SPS

Big Nerd
Ranch

THE BIG NERD RANCH GUIDE

Josh Skeen & David Greenhalgh

FREE SAMPLE CHAPTER

SHARE WITH OTHERS
B B 5B B .

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780135161630
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780135161630
https://plusone.google.com/share?url=http://www.informit.com/title/9780135161630
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780135161630
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780135161630/Free-Sample-Chapter

Kotlin Programming: The Big Nerd Ranch Guide

by Josh Skeen and David Greenhalgh

Copyright © 2018 Big Nerd Ranch, LLC

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, contact

Big Nerd Ranch, LLC

200 Arizona Ave NE

Atlanta, GA 30307

(770) 817-6373
http://www.bignerdranch.com/
book-comments @bignerdranch.com

The 10-gallon hat with propeller logo is a trademark of Big Nerd Ranch, LLC.

Exclusive worldwide distribution of the English edition of this book by

Pearson Technology Group
800 East 96th Street
Indianapolis, IN 46240 USA
http://www.informit.com

The authors and publisher have taken care in writing and printing this book but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

ISBN-10 0135162386
ISBN-13 978-0135162385

First edition, first printing, July 2018
Release D.1.1.1

Dedication

For Baker, the best little bug.

—1J.S.

To Rebecca, a driven, patient, beautiful woman, and the reason that this book came
to be. To Mom and Dad, for valuing education above all else.

—D.G.

Acknowledgments

We received a lot of help in writing this book. Without that help, this book would not be what it is, and
it may never even have happened. Thanks are due.

First, we need to say thank you to our colleagues at Big Nerd Ranch. Thank you to Stacy Henry and
Aaron Hillegass for providing us with the time and space to write this book. It has been immensely
gratifying to learn and teach Kotlin. We hope that this book lives up to the trust and the support that we
have received.

Particular thanks are also due to our colleagues at Big Nerd Ranch. Your careful teaching revealed
many bugs in the text, and your thoughtful recommendations led to many improvements in our
approach. It is truly wonderful to have colleagues such as you. Thank you Kristin Marsicano, Bolot
Kerimbaev, Brian Gardner, Chris Stewart, Paul Turner, Chris Hare, Mark Allison, Andrew Lunsford,
Rafael Moreno Cesar, Eric Maxwell, Andrew Bailey, Jeremy Sherman, Christian Keur, Mikey Ward,
Steve Sparks, Mark Dalrymple, CBQ, and everyone else at the Ranch who helped us with this work.

Our colleagues in operations, marketing, and sales are also instrumental. Classes would literally never
be scheduled without their work. Thank you Heather Sharpe, Mat Jackson, Rodrigo "Ram Rod" Perez-
Velasco, Nicholas Stolte, Justin Williams, Dan Barker, Israel Machovec, Emily Herman, Patrick
Freeman, Ian Eze, and Nikki Porter. We cannot do what we do without what you do.

Special thanks and an extra bit of karma are also owed to our amazing students who were adventurous
enough to join us for the early access version of the course and were kind enough to help us identify
errata. Without your feedback and insights into how to improve the course, this text would not be
where it is today. Those students include: Santosh Katta, Abdul Hannan, Chandra Mohan, Benjamin
DiGregorio, Peng Wan, Kapil Bhalla, Girish Hanchinal, Hashan Godakanda, Mithun Mahadevan,
Brittany Berlanga, Natalie Ryan, Balarka Velidi, Pranay Airan, Jacob Rogers, Jean-Luc Delpech,
Dennis Lin, Kristina Thai, Reid Baker, Setareh Lotfi, Harish Ravichandran, Matthew Knapp, Nathan
Klee, Brian Lee, Heidi Muth, Martin Davidsson, Misha Burshteyn, Kyle Summers, Cameron Hill,
Vidhi Shah, Fabrice Di Meglio, Jared Burrows, Riley Brewer, Michael Krause, Tyler Holland,
Gajendra Singh, Pedro Sanchez, Joe Cyboski, Zach Waldowski, Noe Arzate, Allan Caine, Zack Simon,
Josh Meyers, Rick Meyers, Stephanie Guevara, Abdulrahman Alshmrani, Robert Edwards, Maribel
Montejano, and Mohammad Yusuf.

We want to extend a special thank you to our colleagues and members of the Android community who
helped us test the book's accuracy, clarity, and ease of use. Without your external perspective, putting
this book together would have been even more daunting. Thank you Jon Reeve, Bill Phillips, Matthew
Compton, Vishnu Rajeevan, Scott Stanlick, Alex Lumans, Shauvik Choudhary, and Jason Atwood.

We also need to acknowledge the many talented folks who worked on the book with us. Elizabeth
Holaday, our editor, helped refine the book, crystallize its strengths, and diminish its weaknesses. Anna
Bentley, our copyeditor, found and corrected errors and ultimately made us look smarter than we are.
Ellie Volckhausen designed the cover. And Chris Loper designed and produced the print book and the
EPUB and Kindle versions.

Finally, thank you to all our students. Being your teacher offers us the opportunity to be a student

in many ways, and for that we are immensely grateful. Teaching is part of the greatest thing that we
do, and it has been a pleasure working with you. We hope that the quality of this book matches your
enthusiasm and determination.

Table of Contents

Introducing KOINouinini e xiii
Why KOHNT L.t e e e e eanees xiii
Who Is This BOOK FOI7ooiiiiiiii e xiii
How to Use This BOOKc..ocouiiiiiiiiiiii e Xiv

FOr the MOTe CUTIOUS ...c.uuiiniiiiiiiii et Xiv
CRALIENEES ... enineine i e ettt et e Xiv
Typographical CONVENTIONSuiuuiiniiniiiiii ettt e e e e enees Xiv
Lo0OKING FOTWATd ...c.uiuiiiiiiii ettt ettt e e XV

1. Your First Kotlin APPICAtIONoouiiniiniiiiiiii e e e 1
Installing IntelliJ IDEA ...ttt e e e e ans 1
Your First Kothin Projectc..cuuiiniiiiiie e e 2

Creating your first Kotlin file ... 6
Running your Kothin filecooiiiiiiiiiii e 8
The Kotlin REPLiiiiii e e 10
For the More Curious: Why Use IntelliJ?oooiiiiiiiiii e 11
For the More Curious: Targeting the JVM ..o 12
Challenge: REPL ATIthMELIC ...ouininiiiiiiii it 12

2. Variables, Constants, and TYPESeuueiniiniiiiii et 13
1 01 PP PTRY 13
Declaring a Variablecoviiiiiiii e 14
Kotlin’s BUilt-In TYPES ...euininiiiiieie e 16
Read-Only Variablesc.uiuniiniiiiii et 17
TYPE INFEIENCE ...enieneiee ettt et e e e e 19
ComPile-TimMeE CONSLANLS ...uevniuniinitniteiet ettt ettt ettt ettt et et et et ettt et et eneenenaens 21
Inspecting Kotlin ByteCodeouuiuniiniiniiii e 22
For the More Curious: Java Primitive Types in Kotlincoooiiiiiiiiiiiniinnnen, 25
Challenge: NASSIEEAiuiniiiit ettt e ea e 26
Challenge: The Unicorn’s HOTNunieniiniiiieie e e 26
Challenge: MagiC MITTOTc.uiuniiniieiei et e e e et et e e et e e e e eanaanes 26

3. CONAIIONALS ..euniiiiiiei ettt ettt ettt et e e e enaes 27
/188 STALEIMENES ...eutiitniiiii ittt et et e e e e e e e 27

Adding mMOTe CONAILIONSueunieniiniieie et e et e e eaeanees 30
Nested if/else STAEMENTScouiiuiiiiiiiiii ittt e e e 31
More elegant cONAIIONALScuuiuniiiiiiiiiiii e 32
RANEES e 37
WHEN EXPIESSIONS ..vuitniiiiiiiiti ettt et et et e e et e e e et et et e e et eaneanes 38
StrNG TEMPIALES .. evneenitiiiie ettt e et e et e e e e e eans 40
Challenge: Trying Out Some Rangesc.oveuiiuiiiiiiiiiiiiiiieie e 41
Challenge: Enhancing the AUracoooiiiiiiiiiiii e 42
Challenge: Configurable Status FOrmatcoooiiiiiiiiiiiiiiiiii e, 42

4. FUNCHIONS ..ttt ittt ettt et et et et e e et et et e e e e e e e e e eaneenns 43
Extracting Code t0 FUNCLIONScuuieniiniiiiii et e 43
Anatomy Of @ FUNCHONouiiiiiiiiiiii et 46

Function header ..o 46
FUnction DOAYoouiiniiniiii e 49

vii

Kotlin Programming

FUNCLION SCOPE ..iteitieiie ettt 50
Calling @ FUNCHON ...ttt et e e e e 51
Refactoring to FUNCLIONScouuiitiiiiii et 52
Writing Your Own FUNCHIONScuuiiiiiiii e 54
Default ATGUMENLS ...c.uieniteit et e et e e e e e eans 56
Single-Expression FUNCHIONSc..iiuiiiiiiiiii e 57
UNIt FUNCHONS ..eitniiiiiiie ettt e et e e e 58
Named Function ATZUMENTScc..veiuuniiiiniiiiiieiii ettt et e ee e e eeaaeeee 59
For the More Curious: The Nothing TYPec.uviuiiiiiiiiiiie e 60
For the More Curious: File-Level Functions in Javacccc.cciiviiiniiiiiininns 61
For the More Curious: Function Overloadingccoooiiiiiiiiiiiiiiiiiieceece e, 62
For the More Curious: Function Names in Backtickscccoeeiiiiiniiiniiniiinne, 63
Challenge: Single-Expression FUNCHONSoiuuiiiiiiiiiiiiiiii e 64
Challenge: Fireball Inebriation Levelccoooiiiiiiiiiiiii e, 64
Challenge: Inebriation STAtUScouiiiniiiiiiie e e e 64

