
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780135159941
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780135159941
https://plusone.google.com/share?url=http://www.informit.com/title/9780135159941
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780135159941
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780135159941/Free-Sample-Chapter

Supercharged Python

Overland_Book.indb iOverland_Book.indb i 4/30/19 1:37 PM4/30/19 1:37 PM

Overland_Book.indb 634Overland_Book.indb 634 4/30/19 1:38 PM4/30/19 1:38 PM

This page intentionally left blank

Supercharged Python

Brian Overland
John Bennett

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Overland_Book.indb iiiOverland_Book.indb iii 4/30/19 1:37 PM4/30/19 1:37 PM

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with or
arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2019936408

Copyright © 2019 Pearson Education, Inc.

Cover illustration: Open Studio/Shutterstock

All rights reserved. This publication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmis-
sion in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permissions, request forms and the appropriate contacts within the
Pearson Education Global Rights & Permissions Department, please visit www.pearsoned.com/
permissions/.

ISBN-13: 978-0-13-515994-1
ISBN-10: 0-13-515994-6

1 19

Overland_Book.indb ivOverland_Book.indb iv 4/30/19 1:37 PM4/30/19 1:37 PM

http://www.pearsoned.com/permissions/.
http://www.pearsoned.com/permissions/.

To my beautiful and brilliant mother, Betty P. M. Overland. . . .
All the world is mad except for me and thee. Stay a little.

 —Brian

To my parents, who did so much to shape who I am.
 —John

Overland_Book.indb vOverland_Book.indb v 4/30/19 1:37 PM4/30/19 1:37 PM

Overland_Book.indb 634Overland_Book.indb 634 4/30/19 1:38 PM4/30/19 1:38 PM

This page intentionally left blank

vii

Contents

Preface xxiii

What Makes Python Special? xxiii
Paths to Learning: Where Do I Start? xxiv
Clarity and Examples Are Everything xxiv
Learning Aids: Icons xxv
What You’ll Learn xxvi
Have Fun xxvi

Acknowledgments xxvii

About the Authors xxix

Chapter 1 Review of the Fundamentals 1

 1.1 Python Quick Start 1
 1.2 Variables and Naming Names 4
 1.3 Combined Assignment Operators 4
 1.4 Summary of Python Arithmetic Operators 5
 1.5 Elementary Data Types: Integer and Floating Point 6
 1.6 Basic Input and Output 7
 1.7 Function Definitions 9
 1.8 The Python “if” Statement 11
 1.9 The Python “while” Statement 12
 1.10 A Couple of Cool Little Apps 14

Overland_Book.indb viiOverland_Book.indb vii 4/30/19 1:37 PM4/30/19 1:37 PM

Contentsviii

 1.11 Summary of Python Boolean Operators 15
 1.12 Function Arguments and Return Values 16
 1.13 The Forward Reference Problem 19
 1.14 Python Strings 19
 1.15 Python Lists (and a Cool Sorting App) 21
 1.16 The “for” Statement and Ranges 23
 1.17 Tuples 25
 1.18 Dictionaries 26
 1.19 Sets 28
 1.20 Global and Local Variables 29
Summary 31
Review Questions 31
Suggested Problems 32

Chapter 2 Advanced String Capabilities 33

 2.1 Strings Are Immutable 33
 2.2 Numeric Conversions, Including Binary 34
 2.3 String Operators (+, =, *, >, etc.) 36
 2.4 Indexing and Slicing 39
 2.5 Single-Character Functions (Character Codes) 42
 2.6 Building Strings Using “join” 44
 2.7 Important String Functions 46
 2.8 Binary, Hex, and Octal Conversion Functions 47
 2.9 Simple Boolean (“is”) Methods 48
 2.10 Case Conversion Methods 49
 2.11 Search-and-Replace Methods 50
 2.12 Breaking Up Input Using “split” 53
 2.13 Stripping 54
 2.14 Justification Methods 55
Summary 56
Review Questions 57
Suggested Problems 57

Overland_Book.indb viiiOverland_Book.indb viii 4/30/19 1:37 PM4/30/19 1:37 PM

Contents ix

Chapter 3 Advanced List Capabilities 59

 3.1 Creating and Using Python Lists 59
 3.2 Copying Lists Versus Copying List Variables 61
 3.3 Indexing 61

 3.3.1 Positive Indexes 62
 3.3.2 Negative Indexes 63
 3.3.3 Generating Index Numbers Using “enumerate” 63

 3.4 Getting Data from Slices 64
 3.5 Assigning into Slices 67
 3.6 List Operators 67
 3.7 Shallow Versus Deep Copying 69
 3.8 List Functions 71
 3.9 List Methods: Modifying a List 73
 3.10 List Methods: Getting Information on Contents 75
 3.11 List Methods: Reorganizing 75
 3.12 Lists as Stacks: RPN Application 78
 3.13 The “reduce” Function 81
 3.14 Lambda Functions 83
 3.15 List Comprehension 84
 3.16 Dictionary and Set Comprehension 87
 3.17 Passing Arguments Through a List 89
 3.18 Multidimensional Lists 90

 3.18.1 Unbalanced Matrixes 91
 3.18.2 Creating Arbitrarily Large Matrixes 91

Summary 93
Review Questions 93
Suggested Problems 94

Chapter 4 Shortcuts, Command Line, and Packages 95

 4.1 Overview 95
 4.2 Twenty-Two Programming Shortcuts 95

 4.2.1 Use Python Line Continuation as Needed 96
 4.2.2 Use “for” Loops Intelligently 97
 4.2.3 Understand Combined Operator Assignment (+= etc.) 98

Overland_Book.indb ixOverland_Book.indb ix 4/30/19 1:37 PM4/30/19 1:37 PM

Contentsx

 4.2.4 Use Multiple Assignment 100
 4.2.5 Use Tuple Assignment 101
 4.2.6 Use Advanced Tuple Assignment 102
 4.2.7 Use List and String “Multiplication” 104
 4.2.8 Return Multiple Values 105
 4.2.9 Use Loops and the “else” Keyword 106
 4.2.10 Take Advantage of Boolean Values and “not” 107
 4.2.11 Treat Strings as Lists of Characters 107
 4.2.12 Eliminate Characters by Using “replace” 108
 4.2.13 Don’t Write Unnecessary Loops 108
 4.2.14 Use Chained Comparisons (n < x < m) 108
 4.2.15 Simulate “switch” with a Table of Functions 109
 4.2.16 Use the “is” Operator Correctly 110
 4.2.17 Use One-Line “for” Loops 111
 4.2.18 Squeeze Multiple Statements onto a Line 112
 4.2.19 Write One-Line if/then/else Statements 112
 4.2.20 Create Enum Values with “range” 113
 4.2.21 Reduce the Inefficiency of the “print” Function Within IDLE 114
 4.2.22 Place Underscores Inside Large Numbers 115

 4.3 Running Python from the Command Line 115
 4.3.1 Running on a Windows-Based System 115
 4.3.2 Running on a Macintosh System 116
 4.3.3 Using pip or pip3 to Download Packages 117

 4.4 Writing and Using Doc Strings 117
 4.5 Importing Packages 119
 4.6 A Guided Tour of Python Packages 121
 4.7 Functions as First-Class Objects 123
 4.8 Variable-Length Argument Lists 125

 4.8.1 The *args List 125
 4.8.2 The “**kwargs” List 127

 4.9 Decorators and Function Profilers 128
 4.10 Generators 132

 4.10.1 What’s an Iterator? 132
 4.10.2 Introducing Generators 133

 4.11 Accessing Command-Line Arguments 138
Summary 141
Questions for Review 142
Suggested Problems 142

Overland_Book.indb xOverland_Book.indb x 4/30/19 1:37 PM4/30/19 1:37 PM

Contents xi

Chapter 5 Formatting Text Precisely 145

 5.1 Formatting with the Percent Sign Operator (%) 145
 5.2 Percent Sign (%) Format Specifiers 147
 5.3 Percent Sign (%) Variable-Length Print Fields 150
 5.4 The Global “format” Function 152
 5.5 Introduction to the “format” Method 156
 5.6 Ordering by Position (Name or Number) 158
 5.7 “Repr” Versus String Conversion 161
 5.8 The “spec” Field of the “format” Function and Method 162

 5.8.1 Print-Field Width 163
 5.8.2 Text Justification: “fill” and “align” Characters 164
 5.8.3 The “sign” Character 166
 5.8.4 The Leading-Zero Character (0) 167
 5.8.5 Thousands Place Separator 168
 5.8.6 Controlling Precision 170
 5.8.7 “Precision” Used with Strings (Truncation) 172
 5.8.8 “Type” Specifiers 173
 5.8.9 Displaying in Binary Radix 174
 5.8.10 Displaying in Octal and Hex Radix 174
 5.8.11 Displaying Percentages 175
 5.8.12 Binary Radix Example 176

 5.9 Variable-Size Fields 176
Summary 178
Review Questions 179
Suggested Problems 179

Chapter 6 Regular Expressions, Part I 181

 6.1 Introduction to Regular Expressions 181
 6.2 A Practical Example: Phone Numbers 183
 6.3 Refining Matches 185
 6.4 How Regular Expressions Work: Compiling Versus Running 188
 6.5 Ignoring Case, and Other Function Flags 192
 6.6 Regular Expressions: Basic Syntax Summary 193

 6.6.1 Meta Characters 194
 6.6.2 Character Sets 195

Overland_Book.indb xiOverland_Book.indb xi 4/30/19 1:37 PM4/30/19 1:37 PM

Contentsxii

 6.6.3 Pattern Quantifiers 197
 6.6.4 Backtracking, Greedy, and Non-Greedy 199

 6.7 A Practical Regular-Expression Example 200
 6.8 Using the Match Object 203
 6.9 Searching a String for Patterns 205
 6.10 Iterative Searching (“findall”) 206
 6.11 The “findall” Method and the Grouping Problem 208
 6.12 Searching for Repeated Patterns 210
 6.13 Replacing Text 211
Summary 213
Review Questions 213
Suggested Problems 214

Chapter 7 Regular Expressions, Part II 215

 7.1 Summary of Advanced RegEx Grammar 215
 7.2 Noncapture Groups 217

 7.2.1 The Canonical Number Example 217
 7.2.2 Fixing the Tagging Problem 218

 7.3 Greedy Versus Non-Greedy Matching 219
 7.4 The Look-Ahead Feature 224
 7.5 Checking Multiple Patterns (Look-Ahead) 227
 7.6 Negative Look-Ahead 229
 7.7 Named Groups 231
 7.8 The “re.split” Function 234
 7.9 The Scanner Class and the RPN Project 236
 7.10 RPN: Doing Even More with Scanner 239
Summary 243
Review Questions 243
Suggested Problems 244

Chapter 8 Text and Binary Files 245

 8.1 Two Kinds of Files: Text and Binary 245
 8.1.1 Text Files 246
 8.1.2 Binary Files 246

Overland_Book.indb xiiOverland_Book.indb xii 4/30/19 1:37 PM4/30/19 1:37 PM

Contents xiii

 8.2 Approaches to Binary Files: A Summary 247
 8.3 The File/Directory System 248
 8.4 Handling File-Opening Exceptions 249
 8.5 Using the “with” Keyword 252
 8.6 Summary of Read/Write Operations 252
 8.7 Text File Operations in Depth 254
 8.8 Using the File Pointer (“seek”) 257
 8.9 Reading Text into the RPN Project 258

 8.9.1 The RPN Interpreter to Date 258
 8.9.2 Reading RPN from a Text File 260
 8.9.3 Adding an Assignment Operator to RPN 262

 8.10 Direct Binary Read/Write 268
 8.11 Converting Data to Fixed-Length Fields (“struct”) 269

 8.11.1 Writing and Reading One Number at a Time 272
 8.11.2 Writing and Reading Several Numbers at a Time 272
 8.11.3 Writing and Reading a Fixed-Length String 273
 8.11.4 Writing and Reading a Variable-Length String 274
 8.11.5 Writing and Reading Strings and Numerics Together 275
 8.11.6 Low-Level Details: Big Endian Versus Little Endian 276

 8.12 Using the Pickling Package 278
 8.13 Using the “shelve” Package 280
Summary 282
Review Questions 283
Suggested Problems 283

Chapter 9 Classes and Magic Methods 285

 9.1 Classes and Objects: Basic Syntax 285
 9.2 More About Instance Variables 287
 9.3 The “_ _init_ _” and “_ _new_ _” Methods 288
 9.4 Classes and the Forward Reference Problem 289
 9.5 Methods Generally 290
 9.6 Public and Private Variables and Methods 292
 9.7 Inheritance 293
 9.8 Multiple Inheritance 294
 9.9 Magic Methods, Summarized 295

Overland_Book.indb xiiiOverland_Book.indb xiii 4/30/19 1:37 PM4/30/19 1:37 PM

Contentsxiv

 9.10 Magic Methods in Detail 297
 9.10.1 String Representation in Python Classes 297
 9.10.2 The Object Representation Methods 298
 9.10.3 Comparison Methods 300
 9.10.4 Arithmetic Operator Methods 304
 9.10.5 Unary Arithmetic Methods 308
 9.10.6 Reflection (Reverse-Order) Methods 310
 9.10.7 In-Place Operator Methods 312
 9.10.8 Conversion Methods 314
 9.10.9 Collection Class Methods 316
 9.10.10 Implementing “_ _iter_ _” and “_ _next_ _” 319

 9.11 Supporting Multiple Argument Types 320
 9.12 Setting and Getting Attributes Dynamically 322
Summary 323
Review Questions 324
Suggested Problems 325

Chapter 10 Decimal, Money, and Other Classes 327

 10.1 Overview of Numeric Classes 327
 10.2 Limitations of Floating-Point Format 328
 10.3 Introducing the Decimal Class 329
 10.4 Special Operations on Decimal Objects 332
 10.5 A Decimal Class Application 335
 10.6 Designing a Money Class 336
 10.7 Writing the Basic Money Class (Containment) 337
 10.8 Displaying Money Objects (“_ _str_ _”, “_ _repr_ _”) 338
 10.9 Other Monetary Operations 339
 10.10 Demo: A Money Calculator 342
 10.11 Setting the Default Currency 345
 10.12 Money and Inheritance 347
 10.13 The Fraction Class 349
 10.14 The Complex Class 353
Summary 357
Review Questions 357
Suggested Problems 358

