee implements Serializable { . . . }

The Serializable interface has no methods, so you don’t need to change your
classes in any way. In this regard, it is similar to the Cloneable interface that
we discussed in Volume I, Chapter 6. However, to make a class cloneable,
you still had to override the clone method of the Object class. To make a class
serializable, you do not need to do anything else.

NOTE: You can write and read only objects with the writeObject/readObject
methods. For primitive type values, use methods such as writeInt/readInt or
writeDouble/readDouble. (The object input/output stream classes implement the
DataInput/DataOutput interfaces.)

Behind the scenes, an ObjectOutputStream looks at all the fields of the objects and
saves their contents. For example, when writing an Employee object, the name,
date, and salary fields are written to the output stream.

However, there is one important situation to consider: What happens when
one object is shared by several objects as part of their state?

To illustrate the problem, let us make a slight modification to the Manager class.
Let’s assume that each manager has a secretary:

class Manager extends Employee
{
 private Employee secretary;
 . . .
}

892.3 Object Input/Output Streams and Serialization

Each Manager object now contains a reference to an Employee object that describes
the secretary. Of course, two managers can share the same secretary, as is the
case in Figure 2.5 and the following code:

var harry = new Employee("Harry Hacker", . . .);
var carl = new Manager("Carl Cracker", . . .);
carl.setSecretary(harry);
var tony = new Manager("Tony Tester", . . .);
tony.setSecretary(harry);

Figure 2.5 Two managers can share a mutual employee.

Saving such a network of objects is a challenge. Of course, we cannot save
and restore the memory addresses for the secretary objects. When an object
is reloaded, it will likely occupy a completely different memory address than
it originally did.

Instead, each object is saved with the serial number—hence the name object
serialization for this mechanism. Here is the algorithm:

1. Associate a serial number with each object reference that you encounter
(as shown in Figure 2.6).

Chapter 2 Input and Output90

Figure 2.6 An example of object serialization

2. When encountering an object reference for the first time, save the object
data to the output stream.

3. If it has been saved previously, just write “same as the previously saved
object with serial number x.”

When reading the objects back, the procedure is reversed.

1. When an object is specified in an object input stream for the first time,
construct it, initialize it with the stream data, and remember the
association between the serial number and the object reference.

2. When the tag “same as the previously saved object with serial number
x” is encountered, retrieve the object reference for the sequence number.

912.3 Object Input/Output Streams and Serialization

NOTE: In this chapter, we will use serialization to save a collection of objects
to a disk file and retrieve it exactly as we stored it. Another very important ap-
plication is the transmittal of a collection of objects across a network connection
to another computer. Just as raw memory addresses are meaningless in a file,
they are also meaningless when you communicate with a different processor.
By replacing memory addresses with serial numbers, serialization permits the
transport of object collections from one machine to another.

Listing 2.3 is a program that saves and reloads a network of Employee and Manager
objects (some of which share the same employee as a secretary). Note that
the secretary object is unique after reloading—when newStaff[1] gets a raise,
that is reflected in the secretary fields of the managers.

Listing 2.3 objectStream/ObjectStreamTest.java

 1 package objectStream;
 2

 3 import java.io.*;
 4

 5 /**
 6 * @version 1.11 2018-05-01
 7 * @author Cay Horstmann
 8 */
 9 class ObjectStreamTest
10 {
11 public static void main(String[] args) throws IOException, ClassNotFoundException
12 {
13 var harry = new Employee("Harry Hacker", 50000, 1989, 10, 1);
14 var carl = new Manager("Carl Cracker", 80000, 1987, 12, 15);
15 carl.setSecretary(harry);
16 var tony = new Manager("Tony Tester", 40000, 1990, 3, 15);
17 tony.setSecretary(harry);
18

19 var staff = new Employee[3];
20

21 staff[0] = carl;
22 staff[1] = harry;
23 staff[2] = tony;
24

25 // save all employee records to the file employee.dat
26 try (var out = new ObjectOutputStream(new FileOutputStream("employee.dat")))
27 {
28 out.writeObject(staff);
29 }
30

Chapter 2 Input and Output92

http://java.io

31 try (var in = new ObjectInputStream(new FileInputStream("employee.dat")))
32 {
33 // retrieve all records into a new array
34

35 var newStaff = (Employee[]) in.readObject();
36

37 // raise secretary's salary
38 newStaff[1].raiseSalary(10);
39

40 // print the newly read employee records
41 for (Employee e : newStaff)
42 System.out.println(e);
43 }
44 }
45 }

java.io.ObjectOutputStream 1.1

• ObjectOutputStream(OutputStream out)

creates an ObjectOutputStream so you can write objects to the specified OutputStream.

• void writeObject(Object obj)

writes the specified object to the ObjectOutputStream. This method saves the class
of the object, the signature of the class, and the values of any nonstatic,
nontransient fields of the class and its superclasses.

java.io.ObjectInputStream 1.1

• ObjectInputStream(InputStream in)

creates an ObjectInputStream to read back object information from the specified
InputStream.

• Object readObject()

reads an object from the ObjectInputStream. In particular, this method reads back
the class of the object, the signature of the class, and the values of the non-
transient and nonstatic fields of the class and all its superclasses. It does
deserializing so that multiple object references can be recovered.

2.3.2 Understanding the Object Serialization File Format

Object serialization saves object data in a particular file format. Of course,
you can use the writeObject/readObject methods without having to know the exact
sequence of bytes that represents objects in a file. Nonetheless, we found
studying the data format extremely helpful for gaining insight into the object

932.3 Object Input/Output Streams and Serialization

http://java.io
http://java.io

serialization process. As the details are somewhat technical, feel free to skip
this section if you are not interested in the implementation.

Every file begins with the two-byte “magic number”

AC ED

followed by the version number of the object serialization format, which is
currently

00 05

(We use hexadecimal numbers throughout this section to denote bytes.) Then,
it contains a sequence of objects, in the order in which they were saved.

String objects are saved as

characterstwo-byte
length

74

For example, the string “Harry” is saved as

74 00 05 Harry

The Unicode characters of the string are saved in the “modified UTF-8” format.

When an object is saved, the class of that object must be saved as well. The
class description contains

• The name of the class
• The serial version unique ID, which is a fingerprint of the data field types

and method signatures
• A set of flags describing the serialization method
• A description of the data fields

The fingerprint is obtained by ordering the descriptions of the class, superclass,
interfaces, field types, and method signatures in a canonical way, and then
applying the so-called Secure Hash Algorithm (SHA) to that data.

SHA is a fast algorithm that gives a “fingerprint” of a larger block of informa-
tion. This fingerprint is always a 20-byte data packet, regardless of the size
of the original data. It is created by a clever sequence of bit operations on
the data that makes it essentially 100 percent certain that the fingerprint will
change if the information is altered in any way. (For more details on SHA,
see, for example, Cryptography and Network Security, Seventh Edition by William
Stallings, Prentice Hall, 2016.) However, the serialization mechanism uses
only the first eight bytes of the SHA code as a class fingerprint. It is still very
likely that the class fingerprint will change if the data fields or methods
change.

Chapter 2 Input and Output94

When reading an object, its fingerprint is compared against the current
fingerprint of the class. If they don’t match, it means the class definition has
changed after the object was written, and an exception is generated. Of course,
in practice, classes do evolve, and it might be necessary for a program to read
in older versions of objects. We will discuss this in Section 2.3.5, “Versioning,”
on p. 103.

Here is how a class identifier is stored:

• 72

• 2-byte length of class name
• Class name
• 8-byte fingerprint
• 1-byte flag
• 2-byte count of data field descriptors
• Data field descriptors
• 78 (end marker)
• Superclass type (70 if none)

The flag byte is composed of three bit masks, defined in java.io
.ObjectStreamConstants:

static final byte SC_WRITE_METHOD = 1;
 // class has a writeObject method that writes additional data
static final byte SC_SERIALIZABLE = 2;
 // class implements the Serializable interface
static final byte SC_EXTERNALIZABLE = 4;
 // class implements the Externalizable interface

We discuss the Externalizable interface later in this chapter. Externalizable
classes supply custom read and write methods that take over the output of
their instance fields. The classes that we write implement the Serializable inter-
face and will have a flag value of 02. The serializable java.util.Date class defines
its own readObject/writeObject methods and has a flag of 03.

Each data field descriptor has the format:

• 1-byte type code
• 2-byte length of field name
• Field name
• Class name (if the field is an object)

The type code is one of the following:

952.3 Object Input/Output Streams and Serialization

http://java.io

byteB
charC
doubleD
floatF
intI
longJ
objectL
shortS
booleanZ
array[

When the type code is L, the field name is followed by the field type. Class
and field name strings do not start with the string code 74, but field types do.
Field types use a slightly different encoding of their names—namely, the format
used by native methods.

For example, the salary field of the Employee class is encoded as

D 00 06 salary

Here is the complete class descriptor of the Employee class:

72 00 08 Employee
Fingerprint and flagsE6 D2 86 7D AE AC 18 1B 02
Number of instance fields00 03
Instance field type and nameD 00 06 salary
Instance field type and nameL 00 07 hireDay
Instance field class name: Date74 00 10 Ljava/util/Date;
Instance field type and nameL 00 04 name
Instance field class name: String74 00 12 Ljava/lang/String;
End marker78
No superclass70

These descriptors are fairly long. If the same class descriptor is needed again
in the file, an abbreviated form is used:

4-byte serial number71

The serial number refers to the previous explicit class descriptor. We discuss
the numbering scheme later.

An object is stored as

object dataclass descriptor73

Chapter 2 Input and Output96

For example, here is how an Employee object is stored:

salary field value: double40 E8 6A 00 00 00 00 00
hireDay field value: new object73
Existing class java.util.Date71 00 7E 00 08
External storage (details later)77 08 00 00 00 91 1B 4E B1 80 78
name field value: String74 00 0C Harry Hacker

As you can see, the data file contains enough information to restore the Employee
object.

Arrays are saved in the following format:

entries4-byte number of
entries

class descriptor75

The array class name in the class descriptor is in the same format as that
used by native methods (which is slightly different from the format used by
class names in other class descriptors). In this format, class names start with
an L and end with a semicolon.

For example, an array of three Employee objects starts out like this:

Array75
New class, string length, class name
Employee[]

72 00 0B [LEmployee;

Fingerprint and flagsFC BF 36 11 C5 91 11 C7 02
Number of instance fields00 00
End marker78
No superclass70
Number of array entries00 00 00 03

Note that the fingerprint for an array of Employee objects is different from a
fingerprint of the Employee class itself.

All objects (including arrays and strings) and all class descriptors are given
serial numbers as they are saved in the output file. The numbers start at 00
7E 00 00.

We already saw that a full class descriptor for any given class occurs only
once. Subsequent descriptors refer to it. For example, in our previous example,
a repeated reference to the Date class was coded as

71 00 7E 00 08

The same mechanism is used for objects. If a reference to a previously saved
object is written, it is saved in exactly the same way—that is, 71 followed by

972.3 Object Input/Output Streams and Serialization

the serial number. It is always clear from the context whether a particular
serial reference denotes a class descriptor or an object.

Finally, a null reference is stored as

70

Here is the commented output of the ObjectRefTest program of the preceding
section. Run the program, look at a hex dump of its data file employee.dat, and
compare it with the commented listing. The important lines toward the end
of the output show a reference to a previously saved object.

File headerAC ED 00 05
Array staff (serial #1)75
New class, string length, class name
Employee[] (serial #0)

72 00 0B [LEmployee;

Fingerprint and flagsFC BF 36 11 C5 91 11 C7 02
Number of instance fields00 00
End marker78
No superclass70
Number of array entries00 00 00 03
staff[0]— new object (serial #7)73
New class, string length, class name
(serial #2)

72 00 07 Manager

Fingerprint and flags36 06 AE 13 63 8F 59 B7 02
Number of data fields00 01
Instance field type and nameL 00 09 secretary
Instance field class name: String (serial #3)74 00 0A LEmployee;
End marker78
Superclass: new class, string length, class
name (serial #4)

72 00 08 Employee

Fingerprint and flagsE6 D2 86 7D AE AC 18 1B 02
Number of instance fields00 03
Instance field type and nameD 00 06 salary
Instance field type and nameL 00 07 hireDay
Instance field class name: String (serial #5)74 00 10 Ljava/util/Date;
Instance field type and nameL 00 04 name
Instance field class name: String (serial #6)74 00 12 Ljava/lang/String;
End marker78
No superclass70

Chapter 2 Input and Output98

salary field value: double40 F3 88 00 00 00 00 00
hireDay field value: new object (serial #9)73
New class, string length, class name
(serial #8)

72 00 0E java.util.Date

Fingerprint and flags68 6A 81 01 4B 59 74 19 03
No instance variables00 00
End marker78
No superclass70
External storage, number of bytes77 08
Date00 00 00 83 E9 39 E0 00
End marker78
name field value: String (serial #10)74 00 0C Carl Cracker
secretary field value: new object
(serial #11)

73

existing class (use serial #4)71 00 7E 00 04
salary field value: double40 E8 6A 00 00 00 00 00
hireDay field value: new object (serial #12)73
Existing class (use serial #8)71 00 7E 00 08
External storage, number of bytes77 08
Date00 00 00 91 1B 4E B1 80
End marker78
name field value: String (serial #13)74 00 0C Harry Hacker
staff[1]: existing object (use serial #11)71 00 7E 00 0B
staff[2]: new object (serial #14)73
Existing class (use serial #2)71 00 7E 00 02
salary field value: double40 E3 88 00 00 00 00 00
hireDay field value: new object (serial #15)73
Existing class (use serial #8)71 00 7E 00 08
External storage, number of bytes77 08
Date00 00 00 94 6D 3E EC 00 00
End marker78
name field value: String (serial #16)74 00 0B Tony Tester
secretary field value: existing object (use
serial #11)

71 00 7E 00 0B

Of course, studying these codes can be about as exciting as reading a phone
book. It is not important to know the exact file format (unless you are trying
to create an evil effect by modifying the data), but it is still instructive to

992.3 Object Input/Output Streams and Serialization

know that the serialized format has a detailed description of all the objects
it contains, with sufficient detail to allow reconstruction of both objects and
arrays of objects.

What you should remember is this:

• The serialized format contains the types and data fields of all objects.
• Each object is assigned a serial number.
• Repeated occurrences of the same object are stored as references to that

serial number.

2.3.3 Modifying the Default Serialization Mechanism

Certain data fields should never be serialized—for example, integer values
that store file handles or handles of windows that are only meaningful to
native methods. Such information is guaranteed to be useless when you reload
an object at a later time or transport it to a different machine. In fact, improper
values for such fields can actually cause native methods to crash. Java has an
easy mechanism to prevent such fields from ever being serialized: Mark them
with the keyword transient. You also need to tag fields as transient if they belong
to nonserializable classes. Transient fields are always skipped when objects
are serialized.

The serialization mechanism provides a way for individual classes to add
validation or any other desired action to the default read and write behavior.
A serializable class can define methods with the signature

private void readObject(ObjectInputStream in)
 throws IOException, ClassNotFoundException;
private void writeObject(ObjectOutputStream out)
 throws IOException;

Then, the data fields are no longer automatically serialized—these methods
are called instead.

Here is a typical example. A number of classes in the java.awt.geom package,
such as Point2D.Double, are not serializable. Now, suppose you want to serialize
a class LabeledPoint that stores a String and a Point2D.Double. First, you need to mark
the Point2D.Double field as transient to avoid a NotSerializableException.

public class LabeledPoint implements Serializable
{
 private String label;
 private transient Point2D.Double point;
 . . .
}

Chapter 2 Input and Output100

In the writeObject method, we first write the object descriptor and the String
field, label, by calling the defaultWriteObject method. This is a special method of
the ObjectOutputStream class that can only be called from within a writeObject method
of a serializable class. Then we write the point coordinates, using the standard
DataOutput calls.

private void writeObject(ObjectOutputStream out)
 throws IOException
{
 out.defaultWriteObject();
 out.writeDouble(point.getX());
 out.writeDouble(point.getY());
}

In the readObject method, we reverse the process:

private void readObject(ObjectInputStream in)
 throws IOException
{
 in.defaultReadObject();
 double x = in.readDouble();
 double y = in.readDouble();
 point = new Point2D.Double(x, y);
}

Another example is the java.util.Date class that supplies its own readObject and
writeObject methods. These methods write the date as a number of milliseconds
from the epoch (January 1, 1970, midnight UTC). The Date class has a complex
internal representation that stores both a Calendar object and a millisecond
count to optimize lookups. The state of the Calendar is redundant and does not
have to be saved.

The readObject and writeObject methods only need to save and load their data
fields. They should not concern themselves with superclass data or any other
class information.

Instead of letting the serialization mechanism save and restore object data,
a class can define its own mechanism. To do this, a class must implement
the Externalizable interface. This, in turn, requires it to define two methods:

public void readExternal(ObjectInputStream in)
 throws IOException, ClassNotFoundException;
public void writeExternal(ObjectOutputStream out)
 throws IOException;

Unlike the readObject and writeObject methods that were described in the previous
section, these methods are fully responsible for saving and restoring the entire
object, including the superclass data. When writing an object, the serialization
mechanism merely records the class of the object in the output stream. When

1012.3 Object Input/Output Streams and Serialization

reading an externalizable object, the object input stream creates an object
with the no-argument constructor and then calls the readExternal method. Here
is how you can implement these methods for the Employee class:

public void readExternal(ObjectInput s)
 throws IOException
{
 name = s.readUTF();
 salary = s.readDouble();
 hireDay = LocalDate.ofEpochDay(s.readLong());
}

public void writeExternal(ObjectOutput s)
 throws IOException
{
 s.writeUTF(name);
 s.writeDouble(salary);
 s.writeLong(hireDay.toEpochDay());
}

CAUTION: Unlike the readObject and writeObject methods, which are private
and can only be called by the serialization mechanism, the readExternal and
writeExternal methods are public. In particular, readExternal potentially permits
modification of the state of an existing object.

2.3.4 Serializing Singletons and Typesafe Enumerations

You have to pay particular attention to serializing and deserializing objects
that are assumed to be unique. This commonly happens when you are
implementing singletons and typesafe enumerations.

If you use the enum construct of the Java language, you need not worry about
serialization—it just works. However, suppose you maintain legacy code that
contains an enumerated type such as

public class Orientation
{
 public static final Orientation HORIZONTAL = new Orientation(1);
 public static final Orientation VERTICAL = new Orientation(2);

 private int value;

 private Orientation(int v) { value = v; }
}

Chapter 2 Input and Output102

This idiom was common before enumerations were added to the Java lan-
guage. Note that the constructor is private. Thus, no objects can be created
beyond Orientation.HORIZONTAL and Orientation.VERTICAL. In particular, you can use the
== operator to test for object equality:

if (orientation == Orientation.HORIZONTAL) . . .

There is an important twist that you need to remember when a typesafe
enumeration implements the Serializable interface. The default serialization
mechanism is not appropriate. Suppose we write a value of type Orientation
and read it in again:

Orientation original = Orientation.HORIZONTAL;
ObjectOutputStream out = . . .;
out.write(original);
out.close();
ObjectInputStream in = . . .;
var saved = (Orientation) in.read();

Now the test

if (saved == Orientation.HORIZONTAL) . . .

will fail. In fact, the saved value is a completely new object of the Orientation
type that is not equal to any of the predefined constants. Even though the
constructor is private, the serialization mechanism can create new objects!

To solve this problem, you need to define another special serialization method,
called readResolve. If the readResolve method is defined, it is called after the object
is deserialized. It must return an object which then becomes the return value
of the readObject method. In our case, the readResolve method will inspect the
value field and return the appropriate enumerated constant:

protected Object readResolve() throws ObjectStreamException
{
 if (value == 1) return Orientation.HORIZONTAL;
 if (value == 2) return Orientation.VERTICAL;
 throw new ObjectStreamException(); // this shouldn't happen
}

Remember to add a readResolve method to all typesafe enumerations in your
legacy code and to all classes that follow the singleton design pattern.

2.3.5 Versioning

If you use serialization to save objects, you need to consider what happens
when your program evolves. Can version 1.1 read the old files? Can the users
who still use 1.0 read the files that the new version is producing? Clearly,
it would be desirable if object files could cope with the evolution of classes.

1032.3 Object Input/Output Streams and Serialization

At first glance, it seems that this would not be possible. When a class defini-
tion changes in any way, its SHA fingerprint also changes, and you know
that object input streams will refuse to read in objects with different finger-
prints. However, a class can indicate that it is compatible with an earlier version
of itself. To do this, you must first obtain the fingerprint of the earlier version of
the class. Use the standalone serialver program that is part of the JDK to obtain
this number. For example, running

serialver Employee

prints

Employee: static final long serialVersionUID = -1814239825517340645L;

All later versions of the class must define the serialVersionUID constant to the
same fingerprint as the original.

class Employee implements Serializable // version 1.1
{
 . . .
 public static final long serialVersionUID = -1814239825517340645L;
}

When a class has a static data member named serialVersionUID, it will not
compute the fingerprint manually but will use that value instead.

Once that static data member has been placed inside a class, the serialization
system is now willing to read in different versions of objects of that class.

If only the methods of the class change, there is no problem with reading the
new object data. However, if the data fields change, you may have problems.
For example, the old file object may have more or fewer data fields than the
one in the program, or the types of the data fields may be different. In that
case, the object input stream makes an effort to convert the serialized object
to the current version of the class.

The object input stream compares the data fields of the current version of
the class with those of the version in the serialized object. Of course, the
object input stream considers only the nontransient and nonstatic data fields.
If two fields have matching names but different types, the object input stream
makes no effort to convert one type to the other—the objects are incompatible.
If the serialized object has data fields that are not present in the current ver-
sion, the object input stream ignores the additional data. If the current version
has data fields that are not present in the serialized object, the added fields
are set to their default (null for objects, zero for numbers, and false for boolean
values).

Chapter 2 Input and Output104

Here is an example. Suppose we have saved a number of employee records
on disk, using the original version (1.0) of the class. Now we change the
Employee class to version 2.0 by adding a data field called department. Figure 2.7
shows what happens when a 1.0 object is read into a program that uses
2.0 objects. The department field is set to null. Figure 2.8 shows the opposite
scenario: A program using 1.0 objects reads a 2.0 object. The additional
department field is ignored.

Figure 2.7 Reading an object with fewer data fields

Figure 2.8 Reading an object with more data fields

Is this process safe? It depends. Dropping a data field seems harmless—the
recipient still has all the data that it knows how to manipulate. Setting a data
field to null might not be so safe. Many classes work hard to initialize all

1052.3 Object Input/Output Streams and Serialization

data fields in all constructors to non-null values, so that the methods don’t
have to be prepared to handle null data. It is up to the class designer to im-
plement additional code in the readObject method to fix version incompatibilities
or to make sure the methods are robust enough to handle null data.

TIP: Before you add a serialVersionUID field to a class, ask yourself why you
made your class serializable. If serialization is used only for short-term persis-
tence, such as distributed method calls in an application server, there is no
need to worry about versioning and the serialVersionUID. The same applies if
you extend a class that happens to be serializable, but you have no intent to
ever persist its instances. If your IDE gives you pesky warnings, change the IDE
preferences to turn them off, or add an annotation @SuppressWarnings("serial").
This is safer than adding a serialVersionUID that you may later forget to change.

2.3.6 Using Serialization for Cloning

There is an amusing use for the serialization mechanism: It gives you an easy
way to clone an object, provided the class is serializable. Simply serialize it
to an output stream and then read it back in. The result is a new object that
is a deep copy of the existing object. You don’t have to write the object to a
file—you can use a ByteArrayOutputStream to save the data into a byte array.

As Listing 2.4 shows, to get clone for free, simply extend the SerialCloneable class,
and you are done.

You should be aware that this method, although clever, will usually be much
slower than a clone method that explicitly constructs a new object and copies
or clones the data fields.

Listing 2.4 serialClone/SerialCloneTest.java

 1 package serialClone;
 2

 3 /**
 4 * @version 1.22 2018-05-01
 5 * @author Cay Horstmann
 6 */
 7

 8 import java.io.*;
 9 import java.time.*;
10

11 public class SerialCloneTest
12 {
13 public static void main(String[] args) throws CloneNotSupportedException
14 {

Chapter 2 Input and Output106

http://java.io

15 var harry = new Employee("Harry Hacker", 35000, 1989, 10, 1);
16 // clone harry
17 var harry2 = (Employee) harry.clone();
18

19 // mutate harry
20 harry.raiseSalary(10);
21

22 // now harry and the clone are different
23 System.out.println(harry);
24 System.out.println(harry2);
25 }
26 }
27

28 /**
29 * A class whose clone method uses serialization.
30 */
31 class SerialCloneable implements Cloneable, Serializable
32 {
33 public Object clone() throws CloneNotSupportedException
34 {
35 try {
36 // save the object to a byte array
37 var bout = new ByteArrayOutputStream();
38 try (var out = new ObjectOutputStream(bout))
39 {
40 out.writeObject(this);
41 }
42

43 // read a clone of the object from the byte array
44 try (var bin = new ByteArrayInputStream(bout.toByteArray()))
45 {
46 var in = new ObjectInputStream(bin);
47 return in.readObject();
48 }
49 }
50 catch (IOException | ClassNotFoundException e)
51 {
52 var e2 = new CloneNotSupportedException();
53 e2.initCause(e);
54 throw e2;
55 }
56 }
57 }
58

59 /**
60 * The familiar Employee class, redefined to extend the
61 * SerialCloneable class.
62 */

(Continues)

1072.3 Object Input/Output Streams and Serialization

Listing 2.4 (Continued)

63 class Employee extends SerialCloneable
64 {
65 private String name;
66 private double salary;
67 private LocalDate hireDay;
68

69 public Employee(String n, double s, int year, int month, int day)
70 {
71 name = n;
72 salary = s;
73 hireDay = LocalDate.of(year, month, day);
74 }
75

76 public String getName()
77 {
78 return name;
79 }
80

81 public double getSalary()
82 {
83 return salary;
84 }
85

86 public LocalDate getHireDay()
87 {
88 return hireDay;
89 }
90

91 /**
92 Raises the salary of this employee.
93 @byPercent the percentage of the raise
94 */
95 public void raiseSalary(double byPercent)
96 {
97 double raise = salary * byPercent / 100;
98 salary += raise;
99 }
100

101 public String toString()
102 {
103 return getClass().getName()
104 + "[name=" + name
105 + ",salary=" + salary
106 + ",hireDay=" + hireDay
107 + "]";
108 }
109 }

Chapter 2 Input and Output108

2.4 Working with Files

You have learned how to read and write data from a file. However, there is
more to file management than reading and writing. The Path interface and
Files class encapsulate the functionality required to work with the file system
on the user’s machine. For example, the Files class can be used to remove or
rename a file, or to find out when a file was last modified. In other words,
the input/output stream classes are concerned with the contents of files,
whereas the classes that we discuss here are concerned with the storage of
files on a disk.

The Path interface and Files class were added in Java 7. They are much more
convenient to use than the File class which dates back all the way to JDK 1.0.
We expect them to be very popular with Java programmers and discuss them
in depth.

2.4.1 Paths

A Path is a sequence of directory names, optionally followed by a file name.
The first component of a path may be a root component such as / or C:\. The
permissible root components depend on the file system. A path that starts
with a root component is absolute. Otherwise, it is relative. For example, here
we construct an absolute and a relative path. For the absolute path, we assume
a UNIX-like file system.

Path absolute = Paths.get("/home", "harry");
Path relative = Paths.get("myprog", "conf", "user.properties");

The static Paths.get method receives one or more strings, which it joins with
the path separator of the default file system (/ for a UNIX-like file system, \
for Windows). It then parses the result, throwing an InvalidPathException if the
result is not a valid path in the given file system. The result is a Path object.

The get method can get a single string containing multiple components. For
example, you can read a path from a configuration file like this:

String baseDir = props.getProperty("base.dir");
 // May be a string such as /opt/myprog or c:\Program Files\myprog
Path basePath = Paths.get(baseDir); // OK that baseDir has separators

NOTE: A path does not have to correspond to a file that actually exists. It is
merely an abstract sequence of names. As you will see in the next section,
when you want to create a file, you first make a path and then call a method to
create the corresponding file.

1092.4 Working with Files

It is very common to combine or resolve paths. The call p.resolve(q) returns a
path according to these rules:

• If q is absolute, then the result is q.
• Otherwise, the result is “p then q,” according to the rules of the file system.

For example, suppose your application needs to find its working directory
relative to a given base directory that is read from a configuration file, as in
the preceding example.

Path workRelative = Paths.get("work");
Path workPath = basePath.resolve(workRelative);

There is a shortcut for the resolve method that takes a string instead of a path:

Path workPath = basePath.resolve("work");

There is a convenience method resolveSibling that resolves against a path’s
parent, yielding a sibling path. For example, if workPath is /opt/myapp/work, the call

Path tempPath = workPath.resolveSibling("temp");

creates /opt/myapp/temp.

The opposite of resolve is relativize. The call p.relativize(r) yields the path q
which, when resolved with p, yields r. For example, relativizing /home/harry
against /home/fred/input.txt yields ../fred/input.txt. Here, we assume that .. denotes
the parent directory in the file system.

The normalize method removes any redundant . and .. components (or whatever
the file system may deem redundant). For example, normalizing the path
/home/harry/../fred/./input.txt yields /home/fred/input.txt.

The toAbsolutePath method yields the absolute path of a given path, starting at
a root component, such as /home/fred/input.txt or c:\Users\fred\input.txt.

The Path interface has many useful methods for taking paths apart. This code
sample shows some of the most useful ones:

Path p = Paths.get("/home", "fred", "myprog.properties");
Path parent = p.getParent(); // the path /home/fred
Path file = p.getFileName(); // the path myprog.properties
Path root = p.getRoot(); // the path /

As you have already seen in Volume I, you can construct a Scanner from a Path
object:

var in = new Scanner(Paths.get("/home/fred/input.txt"));

Chapter 2 Input and Output110

NOTE: Occasionally, you may need to interoperate with legacy APIs that use
the File class instead of the Path interface. The Path interface has a toFilemethod,
and the File class has a toPath method.

java.nio.file.Paths 7

• static Path get(String first, String... more)

makes a path by joining the given strings.

java.nio.file.Path 7

• Path resolve(Path other)
• Path resolve(String other)

if other is absolute, returns other; otherwise, returns the path obtained by joining
this and other.

• Path resolveSibling(Path other)
• Path resolveSibling(String other)

if other is absolute, returns other; otherwise, returns the path obtained by joining
the parent of this and other.

• Path relativize(Path other)

returns the relative path that, when resolved with this, yields other.

• Path normalize()

removes redundant path elements such as . and ..

• Path toAbsolutePath()

returns an absolute path that is equivalent to this path.

• Path getParent()

returns the parent, or null if this path has no parent.

• Path getFileName()

returns the last component of this path, or null if this path has no components.

• Path getRoot()

returns the root component of this path, or null if this path has no root
components.

• toFile()

makes a File from this path.

1112.4 Working with Files

java.io.File 1.0

• Path toPath() 7

makes a Path from this file.

2.4.2 Reading and Writing Files

The Files class makes quick work of common file operations. For example,
you can easily read the entire contents of a file:

byte[] bytes = Files.readAllBytes(path);

If you want to read the file as a string, call readAllBytes followed by

var content = new String(bytes, charset);

But if you want the file as a sequence of lines, call

List<String> lines = Files.readAllLines(path, charset);

Conversely, if you want to write a string, call

Files.write(path, content.getBytes(charset));

To append to a given file, use

Files.write(path, content.getBytes(charset), StandardOpenOption.APPEND);

You can also write a collection of lines with

Files.write(path, lines);

These simple methods are intended for dealing with text files of moderate
length. If your files are large or binary, you can still use the familiar input/
output streams or readers/writers:

InputStream in = Files.newInputStream(path);
OutputStream out = Files.newOutputStream(path);
Reader in = Files.newBufferedReader(path, charset);
Writer out = Files.newBufferedWriter(path, charset);

These convenience methods save you from dealing with FileInputStream,
FileOutputStream, BufferedReader, or BufferedWriter.

Chapter 2 Input and Output112

http://java.io

java.nio.file.Files 7

• static byte[] readAllBytes(Path path)
• static List<String> readAllLines(Path path, Charset charset)

reads the contents of a file.

• static Path write(Path path, byte[] contents, OpenOption... options)
• static Path write(Path path, Iterable<? extends CharSequence> contents, OpenOption options)

writes the given contents to a file and returns path.

• static InputStream newInputStream(Path path, OpenOption... options)
• static OutputStream newOutputStream(Path path, OpenOption... options)
• static BufferedReader newBufferedReader(Path path, Charset charset)
• static BufferedWriter newBufferedWriter(Path path, Charset charset, OpenOption... options)

opens a file for reading or writing.