5. Anonymous Functions and the Function Typeccoiiiiiiiiiiiiiiiii e 67
ANONYMOUS FUNCHONSuitiiiiii e eae e 67

The fUNCHON EYPE «.cvvuniiiniiiie ettt 69

IMPLCIE TELUINIS ..etnite ittt et et e et e e e e e e eeans 70

FUNCtion argUmeNtsc.uiiuuiiiniiie ittt e 71

The 1t KEYWOTAeeeeiii e 72

Accepting multiple argUMENLSocuuiiuniiueiiei e 73
Type INfErence SUPPOITuiuniiniie et e e 74
Defining a Function That Accepts a Functionccooooiiiiiiiiiiiii e 75

ShOrthand SYIEAXcuuitneiie ittt et e e e 76
Function INJININGoooniiuii e e e 77
Function REferenCesc..oiiiiiiiiiiiiiii i 78
Function Type as Return TYPecouviuniiiiiiiiiie e 80
For the More Curious: Kotlin’s Lambdas Are ClOSUIEScc.cveiuiiiiiiiiiiiniiineiiineeiines 81
For the More Curious: Lambdas vs Anonymous Inner Classesccoeeuuviiiiiiniiineenneenn. 82

6. Null Safety and EXCEPLIONSiuuiiiniiieiie ettt ettt e e 83
INUILADIIIEY ettt ettt ettt et e e e e eaaas 83
Kotlin’s EXplicit NUIL TYPE ..ceuirniiiiiiie e 85
Compile Time vS RUNIMEoouiiiiiiiiiiiii e 86
INUIL SAFLY e e ettt e e e 87

Option one: the safe call OPEratoroouuiiiiiiiiiiiii e 88

Option two: the double-bang OPEratorceeuuiiiiiiiiiiiiiiiieiiieeiie e 89

Option three: checking whether a value is null with if 90
EXCEPLIONS ..etiineiii ettt ettt et ettt et et ettt e e 92

Throwing an XCEPLIONivuuiiiiiiii ettt ettt et e e eeaans 94

CUSLOM EXCEPLIONS . vuuevvineiiiieeiii ettt ettt e et ettt e et e e et e et e et etateenaeeeiaeeraaaeeaanens 95

Handling eXCEPLIONSiiuuuiiiiniiiieeiie ettt ettt e e e e e 96
PreCONAItIONS ...ccvuuiiiiiiiieii et et 97
Null: What Is It GOOd FOI?ciiiiiiiiiiiiiii e 99
For the More Curious: Checked vs Unchecked EXCeptionsccoveeueiiniinniiniiineenneen. 100
For the More Curious: How Is Nullability Enforced?coooiiiiiiiiiiiiiiiiiins 101

T SHTIIIES ettt ettt et e e e ah e 103
EXtracting SUDSIIINESueuniiiiie ettt e eaes 103

viii

Kotlin Programming

SUDSITIIIE ettt e ettt et et et et et eanae 103

] 0§ L PP 106
String Manipulationocuuiunii et 107
Strings are IMmMULADIEcc..viiiiiiiiiiiiii i 109
String COMPATISOI ...cvvuniiiniiiie it ettt ettt et e et e et e et e ea e raieeeaaeeenes 109
For the More Curious: UnICOEcoouiiiiiiiiiiiiiiiniiin et 111
For the More Curious: Traversing a String’s Charactersccoccoveiriiiiiiiniiineiineennenn. 112
Challenge: Improving DragonSpeakcouiviuiiiiiiiiiiiiiii e 112
8. INNUIMDETS ..eiiieiii ettt ettt e et e e e enane 113
INUIMETIC TYPES -ttt ettt et et e e e e e e e eans 113
51 1<) £ OSSP 114
Decimal NUMDETS ...c..uiiiiniiiiiiiiieii ettt e e 116
Converting a String to a NUmMeric TYPEc.uviuniiiiiiii e 116
Converting an Int to @ Double ..o 117
Formatting a DOUDIEoiiiiii e 118
Converting a Double to an INt ..ot 119
For the More Curious: Bit Manipulationcoieiiiiiiiiiiiiiii e 121
Challenge: Remaining PIntsooooiiiiiiiiiiiii e 122
Challenge: Handling a Negative Balancecooeoiiiiiiiiiiiiiiiiiiii e, 122
Challenge: DIaZONCOIN «...c.uuiiniin ittt ettt e e e e e e e eanaees 122
9. Standard FUNCHONS «.....c..uiiiiuiiiiiiiii ettt ettt e e e 123
F1Y0) 0] PP 123
1 T T TSP PP U PP PTOUPPPTOUPPTRPPN 124
141 s R PP PPOPTPPP 125
WITR L e 126
QLSO ettt 126
BAKEIE ..o et 127
EAKEUIESS ..evineiiiiiiie ettt 127
Using Standard Library FUNCHiONSocoiiiiiiiiiiiiii e 128
1O, LIStS @nd SEES ...ueevineiiiieiite ittt et et ettt et e e e e eaa e 129
| 5 P PP PP PP P PP PP UPPTOPPION 129
Accessing a liSt’s ClEMENLSueeuuiiniiniii et 130
Changing a liSt’S COMENESeuuiuniiteiie ittt ettt e e eanes 133
TEETALION .euiiiie it ettt et ettt et 137
Reading a File into @ LIStcc.uiuniiiiiii e 140
DIESLIUCLUIIIIE ... eeene et ettt ettt et et et e et e e e e e e eans 142
N1 PP TP PP P TP PTOPPION 142
CTEALIMZ @ SEE +.uettne ittt ettt ettt ettt e et e et et et et e e e e eaeeans 143
Adding elements 0 @ SEEueiuueiuneitieii ettt et 144
WHILE LIOOPS .ttt e 146
The break EXPreSSIONc..euuiiuniii ittt et ea e 148
Collection CONVETSIONccuuuiituiiiineiii ettt e e et ettt et e e e et e et et et e e e e e eeaane 149
For the More Curious: Array TYPESccuueiuiiniii et 150
For the More Curious: Read-Only vs Immutablec..ccoooiiiiiiiiiiiiiineee, 151
Challenge: Formatted Tavern MEnUcouiiiiiiiiiiiiiiieii e 152
Challenge: Advanced Formatted Tavern Menucoocoviiiiiiiiiiiiiineiieieieeeeeea 152
| B Y -1 PP UPTSRN 153
Creating @ MAD ...uieniii e e 153

Kotlin Programming

AcCesSINg Map VAlUESc.uiiiniiiii e 155
Adding Entries t0 @ AP ...couniiniinii et 156
Modifying Map ValUescc.uiiuniiiiiiiiie e 158
Challenge: Tavern BOUNCETc.iiuiiiiiiiiii e 162
12, DefiNINg CLASSES ...ueenitniineiieit ettt et et ettt et et e e et et et e e et e e e eaeens 163
DefiniNg @ CLASS ...euuiineiieiie et ettt et e e 163
ConStructing INSTANCESieuniin it 164
CIa8S FUNCLIOMNS ...eeuuiiiiiiiiieii ettt et ettt e e e e e e e 164
Visibility and Encapsulationc.ooouieiiiiiiiiiii e 166
CLASS PIOPEITIES ...euneeneiee ittt ettt et et e e e e 167
Property getters and SELEEIScuueeuneiueitiei ettt e 168
Property VISIDIIIEYcouoiniiiiie e 171
COMPULEA PIOPEITIES ..evneerneitneiteit ettt et et e e et e et e e et e et e e eeneens 172
Refactoring NyetHackcooiiiiiiiiiii e 173
USING PaCKAZES ... et 181
For the More Curious: A Closer Look at var and val Propertiesc..ccoeeiviiiiiniinn..n. 182
For the More Curious: Guarding Against Race Conditionscccceuveiiiiiiiiiiiiieiinannns. 184
For the More Curious: Package Privatecooiiiiiiiiiiiiiiiiii e 185
13, INIHAIZALION ...evviniiiiiii ettt et ettt e e e 187
COMNSLITUCTOTS +..ettietii ettt ettt ettt et et ettt e e et e et et et e e et e e et s et et e et et et e eeaaeeeaanens 187
Primary CONSIITUCIONSuitniiiiii ittt ettt eeae e 188
Defining properties in a primary CONSIUCLOTccuuueiuuneriineeiiieiiiieriieeiineeninneens 189
Secondary CONSLITUCTOTSccuuutiuuniiiineiii ettt ettt et e e e et e et e eaieeaieeeiaeeenes 189
Default argUMENEScc.ueiiiiiiiiiiieeii ettt e 191
NamMed ATZUMEIIES ...evuniiiieiii ettt ettt et e e et e e e e e et e eai e et eeaneenaaees 192
Initializer BIOCKSuuiiiiiiiiiiii e 193
Property Initializationoooouniiiiniiiiii e 194
Initialization OTdETiiiiiiiiiiiiii et 196
Delaying INTHAlIZAIONoivuuiiiiiiiieiii ettt e e 197
Late initialiZationoeeiuiiiiiiiiiii e 198

Lazy initialiZatiONeiiuiiiiiniiiiiiii et 198

For the More Curious: Initialization GOtChascceuuviiiiiiiiiiiiiiniiiiieiie e 200
Challenge: The Riddle of EXCaliDUIccuuiiiiiiiiiiiii e 202
T4, INNETIEANCE ..evuneiiiniii ettt et ettt et et et e e e e e e eaans 205
Defining the ROOM Classc.iuuiiniiiiiie e 205
Creating @ SUDCLASSoiuii et 206
TYPE CRECKING . o.neeiite e e et eanae 212
The Kotlin Type Hierarchycoooouiiiiiiii e 214
TYPE CASTNE .neeene ettt ettt ettt e e e e e e e e e e e eannas 215
SINATT CASTINEZ ettt ettt ettt e e et et ettt e e e e e e et e e e eaeenns 216