Overland_Book.indb xivOverland_Book.indb xiv 4/30/19 1:37 PM4/30/19 1:37 PM

Contents xv

Chapter 11 The Random and Math Packages 359

 11.1 Overview of the Random Package 359
 11.2 A Tour of Random Functions 360
 11.3 Testing Random Behavior 361
 11.4 A Random-Integer Game 363
 11.5 Creating a Deck Object 365
 11.6 Adding Pictograms to the Deck 368
 11.7 Charting a Normal Distribution 370
 11.8 Writing Your Own Random-Number Generator 374

 11.8.1 Principles of Generating Random Numbers 374
 11.8.2 A Sample Generator 374

 11.9 Overview of the Math Package 376
 11.10 A Tour of Math Package Functions 376
 11.11 Using Special Values (pi) 377
 11.12 Trig Functions: Height of a Tree 378
 11.13 Logarithms: Number Guessing Revisited 381

 11.13.1 How Logarithms Work 381
 11.13.2 Applying a Logarithm to a Practical Problem 382

Summary 385
Review Questions 385
Suggested Problems 386

Chapter 12 The “numpy” (Numeric Python) Package 387

 12.1 Overview of the “array,” “numpy,” and “matplotlib” Packages 387
 12.1.1 The “array” Package 387
 12.1.2 The “numpy” Package 387
 12.1.3 The “numpy.random” Package 388
 12.1.4 The “matplotlib” Package 388

 12.2 Using the “array” Package 388
 12.3 Downloading and Importing “numpy” 390
 12.4 Introduction to “numpy”: Sum 1 to 1 Million 391
 12.5 Creating “numpy” Arrays 392

 12.5.1 The “array” Function (Conversion to an Array) 394
 12.5.2 The “arange” Function 396

Overland_Book.indb xvOverland_Book.indb xv 4/30/19 1:37 PM4/30/19 1:37 PM

Contentsxvi

 12.5.3 The “linspace” Function 396
 12.5.4 The “empty” Function 397
 12.5.5 The “eye” Function 398
 12.5.6 The “ones” Function 399
 12.5.7 The “zeros” Function 400
 12.5.8 The “full” Function 401
 12.5.9 The “copy” Function 402
 12.5.10 The “fromfunction” Function 403

 12.6 Example: Creating a Multiplication Table 405
 12.7 Batch Operations on “numpy” Arrays 406
 12.8 Ordering a Slice of “numpy” 410
 12.9 Multidimensional Slicing 412
 12.10 Boolean Arrays: Mask Out That “numpy”! 415
 12.11 “numpy” and the Sieve of Eratosthenes 417
 12.12 Getting “numpy” Stats (Standard Deviation) 419
 12.13 Getting Data on “numpy” Rows and Columns 424
Summary 429
Review Questions 429
Suggested Problems 430

Chapter 13 Advanced Uses of “numpy” 431

 13.1 Advanced Math Operations with “numpy” 431
 13.2 Downloading “matplotlib” 434
 13.3 Plotting Lines with “numpy” and “matplotlib” 435
 13.4 Plotting More Than One Line 441
 13.5 Plotting Compound Interest 444
 13.6 Creating Histograms with “matplotlib” 446
 13.7 Circles and the Aspect Ratio 452
 13.8 Creating Pie Charts 455
 13.9 Doing Linear Algebra with “numpy” 456

 13.9.1 The Dot Product 456
 13.9.2 The Outer-Product Function 460
 13.9.3 Other Linear Algebra Functions 462

 13.10 Three-Dimensional Plotting 463
 13.11 “numpy” Financial Applications 464

Overland_Book.indb xviOverland_Book.indb xvi 4/30/19 1:37 PM4/30/19 1:37 PM

Contents xvii

 13.12 Adjusting Axes with “xticks” and “yticks” 467
 13.13 “numpy” Mixed-Data Records 469
 13.14 Reading and Writing “numpy” Data from Files 471
Summary 475
Review Questions 475
Suggested Problems 476

Chapter 14 Multiple Modules and the RPN Example 477

 14.1 Overview of Modules in Python 477
 14.2 Simple Two-Module Example 478
 14.3 Variations on the “import” Statement 482
 14.4 Using the “_ _all_ _” Symbol 484
 14.5 Public and Private Module Variables 487
 14.6 The Main Module and “_ _main_ _” 488
 14.7 Gotcha! Problems with Mutual Importing 490
 14.8 RPN Example: Breaking into Two Modules 493
 14.9 RPN Example: Adding I/O Directives 496
 14.10 Further Changes to the RPN Example 499

 14.10.1 Adding Line-Number Checking 500
 14.10.2 Adding Jump-If-Not-Zero 502
 14.10.3 Greater-Than (>) and Get-Random-Number (!) 504

 14.11 RPN: Putting It All Together 508
Summary 513
Review Questions 514
Suggested Problems 514

Chapter 15 Getting Financial Data off the Internet 517

 15.1 Plan of This Chapter 517
 15.2 Introducing the Pandas Package 518
 15.3 “stock_load”: A Simple Data Reader 519
 15.4 Producing a Simple Stock Chart 521
 15.5 Adding a Title and Legend 524
 15.6 Writing a “makeplot” Function (Refactoring) 525

Overland_Book.indb xviiOverland_Book.indb xvii 4/30/19 1:37 PM4/30/19 1:37 PM

Contentsxviii

 15.7 Graphing Two Stocks Together 527
 15.8 Variations: Graphing Other Data 530
 15.9 Limiting the Time Period 534
 15.10 Split Charts: Subplot the Volume 536
 15.11 Adding a Moving-Average Line 538
 15.12 Giving Choices to the User 540
Summary 544
Review Questions 545
Suggested Problems 545

Appendix A Python Operator Precedence Table 547

Appendix B Built-In Python Functions 549

abs(x) 550
all(iterable) 550
any(iterable) 550
ascii(obj) 551
bin(n) 551
bool(obj) 551
bytes(source, encoding) 552
callable(obj) 552
chr(n) 552
compile(cmd_str, filename, mode_str, flags=0,

dont_inherit=False, optimize=–1) 553
complex(real=0, imag=0) 553
complex(complex_str) 554
delattr(obj, name_str) 555
dir([obj]) 555
divmod(a, b) 556
enumerate(iterable, start=0) 556
eval(expr_str [, globals [, locals]]) 557
exec(object [, global [, locals]]) 558
filter(function, iterable) 558
float([x]) 559
format(obj, [format_spec]) 559
frozenset([iterable]) 560
getattr(obj, name_str [,default]) 560

Overland_Book.indb xviiiOverland_Book.indb xviii 4/30/19 1:37 PM4/30/19 1:37 PM

Contents xix

globals() 560
hasattr(obj, name_str) 561
hash(obj) 561
help([obj]) 561
hex(n) 561
id(obj) 561
input([prompt_str]) 562
int(x, base=10) 562
int() 562
isinstance(obj, class) 562
issubclass(class1, class2) 563
iter(obj) 563
len(sequence) 564
list([iterable]) 564
locals() 565
map(function, iterable1 [, iterable2…]) 565
max(arg1 [, arg2]…) 566
max(iterable) 566
min(arg1 [, arg2]…) 566
min(iterable) 567
oct(n) 567
open(file_name_str, mode='rt') 567
ord(char_str) 568
pow(x, y [, z]) 569
print(objects, sep='', end='\n', file=sys.stdout) 569
range(n) 570
range(start, stop [, step]) 570
repr(obj) 570
reversed(iterable) 571
round(x [,ndigits]) 571
set([iterable]) 572
setattr(obj, name_str, value) 573
sorted(iterable [, key] [, reverse]) 573
str(obj='') 573
str(obj=b'' [, encoding='utf-8']) 574
sum(iterable [, start]) 574
super(type) 575
tuple([iterable]) 575
type(obj) 575
zip(*iterables) 575

Overland_Book.indb xixOverland_Book.indb xix 4/30/19 1:37 PM4/30/19 1:37 PM

Contentsxx

Appendix C Set Methods 577

set_obj.add(obj) 577
set_obj.clear() 578
set_obj.copy() 578
set_obj.difference(other_set) 578
set_obj.difference_update(other_set) 578
set_obj.discard(obj) 579
set_obj.intersection(other_set) 579
set_obj.intersection_update(other_set) 579
set_obj.isdisjoint(other_set) 579
set_obj.issubset(other_set) 579
set_obj.issuperset(other_set) 580
set_obj.pop() 580
set_obj.remove(obj) 580
set_obj.symmetric_difference(other_set) 580
set_obj.symmetric_difference_update(other_set) 581
set_obj.union(other_set) 581
set_obj.union_update(other_set) 581

Appendix D Dictionary Methods 583

dict_obj.clear() 583
dict_obj.copy() 584
dict_obj.get(key_obj, default_val = None) 584
dict_obj.items() 585
dict_obj.keys() 585
dict_obj.pop(key [, default_value]) 585
dict_obj.popitem() 585
dict_obj.setdefault(key, default_value=None) 586
dict_obj.values() 586
dict_obj.update(sequence) 586

Appendix E Statement Reference 587

Variables and Assignments 587
Spacing Issues in Python 589
Alphabetical Statement Reference 590

assert Statement 590
break Statement 591
class Statement 591

Overland_Book.indb xxOverland_Book.indb xx 4/30/19 1:37 PM4/30/19 1:37 PM

Contents xxi

continue Statement 593
def Statement 594
del Statement 594
elif Clause 595
else Clause 595
except Clause 595
for Statement 595
global Statement 596
if Statement 597
import Statement 598
nonlocal Statement 598
pass Statement 599
raise Statement 599
return Statement 599
try Statement 600
while Statement 602
with Statement 602
yield Statement 603

Index 605

Overland_Book.indb xxiOverland_Book.indb xxi 4/30/19 1:37 PM4/30/19 1:37 PM

Overland_Book.indb 634Overland_Book.indb 634 4/30/19 1:38 PM4/30/19 1:38 PM

This page intentionally left blank

xxiii

Preface

Books on Python aimed for the absolute beginner have become a cottage
industry these days. Everyone and their dog, it seems, wants to chase the
Python.

We’re a little biased, but one book we especially recommend is Python
Without Fear. It takes you by the hand and explains the major features one
at a time. But what do you do after you know a little of the language but not
enough to call yourself an “expert”? How do you learn enough to get a job or
to write major applications?

That’s what this book is for: to be the second book you ever buy on Python
and possibly the last.

What Makes Python Special?
It’s safe to say that many people are attracted to Python because it looks eas-
ier than C++. That may be (at least in the beginning), but underneath this
so-called easy language is a tool of great power, with many shortcuts and soft-
ware libraries called “packages” that—in some cases—do most of the work
for you. These let you create some really impressive software, outputting
beautiful graphs and manipulating large amounts of data.

For most people, it may take years to learn all the shortcuts and advanced
features. This book is written for people who want to get that knowledge now,
to get closer to being a Python expert much faster.

Overland_Book.indb xxiiiOverland_Book.indb xxiii 4/30/19 1:37 PM4/30/19 1:37 PM

Prefacexxiv

Paths to Learning: Where Do I Start?
This book offers different learning paths for different people.

◗ You’re rusty: If you’ve dabbled in Python but you’re a little rusty, you may
want to take a look at Chapter 1, “Review of the Fundamentals.” Otherwise,
you may want to skip Chapter 1 or only take a brief look at it.

◗ You know the basics but are still learning: Start with Chapters 2 and 3, which sur-
vey the abilities of strings and lists. This survey includes some advanced abilities
of these data structures that people often miss the first time they learn Python.

◗ Your understanding of Python is strong, but you don’t know everything yet:
Start with Chapter 4, which lists 22 programming shortcuts unique to Python,
that most people take a long time to fully learn.

◗ You want to master special features: You can start in an area of specialty. For
example, Chapters 5, 6, and 7 deal with text formatting and regular expres-
sions. The two chapters on regular expression syntax, Chapters 6 and 7, start
with the basics but then cover the finer points of this pattern-matching tech-
nology. Other chapters deal with other specialties. For example, Chapter 8
describes the different ways of handling text and binary files.

◗ You want to learn advanced math and plotting software: If you want to do
plotting, financial, or scientific applications, start with Chapter 12, “The ‘numpy’
(Numeric Python) Package.” This is the basic package that provides an under-
lying basis for many higher-level capabilities described in Chapters 13 through 15.

Clarity and Examples Are Everything
Even with advanced technology, our emphasis is on clarity, short examples,
more clarity, and more examples. We emphasize an interactive approach,
especially with the use of the IDLE environment, encouraging you to type in
statements and see what they do. Text in bold represents lines for you to type
in, or to be added or changed.

>>> print('Hello', 'my', 'world!')
Hello my world!

Several of the applications in this book are advanced pieces of software,
including a Deck object, a fully functional “RPN” language interpreter, and a
multifaceted stock-market program that presents the user with many choices.
With these applications, we start with simple examples in the beginning,
finally showing all the pieces in context. This approach differs from many

Overland_Book.indb xxivOverland_Book.indb xxiv 4/30/19 1:37 PM4/30/19 1:37 PM

Preface xxv

books, which give you dozens of functions all out of order, with no sense of
architecture. In this book, architecture is everything.

You can download examples from brianoverland.com/books.

Learning Aids: Icons
This book makes generous use of tables for ease of reference, as well as con-
ceptual art (figures). Our experience is that while poorly conceived figures can
be a distraction, the best figures can be invaluable. A picture is worth a thou-
sand words. Sometimes, more.

We also believe that in discussing plotting and graphics software, there’s no
substitute for showing all the relevant screen shots.

The book itself uses a few important, typographical devices. There are
three special icons used in the text.

Note Ë We sometimes use Notes to point out facts you’ll eventually want to know
but that diverge from the main discussion. You might want to skip over Notes the
first time you read a section, but it’s a good idea to go back later and read them.

Ç Note

The Key Syntax Icon introduces general syntax displays, into which you supply
some or all of the elements. These elements are called “placeholders,” and they
appear in italics. Some of the syntax—especially keywords and punctuation—
are in bold and intended to be typed in as shown. Finally, square brackets,
when not in bold, indicate an optional item. For example:

set([iterable])

This syntax display implies that iterable is an iterable object (such as a
list or a generator object) that you supply. And it’s optional.