2.4.3 Creating Files and Directories

To create a new directory, call

Files.createDirectory(path);

All but the last component in the path must already exist. To create
intermediate directories as well, use

Files.createDirectories(path);

You can create an empty file with

Files.createFile(path);

The call throws an exception if the file already exists. The check for existence
and creation are atomic. If the file doesn’t exist, it is created before anyone
else has a chance to do the same.

There are convenience methods for creating a temporary file or directory in
a given or system-specific location.

Path newPath = Files.createTempFile(dir, prefix, suffix);
Path newPath = Files.createTempFile(prefix, suffix);
Path newPath = Files.createTempDirectory(dir, prefix);
Path newPath = Files.createTempDirectory(prefix);

1132.4 Working with Files

Here, dir is a Path, and prefix/suffix are strings which may be null. For
example, the call Files.createTempFile(null, ".txt") might return a path such as
/tmp/1234405522364837194.txt.

When you create a file or directory, you can specify attributes, such as owners
or permissions. However, the details depend on the file system, and we won’t
cover them here.

java.nio.file.Files 7

• static Path createFile(Path path, FileAttribute<?>... attrs)
• static Path createDirectory(Path path, FileAttribute<?>... attrs)
• static Path createDirectories(Path path, FileAttribute<?>... attrs)

creates a file or directory. The createDirectories method creates any intermediate
directories as well.

• static Path createTempFile(String prefix, String suffix, FileAttribute<?>... attrs)
• static Path createTempFile(Path parentDir, String prefix, String suffix, FileAttribute<?>...

attrs)
• static Path createTempDirectory(String prefix, FileAttribute<?>... attrs)
• static Path createTempDirectory(Path parentDir, String prefix, FileAttribute<?>... attrs)

creates a temporary file or directory, in a location suitable for temporary files
or in the given parent directory. Returns the path to the created file or directory.

2.4.4 Copying, Moving, and Deleting Files

To copy a file from one location to another, simply call

Files.copy(fromPath, toPath);

To move the file (that is, copy and delete the original), call

Files.move(fromPath, toPath);

The copy or move will fail if the target exists. If you want to overwrite an
existing target, use the REPLACE_EXISTING option. If you want to copy all file
attributes, use the COPY_ATTRIBUTES option. You can supply both like this:

Files.copy(fromPath, toPath, StandardCopyOption.REPLACE_EXISTING,
 StandardCopyOption.COPY_ATTRIBUTES);

Chapter 2 Input and Output114

You can specify that a move should be atomic. Then you are assured that
either the move completed successfully, or the source continues to be present.
Use the ATOMIC_MOVE option:

Files.move(fromPath, toPath, StandardCopyOption.ATOMIC_MOVE);

You can also copy an input stream to a Path, which just means saving the input
stream to disk. Similarly, you can copy a Path to an output stream. Use the
following calls:

Files.copy(inputStream, toPath);
Files.copy(fromPath, outputStream);

As with the other calls to copy, you can supply copy options as needed.

Finally, to delete a file, simply call

Files.delete(path);

This method throws an exception if the file doesn’t exist, so instead you may
want to use

boolean deleted = Files.deleteIfExists(path);

The deletion methods can also be used to remove an empty directory.

See Table 2.3 for a summary of the options that are available for file
operations.

java.nio.file.Files 7

• static Path copy(Path from, Path to, CopyOption... options)
• static Path move(Path from, Path to, CopyOption... options)

copies or moves from to the given target location and returns to.

• static long copy(InputStream from, Path to, CopyOption... options)
• static long copy(Path from, OutputStream to, CopyOption... options)

copies from an input stream to a file, or from a file to an output stream,
returning the number of bytes copied.

• static void delete(Path path)
• static boolean deleteIfExists(Path path)

deletes the given file or empty directory. The first method throws an exception
if the file or directory doesn’t exist. The second method returns false in that case.

1152.4 Working with Files

Table 2.3 Standard Options for File Operations

DescriptionOption

StandardOpenOption; use with newBufferedWriter, newInputStream, newOutputStream, write

Open for readingREAD

Open for writingWRITE

If opened for writing, append to the end of the fileAPPEND

If opened for writing, remove existing contentsTRUNCATE_EXISTING

Create a new file and fail if it existsCREATE_NEW

Atomically create a new file if it doesn’t existCREATE

Make a “best effort” to delete the file when it is closedDELETE_ON_CLOSE

A hint to the file system that this file will be sparseSPARSE

Requires that each update to the file data or data and
metadata be written synchronously to the storage device

DSYNC or SYNC

StandardCopyOption; use with copy, move

Move the file atomicallyATOMIC_MOVE

Copy the file attributesCOPY_ATTRIBUTES

Replace the target if it existsREPLACE_EXISTING

LinkOption; use with all of the above methods and exists, isDirectory, isRegularFile

Do not follow symbolic linksNOFOLLOW_LINKS

FileVisitOption; use with find, walk, walkFileTree

Follow symbolic linksFOLLOW_LINKS

2.4.5 Getting File Information

The following static methods return a boolean value to check a property of
a path:

• exists

• isHidden

• isReadable, isWritable, isExecutable
• isRegularFile, isDirectory, isSymbolicLink

The size method returns the number of bytes in a file.

long fileSize = Files.size(path);

Chapter 2 Input and Output116

The getOwner method returns the owner of the file, as an instance of java.nio
.file.attribute.UserPrincipal.

All file systems report a set of basic attributes, encapsulated by the
BasicFileAttributes interface, which partially overlaps with that information.
The basic file attributes are

• The times at which the file was created, last accessed, and last modified,
as instances of the class java.nio.file.attribute.FileTime

• Whether the file is a regular file, a directory, a symbolic link, or none of
these

• The file size
• The file key—an object of some class, specific to the file system, that may

or may not uniquely identify a file

To get these attributes, call

BasicFileAttributes attributes = Files.readAttributes(path, BasicFileAttributes.class);

If you know that the user’s file system is POSIX-compliant, you can instead
get an instance of PosixFileAttributes:

PosixFileAttributes attributes = Files.readAttributes(path, PosixFileAttributes.class);

Then you can find out the group owner and the owner, group, and world
access permissions of the file. We won’t dwell on the details since so much
of this information is not portable across operating systems.

java.nio.file.Files 7

• static boolean exists(Path path)
• static boolean isHidden(Path path)
• static boolean isReadable(Path path)
• static boolean isWritable(Path path)
• static boolean isExecutable(Path path)
• static boolean isRegularFile(Path path)
• static boolean isDirectory(Path path)
• static boolean isSymbolicLink(Path path)

checks for the given property of the file given by the path.

• static long size(Path path)

gets the size of the file in bytes.

• A readAttributes(Path path, Class<A> type, LinkOption... options)

reads the file attributes of type A.

1172.4 Working with Files

java.nio.file.attribute.BasicFileAttributes 7

• FileTime creationTime()
• FileTime lastAccessTime()
• FileTime lastModifiedTime()
• boolean isRegularFile()
• boolean isDirectory()
• boolean isSymbolicLink()
• long size()
• Object fileKey()

gets the requested attribute.

2.4.6 Visiting Directory Entries

The static Files.list method returns a Stream<Path> that reads the entries of a di-
rectory. The directory is read lazily, making it possible to efficiently process
directories with huge numbers of entries.

Since reading a directory involves a system resource that needs to be closed,
you should use a try block:

try (Stream<Path> entries = Files.list(pathToDirectory))
{
 . . .
}

The list method does not enter subdirectories. To process all descendants of
a directory, use the Files.walk method instead.

try (Stream<Path> entries = Files.walk(pathToRoot))
{
 // Contains all descendants, visited in depth-first order
}

Here is a sample traversal of the unzipped src.zip tree:

java
java/nio
java/nio/DirectCharBufferU.java
java/nio/ByteBufferAsShortBufferRL.java
java/nio/MappedByteBuffer.java
. . .
java/nio/ByteBufferAsDoubleBufferB.java
java/nio/charset
java/nio/charset/CoderMalfunctionError.java
java/nio/charset/CharsetDecoder.java
java/nio/charset/UnsupportedCharsetException.java

Chapter 2 Input and Output118

java/nio/charset/spi
java/nio/charset/spi/CharsetProvider.java
java/nio/charset/StandardCharsets.java
java/nio/charset/Charset.java
. . .
java/nio/charset/CoderResult.java
java/nio/HeapFloatBufferR.java
. . .

As you can see, whenever the traversal yields a directory, it is entered before
continuing with its siblings.

You can limit the depth of the tree that you want to visit by calling
Files.walk(pathToRoot, depth). Both walk methods have a varargs parameter of type
FileVisitOption..., but there is only one option you can supply: FOLLOW_LINKS to
follow symbolic links.

NOTE: If you filter the paths returned by walk and your filter criterion involves
the file attributes stored with a directory, such as size, creation time, or type
(file, directory, symbolic link), then use the find method instead of walk. Call that
method with a predicate function that accepts a path and a BasicFileAttributes
object. The only advantage is efficiency. Since the directory is being read
anyway, the attributes are readily available.

This code fragment uses the Files.walk method to copy one directory to another:

Files.walk(source).forEach(p ->
 {
 try
 {
 Path q = target.resolve(source.relativize(p));
 if (Files.isDirectory(p))
 Files.createDirectory(q);
 else
 Files.copy(p, q);
 }
 catch (IOException ex)
 {
 throw new UncheckedIOException(ex);
 }
 });

Unfortunately, you cannot easily use the Files.walk method to delete a tree of
directories since you need to delete the children before deleting the parent.
The next section shows you how to overcome that problem.

1192.4 Working with Files

2.4.7 Using Directory Streams

As you saw in the preceding section, the Files.walk method produces a Stream<Path>
that traverses the descendants of a directory. Sometimes, you need more
fine-grained control over the traversal process. In that case, use the Files
.newDirectoryStream object instead. It yields a DirectoryStream. Note that this is not
a subinterface of java.util.stream.Stream but an interface that is specialized for
directory traversal. It is a subinterface of Iterable so that you can use directory
stream in an enhanced for loop. Here is the usage pattern:

try (DirectoryStream<Path> entries = Files.newDirectoryStream(dir))
{
 for (Path entry : entries)

Process entries
}

The try-with-resources block ensures that the directory stream is properly
closed.

There is no specific order in which the directory entries are visited.

You can filter the files with a glob pattern:

try (DirectoryStream<Path> entries = Files.newDirectoryStream(dir, "*.java"))

Table 2.4 shows all glob patterns.

Table 2.4 Glob Patterns

ExampleDescriptionPattern

*.java matches all Java files in the
current directory.

Matches zero or more characters
of a path component.

*

**.java matches all Java files in
any subdirectory.

Matches zero or more characters,
crossing directory boundaries.

**

????.java matches all
four-character (not counting the
extension) Java files.

Matches one character.?

Test[0-9A-F].java matches Testx.java,
where x is one hexadecimal digit.

Matches a set of characters. You
can use hyphens [0-9] and
negation [!0-9].

[. . .]

*.{java,class} matches all Java and
class files.

Matches alternatives, separated
by commas.

{. . .}

*** matches all files with a * in
their name.

Escapes any of the above as well
as \.

\

Chapter 2 Input and Output120

CAUTION: If you use the glob syntax on Windows, you have to escape back-
slashes twice: once for the glob syntax, and once for the Java string syntax:
Files.newDirectoryStream(dir, "C:\\\\").

If you want to visit all descendants of a directory, call the walkFileTree method
instead and supply an object of type FileVisitor. That object gets notified

• When a file is encountered: FileVisitResult visitFile(T path, BasicFileAttributes
attrs)

• Before a directory is processed: FileVisitResult preVisitDirectory(T dir, IOException ex)
• After a directory is processed: FileVisitResult postVisitDirectory(T dir, IOException ex)
• When an error occurred trying to visit a file or directory, such as trying

to open a directory without the necessary permissions: FileVisitResult
visitFileFailed(T path, IOException ex)

In each case, you can specify whether you want to

• Continue visiting the next file: FileVisitResult.CONTINUE
• Continue the walk, but without visiting the entries in this directory:

FileVisitResult.SKIP_SUBTREE

• Continue the walk, but without visiting the siblings of this file:
FileVisitResult.SKIP_SIBLINGS

• Terminate the walk: FileVisitResult.TERMINATE

If any of the methods throws an exception, the walk is also terminated, and
that exception is thrown from the walkFileTree method.

NOTE: The FileVisitor interface is a generic type, but it isn’t likely that you’ll
ever want something other than a FileVisitor<Path>. The walkFileTree method is
willing to accept a FileVisitor<? super Path>, but Path does not have an abundance
of supertypes.

A convenience class SimpleFileVisitor implements the FileVisitor interface. All
methods except visitFileFailed do nothing and continue. The visitFileFailed
method throws the exception that caused the failure, thereby terminating the
visit.

For example, here is how to print out all subdirectories of a given directory:

1212.4 Working with Files

Files.walkFileTree(Paths.get("/"), new SimpleFileVisitor<Path>()
 {
 public FileVisitResult preVisitDirectory(Path path, BasicFileAttributes attrs)
 throws IOException
 {
 System.out.println(path);
 return FileVisitResult.CONTINUE;
 }

 public FileVisitResult postVisitDirectory(Path dir, IOException exc)
 {
 return FileVisitResult.CONTINUE;
 }

 public FileVisitResult visitFileFailed(Path path, IOException exc)
 throws IOException
 {
 return FileVisitResult.SKIP_SUBTREE;
 }
 });

Note that we need to override postVisitDirectory and visitFileFailed. Otherwise,
the visit would fail as soon as it encounters a directory that it’s not allowed
to open or a file it’s not allowed to access.

Also note that the attributes of the path are passed as a parameter to the
preVisitDirectory and visitFile methods. The visitor already had to make an OS
call to get the attributes, since it needs to distinguish between files and
directories. This way, you don’t need to make another call.

The other methods of the FileVisitor interface are useful if you need to do
some work when entering or leaving a directory. For example, when you
delete a directory tree, you need to remove the current directory after
you have removed all of its files. Here is the complete code for deleting a
directory tree:

// Delete the directory tree starting at root
Files.walkFileTree(root, new SimpleFileVisitor<Path>()
 {
 public FileVisitResult visitFile(Path file, BasicFileAttributes attrs)
 throws IOException
 {
 Files.delete(file);
 return FileVisitResult.CONTINUE;
 }

Chapter 2 Input and Output122

 public FileVisitResult postVisitDirectory(Path dir, IOException e) throws IOException
 {
 if (e != null) throw e;
 Files.delete(dir);
 return FileVisitResult.CONTINUE;
 }
 });

java.nio.file.Files 7

• static DirectoryStream<Path> newDirectoryStream(Path path)
• static DirectoryStream<Path> newDirectoryStream(Path path, String glob)

gets an iterator over the files and directories in a given directory. The second
method only accepts those entries matching the given glob pattern.

• static Path walkFileTree(Path start, FileVisitor<? super Path> visitor)

walks all descendants of the given path, applying the visitor to all descendants.

java.nio.file.SimpleFileVisitor<T> 7

• static FileVisitResult visitFile(T path, BasicFileAttributes attrs)

is called when a file or directory is visited; returns one of CONTINUE, SKIP_SUBTREE,
SKIP_SIBLINGS, or TERMINATE. The default implementation does nothing and continues.

• static FileVisitResult preVisitDirectory(T dir, BasicFileAttributes attrs)
• static FileVisitResult postVisitDirectory(T dir, BasicFileAttributes attrs)

are called before and after visiting a directory. The default implementation does
nothing and continues.

• static FileVisitResult visitFileFailed(T path, IOException exc)

is called if an exception was thrown in an attempt to get information about the
given file. The default implementation rethrows the exception, which causes
the visit to terminate with that exception. Override the method if you want to
continue.

2.4.8 ZIP File Systems

The Paths class looks up paths in the default file system—the files on the user’s
local disk. You can have other file systems. One of the more useful ones is
a ZIP file system. If zipname is the name of a ZIP file, then the call

FileSystem fs = FileSystems.newFileSystem(Paths.get(zipname), null);

1232.4 Working with Files

establishes a file system that contains all files in the ZIP archive. It’s an easy
matter to copy a file out of that archive if you know its name:

Files.copy(fs.getPath(sourceName), targetPath);

Here, fs.getPath is the analog of Paths.get for an arbitrary file system.

To list all files in a ZIP archive, walk the file tree:

FileSystem fs = FileSystems.newFileSystem(Paths.get(zipname), null);
Files.walkFileTree(fs.getPath("/"), new SimpleFileVisitor<Path>()
 {
 public FileVisitResult visitFile(Path file, BasicFileAttributes attrs)
 throws IOException
 {
 System.out.println(file);
 return FileVisitResult.CONTINUE;
 }
 });

That is nicer than the API described in Section 2.2.3, “ZIP Archives,” on p. 85
which required a set of new classes just to deal with ZIP archives.

java.nio.file.FileSystems 7

• static FileSystem newFileSystem(Path path, ClassLoader loader)

iterates over the installed file system providers and, provided that loader is not
null, the file systems that the given class loader can load. Returns the file system
created by the first file system provider that accepts the given path. By default,
there is a provider for ZIP file systems that accepts files whose names end in
.zip or .jar.

java.nio.file.FileSystem 7

• static Path getPath(String first, String... more)

makes a path by joining the given strings.

2.5 Memory-Mapped Files

Most operating systems can take advantage of a virtual memory implementa-
tion to “map” a file, or a region of a file, into memory. Then the file can be
accessed as if it were an in-memory array, which is much faster than the
traditional file operations.

Chapter 2 Input and Output124

2.5.1 Memory-Mapped File Performance

At the end of this section, you can find a program that computes the CRC32
checksum of a file using traditional file input and a memory-mapped file. On
one machine, we got the timing data shown in Table 2.5 when computing
the checksum of the 37MB file rt.jar in the jre/lib directory of the JDK.

Table 2.5 Timing Data for File Operations

TimeMethod

110 secondsPlain input stream

9.9 secondsBuffered input stream

162 secondsRandom access file

7.2 secondsMemory-mapped file

As you can see, on this particular machine, memory mapping is a bit faster
than using buffered sequential input and dramatically faster than using a
RandomAccessFile.

Of course, the exact values will differ greatly from one machine to another,
but it is obvious that the performance gain, compared to random access, can
be substantial. For sequential reading of files of moderate size, on the other
hand, there is no reason to use memory mapping.

The java.nio package makes memory mapping quite simple. Here is what
you do.

First, get a channel for the file. A channel is an abstraction for a disk file that
lets you access operating system features such as memory mapping, file
locking, and fast data transfers between files.

FileChannel channel = FileChannel.open(path, options);

Then, get a ByteBuffer from the channel by calling the map method of the FileChannel
class. Specify the area of the file that you want to map and a mapping mode.
Three modes are supported:

• FileChannel.MapMode.READ_ONLY: The resulting buffer is read-only. Any attempt to
write to the buffer results in a ReadOnlyBufferException.

• FileChannel.MapMode.READ_WRITE: The resulting buffer is writable, and the changes
will be written back to the file at some time. Note that other programs
that have mapped the same file might not see those changes immediately.
The exact behavior of simultaneous file mapping by multiple programs
depends on the operating system.

1252.5 Memory-Mapped Files

• FileChannel.MapMode.PRIVATE: The resulting buffer is writable, but any changes
are private to this buffer and not propagated to the file.

Once you have the buffer, you can read and write data using the methods of
the ByteBuffer class and the Buffer superclass.

Buffers support both sequential and random data access. A buffer has a position
that is advanced by get and put operations. For example, you can sequentially
traverse all bytes in the buffer as

while (buffer.hasRemaining())
{
 byte b = buffer.get();
 . . .
}

Alternatively, you can use random access:

for (int i = 0; i < buffer.limit(); i++)
{
 byte b = buffer.get(i);
 . . .
}

You can also read and write arrays of bytes with the methods

get(byte[] bytes)
get(byte[], int offset, int length)

Finally, there are methods

getInt getChar
getLong getFloat
getShort getDouble

to read primitive-type values that are stored as binary values in the file. As
we already mentioned, Java uses big-endian ordering for binary data. However,
if you need to process a file containing binary numbers in little-endian order,
simply call

buffer.order(ByteOrder.LITTLE_ENDIAN);

To find out the current byte order of a buffer, call

ByteOrder b = buffer.order();

CAUTION: This pair of methods does not use the set/get naming convention.

Chapter 2 Input and Output126

To write numbers to a buffer, use one of the methods

putInt putChar
putLong putFloat
putShort putDouble

At some point, and certainly when the channel is closed, these changes are
written back to the file.

Listing 2.5 computes the 32-bit cyclic redundancy checksum (CRC32) of a
file. That checksum is often used to determine whether a file has been cor-
rupted. Corruption of a file makes it very likely that the checksum has
changed. The java.util.zip package contains a class CRC32 that computes the
checksum of a sequence of bytes, using the following loop:

var crc = new CRC32();
while (more bytes)
 crc.update(next byte);
long checksum = crc.getValue();

The details of the CRC computation are not important. We just use it as an
example of a useful file operation. (In practice, you would read and update
data in larger blocks, not a byte at a time. Then the speed differences are not
as dramatic.)

Run the program as

java memoryMap.MemoryMapTest filename

Listing 2.5 memoryMap/MemoryMapTest.java

 1 package memoryMap;
 2

 3 import java.io.*;
 4 import java.nio.*;
 5 import java.nio.channels.*;
 6 import java.nio.file.*;
 7 import java.util.zip.*;
 8

 9 /**
10 * This program computes the CRC checksum of a file in four ways.

11 * Usage: java memoryMap.MemoryMapTest filename
12 * @version 1.02 2018-05-01
13 * @author Cay Horstmann
14 */

(Continues)

1272.5 Memory-Mapped Files

http://java.io

Listing 2.5 (Continued)

15 public class MemoryMapTest
16 {
17 public static long checksumInputStream(Path filename) throws IOException
18 {
19 try (InputStream in = Files.newInputStream(filename))
20 {
21 var crc = new CRC32();
22

23 int c;
24 while ((c = in.read()) != -1)
25 crc.update(c);
26 return crc.getValue();
27 }
28 }
29

30 public static long checksumBufferedInputStream(Path filename) throws IOException
31 {
32 try (var in = new BufferedInputStream(Files.newInputStream(filename)))
33 {
34 var crc = new CRC32();
35

36 int c;
37 while ((c = in.read()) != -1)
38 crc.update(c);
39 return crc.getValue();
40 }
41 }
42

43 public static long checksumRandomAccessFile(Path filename) throws IOException
44 {
45 try (var file = new RandomAccessFile(filename.toFile(), "r"))
46 {
47 long length = file.length();
48 var crc = new CRC32();
49

50 for (long p = 0; p < length; p++)
51 {
52 file.seek(p);
53 int c = file.readByte();
54 crc.update(c);
55 }
56 return crc.getValue();
57 }
58 }
59

Chapter 2 Input and Output128

60 public static long checksumMappedFile(Path filename) throws IOException
61 {
62 try (FileChannel channel = FileChannel.open(filename))
63 {
64 var crc = new CRC32();
65 int length = (int) channel.size();
66 MappedByteBuffer buffer = channel.map(FileChannel.MapMode.READ_ONLY, 0, length);
67

68 for (int p = 0; p < length; p++)
69 {
70 int c = buffer.get(p);
71 crc.update(c);
72 }
73 return crc.getValue();
74 }
75 }
76

77 public static void main(String[] args) throws IOException
78 {
79 System.out.println("Input Stream:");
80 long start = System.currentTimeMillis();
81 Path filename = Paths.get(args[0]);
82 long crcValue = checksumInputStream(filename);
83 long end = System.currentTimeMillis();
84 System.out.println(Long.toHexString(crcValue));
85 System.out.println((end - start) + " milliseconds");
86

87 System.out.println("Buffered Input Stream:");
88 start = System.currentTimeMillis();
89 crcValue = checksumBufferedInputStream(filename);
90 end = System.currentTimeMillis();
91 System.out.println(Long.toHexString(crcValue));
92 System.out.println((end - start) + " milliseconds");
93

94 System.out.println("Random Access File:");
95 start = System.currentTimeMillis();
96 crcValue = checksumRandomAccessFile(filename);
97 end = System.currentTimeMillis();
98 System.out.println(Long.toHexString(crcValue));
99 System.out.println((end - start) + " milliseconds");
100

101 System.out.println("Mapped File:");
102 start = System.currentTimeMillis();
103 crcValue = checksumMappedFile(filename);
104 end = System.currentTimeMillis();
105 System.out.println(Long.toHexString(crcValue));
106 System.out.println((end - start) + " milliseconds");
107 }
108 }

1292.5 Memory-Mapped Files

java.io.FileInputStream 1.0

• FileChannel getChannel() 1.4

returns a channel for accessing this input stream.

java.io.FileOutputStream 1.0

• FileChannel getChannel() 1.4

returns a channel for accessing this output stream.

java.io.RandomAccessFile 1.0

• FileChannel getChannel() 1.4

returns a channel for accessing this file.

java.nio.channels.FileChannel 1.4

• static FileChannel open(Path path, OpenOption... options) 7

opens a file channel for the given path. By default, the channel is opened for
reading. The parameter options is one of the values WRITE, APPEND,TRUNCATE_EXISTING,
CREATE in the StandardOpenOption enumeration.

• MappedByteBuffer map(FileChannel.MapMode mode, long position, long size)

maps a region of the file to memory. The parameter mode is one of the constants
READ_ONLY, READ_WRITE, or PRIVATE in the FileChannel.MapMode class.

java.nio.Buffer 1.4

• boolean hasRemaining()

returns true if the current buffer position has not yet reached the buffer’s limit
position.

• int limit()

returns the limit position of the buffer—that is, the first position at which no
more values are available.

Chapter 2 Input and Output130

http://java.io
http://java.io
http://java.io

java.nio.ByteBuffer 1.4

• byte get()

gets a byte from the current position and advances the current position to the
next byte.

• byte get(int index)

gets a byte from the specified index.

• ByteBuffer put(byte b)

puts a byte at the current position and advances the current position to the
next byte. Returns a reference to this buffer.

• ByteBuffer put(int index, byte b)

puts a byte at the specified index. Returns a reference to this buffer.

• ByteBuffer get(byte[] destination)
• ByteBuffer get(byte[] destination, int offset, int length)

fills a byte array, or a region of a byte array, with bytes from the buffer, and
advances the current position by the number of bytes read. If not enough bytes
remain in the buffer, then no bytes are read, and a BufferUnderflowException is
thrown. Returns a reference to this buffer.

• ByteBuffer put(byte[] source)
• ByteBuffer put(byte[] source, int offset, int length)

puts all bytes from a byte array, or the bytes from a region of a byte array, into
the buffer, and advances the current position by the number of bytes read. If
not enough bytes remain in the buffer, then no bytes are written, and a
BufferOverflowException is thrown. Returns a reference to this buffer.

• Xxx getXxx()
• Xxx getXxx(int index)
• ByteBuffer putXxx(Xxx value)
• ByteBuffer putXxx(int index, Xxx value)

gets or puts a binary number. Xxx is one of Int, Long, Short, Char, Float, or Double.

• ByteBuffer order(ByteOrder order)
• ByteOrder order()

sets or gets the byte order. The value for order is one of the constants BIG_ENDIAN
or LITTLE_ENDIAN of the ByteOrder class.

• static ByteBuffer allocate(int capacity)

constructs a buffer with the given capacity.

(Continues)

1312.5 Memory-Mapped Files

java.nio.ByteBuffer 1.4 (Continued)

• static ByteBuffer wrap(byte[] values)

constructs a buffer that is backed by the given array.

• CharBuffer asCharBuffer()

constructs a character buffer that is backed by this buffer. Changes to the
character buffer will show up in this buffer, but the character buffer has its own
position, limit, and mark.

java.nio.CharBuffer 1.4

• char get()
• CharBuffer get(char[] destination)
• CharBuffer get(char[] destination, int offset, int length)

gets one char value, or a range of char values, starting at the buffer’s position
and moving the position past the characters that were read. The last two
methods return this.

• CharBuffer put(char c)
• CharBuffer put(char[] source)
• CharBuffer put(char[] source, int offset, int length)
• CharBuffer put(String source)
• CharBuffer put(CharBuffer source)

puts one char value, or a range of char values, starting at the buffer’s position
and advancing the position past the characters that were written. When reading
from a CharBuffer, all remaining characters are read. All methods return this.

2.5.2 The Buffer Data Structure

When you use memory mapping, you make a single buffer that spans the
entire file or the area of the file that you’re interested in. You can also use
buffers to read and write more modest chunks of information.

In this section, we briefly describe the basic operations on Buffer objects. A
buffer is an array of values of the same type. The Buffer class is an abstract
class with concrete subclasses ByteBuffer, CharBuffer, DoubleBuffer, FloatBuffer, IntBuffer,
LongBuffer, and ShortBuffer.

NOTE: The StringBuffer class is not related to these buffers.

Chapter 2 Input and Output132

In practice, you will most commonly use ByteBuffer and CharBuffer. As shown in
Figure 2.9, a buffer has

• A capacity that never changes
• A position at which the next value is read or written
• A limit beyond which reading and writing is meaningless
• Optionally, a mark for repeating a read or write operation

Figure 2.9 A buffer

These values fulfill the condition

0 = mark = position = limit = capacity

The principal purpose of a buffer is a “write, then read” cycle. At the outset,
the buffer’s position is 0 and the limit is the capacity. Keep calling put to add
values to the buffer. When you run out of data or reach the capacity, it is
time to switch to reading.

Call flip to set the limit to the current position and the position to 0. Now
keep calling get while the remaining method (which returns limit – position) is
positive. When you have read all values in the buffer, call clear to prepare the
buffer for the next writing cycle. The clear method resets the position to 0 and
the limit to the capacity.

If you want to reread the buffer, use rewind or mark/reset (see the API notes for
details).

To get a buffer, call a static method such as ByteBuffer.allocate or ByteBuffer.wrap.

Then, you can fill a buffer from a channel, or write its contents to a channel.
For example,

1332.5 Memory-Mapped Files

ByteBuffer buffer = ByteBuffer.allocate(RECORD_SIZE);
channel.read(buffer);
channel.position(newpos);
buffer.flip();
channel.write(buffer);

This can be a useful alternative to a random-access file.

java.nio.Buffer 1.4

• Buffer clear()

prepares this buffer for writing by setting the position to 0 and the limit to the
capacity; returns this.

• Buffer flip()

prepares this buffer for reading after writing, by setting the limit to the position
and the position to 0; returns this.

• Buffer rewind()

prepares this buffer for rereading the same values by setting the position to 0
and leaving the limit unchanged; returns this.

• Buffer mark()

sets the mark of this buffer to the position; returns this.

• Buffer reset()

sets the position of this buffer to the mark, thus allowing the marked portion
to be read or written again; returns this.

• int remaining()

returns the remaining number of readable or writable values—that is, the
difference between the limit and position.

• int position()
• void position(int newValue)

gets and sets the position of this buffer.

• int capacity()

returns the capacity of this buffer.

2.6 File Locking

When multiple simultaneously executing programs need to modify the same
file, they need to communicate in some way, or the file can easily become
damaged. File locks can solve this problem. A file lock controls access to a
file or a range of bytes within a file.

Chapter 2 Input and Output134

Suppose your application saves a configuration file with user preferences. If
a user invokes two instances of the application, it could happen that both of
them want to write the configuration file at the same time. In that situation,
the first instance should lock the file. When the second instance finds the file
locked, it can decide to wait until the file is unlocked or simply skip the
writing process.

To lock a file, call either the lock or tryLock methods of the FileChannel class.

FileChannel = FileChannel.open(path);
FileLock lock = channel.lock();

or

FileLock lock = channel.tryLock();

The first call blocks until the lock becomes available. The second call returns
immediately, either with the lock or with null if the lock is not available. The
file remains locked until the channel is closed or the release method is invoked
on the lock.

You can also lock a portion of the file with the call

FileLock lock(long start, long size, boolean shared)

or

FileLock tryLock(long start, long size, boolean shared)

The shared flag is false to lock the file for both reading and writing. It is true
for a shared lock, which allows multiple processes to read from the file, while
preventing any process from acquiring an exclusive lock. Not all operating
systems support shared locks. You may get an exclusive lock even if you just
asked for a shared one. Call the isShared method of the FileLock class to find
out which kind you have.

NOTE: If you lock the tail portion of a file and the file subsequently grows beyond
the locked portion, the additional area is not locked. To lock all bytes, use a
size of Long.MAX_VALUE.

Be sure to unlock the lock when you are done. As always, this is best done
with a try-with-resources statement:

try (FileLock lock = channel.lock())
{

access the locked file or segment
}

1352.6 File Locking

Keep in mind that file locking is system-dependent. Here are some points to
watch for:

• On some systems, file locking is merely advisory. If an application fails to
get a lock, it may still write to a file that another application has currently
locked.