For the MOre CUTIOUS: ALYeuniiniieit ittt e e et e e e e e e e eans 217
15, ODBJEOLS ettt ettt ettt ettt et ettt et e et e e 219
The object KeyWOrdcouuiiiiiiiiiiiii e 219
ODbJect dECIATAtIONSc.uetniteit et ettt et et e e e e e 220
(03] [l e A4 3] (e 10 1 PSPPI 224
COMPANION ODJECES .. evtieiteiteit ettt ettt ettt e e et e et e e e et e e e e e eans 225
INESLEA CIASSES .. eevrneiiieiii ettt ettt ettt e e et e e e et et e e eaaaeees 226
DAl CLASSES ..vvuiiiieiii ettt ettt ettt ettt ettt e e e e 228

Kotlin Programming

BOSEIIIIZ ettt et et ettt et e e e e 229
CQUALS ettt et et e e 230

1oe] o) TP 230
Destructuring declarationsceueeieiiiiiniii e 230
Enumerated CIASSEScouuueeiuniiiiiiiiii ittt ettt et 231
Operator OVErlOAdINGceuuiiiiii it e e 233
Exploring the World of NyetHackc.ocoiiiiiiiiii e, 235
For the More Curious: Defining Structural COmMpPAariSONccuuveuueiuneinneinneenneineennnen. 238
For the More Curious: Algebraic Data TYPesc.cceuiiuiiiiiiiiiiiiiiei e 240
Challenge: “Quit” COMMANGc..iiuuiiiiie ittt et e e e e 242
Challenge: Implementing a World Mapc..couieiuiiiiiiiiiiiiie e 242
Challenge: Ring the Bell ..ot 242
16. Interfaces and ADSIACt CLASSEScceuuiiiniiiieiiieiii ettt e e e 243
Defining an INterfaceco.oeiuiiiiiiii e 243
Implementing an INtErfacec.iiuiiiiiii e 244
Default IMpIemMEentationsceuueiuiinii ettt e e e e e e eans 248
ADSITACE CLASSES ..evvueiiineiii ettt ettt ettt et et et e e e e 248
Combat in NYSTHACKoiuniiiiii e e 251
17, GEINETICS ettt iii et ettt et et ettt et e et et et et et e e e ean 255
Defining GeneriC TYPESeuuiuniie ettt ettt e e 255
GENETiC FUNCHONS «...uiiiiiiiiiiiii ettt e e e 256
Multiple Generic Type Parameterscouviuiiiiiiiiiii e 258
GENETIC CONSITAINES ...eevuneiiineiiii ettt ettt ettt et et et e et e tai e e et e e et e eaaeeaaenans 259
VArArg A0 O ..oeenitt ittt et e e e 260
I AN QUL ettt ettt ettt et e e e 263
For the More Curious: The reified Keywordcooooiiiiiiiiiiiii e, 267
18 EXEEISIONS ..eetuiiiieitieiii ettt ettt ettt ettt e et et e et e e et e e e e e ea e et et et e enaaeeenas 269
Defining Extension FUNCHIONScc.iiuiiiiiiiiii e 270
Defining an extension on a SUPETClaSSc.eeueiuiiiiieiiiii et eanen 271
Generic Extension FUNCHONScouuiiiiiiiiiiiiii e 272
EXtension PrOPEITIESc.uiuuiiuniiieiie it e 274
Extensions on NUILAble TYPES ...c.uiuuiiuiiieiiii et 275
Extensions, Under the HOOAo.viiiniiini e 276
EXtracting to EXTENSIONSceuuiiiiiiiie ettt et ettt e 277
Defining an EXtensions Fileooiiiiiiiiiiiiiii e 279
Renaming an EXLENSIONoouuiiuiiiiiiii et 281
Extensions in the Kotlin Standard Librarycoooiiiiiiiiiiiiiiiii e, 282
For the More Curious: Function Literals with Receiverscccoeeiviiiiiiiiiniiiniinen, 283
Challenge: toDragonSpeak EXtEenSIONc..ceuueiuniiuiiiiiieiie et 284
Challenge: Frame EXTENSIONcc.ueiuniiuiinii e 284
19. Functional Programming BasiCsoeiiuiiiiiiiiiiiiiiiniiii e 285
FUNCHION CALEZOTIESeenetn ittt ettt et et et e ettt e e e eanees 285
TEANSTOITIIS ..eeviiiii ittt e 285
FIEETS ittt 287
COMDINES ..ueiiiieiiie ettt et ettt et e e e et e ea e eaaes 288

Why Functional Programming?c..ceeeiuiiiiiiiiniiii e 289
SEQUEIICES ..evuetii ettt ettt et ettt ettt ettt e e e ettt t e et e ea e eaa e 290
For the More Curious: Profilingcccoeiiiiiiiiiiiiiinii e 292

Xi

Kotlin Programming

For the More Curious: ATTOW.KEc.uuiiiiiiiiiiiiii et 292
Challenge: Reversing the Values in @ Mapccooveiiiiiiiiiiiiiiiiiiiiinc e, 293
Challenge: Applying Functional Programming to Tavern.ktcccoooiiiiiiiiinn... 293
Challenge: SHAIng WINAOWcoouiiiiiiiiiiiii et 294

20. Java INteroperabilitycoouuiiiiiiiiiiiiiii it 295
Interoperating with a Java Classccouiviiiiiiiiiiiiiiii e 295
Interoperability and NUIIIEYc.oiiiiiiiiiii e 296

TYPE MAPPING «.eeiiiieiiieii ettt ettt 299
Getters, Setters, and Interoperabilityoooiiiiiiiiiiiiiii e 300
BEYONA CLASSES ...ueeneineein ettt ettt et 302
Exceptions and Interoperabilitycco.oeiuiiiiiiiiiiii e 310
Function TyYPes 10 JAVAoouniiiiiiii e 313

21. Building Your First Android Application with Kotlincoooooiiiiiii, 315
ANAroid STUAIO ..evuniiiiiiii e e 315
Gradle CONIGUIALIONoiuuiiiiiiei e 321

Project organizationo.oeiuiiuiiiii i 324

Defining @ UL ..o et 324
Running the App on an Emulator ..o 327
Generating @ CRATACTETcouuuiiiiiiiiii it ea e 329

The ACHVILY CIASS ...eniiiii ittt et ettt e et e e et e e eeanas 330
WILNE UP VIBWS ottt et et e e 330
Kotlin Android Extensions Synthetic Propertiescooiiiiiiiiiiiiiiiiiiiiineneeeen, 333
Setting @ CICK LISEEINGTuiunitiiie ittt e e 335
Saved INStANCE SEALEc.uuiiitiiiiiiii ettt 336
Reading from the saved InStance Satecceevviiiiriiiiniiiineiiiieiieeiineenenen, 339
Refactoring to an EXtENSIONc..ciuniitiiiiiiii e 340

For the More Curious: Android KTX and Anko Librariesc.c.ccceveeiueiiiniiineinnnennnn. 341

22. Introduction t0 COTOULIMESuviruuiirineiiieeii et ettt et e et e et et e eai e et eeaieeaanes 343
Parsing Character Dataooouiiiiiiiii e 343
Fetching Live Dataoouiiiiiiii e 346

The Android Main Threadcc.oviiiiiiiiiiiii e 348
Enabling COTOULINESccuuuiiiiiiiiiieiii ettt ettt e e e een 349
Specifying a Corouting With @SYINCccuuuiiiiniiiiiiiiiieiii e 349
1aUNCh VS ASYNC/AWALL ..euuiineiie ittt ettt e 351
Suspending FUNCHIONSiuuiinii e e 351
Challenge: Live Dataoouuiiiiiiiiie e e 352
Challenge: Minimum Strengthc.oiiiiiiiii e 352

230 ATEEIWOTA .eniiiiiiii ettt et e e 353
Where to GO from HETEco.oiiiiiiiiiiiiiiiiii e 353
Shameless PIUZSouuiiniiiie e 353
TRANK YOU oottt ettt e e e 353
Appendix: More Challengesoiuuiiniiiiii e 357
Leveling Up With EXEICISI ...c..ceuniitiiiiii e 357
GLOSSAIY ..ttt ettt et ettt ettt et et et e e e e e 363
INAEX ettt 373

Xii

Introducing Kotlin

In 2011, JetBrains announced the development of the Kotlin programming language, an alternative to
writing code in languages like Java or Scala to run on the Java Virtual Machine. Six years later, Google
announced that Kotlin would be an officially supported development path for the Android operating
system.

Kotlin’s scope quickly grew from a language with a bright future into the language powering
applications on the world’s foremost mobile operating system. Today, large companies like Google,
Uber, Netflix, Capital One, Amazon, and more have embraced Kotlin for its many advantages,
including its concise syntax, modern features, and seamless interoperability with legacy Java code.

Why Kotlin?

To understand the appeal of Kotlin, you first need to understand the role of Java in the modern software
development landscape. The two languages are closely tied, because Kotlin code is most often written
for the Java Virtual Machine.

Java is a robust and time-tested language and has been one of the most commonly written languages
in production codebases for years. However, since Java was released in 1995, much has been learned
about what makes for a good programming language. Java is missing the many advancements that
developers working with more modern languages enjoy.

Kotlin benefits from the learning gained as some design decisions made in Java (and other languages,
like Scala) have aged poorly. It has evolved beyond what was possible with older languages and has
corrected what was painful about them. You will learn more in the coming chapters about how Kotlin
improves on Java and offers a more reliable development experience.

And Kotlin is not just a better language to write code to run on the Java Virtual Machine. It is a
multiplatform language that aims to be general purpose: Kotlin can be used to write native macOS
and Windows applications, JavaScript applications, and, of course, Android applications. Platform
independence means that Kotlin has a wide variety of uses.