Square brackets, when in bold, are intended literally, to be typed in as
shown. For example:

list_name = [obj1, obj2, obj3, …]

Ellipses (…) indicate a language element that can be repeated any number
of times.

Performance
Tip

Performance tips are like Notes in that they constitute a short digression
from the rest of the chapter. These tips address the question of how you

can improve software performance. If you’re interested in that topic, you’ll
want to pay special attention to these notes.

Ç Performance Tip

K
ey

 S
yn

tax

Overland_Book.indb xxvOverland_Book.indb xxv 4/30/19 1:37 PM4/30/19 1:37 PM

Prefacexxvi

What You’ ll Learn
The list of topics in this book that are not in Python Without Fear or other
“beginner” texts is a long one, but here is a partial list of some of the major
areas:

◗ List, set, and dictionary comprehension.

◗ Regular expressions and advanced formatting techniques; how to use them in
lexical analysis.

◗ Packages: the use of Python’s advanced numeric and plotting software. Also,
special types such as Decimal and Fraction.

◗ Mastering all the ways of using binary file operations in Python, as well as
text operations.

◗ How to use multiple modules in Python while avoiding the “gotchas.”

◗ Fine points of object-oriented programming, especially all the “magic meth-
ods,” their quirks, their special features, and their uses.

Have Fun
When you master some or all of the techniques of this book, you should make
a delightful discovery: Python often enables you to do a great deal with a rel-
atively small amount of code. That’s why it’s dramatically increasing in popu-
larity every day. Because Python is not just a time-saving device, it’s fun to be
able to program this way . . . to see a few lines of code do so much.

We wish you the joy of that discovery.

Register your copy of Supercharged Python on the InformIT site for conve-
nient access to updates and/or corrections as they become available. To start
the registration process, go to informit.com/register and log in or create
an account. Enter the product ISBN (9780135159941) and click Submit.
Look on the Registered Products tab for an Access Bonus Content link
next to this product, and follow that link to access any available bonus
materials. If you would like to be notified of exclusive offers on new edi-
tions and updates, please check the box to receive email from us.

Overland_Book.indb xxviOverland_Book.indb xxvi 4/30/19 1:37 PM4/30/19 1:37 PM

xxvii

Acknowledgments

From Brian
I want to thank my coauthor, John Bennett. This book is the result of close
collaboration between the two of us over half a year, in which John was there
every step of the way to contribute ideas, content, and sample code, so his
presence is there throughout the book. I also want to thank Greg Doench,
acquisitions editor, who was a driving force behind the concept, purpose, and
marketing of this book.

This book also had a wonderful supporting editorial team, including
Rachel Paul and Julie Nahil. But I want to especially thank copy editor Betsy
Hardinger, who showed exceptional competence, cooperation, and profes-
sionalism in getting the book ready for publication.

From John
I want to thank my coauthor, Brian Overland, for inviting me to join him on
this book. This allows me to pass on many of the things I had to work hard to
find documentation for or figure out by brute-force experimentation. Hope-
fully this will save readers a lot of work dealing with the problems I ran into.

Overland_Book.indb xxviiOverland_Book.indb xxvii 4/30/19 1:37 PM4/30/19 1:37 PM

Overland_Book.indb 634Overland_Book.indb 634 4/30/19 1:38 PM4/30/19 1:38 PM

This page intentionally left blank

xxix

About the Authors

Brian Overland started as a professional programmer back in his twenties,
but also worked as a computer science, English, and math tutor. He enjoys
picking up new languages, but his specialty is explaining them to others, as
well as using programming to do games, puzzles, simulations, and math prob-
lems. Now he’s the author of over a dozen books on programming.

In his ten years at Microsoft he was a software tester, programmer/writer,
and manager, but his greatest achievement was in presenting Visual Basic 1.0,
as lead writer and overall documentation project lead. He believes that project
changed the world by getting people to develop for Windows, and one of the
keys to its success was showing it could be fun and easy.

He’s also a playwright and actor, which has come in handy as an instructor
in online classes. As a novelist, he’s twice been a finalist in the Pacific North-
west Literary Contest but is still looking for a publisher.

John Bennett was a senior software engineer at Proximity Technology, Franklin
Electronic Publishing, and Microsoft Corporation. More recently, he’s devel-
oped new programming languages using Python as a prototyping tool. He
holds nine U.S. patents, and his projects include a handheld spell checker and
East Asian handwriting recognition software.

Overland_Book.indb xxixOverland_Book.indb xxix 4/30/19 1:37 PM4/30/19 1:37 PM

Overland_Book.indb 634Overland_Book.indb 634 4/30/19 1:38 PM4/30/19 1:38 PM

This page intentionally left blank

95

4
Shortcuts,
Command Line,
and Packages

Master crafters need many things, but, above all, they need to master the
tools of the profession. This chapter introduces tools that, even if you’re a
fairly experienced Python programmer, you may not have yet learned. These
tools will make you more productive as well as increase the efficiency of your
programs.

So get ready to learn some new tips and tricks.

4.1 Overview
Python is unusually gifted with shortcuts and time-saving programming
techniques. This chapter begins with a discussion of twenty-two of these
techniques.

Another thing you can do to speed up certain programs is to take advantage
of the many packages that are available with Python. Some of these—such as
re (regular expressions), system, random, and math—come with the stan-
dard Python download, and all you have to do is to include an import state-
ment. Other packages can be downloaded quite easily with the right tools.

4.2 Twenty-Two Programming Shortcuts
This section lists the most common techniques for shortening and tightening
your Python code. Most of these are new in the book, although a few of them
have been introduced before and are presented in greater depth here.

◗ Use Python line continuation as needed.

◗ Use for loops intelligently.

Overland_Book.indb 95Overland_Book.indb 95 4/30/19 1:37 PM4/30/19 1:37 PM

Chapter 4 Shortcuts, Command Line, and Packages96

◗ Understand combined operator assignment (+= etc.).

◗ Use multiple assignment.

◗ Use tuple assignment.

◗ Use advanced tuple assignment.

◗ Use list and string “multiplication.”

◗ Return multiple values.

◗ Use loops and the else keyword.

◗ Take advantage of Booleans and not.

◗ Treat strings as lists of characters.

◗ Eliminate characters by using replace.

◗ Don’t write unnecessary loops.

◗ Use chained comparisons.

◗ Simulate “switch” with a table of functions.

◗ Use the is operator correctly.

◗ Use one-line for loops.

◗ Squeeze multiple statements onto a line.

◗ Write one-line if/then/else statements.

◗ Create Enum values with range.

◗ Reduce the inefficiency of the print function within IDLE.

◗ Place underscores inside large numbers.

Let’s look at these ideas in detail.

4.2.1 Use Python Line Continuation as Needed
In Python, the normal statement terminator is just the end of a physical line
(although note the exceptions in Section 3.18). This makes programming eas-
ier, because you can naturally assume that statements are one per line.

But what if you need to write a statement longer than one physical line?
This dilemma can crop up in a number of ways. For example, you might have
a string to print that you can’t fit on one line. You could use literal quotations,
but line wraps, in that case, are translated as newlines—something you might

Overland_Book.indb 96Overland_Book.indb 96 4/30/19 1:37 PM4/30/19 1:37 PM

4.2 Twenty-Two Programming Shortcuts 97
4

not want. The solution, first of all, is to recognize that literal strings posi-
tioned next to other literal strings are automatically concatenated.

>>> my_str = 'I am Hen-er-y the Eighth,' ' I am!'
>>> print(my_str)
I am Hen-er-y the Eighth, I am!

If these substrings are too long to put on a single physical line, you have
a couple of choices. One is to use the line-continuation character, which is a
backslash (\).

my_str = 'I am Hen-er-y the Eighth,' \
' I am!'

Another technique is to observe that any open—and so far unmatched—
parenthesis, square bracket, or brace automatically causes continuation onto
the next physical line. Consequently, you can enter as long a statement as you
want—and you can enter a string of any length you want—without necessar-
ily inserting newlines.

my_str = ('I am Hen-er-y the Eighth, '
'I am! I am not just any Henry VIII, '
'I really am!')

This statement places all this text in one string. You can likewise use open
parentheses with other kinds of statements.

length_of_hypotenuse = ((side1 * side1 + side2 * side2)
 ** 0.5)

A statement is not considered complete until all open parentheses [(] have
been matched by closing parentheses [)]. The same is true for braces and
square brackets. As a result, this statement will automatically continue to the
next physical line.

4.2.2 Use “ for” Loops Intelligently
If you come from the C/C++ world, you may tend to overuse the range func-
tion to print members of a list. Here’s an example of the C way of writing a
for loop, using range and an indexing operation.

beat_list = ['John', 'Paul', 'George', 'Ringo']
for i in range(len(beat_list)):
 print(beat_list[i])

Overland_Book.indb 97Overland_Book.indb 97 4/30/19 1:37 PM4/30/19 1:37 PM

Chapter 4 Shortcuts, Command Line, and Packages98

If you ever write code like this, you should try to break the habit as soon as
you can. It’s better to print the contents of a list or iterator directly.

beat_list = ['John', 'Paul', 'George', 'Ringo']
for guy in beat_list:
 print(guy)

Even if you need access to a loop variable, it’s better to use the enumerate
function to generate such numbers. Here’s an example:

beat_list = ['John', 'Paul', 'George', 'Ringo']
for i, name in enumerate(beat_list, 1):
 print(i, '. ', name, sep='')

This prints

1. John
2. Paul
3. George
4. Ringo

There are, of course, some cases in which it’s necessary to use indexing.
That happens most often when you are trying to change the contents of a list
in place.

4.2.3 Understand Combined Operator Assignment (+= etc.)
The combined operator-assignment operators are introduced in Chapter 1
and so are reviewed only briefly here. Remember that assignment (=) can be
combined with any of the following operators: +, -, /, //, %, **, &, ^, |, <<,
>>.

The operators &, |, and ^ are bitwise “and,” “or,” and “exclusive or,”
respectively. The operators << and >> perform bit shifts to the left and to the
right.

This section covers some finer points of operator-assignment usage. First,
any assignment operator has low precedence and is carried out last.

Second, an assignment operator may or may not be in place, depending on
whether the type operated on is mutable. In place refers to operations that
work on existing data in memory rather than creating a completely new
object. Such operations are faster and more efficient.

Integers, floating-point numbers, and strings are immutable. Assignment
operators, used with these types, do not cause in-place assignment; they instead
must produce a completely new object, which is reassigned to the variable.
Here’s an example:

Overland_Book.indb 98Overland_Book.indb 98 4/30/19 1:37 PM4/30/19 1:37 PM

4.2 Twenty-Two Programming Shortcuts 99
4

s1 = s2 = 'A string.'
s1 += '...with more stuff!'
print('s1:', s1)
print('s2:', s2)

The print function, in this case, produces the following output:

s1: A string...with more stuff!
s2: A string.

When s1 was assigned a new value, it did not change the string data in
place; it assigned a whole new string to s1. But s2 is a name that still refers to
the original string data. This is why s1 and s2 now contain different strings.

But lists are mutable, and therefore changes to lists can occur in place.

a_list = b_list = [10, 20]
a_list += [30, 40]
print('a_list:', a_list)
print('b_list:', b_list)

This code prints

a_list: [10, 20, 30, 40]
b_list: [10, 20, 30, 40]

In this case, the change was made to the list in place, so there was no need
to create a new list and reassign that list to the variable. Therefore, a_list
was not assigned to a new list, and b_list, a variable that refers to the same
data in memory, reflects the change as well.

In-place operations are almost always more efficient. In the case of lists,
Python reserves some extra space to grow when allocating a list in memory,
and that in turns permits append operations, as well as +=, to efficiently
grow lists. However, occasionally lists exceed the reserved space and must be
moved. Such memory management is seamless and has little or no impact on
program behavior.

Non-in-place operations are less efficient, because a new object must be cre-
ated. That’s why it’s advisable to use the join method to grow large strings
rather than use the += operator, especially if performance is important. Here’s an
example using the join method to create a list and join 26 characters together.

str_list = []
n = ord('a')
for i in range(n, n + 26):
 str_list += chr(i)
alphabet_str = ''.join(str_list)

Overland_Book.indb 99Overland_Book.indb 99 4/30/19 1:37 PM4/30/19 1:37 PM

Chapter 4 Shortcuts, Command Line, and Packages100

Figures 4.1 and 4.2 illustrate the difference between in-place operations
and non-in-place operations. In Figure 4.1, string data seems to be appended
onto an existing string, but what the operation really does is to create a new
string and then assign it to the variable—which now refers to a different place
in memory.

‘Here’s a string’S

1

‘Here’s a string...with more!’S

3

2 Create new
string.

Figure 4.1. Appending to a string (not in-place)

But in Figure 4.2, list data is appended onto an existing list without the
need to create a new list and reassign the variable.

a_list 10 20 30 40

1 Create new
list.

2 Grow the list
in place.

Figure 4.2. Appending to a list (in-place)

Here’s a summary:

◗ Combined assignment operators such as += cause in-place changes to data if
the object is mutable (such as a list); otherwise, a whole new object is assigned
to the variable on the left.

◗ In-place operations are faster and use space more efficiently, because they do
not force creation of a new object. In the case of lists, Python usually allocates
extra space so that the list can be grown more efficiently at run time.

4.2.4 Use Multiple Assignment
Multiple assignment is one of the most commonly used coding shortcuts in
Python. You can, for example, create five different variables at once, assigning
them all the same value—in this case, 0:

a = b = c = d = e = 0

Overland_Book.indb 100Overland_Book.indb 100 4/30/19 1:37 PM4/30/19 1:37 PM

4.2 Twenty-Two Programming Shortcuts 101
4

Consequently, the following returns True:

a is b

This statement would no longer return True if either of these variables was
later assigned to a different object.

Even though this coding technique may look like it is borrowed from C and
C++, you should not assume that Python follows C syntax in most respects.
Assignment in Python is a statement and not an expression, as it is in C.

4.2.5 Use Tuple Assignment
Multiple assignment is useful when you want to assign a group of variables
the same initial value.