• On some systems, you cannot simultaneously lock a file and map it into
memory.

• File locks are held by the entire Java virtual machine. If two programs are
launched by the same virtual machine (such as an applet or application
launcher), they can’t each acquire a lock on the same file. The lock and
tryLock methods will throw an OverlappingFileLockException if the virtual machine
already holds another overlapping lock on the same file.

• On some systems, closing a channel releases all locks on the underlying
file held by the Java virtual machine. You should therefore avoid multiple
channels on the same locked file.

• Locking files on a networked file system is highly system-dependent and
should probably be avoided.

java.nio.channels.FileChannel 1.4

• FileLock lock()

acquires an exclusive lock on the entire file. This method blocks until the lock
is acquired.

• FileLock tryLock()

acquires an exclusive lock on the entire file, or returns null if the lock cannot
be acquired.

• FileLock lock(long position, long size, boolean shared)
• FileLock tryLock(long position, long size, boolean shared)

acquires a lock on a region of the file. The first method blocks until the lock
is acquired, and the second method returns null if the lock cannot be acquired.
The parameter shared is true for a shared lock, false for an exclusive lock.

java.nio.channels.FileLock 1.4

• void close() 1.7

releases this lock.

Chapter 2 Input and Output136

2.7 Regular Expressions

Regular expressions are used to specify string patterns. You can use regular
expressions whenever you need to locate strings that match a particular pat-
tern. For example, one of our sample programs locates all hyperlinks in an
HTML file by looking for strings of the pattern .

Of course, when specifying a pattern, the . . . notation is not precise enough.
You need to specify exactly what sequence of characters is a legal match,
using a special syntax to describe a pattern.

In the following sections, we cover the regular expression syntax used by the
Java API and discuss how to put regular expressions to work.

2.7.1 The Regular Expression Syntax

Let us start with a simple example. The regular expression

[Jj]ava.+

matches any string of the following form:

• The first letter is a J or j.
• The next three letters are ava.
• The remainder of the string consists of one or more arbitrary characters.

For example, the string "javanese" matches this particular regular expression,
but the string "Core Java" does not.

As you can see, you need to know a bit of syntax to understand the meaning
of a regular expression. Fortunately, for most purposes, a few straightforward
constructs are sufficient.

• A character class is a set of character alternatives, enclosed in brackets,
such as [Jj], [0-9], [A-Za-z], or [^0-9]. Here the - denotes a range (all charac-
ters whose Unicode values fall between the two bounds), and ^ denotes
the complement (all characters except those specified).

• To include a - inside a character class, make it the first or last item. To
include a], make it the first item. To include a ^, put it anywhere but the
beginning. You only need to escape [and \.

• There are many predefined character classes such as \d (digits) or \p{Sc}
(Unicode currency symbol). See Tables 2.6 and 2.7.

1372.7 Regular Expressions

Table 2.6 Regular Expression Syntax

ExampleDescriptionExpression

Characters

JThe character cc, not one of . * + ?
{ | () [\ ^ $

Any character except line
terminators, or any character
if the DOTALL flag is set

.

\x{1D546}The Unicode code point with
hex code p

\x{p}

\uFEFFThe UTF-16 code unit with
the given hex or octal value

\uhhhh, \xhh, \0o,
\0oo, \0ooo

\nAlert (\x{7}), escape (\x{1B}),
form feed (\x{B}), newline
(\x{A}), carriage return (\x{D}),
tab (\x{9})

\a, \e, \f, \n, \r, \t

\cH is a backspace (\x{8})The control character
corresponding to the
character c

\cc, where c is in
[A-Z] or one of
@ [\] ^ _ ?

\\The character c\c, where c is not in
[A-Za-z0-9]

\Q(. . .)\E matches the
string (. . .)

Everything between the start
and the end of the quotation

\Q. . .\E

Character Classes

[0-9+-]Any of the characters
represented by C1, C2, . . .

[C1C2. . .], where Ci
are characters,
ranges c-d, or
character classes

[^\d\s]Complement of a character
class

[^. . .]

[\p{L}&&[^A-Za-z]]Intersection of character
classes

[. . .&&. . .]

\p{L} matches a Unicode
letter, and so does
\pL—you can omit braces
around a single letter

A predefined character class
(see Table 2.7); its
complement

\p{. . .}, \P{. . .}

(Continues)

Chapter 2 Input and Output138

Table 2.6 (Continued)

ExampleDescriptionExpression

\d+ is a sequence of
digits

Digits ([0-9], or \p{Digit} when
the UNICODE_CHARACTER_CLASS flag
is set); the complement

\d, \D

Word characters ([a-zA-Z0-9_],
or Unicode word characters
when the UNICODE_CHARACTER_CLASS
flag is set); the complement

\w, \W

\s*,\s* is a comma
surrounded by optional
white space

Spaces ([\n\r\t\f\x{B}], or
\p{IsWhite_Space} when the
UNICODE_CHARACTER_CLASS flag is
set); the complement

\s, \S

Horizontal whitespace,
vertical whitespace, their
complements

\h, \v, \H, \V

Sequences and Alternatives

[1-9][0-9]* is a positive
number without leading
zero

Any string from X, followed
by any string from Y

XY

http|ftpAny string from X or YX|Y

Grouping

'([^']*)' captures the
quoted text

Captures the match of X(X)

(['"]).*\1 matches 'Fred'
or "Fred" but not "Fred'

The nth group\n

'(?<id>[A-Za-z0-9]+)'
captures the match with
name id

Captures the match of X with
the given name

(?<name>X)

\k<id> matches the group
with name id

The group with the given
name

\k<name>

In (?:http|ftp)://(.*), the
match after :// is \1

Use parentheses without
capturing X

(?:X)

(Continues)

1392.7 Regular Expressions

Table 2.6 (Continued)

ExampleDescriptionExpression

(?i:jpe?g) is a
case-insensitive match

Matches, but does not
capture, X with the given
flags on or off (after -)

(?f1f2. . .:X),
(?f1. . .-fk. . .:X), with
fi in [dimsuUx]

See the Pattern API
documentation

Other (?. . .)

Quantifiers

\+? is an optional + signOptional XX?

[1-9][0-9]+ is an integer
≥ 10

0 or more X, 1 or more XX*, X+

[0-7]{1,3} are one to
three octal digits

n times X, at least n times X,
between m and n times X

X{n}, X{n,}, X{m,n}

.*(<.+?>).* captures the
shortest sequence
enclosed in angle
brackets

Reluctant quantifier,
attempting the shortest match
before trying longer matches

Q?, where Q is a
quantified
expression

'[^']*+' matches strings
enclosed in single
quotes and fails quickly
on strings without a
closing quote

Possessive quantifier, taking
the longest match without
backtracking

Q+, where Q is a
quantified
expression

Boundary Matches

^Java$ matches the input
or line Java

Beginning, end of input (or
beginning, end of line in
multiline mode)

^, $

Beginning of input, end of
input, absolute end of input
(unchanged in multiline
mode)

\A, \Z, \z

\bJava\b matches the
word Java

Word boundary, nonword
boundary

\b, \B

A Unicode line break\R

The end of the previous
match

\G

Chapter 2 Input and Output140

Table 2.7 Predefined Character Class Names Used with \p

ExplanationCharacter Class Name

posixClass is one of Lower, Upper, Alpha, Digit, Alnum,
Punct, Graph, Print, Cntrl, XDigit, Space, Blank, ASCII,
interpreted as POSIX or Unicode class,
depending on the UNICODE_CHARACTER_CLASS flag

posixClass

A script accepted by Character.UnicodeScript.forNameIsScript, sc=Script, script=Script

A block accepted by Character.UnicodeBlock.forNameInBlock, blk=Block, block=Block

A one- or two-letter name for a Unicode general
category

Category, InCategory,
gc=Category,
general_category=Category

Property is one of Alphabetic, Ideographic, Letter,
Lowercase, Uppercase, Titlecase, Punctuation, Control,
White_Space, Digit, Hex_Digit, Join_Control,
Noncharacter_Code_Point, Assigned

IsProperty

Invokes the method Character.isMethod (must not
be deprecated)

javaMethod

• Most characters match themselves, such as the ava characters in the
preceding example.

• The . symbol matches any character (except possibly line terminators,
depending on flag settings).

• Use \ as an escape character. For example, \. matches a period and \\
matches a backslash.

• ^ and $ match the beginning and end of a line, respectively.
• If X and Y are regular expressions, then XY means “any match for X

followed by a match for Y.” X | Y means “any match for X or Y.”
• You can apply quantifiers X+ (1 or more), X* (0 or more), and X? (0 or 1)

to an expression X.
• By default, a quantifier matches the largest possible repetition that makes

the overall match succeed. You can modify that behavior with suffixes ?
(reluctant, or stingy, match: match the smallest repetition count) and +
(possessive, or greedy, match: match the largest count even if that makes
the overall match fail).

For example, the string cab matches [a-z]*ab but not [a-z]*+ab. In the first
case, the expression [a-z]* only matches the character c, so that the
characters ab match the remainder of the pattern. But the greedy version

1412.7 Regular Expressions

[a-z]*+ matches the characters cab, leaving the remainder of the pattern
unmatched.

• You can use groups to define subexpressions. Enclose the groups in (),
for example, ([+-]?)([0-9]+). You can then ask the pattern matcher to return
the match of each group or to refer back to a group with \n where n is
the group number, starting with \1.

For example, here is a somewhat complex but potentially useful regular
expression that describes decimal or hexadecimal integers:

[+-]?[0-9]+|0[Xx][0-9A-Fa-f]+

Unfortunately, the regular expression syntax is not completely standardized
between various programs and libraries; there is a consensus on the basic
constructs but many maddening differences in the details. The Java regular
expression classes use a syntax that is similar to, but not quite the same as,
the one used in the Perl language. Table 2.6 shows all constructs of the Java
syntax. For more information on the regular expression syntax, consult the
API documentation for the Pattern class or the book Mastering Regular Expressions
by Jeffrey E. F. Friedl (O’Reilly and Associates, 2006).

2.7.2 Matching a String

The simplest use for a regular expression is to test whether a particular string
matches it. Here is how you program that test in Java. First, construct a Pattern
object from a string containing the regular expression. Then, get a Matcher object
from the pattern and call its matches method:

Pattern pattern = Pattern.compile(patternString);
Matcher matcher = pattern.matcher(input);
if (matcher.matches()) . . .

The input of the matcher is an object of any class that implements the
CharSequence interface, such as a String, StringBuilder, or CharBuffer.

When compiling the pattern, you can set one or more flags, for example:

Pattern pattern = Pattern.compile(expression,
 Pattern.CASE_INSENSITIVE + Pattern.UNICODE_CASE);

Or you can specify them inside the pattern:

String regex = "(?iU:expression)";

Here are the flags:

• Pattern.CASE_INSENSITIVE or i: Match characters independently of the letter case.
By default, this flag takes only US ASCII characters into account.

Chapter 2 Input and Output142

• Pattern.UNICODE_CASE or u: When used in combination with CASE_INSENSITIVE, use
Unicode letter case for matching.

• Pattern.UNICODE_CHARACTER_CLASS or U: Select Unicode character classes instead of
POSIX. Implies UNICODE_CASE.

• Pattern.MULTILINE or m: Make ^ and $ match the beginning and end of a line,
not the entire input.

• Pattern.UNIX_LINES or d: Only '\n' is a line terminator when matching ^ and $
in multiline mode.

• Pattern.DOTALL or s: Make the . symbol match all characters, including line
terminators.

• Pattern.COMMENTS or x: Whitespace and comments (from # to the end of a line)
are ignored.

• Pattern.LITERAL: The pattern is taken literally and must be matched exactly,
except possibly for letter case.

• Pattern.CANON_EQ: Take canonical equivalence of Unicode characters into
account. For example, u followed by ¨ (diaeresis) matches ü.

The last two flags cannot be specified inside a regular expression.

If you want to match elements in a collection or stream, turn the pattern into
a predicate:

Stream<String> strings = . . .;
Stream<String> result = strings.filter(pattern.asPredicate());

The result contains all strings that match the regular expression.

If the regular expression contains groups, the Matcher object can reveal the
group boundaries. The methods

int start(int groupIndex)
int end(int groupIndex)

yield the starting index and the past-the-end index of a particular group.

You can simply extract the matched string by calling

String group(int groupIndex)

Group 0 is the entire input; the group index for the first actual group is 1.
Call the groupCount method to get the total group count. For named groups, use
the methods

int start(String groupName)
int end(String groupName)
String group(String groupName)

1432.7 Regular Expressions

Nested groups are ordered by the opening parentheses. For example, given
the pattern

(([1-9]|1[0-2]):([0-5][0-9]))[ap]m

and the input

11:59am

the matcher reports the following groups

StringEndStartGroup Index

11:59am700
11:59501
11202
59533

Listing 2.6 prompts for a pattern, then for strings to match. It prints out
whether or not the input matches the pattern. If the input matches and the
pattern contains groups, the program prints the group boundaries as
parentheses, for example:

((11):(59))am

Listing 2.6 regex/RegexTest.java

 1 package regex;
 2

 3 import java.util.*;
 4 import java.util.regex.*;
 5

 6 /**
 7 * This program tests regular expression matching. Enter a pattern and strings to match,
 8 * or hit Cancel to exit. If the pattern contains groups, the group boundaries are displayed
 9 * in the match.
10 * @version 1.03 2018-05-01
11 * @author Cay Horstmann
12 */
13 public class RegexTest
14 {
15 public static void main(String[] args) throws PatternSyntaxException
16 {
17 var in = new Scanner(System.in);
18 System.out.println("Enter pattern: ");
19 String patternString = in.nextLine();
20

Chapter 2 Input and Output144

http://Scanner(System.in

21 Pattern pattern = Pattern.compile(patternString);
22

23 while (true)
24 {
25 System.out.println("Enter string to match: ");
26 String input = in.nextLine();
27 if (input == null || input.equals("")) return;
28 Matcher matcher = pattern.matcher(input);
29 if (matcher.matches())
30 {
31 System.out.println("Match");
32 int g = matcher.groupCount();
33 if (g > 0)
34 {
35 for (int i = 0; i < input.length(); i++)
36 {
37 // Print any empty groups
38 for (int j = 1; j <= g; j++)
39 if (i == matcher.start(j) && i == matcher.end(j))
40 System.out.print("()");
41 // Print (for non-empty groups starting here
42 for (int j = 1; j <= g; j++)
43 if (i == matcher.start(j) && i != matcher.end(j))
44 System.out.print('(');
45 System.out.print(input.charAt(i));
46 // Print) for non-empty groups ending here
47 for (int j = 1; j <= g; j++)
48 if (i + 1 != matcher.start(j) && i + 1 == matcher.end(j))
49 System.out.print(')');
50 }
51 System.out.println();
52 }
53 }
54 else
55 System.out.println("No match");
56 }
57 }
58 }

2.7.3 Finding Multiple Matches

Usually, you don’t want to match the entire input against a regular expression,
but to find one or more matching substrings in the input. Use the find method
of the Matcher class to find the next match. If it returns true, use the start and
end methods to find the extent of the match or the group method without an
argument to get the matched string.

1452.7 Regular Expressions

while (matcher.find())
{
 int start = matcher.start();
 int end = matcher.end();
 String match = input.group();
 . . .
}

In this way, you can process each match in turn. As shown in the code frag-
ment, you can get the matched string as well as its position in the input string.

More elegantly, you can call the results method to get a Stream<MatchResult>. The
MatchResult interface has methods group, start, and end, just like Matcher. (In fact,
the Matcher class implements this interface.) Here is how you get a list of all
matches:

List<String> matches = pattern.matcher(input)
 .results()
 .map(Matcher::group)
 .collect(Collectors.toList());

If you have the data in a file, you can use the Scanner.findAll method to get a
Stream<MatchResult>, without first having to read the contents into a string. You
can pass a Pattern or a pattern string:

var in = new Scanner(path, StandardCharsets.UTF_8);
Stream<String> words = in.findAll("\\pL+")
 .map(MatchResult::group);

Listing 2.7 puts this mechanism to work. It locates all hypertext references
in a web page and prints them. To run the program, supply a URL on the
command line, such as

java match.HrefMatch http://horstmann.com

Listing 2.7 match/HrefMatch.java

 1 package match;
 2

 3 import java.io.*;
 4 import java.net.*;
 5 import java.nio.charset.*;
 6 import java.util.regex.*;
 7

 8 /**
 9 * This program displays all URLs in a web page by matching a regular expression that
10 * describes the HTML tag. Start the program as

11 * java match.HrefMatch URL

Chapter 2 Input and Output146

http://horstmann.com

12 * @version 1.03 2018-03-19
13 * @author Cay Horstmann
14 */
15 public class HrefMatch
16 {
17 public static void main(String[] args)
18 {
19 try
20 {
21 // get URL string from command line or use default
22 String urlString;
23 if (args.length > 0) urlString = args[0];
24 else urlString = "http://openjdk.java.net/";
25

26 // read contents of URL
27 InputStream in = new URL(urlString).openStream();
28 var input = new String(in.readAllBytes(), StandardCharsets.UTF_8);
29

30 // search for all occurrences of pattern
31 var patternString = "<a\\s+href\\s*=\\s*(\"[^\"]*\"|[^\\s>]*)\\s*>";
32 Pattern pattern = Pattern.compile(patternString, Pattern.CASE_INSENSITIVE);
33 pattern.matcher(input)
34 .results()
35 .map(MatchResult::group)
36 .forEach(System.out::println);
37 }
38 catch (IOException | PatternSyntaxException e)
39 {
40 e.printStackTrace();
41 }
42 }
43 }

2.7.4 Splitting along Delimiters

Sometimes, you want to break an input along matched delimiters and keep
everything else. The Pattern.split method automates this task. You obtain an
array of strings, with the delimiters removed:

String input = . . .;
Pattern commas = Pattern.compile("\\s*,\\s*");
String[] tokens = commas.split(input);
 // "1, 2, 3" turns into ["1", "2", "3"]

If there are many tokens, you can fetch them lazily:

Stream<String> tokens = commas.splitAsStream(input);

If you don’t care about precompiling the pattern or lazy fetching, you can
just use the String.split method:

1472.7 Regular Expressions

String[] tokens = input.split("\\s*,\\s*");

If the input is in a file, use a scanner:

var in = new Scanner(path, StandardCharsets.UTF_8);
in.useDelimiter("\\s*,\\s*");
Stream<String> tokens = in.tokens();

2.7.5 Replacing Matches

The replaceAll method of the Matcher class replaces all occurrences of a regular
expression with a replacement string. For example, the following instructions
replace all sequences of digits with a # character:

Pattern pattern = Pattern.compile("[0-9]+");
Matcher matcher = pattern.matcher(input);
String output = matcher.replaceAll("#");

The replacement string can contain references to the groups in the pattern:
$n is replaced with the nth group, and ${name} is replaced with the group that
has the given name. Use \$ to include a $ character in the replacement text.

If you have a string that may contain $ and \, and you don’t want them to be
interpreted as group replacements, call matcher.replaceAll(Matcher.quoteReplacement(str)).

If you want to carry out a more complex operation than splicing in group
matches, you can provide a replacement function instead of a replacement
string. The function accepts a MatchResult and yields a string. For example, here
we replace all words with at least four letters with their uppercase version:

String result = Pattern.compile("\\pL{4,}")
 .matcher("Mary had a little lamb")
 .replaceAll(m -> m.group().toUpperCase());
 // Yields "MARY had a LITTLE LAMB"

The replaceFirst method replaces only the first occurrence of the pattern.

java.util.regex.Pattern 1.4

• static Pattern compile(String expression)
• static Pattern compile(String expression, int flags)

compiles the regular expression string into a pattern object for fast processing
of matches. The flags parameter has one or more of the bits CASE_INSENSITIVE,
UNICODE_CASE, MULTILINE, UNIX_LINES, DOTALL, and CANON_EQ set.

(Continues)

Chapter 2 Input and Output148

java.util.regex.Pattern 1.4 (Continued)

• Matcher matcher(CharSequence input)

returns a matcher object that you can use to locate the matches of the pattern
in the input.

• String[] split(CharSequence input)
• String[] split(CharSequence input, int limit)
• Stream<String> splitAsStream(CharSequence input) 8

splits the input string into tokens, with the pattern specifying the form of the
delimiters. Returns an array or stream of tokens. The delimiters are not part of
the tokens. The second form has a parameter limit denoting the maximum
number of strings to produce. If limit - 1 matching delimiters have been found,
then the last entry of the returned array contains the remaining unsplit input.
If limit is ≤ 0, then the entire input is split. If limit is 0, then trailing empty
strings are not placed in the returned array.

java.util.regex.Matcher 1.4

• boolean matches()

returns true if the input matches the pattern.

• boolean lookingAt()

returns true if the beginning of the input matches the pattern.

• boolean find()
• boolean find(int start)

attempts to find the next match and returns true if another match is found.

• int start()
• int end()

returns the start or past-the-end position of the current match.

• String group()

returns the current match.

• int groupCount()

returns the number of groups in the input pattern.

(Continues)

1492.7 Regular Expressions

java.util.regex.Matcher 1.4 (Continued)

• int start(int groupIndex)
• int start(String name) 8
• int end(int groupIndex)
• int end(String name) 8

returns the start or past-the-end position of a group in the current match. The
group is specified by an index starting with 1, or 0 to indicate the entire match,
or by a string identifying a named group.

• String group(int groupIndex)
• String group(String name) 7

returns the string matching a given group, denoted by an index starting with
1, or 0 to indicate the entire match, or by a string identifying a named group.

• String replaceAll(String replacement)
• String replaceFirst(String replacement)

returns a string obtained from the matcher input by replacing all matches, or
the first match, with the replacement string. The replacement string can contain
references to pattern groups as $n. Use \$ to include a $ symbol.

• static String quoteReplacement(String str) 5.0

quotes all \ and $ in str.

• String replaceAll(Function<MatchResult,String> replacer) 9

replaces every match with the result of the replacer function applied to the
MatchResult.

• Stream<MatchResult> results() 9

yields a stream of all match results.

java.util.regex.MatchResult 5

• String group()
• String group(int group)

yields the matched string or the string matched by the given group.

• int start()
• int end()
• int start(int group)
• int end(int group)

yields the start and end offsets of the matched string or the string matched by
the given group.

Chapter 2 Input and Output150

java.util.Scanner 5.0

• Stream<MatchResult> findAll(Pattern pattern) 9

yields a stream of all matches of the given pattern in the input produced by
this scanner.

You have now seen how to carry out input and output operations in Java,
and had an overview of the regular expression package that was a part of the
“new I/O” specification. In the next chapter, we turn to the processing of
XML data.

1512.7 Regular Expressions

Numbers
- (minus sign)

in permissions, 558
in policy files, 557
in regular expressions, 137
in URLs, 263

_ (underscore)
in native method names, 811
in SQL, 291, 320
in URLs, 263

, (comma)
decimal, 380, 387
in DTDs, 173

; (semicolon)
in classpath, 294
in method signatures, 831
in SQL, 295
not needed, in annotations, 464

: (colon)
as delimiter in text files, 72
in classpath, 294
in permissions, 558
in URLs, 252–253

!= operator (SQL), 291
? (question mark)

in DTDs, 173
in glob patterns, 120–141
in prepared queries, 311
in URLs, 263

/ (slash)
in method signatures, 832
in paths, 64, 109
in URLs, 252, 553

. (period)
decimal, 380, 387
in method signatures, 832
in regular expressions, 138,

141
in URLs, 263
leading, in file names, 552

.., in paths, 110

^ (caret), in regular expressions, 137,
140–141

~ (tilde), in URLs, 263
'. . .', in SQL, 291
". . .", in XML, 156
(. . .)

in method signatures, 831
in regular expressions, 139, 142–144

[(array), type code, 95, 831
[. . .]

in DOCTYPE declaration, 171
in glob patterns, 120
in regular expressions, 137–138
in XPath, 189

{. . .}
in annotations, 474
in glob patterns, 120
in message formatting, 409–413
in regular expressions, 140

@ (at)
in annotations, 464
in URIs, 253
in XPath, 189

$ (dollar sign)
in native method names, 811
in regular expressions, 138, 140–141,

150
${. . .}, in policy files, 558
* (asterisk)

in DTDs, 173
in glob patterns, 120
in permissions, 558
in policy files, 557
in regular expressions, 140–141

\ (backslash)
in glob patterns, 120
in paths, 64, 109
in permissions (Windows), 558
in regular expressions, 137–138, 141,

150
\\|, in regular expressions, 73

873

Index

& (ampersand)
in CDATA sections, 159
in entity references, 158
parsing, 173

&&, in regular expressions, 138
&#, &#x, in character references, 158
(number sign)

in message formatting, 412–413
in URLs, 252

% (percent sign)
in locales, 387
in SQL, 291, 320
in URLs, 263

+ (plus sign)
in DTDs, 173
in regular expressions, 140–141
in URLs, 263

< (left angle bracket)
in CDATA sections, 159
in message formatting, 413
parsing, 173

<!--. . .-->, <?. . .?>, <![CDATA[. . .]]>, in
XML, 159

<. . .>, in regular expressions, 139
≤ operator, 413
> (right angle bracket), in XML, 159
=, <> operators (SQL), 291
== operator, in enumerations, 103
| (vertical bar)

as delimiter in text files, 72
in DTDs, 173–174
in message formatting, 412
in regular expressions, 139, 141

\0, in regular expressions, 138
1931 CIE XYZ color specification, 758
2D graphics. See Java 2D API

A
\a, \A, in regular expressions, 138, 140
abort method (LoginModule), 582
absolute method (ResultSet), 325, 328
AbstractCellEditor class, 643–645

isCellEditable method, 644
AbstractProcessor class, 485
AbstractTableModel class, 618

isCellEditable method, 641
accept method (ServerSocket), 236, 239–240
acceptChanges method (CachedRowSet),

332–333

AccessController class
getContext method, 572

Accumulator functions, 42
Action listeners

annotating, 465–471
installing, 466

action.properties file, 457
ActionListener interface

actionPerformed method, 466
@ActionListenerFor annotation, 465, 482
ActionListenerInstaller class

processAnnotations method, 466
add method

of Area, 714–715
of AttributeSet, 802
of DefaultMutableTreeNode, 655, 663

addActionListener method (ButtonFrame),
465–466

addAttribute method (AttributesImpl), 226
addBatch method (Statement), 346–347
addCellEditorListener method (CellEditor), 652
addColumn method (JTable), 630, 636
Addition operator, identity for, 41
addRecipient method (MimeMessage), 279
addTreeModelListener method (TreeModel), 685,

693
addTreeSelectionListener method (JTree), 677
addURLs method (URLClassLoader), 532
AES (Advanced Encryption Standard),

600
generating keys in, 602–607

aes/AESTest.java, 603
aes/Util.java, 605
Affine transformations, 730, 764
AffineTransform class, 730–732

constructor, 731
getXxxInstance methods, 730–732
setToXxx methods, 730, 732

AffineTransformOp class, 764
constructor, 771
TYPE_XXX fields, 764, 771

afterLast method (ResultSet), 325, 328
Agent code, 496–497
Aliases, for namespaces, 179, 195
allMatch method (Stream), 16
allocate method (ByteBuffer), 131, 133
AllPermission class, 550, 556, 560
Alpha channel, 735–739
Alpha composites, 744

Index874

AlphaComposite class, 738
getInstance method, 739, 744

&, entity reference, 158
Anchor rectangle, 726
andFilter method (RowFilter), 629, 638
AnnotatedConstruct interface, 486
AnnotatedElement interface

getAnnotation method, 466, 470, 484, 486
getAnnotations, isAnnotationPresent methods,

470
getAnnotationsByType method, 470, 484, 486
getDeclaredAnnotations method, 471

Annotation interface
extending, 471
methods of, 472

Annotation interfaces, 465, 471–472
predefined, 478–484

Annotation processors, 484
at bytecode level, 466, 489
at runtime, 466

Annotations, 463–471
applicability of, 481
documented, 482–483
elements of, 464, 472, 474
for compilation, 480
for local variables, 476
for managing resources, 480
for packages, 475
generating source code with, 486–489
inherited, 483
marker, 473
meta, 465, 479–484
no annotations for, 477
no circular dependencies in, 475
processing tools for, 463
repeatable, 484
retaining, 482
single value, 473
source-level, 484–489
standard, 478–484
syntax of, 471–478
transient, 482
vs. Javadoc comments, 464

ANY element content (DTD), 173
anyMatch method (Stream), 16
Apache, 153, 160

Commons CSV library, 515
Derby database, 293–299

connecting to, 296

drivers for, 294–296
populating, 306–310
starting, 294–295

Tomcat, 350
Apollo 11, launch of, 358, 367
', entity reference, 158
append method

of Appendable, 62–63
of shape classes, 703, 714

Appendable interface, 59–63
appendChild method (Node), 207, 209
Applets

class loaders for, 534
code base of, 547
executing from secure intranet, 583
not exiting JVM, 546

Application servers, 350, 480
Applications

configuring, 154–155
enterprise, 349–351
executing without a separate Java

runtime, 526
localizing, 417
monitoring, 496–497
paid, 537
server-side, 261–270
signing, 597–599

applyPattern method (MessageFormat), 411
apply-templates element (XSLT), 218
Arc2D class, 697, 699–700
Arc2D.Double class, 697–698, 713
Arc2D.Float class, 697
ArcMaker class, 704
Arcs

bounding rectangle of, 697, 700
closure types of, 700
computing angles of, 701

Area class
add method, 714–715
exclusiveOr, intersect, subtract methods, 715

ARGB (Alpha, Red, Green, Blue), 739, 758
ARRAY data type (SQL), 348–349
ArrayIndexOutOfBoundsException, 845
Arrays

converting to/from streams, 5, 25, 49
getting from a database, 349
in annotation elements, 474
in native code, 840–844
of primitive types, 843

875Index

Arrays (continued)
of strings, 147
type code for, 95, 831
type use annotations in, 476

Arrays class
stream method, 5, 9, 43

ArrayStoreException, 845
asCharBuffer method (ByteBuffer), 132
ASCII standard, 75

and native code, 820
in property files, 419
in regular expressions, 141

ASM library, 489–498
ASP (Active Server Pages), 261
Associative operations, 41
ATTLIST declaration (DTD), 174
attribute element (XML Schema), 181
Attribute interface, 799

getCategory method, 801, 806
getName method, 806
implementing, 801

Attribute sets, 801
Attributes (XML)

enumerating, 164
for enumerated types, 175
in XML Schema, 181
legal, 174
names of, 156
namespace of, 195
values of, 156

accessing in XPath, 189
copying with XSLT, 219
default (DTDs), 175
normalizing, 175

vs. elements, 157–158, 175, 216
Attributes interface

getXxx methods, 202
AttributeSet interface, 800

add, get methods, 802, 806
remove, toArray methods, 807

AttributesImpl class
addAttribute method, 226
clear method, 226

atZone method (LocalDateTime), 367
AudioPermission class, 556
auth/AuthTest.java, 570
auth/AuthTest.policy, 571
auth/jaas.config, 571
auth/SysPropAction.java, 570

Authentication, 566–582
problems of, 592–593
role-based, 573
separating from business logic, 568
through a trusted intermediary, 593–594

AuthPermission class, 557
Autoboxing, 615
AutoCloseable interface

close method, 61
Autocommit mode (databases), 344–346
Autoflushing, 69
Autogenerated keys, 322
Auxiliary files, generated, 463
available method (InputStream), 57–58
average method (primitive streams), 44,

46–47
AWT (Abstract Window Toolkit), 693–744
AWTPermission class, 555

B
B (byte), type code, 95, 831
\b, \B, in regular expressions, 140
Banding, 775
Banner class

getPageCount, layoutPages methods, 783
Banners, printing, 782–792
BASE64Encoder class, 507
BaseStream interface

iterator method, 28
parallel method, 48, 53
unordered method, 53

BasicFileAttributes interface, 117
methods of, 118

BasicPermission class, 557
BasicStroke class, 715–724
Batch updates (databases), 345–348
BCP 47 memo, 382
Bean info classes, generated, 463
beforeFirst method (ResultSet), 325, 328
between method (Duration), 355, 357
Bevel join, 716–717
Bézier curves, 703
Bicubic, bilinear interpolations, 764, 771
BIG_ENDIAN constant (ByteOrder), 131
Big-endian order, 78, 416
Binary data

converting to Unicode code units, 68
reading, 79
vs. text, 68

Index876

writing, 78
Bindings interface, 442

get, put methods, 443
Birthdays, calculating, 359
BitSet interface, 42
BLOB data type (SQL), 293, 348
Blob interface, 317

get/setBinaryStream methods, 319
getBytes method, 317–318
length method, 318

BLOBs (binary large objects), 317
creating empty, 319
placing in database, 318

Blocking
by I/O methods, 57
by network connections, 228, 232,

244–251
Blur filter, 765
BMP format, 745
body method (HttpResponse), 272, 278
BodyHandlers class

discarding method, 272
ofString method, 272–273

Book class, 782
book/Banner.java, 786
book/BookTestFrame.java, 785
book/PrintPreviewCanvas.java, 791
book/PrintPreviewDialog.java, 789
BOOLEAN data type (SQL), 293, 348
boolean type

printing, 69
streams of, 43
type code for, 95, 831
vs. C types, 817
writing in binary format, 78