Who Is This Book For?

We have written this book for developers of all kinds: experienced Android developers who want
modern features beyond what Java offers, server-side developers interested in learning about Kotlin’s
features, and newer developers looking to venture into a high-performance compiled language.

Android support might be why you are reading this book, but the book is not limited to Kotlin
programming for Android. In fact, except in one advanced chapter, Chapter 21, all the Kotlin code
in this book is agnostic to the Android framework. That said, if you are interested in using Kotlin
for Android application development, this book shows off some common patterns that make writing
Android apps a breeze in Kotlin.

Although Kotlin has been influenced by a number of other languages, you do not need to know the

ins and outs of any other language to learn Kotlin. From time to time, we will discuss the Java code
equivalent for Kotlin code you have written. If you have Java experience, this will help you understand
the relationship between the two languages. If you do not know Java, seeing how another language
tackles the same problems can help you grasp the principles that have shaped Kotlin’s development.

Xiii

Introducing Kotlin

How to Use This Book

This book is not a reference guide. Our goal is to guide you through the most important parts of the
Kotlin programming language. You will be working through example projects, building knowledge as
you progress. To get the most out of this book, we recommend that you type out the examples in the
book as you read along. Working through the projects will help build muscle memory and will give you
something to carry on from one chapter to the next.

Also, each chapter builds on the topics presented in the last, so we recommend that you do not jump
around. Even if you feel that you are familiar with a topic in other languages, we suggest that you read
straight through — Kotlin handles many problems in unique ways. You will begin with introductory
topics like variables and lists, work your way through object-oriented and functional programming
techniques, and understand along the way what makes Kotlin such a powerful language. By the end

of the book, you will have built your knowledge of Kotlin from that of a beginner to a more advanced
developer.

Having said that, do take your time: Branch out, use the Kotlin reference at kotlinlang.org/docs/
reference to follow up on anything that piqued your curiosity, and experiment.

For the More Curious

Most of the chapters in this book have a section or two titled “For the More Curious.” Many of these
sections illuminate the underlying mechanisms of the Kotlin language. The examples in the chapters do
not depend on the information in these sections, but they provide additional information that you may
find interesting or helpful.

Challenges

Most chapters end with one or more challenges. These are additional problems to solve that are
designed to further your understanding of Kotlin. We encourage you to give them a try to enhance your
Kotlin mastery.

Typographical conventions

As you build the projects in this book, we will guide you by introducing a topic and then showing how
to apply your new-found knowledge. For clarity, we stick to the following typographical conventions.

Variables, values, and types are shown with fixed-width font. Class, function, and interface names are
given bold font.

All code listings are shown in fixed-width font. If you are to type some code in a code listing, that code
is denoted in bold. If you are to delete some code in a code listing, that code is struck through. In the
following example, you are being instructed to delete the line defining variable y and to add a variable
called z:

var x = "Python"

var z = "Kotlin"

Xiv

https://kotlinlang.org/docs/reference/
https://kotlinlang.org/docs/reference/

Looking Forward

Kotlin is a relatively young language, so many coding conventions are still being figured out. Over
time, you will likely develop your own style, but we tend to adhere to JetBrains’ and Google’s Kotlin
style guides:

* JetBrains’ coding conventions: kotlinlang.org/docs/reference/coding-conventions.html

* Google’s style guide, including conventions for Android code and interoperability:
android.github.io/kotlin—-guides/style.html

Looking Forward

Take your time with the examples in this book. Once you get the hang of Kotlin’s syntax, we think that
you will find the development process to be clear, pragmatic, and fluid. Until then, keep at it; learning a
new language can be quite rewarding.

XV

https://kotlinlang.org/docs/reference/coding-conventions.html
https://android.github.io/kotlin-guides/style.html

Your First Kotlin Application

In this chapter you will write your first Kotlin program, using IntelliJ] IDEA. While completing this
programming rite of passage, you will familiarize yourself with your development environment, create
a new Kotlin project, write and run Kotlin code, and inspect the resulting output. The project you create
in this chapter will serve as a sandbox to easily try out new concepts you will encounter throughout this
book.

Installing Intelli) IDEA

IntelliJ IDEA is an integrated development environment (IDE) for Kotlin created by JetBrains (which
also created the Kotlin language). To get started, download the IntelliJ IDEA Community Edition from
the JetBrains website at jetbrains.com/idea/download (Figure 1.1).

Figure 1.1 Downloading Intelli) IDEA Community Edition

Download IntelliJ IDEA

Windows macOS Linux
Ultimate Community
For web and enterprise For JVM and Android
development development

Version: 2017.3.4

Build: 173.4548.28

Released: January 29, 2018
DOWNLOAD DOWNLOAD
Release notes

Free trial Free, open-source
System requirements

Installation Instructions
Previous versions

https://www.jetbrains.com/idea/download/

Chapter 1 Your First Kotlin Application

Once it has downloaded, follow the installation instructions for your platform as described on
the JetBrains installation and setup page at jetbrains.com/help/idea/install-and-set-up-
product.html.

IntelliJ IDEA, called IntelliJ for short, helps you write well-formed Kotlin code. It also streamlines the
development process with built-in tools for running, debugging, inspecting, and refactoring your code.
You can read more about why we recommend IntelliJ for writing Kotlin code in the section called For
the More Curious: Why Use IntelliJ? near the end of this chapter.

Your First Kotlin Project

Congratulations, you now have the Kotlin programming language and a powerful development
environment to write it with. Now there is only one thing left to do: Learn to speak Kotlin fluently.
First order of business — create a Kotlin project.

Open IntelliJ. You will be presented with the Welcome to IntelliJ IDEA dialog (Figure 1.2).

Figure 1.2 Welcome dialog

[X J Welcome to IntelliJ IDEA

a

IntelliJ IDEA

Version 2017.3.4

Create New Project
¢ Import Project
Open

¥ Check out from Version Control ~

%* Configure v Get Help ~

(If this is not the first time you have opened IntelliJ since installing it, you may be brought directly to
the last project you had open. To get back to the welcome dialog, close the project using File —= Close
Project.)

https://www.jetbrains.com/help/idea/install-and-set-up-product.html
https://www.jetbrains.com/help/idea/install-and-set-up-product.html

Your First Kotlin Project

Click Create New Project. IntelliJ will display the New Project dialog, as shown in Figure 1.3.

Figure 1.3 New Project dialog

[NON) New Project
Project SDK: + java version "1.8.0_131" (/Library/Java/JavaVirtualrd New...
= Java FX
= . Additional Libraries and Frameworks:
& Android

G Groovy

IntelliJ Platform Plugin -
¥ T KotlinfJJVM

/71 Maven
ave I Kotlin/JS

® Gradle (Kotlin DSL)

& Gradle

G Groovy
@) Griffon
K Kotlin

% Empty Project Use library: Il KotlinJavaRuntime 4 Create...

Project level library KotlinJavaRuntime with 3 files will be created Configure.“
? Cancel Previous | RS

In the New Project dialog, select Kotlin on the left and Kotlin/JVM on the right, as shown in Figure 1.4.

Figure 1.4 Creating a Kotlin/JVM project

[BON) New Project
% Java ” Kotlin/JJVM
2 Java FX I Kotlin/Js
' Android K Kotlin (Multiplatform - Experimental)

IntelliJ Platform Plugin

/M Maven
& Gradle (Kotlin DSL)

& Gradle

G Groovy
@) Griffon

= Empty Project Kotlin module for JVM target

? Cancel Previous | DAY

Chapter 1 Your First Kotlin Application

You can use IntelliJ to write code in languages other than Kotlin, including Java, Python, Scala, and
Groovy. Selecting Kotlin/JVM tells IntelliJ you intend to use Kotlin. More specifically, Kotlin/JVM tells
IntelliJ you intend to write Kotlin code that fargets, or runs on, the Java Virtual Machine. One of the
benefits of Kotlin is that it features a toolchain that allows you to write Kotlin code that can run on
different operating systems and platforms.

(From here on, we will refer to the Java Virtual Machine as just “JVM,” as it is commonly called in the
Java developer community. You can learn more about targeting the JVM in the section called For the
More Curious: Targeting the JVM near the end of this chapter.)

Click Next in the New Project dialog. IntelliJ will display a dialog where you can choose settings for
your new project (Figure 1.5). For the Project name, enter “Sandbox.” The Project location field will
auto-populate. You can leave the location as is or select a new location by pressing the ... button to the
right of the field. Select a Java 1.8 version from the Project SDK dropdown to link your project to Java
Development Kit (JDK) version 8.

Figure 1.5 Naming the project

[) ® New Project
Project name: Sandbox

Project location: ~/IdeaProjects/Sandbox

Project SDK: +. java version "1.8.0_131" (/Library/Java/JavaVirtualMachines/jdk1.8.0_131.jdk/C§&| New...
Kotlin runtime
Use library: Il KotlinJavaRuntime Create...
Project level library KotlinJavaRuntime with 3 files will be created Configure...

» More Settings

? Cancel Previous | | |

Why do you need the JDK to write a Kotlin program? The JDK gives IntelliJ access to the JVM and to
Java tools that are necessary for converting your Kotlin code to bytecode (more on that in a moment).
Technically, any version 6 or greater will work. But our experience, as of this writing, is that JDK 8
works most seamlessly.

If you do not see some version of Java 1.8 listed in the Project SDK dropdown, this means you have
not yet installed JDK 8. Do so now before proceeding: Download JDK 8 for your specific platform
from oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html. Install the
JDK, then restart IntelliJ. Work back through the steps outlined to this point to create a new project.

When your settings dialog looks like Figure 1.5, click Finish.

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Your First Kotlin Project

IntelliJ will generate a project named Sandbox and display the new project in a default two-pane view
(Figure 1.6). On disk, IntelliJ creates a folder and a set of subfolders and project files in the location
specified in the Project location field.