But what if you want to assign different values to different variables? For
example, suppose you want to assign 1 to a, and 0 to b. The obvious way to do
that is to use the following statements:

a = 1
b = 0

But through tuple assignment, you can combine these into a single
statement.

a, b = 1, 0

In this form of assignment, you have a series of values on one side of the
equals sign (=) and another on the right. They must match in number, with
one exception: You can assign a tuple of any size to a single variable (which
itself now represents a tuple as a result of this operation).

a = 4, 8, 12 # a is now a tuple containing three values.

Tuple assignment can be used to write some passages of code more com-
pactly. Consider how compact a Fibonacci-generating function can be in
Python.

def fibo(n):
 a, b = 1, 0
 while a <= n:
 print(a, end=' ')
 a, b = a + b, a

In the last statement, the variable a gets a new value: a + b; the variable b
gets a new value—namely, the old value of a.

Overland_Book.indb 101Overland_Book.indb 101 4/30/19 1:37 PM4/30/19 1:37 PM

Chapter 4 Shortcuts, Command Line, and Packages102

Most programming languages have no way to set a and b simultaneously.
Setting the value of a changes what gets put into b, and vice versa. So nor-
mally, a temporary variable would be required. You could do that in Python,
if you wanted to:

temp = a # Preserve old value of a
a = a + b # Set new value of a
b = temp # Set b to old value of a

But with tuple assignment, there’s no need for a temporary variable.

a, b = a + b, a

Here’s an even simpler example of tuple assignment. Sometimes, it’s useful
to swap two values.

x, y = 1, 25
print(x, y) # prints 1 25
x, y = y, x
print(x, y) # prints 25 1

The interesting part of this example is the statement that performs the
swap:

x, y = y, x

In another language, such an action would require three separate state-
ments. But Python does not require this, because—as just shown—it can do
the swap all at once. Here is what another language would require you to do:

temp = x
x = y
y = temp

4.2.6 Use Advanced Tuple Assignment
Tuple assignment has some refined features. For example, you can unpack a
tuple to assign to multiple variables, as in the following example.

tup = 10, 20, 30
a, b, c = tup
print(a, b, c) # Produces 10, 20, 30

It’s important that the number of input variables on the left matches the
size of the tuple on the right. The following statement would produce a run-
time error.

Overland_Book.indb 102Overland_Book.indb 102 4/30/19 1:37 PM4/30/19 1:37 PM

4.2 Twenty-Two Programming Shortcuts 103
4

tup = 10, 20, 30
a, b = tup # Error: too many values to unpack

Another technique that’s occasionally useful is creating a tuple that has one
element. That would be easy to do with lists.

my_list = [3]

This is a list with one element, 3. But the same approach won’t work with
tuples.

my_tup = (3)
print(type(my_tup))

This print statement shows that my_tup, in this case, produced a simple
integer.

<class 'int'>

This is not what was wanted in this case. The parentheses were treated as a
no-op, as would any number of enclosing parentheses. But the following state-
ment produces a tuple with one element, although, to be fair, a tuple with just
one element isn’t used very often.

my_tup = (3,) # Assign tuple with one member, 3.

The use of an asterisk (*) provides a good deal of additional flexibility with
tuple assignment. You can use it to split off parts of a tuple and have one (and
only one) variable that becomes the default target for the remaining elements,
which are then put into a list. Some examples should make this clear.

a, *b = 2, 4, 6, 8

In this example, a gets the value 2, and b is assigned to a list:

2
[4, 6, 8]

You can place the asterisk next to any variable on the left, but in no case
more than one. The variable modified with the asterisk is assigned a list of
whatever elements are left over. Here’s an example:

a, *b, c = 10, 20, 30, 40, 50

In this case, a and c refer to 10 and 50, respectively, after this statement is
executed, and b is assigned the list [20, 30, 40].

You can, of course, place the asterisk next to a variable at the end.

big, bigger, *many = 100, 200, 300, 400, 500, 600

Overland_Book.indb 103Overland_Book.indb 103 4/30/19 1:37 PM4/30/19 1:37 PM

Chapter 4 Shortcuts, Command Line, and Packages104

Printing these variables produces the following:

>>> print(big, bigger, many, sep='\n')
100
200
[300, 400, 500, 600]

4.2.7 Use List and String “Multiplication”
Serious programs often deal with large data sets—for example, a collection of
10,000 integers all initialized to 0. In languages such as C and Java, the way to
do this is to first declare an array with a large dimension.

Because there are no data declarations in Python, the only way to create a
large list is to construct it on the right side of an assignment. But constructing
a super-long list by hand is impractical. Imagine trying to construct a super-
long list this way:

my_list = [0, 0, 0, 0, 0, 0, 0, 0...]

As you can imagine, entering 10,000 zeros into program code would be
very time-consuming! And it would make your hands ache.

Applying the multiplication operator provides a more practical solution:

my_list = [0] * 10000

This example creates a list of 10,000 integers, all initialized to 0.
Such operations are well optimized in Python, so that even in the interac-

tive development environment (IDLE), such interactions are handled quickly.

>>> my_list = [0] * 10000
>>> len(my_list)
10000

Note that the integer may be either the left or the right operand in such an
expression.

>>> my_list = 1999 * [12]
>>> len(my_list)
1999

You can also “multiply” longer lists. For example, the following list is 300
elements long. It consists of the numbers 1, 2, 3, repeated over and over.

>>> trip_list = [1, 2, 3] * 100
>>> len(trip_list)
300

Overland_Book.indb 104Overland_Book.indb 104 4/30/19 1:37 PM4/30/19 1:37 PM

4.2 Twenty-Two Programming Shortcuts 105
4

The multiplication sign (*) does not work with dictionaries and sets, which
require unique keys. But it does work with the string class (str); for example,
you can create a string consisting of 40 underscores, which you might use for
display purposes:

divider_str = '_' * 40

Printing out this string produces the following:

_ _

4.2.8 Return Multiple Values
You can’t pass a simple variable to a Python function, change the value inside
the function, and expect the original variable to reflect the change. Here’s an
example:

def double_me(n):
 n *= 2

a = 10
double_me(a)
print(a) # Value of a did not get doubled!!

When n is assigned a new value, the association is broken between that
variable and the value that was passed. In effect, n is a local variable that is
now associated with a different place in memory. The variable passed to the
function is unaffected.

But you can always use a return value this way:

def double_me(n):
 return n * 2

a = 10
a = double_me(a)
print(a)

Therefore, to get an out parameter, just return a value. But what if you
want more than one out parameter?

In Python, you can return as many values as you want. For example, the
following function performs the quadratic equation by returning two values.

def quad(a, b, c):
 determin = (b * b - 4 * a * c) ** .5
 x1 = (-b + determin) / (2 * a)

Overland_Book.indb 105Overland_Book.indb 105 4/30/19 1:37 PM4/30/19 1:37 PM

Chapter 4 Shortcuts, Command Line, and Packages106

 x2 = (-b - determin) / (2 * a)
 return x1, x2

This function has three input arguments and two output variables. In call-
ing the function, it’s important to receive both arguments:

x1, x2 = quad(1, -1, -1)

If you return multiple values to a single variable in this case, that variable
will store the values as a tuple. Here’s an example:

>>> x = quad(1, -1, -1)
>>> x
(1.618033988749895, -0.6180339887498949)

Note that this feature—returning multiple values—is actually an applica-
tion of the use of tuples in Python.

4.2.9 Use Loops and the “else” Keyword
The else keyword is most frequently used in combination with the if key-
word. But in Python, it can also be used with try-except syntax and with
loops.

With loops, the else clause is executed if the loop has completed without
an early exit, such as break. This feature applies to both while loops and for
loops.

The following example tries to find an even divisor of n, up to and includ-
ing the limit, max. If no such divisor is found, it reports that fact.

def find_divisor(n, max):
 for i in range(2, max + 1):
 if n % i == 0:
 print(i, 'divides evenly into', n)
 break
 else:
 print('No divisor found')

Here’s an example:

>>> find_divisor(49, 6)
No divisor found
>>> find_divisor(49, 7)
7 divides evenly into 49

Overland_Book.indb 106Overland_Book.indb 106 4/30/19 1:37 PM4/30/19 1:37 PM

4.2 Twenty-Two Programming Shortcuts 107
4

4.2.10 Take Advantage of Boolean Values and “not”
Every object in Python evaluates to True or False. For example, every empty
collection in Python evaluates to False if tested as a Boolean value; so does
the special value None. Here’s one way of testing a string for being length zero:

if len(my_str) == 0:
 break

However, you can instead test for an input string this way:

if not s:
 break

Here are the general guidelines for Boolean conversions.

◗ Nonempty collections and nonempty strings evaluate as True; so do nonzero
numeric values.

◗ Zero-length collections and zero-length strings evaluate to False; so does
any number equal to 0, as well as the special value None.

4.2.11 Treat Strings as Lists of Characters
When you’re doing complicated operations on individual characters and
building a string, it’s sometimes more efficient to build a list of characters
(each being a string of length 1) and use list comprehension plus join to put it
all together.

For example, to test whether a string is a palindrome, it’s useful to omit all
punctuation and space characters and convert the rest of the string to either
all-uppercase or all-lowercase. List comprehension does this efficiently.

test_str = input('Enter test string: ')
a_list = [c.upper() for c in test_str if c.isalnum()]
print(a_list == a_list[::-1])

The second line in this example uses list comprehension, which was intro-
duced in Section 3.15, “List Comprehension.”

The third line in this example uses slicing to get the reverse of the list. Now
we can test whether test_str is a palindrome by comparing it to its own
reverse. These three lines of code have to be the shortest possible program for
testing whether a string is a palindrome. Talk about compaction!

Enter test string: A man, a plan, a canal, Panama!
True

Overland_Book.indb 107Overland_Book.indb 107 4/30/19 1:37 PM4/30/19 1:37 PM

Chapter 4 Shortcuts, Command Line, and Packages108

4.2.12 Eliminate Characters by Using “replace”
To quickly remove all instances of a particular character from a string, use
replace and specify the empty string as the replacement.

For example, a code sample in Chapter 10 asks users to enter strings that
represent fractions, such as “1/2”. But if the user puts extra spaces in, as in
“1 / 2”, this could cause a problem. Here’s some code that takes an input
string, s, and quickly rids it of all spaces wherever they are found (so it goes
beyond stripping):

s = s.replace(' ', '')

Using similar code, you can quickly get rid of all offending characters or
substrings in the same way—but only one at a time. Suppose, however, that
you want to get rid of all vowels in one pass. List comprehension, in that case,
comes to your aid.

a_list = [c for c in s if c not in 'aeiou']
s = ''.join(a_list)

4.2.13 Don’t Write Unnecessary Loops
Make sure that you don’t overlook all of Python’s built-in abilities, especially
when you’re working with lists and strings. With most computer languages,
you’d probably have to write a loop to get the sum of all the numbers in a list.
But Python performs summation directly. For example, the following func-
tion calculates 1 + 2 + 3 … + N:

def calc_triangle_num(n):
 return sum(range(n+1))

Another way to use the sum function is to quickly get the average (the mean)
of any list of numbers.

def get_avg(a_list):
 return sum(a_list) / len(a_list)

4.2.14 Use Chained Comparisons (n < x < m)
This is a slick little shortcut that can save you a bit of work now and then, as
well as making your code more readable.

It’s common to write if conditions such as the following:

if 0 < x and x < 100:
 print('x is in range.')

Overland_Book.indb 108Overland_Book.indb 108 4/30/19 1:37 PM4/30/19 1:37 PM

4.2 Twenty-Two Programming Shortcuts 109
4

But in this case, you can save a few keystrokes by instead using this:

if 0 < x < 100: # Use 'chained' comparisons.
 print('x is in range.')

This ability potentially goes further. You can chain together any number of
comparisons, and you can include any of the standard comparison operators,
including ==, <, <=, >, and >=. The arrows don’t even have to point in the same
direction or even be combined in any order! So you can do things like this:

a, b, c = 5, 10, 15
if 0 < a <= c > b > 1:
 print('All these comparisons are true!')
 print('c is equal or greater than all the rest!')

You can even use this technique to test a series of variables for equality.
Here’s an example:

a = b = c = d = e = 100
if a == b == c == d == e:
 print('All the variables are equal to each other.')

For larger data sets, there are ways to achieve these results more efficiently.
Any list, no matter how large, can be tested to see whether all the elements are
equal this way:

if min(a_list) == max(a_list):
 print('All the elements are equal to each other.')

However, when you just want to test a few variables for equality or perform
a combination of comparisons on a single line, the techniques shown in this
section are a nice convenience with Python. Yay, Python!

4.2.15 Simulate “switch” with a Table of Functions
This next technique is nice because it can potentially save a number of lines of
code.

Section 15.12 offers the user a menu of choices, prompts for an integer, and
then uses that integer to decide which of several functions to call. The obvious
way to implement this logic is with a series of if/elif statements, because
Python has no “switch” statement.

if n == 1:
 do_plot(stockdf)
elif n == 2:
 do_highlow_plot(stockdf)

Overland_Book.indb 109Overland_Book.indb 109 4/30/19 1:37 PM4/30/19 1:37 PM

Chapter 4 Shortcuts, Command Line, and Packages110

elif n == 3:
 do_volume_subplot(stockdf)
elif n == 4:
 do_movingavg_plot(stockdf)

Code like this is verbose. It will work, but it’s longer than it needs to be.
But Python functions are objects, and they can be placed in a list just like any
other kind of objects. You can therefore get a reference to one of the functions
and call it.

fn = [do_plot, do_highlow_plot, do_volume_subplot,
 do_movingavg_plot][n-1]
fn(stockdf) # Call the function

For example, n-1 is evaluated, and if that value is 0 (that is, n is equal to 1),
the first function listed, do_plot, is executed.

This code creates a compact version of a C++ switch statement by calling
a different function depending on the value of n. (By the way, the value 0 is
excluded in this case, because that value is used to exit.)

You can create a more flexible control structure by using a dictionary com-
bined with functions. For example, suppose that “load,” “save,” “update,”
and “exit” are all menu functions. We might implement the equivalent of a
switch statement this way:

menu_dict = {'load':load_fn, 'save':save_fn,
 'exit':exit_fn, 'update':update_fn}
(menu_dict[selector])() # Call the function

Now the appropriate function will be called, depending on the string con-
tained in selector, which presumably contains 'load', 'save', 'update',
or 'exit'.