Bootstrap class loader, 531
Bounding rectangle, 697
boxed method (primitive streams), 44, 46–47
Bray, Tim, 155
Breadth-first enumerations, 672
breadthFirstEnumeration method

(DefaultMutableTreeNode), 672, 676
Browsers

forms in, 261–270
response page in, 262

Buffer class, 132–134
capacity, position methods, 134
clear, flip, mark, remaining, reset, rewind

methods, 133–134

hasRemaining, limit methods, 130
BufferedImage class, 726, 756

constructor, 756, 761
getColorModel method, 758, 762
getRaster method, 756, 762
TYPE_BYTE_GRAY field, 760–761
TYPE_BYTE_INDEXED field, 761
TYPE_INT_ARGB field, 756–757, 761

BufferedImageOp interface, 756
filter method, 763, 771
implementing, 763

BufferedInputStream class, 67
BufferedOutputStream class, 67
BufferedReader class

readLine method, 71
Buffers, 132–134

capacity of, 133
flushing, 57, 69
in-memory, 62
limits of, 133
marks in, 133
positions in, 126, 133
traversing all bytes in, 126
vs. random access, 125

BufferUnderflowException, 131
@BugReport annotation, 482
build method

of HttpClient.Builder, 271–272, 277
of HttpRequest.Builder, 277

Business logic, 286
Butt cap, 716
ButtonFrame class, 447

addActionListener method, 465–466
buttons1/ButtonFrame.java, 452
buttons2/action.properties, 461
buttons2/ButtonFrame.java, 460
buttons3/ButtonFrame.java, 469
Byte codes, writing to memory, 455–456
Byte order mark, 416
byte type

streams of, 43
type code for, 95, 831
vs. C types, 817

BYTE_ARRAY class (DocFlavor), 794
ByteArrayClass class, 455
ByteArrayClassLoader class, 456
ByteArrayOutputStream class, 106
ByteBuffer class, 125, 132–134

allocate method, 131, 133

877Index

ByteBuffer class (continued)
asCharBuffer method, 132
get, getXxx methods, 126, 131
order method, 126, 131
put, putXxx methods, 127, 131
wrap method, 132–133

bytecodeAnnotations/EntryLogger.java, 492
bytecodeAnnotations/EntryLoggingAgent.java, 497
Bytecodes

engineering, 489–498
at load time, 495–497
with hex editor, 544

verifying, 541–545
ByteLookupTable class, 765

constructor, 771
ByteOrder class

BIG_ENDIAN, LITTLE_ENDIAN constants, 131
Byte-oriented input/output streams, 56
Bytes, reading/writing, 56–59

C
C (char), type code, 95, 831
C programming language

array types in, 840–844
bootstrap class loader in, 531
calling Java methods from, 833–840
database access in, 284
embedding JVM into, 849–854
FILE* type in, 59
pointers in, 810
strings in, 819
types, vs. Java types, 817

\c, in regular expressions, 138
C++ programming language

accessing JNI functions in, 820
array types in, 840
embedding JVM into, 849–854
exceptions in, 845
for native methods, 810, 813
pointers in, 810, 835

Cached row sets, 330–335
CachedRowSet interface, 330–333

acceptChanges method, 332–333
execute, nextPage, populate methods, 331,

333
get/setPageSize method, 331, 333
get/setTableName method, 332–333
previousPage method, 333

CachedRowSetImpl class, 507

Caesar cipher, 536–537
Calendar class, 353

formatting objects of, 395
weekends in, 360

call escape (SQL), 320
call method (CompilationTask), 454, 462
Call stack, during permission checking,

550
Callable interface, 454
Callback interface, 574
CallbackHandler interface

handle method, 581
CallNonvirtualXxxMethod functions (C), 836,

839
CallStaticXxxMethod functions (C), 834–835,

839
CallXxxMethod functions (C), 833, 838–839
cancelCellEditing method (CellEditor),

644–645, 652
cancelRowUpdates method (ResultSet), 326,

329
canInsertImage method (ImageWriter), 748, 755
capacity method (Buffer), 134
Carriage return character, displaying, 164
Casts, type use annotations in, 476
catalog element (XML), 172
CatalogFeatures class

defaults method, 172, 179
CatalogManager class

catalogResolver method, 172, 178
Catalogs, 343
CDATA declaration (DTD), 174–175
CDATA sections (XML), 159
Cell editors (Swing), 641–642

custom, 642–652
Cell renderers (Swing), 639–652

for tables, 622, 639
for trees, 674–676

CellEditor interface
add/removeCellEditorListener methods, 652
cancelCellEditing method, 644–645, 652
getCellEditorValue method, 641, 644–645,

652
isCellEditable method, 652
shouldSelectCell method, 644, 652
stopCellEditing method, 644–645, 652

Cells (Swing)
editing, 641–642
selecting, 626

Index878

Certificates, 566, 589–592
and Java Plug-in, 598
managing, 596–597
publishing fingerprints of, 591
root, 599
set of, 547
signing, 594–597

CertificateSigner class, 595
CGI (Common Gateway Interface), 261
Chain of trust, 593
Channels, 245

for files, 125
Channels class

newInputStream method, 251
newOutputStream method, 245, 251

char type
streams of, 43
type code for, 95, 831
vs. C types, 817

CHAR_ARRAY class (DocFlavor), 794
Character classes, 137
CHARACTER data type (SQL), 293, 348
Character encodings, 68, 75–77

explicitly specified, 77
partial, 76
platform, 77, 413

Character references (XML), 158
CharacterData interface

getData method, 163, 169
Characters

differences between, 402
escaping, 73, 141
in regular expressions, 141
normalizing, 403
outlines of, 733
printing, 69
writing in binary format, 78

characters method (ContentHandler), 197, 201
CharBuffer class, 62, 132

get, put methods, 132
CharSequence interface, 62, 142

charAt, length methods, 63
chars method, 43
codePoints method, 43, 47
splitting by regular expressions, 6
subSequence, toString methods, 63

Charset class
defaultCharset method, 77, 415
forName method, 77

Checkboxes (Swing), 639
checked attribute (HTML, XML), 156
Checked exceptions, 568
Checker framework, 476
checkError method (PrintWriter), 69–70
checkExit method (SecurityManager), 546, 549
checkLogin method (SimpleLoginModule), 573
checkPermission method (SecurityManager),

549–550, 559–560
checkRead method (SecurityManager), 550
Child elements (XML), 157

namespace of, 194
Child nodes (Swing), 652

adding, 655
connecting lines for, 658–659

children method (TreeNode), 671
choice element (XML Schema), 181
choice keyword (message formatting), 412
Church, Alonzo, 358
Cipher class, 600–601

doFinal method, 601, 603, 606–607
getInstance method, 600, 606
getXxxSize methods, 606
init method, 606
update method, 601, 603, 606–607
XXX_MODE modes, 600

CipherInputStream class
read method, 608

CipherOutputStream class, 607
constructor, 608
flush, write methods, 608

Ciphers
generating keys, 602–607
public keys in, 608–612
streams for, 607–608
symmetric, 600–601

Circular dependencies, in annotations, 475
Class class

forName method, 456
getClassLoader method, 531, 540
getFields method, 687
getProtectionDomain method, 551
getResourceAsStream method, 514
implementing AnnotatedElement, 466

.class file extension, 530
Class files, 530

corrupted, 542–545
encrypted, 535, 537
format of, 489

879Index

Class files (continued)
loading, 530
modifying, 490–495
portability of, 416
transformers for, 496
verifying, 541–545

Class loaders, 457, 530–545
as namespaces, 534
bootstrap, 531
context, 532–534
creating, 546
extension, 531
hierarchy of, 532–534
platform, 531
separate for each web page, 534
specifying, 532
system, 531
writing, 534–541

Class path, adding JAR files to, 532
Class references, in native code, 827
Classes

adding validation to, 100
annotating, 464, 475, 479
compiling on the fly, 455
descriptions of, 94
encapsulation of, 500
externalizable, 95
inheritance trees of, 673
nonserializable, 100
platform, overriding, 531
protection domains of, 549
resolving, 530
separate for each web page, 534
serializable, 88–89
versioning, 103–106

Classifier functions, 35
ClassLoader class, 531

defineClass, findClass methods, 534, 541
extending, 456, 534
getParent method, 540
getSystemClassLoader method, 541
loadClass method, 534

Classloader inversion, 532
classLoader/Caesar.java, 540
classLoader/ClassLoaderTest.java, 537
CLASSPATH environment variable, 531
CLEAR composition rule, 737
clear method

of AttributesImpl, 226

of Buffer, 133–134
clearParameters method (PreparedStatement), 317
client/HttpClientTest.java, 273
Client/server applications, 287
Clients

connecting to servers, 230–232
multiple, serving, 239–243

clip method (Graphics2D), 695, 733–735, 775
Clipboard, accessing, 546
Clipping region

printing, 775
setting, 695

Clipping shapes, 694, 733–735
CLOB data type (SQL), 293, 348
Clob interface, 317

getCharacterStream method, 318–319
getSubString method, 318–319
length method, 319
setCharacterStream method, 319

CLOBs (character large objects), 317
creating empty, 319
placing in database, 318

clone method, 89, 106
Cloning, 106–108
close method

of AutoCloseable, 61
of Connection, 301, 303, 351
of FileLock, 136
of Flushable, 59
of InputStream, 57–58
of OutputStream, 59
of ResultSet, 303
of ServerSocket, 239
of Statement, 302–303
of XMLStreamWriter, 215

Closeable interface, 59
close method, 59, 62
flush method, 60

Closed nonleaf icons, 661–662, 674
closeEntry method (ZipXxxStream), 85–87
closeOnCompletion method (Statement), 302
closePath method (Path2D), 703, 714
Closure types, 700
cmd shell, 415
Code base, 547, 553
Code generation, annotations for, 463–471,

480
Code points, 11
Code source, 547

Index880

Code units, 43
in regular expressions, 138

Codebreakers, The (Kahn), 536
codePoints method (CharSequence), 43, 47
CodeSource class

getXxx methods, 551
Collation, 402–409
collation/CollationTest.java, 405
CollationKey class

compareTo method, 409
Collator class, 402

compare, equals methods, 408
get/setDecomposition methods, 408
get/setStrength methods, 408
getAvailableLocales method, 408
getCollationKey method, 404, 408
getInstance method, 408

collect method (Stream), 25–30, 42–43
collecting/CollectingIntoMaps.java, 32
collecting/CollectingResults.java, 26
collecting/DownstreamCollectors.java, 38
collectingAndThen method (Collectors), 36, 40
Collection interface

parallelStream method, 2–3, 5, 48
stream method, 2–3, 5

Collections
iterating over elements of, 2–5
vs. streams, 3

Collections class
sort method, 402

Collector interface, 25
Collectors, 25–40

composing, 37
downstream, 36–40, 50

Collectors class
collectingAndThen method, 36, 40
counting method, 36, 40
filtering method, 37, 40
flatMapping method, 37, 40
groupingBy method, 34–40
groupingByConcurrent method, 35, 50
joining method, 26, 29
mapping method, 37, 40
maxBy, minBy methods, 36, 40
partitioningBy method, 35, 37
reducing method, 37
summarizingXxx methods, 26, 29, 37
summingXxx methods, 36, 40
toCollection, toList methods, 25, 29

toConcurrentMap method, 31, 34
toMap method, 30–34
toSet method, 25, 29, 36
toUnmodifiableList method, 29
toUnmodifiableMap method, 34
toUnmodifiableSet method, 29

Color chooser, 642
Color class, 724

constructor, 763
getRGB method, 763
translating values into pixel data, 760

Color space conversions, 765
ColorConvertOp class, 764–765
ColorModel class, 760

getDataElements method, 763
getRGB method, 758, 763

Colors
components of, 735
composing, 736–739
interpolating, 725
negating, 765
solid, 694

Columns (databases)
accessing by number, in result set, 300
names of, 287
number of, 335

Columns (Swing)
accessing, 623
adding, 630
detached, 615
hiding, 630–639
names of, 619
rendering, 622
resizing, 615–616, 624–625
selecting, 626

com.sun.security.auth.module package, 568
Combo box editors, 642
Comments (XML), 159
commit method

of Connection, 345–347
of LoginModule, 582

commonPool method (ForkJoinPool), 51
Comparable interface, 14, 628
Comparator interface, 14, 402
Comparators, 628
compare method (Collator), 408
compareTo method

of CollationKey, 409
of Comparable, 628

881Index

compareTo method (continued)
of String, 402

Compilable interface
compile method, 447

CompilationTask interface, 453
call method, 454, 462

compile method (Pattern), 142, 148
CompiledScript interface

eval method, 447
Compiler

annotations for, 480
invoking, 453
just-in-time, 850

compiler/CompilerTest.java, 458
Complex types, 179
complexType element (XML Schema), 180
Composite interface, 738
composite/CompositeComponent.java, 741
composite/CompositeTestFrame.java, 740
composite/Rule.java, 743
Composition rules, 694–695, 735–744
Computer Graphics: Principles and Practice

(Foley et al.), 703, 738, 758
concat method (Stream), 13
Confidential information, transferring, 600
Configuration files, 135
connect method

of Socket, 233
of URLConnection, 254, 256, 260

Connection interface
close method, 301, 303, 351
commit method, 345–347
createBlob, createClob methods, 318–319
createStatement method, 299, 301, 323, 327,

345
get/setAutoCommit methods, 347
getMetaData method, 334, 343
getWarnings method, 306
prepareStatement method, 311, 317, 323,

327
releaseSavepoint method, 345, 347
rollback method, 345–347
setSavepoint method, 347

Connections (databases)
closing, 303

using row sets after, 330
debugging, 280
pooling, 350
starting new threads, 240

console method (System), 415
Constructive area geometry operations,

714
Constructor class, 466
Constructors

annotating, 475
invoking from native code, 835
type use annotations in, 476

containsAll method (Collection), 561
Content types, 254
ContentHandler class, 197–198

characters method, 197, 201
start/endDocument methods, 201
start/endElement methods, 197–201

Context class loader, 532–534
Control points

dragging, 704
of curves, 702–703
of shapes, 704

convertXxxIndexToModel methods (JTable), 626,
636

Convolution operation, 765
ConvolveOp class, 764–766

constructor, 772
CookieHandler class

setDefault method, 267
Cookies, 267
Coordinate system

custom, 695
translating, 776

Coordinate transformations, 727–732
Copies class, 799–802

getValue method, 802
CopiesSupported class, 800
copy method (Files), 114–115
CORBA (Common Object Request Broker

Architecture), 500, 531
Core Swing (Topley), 614, 652, 666
count method (Stream), 3–4, 15, 189
counting method (Collectors), 36, 40
Country codes, 35, 382
CRC32 checksum, 87, 125, 127
CRC32 class, 127
CREATE TABLE statement (SQL), 292

executing, 300–301, 317
in batch updates, 346

createBindings method (ScriptEngine), 443
createBlob, createClob methods (Connection),

318–319

Index882

createDirectory, createDirectories, createFile
methods (Files), 113–114

createElement method (Document), 206–207, 209
createElementNS method (Document), 207, 209
createImageXxxStream methods (ImageIO), 747,

753
createPrintJob method (PrintService), 793, 795
createStatement method (Connection), 299, 301,

323, 327, 345
createTempXxx methods (Files), 113–114
createTextNode method (Document), 207, 209
createXMLStreamReader method (XMLInputFactory),

205
createXMLStreamWriter method (XMLOutputFactory),

210, 214
createXxxRowSet methods (RowSetFactory), 330,

333
creationTime method (BasicFileAttributes), 118
Credit card numbers, transferring, 600
crypt program, 603
Cryptography and Network Security

(Stallings), 584, 94
Cubic curves, 702–703
CubicCurve2D class, 697, 699, 703
CubicCurve2D.Double class, 697–698, 713
CubicCurve2D.Float class, 697
Currencies, 393–394

available, 394
formatting, 387–394
identifiers for, 393

Currency class, 393–394
getAvailableCurrencies, getCurrencyCode,

getDefaultFractionDigits, getNumericXxx,
getSymbol methods, 394

getInstance method, 393–394
toString method, 394

curveTo method (Path2D.Float), 703, 713
Custom editors, 642–652
Cygwin, 814

compiling invocation API, 854
OpenSSL in, 596

D
D (double), type code, 95, 831
d literal (SQL), 320
\d, \D, in regular expressions, 139
Dashed lines, 717–718
Data

fingerprints of, 583–587

signed, 587–589
Data sources (for JNDI service), 350
Data types

codes for, 95, 831
in Java vs. C, 817
mangling names of, 831
print services for, 792–794

database.properties file, 307, 349
DatabaseMetaData interface, 334–344

getJDBCXxxVersion methods, 343
getMaxConnection method, 343
getMaxStatements method, 303, 343
getSQLStateType method, 304
getTables method, 334, 343
supportsBatchUpdates method, 346, 348
supportsResultSetXxx methods, 324, 329

Databases
accessing, in C language, 284
autocommit mode of, 344–346
autonumbering keys in, 322
batch updates for, 345–348
caching prepared statements, 312
changing data with SQL, 292
connections to, 294, 296–299, 307

closing, 303, 308
in web and enterprise applications,

349–351
pooling, 350

drivers for, 285–286
duplication of data in, 289
error handling in, 346
integrity of, 344
LOBs in, 317–319
metadata for, 334–344
modifying, 330
native storage for XML in, 349
numbering columns in, 300
outer joins in, 320
populating, 306–310
saving objects to, 483
scalar functions in, 320
schemas for, 343
setting up parameters in, 331
starting, 294–295
stored procedures in, 320
structure of, 287, 334
synchronization of, 332
tools for, 336
truncated data from, 305

883Index

Databases (continued)
URLs of, 294

DataFlavor class, 501
DataInput interface

readBoolean method, 79
readChar method, 79, 81
readDouble method, 79, 89, 101
readFloat method, 79
readFully method, 79
readInt method, 79, 81, 89
readLong method, 79
readShort method, 79
readUTF method, 79–80
skipBytes method, 80

DataInputStream class, 59, 64
DataIO class

xxxFixedString methods, 81–82
DataOutput interface, 78

writeBoolean method, 78, 80
writeByte method, 78, 80
writeChar method, 78, 80–81
writeChars method, 78, 80
writeDouble method, 78, 80, 89, 101
writeFloat method, 78, 80
writeInt method, 78, 80–81, 89
writeLong method, 78, 80
writeShort method, 78, 80
writeUTF method, 78, 80

DataOutputStream class, 59
DataSource interface, 350
DataTruncation class, 305

methods of, 306
Date and Time API, 353–377

legacy code and, 376–377
Date class (java.sql), 376

valueOf method, 377
Date class (java.util), 95, 353, 376

formatting objects of, 395
months and years in, 359
readObject, writeObject methods, 101
toInstant method, 376–377

DATE data type (SQL), 293, 320, 348
dateFilter method (RowFilter), 629, 638
DateFormat class, 373, 377, 396
dateFormat/DateTimeFormatterTest.java, 397
dateFormat/EnumCombo.java, 400
Dates

computing, 359, 364–365
filtering, 629

formatting, 371–376, 380, 394–401
literals for, 319
local, 358–363
parsing, 373

datesUntil method (LocalDate), 360, 363
DateTimeFormatter class, 371–376, 394–401

format method, 371, 375, 401
legacy classes and, 376–377
ofLocalizedXxx methods, 372, 375, 394,

401
ofPattern method, 373, 376
parse method, 373
toFormat method, 373, 377
withLocale method, 372, 376, 401

DateTimeParseException, 401
DateTimeSyntax class, 802
Daylight savings time, 367–371
DayOfWeek enumeration, 360

getDisplayName method, 373, 395
dayOfWeekInMonth method (TemporalAdjusters),

365
DBeaver program, 336
DDL statement (SQL), 301, 317
Debugging

in JNI, 850
JDBC-related problems, 297
locales, 386
mail connections, 280
streams, 14

DECIMAL data type (SQL), 293, 348
Decimal separators, 380, 387
Declaration annotations, 475–477
decode method (URLDecoder), 270
Decryption key, 536
default statement, 471
DefaultCellEditor class, 667

constructor, 651
variations, 641

defaultCharset method (Charset), 77, 415
DefaultHandler class, 198
DefaultMutableTreeNode class, 654, 672–673

add method, 655, 663
constructor, 663
pathFromAncestorEnumeration method, 673
setAllowsChildren, setAsksAllowsChildren

methods, 661, 663
xxxFirstEnumeration, xxxOrderEnumeration

methods, 672, 676
defaultPage method (PrinterJob), 781

Index884

DefaultRowSorter class
setComparator, setSortable methods, 628,

637
setRowFilter method, 629, 637

defaults method (CatalogFeatures), 172, 179
DefaultTableCellRenderer class, 640
DefaultTableModel class

isCellEditable method, 641
DefaultTreeCellRenderer class, 674–676

setXxxIcon methods, 676
DefaultTreeModel class, 664, 686

automatic notification by, 666
getPathToRoot method, 666
insertNodeInto method, 665, 671
isLeaf method, 661
nodeChanged method, 665, 671
nodesChanged method, 671
reload method, 666, 671
removeNodeFromParent method, 665, 671

defaultWriteObject method (ObjectOutputStream),
101

defineClass method (ClassLoader), 535, 541
DELETE method (HttpRequest.Builder), 278
DELETE statement (SQL), 292

executing, 300–301, 317
in batch updates, 346
vs. methods of ResultSet, 327

delete, deleteIfExists methods (Files), 115
DeleteGlobalRef function (C), 827
deleteRow method (ResultSet), 327, 329
Delimiters, in text files, 72
@Deprecated annotation, 479–480
Depth-first enumerations, 672
depthFirstEnumeration method

(DefaultMutableTreeNode), 672, 676
derbyclient.jar file, 294
DES (Data Encryption Standard), 600
DestroyJavaVM function (C), 850, 854
Device coordinates, 727
Diagnostic interface, 454

methods of, 462
DiagnosticCollector class, 454

constructor, 462
getDiagnostics method, 462

DiagnosticListener interface, 454
DialogCallbackHandler class, 574
digest method (MessageDigest), 585, 587
DigiCert, 591, 593
Digital fingerprints, 94, 583–587

Digital signatures, 587–589
verifying, 589–592

Direct buffers, 843
Directories

creating, 113–114
current, 122
hierarchical structure of, 652
printing all subdirectories of, 121
traversing, 118–123
user’s working, 64

DirectoryStream interface, 120
discarding method (BodyHandlers), 272
distinct method (Stream), 14–15, 50
dividedBy method (Duration), 358
doAs, doAsPrivileged methods (Subject),

568–569, 572
Doc interface, 793
DocAttribute interface, 799

implementing, 801
printing attributes of, 803–806

DocAttributeSet interface, 800–801
DocFlavor class, 793–794, 796
DocPrintJob interface

getAttributes method, 807
print method, 795

DOCTYPE declaration (DTD), 171
including in output, 208

Document interface
createXxx methods, 206–207, 209
getDocumentElement method, 160, 168

Document flavors, for print services,
793–794

DocumentBuilder class
newDocument method, 206, 208, 221
parse method, 168
setEntityResolver method, 172, 177
setErrorHandler method, 177

DocumentBuilderFactory class
isIgnoringElementContentWhitespace method,

179
isNamespaceAware method, 196
isValidating method, 179
newDocumentBuilder method, 160, 167, 207
newInstance method, 160, 167
setIgnoringElementContentWhitespace method,

176, 179
setNamespaceAware method, 182, 195–196,

199, 207
setValidating method, 176, 179

885Index

@Documented annotation, 479, 482–483
doFinal method (Cipher), 601, 603, 606–607
DOM (Document Object Model) parser,

159–160, 196–197
namespace-awareness of, 195, 199
trees in:

accessing with XPath, 188–193
analyzing, 162–164
building, 197, 206–216, 221
writing, 208–210

dom/JSONConverter.java, 165
DOMResult class, 221, 226
DOMSource class, 210, 220
DOUBLE data type (SQL), 293, 348
double type

printing, 69
streams of, 43
type code for, 95, 831
vs. C types, 817
writing in binary format, 78

DoubleBuffer class, 132
doubles method

of Random, 44, 47, 51
of SplittableRandom, 51

DoubleStream interface, 43–48
methods of, 47

DoubleSummaryStatistics class, 26, 29–30, 44,
48

doubleValue method (Number), 387
Downstream collectors, 36–40, 50
draw method (Graphics2D), 695–697, 715
Drawings

creating, 693–744
printing, 772–782

drawXxx methods (Graphics), 696
DriverManager class, 296

getConnection method, 296–297, 307, 351
setLogWriter method, 297

DROP TABLE statement (SQL), 297
executing, 300–301
in batch updates, 346

dropWhile method (Stream), 13
DSA (Digital Signature Algorithm),

587–588
DST, DST_Xxx composition rules, 737
DTDHandler class, 198
DTDs (Document Type Definitions),

170–179
element content in, 173–174

entities in, 176
external, 171
in XML documents, 156, 171–179
locating, 171–172
unambiguous, 174
URLs for, 171

Duration class
between method, 355, 357
dividedBy method, 358
getSeconds method, 355
immutability of, 355
isNegative, isZero methods, 358
minus, minusXxx methods, 358
multipliedBy method, 358
negated method, 358
ofXxx methods, 357
plus, plusXxx methods, 358
toXxx methods, 355, 358

Dynamic links, 850
Dynamic web pages, 457–463

E
\e, \E, in regular expressions, 138
Echo servers, 238–239
Eclipse IDE, 509
Edge detection, 766
Editors, custom, 642–652
element element (XML Schema), 180
ELEMENT element content (DTD), 173–174
Element interface, 485

getAttribute method, 164, 168
getSimpleName method, 486
getTagName method, 161, 168, 195
setAttribute, setAttributeNS methods, 207,

209
Elements (XML)

child, 157
accessing in XPath, 189
namespace of, 194

constructing, 206
counting, in XPath, 189
empty, 156
legal attributes of, 174
names of, 161, 195
root, 157, 179
trimming whitespace in, 163
vs. attributes, 157–158, 175, 216

Ellipse2D class, 697, 699
Ellipse2D.Double, Ellipse2D.Float classes, 697

Index886

Ellipses, bounding rectangle of, 697
E-mails

sending, 278–281
terminating lines in, 279

employee/Employee.c, 829
employee/Employee.java, 828
employee/EmployeeTest.java, 828
EMPTY element content (DTD), 173
empty method

of Optional, 20–21
of Stream, 5, 9

Empty tags (XML), 156
Encapsulation, 500
encode method (URLEncoder), 270
Encryption, 599–612

final block padding in, 601
of class files, 535, 537

end method
of Matcher, 143, 145, 149–150
of MatchResult, 146, 150

End cap styles, 716–718
End points, 702
End tags (XML), 156
endDocument method (ContentHandler), 201
endElement method (ContentHandler), 197–201
End-of-line character. See Line feed
Enterprise applications, 349–351
Enterprise JavaBeans (EJBs), 287
Entity references (XML), 158, 176
Entity resolvers, 160, 172
ENTITY, ENTITIES attribute types (DTDs),

174–175
EntityResolver interface, 178, 198

resolveEntity method, 172, 178
entries method (ZipFile), 88
Entrust, 593
Entry class, 629

getXxx methods, 638–639
EntryLogger class, 496
EntryLoggingAgent.mf file, 496
enum keyword, 102
EnumCombo class, 396
enumeration element (XML Schema), 180
Enumeration interface, 88

hasMoreElements method, 857–859
nextElement method, 672, 857–859

Enumerations
of nodes, in a tree, 672–673
typesafe, 102–103

using attributes for, 175
EnumSyntax class, 802
EOFException, 844
Epoch, 101, 354
equals method

of Annotation, 472
of Collator, 408
of Permission, 559
of Set, 561

Error handlers
in native code, 844–849
installing, 177

ErrorHandler class, 198
methods of, 177–178

Escape hatch mechanism, 663
escape keyword (SQL), 320
Escapes

in regular expressions, 73, 141
in SQL, 319–321

Essential XML (Box et al.), 153, 216
Euro symbol, 393, 415
eval method

of CompiledScript, 447
of ScriptEngine, 441–443

evaluate, evaluateExpression methods (XPath),
190, 193

Event handlers, annotating, 465–471
Event listeners, 464
Event queues (AWT), accessing, 546
EventHandler class, 467
EventListenerList class, 686
Evins, Jim, 622
evn pointer (C), 820
Exceptions

checked, 568
from native code, 844–849
in C++, 845
in SQL, 304–306
type use annotations in, 476

ExceptionXxx functions (C), 845, 849
Exclusive lock, 136
exclusiveOr method (Area), 714–715
exec/ExecSQL.java, 308
ExecutableElement interface, 485
execute method

of RowSet, CachedRowSet, 331–332
of Statement, 301, 307, 321–322

executeBatch method (Statement), 346–347
executeLargeBatch method (Statement), 347

887Index

executeQuery method
of PreparedStatement, 312, 317
of Statement, 300–301, 324

executeUpdate method
of PreparedStatement, 312, 317
of Statement, 299, 301, 322, 345

executor method (HttpClient.Builder), 277
ExecutorService interface, 454
exists method (Files), 116–117
exit method (System), 546
EXIT statement (SQL), 295
exports keyword, 506, 508, 510, 521
Extension class loader, 531
extern "C", in native methods (C++), 813
External entities, 176
Externalizable interface, methods of, 101–102

F
F (float), type code, 95, 831
\f, in regular expressions, 138
Factoring algorithms, 588
fatalError method (ErrorHandler), 177–178
Field class

getName, getType methods, 687
implementing AnnotatedElement, 466

Fields
accessing from:

another class, 546
native code, 825–830

annotating, 464, 479
transient, 100

File class
separator constant, 64
toPath method, 111–112

File permissions, 557
File pointers, 80
File systems, POSIX-compliant, 117
file: (URI scheme), 252, 553
file.encoding property, 77
file.separator property, 558
FileChannel class

lock method, 135–136
open, map methods, 125, 130
tryLock method, 135–136

FileHandler class, 415
FileInputStream class, 63–67, 550, 559

constructor, 66
getChannel method, 130
read method, 56

fileKey method (BasicFileAttributes), 118
FileLock class

close method, 136
isShared method, 135

FileNotFoundException, 266
FileOutputStream class, 63–67

constructor, 67
getChannel method, 130

FilePermission class, 548, 554
FileReader class, 550
Files

accessing, 546
channels for, 125
closing, 118
configuration, 135
copying, 114
creating, 113–114
deleting, 115
encrypting/decrypting, 607
filtering, 120, 746
generated automatically, 463, 484
hierarchical structure of, 652
I/O modes of, 84
memory-mapped, 50, 124–134
missing, 454
moving, 114
random-access, 80–85

vs. buffered, 125
reading, 64, 112–113

as a string, 112
by one byte, 56–59
permissions for, 559

total number of bytes in, 81
traversing, 120–123
with multiple images, 747–755
writing, 112–113

Files class, 109, 112–123
copy method, 114–115
createXxx methods, 113–114
delete, deleteIfExists methods, 115
exists method, 116–117
find method, 119
getBytes method, 112
getOwner method, 117
isXxx methods, 116–117
lines method, 6, 10, 50
list method, 118
move method, 114–115
newDirectoryStream method, 120, 123

Index888

newXxxStream, newBufferedXxx methods,
112–113

readAllXxx methods, 113
readAttributes method, 117
size method, 116–117
walk method, 118
walkFileTree method, 121–123
write method, 113

FileSystem class
getPath method, 124

FileSystems class
newFileSystem method, 123–124

FileTime class
toInstant method, 377

FileVisitor interface, 121–122
methods of, 121

fill method (Graphics2D), 695–696, 715
Filling shapes, 694–695, 724
fillXxx methods (Graphics), 696
filter method

of BufferedImageOp, 763, 771
of Optional, 18–19
of Stream, 3–11, 15

FilteredRowSet interface, 330
filtering method (Collectors), 37, 40
Filters

for images, 763–772
for numbers, 629
for table rows, 628–630
glob patterns for, 120
implementing, 629