Figure 1.6 Default two-pane view

[X X) Sandbox [~/
12 Sandbox) W P EREIBEQ

Il External Libraries

3 Z: Structure | g

m
=z
g
ES
§
L3
H
g
H

3 2: Favorites

[& Terminal 2 6: TODO Q) Event Log
i in: Added /Applicati iJ IDEA CE. i infkotlinglib/kotlin-stdlib-jdk7 jar to library ion /] 1] Added /Applicati 1J IDEA CE o infkotiinc/libfkotiin-stdl... @ mintes ago) & & Q

(=]

The pane on the left shows the project tool window. The pane on the right is currently empty. This is
where you will view and edit the contents of your Kotlin files in the editor. Turn your attention to the
project tool window on the left. Click the disclosure arrow to the left of the project name, Sandbox. It
will expand to display the files contained in the project, as shown in Figure 1.7.

Figure 1.7 Project view

37 Project - O + | I
v Sandbox ~/ldeaProjects/Sandbox
» [0 .idea
[wsre

{5 Sandbox.iml
» |l External Libraries

A project includes all of the source code for your program, along with information about dependencies
and configurations. A project can be broken down into one or more modules, which are like
subprojects. By default, a new project has one module, which is all you need for your simple first
project.

Chapter 1 Your First Kotlin Application

The Sandbox. im1 file contains configuration information specific to your single module. The . idea
folder contains settings files for the entire project as well as those specific to your interaction with the
project in the IDE (for example, which files you have open in the editor). Leave these auto-generated
files as they are.

The External Libraries entry contains information about libraries the project depends on. If you
expand this entry you will see that IntelliJ automatically added Java 1.8 and KotlinJavaRuntime as
dependencies for your project.

(You can learn more about IntelliJ project structure on the JetBrains documentation website at
jetbrains.org/intellij/sdk/docs/basics/project_structure.html.)

The src folder is where you will place all the Kotlin files you create for your Sandbox project. And
with that, it is time to create and edit your first Kotlin file.

Creating your first Kotlin file

Right-click on the src folder in the project tool window. Select New and then Kotlin File/Class from the
menu that appears (Figure 1.8).

Figure 1.8 Creating a new Kotlin file

Sandbox) [src)

B Project v © = | %10
Sandbox ~/IdeaProjects/Sandbox
.idea
src

= Sandbox.iml New L © Java Class
Illl External Libraries M cut o ' Kotlin File/Class
<1.8 > /Librz ©° < File
i, KotlinJavaRut O ZOPY oot {}:2 2, Scratch File 08N
opy Pa
- Package
. Sopy Reference \1};23 2 EXML File
o1l s package-info.java
Find Usages XF7 HTML File
NN H
:ndl n P?thF;"m g:: i JavaFXApplication in
Aeplace in Path... | & Singleton .
HELAS & Gradle Kotlin DSL Build Script !
Refactor p © Gradle Kotlin DSL Settings s
- N L XSLT Stylesheet
o Favorites
A B
Show Image Thumbnails 08T Edit File Templates...
Reformat Code 8L GUI Form ne
Optimize Imports A O Dialog
Delete... ® Form Snapshot
11 Resource Bundle
Build Module 'Sandbox' Plugin DevKit >
Rebuild '<default>' {+38F9 r

In the New Kaotlin File/Class dialog, type “Hello” in the Name field and leave the Kind field set to File
(Figure 1.9).

Figure 1.9 Naming the file

@ @ New Kotlin File/Class

Name: Hello| Tl

Kind: ¢ File [T
Cancel

https://www.jetbrains.org/intellij/sdk/docs/basics/project_structure.html

Creating your first Kotlin file

Click OK. IntelliJ will create a new file in your project, src/Hello.kt, and display the contents of the
file in the editor on the righthand side of the IntelliJ window (Figure 1.10). The .kt extension indicates
that the file contains Kotlin, just like the . java extension is used for Java files and . py for Python files.

Figure 1.10 Empty Hello. kt file displays in editor

(X X) Sandbox [~/IdeaProjects/Sandbox] - .../src/Hello.kt [Sandbox]
% Sandbox) 1 src) (. Hello.kt) R @ Q
7 Project - Q = | %~ It & Hellokt
2 Sandbox ~/IdeaProjects/Sandbox |
.idea
src
& Hello.kt
% Sandbox.im!
Ili External Libraries
= < 1.8 > /Library/Java/JavaVirtualMachines/jdk1
i KotlinJavaRuntime

[0 Kotlin: A new version 1.2.21-release-1J2017.3-1 of the Kotlin plugin is available. Install (5 minutes ago) 1 UtF-8: w 8 @

At last, you are ready to write Kotlin code. Give your fingers a little stretch and go for it. Type the
following code into the Hello.kt editor. (Remember that throughout this book, code you are to enter is
shown in bold.)

Listing 1.1 “Hello, world!” in Kotlin (Hello.kt)

fun main(args: Array<String>) {
println("Hello, world!")
}

The code you just wrote might look unfamiliar. Do not fear — by the end of this book, reading and
writing Kotlin will feel like second nature. For now, it is enough to understand the code at a high level.

The code in Listing 1.1 defines a new function. A function is a group of instructions that can be run
later. You will learn in great detail how to define and work with functions in Chapter 4.

This particular function — the main function — has a special meaning in Kotlin. The main function
indicates the starting place for your program. This is called the application entry point, and one such
entry point must be defined for Sandbox (or any program) to be runnable. Every project you write in
this book will start with a main function.

Your main function contains one instruction (also known as a statement): println("Hello, world!").
println() is also a function that is built into the Kotlin standard library. When the program runs and
println("Hello, world!") is executed, IntelliJ will print the contents of the parentheses (without the
quotation marks, so in this case Hello, world!) to the screen.

Chapter 1 Your First Kotlin Application

Running your Kotlin file

Shortly after you finish typing the code in Listing 1.1, IntelliJ will display a green P, known as the
“run button,” to the left of the first line (Figure 1.11). (If the icon does not appear, or if you see a red
line underneath the filename in the tab or under any of the code you entered, this means you have an
error in your code. Double-check that you typed the code exactly as shown in Listing 1.1. On the other
hand, if you see a red and blue Kotlin K, this flag is the same as the run button.)

Figure 1.11 Run button

g Hello.kt

1 b | fun main(args: Array<String>) {
2 println("Hello, world!")
3

It is time for your program to come to life and greet the world. Click the run button. Select Run
'HelloKt' from the menu that appears (Figure 1.12). This tells IntelliJ you want to see your program in
action.

Figure 1.12 Running Hello.kt

Run 'HelloKt!' ~{R
¢ Debug 'HelloKt' ~0D
¥% Run 'HelloKt' with Coverage

When you run your program, IntelliJ executes the code inside of the curly braces ({}), one line at a
time, and then terminates execution. It also displays two new tool windows at the bottom of the IntelliJ
window (Figure 1.13).

Figure 1.13 Run and event log tool windows

Run [Hellokt #- L | Eventlog -
S /Library/Ja;a/JavaVirtualnachines/jdkl.B4B_131.jdk/contents/ﬂome/hin/java o 2/6/18

Hello, world! 3:39PM Ce ilati successfully in 5s 431ms
objc[15752]: Class JavalaunchHelper is implemented in both /Library/Java/JavaVirtualMachi

Process finished with exit code 0

e e @ &
~ e d R

B ~vxw @

32 nja UTF-8: & Q

On the left is the run tool window, also known as the console (which is what we will call it from now
on). It displays information about what happened as IntelliJ executed your program, as well as any
output your program prints. You should see Hello, world! printed in your console. You should also
see Process finished with exit code 0, indicating successful completion. This line appears at the
end of all console output when there is no error; we will not show it in console results from now on.

Running your Kotlin file

(macOS users, you may see red error text stating that there is an issue with JavaLauncherHelper, as
shown in Figure 1.13. Do not worry about this. It is an unfortunate side effect of how the Java Runtime
Environment is installed on macOS. To remove it would require a lot of effort, but the issue does no
harm — so you may ignore it and carry on.)

On the right is the event log tool window, which displays information about work IntelliJ did to get
your program ready to run. We will not mention the event log again, because you get much more
interesting output in the console. (For the same reason, do not be concerned if the event log never
opened to begin with.) You can close it with the hide button at its top right, which looks like this: -*.

Compilation and execution of Kotlin/JVM code

A lot goes on in the short time between when you select the run button’s Run ‘HelloKt' option and when
you see Hello, World! print to the console.

First, IntelliJ compiles the Kotlin code using the kot linc—jvm compiler. This means IntelliJ translates
the Kotlin code you wrote into bytecode, the language the JVM “speaks.” If kot linc-jvm has any
problems translating your Kotlin code, it will display an error message (or messages) giving you a hint
about how to fix the issues. Otherwise, if the compilation process goes smoothly, IntelliJ moves on to
the execution phase.

In the execution phase, the bytecode that was generated by kot linc-jvm is executed on the JVM. The
console displays any output from your program, such as printing the text you specified in your call to
the println() function, as the JVM executes the instructions.

When there are no more bytecode instructions to execute, the JVM terminates. IntelliJ shows the
termination status in the console, letting you know whether execution finished successfully or with an
error code.

You will not need a comprehensive understanding of the Kotlin compilation process to work through
this book. We will, however, discuss bytecode in more detail in Chapter 2.

Chapter 1 Your First Kotlin Application

The Kotlin REPL

Sometimes you might want to test out a small bit of Kotlin code to see what happens when you run it,
similar to how you might use a piece of scratch paper to jot down steps for a small calculation. This
is especially helpful as you are learning the Kotlin language. Luckily for you, IntelliJ provides a tool
for quickly testing code without having to create a file. This tool is called the Kotlin REPL. We will
explain the name in a moment — for now, open it up and see what it can do.