4.2.16 Use the “ is” Operator Correctly
Python supports both a test-for-equality operator (==) and an is operator.
These tests sometimes return the same result, and sometimes they don’t. If
two strings have the same value, a test for equality always produces True.

a = 'cat'
b = 'cat'
a == b # This must produce True.

But the is operator isn’t guaranteed to produce True in string compar-
isons, and it’s risky to rely upon. A constructed string isn’t guaranteed to

Overland_Book.indb 110Overland_Book.indb 110 4/30/19 1:37 PM4/30/19 1:37 PM

4.2 Twenty-Two Programming Shortcuts 111
4

match another string if you use is rather than test-for-equality (==). For
example:

>>> s1 = 'I am what I am and that is all that I am.'
>>> s2 = 'I am what I am' + ' and that is all that I am.'
>>> s1 == s2
True
>>> s1 is s2
False

What this example demonstrates is that just because two strings have iden-
tical contents does not mean that they correspond to the same object in memory,
and therefore the is operator produces False.

If the is operator is unreliable in such cases, why is it in the language at all?
The answer is that Python has some unique objects, such as None, True, and
False. When you’re certain that you’re comparing a value to a unique object,
then the is keyword works reliably; moreover, it’s preferable in those situa-
tions because such a comparison is more efficient.

a_value = my_function()
if a_value is None:
 # Take special action if None is returned.

4.2.17 Use One-Line “ for” Loops
If a for loop is short enough, with only one statement inside the loop (that is,
the statement body), you can squeeze the entire for loop onto a single physical
line.

for var in sequence: statement

Not all programmers favor this programming style. However, it’s useful
as a way of making your program more compact. For example, the following
one-line statement prints all the numbers from 0 to 9:

>>> for i in range(10): print(i, end=' ')

0 1 2 3 4 5 6 7 8 9

Notice that when you’re within IDLE, this for loop is like any other: You
need to type an extra blank line in order to terminate it.

K
ey

 S
yn

tax

Overland_Book.indb 111Overland_Book.indb 111 4/30/19 1:37 PM4/30/19 1:37 PM

Chapter 4 Shortcuts, Command Line, and Packages112

4.2.18 Squeeze Multiple Statements onto a Line
If you have a lot of statements you want to squeeze onto the same line, you can
do it—if you’re determined and the statements are short enough.

The technique is to use a semicolon (;) to separate one statement on a phys-
ical line from another. Here’s an example:

>>> for i in range(5): n=i*2; m = 5; print(n+m, end=' ')

5 7 9 11 13

You can squeeze other kinds of loops onto a line in this way. Also, you don’t
have to use loops but can place any statements on a line that you can manage
to fit there.

>>> a = 1; b = 2; c = a + b; print(c)
3

At this point, some people may object, “But with those semicolons, this
looks like C code!” (Oh, no—anything but that!)

Maybe it does, but it saves space. Keep in mind that the semicolons are
statement separators and not terminators, as in the old Pascal language.

4.2.19 Write One-Line if/then/else Statements
This feature is also called an in line if conditional. Consider the following if/
else statement, which is not uncommon:

turn = 0
...
if turn % 2:
 cell = 'X'
else:
 cell = 'O'

The book Python Without Fear uses this program logic to help operate a
tic-tac-toe game. On alternate turns, the cell to be added was either an “X” or
an “O”. The turn counter, advanced by 1 each time, caused a switch back and
forth (a toggle) between the two players, “X” and “O.”

That book replaced the if/else block just shown with the more compact
version:

cell = 'X' if turn % 2 else 'O'

Overland_Book.indb 112Overland_Book.indb 112 4/30/19 1:37 PM4/30/19 1:37 PM

4.2 Twenty-Two Programming Shortcuts 113
4

true_expr if conditional else false_expr

If the conditional is true, then the true_expr is evaluated and returned;
otherwise the false_expr is evaluated and returned.

4.2.20 Create Enum Values with “range”
Many programmers like to use enumerated (or “enum”) types in place of
so-called magic numbers. For example, if you have a color_indicator vari-
able, in which the values 1 through 5 represent the values red, green, blue,
back, and white, the code becomes more readable if you can use the color
names instead of using the literal numbers 1 through 5.

You could make this possible by assigning a number to each variable name.

red = 0
blue = 1
green = 2
black = 3
white = 4

This works fine, but it would be nice to find a way to automate this code.
There is a simple trick in Python that allows you to do that, creating an enu-
meration. You can take advantage of multiple assignment along with use of
the range function:

red, blue, green, black, white = range(5)

The number passed to range in this case is the number of settings. Or, if
you want to start the numbering at 1 instead of 0, you can use the following:

red, blue, green, black, white = range(1, 6)

Note Ë For more sophisticated control over the creation and specification of
enumerated types, you can import and examine the enum package.

import enum
help(enum)

You can find information on this feature at

https://docs.python.org/3/library/enum.html.
Ç Note

K
ey

 S
yn

tax

Overland_Book.indb 113Overland_Book.indb 113 4/30/19 1:37 PM4/30/19 1:37 PM

https://docs.python.org/3/library/enum.html.

Chapter 4 Shortcuts, Command Line, and Packages114

4.2.21 Reduce the Inefficiency of the “print” Function
Within IDLE

Within IDLE, calls to the print statement are incredibly slow. If you run pro-
grams from within the environment, you can speed up performance dramati-
cally by reducing the number of separate calls to print.

For example, suppose you want to print a 40 × 20 block of asterisks (*). The
slowest way to do this, by far, is to print each character individually. Within
IDLE, this code is painfully slowly.

for i in range(20):
 for j in range(40):
 print('*', end='')
 print()

You can get much better performance by printing a full row of asterisks at
a time.

row_of_asterisks = '*' * 40
for i in range(20):
 print(row_of_asterisks)

But the best performance is achieved by revising the code so that it calls the
print function only once, after having assembled a large, multiline output
string.

row_of_asterisks = '*' * 40
s = ''
for i in range(20):
 s += row_of_asterisks + '\n'
print(s)

This example can be improved even further by utilizing the string class
join method. The reason this code is better is that it uses in-place appending
of a list rather than appending to a string, which must create a new string each
time.

row_of_asterisks = '*' * 40
list_of_str = []
for i in range(20):
 list_of_str.append(row_of_asterisks)
print('\n'.join(list_of_str))

Better yet, here is a one-line version of the code!

print('\n'.join(['*' * 40] * 20))

Overland_Book.indb 114Overland_Book.indb 114 4/30/19 1:37 PM4/30/19 1:37 PM

4.3 Running Python from the Command Line 115
4

4.2.22 Place Underscores Inside Large Numbers
In programming, you sometimes have to deal with large numeric literals.
Here’s an example:

CEO_salary = 1500000

Such numbers are difficult to read in programming code. You might like to
use commas as separators, but commas are reserved for other purposes, such
as creating lists. Fortunately, Python provides another technique: You can use
underscores (_) inside a numeric literal.

CEO_salary = 1_500_000

Subject to the following rules, the underscores can be placed anywhere
inside the number. The effect is for Python to read the number as if no under-
scores were present. This technique involves several rules.

◗ You can’t use two underscores in a row.

◗ You can’t use a leading or trailing underscore. If you use a leading underscore
(as in _1), the figure is treated as a variable name.

◗ You can use underscores on either side of a decimal point.

This technique affects only how numbers appear in the code itself and not
how anything is printed. To print a number with thousands-place separators,
use the format function or method as described in Chapter 5, “Formatting
Text Precisely.”

4.3 Running Python from the Command Line
If you’ve been running Python programs from within IDLE—either as com-
mands entered one at a time or as scripts—one way to improve execution
speed is to run programs from a command line instead; in particular, doing so
greatly speeds up the time it takes to execute calls to the print function.

Some of the quirks of command-line operation depend on which operating
system you’re using. This section covers the two most common operating sys-
tems: Windows and Macintosh.

4.3.1 Running on a Windows-Based System
Windows systems, unlike Macintosh, usually do not come with a version of
Python 2.0 preloaded, a practice that actually saves you a good deal of fuss as
long as you install Python 3 yourself.

Overland_Book.indb 115Overland_Book.indb 115 4/30/19 1:37 PM4/30/19 1:37 PM

Chapter 4 Shortcuts, Command Line, and Packages116

To use Python from the command line, first start the DOS Box applica-
tion, which is present as a major application on all Windows systems. Python
should be easily available because it should be placed in a directory that is part
of the PATH setting. Checking this setting is easy to do while you’re running
a Windows DOS Box.

In Windows, you can also check the PATH setting by opening the Control
Panel, choose Systems, and select the Advanced tab. Then click Environment
Variables.

You then should be able to run Python programs directly as long as they’re
in your PATH. To run a program from the command line, enter python and
the name of the source file (the main module), including the .py extension.

python test.py

4.3.2 Running on a Macintosh System
Macintosh systems often come with a version of Python already installed;
unfortunately, on recent systems, the version is Python 2.0 and not Python 3.0.

To determine which version has been installed for command-line use, first
bring up the Terminal application on your Macintosh system. You may need
to first click the Launchpad icon.

You should find yourself in your default directory, whatever it is. You can
determine which command-line version of Python you have by using the fol-
lowing command:

python -V

If the version of Python is 2.0+, you’ll get a message such as the following:

python 2.7.10

But if you’ve downloaded some version of Python 3.0, you should have that
version of Python loaded as well. However, to run it, you’ll have to use the
command python3 rather than python.

If you do have python3 loaded, you can verify the exact version from the
command line as follows:

python3 -V
python 3.7.0

For example, if the file test.py is in the current directory, and you want to
compile it as a Python 3.0 program, then use the following command:

python3 test.py

The Python command (whether python or python3) has some useful vari-
ations. If you enter it with -h, the “help” flag, you get a printout on all the

Overland_Book.indb 116Overland_Book.indb 116 4/30/19 1:37 PM4/30/19 1:37 PM

4.4 Writing and Using Doc Strings 117
4

possible flags that you can use with the command, as well as relevant environ-
ment variables.

python3 -h

4.3.3 Using pip or pip3 to Download Packages
Some of the packages in this book require that you download and install the
packages from the Internet before you use those packages. The first chapter
that requires that is Chapter 12, which introduces the numpy package.

All the packages mentioned in this book are completely free of charge (as
most packages for Python are). Even better, the pip utility—which is included
with the Python 3 download—goes out and finds the package that you name;
thus all you should need is an Internet connection!

On Windows-based systems, use the following command to download and
install a desired package.

pip install package_name

The package name, incidentally, uses no file extension:

pip install numpy

On Macintosh systems, you may need to use the pip3 utility, which is
download with Python 3 when you install it on your computer. (You may also
have inherited a version of pip, but it will likely be out-of-date and unusable.)

pip3 install package_name

4.4 Writing and Using Doc Strings
Python doc strings enable you to leverage the work you do writing comments
to get free online help. That help is then available to you while running IDLE,
as well as from the command line, when you use the pydoc utility.

You can write doc strings for both functions and classes. Although this
book has not yet introduced how to write classes, the principles are the same.
Here’s an example with a function, showcasing a doc string.

def quad(a, b, c):
 '''Quadratic Formula function.

 This function applies the Quadratic Formula
 to determine the roots of x in a quadratic
 equation of the form ax^2 + bx + c = 0.
 '''

Overland_Book.indb 117Overland_Book.indb 117 4/30/19 1:37 PM4/30/19 1:37 PM

Chapter 4 Shortcuts, Command Line, and Packages118

 determin = (b * b - 4 * a * c) ** .5
 x1 = (-b + determin) / (2 * a)
 x2 = (-b - determin) / (2 * a)
 return x1, x2

When this doc string is entered in a function definition, you can get help
from within IDLE:

>>> help(quad)
Help on function quad in module _ _main_ _:

quad(a, b, c)
 Quadratic Formula function.

 This function applies the Quadratic Formula
 to determine the roots of x in a quadratic
 equation of the form ax^2 + bx + c = 0.

The mechanics of writing a doc string follow a number of rules.

◗ The doc string itself must immediately follow the heading of the function.

◗ It must be a literal string utilizing the triple-quote feature. (You can actually
use any style quote, but you need a literal quotation if you want to span mul-
tiple lines.)

◗ The doc string must also be aligned with the “level-1” indentation under the
function heading: For example, if the statements immediately under the func-
tion heading are indented four spaces, then the beginning of the doc string
must also be indented four spaces.

◗ Subsequent lines of the doc string may be indented as you choose, because
the string is a literal string. You can place the subsequent lines flush left or
continue the indentation you began with the doc string. In either case, Python
online help will line up the text in a helpful way.

This last point needs some clarification. The doc string shown in the previ-
ous example could have been written this way:

def quad(a, b, c):
 '''Quadratic Formula function.

This function applies the Quadratic Formula
to determine the roots of x in a quadratic
equation of the form ax^2 + bx + c = 0.
'''

Overland_Book.indb 118Overland_Book.indb 118 4/30/19 1:37 PM4/30/19 1:37 PM

4.5 Importing Packages 119
4

 determin = (b * b - 4 * a * c) ** .5
 x1 = (-b + determin) / (2 * a)
 x2 = (-b - determin) / (2 * a)
 return x1, x2

You might expect this doc string to produce the desired behavior—to print
help text that lines up—and you’d be right. But you can also put in extra
spaces so that the lines also align within program code. It might seem this
shouldn’t work, but it does.

For stylistic reasons, programmers are encouraged to write the doc string
this way, in which the subsequent lines in the quote line up with the beginning
of the quoted string instead of starting flush left in column 1:

def quad(a, b, c):
 '''Quadratic Formula function.

 This function applies the Quadratic Formula
 to determine the roots of x in a quadratic
 equation of the form ax^2 + bx + c = 0.
 '''

As part of the stylistic guidelines, it’s recommended that you put in a brief
summary of the function, followed by a blank line, followed by more detailed
description.

When running Python from the command line, you can use the pydoc util-
ity to get this same online help shown earlier. For example, you could get help
on the module named queens.py. The pydoc utility responds by printing a
help summary for every function. Note that “py” is not entered as part of the
module name in this case.

python -m pydoc queens

4.5 Importing Packages
Later sections in this chapter, as well as later chapters in the book, make use of
packages to extend the capabilities of the Python language.

A package is essentially a software library of objects and functions that
perform services. Packages come in two varieties:

◗ Packages included with the Python download itself. This includes math, random,
sys, os, time, datetime, and os.path. These packages are especially conve-
nient, because no additional downloading is necessary.