FilterXxxStream classes, 65
Final block padding, 601
find method

of Files, 119
of Matcher, 145, 149

findAll method (Scanner), 146, 151
findAny method (Stream), 16
FindClass function (C), 826, 829, 834
findClass method (ClassLoader), 534, 541
findColumn method (ResultSet), 302
findFirst method (Stream), 15–16
Fingerprints, 94, 583–587

different for a class and its objects, 97
first method (ResultSet), 325, 328
firstDayOfXxx methods (TemporalAdjuster), 365
firstValue method (HttpHeaders), 273, 278
#FIXED attribute (DTD), 175
Fixed-size records, 81–82

flatMap method
general concept of, 12
of Optional, 21–25
of Stream, 12

flatMapping method (Collectors), 37, 40
flip method (Buffer), 133–134
FLOAT data type (SQL), 293, 348
float type

printing, 69
streams of, 43
type code for, 95, 831
vs. C types, 817
writing in binary format, 78

FloatBuffer class, 132
Floating-point numbers, 380, 387–394
flush method

of CipherOutputStream, 608
of Closeable, 60
of Flushable, 60, 63
of OutputStream, 57, 59

Flushable interface, 59, 61
close method, 59
flush method, 60, 63

fn keyword (SQL), 320
Folder icons, 661–662, 674
followRedirects method (HttpClient.Builder),

271, 277
Font render context, 733
forEach method (Stream), 25, 28
forEachOrdered method (Stream), 25
Forest (Swing), 652, 660
ForkJoinPool class

commonPool method, 51
forLanguageTag method (Locale), 386
Format class, 376
format method

of DateTimeFormatter, 371, 375, 401
of Format, 411
of MessageFormat, 410–411
of NumberFormat, 388, 392
of String, 385

Formatting
dates, 380, 394–401
messages, 409–413
numbers, 380, 387–394

formatting/Formatting.java, 374
Forms, processing, 261–270
forName method

of Charset, 77

889Index

forName method (continued)
of Class, 456

ForwardingJavaFileManager class
constructor, 463
getFileForOutput method, 463

fprintf function (C), 833
Frame class, 457
from method

of Instant, 376–377
of ZonedDateTime, 376–377

FROM statement (SQL), 290
FTP (File Transfer Protocol), 256
ftp: (URI scheme), 252, 256
Function interface, 30
@FunctionalInterface annotation, 479

G
\G, in regular expressions, 140
Garbage collection

and arrays, 842
and native methods, 821

GeneralPath class, 697, 699, 703
constructor, 713

generate method (Stream), 5, 9, 43
@Generated annotation, 479–480
generateKey method (KeyGenerator), 602, 607
Generators, converting to streams, 49
Generic types, type use annotations in,

476
get method

of AttributeSet, 802, 806
of Bindings, 443
of ByteBuffer, 126, 131
of CharBuffer, 132
of Optional, 19–22
of Paths, 109, 111
of ScriptEngine, 443
of ScriptEngineManager, 443
of Supplier, 10

GET method (HttpRequest.Builder), 271, 278
GET request (HTML), 262, 264

building, 271
getActions method (Permission), 559
getAddress method (InetAddress), 234–235
getAdvance method (TextLayout), 735
getAllByName method (InetAddress), 234–235
getAllowsChildren method (TreeNode), 662
getAnnotation method (AnnotatedElement), 466,

470, 484, 486

getAnnotations method (AnnotatedElement), 470
getAnnotationsByType method (AnnotatedElement),

470, 484, 486
GetArrayLength function (C), 840, 843
getAscent method (TextLayout), 735
getAsXxx methods (OptionalXxx), 44, 48
getAttribute method (Element), 164, 168
getAttributes method

of DocPrintJob, 807
of Node, 164, 168
of PrintService, 807

getAttributeXxx methods (XMLStreamReader), 203,
206

getAuthority method (URI), 253
getAutoCommit method (Connection), 347
getAutoCreateRowSorter method (JTable), 616,

618
getAvailableCurrencies method (Currency), 394
getAvailableLocales method

of Collator, 408
of NumberFormat, 383, 388, 391

getAvailableZoneIds method (ZoneId), 367
getAverage method (XxxSummaryStatistics), 26,

29, 48
getBinaryStream method (Blob), 317, 319
getBlob method (ResultSet), 317–318
getBlockSize method (Cipher), 606
GetBooleanArrayElements function (C), 842–843
GetBooleanArrayRegion function (C), 842, 844
GetBooleanField function (C), 830
getBundle method (ResourceBundle), 418–421
getByName method (InetAddress), 234–235
GetByteArrayElements function (C), 842–843,

858
GetByteArrayRegion function (C), 842, 844
GetByteField function (C), 830
getBytes method

of Blob, 317–318
of Files, 112

getCandidateLocales method
(ResourceBundle.Control), 418

getCategory method (Attribute), 801, 806
getCellEditorValue method (CellEditor), 641,

644–645, 652
getCellSelectionEnabled method (JTable), 636
getCertificates method (CodeSource), 551
getChannel method (FileXxxStream,

RandomAccessFile), 130
getChar method (ByteBuffer), 126, 131

Index890

getCharacterStream method (Clob), 318–319
GetCharArrayElements function (C), 842–843
GetCharArrayRegion function (C), 842, 844
getCharContent method (SimpleJavaFileObject),

463
GetCharField function (C), 830
getChild method (TreeModel), 685–687, 692
getChildAt method (TreeNode), 671
getChildCount method

of TreeModel, 685–687, 692
of TreeNode, 671

getChildNodes method (Node), 161, 168
getClassLoader method (Class), 531, 540
getClip method (Graphics), 734, 775
getClob method (ResultSet), 317–318
getCodeSource method (ProtectionDomain), 551
getCollationKey method (Collator), 404, 408
getColorModel method (BufferedImage), 758, 762
getColumn method (TableColumnModel), 636
getColumnClass method (TableModel), 622, 635
getColumnCount method

of ResultSetMetaData, 335
of TableModel, 618–619, 622

getColumnModel method (JTable), 635
getColumnName method (TableModel), 619, 622
getColumnNumber method

of Diagnostic, 462
of SAXParseException, 178

getColumnSelectionAllowed method (JTable), 636
getColumnXxx methods (ResultSetMetaData), 335,

344
getCommand method (RowSet), 332
getConcurrency method (ResultSet), 324–325,

328
getConnection method (DriverManager), 296–297,

307, 351
getConnectTimeout method (URLConnection), 260
getContent method (URLConnection), 261
getContentEncoding, getContentType methods

(URLConnection), 254, 257, 261, 266
getContentLength method (URLConnection), 254,

257, 260
getContext method

of AccessController, 572
of ScriptEngine, 444

getContextClassLoader method (Thread), 533,
541

getCount method (XxxSummaryStatistics), 29,
48

getCountry method (Locale), 35, 386
getCrc method (ZipEntry), 87
getCurrencyCode method (Currency), 394
getCurrencyInstance method (NumberFormat), 387,

392–393
getData method (CharacterData), 163, 169
getDataElements method

of ColorModel, 763
of Raster, 758, 762

getDataSize method (DataTruncation), 306
getDate method

of ResultSet, 300, 302
of URLConnection, 254, 257, 261

getDayOfXxx methods
of LocalDate, 360, 362
of ZonedDateTime, 370

getDays method (Period), 363
getDeclaredAnnotations method (AnnotatedElement),

471
getDecomposition method (Collator), 408
getDefault method (Locale), 384, 386
getDefaultEditor method (JTable), 650
getDefaultFractionDigits method (Currency), 394
getDefaultName method (NameCallback), 581
getDefaultRenderer method (JTable), 641, 650
getDescent method (TextLayout), 735
getDiagnostics method (DiagnosticCollector),

462
GetDirectBufferXxx functions (C), 843
getDisplayCountry, getDisplayLanguage methods

(Locale), 386
getDisplayName method

of DayOfWeek, Month, 373, 395
of Locale, 384, 386, 388

getDocumentElement method (Document), 160, 168
getDoInput, getDoOutput methods (URLConnection),

259
getDouble method

of ByteBuffer, 126, 131
of ResultSet, 300, 302

GetDoubleArrayElements function (C),
842–843

GetDoubleArrayRegion function (C), 842, 844
GetDoubleField function (C), 826, 830
getEnclosedElements method (TypeElement), 486
getEngineXxx methods (ScriptEngineManager),

441
getEntry method (ZipFile), 88
getErrorCode method (SQLException), 304–305

891Index

getErrorStream method (HttpURLConnection), 266,
270

getErrorWriter method (ScriptContext), 444
getExpiration method (URLConnection), 254, 257,

261
getExtensions method (ScriptEngineFactory), 441
GetFieldID function (C), 826, 830
getFields method (Class), 687
getFileForOutput method

(ForwardingJavaFileManager), 463
getFileName method (StackTraceElement), 111
getFilePointer method (RandomAccessFile), 81,

84
getFileSuffixes method (ImageReaderWriterSpi),

755
getFillsViewportHeight method (JTable), 618
getFirstChild method (Node), 163, 168
getFloat method (ByteBuffer), 126, 131
GetFloatArrayElements function (C), 842–843
GetFloatArrayRegion function (C), 842, 844
GetFloatField function (C), 830
getFontRenderContext method (Graphics2D), 733,

735
getFormatNames method (ImageReaderWriterSpi),

755
getFragment method (URI), 253
getHeaderXxx methods (URLConnection),

254–256, 260
getHeight method

of ImageReader, 748, 754
of PageFormat, 775, 782

getHost method (URI), 253
getHostXxx methods (InetAddress), 235
getHour method

of LocalTime, 366
of ZonedDateTime, 371

getIdentifier method (Entry), 638
getIfModifiedSince method (URLConnection), 260
getImageableXxx methods (PageFormat), 776,

782
getImageXxxByXxx methods (ImageIO), 746, 753
getIndex method (DataTruncation), 306
getIndexOfChild method (TreeModel), 685, 692
getInputStream method

of Socket, 231–232, 236
of URLConnection, 254, 261, 264, 266
of ZipFile, 88

getInstance method
of AlphaComposite, 739, 744

of Cipher, 600, 606
of Collator, 408
of Currency, 393–394
of KeyGenerator, 606
of Locale, 402
of MessageDigest, 584–586

getInt method
of ByteBuffer, 126, 131
of ResultSet, 300, 302

GetIntArrayElements function (C), 842–843
GetIntArrayRegion function (C), 842, 844
getInterface method (Invocable), 446
GetIntField function (C), 826, 830, 859
getISOCountries method (Locale), 384,

386
getISOLanguages method (Locale), 384
getJavaFileObjectsFromXxx methods

(StandardJavaFileManager), 462
getJDBCXxxVersion methods (DatabaseMetaData),

343
getKeys method (ResourceBundle), 421
getKind method (Diagnostic), 462
getLanguage method (Locale), 386
getLastChild method (Node), 164, 168
getLastModified method (URLConnection), 254,

257, 261
getLastPathComponent method (TreePath), 665,

671
getLastSelectedPathComponent method (JTree),

665, 670
getLeading method (TextLayout), 735
getLength method

of Attributes, 202
of NamedNodeMap, 169
of NodeList, 161, 169

getLineNumber method
of Diagnostic, 462
of SAXParseException, 178

getLocale method (MessageFormat), 411
getLocalHost method (InetAddress), 234–235
getLocalName method

of Attributes, 202
of Node, 196
of XMLStreamReader, 206

getLocation method (CodeSource), 551
getLong method (ByteBuffer), 126, 131
GetLongArrayElements function (C), 842–843
GetLongArrayRegion function (C), 842, 844
GetLongField function (C), 830

Index892

getMax method (XxxSummaryStatistics), 26, 30,
48

getMaxConnections method (DatabaseMetaData),
343

getMaxStatements method (DatabaseMetaData), 303,
343

getMessage method (Diagnostic), 462
getMetaData method

of Connection, 334, 343
of ResultSet, 335, 344

getMethodCallSyntax method (ScriptEngineFactory),
445

GetMethodID function (C), 835, 838
getMimeTypes method (ScriptEngineFactory), 441
getMIMETypes method (ImageReaderWriterSpi), 755
getMin method (XxxSummaryStatistics), 30, 48
getMinute method

of LocalTime, 366
of ZonedDateTime, 371

getModel method (Entry), 638
getMonth, getMonthValue methods

of LocalDate, 362
of ZonedDateTime, 370

getMonths method (Period), 363
getMoreResults method (Statement), 321–322
getName method

of Attribute, 806
of Field, 687
of NameCallback, 581
of Permission, 561, 566
of Principal, 573
of PrintService, 793
of UnixPrincipal, 567
of XMLStreamReader, 206
of ZipEntry, 87
of ZipFile, 88

getNames method (ScriptEngineFactory), 441
getNamespaceURI method (Node), 195–196
getNano method

of LocalTime, 366
of ZonedDateTime, 371

getNextEntry method (ZipInputStream), 85–86
getNextException method (SQLException),

304–305
getNextSibling method (Node), 164, 168
getNextWarning method (SQLWarning), 306
getNodeXxx methods (Node), 164, 169, 195
getNumberInstance method (NumberFormat), 387,

392

getNumericXxx methods (Currency), 394
getNumXxx methods (ImageReader), 747, 754
getObject method

of ResourceBundle, 420–421
of ResultSet, 300, 302

GetObjectArrayElement function (C), 840, 843
GetObjectClass function (C), 826–827
GetObjectField function (C), 826, 830
getOffset method (ZonedDateTime), 371
getOrientation method (PageFormat), 782
getOriginatingProvider method

of ImageReader, 746, 754
of ImageWriter, 755

getOutputSize method (Cipher), 606
getOutputStream method

of Socket, 232, 236
of URLConnection, 254, 261, 264

getOwner method (Files), 117
getPageCount method (Banner), 784
getPageSize method (CachedRowSet), 333
getParameter method (DataTruncation), 306
getParent method

of ClassLoader, 540
of Path, 111
of TreeNode, 671, 673

getParentNode method (Node), 168
getPassword method

of PasswordCallback, 582
of RowSet, 332

getPath method
of FileSystem, 124
of TreeSelectionEvent, 684
of URI, 253

getPaths method (TreeSelectionEvent), 678, 684
getPathToRoot method (DefaultTreeModel), 666
getPercentInstance method (NumberFormat), 387,

392
getPixel, getPixels methods (Raster), 757, 762
getPointCount method (ShapeMaker), 704
getPort method (URI), 253
getPreviousSibling method (Node), 168
getPrincipals method (Subject), 572
getPrinterJob method (PrinterJob), 773, 781
getPrintService method

(StreamPrintServiceFactory), 796
getPrompt method

of NameCallback, 581
of PasswordCallback, 582

getProtectionDomain method (Class), 551

893Index

getQName method (Attribute), 202
getQualifiedName method (TypeElement), 486
getQuery method (URI), 253
getRaster method (BufferedImage), 756, 762
getReader method (ScriptContext), 444
getReaderXxx methods (ImageIO), 746, 753
getReadTimeout method (URLConnection), 260
getRequestProperties method (URLConnection),

260
getResourceAsStream method (Class, Module), 514
getResponseCode method (HttpURLConnection), 267
getResultSet method (Statement), 302
getRGB method

of Color, 763
of ColorModel, 758, 763

getRoot method
of Path, 111
of TreeModel, 685–687, 692

getRotateInstance method (AffineTransform),
730–731

getRow method (ResultSet), 325, 328
getRowCount method (TableModel), 618–619,

622
getRowSelectionAllowed method (JTable), 636
getRowXxx methods (JTable), 635
getSavepointXxx methods (Savepoint), 347
getScaleInstance method (AffineTransform),

730–731
getSecond method

of LocalTime, 366
of ZonedDateTime, 371

getSeconds method (Duration), 355
getSelectionModel method (JTable), 636
getSelectionPath method (JTree), 665, 670,

678, 683
getSelectionPaths method (JTree), 678, 683
getShearInstance method (AffineTransform), 730,

732
getShort method (ByteBuffer), 126, 131
GetShortArrayElements function (C), 842–843
GetShortArrayRegion function (C), 842, 844
GetShortField function (C), 830
getSimpleName method (Element), 486
getSize method (ZipEntry), 87
getSource method (Diagnostic), 462
getSQLState method (SQLException), 304–305
getSQLStateType method (SQLException), 304
getStandardFileManager method (JavaCompiler),

461

GetStaticFieldID, GetStaticXxxField functions
(C), 829–830

GetStaticMethodID function (C), 834, 839
getStrength method (Collator), 408
getString method

of ResourceBundle, 419, 421
of ResultSet, 300, 302

getStringArray method (ResourceBundle), 421
GetStringChars, GetStringLength functions (C),

822
GetStringRegion function (C), 821
GetStringUTFChars function (C), 820, 822, 824,

858
GetStringUTFLength, GetStringUTFRegion functions

(C), 821
getStringValue method (Entry), 639
getSubject method (LoginContext), 572
getSubString method (Clob), 318–319
getSum method (XxxSummaryStatistics), 29, 48
GetSuperclass function (C), 871
getSymbol method (Currency), 394
getSystemClassLoader method (ClassLoader), 541
getSystemJavaCompiler method (ToolProvider),

453
getTableCellEditorComponent method

(TableCellEditor), 643, 645, 651
getTableCellRendererComponent method

(TableCellRenderer), 639, 651
getTableName method (CachedRowSet), 333
getTables method (DatabaseMetaData), 334, 343
getTagName method (Element), 161, 168, 195
getTask method (JavaCompiler), 453–454, 461
Getter/setter pairs. See Properties
getText method (XMLStreamReader), 206
getTimeZone method (TimeZone), 377
getTransferSize method (DataTruncation), 306
getTranslateInstance method (AffineTransform),

730, 732
getTreeCellRendererComponent method

(TreeCellRenderer), 675–676
getType method

of Field, 687
of ResultSet, 324, 328

getUpdateCount method (Statement), 302, 321
getURI method (Attribute), 202
getURL method (RowSet), 332
getURLs method (URLClassLoader), 532
getUserInfo method (URI), 253
getUsername method (RowSet), 332

Index894

getValue method
of Attributes, 202
of Copies, 802
of Entry, 638
of Win32RegKey, 857

getValueAt method (TableModel), 618–619, 622
getValueCount method (Entry), 639
getVendorName, getVersion methods

(IIOServiceProvider), 746, 754
getWarnings method (Connection, ResultSet,

Statement), 306
getWidth method

of ImageReader, 748, 754
of PageFormat, 775, 782

getWriter method (ScriptContext), 444
getWriterXxx methods (ImageIO), 746, 753
getYear method

of LocalDate, 362
of ZonedDateTime, 370

getYears method (Period), 363
GIF format, 745

animated, 747
image manipulations on, 767
printing, 792

GlassFish server, 350
Glob patterns, 120
GlobalSign, 593
GMail, 279–280
Gnu C compiler, 813–814
Gödel’s theorem, 542
Google Maps, 263
GradientPaint class, 725

constructor, 725–726
cyclic parameter, 725

grant keyword, 553, 568, 599
Graphic Java™ (Geary), 614, 652
Graphics class, 693–694

drawXxx, fillXxx methods, 696
get/setClip methods, 733–734, 775

Graphics2D class
clip method, 695, 733–735, 775
draw method, 695–697, 715
fill method, 695–696, 715
getFontRenderContext method, 733, 735
rotate, scale methods, 728, 732
setComposite method, 695, 738, 744
setPaint method, 695, 724, 726
setRenderingHint, setRenderingHints methods,

694

setStroke method, 694, 715, 724
setTransform method, 730, 732
shear method, 728, 732
transform method, 695, 730, 732
translate method, 728, 732, 784

Greenwich Royal Observatory, 354, 367
Gregorian calendar reform, 363
GregorianCalendar class

toZonedDateTime method, 376–377
Groovy programming language, 440, 448
group method

of Matcher, 143, 145, 149–150
of MatchResult, 146, 150

groupCount method (Matcher), 149
Grouping, 34–35

classifier functions of, 35
reducing to numbers, 36

groupingBy method (Collectors), 34–40
groupingByConcurrent method (Collectors), 35,

50
>, entity reference, 158
GUI (Graphical User Interface), scripting

events for, 447–452

H
\h, \H, in regular expressions, 139
Half-closing connections, 243–244
Handbook of Applied Cryptography, The

(Menezes et al.), 587
handle method (CallbackHandler), 581
handleGetObject method (ResourceBundle), 421
Handles (Swing), 657, 674
hash/Digest.java, 585
hashCode method

of Annotation, 472
of Permission, 559

HashXxxAttributeSet classes, 773, 800
Haskell programming language, 440
hasMoreElements method (Enumeration), 857–859
hasNext method (XMLStreamReader), 205
hasRemaining method (Buffer), 130
Header information, from server, 254
header method (HttpRequest.Builder), 277
Headers (Swing tables)

rendering, 641
scrolling, 615

headers method (HttpResponse), 272, 278
helloNative/HelloNative.c, 813
helloNative/HelloNative.h, 812

895Index

helloNative/HelloNative.java, 811
helloNative/HelloNativeTest.java, 814
Hex editors

creating class files in, 542
modifying bytecodes with, 544

Hidden commands, in XML comments,
159

Hosts, 234–235
HTML (HyperText Markup Language)

attributes in, 158
end and empty tags in, 156
forms in, 262
generating from XML files, 216–219
mixing with JSP, 457
printing, 792
vs. XML, 155

HTTP (Hypertext Transfer Protocol), 287
redirects between HTTPS and, 267
request headers in, 255–256

http: (URI scheme), 252, 553
HttpClient class, 271–278

enabling logging for, 273
newBuilder method, 271, 273, 277
newHttpClient method, 271, 277
send method, 277
sendAsync method, 273, 277

HttpClient.Builder class
build method, 271–272, 277
executor method, 277
followRedirects method, 271, 277

HttpHeaders class
firstValue method, 273, 278
map method, 272, 278

HttpRequest class
newBuilder method, 271–273, 277

HttpRequest.Builder class
build method, 277
DELETE method, 278
GET method, 271, 278
header method, 277
POST method, 272, 278
PUT method, 278
uri method, 271–273, 277

HttpResponse class, methods of, 272, 278
HttpResponse.BodyHandlers class

discarding method, 272
ofString method, 272–273

HTTPS (Hyper Text Transfer Protocol
Secure), 267

https: (URI scheme), 252
HttpURLConnection class

getErrorStream method, 266, 270
getResponseCode method, 267
setInstanceFollowRedirects method, 267

I
I (int), type code, 95, 831
I/O streams. See Input streams, Output

streams
IANA (Internet Assigned Numbers

Authority), 367
IBM, 153, 160

DB2 database, 293
IBM437 encoding, 415
ICC profiles, 758
Icons

in column headers, 641
in table cells, 639
in trees, 661–662, 674

ID, IDREF, IDREFS attribute types (DTDs),
174–175

Identity (do-nothing) transformation, 209
identity method (Function), 30
Identity values, 41
IDs, uniqueness of, 175, 183
IETF BCP 47, 385
ifPresent method (Optional), 17–18, 48
ifPresentOrElse method (Optional), 18
IIOImage class, 748, 755
IIOServiceProvider class

getVendorName, getVersion methods, 746, 754
IllegalAccessException, 687
IllegalArgumentException, 204, 845
IllegalStateException, 30, 747
Imageable area, 776
ImageInputStream class, 747
ImageIO class

createImageXxxStream methods, 747, 753
determining image type, 745
getImageXxxByXxx methods, 746, 753
getReaderXxx, getWriterXxx methods, 746,

753
read, write methods, 745, 753

imageIO/ImageIOFrame.java, 749
ImageOutputStream interface, 748
imageProcessing/ImageProcessingFrame.java, 767
ImageReader class, 745

getHeight, getWidth methods, 748, 754

Index896

getNumXxx methods, 747, 754
getOriginatingProvider method, 746, 754
read, readThumbnail methods, 754
setInput method, 754

ImageReaderWriterSpi class
getXxx methods, 755

Images
blurring, 765
color values of, 758
edge detection of, 766
filtering, 763–772
getting size of, before reading, 748
incremental rendering of, 756
manipulating, 756–772
metadata in, 748
multiple, in a file, 747–755
printing, 772–782, 792, 796
raster, 744–772

constructing from pixels, 756–763
readers/writers for, 745–755

rotating, 764
superimposing, 735–736
thumbnails for, 748
vector, 693–744

ImageWriter class, 745, 748
canInsertImage method, 748, 755
getOriginatingProvider method, 755
setOutput method, 755
write, writeInsert methods, 748, 755

implements specification, type use
annotations in, 476

#IMPLIED attribute (DTD), 175
implies method

of Permission, 559–561, 566
of ProtectionDomain, 551

import statement, 534
INCLUDE environment variable, 854
include method (RowFilter), 629, 638
Incremental rendering, 756
Indexed color model, 765
IndexOutOfBoundsException, 747
InetAddress class, 234–235

getXxx methods, 234–235
inetAddress/InetAddressTest.java, 234
InetSocketAddress class

isUnresolved method, 251
Infinite trees, 688
Inheritance trees, 304
@Inherited annotation, 479, 483

init method
of Cipher, 606
of KeyGenerator, 606

Initialization blocks, for shared libraries,
816

initialize method
of LoginModule, 582
of SimpleLoginModule, 574

INPUT_STREAM class (DocFlavor), 794
Input streams, 56–77

and Unicode, 56
as input source, 160
buffered, 65–67
byte processing in, 65
byte-oriented, 56
chaining, 65
closing, 57
encoding for, 68
filters for, 63–67
hierarchy of, 59–63
keeping open, 243
objects in, 88–108

InputSource class, 178
InputStream class, 56–59, 60

available method, 57–58
close method, 57–58
mark, markSupported methods, 58
read method, 56–58
readAllBytes, readNBytes methods, 56, 58
reset, skip, transferTo methods, 58

InputStreamReader class, 68
INSERT statement (SQL), 292

and autogenerated keys, 322
executing, 300–301, 317
in batch updates, 346
vs. methods of ResultSet, 327

insertNodeInto method (DefaultTreeModel), 665,
671

insertRow method (ResultSet), 326, 329
Inside Java™ 2 Platform Security (Gong et

al.), 530
Instance fields

accessing from native code, 825–829
annotating, 475

instanceof keyword, and type use
annotations, 476

Instant class, 354
from method, 376–377
immutability of, 355

897Index

Instant class (continued)
legacy classes and, 376–377
minus, minusXxx methods, 357
now method, 355, 357
plus, plusXxx methods, 357

Instrumentation API, 496
int type

printing, 69
storing, 78
streams of, 43
type code for, 95, 831
vs. C types, 817
writing in binary format, 78

IntBuffer class, 132
INTEGER data type (SQL), 293, 348
IntegerSyntax class, 802
@interface declaration, 465, 471
Interfaces

accessing script classes with, 446
annotating, 475, 479
implementing in script engines, 445

Internet Engineering Task Force, 382
Interpolation, 764

for gradients, 725
strategies of, 764
when transforming images, 764

Interruptible sockets, 244–251
interruptible/InterruptibleSocketTest.java, 246
intersect method (Area), 714–715
ints method

of Random, 44, 47, 51
of SplittableRandom, 51

IntStream interface, 43–48
average, max, min, of, range, rangeClosed, sum,

summaryStatistics, toArray methods, 46
boxed method, 44, 46

IntSummaryStatistics class, 26, 29–30, 44, 48
intValue method (Number), 388
Invalid pointers (C, C++), 810
InvalidPathException, 109
Invocable interface, 444

getInterface method, 446
invokeXxx methods, 445–446

Invocation API, 849–854
invocation/InvocationTest.c, 851
IOException, 231
IP addresses, 229, 234–235
IPP (Internet Printing Protocol) 1.1, 806
IPv6 addresses, 234

isAfter method
of LocalDate, 363
of LocalTime, 366
of ZonedDateTime, 371

isAfterLast method (ResultSet), 325, 328
isAnnotationPresent method (AnnotatedElement),

470
IsAssignableFrom function (C), 858, 870
isBefore method

of LocalDate, 363
of LocalTime, 366
of ZonedDateTime, 371

isBeforeFirst method (ResultSet), 325, 328
isCellEditable method

of AbstractCellEditor, 644
of AbstractTableModel, 641
of CellEditor, 652
of DefaultTableModel, 641
of TableModel, 622, 641

isCharacters method (XMLStreamReader), 205
isClosed method

of ResultSet, 303
of Socket, 233
of Statement, 302

isConnected method (Socket), 233
isDirectory method

of BasicFileAttributes, 118
of ZipEntry, 87

isEchoOn method (PasswordCallback), 582
isEndElement method (XMLStreamReader), 205
isExecutable method (Files), 116–117
isFirst method (ResultSet), 325, 328
isGroupingUsed method (NumberFormat), 392
isHidden method (Files), 116–117
isIgnoringElementContentWhitespace method

(DocumentBuilderFactory), 179
isInputShutdown method (Socket), 244
isLast method (ResultSet), 325, 328
isLeaf method

of DefaultTreeModel, 661
of TreeModel, 663, 685, 693
of TreeNode, 661–662

isLeapYear method (LocalDate), 363
isNamespaceAware method

of DocumentBuilderFactory, 196
of SAXParserFactory, 201

isNegative method (Duration), 358
ISO 216 standard, 420
ISO 639-1 standard, 382, 386

Index898

ISO 3166-1 standard, 382, 386
ISO 4217 standard, 393–394
ISO 8601 standard, 320, 480
ISO 8859-1 standard, 68, 76
isOutputShutdown method (Socket), 244
isParseIntegerOnly method (NumberFormat), 392
isPresent method (Optional), 19–22
isReadable method (Files), 116–117
isRegularFile method

of BasicFileAttributes, 118
of Files, 116–117

isShared method (FileLock), 135
isStartElement method (XMLStreamReader), 205
isSymbolicLink method

of BasicFileAttributes, 118
of Files, 116–117

isUnresolved method (InetSocketAddress), 251
isValidating method

of DocumentBuilderFactory, 179
of SAXParserFactory, 201

isWhiteSpace method (XMLStreamReader), 205
isWritable method (Files), 116–117
isZero method (Duration), 358
item method

of NamedNodeMap, 169
of NodeList, 161, 169, 177

Iterable interface, 120
spliterator method, 10

iterate method (Stream), 5, 9, 14, 43
Iterator interface, 300
iterator method

of BaseStream, 28
of SQLException, 304–305
of Stream, 25

Iterators, 25
converting to streams, 6, 49
splittable, 9–10

J
J (long), type code, 95, 831
JAAS (Java Authentication and

Authorization Service), 566–582
configuration files in, 567, 572
login modules in, 573–582

jaas/jaas.config, 581
jaas/JAASTest.java, 580
jaas/JAASTest.policy, 580
jaas/SimpleCallbackHandler.java, 579
jaas/SimpleLoginModule.java, 577

jaas/SimplePrincipal.java, 576
jaas.config file, 569
JAR files

adding to class path, 532
analyzing dependencies of, 524–525
automatic registration in, 296
class loaders in, 532
code base of, 547
file resources in, 514
for plugins, 532
manifest of, 86, 515
META-INF/services directory, 522
modular, 510–511
resources in, 417
signing, 591–592

jar program, 510
jar: (URI scheme), 252
jarray type (C), 858
jarsigner program, 591–592, 599
JarXxxStream classes, 86
Java 2D API, 693–744

affine transformations in, 730
colors in, 758
constructive area geometry operations

in, 714
features supported in, 694
filters in, 763–772
paint in, 724
printing in, 784
rendering pipeline, 694–696
sample values in, 756
shape classes in, 697, 702
strokes in, 715
transparency in, 735–738

Java Bug Database, 765
Java EE (Java Platform, Enterprise Edition),

287
Java Platform Module System, 499–527

migration to, 515–519
Java Plug-in, loading signed code, 598
java program

--add-exports, --add-opens, --illegal-access
options, 518–519

--add-modules option, 271
-javaagent option, 496
jdbc.drivers property in, 296
--module, --module-path options, 503
-noverify option, 545
security managers in, 553

899Index

java program (continued)
specifying locales in, 384

Java programming language
internationalization support in, 379
platform-independent, 78
security of, 547–551
vs. SQL, 313

Java Virtual Machine Specification, The,
489, 544

java.activation module, 514
java.awt package, 501
java.awt.AlphaComposite API, 744
java.awt.BasicStroke API, 724
java.awt.Color API, 763
java.awt.font.TextLayout API, 735
java.awt.geom package, 100
java.awt.geom.AffineTransform API, 731–732
java.awt.geom.Arc2D.Double API, 713
java.awt.geom.Area API, 715
java.awt.geom.CubicCurve2D.Double API, 713
java.awt.geom.GeneralPath API, 713
java.awt.geom.Path2D API, 714
java.awt.geom.Path2D.Float API, 713
java.awt.geom.QuadCurve2D.Double API, 713
java.awt.geom.RoundRectangle2D.Double API, 712
java.awt.GradientPaint API, 726
java.awt.Graphics API, 734
java.awt.Graphics2D API, 696, 724, 726, 732,