In IntelliJ, open the Kotlin REPL tool window by selecting Tools = Kotlin = Kotlin REPL
(Figure 1.14).

Figure 1.14 Opening the Kotlin REPL tool window
VCS Window Help
| Tasks & Contexts >

Save File as Template...
Generate JavaDoc...

Save Project as Template...
Manage Project Templates...

IDE Scripting Console
Create Command-line Launcher...

& Groovy Console...
K 4 Configure Kotlin Plugin Updates

Kotlin Internal Mode

Configure Kotlin in Project

Configure Kotlin (JavaScript) in Project
Show Kotlin Bytecode

IntelliJ will display the REPL at the bottom of the window (Figure 1.15).

Figure 1.15 The Kotlin REPL tool window

Run Kotlin REPL (in module Sandbox) - 2
G P /Library/Java/JavaVirtualMachines/jdk1.8.0_131.jdk/Contents/Home/bin/java ...

: Welcome to Kotlin version 1.2.21 (JRE 1.8.0_131-bll)

» Type :help for help, :quit for quit

N

N

You can type code into the REPL, just like in the editor. The difference is that you can have it evaluated
quickly, without compiling an entire project.

10

For the More Curious: Why Use Intelli)?

Enter the following code in the REPL:

Listing 1.2 “Hello, Kotlin!” (REPL)

println("Hello, Kotlin!")

Once you have entered the text, press Command-Return (Ctrl-Return) to evaluate the code in the
REPL. After a moment, you will see the resulting output underneath, which should read Hello,
Kotlin! (Figure 1.16).

Figure 1.16 Evaluating the code

Run Kotlin REPL (in module Sandbox) - SN
G ; /Library/Java/JavaVirtualMachines/jdk1.8.0_131.jdk/Contents/Home/bin/java ...
Welcome to Kotlin version 1.2.21 (JRE 1.8.0_131-bll)
» Type :help for help, :quit for quit
¢
N

2 println(“Hello, Kotlin!")
Hello, Kotlin!

REPL is short for “read, evaluate, print, loop.” You type in a piece of code at the prompt and submit it
by clicking the green run button on the REPL’s left side or by pressing Command-Return (Ctrl-Return).
The REPL then reads the code, evaluates (runs) the code, and prints out the resulting value or side

effect. Once the REPL finishes executing, it returns control back to you and the process loop starts all
over.

Your Kotlin journey has begun! You accomplished a great deal in this chapter, laying the foundation
for your growing knowledge of Kotlin programming. In the next chapter, you will begin to dig into the
language’s details by learning about how you can use variables, constants, and types to represent data.

For the More Curious: Why Use Intellij?

Kotlin can be written using any plain text editor. However, we recommend using IntelliJ, especially as
you are learning. Just as text editing software that offers spell check and grammar check makes writing
a well-formed prose essay easier, IntelliJ] makes writing well-formed Kotlin easier. IntelliJ helps you:

* write syntactically and semantically correct code with features like syntax highlighting, context-
sensitive suggestions, and automatic code completion

 run and debug your code with features like debug breakpoints and real-time code stepping when
your application is running

* restructure existing code with refactoring shortcuts (like rename and extract constant) and code
formatting to clean up indentation and spacing

Also, since Kotlin was created by JetBrains, the integration between IntelliJ and Kotlin is carefully
designed — often leading to a delightful editing experience. As an added bonus, IntelliJ is the basis of
Android Studio, so shortcuts and tools you learn here will translate to using Android Studio, if that is
your thing.

11

Chapter 1 Your First Kotlin Application

For the More Curious: Targeting the JVM

The JVM is a piece of software that knows how to execute a set of instructions, called bytecode.
“Targeting the JVM” means compiling, or translating, your Kotlin source code into Java bytecode, with
the intention of running that bytecode on the JVM (Figure 1.17).

Figure 1.17 Compilation and execution flow

Kotlin Source Code JVM bytecode Console output
i Run & Hellokt #* L
fun main(args: Array<String>) { // class version 52.0 (52) S {Library/Jave/Savabir ines/jdk1.8.0_131. java
println(“"Hello, world!") I access flags 0x31 Ohjclis7521: Class JaveLaunchelper is inplenented in both /Library)Jova/JavaVirtualiachi

public final class HelloKt { Process finished with exit code 0

@ 0

& &

1/l access flags 0x19
public final static main([Ljava/lang/String;)V

@Lorg/jetbrains/annotations/NotNull;() // 7
invisible, parameter 0 !
Lo (5]
ALOAD 0
LDC "args"
INVOKESTATIC kotlin/vm/internal/
Compiler translates Kotlin to bytecode Intrinsics.checkParameterlsNotNull (Ljava/ JVM executes bytecode

I lang/Object;Ljava/lang/String;)V

}

Each platform, such as Windows or macOS, has its own instruction set. The JVM acts as a bridge
between the bytecode and the different hardware and software environments the JVM runs on, reading
a piece of bytecode and calling the corresponding platform-specific instruction(s) that map to that
bytecode. Therefore, there are different versions of the JVM for different platforms. This is what
allows Kotlin developers to write platform-independent code that can be written one time and then
compiled into bytecode and executed on different devices regardless of their operating systems.

Since Kotlin can be converted to bytecode that the JVM can execute, it is considered a JVM language.
Java is perhaps the most well-known JVM language, because it was the first. However, other JVM
languages, such as Scala and Kotlin, have emerged to address some shortcomings of Java from the
developer perspective.

Kotlin is not limited to the JVM, however. At the time of this writing, Kotlin can also be compiled into
JavaScript or even into native binaries that run directly on a given platform — such as Windows, Linux,
and macOS — negating the need for a virtual machine layer.

Challenge: REPL Arithmetic

Many of the chapters in this book end with one or more challenges. The challenges are for you to work
through on your own to deepen your understanding of Kotlin and get a little extra experience.

Use the REPL to explore how arithmetic operators in Kotlin work: +, -, *, /, and %. For example, type
(9+12)*2 into the REPL. Does the output match what you expected?

If you wish to dive deeper, look over the mathematical functions available in the Kotlin standard library
at kotlinlang.org/api/latest/jvm/stdlib/kotlin.math/index.html and try them out in the
REPL. For example, try min(94, -99), which will tell you the minimum of the two numbers provided
in parentheses.

12

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.math/index.html

Index
Symbols

for platform types, 297
logical ‘not’ operator, 33

I'1. (double-bang/non-null assertion operator), 89

!= (non-equality operator), 29
I== (referential non-equality operator), 29
$ (for string interpolation/templating), 40
% (modulus/remainder operator), 120
&& (logical ‘and’ operator), 33
+ (addition operator), 28, 234
++ (increment operator), 147
+= (addition and assignment operator), 15, 234
+= (plus assign operator), 135, 146, 154, 156
- (minus operator), 156
-= (minus assign operator), 135, 146, 156
—> (arrow operator)
in anonymous function definitions, 71
in function type definitions, 69
in when expressions, 38
. (dot)
for class property references, 168
for function calls, 67
.. (range operator), 37, 234
. operator
for interface implementation, 244
for subclassing, 207
: 1 operator, for function references, 79
< (less-than operator), 29
<= (less-than-or-equal-to operator), 29
<> (for parameterized type definitions), 130
= (assignment operator)
for maps, 156
for variable values, 14
in single-expression function syntax, 57
== (structural equality operator), 28, 234
=== (referential equality operator), 29
> (greater-than operator), 29, 234
>= (greater-than-or-equal-to operator), 29
?. (safe call operator), 88
?: (null coalescing operator), 91
@JvmField annotation, 307
@JvmName annotation, 303
@JvmOverloads annotation, 303

@JvmStatic annotation, 309

@NotNull annotation (Java), 101, 298
@Nullable annotation (Java), 297

@Throws annotation, 312

[1 (get/index operator), 106, 130, 155, 234
[1= (set operator), 134

\ (escape character), 104

_, for temporary variables, 188

|| (logical ‘or’ operator), 33

A

abstract classes
about, 243, 248-250
abstract functions, 248
interface implementation, 250
subclassing, 249
vs interfaces, 250
abstract functions, 248
abstract keyword, 248
add function, 133, 135, 146
addAl1l function, 135, 146
addition and assignment operator (+=), 15, 234
addition operator (+), 28, 234
algebraic data types, 240
also function, 126, 128, 185
and (number) function, 121
Android
accessing view elements, 330, 333
activities, 320
Android KTX Kotlin extensions library, 341
Anko Kotlin enhancements library, 342
click listeners, 335
creating a project, 318
Gradle build automation tool, 322
importing classes, 331
Kotlin library dependencies, 323
Kotlin plug-ins, 322

Kotlin single abstract method conversions, 335

Kotlin synthetic properties, 333
lifecycle functions, 330
manifest, 346

project organization, 324

saved instance state, 337-339
SDK packages, 316

threads, 348

user interfaces, 324-327

using coroutines, 349-351

373

Index

(see also coroutines)
view element ids, 326
widgets, 326
Android Studio
about, 315-321
application logs, 348
emulators, 327
anonymous functions
about, 67-73
and function references, 78
and Kotlin standard library functions, 67, 123
arguments, 71
as closures, 80, 81
as function arguments, 75
calling, 68
defining, 68
implicit returns, 70
inlining, 77
it keyword, 72
lambda terminology, 75
memory use, 77
parameters, 71
vs Java anonymous inner classes, 82
Any class
about, 214
and platform independence, 217
default function implementations, 229
application entry point, 7
apply function, 123, 128
arguments
(see also functions)
in class constructors, default, 191
in class constructors, named, 192
in functions, default, 56
in functions, named, 59
to anonymous functions, 71
vs parameters, 51
Array type, 150
ArrayIndexOutOfBoundsException, 131
arrow operator (—>)
in anonymous function definitions, 71
in function type definitions, 69
in when expressions, 38
as operator
for renaming imported extensions, classes, 281
for type casting, 215
assert function, 98
assignment operator (=)