◗ Packages you can download from the Internet.

Overland_Book.indb 119Overland_Book.indb 119 4/30/19 1:37 PM4/30/19 1:37 PM

Chapter 4 Shortcuts, Command Line, and Packages120

The syntax shown here is the recommended way to an import a package.
There are a few variations on this syntax, as we’ll show later.

import package_name

For example:

import math

Once a package is imported, you can, within IDLE, get help on its contents.
Here’s an example:

>>> import math
>>> help(math)

If you type these commands from within IDLE, you’ll see that the math
package supports a great many functions.

But with this approach, each of the functions needs to be qualified using
the dot (.) syntax. For example, one of the functions supported is sqrt (square
root), which takes an integer or floating-point input.

>>> math.sqrt(2)
1.4142135623730951

You can use the math package, if you choose, to calculate the value of pi.
However, the math package also provides this number directly.

>>> math.atan(1) * 4
3.141592653589793
>>> math.pi
3.141592653589793

Let’s look at one of the variations on the import statement.

import package_name [as new_name]

In this syntax, the brackets indicate that the as new_name clause is optional.
You can use it, if you choose, to give the package another name, or alias, that
is referred to in your source file.

This feature provides short names if the full package name is long. For
example, Chapter 13 introduces the matplotlib.pyplot package.

import matplotlib.pyplot as plt

Now, do you want to use the prefix matplotlib.pyplot, or do you want
to prefix a function name with plt? Good. We thought so.

Python supports other forms of syntax for the import statement. With
both of these approaches, the need to use the package name and the dot syn-
tax is removed.

K
ey

 S
yn

tax

K
ey

 S
yn

tax

Overland_Book.indb 120Overland_Book.indb 120 4/30/19 1:37 PM4/30/19 1:37 PM

4.6 A Guided Tour of Python Packages 121
4

from package_name import symbol_name
from package_name import *

In the first form of this syntax, only the symbol_name gets imported, and
not the rest of the package. But the specified symbol (such as pi in this next
example) can then be referred to without qualification.

>>> from math import pi
>>> print(pi)
3.141592653589793

This approach imports only one symbol—or a series of symbols sepa-
rated by commas—but it enables the symbolic name to be used more directly.
To import an entire package, while also gaining the ability to refer to all its
objects and functions directly, use the last form of the syntax, which includes
an asterisk (*).

>>> from math import *
>>> print(pi)
3.141592653589793
>>> print(sqrt(2))
1.4142135623730951

The drawback of using this version of import is that with very large and
complex programs, it gets difficult to keep track of all the names you’re using,
and when you import packages without requiring a package-name qualifier,
name conflicts can arise.

So, unless you know what you’re doing or are importing a really small pack-
age, it’s more advisable to import specific symbols than use the asterisk (*).

4.6 A Guided Tour of Python Packages
Thousands of other packages are available if you go to python.org, and they
are all free to use. The group of packages in Table 4.1 is among the most use-
ful of all packages available for use with Python, so you should be sure to look
them over.

The re, math, random, array, decimal, and fractions packages are all
included with the standard Python 3 download, so you don’t need to down-
load them separately.

The numpy, matplotlib, and pandas packages need to be installed separately
by using the pip or pip3 utility. Later chapters, starting with Chapter 12,
cover those utilities in depth.

K
ey

 S
yn

tax

Overland_Book.indb 121Overland_Book.indb 121 4/30/19 1:37 PM4/30/19 1:37 PM

Chapter 4 Shortcuts, Command Line, and Packages122

Table 4.1. Python Packages Covered in This Book

NAME TO IMPORT DESCRIPTION

re Regular-expression package. This package lets you create text patterns that can
match many different words, phrases, or sentences. This pattern-specification
language can do sophisticated searches with high efficiency.

This package is so important that it’s explored in both Chapters 6 and 7.

math Math package. Contains helpful and standard math functions so that you don’t
have to write them yourself. These include trigonometric, hyperbolic, exponen-
tial, and logarithmic functions, as well as the constants e and pi.

This package is explored in Chapter 11.

random A set of functions for producing pseudo-random values. Pseudo-random numbers
behave as if random—meaning, among other things, it’s a practical impossibility
for a user to predict them.

This random-number generation package includes the ability to produce random
integers from a requested range, as well as floating-point numbers and normal
distributions. The latter cluster around a mean value to form a “bell curve” of
frequencies.

This package is explored in Chapter 11.

decimal This package supports the Decimal data type, which (unlike the float type)
enables you to represent dollars-and-cents figures precisely without any possi-
bility of rounding errors. Decimal is often preferred for use in accounting and
financial applications.

This package is explored in Chapter 10.

fractions This package supports the Fraction data type, which stores any fractional
number with absolute precision, provided it can be represented as the ratio of two
integers. So, for example, this data type can represent the ratio 1/3 absolutely,
something that neither the float nor Decimal type can do without rounding
errors.

This package is explored in Chapter 10.

array This package supports the array class, which differs from lists in that it holds
raw data in contiguous storage. This isn’t always faster, but sometimes it’s
necessary to pack your data into contiguous storage so as to interact with other
processes. However, the benefits of this package are far exceeded by the numpy
package, which gives you the same ability, but much more.

This package is briefly covered in Chapter 12.

numpy This package supports the numpy (numeric Python) class, which in turn supports
high-speed batch operations on one-, two-, and higher-dimensional arrays. The
class is useful not only in itself, as a way of supercharging programs that handle
large amounts of data, but also as the basis for work with other classes.

This package is explored in Chapters 12 and 13. numpy needs to be installed with
pip or pip3.

Overland_Book.indb 122Overland_Book.indb 122 4/30/19 1:37 PM4/30/19 1:37 PM

4.7 Functions as First-Class Objects 123
4

NAME TO IMPORT DESCRIPTION

numpy.random Similar to random, but designed especially for use with numpy, and ideally suited
to situations in which you need to generate a large quantity of random numbers
quickly. In head-to-head tests with the standard random class, the numpy random
class is several times faster when you need to create an array of such numbers.

This package is also explored in Chapter 12.

matplotlib.pyplot This package supports sophisticated plotting routines for Python. Using these
routines, you can create beautiful looking charts and figures—even three-
dimensional ones.

This package is explored in Chapter 13. It needs to be installed with pip or pip3.

pandas This package supports data frames, which are tables that can hold a variety of
information, as well as routines for going out and grabbing information from the
Internet and loading it. Such information can then be combined with the numpy
and plotting routines to create impressive-looking graphs.

This package is explored in Chapter 15. It also needs to be downloaded.

4.7 Functions as First-Class Objects
Another productivity tool—which may be useful in debugging, profiling, and
related tasks—is to treat Python functions as first-class objects. That means
taking advantage of how you can get information about a function at run
time. For example, suppose you’ve defined a function called avg.

def avg(a_list):
 '''This function finds the average val in a list.'''
 x = (sum(a_list) / len(a_list))
 print('The average is:', x)
 return x

The name avg is a symbolic name that refers to a function, which in Python
lingo is also a callable. There are a number of things you can do with avg,
such as verify its type, which is function. Here’s an example:

>>> type(avg)
<class 'function'>

We already know that avg names a function, so this is not new informa-
tion. But one of the interesting things you can do with an object is assign it to a

Table 4.1. Python Packages Covered in This Book (continued)

Overland_Book.indb 123Overland_Book.indb 123 4/30/19 1:37 PM4/30/19 1:37 PM

Chapter 4 Shortcuts, Command Line, and Packages124

new name. You can also assign a different function altogether to the symbolic
name, avg.

def new_func(a_list):
 return (sum(a_list) / len(a_list))

old_avg = avg
avg = new_func

The symbolic name old_avg now refers to the older, and longer, function
we defined before. The symbolic name avg now refers to the newer function just
defined.

The name old_avg now refers to our first averaging function, and we can
call it, just as we used to call avg.

>>> old_avg([4, 6])
The average is 5.0
5.0

The next function shown (which we might loosely term a “metafunction,”
although it’s really quite ordinary) prints information about another function—
specifically, the function argument passed to it.

def func_info(func):
 print('Function name:', func._ _name_ _)
 print('Function documentation:')
 help(func)

If we run this function on old_avg, which has been assigned to our first
averaging function at the beginning of this section, we get this result:

Function name: avg
Function documentation:
Help on function avg in module _ _main_ _:

avg(a_list)
 This function finds the average val in a list.

We’re currently using the symbolic name old_avg to refer to the first func-
tion that was defined in this section. Notice that when we get the function’s
name, the information printed uses the name that the function was originally
defined with.

All of these operations will become important when we get to the topic of
“decorating” in Section 4.9, “Decorators and Function Profilers.”

Overland_Book.indb 124Overland_Book.indb 124 4/30/19 1:37 PM4/30/19 1:37 PM

4.8 Variable-Length Argument Lists 125
4

4.8 Variable-Length Argument Lists
One of the most versatile features of Python is the ability to access variable-
length argument lists. With this capability, your functions can, if you choose,
handle any number of arguments—much as the built-in print function does.

The variable-length argument ability extends to the use of named argu-
ments, also called “keyword arguments.”

4.8.1 The *args List
The *args syntax can be used to access argument lists of any length.

def func_name([ordinary_args,] *args):
statements

The brackets are used in this case to show that *args may optionally be
preceded by any number of ordinary positional arguments, represented here
as ordinary_args. The use of such arguments is always optional.

In this syntax, the name args can actually be any symbolic name you want.
By convention, Python programs use the name args for this purpose.

The symbolic name args is then interpreted as a Python list like any other;
you expand it by indexing it or using it in a for loop. You can also take its
length as needed. Here’s an example:

def my_var_func(*args):
 print('The number of args is', len(args))
 for item in args:
 print(items)

This function, my_var_func, can be used with argument lists of any length.

>>> my_var_func(10, 20, 30, 40)
The number of args is 4
10
20
30
40

A more useful function would be one that took any number of numeric
arguments and returned the average. Here’s an easy way to write that function.

def avg(*args):
 return sum(args)/len(args)

K
ey

 S
yn

tax

Overland_Book.indb 125Overland_Book.indb 125 4/30/19 1:37 PM4/30/19 1:37 PM

Chapter 4 Shortcuts, Command Line, and Packages126

Now we can call the function with a different number of arguments each
time.

>>> avg(11, 22, 33)
22.0
>>> avg(1, 2)
1.5

The advantage of writing the function this way is that no brackets are
needed when you call this function. The arguments are interpreted as if they
were elements of a list, but you pass these arguments without list syntax.

What about the ordinary arguments we mentioned earlier? Additional
arguments, not included in the list *args, must either precede *args in the
argument list or be keyword arguments.

For example, let’s revisit the avg example. Suppose we want a separate
argument that specifies what units we’re using. Because units is not a key-
word argument, it must appear at the beginning of the list, in front of *args.

def avg(units, *args):
 print (sum(args)/len(args), units)

Here’s a sample use:

>>> avg('inches', 11, 22, 33)
22.0 inches

This function is valid because the ordinary argument, units, precedes the
argument list, *args.

Note Ë The asterisk (*) has a number of uses in Python. In this context, it’s
called the splat or the positional expansion operator. Its basic use is to rep-
resent an “unpacked list”; more specifically, it replaces a list with a simple
sequence of separate items.

The limitation on such an entity as *args is that there isn’t much you can
do with it. One thing you can do (which will be important in Section 4.9,
“Decorators and Function Profilers”) is pass it along to a function. Here’s an
example:

>>> ls = [1, 2, 3] # Unpacked list.
>>> print(*ls) # Print unpacked version
1 2 3
>>> print(ls) # Print packed (ordinary list).
[1, 2, 3]

Overland_Book.indb 126Overland_Book.indb 126 4/30/19 1:37 PM4/30/19 1:37 PM

4.8 Variable-Length Argument Lists 127
4

The other thing you can do with *args or *ls is to pack it (or rather,
repack it) into a standard Python list; you do that by dropping the asterisk. At
that point, it can be manipulated with all the standard list-handling abilities
in Python.

Ç Note

4.8.2 The “**kwargs” List
The more complete syntax supports keyword arguments, which are named
arguments during a function call. For example, in the following call to the
print function, the end and sep arguments are named.

print(10, 20, 30, end='.', sep=',')

The more complete function syntax recognizes both unnamed and named
arguments.

def func_name([ordinary_args,] *args, **kwargs):
statements

As with the symbolic name args, the symbolic name kwargs can actually
be any name, but by convention, Python programmers use kwargs.

Within the function definition, kwargs refers to a dictionary in which each
key-value pair is a string containing a named argument (as the key) and a
value, which is the argument value passed.

An example should clarify. Assume you define a function as follows:

def pr_named_vals(**kwargs):
 for k in kwargs:
 print(k, ':', kwargs[k])

This function cycles through the dictionary represented by kwargs, printing
both the key values (corresponding to argument names) and the correspond-
ing values, which have been passed to the arguments.

For example:

>>> pr_named_vals(a=10, b=20, c=30)
a : 10
b : 20
c : 30

A function definition may combine any number of named arguments,
referred to by kwargs, with any number of arguments that are not named,
referred to by args. Here is a function definition that does exactly that.

K
ey

 S
yn

tax

Overland_Book.indb 127Overland_Book.indb 127 4/30/19 1:37 PM4/30/19 1:37 PM

Chapter 4 Shortcuts, Command Line, and Packages128

The following example defines such a function and then calls it.

def pr_vals_2(*args, **kwargs):
 for i in args:
 print(i)
 for k in kwargs:
 print(k, ':', kwargs[k])

pr_vals_2(1, 2, 3, -4, a=100, b=200)

This miniprogram, when run as a script, prints the following:

1
2
3
-4
a : 100
b : 200

Note Ë Although args and kwargs are expanded into a list and a dictionary,
respectively, these symbols can be passed along to another function, as shown
in the next section.

Ç Note

4.9 Decorators and Function Profilers
When you start refining your Python programs, one of the most useful things
to do is to time how fast individual functions run. You might want to know
how many seconds and fractions of a second elapse while your program exe-
cutes a function generating a thousand random numbers.

Decorated functions can profile the speed of your code, as well as provide
other information, because functions are first-class objects. Central to the
concept of decoration is a wrapper function, which does everything the origi-
nal function does but also adds other statements to be executed.