735, 744
java.awt.image.AffineTransformOp API, 771
java.awt.image.BufferedImage API, 761
java.awt.image.BufferedImageOp API, 771
java.awt.image.ByteLookupTable API, 771
java.awt.image.ColorModel API, 763
java.awt.image.ConvolveOp API, 772
java.awt.image.Kernel API, 772
java.awt.image.LookupOp API, 771
java.awt.image.Raster API, 762
java.awt.image.RescaleOp API, 771
java.awt.image.ShortLookupTable API, 772
java.awt.image.WritableRaster API, 762
java.awt.print.PageFormat API, 782
java.awt.print.Printable API, 781
java.awt.print.PrinterJob API, 781–782
java.awt.TexturePaint API, 726
java.corba module, 514
java.io package, 77
java.io.BufferedInputStream API, 67
java.io.BufferedOutputStream API, 67

java.io.Closeable API, 62
java.io.DataInput API, 79–80
java.io.DataOutput API, 80
java.io.File API, 112
java.io.FileInputStream API, 66, 130
java.io.FileOutputStream API, 67, 130
java.io.Flushable API, 63
java.io.InputStream API, 58
java.io.ObjectInputStream API, 93
java.io.ObjectOutputStream API, 93
java.io.OutputStream API, 59
java.io.PrintWriter API, 70
java.io.PushbackInputStream API, 67
java.io.RandomAccessFile API, 84–85, 130
java.lang, java.lang.annotation packages, 478
java.lang.annotation.Annotation API, 472
java.lang.Appendable API, 63
java.lang.CharSequence API, 47, 63
java.lang.Class API, 540, 551
java.lang.ClassLoader API, 540–541
java.lang.Iterable API, 10
java.lang.Readable API, 63
java.lang.reflect.AnnotatedElement API, 470–471
java.lang.SecurityManager API, 550
java.lang.System API, 816
java.lang.Thread API, 541
java.logging module, 520
java.net package

socket connections in, 232
supporting IPv6 addresses in, 234
URLs vs. URIs in, 252

java.net.http package, 271
java.net.http.HttpClient API, 277
java.net.http.HttpClient.Builder API, 277
java.net.http.HttpHeaders API, 278
java.net.http.HttpRequest API, 277
java.net.http.HttpRequest.Builder API,

277–278
java.net.http.HttpResponse API, 278
java.net.HttpURLConnection API, 270
java.net.InetAddress API, 235
java.net.InetSocketAddress API, 251
java.net.ServerSocket API, 239
java.net.Socket API, 232–233, 244
java.net.URL API, 259
java.net.URLClassLoader API, 541
java.net.URLConnection API, 259–261
java.net.URLDecoder API, 270
java.net.URLEncoder API, 270

Index900

http://java.io
http://java.io
http://java.io
http://java.io
http://java.io
http://java.io
http://java.io
http://java.io
http://java.io
http://java.io
http://java.io
http://java.io
http://java.io
http://java.io
http://java.io
http://java.io
http://java.io
http://java.net
http://java.net
http://java.net
http://java.net
http://java.net
http://java.net
http://java.net
http://java.net
http://java.net
http://java.net
http://java.net

java.nio package, 241, 244
direct buffers in, 843
memory mapping in, 125

java.nio.Buffer API, 130, 134
java.nio.ByteBuffer API, 131–132
java.nio.channels.Channels API, 251
java.nio.channels.FileChannel API, 130, 136
java.nio.channels.FileLock API, 136
java.nio.channels.SocketChannel API, 251
java.nio.CharBuffer API, 132
java.nio.file.attribute.BasicFileAttributes API,

118
java.nio.file.Files API, 10, 113–115, 117,

123
java.nio.file.FileSystem API, 124
java.nio.file.FileSystems API, 124
java.nio.file.Path API, 111
java.nio.file.Paths API, 111
java.nio.file.SimpleFileVisitor API, 123
java.policy file, 551
.java.policy file, 551–552
java.se module, 520
java.security file, 552
java.security package, 530, 583
java.security.CodeSource API, 551
java.security.MessageDigest API, 586–587
java.security.Permission API, 566
java.security.Principal API, 573
java.security.PrivilegedAction API, 572
java.security.PrivilegedExceptionAction API, 572
java.security.ProtectionDomain API, 551
java.sql package, 376
java.sql.Blob API, 318–319
java.sql.Clob API, 319
java.sql.Connection API, 301, 306, 317, 319,

327, 343, 347
java.sql.DatabaseMetaData API, 329, 343, 348
java.sql.DataTruncation API, 306
java.sql.DriverManager API, 297
java.sql.PreparedStatement API, 317
java.sql.ResultSet API, 302–303, 306, 318,

328–329, 344
java.sql.ResultSetMetaData API, 344
java.sql.Savepoint API, 347
java.sql.SQLXxx APIs, 305
java.sql.Statement API, 301–302, 306, 322,

347
java.text.CollationKey API, 409
java.text.Collator API, 408

java.text.Format API, 411
java.text.MessageFormat API, 410–411
java.text.Normalizer API, 409
java.text.NumberFormat API, 391–392
java.time.Duration API, 357
java.time.format.DateTimeFormatter API, 375–376,

401
java.time.Instant API, 357
java.time.LocalDate API, 362–363, 365, 376,

401
java.time.LocalDateTime API, 401
java.time.LocalTime API, 366, 401
java.time.Period API, 363
java.time.temporal.TemporalAdjusters API, 365
java.time.ZonedDateTime API, 370–371, 376,

401
java.transaction module, 514
java.util.Arrays API, 9
java.util.Collection API, 5, 53
java.util.Currency API, 394
java.util.DoubleSummaryStatistics API, 29, 48
java.util.function.Supplier API, 10
java.util.IntSummaryStatistics API, 29, 48
java.util.Locale API, 385–386
java.util.LongSummaryStatistics API, 29, 48
java.util.Optional API, 17–22, 25
java.util.OptionalXxx APIs, 48
java.util.Random API, 47
java.util.regex.Matcher API, 149–150
java.util.regex.MatchResult API, 150
java.util.regex.Pattern API, 10, 148–149
java.util.ResourceBundle API, 421
java.util.Scanner API, 10, 151
java.util.Spliterators API, 9
java.util.Stream API, 43
java.util.stream.BaseStream API, 28, 53
java.util.stream.Collectors API, 29, 34–35, 40
java.util.stream.DoubleStream API, 47
java.util.stream.IntStream API, 46
java.util.stream.LongStream API, 46
java.util.stream.Stream API, 4, 12–13, 15–16,

28
java.util.stream.StreamSupport API, 10
java.util.zip.ZipEntry API, 87
java.util.zip.ZipFile API, 88
java.util.zip.ZipInputStream API, 86
java.util.zip.ZipOutputStream API, 86–87
java.xml.bind module, 514
java.xml.ws module, 514

901Index

http://java.se

java.xml.ws.annotation module, 514
javac program

-encoding option, 416
-XprintRounds option, 489

JavaCompiler interface, 453–454
getStandardFileManager method, 461
getTask method, 461

Javadoc, 482
JavaFileObject interface, 453
JavaFX platform, 521
javah program, 859
JavaMail, 279
JavaOne conference, 286
javap program, 832
JavaScript programming language, 440,

447–448
javax.annotation package, 478
javax.crypto.Cipher API, 606
javax.crypto.CipherXxxStream APIs, 608
javax.crypto.KeyGenerator API, 606–607
javax.crypto.spec.SecretKeySpec API, 607
javax.imageio package, 745
javax.imageio.IIOImage API, 755
javax.imageio.ImageIO API, 753
javax.imageio.ImageReader API, 754
javax.imageio.ImageWriter API, 755
javax.imageio.spi.IIOServiceProvider API, 754
javax.imageio.spi.ImageReaderWriterSpi API, 755
javax.print.attribute.Attribute API, 806
javax.print.attribute.AttributeSet API, 806–807
javax.print.DocPrintJob API, 795, 807
javax.print.PrintService API, 795, 807
javax.print.PrintServiceLookup API, 795
javax.print.SimpleDoc API, 795
javax.print.StreamPrintServiceFactory API, 796
javax.script.Bindings API, 443
javax.script.Compilable API, 447
javax.script.CompiledScript API, 447
javax.script.Invocable API, 446
javax.script.ScriptContext API, 444
javax.script.ScriptEngine API, 443–444
javax.script.ScriptEngineFactory API, 441
javax.script.ScriptEngineManager API, 441, 443
javax.security.auth.callback.CallbackHandler API,

581
javax.security.auth.callback.NameCallback API,

581
javax.security.auth.callback.PasswordCallback API,

581–582

javax.security.auth.login.LoginContext API,
571–572

javax.security.auth.spi.LoginModule API, 582
javax.security.auth.Subject API, 572
javax.sql package, 350
javax.sql.rowset package, 330
javax.sql.RowSet API, 332
javax.sql.rowset.CachedRowSet API, 333
javax.sql.rowset.RowSetFactory API, 333
javax.sql.rowset.RowSetProvider API, 333
javax.swing.CellEditor API, 652
javax.swing.DefaultCellEditor API, 651
javax.swing.DefaultRowSorter API, 637
javax.swing.event.TreeModelEvent API, 693
javax.swing.event.TreeModelListener API, 693
javax.swing.event.TreeSelectionEvent API, 684
javax.swing.event.TreeSelectionListener API, 684
javax.swing.JComponent API, 663
javax.swing.JTable API, 618, 635–636, 650
javax.swing.JTree API, 662, 670, 683
javax.swing.ListSelectionModel API, 637
javax.swing.RowFilter API, 638
javax.swing.RowFilter.Entry API, 638–639
javax.swing.table.TableCellEditor API, 651
javax.swing.table.TableCellRenderer API, 651
javax.swing.table.TableColumn API, 637, 651
javax.swing.table.TableColumnModel API, 636
javax.swing.table.TableModel API, 622, 635
javax.swing.table.TableRowSorter API, 637
javax.swing.table.TableStringConverter API, 637
javax.swing.tree.DefaultMutableTreeNode API, 663,

676
javax.swing.tree.DefaultTreeCellRenderer API, 676
javax.swing.tree.DefaultTreeModel API, 663, 671
javax.swing.tree.MutableTreeNode API, 662
javax.swing.tree.TreeCellRenderer API, 676
javax.swing.tree.TreeModel API, 663, 692–693
javax.swing.tree.TreeNode API, 662, 671
javax.swing.tree.TreePath API, 671
javax.tools.Diagnostic API, 462
javax.tools.DiagnosticCollector API, 462
javax.tools.ForwardingJavaFileManager API, 463
javax.tools.JavaCompiler API, 461
javax.tools.JavaCompiler.CompilationTask API, 462
javax.tools.SimpleJavaFileObject API, 463
javax.tools.StandardJavaFileManager API, 462
javax.tools.Tool API, 461
javax.xml.catalog.CatalogFeatures API, 179
javax.xml.catalog.CatalogManager API, 178

Index902

javax.xml.catalog.files system property, 172
javax.xml.parsers.DocumentBuilder API, 168, 177,

208
javax.xml.parsers.DocumentBuilderFactory API,

167, 179, 196
javax.xml.parsers.SAXParser API, 201
javax.xml.parsers.SAXParserFactory API, 201
javax.xml.stream.XMLInputFactory API, 204–205
javax.xml.stream.XMLOutputFactory API, 214
javax.xml.stream.XMLStreamReader API, 205–206
javax.xml.stream.XMLStreamWriter API, 214–215
javax.xml.transform.dom.DOMResult API, 226
javax.xml.transform.dom.DOMSource API, 210
javax.xml.transform.sax.SAXSource API, 225
javax.xml.transform.stream.StreamResult API, 210
javax.xml.transform.stream.StreamSource API, 225
javax.xml.transform.Transformer API, 209
javax.xml.transform.TransformerFactory API, 209,

225
javax.xml.xpath.XPath API, 193
javax.xml.xpath.XPathEvaluationResult API, 193
javax.xml.xpath.XPathFactory API, 193
JAXB (Java Architecture for XML Binding),

512
JAXP (Java API for XML Processing)

library, 160
jboolean type (C), 817
jbooleanArray type (C), 840
jbyte type (C), 817
jbyteArray type (C), 840
jchar type (C), 817, 819
jcharArray type (C), 840
JCheckBox class, 641
jclass type (C), 835
JComboBox class, 641
JCommander framework, 465
JComponent class

paint method, 639, 694
paintComponent method, 694
putClientProperty method, 658, 663

JDBC API, 285
configuration of, 293–299
debugging, 297
design of, 284–287
tracing, 297
uses of, 286–287
versions of, 283

JDBC API Tutorial and Reference (Fisher et
al.), 327, 349

JDBC drivers
escape syntax in, 319–321
JAR files for, 294
registering classes for, 295–296
scrollable/updatable result sets in, 324
types of, 285–286

JDBC/ODBC bridge, not available in Java
8, 285

JdbcRowSet interface, 330
jdeprscan program, 480
jdeps program, 524–525
JDK (Java Development Kit)

DOM parser, 160
keytool program, 589
obsolete features in, 500
serialver program, 104
src.jar file, 850
SunJCE ciphers, 600

jdk.incubator.http package, 271
jdouble type (C), 817
jdoubleArray type (C), 840
jfloat type (C), 817
jfloatArray type (C), 840
jint type (C), 817
jintArray type (C), 840
JLabel class, 674–675
jlink program, 526
jlong type (C), 817
jlongArray type (C), 840
JMOD files, 526, 531
jmod program, 526
JNDI service, 350

class loaders in, 532
JndiLoginModule class, 568
JNI (Java Native Interface), 810–871

accessing:
array elements in, 840–844
functions in C++, 820

calling convention in, 820
debugging mode of, 850
error handling in, 844–849
invoking Java methods in, 833–840
online documentation for, 821

JNI_CreateJavaVM function (C), 850, 854
JNI_OnLoad, JNI_OnUnload methods (C), 816
jni.h file, 817
JNICALL, JNIEXPORT macros, 812
JobAttributes class (obsolete), 806
jobject type (C), 835, 840, 858

903Index

jobjectArray type (C), 840
Join styles, 716–717
joining method (Collectors), 26, 29
JoinRowSet interface, 330
JPanel class, 777
JPEG format, 745

image manipulations on, 767
printing, 792
reading, 746

jrt: syntax, 527
js.properties file, 447
JScrollPane class, 615
JSF (JavaServer Faces), 261
JShell, loading modules into, 511
jshort type (C), 817
jshortArray type (C), 840
JSON-B (JSON Binding), 512, 514
JSP (JavaServer Pages), 457–463
jstring type (C), 820, 835, 858
JTable class, 613–652

addColumn method, 630, 636
asymmetric, 622
cell editors, automatically installed, 641
constructor, 618
convertXxxIndexToModel methods, 626, 636
default rendering actions, 622
getAutoCreateRowSorter method, 616, 618
getCellSelectionEnabled method, 636
getColumnModel method, 635
getColumnSelectionAllowed method, 636
getDefaultEditor method, 650
getDefaultRenderer method, 641, 650
getFillsViewportHeight method, 618
getRowHeight, getRowMargin methods, 635
getRowSelectionAllowed method, 636
getSelectionModel method, 636
moveColumn, removeColumn methods, 630, 636
print method, 616, 618
resize modes, 625
setAutoCreateRowSorter method, 616, 618,

627
setAutoResizeMode method, 625, 635
setCellSelectionEnabled method, 626, 636
setColumnSelectionAllowed method, 626, 636
setDefaultRenderer method, 640
setFillsViewportHeight method, 618
setRowHeight, setRowMargin methods, 625, 635
setRowSelectionAllowed method, 626, 636
setRowSorter method, 627, 636

JTextArea class, 560
JTextField class, 641
JTree class, 652–693

addTreeSelectionListener method, 677
constructor, 654, 662
getLastSelectedPathComponent method, 665,

670
getSelectionPath method, 665, 670, 678,

683
getSelectionPaths method, 678, 683
identifying nodes, 663
makeVisible method, 666, 670
scrollPathToVisible method, 666, 670
setRootVisible method, 660, 662
setShowsRootHandles method, 659, 662

JUnit tool, 464
Just-in-time compiler, 850
JVM (Java virtual machine)

bootstrap class loader in, 531
class files in, 530
creating, 850
embedding into native code,

849–854
specification for, 489, 544
terminating, 546–566, 850

jvm pointer (C), 850

K
\k, in regular expressions, 139
Kerberos protocol, 566
Kernel class, 766, 772
Kernel, of a convolution, 766
Key/value pairs. See Properties
Keyboard, reading from, 56, 68
KeyGenerator class, 602

generateKey method, 602, 607
getInstance method, 606
init method, 606

KeyPairGenerator class, 609
Keys

autogenerated, 322
generating, 602–607
primary, 322

keystore keyword, 599
KeyStoreLoginModule class, 568
Keystores, 589–592, 598

referencing in policy files, 599
keytool program, 589–592
Krb5LoginModule class, 568

Index904

L
L (object), type code, 95, 831
Lambda expressions, with streams, 11
Landscape orientation, 730
Language codes, 35, 382
Language Model API, 485–486
Language tags, 385
last method (ResultSet), 325, 328
lastXxx methods (TemporalAdjuster), 365
lastXxxTime methods (BasicFileAttributes), 118
Layout algorithm, 783
layoutPages method (Banner), 783
Lazy operations, 3, 7, 14, 147
LCD displays, 758
LD_LIBRARY_PATH environment variable, 816,

854
Leap seconds, 354
Leap years, 359, 363
Learn SQL The Hard Way (Shaw), 287
Learning SQL (Beaulieu), 287
Leaves (Swing), 652, 660, 685

icons for, 661–662, 674
Legacy data, converting into XML, 221
length method

of Blob, 318
of CharSequence, 63
of Clob, 319
of RandomAccessFile, 81, 85

LIB environment variable, 854
lib/ext directory, 531
LIKE statement (SQL), 291, 320
limit method (Stream), 12, 50, 130
Line feed, 69, 414

in e-mails, 279
in regular expressions, 140

Line2D class, 697, 699
Line2D.Double, Line2D.Float classes, 697
lines method (Files), 6, 10, 50
lineTo method (Path2D.Float), 703, 713
Linux operating system

compiling invocation API, 854
library path in, 816
OpenSSL in, 596
using GNU C compiler, 813

list method (Files), 118
ListResourceBundle class, 420
Lists, converting to streams, 49
ListSelectionModel interface

setSelectionMode method, 626, 637

LITTLE_ENDIAN constant (ByteOrder), 131
Little-endian order, 78, 126, 416
Load time, 495
loadClass method

of ClassLoader, 534
of URLClassLoader, 532

loadLibrary method (System), 814, 816
LOBs (large objects), 317–319

creating empty, 319
placing in database, 318
reading, 317

Local hosts, 234
Local names, 196
Local variables, annotating, 475
LocalDate class

datesUntil method, 360, 363
getDayOfXxx methods, 360, 362
getMonth, getMonthValue methods, 362
getYear method, 362
isAfter, isBefore, isLeapYear methods, 363
legacy classes and, 377
minus, minusXxx methods, 360, 362
now method, 359, 362
of method, 359, 362
parse method, 376, 395, 401
plus, plusXxx methods, 359–360, 362
toLocalDate method, 377
until method, 359, 362
weekends in, 360
with method, 364–365
withXxx methods, 362

localdates/LocalDates.java, 361
LocalDateTime class, 366

atZone method, 367
legacy classes and, 377
parse method, 395, 401
toLocalDateTime method, 377

Locale class, 31, 381–386
constructor, 385
debugging, 386
forLanguageTag method, 386
getCountry method, 35, 386
getDefault method, 384, 386
getDisplayCountry, getDisplayLanguage methods,

386
getDisplayName method, 384, 386, 388
getInstance method, 402
getISOCountries method, 384, 386
getISOLanguages method, 384

905Index

Locale class (continued)
getLanguage method, 386
setDefault method, 384, 386
toLanguageTag method, 383, 386
toString method, 386

Locales, 30, 380–386
and resources bundles, 417–418
current, 410
default, 372, 384
display names of, 384
formatting styles for, 373, 395–396
numbers in, 388
predefined, 383
variants in, 381, 418

LocalTime class, 365–366
getXxx methods, 366
isAfter, isBefore methods, 366
legacy classes and, 377
minus, minusXxx methods, 365–366
now method, 365–366
of method, 365–366
parse method, 395, 401
plus, plusXxx methods, 365–366
toLocalTime method, 377
toXxxOfDay methods, 366
withXxx methods, 366

lock method (FileChannel), 135–136
Locks

for the tail portion of a file, 135
shared, 135
unlocking, 135

Log files, 415
Log messages, adding to classes, 490–495
@LogEntry annotation, 490
Logging, code generation for, 463
logging.properties file, 273
LoggingPermission class, 557
LoginContext class, 567

constructor, 571
getSubject method, 572
login, logout methods, 567, 572

LoginException, 572
LoginModule interface

developer’s guide for, 575
methods of, 582

Logins
committed, 575
modules for, 568

custom, 573–582

separating from action code, 575
Long class

MAX_VALUE constant, 135
LONG NVARCHAR data type (SQL), 348
long type

printing, 69
streams of, 43
type code for, 95, 831
vs. C types, 817
writing in binary format, 78

LONG VARCHAR data type (SQL), 348
LongBuffer class, 132
longs method

of Random, 44, 47, 51
of SplittableRandom, 51

LongStream interface, 43–48
methods of, 46

LongSummaryStatistics class, 26, 29–30, 44, 48
Look-and-feel

displaying trees in, 658
handles for subtrees in, 674
selecting multiple nodes in, 678

lookingAt method (Matcher), 149
lookup method (MethodHandles), 514
Lookup tables, 420
LookupOp class, 764–765

constructor, 771
lookupPrintServices method (PrintServiceLookup),

793, 795
lookupStreamPrintServiceFactories method

(StreamPrintServiceFactory), 796
LookupTable class, 765
LSB (least significant byte), 78
LSOutput interface, 208
LSSerializer interface, 208
<, entity reference, 158

M
Mac OS X

character encodings in, 413
OpenSSL in, 596
resources in, 417

Mail messages/headers, 278–281
mail/MailTest.java, 280
main method

executing, 530
setting security managers in, 553

makeShape method (ShapeMaker), 704
makeVisible method (JTree), 666, 670

Index906

Mandelbrot set, 759
Mangling names, 813, 831
Manifest files, 86
map method

of FileChannel, 125, 130
of HttpHeaders, 272, 278
of Optional, 18–19
of Stream, 11

mapping method (Collectors), 37, 40
Maps

concurrent, 31
of stream elements, 30–34, 50

mapToInt method (Stream), 42
mapToXxx methods (XxxStream), 44
mark method

of Buffer, 133–134
of InputStream, 58

Marker annotations, 473
markSupported method (InputStream), 58
Mastering Regular Expressions (Friedl), 142
match attribute (XSLT), 218
match/HrefMatch.java, 146
Matcher class

end method, 143, 145, 149–150
find method, 145, 149
group method, 143, 145, 149–150
groupCount method, 149
lookingAt method, 149
matches method, 142, 149
quoteReplacement method, 150
replaceXxx methods, 148, 150
results method, 146, 150
start method, 143, 145, 149–150

matcher method (Pattern), 142, 149
matches method (Matcher), 142, 149
MatchResult interface, 146

methods of, 146, 150
Matrices, transformations of, 729–730
max method

of primitive streams, 44, 46–47
of Stream, 15–16

MAX_VALUE constant (Long), 135
maxBy method (Collectors), 36, 40
maxoccurs attribute (XML Schema), 181
MD5 algorithm, 584
Memory addresses, vs. serial numbers,

92
Memory mapping, 124–134
memoryMap/MemoryMapTest.java, 127

MessageDigest class
digest method, 585, 587
extending, 584
getInstance method, 584–586
reset method, 587
update method, 585–586

MessageFormat class, 409–413, 422
applyPattern method, 411
constructor, 410
format method, 410–411
get/setLocale methods, 411
ignoring the first limit, 413

Meta-annotations, 465, 481–484
Metadata (databases), 334–344
Metal look-and-feel

selecting multiple nodes in, 678
trees in, 657–658

Method class, 466
Method references, type use annotations

in, 476
Method verification errors, 545
MethodHandles class

lookup method, 514
Methods

adding logging messages to, 490–495
annotating, 464, 475, 479
calling from native code, 833–840
getters/setters, generated automatically,

489
instance, 833–834
mangling names of, 813, 831
of annotation interfaces, 472
overriding, 480
protected, 532
signatures of, 831–832
static, 834–835

Microsoft
compiler, 813–814

invocation API in, 854
Notepad, 76
ODBC API, 284
SQL Server, 293

MIME (Multipurpose Internet Mail
Extensions), 745

for print services, 794
MimeMessage class, methods of, 279
min method

of primitive streams, 44, 46–47
of Stream, 15–16

907Index

minBy method (Collectors), 36, 40
minoccurs attribute (XML Schema), 181
minus, minusXxx methods

of Duration, 358
of Instant, 357
of LocalDate, 360, 362
of LocalTime, 365–366
of Period, 363
of ZonedDateTime, 370

MissingResourceException, 418
Miter join, 716–717
Miter limit, 717
Mixed content (XML), 157

parsing, 174
Modernist painting example, 215
Modified UTF-8, 78–80, 416

and native code, 819–822
Module class

getResourceAsStream method, 514
module keyword, 503
module-info.class file, 510, 515
module-info.java file, 503, 515
Modules, 499–527

accessing, 511–514, 518
automatic, 515–518
declaration of, 503–504
explicit, 517
exporting packages, 506–510
loading into JShell, 511
migration to, 515–519
naming, 501–502, 515
not passing access rights, 506
open, 513
opening packages in, 513
packages with the same names in, 510
qualified exports of, 521
requiring, 504–506
service implementations and, 522
tools for, 524–527
unnamed, 517–518
versioning, 501

Monads, 12
Month enumeration, 359

getDisplayName method, 373, 395
MonthDay class, 360
move method (Files), 114–115
moveColumn method (JTable), 630, 636
moveTo method (Path2D.Float), 703, 713
moveToCurrentRow method (ResultSet), 326, 329

moveToInsertRow method (ResultSet), 326,
328

MSB (most significant byte), 78
Multiple-page printing, 782–784
multipliedBy method (Duration), 358
MutableTreeNode interface

implementing, 654
setUserObject method, 654, 662

MySQL database, 293

N
\n

as line feed, 69, 164, 279, 414
in regular expressions, 138–139

NameCallback class, 574
constructor, 581
methods of, 581

NamedNodeMap interface
getLength, item methods, 169

names method (Win32RegKey), 857
Namespaces, 193–196

activating processing of, 182
aliases (prefixes) for, 179, 195
of attributes, 195
of child elements, 194
using class loaders as, 534

Nashorn engine, 440–441
National character strings, 349
National Institute of Standards and

Technology, 228, 584
native keyword, 810
Native methods

and garbage collection, 821
array elements in, 840–844
class references in, 827
compiling, 813
enumerating keys with, 858
error handling in, 844–849
exceptions in, 845
instance fields in, 825–829
invoking Java constructors in, 835
linking to Java, 816
naming, 811–812
overloading, 811
reasons to use, 810
registry access functions in, 857–871
static, 811
static fields in, 829–830
strings in, 819

Index908

native2ascii program, 419
NCHAR, NCLOB data types (SQL), 348–349
negated method (Duration), 358
Nervous text applet, 582
net.properties file, 273
NetPermission class, 556
newBufferedXxx methods (Files), 112–113
newBuilder method (HttpClient, HttpRequest),

271–273, 277
NewDirectByteBuffer function (C), 843
newDirectoryStream method (Files), 120, 123
newDocument method (DocumentBuilder), 206, 208,

221
newDocumentBuilder method

(DocumentBuilderFactory), 160, 167, 207
newFactory method (RowSetProvider), 330, 333
newFileSystem method (FileSystems), 123–124
NewGlobalRef function (C), 827
newHttpClient method (HttpClient), 271, 277
newInputStream method

of Channels, 251
of Files, 112–113

newInstance method
of DocumentBuilderFactory, 160, 167
of SAXParserFactory, 198, 201
of TransformerFactory, 209
of XMLInputFactory, 204
of XMLOutputFactory, 210, 214
of XPathFactory, 190, 193

NewObject function (C), 835, 840, 844
newOutputStream method

of Channels, 245, 251
of Files, 112–113

newPath method (XPathFactory), 193
newSAXParser method (SAXParserFactory), 198,

201
NewString function (C), 822
NewStringUTF function (C), 820, 822, 824, 857
newTransformer method (TransformerFactory), 209,

225
NewXxxArray functions (C), 843, 857
next method

of ResultSet, 300, 302, 322
of TemporalAdjusters, 365
of XMLStreamReader, 205

nextElement method (Enumeration), 672,
857–859

nextOrSame method (TemporalAdjusters), 365
nextPage method (CachedRowSet), 331, 333

NMTOKEN, NMTOKENS attribute types (DTDs),
174–175

Node interface
appendChild method, 207, 209
getAttributes method, 164, 168
getChildNodes method, 161, 168
getFirstChild method, 163, 168
getLastChild method, 164, 168
getLocalName method, 196
getNamespaceURI method, 195–196
getNextSibling method, 164, 168
getNodeXxx methods, 164, 169, 195
getParentNode method, 168
getPreviousSibling method, 168
subinterfaces of, 161

Node renderer, 661
nodeChanged method (DefaultTreeModel), 665,

671
NodeList interface, 161

getLength method, 161, 169
item method, 161, 169, 177

Nodes (Swing), 652
adding/removing, 665
child, 652, 655
collapsed, 668
connecting lines for, 658–659
currently selected, 663
editing, 667, 686
enumerating, 672–673
expanding, 666, 668
handles for, 657, 659, 674
highlighting, 674
identifying, by tree paths, 663
making visible, 666
parent, 652, 655
rendering, 674–676
root, 652–660
row positions of, 665
searching, for a given user object, 673,

678
selecting, 677
user objects for, 654, 665

nodesChanged method (DefaultTreeModel), 671
Nondeterministic parsing, 174
noneMatch method (Stream), 16
Noninterference, of stream operations, 7
@NonNull annotation, 476–477
normalize method (Path), 110–111
Normalized color values, 757

909Index

Normalizer class, 404
normalize method, 409

NoSuchAlgorithmException, 586, 606
NoSuchElementException, 19–20, 859
notFilter method (RowFilter), 629, 638
NotSerializableException, 100
now method

of Instant, 355, 357
of LocalDate, 359, 362
of LocalTime, 365–366
of ZonedDateTime, 370

NTLoginModule class, 568–569
NTUserPrincipal class, 569
NullPointerException, 845

vs. Optional, 15
Number class

doubleValue method, 387
intValue method, 388

numberFilter method (RowFilter), 629, 638
NumberFormat class, 387–394

format method, 388, 392
get/setXxxDigits methods, 392
getAvailableLocales method, 383, 388, 391
getCurrencyInstance method, 387, 392–393
getNumberInstance method, 387, 392
getPercentInstance method, 387, 392
is/setGroupingUsed methods, 392
is/setParseIntegerOnly methods, 392
parse method, 387–388, 392
setCurrency method, 393

numberFormat/NumberFormatTest.java, 389
Numbers

filtering, 629
floating-point, 380, 387–394
formatting, 380, 387–394

supported locales for, 388
with C, 817

from grouped elements, 36
in regular expressions, 139, 141
printing, 69
random, 5, 12, 44
reading:

from files, 64
from ZIP archives, 66
using locales, 387

truly random, 602
writing in binary format, 78

NUMERIC data type (SQL), 293, 348
NVARCHAR data type (SQL), 348

O
Object class

clone method, 89, 106
Object inspection tree, 684–693
Object serialization, 88–108

cloning with, 106–108
file format for, 93–100
modifying default, 100–102
of singletons, 102–103
serial numbers for, 90–91

ObjectInputStream class, 89
constructor, 93
readObject method, 89, 93, 101

ObjectOutputStream class, 88
constructor, 93
defaultWriteObject method, 101
writeObject method, 88, 93, 100

Object-relational mappers, 512
Objects

cloning, 106–108
converting to streams, 6, 23
fingerprints of, 95
life cycle of, 480
printing, 69
reading from an input stream, 89
saving:

in database, 483
in output streams, 88, 90
in text format, 72–75

serializable, 88–93
transmitting over network, 92
type code for, 95, 831
versioning, 103–106

objectStream/ObjectStreamTest.java, 92
ODBC API, 284, 286
of method

of DoubleStream, 47
of IntStream, 43, 46
of LocalDate, 359, 362
of LocalTime, 365–366
of LongStream, 46
of Optional, 20–21
of Period, 363
of Stream, 5, 9
of ZonedDateTime, 367, 370
of ZoneId, 367

ofDateAdjuster method (TemporalAdjusters), 364
ofDays method

of Duration, 357

Index910

of Period, 359, 363, 368
ofFile, ofFileDownload methods (BodyHandlers),

272
OffsetDateTime class, 368
ofHours method (Duration), 357
ofInstant method (ZonedDateTime), 370
ofLocalizedXxx methods (DateTimeFormatter),