374

for maps, 156

for variable values, 14

in single-expression function syntax, 57
async function, 349
await function, 351

bitwise operations, 121
Boolean type, 16
break expression, 148
by keyword, 199
Byte type, 113
bytecode
about, 12
decompiling, 24
inspecting, 22

C

Char type, 16, 111
checkNotNull function, 97
class keyword, 241
classes
about, 163-172
abstract, 243, 248
(see also abstract classes)
Any, 214
(see also Any class)
class bodies, 165
class functions, 164
companion objects, 225
constructors, 164, 188
(see also constructors)
data classes, 228-231
(see also data classes)
declared with object, 219-225
(see also companion objects, object
declarations, object expressions)
defining, 163
enumerated classes (enums), 231, 236
instantiating, 164
Kotlin type hierarchy, 214
nested, 226
object declarations, 220, 221
object expressions, 225
properties (see properties)
renaming imported classes, 281
scope, 178

Index

sealed classes, 241
subclasses, 206
superclasses, 206
clear function, 135, 146
closures, 80, 81
code comments
about, 32
IntelliJ IDEA shortcut, 86
collection types
(see also List type, Map type, Sequence type,
Set type)
compared, 162
creating instances, 129
eager vs lazy, 290
companion modifier, 225
companion objects, 225
compareTo function, 234
comparison operators
about, 29
order of operator precedence, 33
compilation, 9
compile-time constants, 21
compile-time errors, 86
compiler, 86
computed properties, 172
conditional expressions
about, 34
omitting curly braces in, 36
console, 8
const modifier, 21
constants, 13
constructors
about, 188-191
calling, 188, 190
default values for parameters, 189, 191
defining class properties in, 189
defining initialization logic in, 190
for subclassing, 207
named arguments, 192
parameters, 188
primary, 188, 189
secondary, 189
consumer role, 265
contains function, 132, 143, 234
containsAll function, 132, 143
control flow, 27
copy function, 230
coroutines

about, 349-351
async function, 349
await function, 351
coroutine builder functions, 351
enabling, 349
launch function, 350
suspending functions, 351
count function, 67
covariance, contravariance, 266

D

data classes
about, 228-231
benefits and limitations, 231
destructuring, 230
implementation of library functions, 229
Deferred type, 349
delegates
about, 199
lazy, 199
destructuring
about, 107, 142
using split, 107
distinct function, 149
dot syntax
for class property references, 168
for function calls, 67
Double type
about, 16, 113, 116
converting from Int, 117
converting to Int, 120
double-bang/non-null assertion operator (!!.), 89

editor, 5
elementAt function, 143
encapsulation (see visibility)
enumerated classes (enums), 231, 236
enumerated types, 231
equality (see referential equality, structural
equality)
equals function

in data classes, 230

overriding, 234, 238
error function, 98
errors

compile-time, 86

375

Index

runtime, 86 format function, 118
escape character (\), 104 fun keyword, 47
escape sequences, 104 function types
event log tool window, 9 about, 69
exceptions as return types, 80
about, 92 type inference with, 74
ArrayIndexOutOfBoundsException, 131 vs Java anonymous inner classes, 82
custom, 95 functional programming
Exception type, 96 about, 285-291
IllegalStateException, 94 Arrow.kt library, 292
KotlinNullPointerException, 89 categories of functions, 285
throwing, 94 combines, 288
unchecked, 100 composable functions, 286
unhandled, 93 filters, 287
Exercism project, 357-362 higher-order functions, 287
exitProcess function, 252 immutability of variables, 286
extensions transforms, 285
about, 269-284 functions
bytecode representation, 276 (see also function types)
defining extension functions, 270 about, 7, 43
extension files, 279 add, 133, 135, 146
extension packages, 279 addAll, 135, 146
extension properties, 274 also, 126, 128, 185
generic extension functions, 273 alternative syntax, 57
in the Kotlin standard library, 282 and (number), 121
on nullable types, 275 anonymous, 67-73
on superclasses, 271 (see also anonymous functions)
renaming imported extensions, 281 apply, 123, 128
visibility, 279 arguments, 51
extracting functions using IntelliJ IDEA assert, 98
command, 43-45 async, 349
await, 351
F backtick naming syntax, 63
field keyword, 169 bod}/, 46, 49
files call.lng, 51
. chaining calls, 272
creating, 6
. checkNotNull, 97
running, 8

class functions, 164, 178
clear, 135, 146
combining functions, 288
compareTo, 234
composable, 286
contains, 132, 143, 234
containsAll, 132, 143
copy, 230

count, 67

default arguments, 56
distinct, 149

filter function, 287

final keyword, 211

first function, 131

flatMap function, 287

Float type, 113

floating points, 118

fold function, 288

for loops, 137

forEach function, 138
forEachIndexed function, 138

376

Index

dot syntax, 67
elementAt, 143
equals, 230, 234, 238
error, 98
exitProcess, 252
file-level, 61

filter, 287

filter functions, 287
first, 131

flatMap, 287

fold, 288

forEach, 138
forEachIndexed, 138
format, 118

from Kotlin standard library, 123, 128
function references, 78, 125
generateSequence, 290
get, 234
getOrDefault, 155
getOrElse, 131, 155
getOrNull, 131
getOrPut, 156
getValue, 155
hashCode, 238

header, 46-48
higher-order functions, 81
implicitly called, 124

in Java bytecode, 61
index0f, 104

inlining, 77
intArrayO0f, 150

inv(), 121
isInitialized, 198
iterator functions, 290
last, 131

launch, 350

let, 88, 92, 124, 128
listof, 129

main, 7, 13

map, 285

mapOf, 153
measureNanoTime, 292
measureTimeInMillis, 292
mutableListOf, 133
mutableMapOf, 153
mutableSetOf, 145
mutator functions, 135, 146
named, 67

named arguments, 59
naming conventions, 47
operator overloading, 233
overloading, 62
overriding, 169
parameters, 48, 51
plus, 234
plusAssign, 234
precondition functions, 97
predicate functions, 287
println, 7

put, 156

putAll, 156

rangeTo, 234
readText, 346
remove, 133, 146, 156
removeAll, 146
removeIf, 135
replace, 107
require, 98
requireNotNull, 98
return statement, 49, 57
return type, 48, 57
roundToInt, 120

run, 125, 128, 257
scope, 50

set0f, 143
shl(bitcount), 121
shr(bitcount), 121
single-expression, 57
split, 106

structure of, 46
substring, 105
takeIf, 127, 128
takeUnless, 127

test function naming, 63
Thread.sleep, 253

to, 154
toBigDecimal, 116
toBinaryString, 121
toDouble, 116
toDoubleOrNull, 116
toFloat, 116

toInt, 120
toIntOrNull, 116
toList, 134, 149
toLong, 116
toMutablelist, 134, 149

377

Index

toMutableSet, 149
toSet, 149

toString, 217, 229
transform functions, 285
transformer functions, 285
Unit functions, 58
valueOf, 236

visibility, 47

with, 126, 128

xor (number), 121

zip, 288

G

generateSequence function, 290
generic type parameters, 255, 258
generics
about, 255-268
defining a generic function, 256
defining a generic type, 255
producers and consumers, 265
type constraints, 259
type erasure, 267
type inference with, 256
with vararg, 260
get function, 234
get/index operator ([1), 106, 130, 155, 234
getOrDefault function, 155
getOrElse function, 131, 155
getOrNull function, 131
getOrPut function, 156
getValue function, 155
greater-than operator (>), 29, 234
greater-than-or-equal-to operator (>=), 29

H

hashCode function, overriding, 238

if/else statements
comparison operators in, 29
defining, 27-37
else if branches, 30, 38
logical operators in, 32
nested, 31
omitting curly braces in, 36
order of conditions, 30
IllegalStateException, 94

378

immutable, problems with terminology, 151, 184

imperative programming, 289
implicit returns, 70
in keyword
for collections, 234
for generic consumers, 265
for ranges, 37
in for loops, 138
increment operator (++), 147
indexes (see indices)
index0f function, 104
indices
about, 104
forEachIndexed function, 138
in lists, 130
in strings, 104
out of bounds, 131
infix keyword, 275
inheritance
about, 205-211
adding functionality in subclasses, 209
creating subclasses, 206
Kotlin type hierarchy, 214
overriding superclass functionality in
subclasses, 207
init keyword, 193
initialization
about, 187-201
delegates, 199
initialization order, 196, 200, 201
initializer blocks, 193, 200
late, 198
lazy, 198
properties, 194-199
inline keyword, 77
Int type
about, 14, 16, 113, 114
converting from Double, 120
converting to Double, 117
IntArray type, 150
intArrayOf function, 150
IntelliJ IDEA
about, 1-7
benefits, 11
commenting code, 86
console, 8
displaying function return types, 58
editor, 5

Index

error indicator, 15
event log tool window, 9
extracting functions, 43-45
Kotlin bytecode tool window, 23
opening a project, 13
overriding equals and hashCode, 238
project tool window, 5
refactoring code, 43-45
run tool window, 8
running a project, 8
Search Everywhere dialog, 22
shortcut for adding main function, 13
interface keyword, 243
interfaces
about, 243-248
default property getters and functions, 248
defining, 243
implementing, 244
vs abstract classes, 250
interoperating with Java
about, 295-314
@JvmField annotation, 307
@JvmName annotation, 303
@JvmOverloads annotation, 303
@JvmStatic annotation, 309
@NotNull annotation, 298
@Nullable annotation, 297
@Throws annotation, 312
Android platform, 332
arrays, 150
backtick function naming syntax, 63
exceptions, 310
Java classes, 296
Java fields and properties, 301, 332
Java method overloading, 303
Kotlin anonymous functions, 313
Kotlin companion objects, 307
Kotlin default parameters, 303
Kotlin file-level functions, 303
Kotlin function types, 313
Kotlin functions defined on companion
objects, 309
null safety, 101, 297, 298
platform types, 297
type mapping, 299
using function literals vs anonymous inner
classes, 335
IntRange type

about, 105
as an Iterable, 139
inv() function, 121
is operator, 212
isInitialized function, 198
it keyword
with also, 185
with anonymous functions, 72
with forEach, 156
with let, 89, 124
Iterable types, 139
iteration
about, 137-139
break expression, 148
with for, 137
with forEach, 138
with forEachIndexed, 138
with while, 146