Here’s an example, illustrated by Figure 4.3. The decorator takes a func-
tion F1 as input and returns another function, F2, as output. This second
function, F2, is produced by including a call to F1 but adding other statements
as well. F2 is a wrapper function.

Overland_Book.indb 128Overland_Book.indb 128 4/30/19 1:37 PM4/30/19 1:37 PM

4.9 Decorators and Function Profilers 129
4

F1():

F1 = Decorator(F1)

Original
function, to
be wrapped.

F2 now replaces F1, so that the name
F1 refers to the wrapped version, F2.

Decorator(f):

Create a wrapped
version of f and
return it.

F2():

Wrapped
version
of F1.

Figure 4.3. How decorators work (high-level view)

Here’s an example of a decorator function that takes a function as argu-
ment and wraps it by adding calls to the time.time function. Note that time
is a package, and it must be imported before time.time is called.

import time

def make_timer(func):
 def wrapper():
 t1 = time.time()
 ret_val = func()
 t2 = time.time()
 print('Time elapsed was', t2 - t1)
 return ret_val
 return wrapper

There are several functions involved with this simple example (which, by
the way, is not yet complete!), so let’s review.

◗ There is a function to be given as input; let’s call this the original function (F1
in this case). We’d like to be able to input any function we want, and have it
decorated—that is, acquire some additional statements.

◗ The wrapper function is the result of adding these additional statements to
the original function. In this case, these added statements report the number
of seconds the original function took to execute.

◗ The decorator is the function that performs the work of creating the wrapper
function and returning it. The decorator is able to do this because it internally
uses the def keyword to define a new function.

Overland_Book.indb 129Overland_Book.indb 129 4/30/19 1:37 PM4/30/19 1:37 PM

Chapter 4 Shortcuts, Command Line, and Packages130

◗ Ultimately, the wrapped version is intended to replace the original version, as
you’ll see in this section. This is done by reassigning the function name.

If you look at this decorator function, you should notice it has an important
omission: The arguments to the original function, func, are ignored. The wrap-
per function, as a result, will not correctly call func if arguments are involved.

The solution involves the *args and **kwargs language features, intro-
duced in the previous section. Here’s the full decorator:

import time

def make_timer(func):
 def wrapper(*args, **kwargs):
 t1 = time.time()
 ret_val = func(*args, **kwargs)
 t2 = time.time()
 print('Time elapsed was', t2 - t1)
 return ret_val
 return wrapper

The new function, remember, will be wrapper. It is wrapper (or rather, the
function temporarily named wrapper) that will eventually be called in place
of func; this wrapper function therefore must be able to take any number of
arguments, including any number of keyword arguments. The correct action
is to pass along all these arguments to the original function, func. Here’s how:

 ret_val = func(*args, **kwargs)

Returning a value is also handled here; the wrapper returns the same value
as func, as it should. What if func returns no value? That’s not a problem,
because Python functions return None by default. So the value None, in that
case, is simply passed along. (You don’t have to test for the existence of a
return value; there always is one!)

Having defined this decorator, make_timer, we can take any function and
produce a wrapped version of it. Then—and this is almost the final trick—
we reassign the function name so that it refers to the wrapped version of the
function.

def count_nums(n):
 for i in range(n):
 for j in range(1000):
 pass

count_nums = make_timer(count_nums)

Overland_Book.indb 130Overland_Book.indb 130 4/30/19 1:37 PM4/30/19 1:37 PM

4.9 Decorators and Function Profilers 131
4

The wrapper function produced by make_timer is defined as follows
(except that the identifier func will be reassigned, as you’ll see in a moment).

def wrapper(*args, **kwargs):
 t1 = time.time()
 ret_val = func(*args, **kwargs)
 t2 = time.time()
 print('Time elapsed was', t2 - t1)
 return ret_val

We now reassign the name count_nums so that it refers to this function—
wrapper—which will call the original count_nums function but also does
other things.

Confused yet? Admittedly, it’s a brain twister at first. But all that’s going on is
that (1) a more elaborate version of the original function is being created at run
time, and (2) this more elaborate version is what the name, count_nums, will
hereafter refer to. Python symbols can refer to any object, including functions
(callable objects). Therefore, we can reassign function names all we want.

count_nums = wrapper

Or, more accurately,

count_nums = make_timer(count_nums)

So now, when you run count_nums (which now refers to the wrapped ver-
sion of the function), you’ll get output like this, reporting execution time in
seconds.

>>> count_nums(33000)
Time elapsed was 1.063697338104248

The original version of count_nums did nothing except do some count-
ing; this wrapped version reports the passage of time in addition to calling the
original version of count_nums.

As a final step, Python provides a small but convenient bit of syntax to
automate the reassignment of the function name.

@decorator
def func(args):

statements

This syntax is translated into the following:

def func(args):
 statements
func = decorator(func)

K
ey

 S
yn

tax

Overland_Book.indb 131Overland_Book.indb 131 4/30/19 1:37 PM4/30/19 1:37 PM

Chapter 4 Shortcuts, Command Line, and Packages132

In either case, it’s assumed that decorator is a function that has already
been defined. This decorator must take a function as its argument and return
a wrapped version of the function. Assuming all this has been done correctly,
here’s a complete example utilizing the @ sign.

@make_timer
def count_nums(n):
 for i in range(n):
 for j in range(1000):
 pass

After this definition is executed by Python, count_num can then be called,
and it will execute count_num as defined, but it will also add (as part of the
wrapper) a print statement telling the number of elapsed seconds.

Remember that this part of the trick (the final trick, actually) is to get the
name count_nums to refer to the new version of count_nums, after the new
statements have been added through the process of decoration.

4.10 Generators
There’s no subject in Python about which more confusion abounds than gen-
erators. It’s not a difficult feature once you understand it. Explaining it’s the
hard part.

But first, what does a generator do? The answer: It enables you to deal with
a sequence one element at a time.

Suppose you need to deal with a sequence of elements that would take a
long time to produce if you had to store it all in memory at the same time. For
example, you want to examine all the Fibonacci numbers up to 10 to the 50th
power. It would take a lot of time and space to calculate the entire sequence.
Or you may want to deal with an infinite sequence, such as all even numbers.

The advantage of a generator is that it enables you to deal with one member
of a sequence at a time. This creates a kind of “virtual sequence.”

4.10.1 What’s an Iterator?
One of the central concepts in Python is that of iterator (sometimes confused
with iterable). An iterator is an object that produces a stream of values, one at
a time.

Overland_Book.indb 132Overland_Book.indb 132 4/30/19 1:37 PM4/30/19 1:37 PM

4.10 Generators 133
4

All lists can be iterated, but not all iterators are lists. There are many func-
tions, such as reversed, that produce iterators that are not lists. These cannot
be indexed or printed in a useful way, at least not directly. Here’s an example:

>>> iter1 = reversed([1, 2, 3, 4])
>>> print(iter1)
<list_reverseiterator object at 0x1111d7f28>

However, you can convert an iterator to a list and then print it, index it, or
slice it:

>>> print(list(iter1))
[4, 3, 2, 1]

Iterators in Python work with for statements. For example, because iter1
is an iterator, the following lines of code work perfectly well.

>>> iter1 = reversed([1, 2, 3, 4])
>>> for i in iter1:
 print(i, end=' ')

4 3 2 1

Iterators have state information; after reaching the end of its series, an iter-
ator is exhausted. If we used iter1 again without resetting it, it would produce
no more values.

4.10.2 Introducing Generators
A generator is one of the easiest ways to produce an iterator. But the generator
function is not itself an iterator. Here’s the basic procedure.

◗ Write a generator function. You do this by using a yield statement anywhere
in the definition.

◗ Call the function you completed in step 1 to get an iterator object.

◗ The iterator created in step 2 is what yields values in response to the next
function. This object contains state information and can be reset as needed.

Figure 4.4 illustrates the process.

Overland_Book.indb 133Overland_Book.indb 133 4/30/19 1:37 PM4/30/19 1:37 PM

Chapter 4 Shortcuts, Command Line, and Packages134

def mak_gen(m):
 n = 1
 while n < m:
 yield n
 n += 1

Interator
object
yielding n

A generator function is really a generator factory!

n

GENERATOR
FUNCTION

GENERATOR
OBJECT (gen_obj)

(Holds state
informtion)

Returns When next(gen_obj)
is called, it yields n!

Figure 4.4. Returning a generator from a function

Here’s what almost everybody gets wrong when trying to explain this pro-
cess: It looks as if the yield statement, placed in the generator function (the
thing on the left in Figure 4.4), is doing the yielding. That’s “sort of” true, but
it’s not really what’s going on.

The generator function defines the behavior of the iterator. But the iterator
object, the thing to its right in Figure 4.4, is what actually executes this behavior.

When you include one or more yield statements in a function, the func-
tion is no longer an ordinary Python function; yield describes a behavior in
which the function does not return a value but sends a value back to the caller
of next. State information is saved, so when next is called again, the iterator
advances to the next value in the series without starting over. This part, every-
one seems to understand.

But—and this is where people get confused—it isn’t the generator function
that performs these actions, even though that’s where the behavior is defined.
Fortunately, you don’t need to understand it; you just need to use it. Let’s start
with a function that prints even numbers from 2 to 10:

def print_evens():
 for n in range(2, 11, 2):
 print(n)

Now replace print(n) with the statement yield n. Doing so changes the
nature of what the function does. While we’re at it, let’s change the name to
make_evens_gen to have a more accurate description.

Overland_Book.indb 134Overland_Book.indb 134 4/30/19 1:37 PM4/30/19 1:37 PM

4.10 Generators 135
4

def make_evens_gen():
 for n in range(2, 11, 2):
 yield n

The first thing you might say is “This function no longer returns anything;
instead, it yields the value n, suspending its execution and saving its internal state.”

But this revised function, make_evens_gen, does indeed have a return
value! As shown in Figure 4.4, the value returned is not n; the return value is
an iterator object, also called a “generator object.” Look what happens if you
call make_evens_gen and examine the return value.

>>> make_evens_gen()
<generator object make_evens_gen at 0x1068bd410>

What did the function do? Yield a value for n? No! Instead, it returned an
iterator object, and that’s the object that yields a value. We can save the itera-
tor object (or generator object) and then pass it to next.

>>> my_gen = make_evens_gen()
>>> next(my_gen)
2
>>> next(my_gen)
4
>>> next(my_gen)
6

Eventually, calling next exhausts the series, and a StopIteration excep-
tion is raised. But what if you want to reset the sequence of values to the begin-
ning? Easy. You can do that by calling make_evens_gen again, producing a
new instance of the iterator. This has the effect of starting over.

>>> my_gen = make_evens_gen() # Start over
>>> next(my_gen)
2
>>> next(my_gen)
4
>>> next(my_gen)
6
>>> my_gen = make_evens_gen() # Start over
>>> next(my_gen)
2
>>> next(my_gen)
4
>>> next(my_gen)
6

Overland_Book.indb 135Overland_Book.indb 135 4/30/19 1:37 PM4/30/19 1:37 PM

Chapter 4 Shortcuts, Command Line, and Packages136

What happens if you call make_evens_gen every time? In that case, you
keep starting over, because each time you’re creating a new generator object.
This is most certainly not what you want.

>>> next(make_evens_gen())
2
>>> next(make_evens_gen())
2
>>> next(make_evens_gen())
2

Generators can be used in for statements, and that’s one of the most fre-
quent uses. For example, we can call make_evens_gen as follows:

for i in make_evens_gen():
 print(i, end=' ')

This block of code produces the result you’d expect:

2 4 6 8 10

But let’s take a look at what’s really happening. The for block calls make_
evens_gen one time. The result of the call is to get a generator object. That
object then provides the values in the for loop. The same effect is achieved by
the following code, which breaks the function call onto an earlier line.

>>> my_gen = make_evens_gen()
>>> for i in my_gen:

print(i, end=' ')

Remember that my_gen is an iterator object. If you instead referred to
make_evens_gen directly, Python would raise an exception.

for i in make_evens_gen: # ERROR! Not an iterable!
 print(i, end=' ')

Once you understand that the object returned by the generator function
is the generator object, also called the iterator, you can call it anywhere an
iterable or iterator is accepted in the syntax. For example, you can con-
vert a generator object to a list, as follows.

>>> my_gen = make_evens_gen()
>>> a_list = list(my_gen)
>>> a_list
[2, 4, 6, 8, 10]

Overland_Book.indb 136Overland_Book.indb 136 4/30/19 1:37 PM4/30/19 1:37 PM

4.10 Generators 137
4

>>> a_list = list(my_gen) # Oops! No reset!
>>> a_list
[]

The problem with the last few statements in this example is that each
time you iterate through a sequence using a generator object, the iteration is
exhausted and needs to be reset.

>>> my_gen = make_evens_gen() # Reset!
>>> a_list = list(my_gen)
>>> a_list
[2, 4, 6, 8, 10]

You can of course combine the function call and the list conversion. The
list itself is stable and (unlike a generator object) will retain its values.

>>> a_list = list(make_evens_gen())
>>> a_list
[2, 4, 6, 8, 10]

One of the most practical uses of an iterator is with the in and not in
keywords. We can, for example, generate an iterator that produces Fibonacci
numbers up to and including N, but not larger than N.

def make_fibo_gen(n):
 a, b = 1, 1
 while a <= n:
 yield a
 a, b = a + b, a

The yield statement changes this function from an ordinary function to
a generator function, so it returns a generator object (iterator). We can now
determine whether a number is a Fibonacci by using the following test:

n = int(input('Enter number: '))
if n in make_fibo_gen(n):
 print('number is a Fibonacci. ')
else:
 print('number is not a Fibonacci. ')

This example works because the iterator produced does not yield an infinite
sequence, something that would cause a problem. Instead, the iterator termi-
nates if n is reached without being confirmed as a Fibonacci.

Remember—and we state this one last time—by putting yield into the
function make_fibo_gen, it becomes a generator function and it returns the

Overland_Book.indb 137Overland_Book.indb 137 4/30/19 1:37 PM4/30/19 1:37 PM

Chapter 4 Shortcuts, Command Line, and Packages138

generator object we need. The previous example could have been written as
follows, so that the function call is made in a separate statement. The effect is
the same.

n = int(input('Enter number: '))
my_fibo_gen = make_fibo_gen(n)
if n in my_fibo_gen:
 print('number is a Fibonacci. ')
else:
 print('number is not a Fibonacci. ')

As always, remember that a generator function (which contains the yield
statement) is not a generator object at all, but rather a generator factory. This
is confusing, but you just have to get used to it. In any case, Figure 4.4 shows
what’s really going on, and you should refer to it often.