372, 375, 394, 401
ofMillis, ofMinutes methods (Duration), 357
ofMonths method (Period), 360, 363
ofNanos, ofSeconds methods (Duration), 357
ofNullable method

of Optional, 20–21
of Stream, 6, 9, 23

ofPattern method (DateTimeFormatter), 373, 376
ofString method (BodyHandlers, BodyPublishers),

272–273
ofWeeks, ofYears methods (Period), 363
oj literal (SQL), 320
open keyword, 513
open method

of FileChannel, 125, 130
of SocketChannel, 244, 251

openConnection method (URL), 254, 259
Opened nonleaf icons, 661–662, 674
openOutputStream method (SimpleJavaFileObject),

463
opens keyword, 513, 521
OpenSSL toolkit, 596–597
openStream method (URL), 251, 259
Operating system

character encodings in, 77, 413
paths in, 64, 109
resources in, 417

Operations
associative, 41
lazy, 3, 7, 14, 147
stateless, 49

Optional class, 15–22
creating values of, 20
empty method, 20–21
filter method, 18–19
flatMap method, 21–25
for empty streams, 41
get method, 19–22
ifPresent method, 17–18, 48
ifPresentOrElse method, 18
isPresent method, 19–22
map method, 18–19

of, ofNullable methods, 20–21
or method, 19
orElse method, 15, 17, 48
orElseGet method, 17, 48
orElseThrow method, 17, 20
stream method, 22–25

optional keyword, 568
optional/OptionalTest.java, 23
OptionalXxx classes, 44, 48
Oracle JVM implementation, 842
ORDER BY statement (SQL), 300
order method (ByteBuffer), 126, 131
orFilter method (RowFilter), 629, 638
org.omg.corba package, 500
org.w3c.dom package, 160
org.w3c.dom.CharacterData API, 169
org.w3c.dom.Document API, 168, 209
org.w3c.dom.Element API, 168, 209
org.w3c.dom.NamedNodeMap API, 169
org.w3c.dom.Node API, 168–169, 196, 209
org.w3c.dom.NodeList API, 169
org.xml.sax.Attributes API, 202
org.xml.sax.ContentHandler API, 201
org.xml.sax.EntityResolver API, 178
org.xml.sax.ErrorHandler API, 178
org.xml.sax.helpers.AttributesImpl API, 226
org.xml.sax.InputSource API, 178
org.xml.sax.SAXParseException API, 178
org.xml.sax.XMLReader API, 226
Orientation class, 102–103
Outer joins, 320
OutOfMemoryError, 845
output element (XSLT), 218
Output streams, 56–77

and Unicode, 56
buffered, 65–67
byte processing in, 65
byte-oriented, 56
closing, 57, 243
filters for, 63–67
hierarchy of, 59–63
objects in, 88–108

OutputStream class, 56, 60–61, 210
close method, 59
flush, write methods, 57, 59

OutputStreamWriter class, 68
OverlappingFileLockException, 136
Overloading, 811
@Override annotation, 479–480

911Index

P
\p, \P, in regular expressions, 138
Package class, implementing AnnotatedElement,

466
package-info.java file, 475
Packages, 500

annotating, 475, 479
avoiding name clashes with, 193, 534
exporting, 506–510
hidden, 510
opening, 513
split, 510

Packets, 232
Padding schemes, 601
Page setup dialog box, 777–778
Pageable interface

implementing, 782
objects, printing, 792

PageAttributes class (obsolete), 806
pageDialog method (PrinterJob), 776, 778, 781
PageFormat class

getHeight, getWidth methods, 775, 782
getImageableXxx methods, 776, 782
getOrientation method, 782

Pages
measurements of, 776
multiple, printing, 782–792
orientation of, 730, 776, 782

Paint interface, 724–726
paint method (JComponent), 639, 694
paintComponent method

of JComponent, 694
of StrokePanel, 719

Paper margins, 775
Paper sizes, 420, 775
parallel method (BaseStream), 48, 53
parallel/ParallelStreams.java, 51
parallelStream method (Collection), 2–3, 5, 48
Parameter variables, annotating, 475
Parent nodes (Swing), 652, 655
parse method

of DateTimeFormatter, 373
of DocumentBuilder, 168
of LocalDate, 376, 395, 401
of LocalDateTime, LocalTime, 395, 401
of NumberFormat, 387–388, 392
of SAXParser, 198, 201
of XMLReader, 226
of ZonedDateTime, 376, 395, 401

Parsed character data, 173
ParseException, 388, 391
Parsers, 159–169

checking uniqueness of IDs in, 175, 183
pull, 202
validating in, 170

Parsing (XML), 159–169
nondeterministic, 174
with XML Schema, 182

partitioningBy method (Collectors), 35, 37
PasswordCallback class, 574

constructor, 581
methods of, 582

Password-protected resources, 256
Path interface, 109–112

getXxx methods, 111
normalize, relativize, resolve, resolveSibling,

toXxx methods, 110–111
Path2D class, 699

append, closePath methods, 703, 714
Path2D.Double class, 697
Path2D.Float class, 697

methods of, 703, 713
pathFromAncestorEnumeration method

(DefaultMutableTreeNode), 673
Paths (file system), 109–112

absolute vs. relative, 64, 109–110
checking properties of, 116–118
filtering, 119
relativizing, 110
resolving, 66, 110
root component of, 109
separators in, 64, 109

Paths (graphics), 703–704
Paths class, 123

get method, 109, 111
Pattern class, 142

compile method, 142, 148
matcher method, 142, 149
split method, 147, 149
splitAsStream method, 6, 10, 147

Patterns, 137–151
#PCDATA element content (DTD), 173
PDF format, printing, 792
peek method (Stream), 14–15
PEM (Privacy Enhanced Mail), 596
Pentium processor, little-endian order in,

78
Percentages, formatting, 387–394

Index912

Performance
of encryption algorithms, 608
of file operations, 125–132

Period class
getXxx, of, minus, minusXxx, plus, plusXxx,

withXxx methods, 363
ofXxx methods, 359–360, 363, 368
using for daylight savings time, 368

Perl programming language, regular
expressions in, 142

Permission class
constructor, 566
equals method, 559
extending, 559
getActions method, 559
getName method, 561, 566
hashCode method, 559
implies method, 559–561, 566

Permission files, 548
permission keyword, 554, 558
Permissions, 547–551

call stack of, 550
class hierarchy of, 549
commonly used classes for, 554–557
for files, 557
for users, 567
implementing, 559–566
implying other permissions, 561
in policy files, 551–559
mapping code sources to, 547
order of, 559
property, 558
restricting to certain users, 569
socket, 558
targets of, 557–558

permissions/PermissionTest.java, 564
permissions/WordCheckPermission.java, 562
@Persistent annotation, 483
Personal data, transferring, 600
Picocli framework, 465
Pixels

affine transformations on, 764
average value of, 766
composing, 735–744
interpolating, 725, 764
reading, 756
setting individual, 756–763

Placeholders, in message formatting,
409–413

Platform class loader, 531
Plugins, loading, 532
plus, plusXxx methods

of Duration, 358
of Instant, 357
of LocalDate, 359–360, 362
of LocalTime, 365–366
of Period, 363
of ZonedDateTime, 370

PNG format, 745
printing, 792

Point2D class, 698–699
Point2D.Double, Point2D.Float classes, 697
Points, in typography, 775
Policy class, 548, 552
Policy files, 551–559

and Java Plug-in, 598
building, 598
locations for, 551
parsing, 561
platform-independent, 558
referencing keystores in, 599
system properties in, 558
user roles in, 566–582
visibility of, 562

Policy managers, 551–559
Polygons, 697, 703
Pools, for parallel streams, 51
populate method (CachedRowSet), 331, 333
Porter–Duff rules, 736–739
Portrait orientation, 776
Ports, 229

blocking, 228
in URIs, 253

position function (XPath), 220
position method (Buffer), 134
POSIX-compliant file systems, 117
PosixFileAttributes interface, 117
POST method (HttpRequest.Builder), 272, 278
POST request (HTML), 262, 264–266

building, 272
post/PostTest.java, 268
@PostConstruct annotation, 479–480
PostgreSQL database, 293

connecting to, 297
drivers for, 294

Postorder traversal, 672
postOrderEnumeration method

(DefaultMutableTreeNode), 672, 676

913Index

PostScript format
printing, 792, 796
writing to, 796

postVisitDirectory method
of FileVisitor, 121
of SimpleFileVisitor, 123

Predefined character classes, 138–141
@PreDestroy annotation, 479–480
Predicate functions, 35
premain method (Instrumentation API),

496
preOrderEnumeration method

(DefaultMutableTreeNode), 672, 676
Prepared statements, 311–317

caching, 312
executing, 311

PreparedStatement interface
clearParameters method, 317
executeXxx, setXxx methods, 311, 317

prepareStatement method (Connection), 311, 317,
323, 327

previous method (ResultSet), 324, 328
previous, previousOrSame methods

(TemporalAdjusters), 365
previousPage method (CachedRowSet), 333
preVisitDirectory method

of FileVisitor, 121
of SimpleFileVisitor, 123

Primary keys, 322
Primitive types

arrays of, 843
I/O in binary format in, 59
streams of, 42–44

Principal interface
getName method, 573

Principals (logins), 568
print method

of DocPrintJob, 795
of JTable, 616, 618
of PrintWriter, 69–70, 833–834

Print dialog box, 773
displaying page ranges in, 774, 783
native, 774, 778

Print services, 792–795
document flavors for, 793–794
for images, 795
stream, 796–799

print/PrintComponent.java, 779
print/PrintTestFrame.java, 778

Printable interface
implementing, 772, 777
objects, printing, 792
print method, 773, 781, 783

Printer graphics context, 784
PrinterException, 773
PrinterJob class

defaultPage method, 781
getPrinterJob method, 773, 781
pageDialog method, 776, 778, 781
print method, 773–774, 782
printDialog method, 773–774, 781
setPageable method, 783
setPrintable method, 782

printf function (C), 817
printf method (PrintWriter), 69–70, 385
printf1/Printf1.c, 818
printf1/Printf1.java, 818
printf1/Printf1Test.java, 819
printf2/Printf2.c, 824
printf2/Printf2.java, 823
printf2/Printf2Test.java, 823
printf3/Printf3.c, 837
printf3/Printf3.java, 836
printf3/Printf3Test.java, 836
printf4/Printf4.c, 846
printf4/Printf4.java, 848
printf4/Printf4Test.java, 848
Printing

clipped areas, 775
counting pages during, 775
images, 772–782
layout of, 783
multipage documents, 782–784
number of copies for, 799
page orientation of, 730, 776
paper sizes in, 775
quality of, 802
selecting settings for, 773
starting, 546, 773
text, 772–782
using:

banding for, 775
transformations for, 784

Printing attributes, 799–807
adding/retrieving, 802
categories of, 801–802
checking values of, 802
hierarchy of, 800

Index914

PrintJob class (obsolete), 773
PrintJobAttribute interface, 799

printing attributes of, 803–806
PrintJobAttributeSet interface, 800
println method

of PrintWriter, 69–70
of System.out, 414–415

PrintQuality class, 802
PrintRequestAttribute interface, 799

printing attributes of, 803–806
PrintRequestAttributeSet interface, 773, 800
PrintService interface

createPrintJob method, 793, 795
getAttributes method, 807
getName method, 793

printService/PrintServiceTest.java, 797
PrintServiceAttribute interface, 799

printing attributes of, 803–806
PrintServiceAttributeSet interface, 800
PrintServiceLookup class

lookupPrintServices method, 793, 795
PrintStream class, 69
PrintWriter class, 64, 68–70

checkError method, 69–70
constructor, 70
print method, 69–70, 833–834
printf method, 69–70, 385
println method, 69–70

Private keys, 587–599, 608
PrivilegedAction interface, 575

implementing, 568
run method, 568, 572

PrivilegedExceptionAction interface, 568
run method, 572

processAnnotations method
(ActionListenerInstaller), 466

Processing instructions (XML), 159
Processing tools, 463
Processor interface, 485
Programmer’s Day, 359
Programs. See Applications
Properties class, 154
Properties, generated automatically, 489
Property files, 154

character encoding of, 419
event handlers in, 447
for resources bundles, 417–418
for string resources, 417
for strings, 418–419

no passwords in, 279
Property permissions, 558
@Property annotation, 489
PropertyPermission class, 554
Protection domains, 549
ProtectionDomain class

constructor, 551
getCodeSource, implies methods, 551

provides keyword, 524
Proxy objects, 466
Public certificates, keystore for, 599
PUBLIC identifier (DTD), 208
Public key ciphers, 587–594, 608–612

performance of, 608
Public Key Cryptography Standard (PKCS)

#5, 601
Pull parsers, 202
PushbackInputStream class, 65

constructor, 67
unread method, 67

put method
of Bindings, 443
of ByteBuffer, 131
of CharBuffer, 132
of ScriptEngine, 443
of ScriptEngineManager, 443

PUT method (HttpRequest.Builder), 278
putClientProperty method (JComboBox), 658, 663
putNextEntry method (ZipOutputStream), 85–86
putXxx methods (ByteBuffer), 127, 131

Q
\Q, in regular expressions, 138
QBE (query by example) tools, 289
QuadCurve2D class, 697, 699, 703
QuadCurve2D.Double class, 697–698, 713
QuadCurve2D.Float class, 697
Quadratic curves, 702–703
quadTo method (Path2D.Float), 703, 713
Qualified exports, 521
Qualified names, 195
Quantifiers, 141
Queries (databases), 290–292

by example, 289
executing, 300, 310–322
multiple, 303
populating row sets with results of, 331
preparing, 311–317
returning multiple results, 321–322

915Index

query/QueryTest.java, 313
", entity reference, 158
quoteReplacement method (Matcher), 150

R
R programming language, 440, 448
\r line feed character, 69, 164, 414

in e-mails, 279
\r, \R, in regular expressions, 138, 140
Race conditions, 49
Random class, 602

methods of, 44, 47, 51
Random numbers, streams of, 5, 12, 44,

51
Random-access files, 80–85
randomAccess/RandomAccessTest.java, 83
RandomAccessFile class, 80–85, 125

constructor, 84
getChannel method, 130
getFilePointer method, 81, 84
length method, 81, 85
seek method, 80, 85

Randomness, 602
range, rangeClosed methods (XxxStream), 43, 46
Ranges, converting to streams, 49
Raster class

getDataElements method, 758, 762
getPixel, getPixels methods, 757, 762

Raster images, 744–772
constructing from pixels, 756–763
filtering, 763–772
readers/writers for, 745–755

rasterImage/RasterImageFrame.java, 760
read method

of CipherInputStream, 608
of FileInputStream, 56
of ImageIO, 745, 753
of ImageReader, 754
of InputStream, 56–58
of ZipInputStream, 85

read/config.dtd, 187
read/config.xml, 187
read/config.xsd, 187
read/XMLReadTest.java, 183
Readable interface, 59

read method, 61, 63
ReadableByteChannel interface, 245
readAllBytes method (InputStream), 56, 58
readAllXxx methods (Files), 113

readAttributes method (Files), 117
readBoolean method (DataInput), 79
readChar method (DataInput), 79, 81
readDouble method (DataInput), 79, 89, 101
Reader class, 56, 60

read method, 59
READER class (DocFlavor), 794
readExternal method (Externalizable), 101–102
readFixedString method (DataIO), 81–82
readFloat method (DataInput), 79
readInt method (DataInput), 79, 81, 89
readLine method (Console), 71
readLong method (DataInput), 79
readNBytes method (InputStream), 56, 58
readObject method

of Date, 101
of ObjectInputStream, 89, 93, 101

ReadOnlyBufferException, 125
readResolve method (Serializable), 103
readShort method (DataInput), 79
readThumbnail method (ImageReader), 754
readUTF method (DataInput), 79–80
REAL data type (SQL), 293, 348
Receiver parameters, 478
Rectangle2D class, 697, 699
Rectangle2D.Double, Rectangle2D.Float classes,

697
RectangularShape class, 697
Redirects, of URLs, 266–267
reduce method (Stream), 41–43
reducing method (Collectors), 37
Reductions, 15, 41–43
ref attribute (XML Schema), 181
Reflection

accessing:
private members, 511–514, 546
protected methods, 532

constructing:
class trees, 678
static field names, 396

enumerating fields from a variable, 687
ReflectPermission class, 556
regex/RegexTest.java, 144
regexFilter method (RowFilter), 629, 638
Registry editor, 855, 860
Registry keys, 856–858
Regular expressions, 137–151

escapes in, 73, 141
filtering, 629

Index916

grouping in, 142–144
in DTDs, 173
predefined character classes in, 138–141
quantifiers in, 141
replacing all matches with, 148

relative method (ResultSet), 324, 328
Relativization, of an absolute URL, 253
relativize method (Path), 110–111
releaseSavepoint method (Connection), 345,

347
ReleaseStringChars function (C), 822
ReleaseStringUTFChars function (C), 821–822,

824
ReleaseXxxArrayElements functions (C),

842–843
reload method (DefaultTreeModel), 666, 671
remaining method (Buffer), 133–134
remove method (AttributeSet), 807
removeCellEditorListener method (CellEditor),

652
removeColumn method (JTable), 630, 636
removeNodeFromParent method (DefaultTreeModel),

665, 671
removeTreeModelListener method (TreeModel), 685,

693
RenderableImage interface, 792
Rendering (Swing)

cells, 639–652
columns, 622
headers, 641
nodes, 674–676

Rendering hints, 694
Rendering pipeline, 694–696
Renjin project, 440, 449
@Repeatable annotation, 479
replaceXxx methods (Matcher), 148, 150
required keyword, 568
#REQUIRED attribute (DTD), 175
requires keyword, 504, 506, 508, 510, 515,

519–521
requisite keyword, 568
RescaleOp class, 764, 771
Rescaling operation, 764
reset method

of Buffer, 133–134
of InputStream, 58
of MessageDigest, 587

resolve, resolveSibling methods (Path),
110–111

resolveEntity method (EntityResolver), 172,
178

Resolving
classes, 530
relative URLs, 253

Resource bundles, 417–421
loading, 419
locating, 417–418
lookup tables for, 420
naming, 419
searching for, 419

Resource editor, 417
@Resource annotation, 350, 479, 481
ResourceBundle class

extending, 419, 421
getBundle method, 418–421
getKeys method, 421
getObject method, 420–421
getString method, 419, 421
getStringArray method, 421
handleGetObject method, 421

ResourceBundle.Control class
getCandidateLocales method, 418

Resources
annotations for managing, 480
hierarchy of, 418
in JAR files, 514
injection, 481

@Resources annotation, 479
Response headers, 256–257
Response page, 262
Result interface, 220–221, 349
Result sets (databases)

accessing columns in, 300
analyzing, 300
closing, 303
for multiple queries, 303
iterating over rows in, 322
metadata for, 335
numbering rows in, 325
order of rows in, 300
retrieving multiple, 321–322
scrollable, 323–325
updatable, 322, 325–329

results method (Matcher), 146, 150
ResultSet interface, 330

absolute method, 325, 328
beforeFirst, afterLast methods, 325, 328
cancelRowUpdates method, 326, 329

917Index

ResultSet interface (continued)
close method, 303
concurrency values, 323, 325, 327, 329
deleteRow method, 327, 329
findColumn method, 302
first, last methods, 325, 328
getBlob, getClob methods, 317–318
getConcurrency method, 324–325, 328
getDate, getDouble, getInt, getObject, getString

methods, 300, 302
getMetaData method, 335, 344
getRow method, 325, 328
getType method, 324, 328
getWarnings method, 306
insertRow method, 326, 329
isClosed method, 303
isFirst, isLast, isBeforeFirst, isAfterLast

methods, 325, 328
iteration protocol, 300
moveToCurrentRow method, 326, 329
moveToInsertRow method, 326, 328
next method, 300, 302, 322
previous method, 324, 328
relative method, 324, 328
type values, 323, 325, 327, 329
updateObject method, 302
updateXxx methods, 326, 329

ResultSetMetaData interface, 335
getColumnXxx methods, 335, 344

Retention policies, 482
@Retention annotation, 465, 479, 482
retire/Retire.java, 424
retire/RetireResources_de.java, 435
retire/RetireResources_zh.java, 436
retire/RetireResources.java, 435
retire/RetireStrings_de.properties, 436
retire/RetireStrings_zh.properties, 437
retire/RetireStrings.properties, 436
Retirement calculator example, 421–437
RETURN_GENERATED_KEYS field (Statement), 322
Return values, missing, 15
rewind method (Buffer), 133–134
RFC 821 standard, 279
RFC 822 standard, 372
RFC 1123 standard, 372
RFC 2396 standard, 253
RFC 2616 standard, 255
RFC 2911 standard, 806
RGB color model, 735, 758

Rivest, Ronald, 584
Role-based authentication, 573
rollback method (Connection), 345–347
Root certificate, 599
Root component (file system), 109
Root element (XML), 157

referencing schemas in, 179
Root node (Swing), 652–660

handles for, 659–660
separating children of, 659

rotate method (Graphics2D), 728, 732
Rotation, 727–728

and interpolating pixels, 764
with center point, 729

Round cap, 716
Round join, 716–717
Rounded rectangles, 699–700
RoundEnvironment interface, 486
RoundRectangle2D class, 697, 699–700
RoundRectangle2D.Double class, 697–698, 712
RoundRectangle2D.Float class, 697
Row sets (databases), 329–333

cached, 330–335
constructing, 330
modifying, 330
page size of, 331

RowFilter class, 628–630
methods of, 629, 638

RowFilter.Entry class, 629
ROWID data type (SQL), 348–349
RowId interface, 349
Rows (databases), 287

deleting/inserting, 327
iterating through, 325
order of, in result set, 300
retrieving, 349
selecting, 290
updating, 326

Rows (Swing)
filtering, 628–630
height of, 625
hiding, 630
margins of, 625
position, in a node, 665
resizing, 625
selecting, 615, 626
sorting, 616, 627–628

RowSet interface, 329–332
methods of, 331–332

Index918

RowSetFactory interface
createXxxRowSet methods, 330, 333

RowSetProvider class
newFactory method, 330, 333

RSA algorithm, 588, 609
RSA Security, 601
rsa/RSATest.java, 610
rt.jar file, 527, 531–532
Ruby programming language, 440
run method

of PrivilegedAction, 568, 572
of PrivilegedExceptionAction, 572
of Tool, 461

Runnable interface, 240
Runtime class

exit method, 546
runtimeAnnotations/ActionListenerFor.java, 470
runtimeAnnotations/ActionListenerInstaller.java,

467
RuntimePermission class, 555

S
S (short), type code, 95, 831
\s, \S, in regular expressions, 139
@SafeVarargs annotation, 479
Sample values, 756
Sandbox, 547–551
Save points (databases), 345
Savepoint interface

getSavepointXxx methods, 347
SAX (Simple API for XML) parser, 159,

197–202
activating namespace processing in, 199

sax/SAXTest.java, 199
SAXParseException class

getXxxNumber methods, 178
SAXParser class

parse method, 198, 201
SAXParserFactory class

is/setNamespaceAware methods, 201
is/setValidating methods, 201
newInstance, newSAXParser methods, 198, 201
setFeature method, 199

SAXResult class, 221
SAXSource class, 220–221

constructor, 225
Scalar functions, 319–320
scale method (Graphics2D), 728, 732
Scaling, 727–728

Scanner class, 70
constructor, 245
findAll method, 146, 151
tokens method, 6, 10
useLocale method, 385, 389

Scheduling applications
and time zones, 359, 367
computing dates for, 364–365

schema element (XML Schema), 182
Schemas, 343
Script engines, 440–441

adding variable bindings to, 442
implementing Java interfaces, 445
invoking, 441
invoking functions in, 444–446

script/ScriptTest.java, 449
ScriptContext interface, 443

getXxx/setXxx methods of, 444
ScriptEngine interface

createBindings method, 443
eval method, 441–443
get, put methods, 443
getContext method, 444

ScriptEngineFactory interface
getExtensions method, 441
getMethodCallSyntax method, 445
getMimeTypes method, 441
getNames method, 441

ScriptEngineManager class
get, put methods, 443
getEngineXxx methods, 441

Scripting languages, 440–452
advantages of, 440
supported, 440

Scripts
accessing classes in, 446
compiling, 446
executing, 442, 447
invoking, 441
redirecting I/O of, 444
using Java method call syntax in, 445

Scroll pane (Swing)
with tables, 615
with trees, 666, 668

scrollPathToVisible method (JTree), 666, 670
Secret key, generating, 603
SecretKey interface, 602
SecretKeySpec class, 607
Secure random generator, 603

919Index

SecureRandom class
setSeed method, 602

Securing Java (McGraw/Felten), 550
Security

bytecode verification, 541–545
class loaders, 530–545
code signing, 597–599
different levels of, 583
digital signatures, 582–599
encryption, 599–612
user authentication, 566–582

Security managers, 546–566
Security policy, 547
SecurityException, 547, 549
SecurityManager class

checkExit method, 546, 549
checkPermission method, 549–550, 559–560
checkRead method, 550

SecurityPermission class, 556
“Seek forward only” mode (ImageInputStream),

747
seek method (RandomAccessFile), 80, 85
select attribute (XSLT), 219
SELECT statement (SQL), 290–291

executing, 300
for LOBs, 317
multiple, in a query, 321
not supported in batch updates, 346

Selection models, 626
send method (HttpClient), 277
sendAsync method (HttpClient), 273, 277
separator constant (File), 64
Separators (file system), 64, 109
sequence element (XML Schema), 181
Sequences, producing, 5
Serial numbers, 90–91

vs. memory addresses, 92
serialClone/SerialCloneTest.java, 106
SerialCloneable class, 106
Serializable interface, 89, 95, 483

readResolve method, 103
@Serializable annotation, 483
SerializablePermission class, 556
Serialization, 88–108

cloning with, 106–108
file format for, 93–100
modifying default, 100–102
of singletons, 102–103
serial numbers for, 90–91

serialver program, 104
serialVersionUID constant, 104
server/EchoServer.java, 237
Servers

accessing, 251–270
connecting clients to, 230–232
implementing, 236–251
invoking programs, 261

Server-side programs, 261–270
redirecting URLs in, 266–267

ServerSocket class, 236–251
accept method, 236, 239–240
close method, 239
constructor, 239

Service loading, 522–524
Service provider interfaces, 746
SERVICE_FORMATTED class (DocFlavor), 794
ServiceLoader class, 522
Servlets, 261, 457–463
Session class

setDebug method, 280
Set interface

containsAll, equals methods, 561
set/Item.java, 494
set/SetTest.java, 495
setAllowsChildren, setAsksAllowsChildren methods

(DefaultMutableTreeNode), 661, 663
setAllowUserInteraction method (URLConnection),

254
setAttribute, setAttributeNS methods (Element),

207, 209
setAutoCommit method (Connection), 347
setAutoCreateRowSorter method (JTable), 616,

618, 627
setAutoResizeMode method (JTable), 625, 635
setBinaryStream method (Blob), 319
SetBooleanArrayRegion function (C), 842
SetBooleanField function (C), 830
SetByteArrayRegion function (C), 842, 844,

857
SetByteField function (C), 830
setCellEditor method (TableColumn), 642, 651
setCellRenderer method (TableColumn), 651
setCellSelectionEnabled method (JTable), 626,

636
setCharacterStream method (Clob), 319
SetCharArrayRegion function (C), 842, 844
SetCharField function (C), 830
setClip method (Graphics), 733–734, 775

Index920

setClosedIcon method (DefaultTreeCellRenderer),
676

setColumnSelectionAllowed method (JTable), 626,
636

setCommand method (RowSet), 331–332
setComparator method (DefaultRowSorter), 628,

637
setComposite method (Graphics2D), 695, 738,

744
setConnectTimeout method (URLConnection), 254,

260
setContentHandler method (XMLReader), 226
setContextClassLoader method (Thread), 533,

541
setCrc method (ZipEntry), 87
setCurrency method (NumberFormat), 393
setDataElements method (WritableRaster), 759,

762
setDate method (PreparedStatement), 311, 317
setDebug method (Session), 280
setDecomposition method (Collator), 408
setDefault method

of CookieHandler, 267
of Locale, 384, 386

setDefaultNamespace method (XMLStreamWriter),
214

setDefaultRenderer method (JTable), 640
setDoInput method (URLConnection), 254–255,

259
setDoOutput method (URLConnection), 254–255,

259, 264, 266
setDouble method (PreparedStatement), 311, 317
SetDoubleArrayRegion function (C), 842, 844
SetDoubleField function (C), 826, 830
setEntityResolver method (DocumentBuilder), 172,

177
setErrorHandler method (DocumentBuilder), 177
setErrorWriter method (ScriptContext), 444
setFeature method (SAXParserFactory), 199
setFillsViewportHeight method (JTable), 618
SetFloatArrayRegion function (C), 842, 844
SetFloatField function (C), 830
setFrom method (MimeMessage), 279
setGroupingUsed method (NumberFormat), 392
setHeaderXxx methods (TableColumn), 641, 651
setIfModifiedSince method (URLConnection),

254–255, 260
setIgnoringElementContentWhitespace method

(DocumentBuilderFactory), 176, 179

setInput method (ImageReader), 754
setInstanceFollowRedirects method

(HttpURLConnection), 267
setInt method (PreparedStatement), 311, 317
SetIntArrayRegion function (C), 842, 844
SetIntField function (C), 826, 830, 859
setLeafIcon method (DefaultTreeCellRenderer),

676
setLevel method (ZipOutputStream), 87
setLocale method (MessageFormat), 411
setLogWriter method (DriverManager), 297
SetLongArrayRegion function (C), 842, 844
SetLongField function (C), 830
setMaximumXxxDigits, setMinimumXxxDigits

methods (NumberFormat), 392
setMaxWidth method (TableColumn), 624, 637
setMethod method (ZipEntry, ZipOutputStream),

87
setMinWidth method (TableColumn), 624, 637
setName method (NameCallback), 581
setNamespaceAware method

of DocumentBuilderFactory, 182, 195–196,
199, 207

of SAXParserFactory, 201
SetObjectArrayElement function (C), 840, 843,

845
SetObjectField function (C), 826, 830
setOpenIcon method (DefaultTreeCellRenderer),

676
setOutput method (ImageWriter), 755
setOutputProperty method (Transformer), 209
setPageable method (PrinterJob), 783
setPageSize method (CachedRowSet), 331, 333
setPaint method (Graphics2D), 695, 724, 726
setParseIntegerOnly method (NumberFormat),

392
setPassword method

of PasswordCallback, 582
of RowSet, 331–332

setPixel, setPixels methods (WritableRaster),
756, 762

setPreferredWidth method (TableColumn), 624,
637

setPrefix method (XMLStreamWriter), 214
setPrintable method (PrinterJob), 782
setProperty method (XMLInputFactory), 203–204
setReader method (ScriptContext), 444
setReadTimeout method (URLConnection), 254,

260

921Index

setRenderingHint, setRenderingHints methods
(Graphics2D), 694

setRequestProperty method (URLConnection),
254–255, 260

setResizable method (TableColumn), 624, 637
setRootVisible method (JTree), 660, 662
setRowFilter method (DefaultRowSorter), 629,

637
setRowHeight, setRowMargin methods (JTable),

625, 635
setRowSelectionAllowed method (JTable), 626,

636
setRowSorter method (JTable), 627, 636
Sets, comparing, 561
setSavepoint method (Connection), 347
setSecurityManager method (System), 553
setSeed method (SecureRandom), 602
setSelectionMode method (ListSelectionModel),

626, 637
SetShortArrayRegion function (C), 842, 844
SetShortField function (C), 830
setShowsRootHandles method (JTree), 659, 662
setSize method (ZipEntry), 87
setSortable method (DefaultRowSorter), 627,

637
setSoTimeout method (Socket), 232–233
SetStaticXxxField functions (C), 829–830
setStrength method (Collator), 408
setString method (PreparedStatement), 311, 317
setStringConverter method (TableRowSorter),

637
setStroke method (Graphics2D), 694, 715, 724
setSubject method (MimeMessage), 279
setTableName method (CachedRowSet), 332–333
setText method (MimeMessage), 279
setToXxx methods (AffineTransform), 730, 732
setTransform method (Graphics2D), 730, 732
setURL method (RowSet), 331–332
setUseCaches method (URLConnection), 254
setUsername method (RowSet), 331–332
setUserObject method (MutableTreeNode), 654,

662
setValidating method

of DocumentBuilderFactory, 176, 179
of SAXParserFactory, 201

setValue method (Win32RegKey), 857–858
setValueAt method (TableModel), 622, 645
setWidth method (TableColumn), 624, 637
setWriter method (ScriptContext), 444