J

Java
(see also interoperating with Java)
@NotNull annotation, 101, 298
@Nullable annotation, 297
anonymous inner classes, 82
arrays, 150
benefits of Kotlin, xii
checked exceptions, 100
class-level variables, 300
decompiled Kotlin bytecode, 24
exceptions, 311
getters and setters, 300
null safety, 101
nullable types, 84
NullPointerException, 84
package private visibility, 185
primitive types, 25, 299
referential and structural equality, 110
Java Development Kit (JDK), 4
Java Virtual Machine (JVM), targeting, 3, 12

K

Kotlin bytecode tool window, 23
Kotlin language, history, xii

Kotlin REPL, 10, 11
KotlinNullPointerException, 89

379

Index

L mapOf function, 153
maps

(see also Map type, MutableMap type)

about, 153-162

accessing values by key, 155

adding entries, 156

creating, 153
measureNanoTime function, 292
measureTimeInMillis function, 292
minus assign operator (-=), 135, 146, 156
minus operator (-), 156
modules, 5, 185
modulus/remainder operator (%), 120
MutablelList type

(see also lists)

about, 133

mutator functions, 135

size property, 287

vs List, 133
mutableListOf function, 133
MutableMap type

(see also maps)

mutator functions, 156

size property, 287

vs Map, 156
mutableMapOf function, 153
MutableSet type

(see also sets)

mutator functions, 146

size property, 287

vs Set, 146
mutableSetOf function, 145
mutator functions

for lists, 135

for maps, 156

for sets, 146

lambda, lambda expression, lambda result (see
anonymous functions)
last function, 131
lateinit keyword, 198
launch function, 350
less-than operator (<), 29
less-than-or-equal-to operator (<=), 29
let function, 88, 92, 124, 128
List type
(see also lists)
about, 16, 129-142, 162
as an Iterable, 139
possibility of changing contents, 151
size property, 287
vs MutableList, 133
1istOf function, 129
lists
(see also List type, MutableList type)
about, 129-142, 162
accessing elements by index, 130
checking for elements, 132
converting to sequences, 291
converting to/from sets, 149
creating, 129
mutable, 133
read-only, 129
var vs val, 133
logical operators
about, 33
order of operator precedence, 33
logical ‘and’ operator (&&), 33
logical ‘not’ operator (!), 33
logical ‘or’ operator (| |), 33
Long type, 113

M N
main function
as application entry point, 7
IntelliJ shortcut, 13
map function, 285
Map type
(see also maps)
about, 16, 153-162
as an Iterable, 139
size property, 287
vs MutableMap, 156

non-equality operator (!=), 29

Nothing type, 60

null coalescing operator (?:), 91

null safety
about, 83
assert precondition function, 98
checking values with != nultl, 90
checkNotNull precondition function, 97

380

Index

double-bang (non-null assertion) operator
(1), 89
error precondition function, 98
IllegalStateException, 94
KotlinNullPointerException, 89
non-null types, 84
null coalescing operator (?:), 91
null safety using conditionals, 90
nullable types, 85
require precondition function, 98
requireNotNull precondition function, 98
safe call operator (?.), 88
try/catch statements, 96
with let, 124

numeric types
(see also individual types)
about, 113-121
bitwise operations, 121
compared, 113
converting from strings, 116
for decimal values, 116
for integers, 114
maximum and minimum values, 113
precision, 118

o)

object declarations
about, 220, 221
calling, 221
initializing, 220
object expressions, 225
object keyword, 219, 241
object-oriented programming
about, 163
benefits, 180
encapsulation, 166
inheritance, 205
polymorphism, 210
open keyword, 206
operator modifier, 233
operator overloading, 233, 238
out keyword, 261, 265
override keyword, 207, 246

P

packages, 181
Pair type, 154

parameterized types, 130
parameters
(see also functions)
about, 48
it keyword, 72
of anonymous functions, 71
vs arguments, 51
platform independence, 12, 217
plus assign operator (+=), 135, 146, 154, 156
plus function, 234
plusAssign function, 234
polymorphism, 210
precondition functions, 97
println function, 7
private visibility, 166
producer role, 265
project tool window, 5
projects
about, 5
creating, 2
opening, 13
organizing with modules, 185
organizing with packages, 181
running, 8
properties
about, 167-172, 182-184
accessibility to class functions, 178
computed, 172
defined with val or var, 167, 182
defining in constructors, 189
dot syntax, 168
extension properties, 274
fields, 168, 169, 172
getters, 168
initialization, 168, 194-199
nullable, 184
overriding getters and setters, 169
race conditions, 185
setters, 168, 169
visibility, 171
vs local variables, 196
protected visibility, 208
public visibility, 47
put function, 156
putAll function, 156

381

Index

R

race conditions, 185

range operator (..), 37,234
ranges, 37

rangeTo function, 234
readText function, 346

refactoring using IntelliJ IDEA command, 43-45

referential equality, 110
referential equality operator (===), 29

referential non-equality operator (!==), 29

reified keyword, 267
remove function, 133, 146, 156
removeAll function, 146
removelIf function, 135
REPL, 10, 11
replace function, 107
require function
about, 98
for parameter requirements, 98
requireNotNull function, 98
reserved keywords, 63
return keyword
about, 49
absent from anonymous functions, 70
absent from Unit functions, 58
return type, 48, 57
roundToInt function, 120
run function, 125, 128, 257
run tool window, 8
runtime errors, 86

S

safe call operator (?.), 88
scope

functions, 50

relative scoping, 124
sealed classes, 241
Sequence type, 290

(see also sequences)
sequences

about, 290

converting from lists, 291

iterator functions, 290
set operator ([1=), 134
Set type

(see also sets)

about, 16, 142-146, 162

382

as an Iterable, 139
possibility of changing contents, 151
size property, 287
vs MutableSet, 146
setOf function, 143
sets
(see also Set type, MutableSet type)
about, 142-146, 162
converting to/from lists, 149
creating, 143
index-based access, 143
mutable, 146
shl(bitcount) function, 121
Short type, 113
shr(bitcount) function, 121
single-expression functions, 57
singletons, 219
smart casting, 90, 216
split function, 106
standard functions, 123, 128
static type checking, 15
string concatenation, 28
string interpolation/templating
about, 40
interpolating an expression, 40
String type
(see also strings)
about, 16, 103-112
strings
about, 103-112
accessing characters by index, 104
converting to numeric types, 116
extracting substrings, 103-107
immutability, 109
structural equality, 110
structural equality operator (==), 28, 234
substring function, 105
super keyword, 209

T

takeIf function, 127, 128
takeUnless function, 127
this keyword
in class constructors, 190
in extension functions, 270
Thread. sleep function, 253
throw operator, 94, 95

Index

to function, 154 numeric (see numeric types, individual type
toBigDecimal function, 116 names)
toBinaryString function, 121 Pair, 154
toDouble function, 116 platform types, 297
toDoubleOrNull function, 116 Sequence, 290
toFloat function, 116 Set, 16, 142, 162
toInt function, 120 Short, 113
toIntOrNull function, 116 String, 16, 103
toList function, 134, 149 Unit, 58

toLong function, 116

toMutableList function, 134, 149 U

toMutableSet function, 149
toSet function, 149
toString function, 217, 229
try/catch statements, 96 v
type casting, 215

type checking, 15 val keyword, '17
type inference valueOf function, 236

about, 20 var keyword, 14
vararg keyword, 260

Unicode characters, 111
Unit type, 58

with function types, 74

with generics, 256 variables
types about, 13
(see also individual types) declaring, 14
Array, 150 file-level, 50
Boolean. 16 initialization requirements, 50
Byte 11’3 local, 50
Char. 16. 111 read-only variables vs compile-time constants,
9 b 21

collection types, 129

commonly used, 16 temporary, 188

Deferred, 349 val keyword, 17
Double, 16, 113, 116 _ var keyword, 14
Float, 113 visibility

generic (see generics) about, 47, 166

Int, 14, 16,113, 114 and encapsulation, 166
IntArray, 150 class functions, 166

default, 166
internal, 166, 185
modifiers, 47, 166

IntRange, 105
Iterable, 139
Kotlin vs Java, 25

List, 16, 129, 162 private, 166

Long, 113 properties, 171

Map, 16, 153 protected, 166, 208

MutableList, 133 public, 166

MutableMap, 156

MutableSet, 146 W

non-null, 84 when expressions

Nothing, 60 about, 38, 39

nullable, 85 scoping conditions to arguments, 39

vs if/else expressions, 38

383

Index

while loops, 146
with function, 126, 128

X

xor (number) function, 121

y 4

zip function, 288

384

	Kotlin Programming
	Table of Contents
	Introducing Kotlin
	Why Kotlin?
	Who Is This Book For?
	How to Use This Book
	For the More Curious
	Challenges
	Typographical conventions

	Looking Forward

	Chapter 1 Your First Kotlin Application
	Installing IntelliJ IDEA
	Your First Kotlin Project
	Creating your first Kotlin file
	Running your Kotlin file
	Compilation and execution of Kotlin/JVM code

	The Kotlin REPL
	For the More Curious: Why Use IntelliJ?
	For the More Curious: Targeting the JVM
	Challenge: REPL Arithmetic

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