SGML (Standard Generalized Markup
Language), 155

SHA-1 algorithm, 94, 583
Shape interface, 697, 715
shape/ShapeTest.java, 705
ShapeMaker class

getPointCount, makeShape methods, 704
ShapePanel class, 704
Shapes

clipping, 694, 733–735
combining, 695, 714–715
control points of, 704
drawing, 694–697
filling, 694–695, 724
rendering, 696
transforming, 694

Shared libraries, 816, 854
shear method (Graphics2D), 728, 732
Shear, 727–728
Shift-JIS standard, 76
short type

printing, 69
streams of, 43
type code for, 95, 831
vs. C types, 817
writing in binary format, 78

ShortBuffer class, 132
ShortLookupTable class, 765, 772
shouldSelectCell method (CellEditor), 644, 652
shutdownXxx methods (Socket), 244
Side files, 484
Signatures, 587–589

generating, 832
mangling, 831–832

Simple types, 179
SimpleDoc class, 793, 795
SimpleFileVisitor class, 121

visitFile, visitFileFailed methods, 121, 123
xxxVisitDirectory methods, 123

SimpleJavaFileObject class, 455
getCharContent, openOutputStream methods, 463

SimpleLoginModule class
checkLogin, initialize methods, 573

SimpleScriptContext class, 443
simpleType element (XML Schema), 180
Single value annotations, 473
Singletons, serializing, 102–103
size method

of BasicFileAttributes, 118

Index922

of Files, 116–117
skip method

of InputStream, 58
of Stream, 12

skipBytes method (DataInput), 80
SMALLINT data type (SQL), 293, 348
SMTP (Simple Mail Transport Protocol),

278–281
SOAP (Simple Object Access Protocol),

501
Socket class

connect method, 233
constructor, 232–233
getInputStream method, 231–232, 236
getOutputStream method, 232, 236
isClosed, isConnected methods, 233
isXxxShutdown, shutdownXxx methods, 244
setSoTimeout method, 232–233

Socket permissions, 558
socket/SocketTest.java, 231
SocketChannel class, 244

open method, 244, 251
SocketPermission class, 554
Sockets

half-closing, 243–244
interrupting, 244–251
opening, 231, 546
timeouts, 232–233

SocketTimeoutException, 232, 260
sort method (Collections), 402
sorted method (Stream), 14–15
Source files

character encoding of, 416
reading from memory, 454

Source interface, 220, 349
Source-level annotations, 484–489
Space. See Whitespace
SPARC processor, big-endian order in,

78
split method

of Pattern, 147, 149
of String, 72, 147

Split packages, 510
splitAsStream method (Pattern), 6, 10, 147
spliterator method (Iterable), 10
Spliterators class

spliteratorUnknownSize method, 6, 9
SplittableRandom class, methods of, 51
sprint, sprintf functions (C), 823

SQL (Structured Query Language),
287–293

changing data inside databases, 292
commands in, 295
data types in, 293, 348–349
equality testing in, 291
escapes in, 319–321
exceptions in, 304–306
executing statements in, 299–303
keywords in, 290
reading instructions from a file, 306
strings in, 291
vs. Java, 313
warnings in, 304
wildcards in, 291

SQLException class, 304–306, 324
and rolling back, 345
and save points, 347
getXxx, iterator methods, 304–305

SQLPermission class, 557
SQLWarning class, 304, 324

getNextWarning method, 306
SQLXML data type (SQL), 348–349
Square cap, 716
Square root, computing, 21
SQuirreL program, 336
SRC, SRC_Xxx composition rules, 737–739
src.jar file, 850
sRGB standard, 758
Standard extensions, 531
StandardCharsets class, 77
StandardJavaFileManager interface, 453–455

getJavaFileObjectsFromXxx methods, 462
start method

of Matcher, 143, 145, 149–150
of MatchResult, 146, 150

startDocument method (ContentHandler), 201
startElement method (ContentHandler), 197–201
Stateless operations, 49
Statement interface, 299–303

addBatch method, 346–347
close, closeOnCompletion methods, 302–303
execute method, 301, 307, 321–322
executeBatch method, 346–347
executeLargeBatch method, 347
executeQuery method, 300–301, 324
executeUpdate method, 299, 301, 322, 345
getMoreResults method, 321–322
getResultSet method, 302

923Index

Statement interface (continued)
getUpdateCount method, 302, 321
getWarnings method, 306
isClosed method, 302
RETURN_GENERATED_KEYS field, 322
using for multiple queries, 303

Statements (databases)
closing, 303
complex, 313
concurrently open, 303
executing, 299–303
grouping into transactions, 344–349
in batch updates, 346
multiple, 303
prepared, 311–317
truncations in, 305

Static fields, in native code, 829–830
Static initialization blocks, 814
Static methods, calling from native code,

834–835
statusCode method (HttpResponse), 272, 278
StAX parser, 202–206, 210–215

namespace processing in, 203
no indented output in, 211

stax/StAXTest.java, 203
StAXSource class, 220
stopCellEditing method (CellEditor), 644–645,

652
Stored procedures, 319–320
Stream interface

allMatch, anyMatch methods, 16
collect method, 25–30, 42–43
concat method, 13
count method, 3–4, 15
distinct method, 14–15, 50
dropWhile method, 13
empty method, 5, 9
filter method, 3–11, 15
findAny method, 16
findFirst method, 15–16
flatMap method, 12
forEach method, 25, 28
forEachOrdered method, 25
generate method, 5, 9, 43
iterate method, 5, 9, 14, 43
iterator method, 25
limit method, 12, 50
map method, 11
mapToInt method, 42

max, min methods, 15–16
noneMatch method, 16
of method, 5, 9
ofNullable method, 6, 9, 23
peek method, 14–15
reduce method, 41–43
skip method, 12
sorted method, 14–15
takeWhile method, 13
toArray method, 25, 28
unordered method, 50

stream method
of Arrays, 5, 9, 43
of Collection, 2–3, 5
of Optional, 22–25
of StreamSupport, 6, 10

Streaming parsers, 159, 196–206
StreamPrintService class, 796
StreamPrintServiceFactory class, 796

getPrintService method, 796
lookupStreamPrintServiceFactories method, 796

StreamResult class, 210, 221
Streams, 1–7

collecting elements of, 25–31
computing values from, 41–43
converting to/from arrays, 5, 25, 49
creating, 5–10
debugging, 14
empty, 5, 15, 41
encrypted, 607–608
filtering, 22
finite, 6
flattening, 12, 22
for print services, 796–799
infinite, 3, 5, 12, 14
input, 160
intermediate operations for, 3
noninterference of, 7
of primitive type values, 42–44
of random numbers, 44
parallel, 2, 16, 25, 31, 35, 41, 48–53
processed lazily, 3, 7, 14
reductions of, 15
removing duplicates from, 14
returned by Files.lines, 50
sorted, 14, 49
splitting/combining, 12–13
summarizing, 26, 44
terminal operation for, 3, 15

Index924

transformations of, 11–12, 44
vs. collections, 3

streams/CountLongWords.java, 4
streams/CreatingStreams.java, 7
streams/PrimitiveTypeStreams.java, 44
StreamSource class, 220

constructor, 225
transform method, 221

StreamSupport class
stream method, 6, 10

String class, 62
compareTo method, 402
format method, 385
split method, 72, 147
toLowerCase method, 11
trim method, 163, 388

STRING class (DocFlavor), 794
String parameters, 819–825
StringBuffer class, 62, 132
StringBuilder class, 62, 82
Strings

converting to code points, 11
encoding, 379, 416
fixed-size, I/O of, 81–82
in native code, 819–825
in SQL, 291
internationalizing, 417–418
ordering, 402
patterns for, 137–151
printing, 69
sorting, 402
splitting, 6
transforming to lower/uppercase, 11
writing in binary format, 78

StringSource class, 454
Stroke interface, 715
stroke/StrokeTest.java, 719
StrokePanel class, 719
Strokes, 694, 715–724

dash patterns of, 717–718
end cap styles of, 716–718
join styles of, 716–717
setting, 694
thickness of, 716

Stylesheets (XSLT), 216–226
Subject class

doAs, doAsPrivileged methods, 568–569, 572
getPrincipals method, 572

Subjects (logins), 568

subSequence method (CharSequence), 63
subtract method (Area), 714–715
Subtraction operator, not associative, 41
Subtrees (Swing), 657, 674

adding nodes to, 666
collapsed and expanded, 658

Suetonius, Gaius Tranquillus, 536
sufficient keyword, 568
sum, summaryStatistics methods (primitive

streams), 44, 46–47
summarizingXxx methods (Collectors), 26, 29,

37
summingXxx methods (Collectors), 36, 40
SunJCE ciphers, 600
Superclasses, type use annotations in, 476
Supplier interface

get method, 10
@SupportedAnnotationTypes annotation, 485
SupportedValuesAttribute interface, 799
supportsBatchUpdates method (DatabaseMetaData),

346, 348
supportsResultSetXxx methods (DatabaseMetaData),

324, 329
@SuppressWarnings annotation, 479–480
SVG (Scalable Vector Graphics), 215–216
Swing, 613–693

generating dynamic code for, 457
tables, 613–652
trees, 652–693

Symmetric ciphers, 600–601
performance of, 608

SyncProviderException interface, 332–333
System class

console method, 415
loadLibrary method, 814, 816
setSecurityManager method, 553

System class loader, 531
SYSTEM identifier (DTD), 171, 208
System properties, in policy files, 558
System.err class, 69, 453
System.in class, 69

and character encoding, 415
System.out class, 69, 453

and character encoding, 415
println method, 414–415

T
t literal (SQL), 320
\t, in regular expressions, 138

925Index

http://System.in

Table cell renderers, 622, 639
Table index values, 626
Table models (Swing), 614, 618–622

updating after cells were edited,
645

table/TableTest.java, 616
TableCellEditor interface

getTableCellEditorComponent method, 643,
645, 651

implementing, 643, 645
tableCellRender/ColorTableCellEditor.java, 649
tableCellRender/ColorTableCellRenderer.java,

648
tableCellRender/PlanetTableModel.java, 647
tableCellRender/TableCellRenderFrame.java, 646
TableCellRenderer interface

getTableCellRendererComponent method, 639,
651

implementing, 639
TableColumn class, 624–625, 630

constructor, 637
setCellEditor method, 642, 651
setCellRenderer method, 651
setHeaderXxx methods, 641, 651
setResizable, setWidth, setXxxWidth methods,

624, 637
TableColumnModel interface, 623

getColumn method, 636
TableModel interface, 627

get method, 618
getColumnClass method, 622, 635
getColumnName method, 619, 622
getValueAt method, 619, 622
getXxxCount methods, 618–619, 622
implementing, 618
isCellEditable method, 622, 641
setValueAt method, 622, 645

tableModel/InvestmentTable.java, 620
tableRowColumn/PlanetTableFrame.java, 631
TableRowSorter class, 627

setStringConverter method, 637
Tables (databases), 287

changing data in, 292
creating, 292
duplication of data in, 289
inspecting, 289
metadata for, 334
multiple, selecting data from, 291
removing, 297

Tables (Swing), 613–652
cells in:

editing, 641–642
rendering, 639
selecting, 626

columns in:
accessing, 623
adding, 630
hiding, 630–639
naming, 619
rearranging, 615
rendering, 622
resizing, 615–616, 624–625
selecting, 626

constructing, 615, 619
headers in, 615

rendering, 641
printing, 616
relationship between classes of, 624
rows in:

filtering, 628–630
hiding, 630
margins of, 625
resizing, 625
selecting, 615, 626
sorting, 616, 627–628

scrolling, 615
TableStringConverter class

toString method, 628, 637
takeWhile method (Stream), 13
@Target annotation, 465, 479, 481
TCP (Transmission Control Protocol), 232
telnet

activating/connecting, 228
several windows communicating

simultaneously, 240–241
template element (XSLT), 218
Temporal interface, 357
TemporalAdjuster interface, 364
TemporalAdjusters class, 364–365

dayOfWeekInMonth, firstDayOfXxx, lastXxx
methods, 365

next, nextOrSame methods, 365
ofDateAdjuster method, 364
previous, previousOrSame methods, 365

TemporalAmount interface, 357–358, 362–363
test/TestDB.java, 298
@Test annotation, 464
@TestCase, @TestCases annotations, 484

Index926

Text, 68
encoding of, 75–77
generating from XML files, 219–221
output, 68–70
printing, 772–782, 792
reading, 70–72
saving objects in, 72–75
transmitting through sockets, 236–251
vs. binary data, 68

Text fields
editing, 641
validating input in, 560–566

Text files, encoding of, 414–415
Text nodes (XML)

constructing, 207
retrieving from XML, 163

TextCallbackHandler class, 574
textFile/TextFileTest.java, 73
TextLayout class

getXxx methods, 735
TextStyle enumeration, 396
TextSyntax class, 802
TexturePaint class, 725–726
this keyword, 826

annotating, 477–478
Thread class

get/setContextClassLoader methods, 533,
541

threaded/ThreadedEchoServer.java, 241
ThreadedEchoHandler class, 239–243
Threads

blocking, 57, 244–251
executing scripts in, 442
Internet connections with, 239–243
race conditions in, 49
referencing class loaders in, 533–534

Three-tier model, 286–287
Throw, ThrowNew functions (C), 844–845, 849
Throwable class, 844
Thumbnails, 748
Time

current, 354
formatting, 371–376, 394–401
instances of, 365
literals for, 319
local, 365–366
measuring, 355
parsing, 373
zoned, 367–371, 394

Time class, 376
valueOf method, 377

Time of day service, 228
TIME, TIMESTAMP data types (SQL), 293, 320,

348
timeline/TimeLine.java, 356
Timeouts, 232–233
Timestamp class, 376

toInstant, valueOf methods, 377
Timestamps, 371

using instants as, 355
TimeZone class

getTimeZone, toZoneId methods, 377
toAbsolutePath method (Path), 110–111
toArray method

of AttributeSet, 807
of primitive streams, 44, 46–47
of Stream, 25
of streams, 28

toCollection method (Collectors), 25, 29
toConcurrentMap method (Collectors), 31, 34
toDays method (Duration), 355, 358
toFile method (Path), 111
toFormat method (DateTimeFormatter), 373, 377
toHours method (Duration), 355, 358
toInstant method

of Date, 376–377
of FileTime, 377
of Timestamp, 377
of ZonedDateTime, 367, 371

tokens method (Scanner), 6, 10
toLanguageTag method (Locale), 383, 386
toList method (Collectors), 25, 29
toLocalXxx methods

of LocalXxx, 377
of ZonedDateTime, 371

toLowerCase method (String), 11
toMap method (Collectors), 30–34
toMillis, toMinutes, toNanos methods (Duration),

355, 358
toNanoOfDay method (LocalTime), 366
Tool interface

run method, 461
ToolProvider class

getSystemJavaCompiler method, 453
tools.jar file, 527
toPath method (File), 111–112
Top-level windows, opening, 546
toSecondOfDay method (LocalTime), 366

927Index

toSeconds method (Duration), 355, 358
toSet method (Collectors), 25, 29, 36
toString method

implementing with annotations, 486–489
of Annotation, 472
of CharSequence, 63
of Currency, 394
of Locale, 386
of TableStringConverter, 628, 637
of Variable, 687

toUnmodifiableList method (Collectors), 29
toUnmodifiableMap method (Collectors), 34
toUnmodifiableSet method (Collectors), 29
toZonedDateTime method (GregorianCalendar),

376–377
toZoneId method (TimeZone), 377
Transactions, 344–349

committing, 344
error handling in, 346
rolling back, 344

transferTo method (InputStream), 58
transform method

of Graphics2D, 695, 730, 732
of StreamSource, 221
of Transformer, 209, 220

transform/makehtml.xsl, 221
transform/makeprop.xsl, 222
transform/TransformTest.java, 223
Transformations, 694, 727–732

affine, 730, 764
composing, 728–729
fundamental types of, 727–728
matrices for, 729–730
order of, 728
setting, 695
using for printing, 784

Transformer class
setOutputProperty method, 209
transform method, 209, 220

TransformerFactory class
newInstance method, 209
newTransformer method, 209, 225

transient keyword, 100
transitive keyword, 519–521
translate method (Graphics2D), 728, 732, 784
Translation, 727–728
Transparency, 735–744
Traversal order, 672
Tree events, 677–684

Tree models
constructing, 654, 685
custom, 684–693
default, 654

Tree parsers, 159
Tree paths, 663–671

constructing, 666, 673
Tree selection listeners, 677
tree/SimpleTreeFrame.java, 656
TreeCellRenderer interface, 674–676

getTreeCellRendererComponent method,
675–676

implementing, 674
treeEdit/TreeEditFrame.java, 668
TreeMap class, 31
TreeModel interface, 654, 664

add/removeTreeModelListener method, 685, 693
getChild, getChildCount, getRoot methods,

685–687, 692
getIndexOfChild method, 685, 692
implementing, 654
isLeaf method, 663, 685, 693
valueForPathChanged method, 686, 693

treeModel/ObjectInspectorFrame.java, 688
treeModel/ObjectTreeModel.java, 689
treeModel/Variable.java, 691
TreeModelEvent class, 693
TreeModelListener interface, 685

treeNodesXxx, treeStructureChanged methods,
685, 693

TreeNode interface, 654, 664
children, getChildXxx methods, 671
getAllowsChildren method, 662
getParent method, 671, 673
isLeaf method, 661–662

TreePath class, 665
getLastPathComponent method, 665, 671

treeRender/ClassNameTreeCellRenderer.java, 683
treeRender/ClassTreeFrame.java, 679
Trees (Swing), 652–693

adding listeners to, 677
background color for, 674
connecting lines in, 658–659
displaying, 654–671
editing, 663–671, 686
handles in, 657, 659, 674
hierarchy of classes for, 655
indexes in, 665
infinite, 688

Index928

leaves in, 652, 660–662, 674, 685
nodes in, 652, 662, 674, 685
paired with other components, 677
rendering, 674–676
scrolling to newly added nodes, 666,

668
structure of, 652
subtrees in, 657–658
traversals for, 672–673
updating vs. reloading, 666
user objects for, 654, 665
view of, 665–666
with horizontal lines, 659

TreeSelectionEvent class
getPath method, 684
getPaths method, 678, 684

TreeSelectionListener interface
implementing, 677–684
valueChanged method, 677, 679, 684

TreeSelectionModel interface, 677
trim method (String), 163, 388
Troubleshooting. See Debugging
True Odds: How Risks Affect Your Everyday

Life (Walsh), 583
tryLock method (FileChannel), 135–136
try-with-resources statement, 61, 120

closing files with, 118
for database connections, 303
with locks, 135

ts literal (SQL), 320
Type bounds, type use annotations in,

476
Type codes, 95, 831
Type definitions, 179

anonymous, 181
nesting, 181

Type parameters, annotating, 475
Type use annotations, 476
TYPE_BICUBIC, TYPE_BILINEAR fields

(AffineTransformOp), 764, 771
TYPE_BYTE_GRAY field (BufferedImage), 760–761
TYPE_BYTE_INDEXED field (BufferedImage), 761
TYPE_INT_ARGB field (BufferedImage), 756–757,

761
TYPE_NEAREST_NEIGHBOR field (AffineTransformOp),

764, 771
TypeElement interface, 485–486
Types. See Data types
Typesafe enumerations, 102–103

U
\u, in regular expressions, 138
UDP (User Datagram Protocol), 232
UIManager class, 640
Unicode standard, 43

and input/output streams, 56
and native code, 820
character order in, 402
converting to binary data, 68
in property files, 419
in regular expressions, 141
normalization forms in, 403
using for all strings, 379

Units of measurement, 158
UNIX operating system

authentication in, 566
authentications in, 567
file names starting with a period in, 552
line feed in, 69, 414
paths in, 109
specifying locales in, 384

UnixLoginModule class, 568
UnixNumericGroupPrincipal class, 568
UnixPrincipal class, 567–568

getName method, 567
UnknownHostException, 231
unordered method (BaseStream), 50, 53
Unparsed external entities, 176
unread method (PushbackInputStream), 67
UnsatisfiedLinkError, 811
until method (LocalDate), 359, 362
update method

of Cipher, 601, 603, 606–607
of MessageDigest, 585–586

UPDATE statement (SQL), 292, 312, 325
executing, 300–301, 317
in batch updates, 346
truncations in, 305
vs. methods of ResultSet, 327

updateObject method (ResultSet), 302
updateXxx methods (ResultSet), 326, 329
URI class, 271

getXxx methods, 253
no resource accessing with, 252

uri method (HttpRequest.Builder), 271–273,
277

URIs (Uniform Resource Identifiers), 252
absolute vs. relative, 252–253
base, 253

929Index

URIs (Uniform Resource Identifiers)
(continued)

hierarchical, 252
namespace, 193–196
opaque vs. nonopaque, 252
schemes for, 252
with HTTP, 271

URISyntax class, 802
URL class (DocFlavor), 794
URL class (java.lang.Object), 251–253, 271

accepted schemes for, 252
openConnection method, 254, 259
openStream method, 251, 259

URLClassLoader class
addURLs, getURLs methods, 532
constructor, 541
loadClass method, 532

URLConnection class, 251, 254–261, 271
connect method, 254, 256, 260
getConnectTimeout method, 260
getContent method, 261
getContentEncoding, getContentType methods,

254, 257, 261, 266
getContentLength method, 254, 257, 260
getDate, getExpiration, getLastModified

methods, 254, 257, 261
getDoInput, getDoOutput methods, 259
getHeaderXxx methods, 254–256, 260
getIfModifiedSince method, 260
getInputStream method, 254, 261, 264, 266
getOutputStream method, 254, 261, 264
getReadTimeout method, 260
getRequestProperty method, 260
setAllowUserInteraction method, 254
setConnectTimeout method, 254, 260
setDoInput method, 254–255, 259
setDoOutput method, 254–255, 259, 264,

266
setIfModifiedSince method, 254–255, 260
setReadTimeout method, 254, 260
setRequestProperty method, 254–255, 260
setUseCaches method, 254

urlConnection/URLConnectionTest.java, 257
URLDecoder class

decode method, 270
URLEncoder class

encode method, 270
URLs (Uniform Resource Locators), 252

attaching parameters to, 263

connections via, 251
encoding, 263
for databases, 294
for local files, 553
for namespace identifiers, 194
redirecting, 266–267
relative vs. absolute, 599

for DTDs, 171
URNs (Uniform Resource Names), 252
US Letter paper, 775
useLocale method (Scanner), 385, 389
User coordinates, 727
User objects, 654, 665
User-Agent request parameter, 267
Users

authentication of, 566–582
permissions for, 569
preferences of, 135

uses keyword, 523–524
UTC (Coordinated Universal Time), 367
UTF-8 standard, 75–77, 78

for text files, 414–415
modified, 78–80, 416, 819–822

UTF-16 standard, 43, 68, 76, 78
and native code, 819
in regular expressions, 138

V
V (void), type code, 831
\v, \V, in regular expressions, 139
Validation, 169–188

activating, 176
adding to classes, 100

value method (XPathEvaluationResult), 191, 193
valueChanged method (TreeSelectionListener),

677, 679, 684
valueForPathChanged method (TreeModel), 686,

693
value-of element (XSLT), 219
valueOf method (date/time legacy classes),

377
VARCHAR data type (SQL), 293, 348
VarHandle class, 514
Variable class, 686

toString method, 687
Variable handles, 514
VariableElement interface, 485
Variables

annotating, 464, 476

Index930

binding, 442
fields of, 687
initializing, 542
scope of, 443

Variants, in locales, 381, 418
Vendor name, of a reader, 746
verifier/VerifierTest.java, 545
Verifiers, 541–545
Version number, of a reader, 746
Versioning, 103–106
view/ViewDB.java, 336
visitFile, visitFileFailed methods

of FileVisitor, 121
of SimpleFileVisitor, 121, 123

Visual representation, 286

W
\w, \W, in regular expressions, 139
walk method (Files), 118
walkFileTree method (Files), 121–123
warning method (ErrorHandler), 177–178
Warnings

in SQL, 304
suppressing, 480

WBMP format, 745
WeakReference object, 688
Web applications, connection management

in, 349–351
Web containers, 480
Web crawlers, 198

with SAX parser, 199
with StAX parser, 203

Web pages
dynamic, 457–463
separating applet class loaders for, 534

WebRowSet interface, 330
Weekends, 360
WHERE statement (SQL), 291
Whitespace

ignoring, while parsing, 163
in e-mail URIs, 263
in regular expressions, 139, 141

Wildcards, type use annotations in, 476
Wilde, Oscar, 380
win32reg/Win32RegKey.c, 862
win32reg/Win32RegKey.java, 860
win32reg/Win32RegKeyTest.java, 870
Win32RegKey class, 856, 859

get/setValue methods, 857–858

names method, 857
Win32RegKeyNameEnumeration class, 858–859
Windows operating system

activating telnet in, 228
authentication in, 566, 569
character encodings in, 413
classpath in, 294
compiling invocation API, 854
dynamic linking in, 850
glob syntax in, 121
line feed in, 69, 414
paths in, 64, 109
permissions in, 558
registry, accessing from native code,

855–871
resources in, 417
using Microsoft compiler, 813–814

Windows look-and-feel, trees in, 658
with method (Temporal), 364–365
withLocale method (DateTimeFormatter), 372,

376, 401
withXxx methods

of LocalDate, 362
of LocalTime, 366
of Period, 363
of ZonedDateTime, 370

WordCheckPermission class, 560–566
Words, in regular expressions, 139
Working directory, 64
wrap method (ByteBuffer), 132–133
WritableByteChannel interface, 245
WritableRaster class, 756

setDataElements method, 759, 762
setPixel, setPixels methods, 756, 762

write method
of CipherOutputStream, 608
of Files, 113
of ImageIO, 745, 753
of ImageWriter, 748, 755
of OutputStream, 57, 59

write/XMLWriteTest.java, 211
writeAttribute method (XMLStreamWriter), 210,

214
writeBoolean method (DataOutput), 78, 80
writeByte method (DataOutput), 78, 80
writeCData method (XMLStreamWriter), 215
writeChar method (DataOutput), 78, 80–81
writeCharacters method (XMLStreamWriter), 210,

215

931Index

writeChars method (DataOutput), 78, 80
writeComment method (XMLStreamWriter), 215
writeDouble method (DataOutput), 78, 80, 89,

101
writeDTD method (XMLStreamWriter), 215
writeEmptyElement method (XMLStreamWriter), 211,

214
writeEndXxx methods (XMLStreamWriter), 210,

214
writeExternal method (Externalizable), 101–102
writeFixedString method (DataIO), 81–82
writeFloat method (DataOutput), 78, 80
writeInsert method (ImageWriter), 748, 755
writeInt method (DataOutput), 78, 80–81, 89
writeLong method (DataOutput), 78, 80
writeObject method

of Date, 101
of ObjectOutputStream, 88, 93, 100

Writer class, 56, 60–61
write method, 59

writeShort method (DataOutput), 78, 80
writeStartXxx methods (XMLStreamWriter), 210,

214
writeUTF method (DataOutput), 78, 80

X
X.509 format, 590
\x, in regular expressions, 138
XHTML (Extensible Hypertext Markup

Language), 156, 198
XML (Extensible Markup Language)

annotated version of the standard, 155
case sensitivity of, 156
end and empty tags in, 156
hierarchical structures in, 154–155
in databases, 349
namespaces in, 193–196
vs. HTML, 155

XML binding, 513–514
XML catalogs, 172
XML documents

DTDs in, 156, 171–179
format of, 155
generating, 206–216

from non-XML legacy data, 221
HTML files from, 216–219
plain text from, 219–221
with StAX, 210–215

locating information in, 188–193

malformed, 211
parsing, 159–169
structure of, 156–160, 170
validating, 169–188
with/without namespaces, 206–207

XML Schema, 170, 179–182, 194
attributes in, 181
parsing with, 182
referencing in XML documents, 179
repeated elements in, 181
type definitions in, 179, 181

XMLInputFactory class
createXMLStreamReader method, 205
newInstance method, 204
setProperty method, 203–204

xmlns attribute (XSLT), 195
XMLOutputFactory class

createXMLStreamWriter method, 210, 214
newInstance method, 210, 214

XMLReader interface
implementing, 220
parse method, 226
setContentHandler method, 226

XMLStreamReader interface
getAttributeXxx methods, 203, 206
getName, getLocalName methods, 206
getText method, 206
hasNext, next methods, 205
isXxx methods, 205

XMLStreamWriter interface, 210
close method, 215
not autocloseable, 211
setDefaultNamespace, setPrefix methods, 214
writeAttribute method, 210, 214
writeCData method, 215
writeCharacters method, 210, 215
writeComment method, 215
writeDTD method, 215
writeEmptyElement method, 211, 214
writeEndXxx methods, 210, 214
writeStartXxx methods, 210, 214

XOR composition rule, 737
XPath (XML Path Language), 188–193

elements/attributes in, 189
evaluating expressions in, 190–193

XPath interface
evaluate, evaluateExpression methods, 190,

193
xpath/XPathTest.java, 191

Index932

XPathEvaluationResult interface
type method, 193
value method, 191, 193

XPathFactory class
newInstance method, 190, 193
newPath method, 193

XPathNodes class, 190
xs:, xsd: prefixes (XSL Schema), 180
xsd:attribute element (XML Schema), 181
xsd:choice element (XML Schema), 181
xsd:complexType element (XML Schema),

180
xsd:element element (XML Schema), 180
xsd:enumeration element (XML Schema), 180
xsd:schema element (XML Schema), 182
xsd:sequence element (XML Schema), 181
xsd:simpleType element (XML Schema), 180
xsl:apply-templates element (XSLT), 218
xsl:output element (XSLT), 218
xsl:template element (XSLT), 218
xsl:value-of element (XSLT), 219
XSLT (Extensible Stylesheet Language

Transformations), 208, 216–226
copying attribute values in, 219
templates in, 218

XSLT processor, 216

Y
Year, YearMonth classes, 360

Z
Z (boolean), type code, 95, 831
\z, \Z, in regular expressions, 140

ZIP archives, 85–88
for JMOD files, 526
reading, 85

numbers from, 66
writing, 85

Zip code lookup, 264
ZipEntry class, methods of, 87
ZipFile class, methods of, 88
ZipInputStream class, 59, 85

closeEntry, getNextEntry methods, 85–86
constructor, 86
read method, 85

ZipOutputStream class, 59, 85
closeEntry method, 85, 87
constructor, 86
putNextEntry method, 85–86
setLevel, setMethod methods, 87

ZonedDateTime class, 367–371
from method, 376–377
getXxx methods, 370–371
isAfter, isBefore methods, 371
legacy classes and, 376–377
minus, minusXxx methods, 370
now method, 370
of, ofInstant methods, 367, 370
parse method, 376, 395, 401
plus, plusXxx methods, 370
toInstant method, 367, 371
toLocalXxx methods, 371
withXxx methods, 370

zonedtimes/ZonedTimes.java, 369
ZoneId class, 377

getAvailableZoneIds, of methods, 367

933Index

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	Chapter 2: Input and Output
	2.1 Input/Output Streams
	2.1.1 Reading and Writing Bytes
	2.1.2 The Complete Stream Zoo
	2.1.3 Combining Input/Output Stream Filters
	2.1.4 Text Input and Output
	2.1.5 How to Write Text Output
	2.1.6 How to Read Text Input
	2.1.7 Saving Objects in Text Format
	2.1.8 Character Encodings

	2.2 Reading and Writing Binary Data
	2.2.1 The DataInput and DataOutput interfaces
	2.2.2 Random-Access Files
	2.2.3 ZIP Archives

	2.3 Object Input/Output Streams and Serialization
	2.3.1 Saving and Loading Serializable Objects
	2.3.2 Understanding the Object Serialization File Format
	2.3.3 Modifying the Default Serialization Mechanism
	2.3.4 Serializing Singletons and Typesafe Enumerations
	2.3.5 Versioning
	2.3.6 Using Serialization for Cloning

	2.4 Working with Files
	2.4.1 Paths
	2.4.2 Reading and Writing Files
	2.4.3 Creating Files and Directories
	2.4.4 Copying, Moving, and Deleting Files
	2.4.5 Getting File Information
	2.4.6 Visiting Directory Entries
	2.4.7 Using Directory Streams
	2.4.8 ZIP File Systems

	2.5 Memory-Mapped Files
	2.5.1 Memory-Mapped File Performance
	2.5.2 The Buffer Data Structure

	2.6 File Locking
	2.7 Regular Expressions
	2.7.1 The Regular Expression Syntax
	2.7.2 Matching a String
	2.7.3 Finding Multiple Matches
	2.7.4 Splitting along Delimiters
	2.7.5 Replacing Matches

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