4.11 Accessing Command-Line Arguments
Running a program from the command lets you provide the program an extra
degree of flexibility. You can let the user specify command-line arguments;
these are optional arguments that give information directly to the program
on start-up. Alternatively, you can let the program prompt the user for the
information needed. But use of command-line arguments is typically more
efficient.

Command-line arguments are always stored in the form of strings. So—
just as with data returned by the input function—you may need to convert
this string data to numeric format.

To access command-line arguments from within a Python program, first
import the sys package.

import sys

You can then refer to the full set of command-line arguments, including the
function name itself, by referring to a list named argv.

argv # If 'import sys.argv' used
sys.argv # If sys imported as 'import sys'

In either case, argv refers to a list of command-line arguments, all stored
as strings. The first element in the list is always the name of the program
itself. That element is indexed as argv[0], because Python uses zero-based
indexing.

K
ey

 S
yn

tax

Overland_Book.indb 138Overland_Book.indb 138 4/30/19 1:37 PM4/30/19 1:37 PM

4.11 Accessing Command-Line Arguments 139
4

For example, suppose that you are running quad (a quadratic-equation
evaluator) and input the following command line:

python quad.py -1 -1 1

In this case, argv will be realized as a list of four strings.
Figure 4.5 illustrates how these strings are stored, emphasizing that the first

element, argv[0], refers to a string containing the program name.

"quad.py"

Program name

"–1" "–1" "1"

len(argv) = 4

argv[0] argv[1] argv[2] argv[3]

Figure 4.5. Command-line arguments and argv

In most cases, you’ll probably ignore the program name and focus on the
other arguments. For example, here is a program named silly.py that does
nothing but print all the arguments given to it, including the program name.

import sys
for thing in sys.argv:
 print(thing, end=' ')

Now suppose we enter this command line:

python silly.py arg1 arg2 arg3

The Terminal program (in Mac) or the DOS Box prints the following:

silly.py arg1 arg2 arg3

The following example gives a more sophisticated way to use these strings,
by converting them to floating-point format and passing the numbers to the
quad function.

import sys

def quad(a, b, c):
 '''Quadratic Formula function.'''

 determin = (b * b - 4 * a * c) ** .5
 x1 = (-b + determin) / (2 * a)

Overland_Book.indb 139Overland_Book.indb 139 4/30/19 1:37 PM4/30/19 1:37 PM

Chapter 4 Shortcuts, Command Line, and Packages140

 x2 = (-b - determin) / (2 * a)
 return x1, x2

def main():
 '''Get argument values, convert, call quad.'''

 s1, s2, s3 = sys.argv[1], sys.argv[2], sys.argv[3]
 a, b, c = float(s1), float(s2), float(s3)
 x1, x2 = quad(a, b, c)
 print('x values: {}, {}.'.format(x1, x2))

main()

The interesting line here is this one:

 s1, s2, s3 = sys.argv[1], sys.argv[2], sys.argv[3]

Again, the sys.argv list is zero-based, like any other Python list, but the
program name, referred to as sys.arg[0], typically isn’t used in the program
code. Presumably you already know what the name of your program is, so you
don’t need to look it up.

Of course, from within the program you can’t always be sure that argument
values were specified on the command line. If they were not specified, you
may want to provide an alternative, such as prompting the user for these same
values.

Remember that the length of the argument list is always N+1, where N
is the number of command-line arguments—beyond the program name, of
course.

Therefore, we could revise the previous example as follows:

import sys

def quad(a, b, c):
 '''Quadratic Formula function.'''

 determin = (b * b - 4 * a * c) ** .5
 x1 = (-b + determin) / (2 * a)
 x2 = (-b - determin) / (2 * a)
 return x1, x2

def main():
 '''Get argument values, convert, call quad.'''

Overland_Book.indb 140Overland_Book.indb 140 4/30/19 1:37 PM4/30/19 1:37 PM

141
4

Summary

 if len(sys.argv) > 3:
 s1, s2, s3 = sys.argv[1], sys.argv[2], sys.argv[3]
 else:
 s1 = input('Enter a: ')
 s2 = input('Enter b: ')
 s3 = input('Enter c: ')
 a, b, c = float(s1), float(s2), float(s3)
 x1, x2 = quad(a, b, c)
 print('x values: {}, {}.'.format(x1, x2))

main()

The key lines in this version are in the following if statement:

 if len(sys.argv) > 3:
 s1, s2, s3 = sys.argv[1], sys.argv[2], sys.argv[3]
 else:
 s1 = input('Enter a: ')
 s2 = input('Enter b: ')
 s3 = input('Enter c: ')
 a, b, c = float(s1), float(s2), float(s3)

If there are at least four elements in sys.argv (and therefore three
 command-line arguments beyond the program name itself), the program uses
those strings. Otherwise, the program prompts for the values.

So, from the command line, you’ll be able to run the following:

python quad.py 1 -9 20

The program then prints these results:

x values: 4.0 5.0

Chapter 4 Summary
A large part of this chapter presented ways to improve your efficiency through
writing better and more efficient Python code. Beyond that, you can make your
Python programs run faster if you call the print function as rarely as possible
from within IDLE—or else run programs from the command line only.

A technique helpful in making your code more efficient is to profile it by
using the time and datetime packages to compute the relative speed of the
code, given different algorithms. Writing decorators is helpful in this respect,
because you can use them to profile function performance.

Overland_Book.indb 141Overland_Book.indb 141 4/30/19 1:37 PM4/30/19 1:37 PM

Chapter 4 Shortcuts, Command Line, and Packages142

One of the best ways of supercharging your applications, in many cases, is
to use one of the many free packages available for use with Python. Some of
these are built in; others, like the numpy package, you’ll need to download.

Chapter 4 Questions for Review
1 Is an assignment operator such as += only a convenience? Can it actually result

in faster performance at run time?

2 In most computer languages, what is the minimum number of statements
you’d need to write instead of the Python statement a, b = a + b, a?

3 What’s the most efficient way to initialize a list of 100 integers to 0 in Python?

4 What’s the most efficient way of initializing a list of 99 integers with the pat-
tern 1, 2, 3 repeated? Show precisely how to do that, if possible.

5 If you’re running a Python program from within IDLE, describe how to most
efficiently print a multidimensional list.

6 Can you use list comprehension on a string? If so, how?

7 How can you get help on a user-written Python program from the command
line? From within IDLE?

8 Functions are said to be “first-class objects” in Python but not in most other
languages, such as C++ or Java. What is something you can do with a Python
function (callable object) that you cannot do in C or C++?

9 What’s the difference between a wrapper, a wrapped function, and a
decorator?

10 When a function is a generator function, what does it return, if anything?

11 From the standpoint of the Python language, what is the one change that
needs to be made to a function to turn it into a generator function?

12 Name at least one advantage of generators.

Chapter 4 Suggested Problems
1 Print a matrix of 20 × 20 stars or asterisks (*). From within IDLE, demon-

strate the slowest possible means of doing this task and the fastest possible
means. (Hint: Does the fastest way utilize string concatenation of the join

Overland_Book.indb 142Overland_Book.indb 142 4/30/19 1:37 PM4/30/19 1:37 PM

143
4

Suggested Problems

method?) Compare and contrast. Then use a decorator to profile the speeds of
the two ways of printing the asterisks.

2 Write a generator to print all the perfect squares of integers, up to a specified
limit. Then write a function to determine whether an integer argument is a
perfect square if it falls into this sequence—that is, if n is an integer argument,
the phrase n in square_iter(n) should yield True or False.

Overland_Book.indb 143Overland_Book.indb 143 4/30/19 1:37 PM4/30/19 1:37 PM

Overland_Book.indb 634Overland_Book.indb 634 4/30/19 1:38 PM4/30/19 1:38 PM

This page intentionally left blank

605

Index

Symbols
& (ampersands) for Boolean arrays, 416–417

intersection set operator, 579
* (asterisks). See Asterisks (*)
@ (at signs)

function name reassignment, 131–132
native mode, 277

\ (backslashes). See Backslashes (\)
^ (carets)

regular expressions, 194, 196–197
shape characters, 444
symmetric difference set operator, 580
text justification, 165

: (colons). See Colons (:)
, (commas)

arguments, 16
lists, 22
thousands place separator, 152, 154,

168–170
{} (curly braces). See Curly braces ({})
$ (dollar signs) in regular expressions,

185–187, 194
. (dots). See Decimal points (.); Dots (.)
= (equal signs). See Equal signs (=)
! (exclamation points). See Exclamation

points (!)
> (greater than signs). See Greater than

signs (>)

(hashtags)
comments, 3
regular expressions, 216

< (less than signs). See Less than signs (<)
- (minus signs). See Minus signs (-)
() (parentheses). See Parentheses ()
% (percent sign operator). See Percent sign

operator (%)
+ (plus signs). See Plus signs (+)
? (question marks)

format specifier, 270
jump-if-not-zero structure, 502–504
regular expressions, 215–216

" ' (quotation marks) in strings, 19–20
; (semicolons) for multiple statements, 112,

590
/ (slashes)

arrays, 407
division, 5
fractions, 352

[] (square brackets). See Square brackets ([])
_ (underscores)

inside large numbers, 115
magic methods, 295
variables, 4, 292, 487–488

| (vertical bars)
alteration operator in regular

expressions, 191–192

Overland_Book.indb 605Overland_Book.indb 605 4/30/19 1:38 PM4/30/19 1:38 PM

Index606

| (vertical bars) (continued)
OR operator for Boolean arrays,

416–417
OR operator in regular expressions

flags, 192–193
union set operator, 581

A
\A character in regular expressions, 194
Abbreviations in regular expressions, 224
abort function, 248
abs function

description, 550
numpy package, 432

_ _abs_ _ method, 296, 308
acos function, 376
add_func function definition, 82
_ _add_ _ method

binary operator, 296
description, 305–307, 311
Money class, 339–340, 344

add method for sets, 28, 577
Addition

arrays, 407, 416
complex numbers, 356
in-place operation, 283
lists, 82
magic methods, 305–307
money calculator, 343–344
operators, 5
reflection, 311–312
RPN application, 79

Algebra, linear, 456–463
Aliases for packages, 120
Align characters

strings, 172–173
text justification, 164–166

all function, 550
_ _all_ _ symbol, 484–487
Alpha characters, testing for, 48
Alphanumeric characters, testing for, 48

Alteration operator (|) in regular expressions,
191–192

Ampersands (&) for Boolean arrays, 416–417
_ _and_ _ method, 296
AND operator (&) for Boolean arrays, 416–417
and operator, logical, 15
any function, 550
append function

description, 432
lists, 22–23, 73, 78
rows and columns, 474

arange function
description, 393
numpy, 468
overview, 396

arccos function, 432
arcsin function, 432
arctan function, 432
*args list, 125–127
Arguments

command-line, 138–141
default values of, 17
functions, 16–19
multiple types, 320–322
named (keyword), 19
passing through lists, 89–90
print, 8
range, 24
variable-length lists, 125–128

Arithmetic operators
magic methods, 296, 304–308
summary, 5

array function, 394–395
array package

description, 122
overview, 387–390

Arrays
arange function, 396
batch operations, 406–409
Boolean, 415–417
copy function, 402

Overland_Book.indb 606Overland_Book.indb 606 4/30/19 1:38 PM4/30/19 1:38 PM

Index 607

creating, 392–395
dot product, 456–460
empty function, 397–398
eye function, 398–399
fromfunction function, 403–405
full function, 401–402
linear algebra functions, 462–463
linspace function, 396–397
mixed-data records, 469–471
multiplication table, 405–406
ones function, 399–400
outer product, 460–462
review questions, 429–430
rows and columns, 424–428
Sieve of Eratosthenes, 417–419
slicing, 410–415
standard deviation, 419–424
suggested problems, 430
summary, 429
zeros function, 400–401

as np clause, 391
as_tuple method, 333
ascii function, 551
ASCII values

binary files, 246
character codes, 43
conversions, 36, 43–44
point order, 37
regular expressions, 193
text files, 246
type specifier, 173

asin function, 376
Aspect ratio for circles, 452–454
assert statement, 590–591
assign_op function definition, 263–265
Assignment operators, 4–5
Assignments

arrays, 377, 379
combined operators, 4–5, 98–100
description, 2
list slices, 67

magic methods, 296, 313
multiple, 100–101
overview, 587–588
precedence, 548
RPN application operators, 262–268
strings, 21
tuples, 14–15, 101–104

Asterisks (*)
arrays, 407
Boolean arrays, 416
exponentiation, 5
import statement, 121, 484–485
lists, 67–69, 104–105
magic methods, 307
multiplication, 5
regular expressions, 182–183, 215
shape characters, 444
strings, 37–38, 104–105
tuples, 103
variable-length argument lists, 125–128
variable-length print fields, 151–152

At signs (@)
function name reassignment, 131–132
native mode, 277
use with decorators, 131

atan function, 376
Attributes, setting and getting, 322–323
Axes adjustments, 467–468
axis function, 454–455

B
\B character in regular expressions, 194
\b character in regular expressions, 194
b color character, 443
%b format specifier, 155
b type specifier, 173–174, 176
Backslashes (\)

line continuation, 97
regular expressions, 182–185, 187,

194–196, 212
strings, 20

Overland_Book.indb 607Overland_Book.indb 607 4/30/19 1:38 PM4/30/19 1:38 PM

Index608

Backtracking in regular expressions,
199–200

Bases in logarithmic functions, 381–382
Batch operations for arrays, 406–409
Bell curves, 370–373
benchmarks function definition, 392
Big endian bytes vs. little endian, 276–278
bin function

conversion functions, 48
description, 551

bin_op function definition, 239–242, 264–265
Binary files

approaches to, 247–249
description, 246–248
read/write operations, 252–254, 268–278
review questions, 283
suggested problems, 283–284
summary, 282
vs. text, 245–246

Binary numbers
conversion functions, 47–48
type specifier, 173–174, 176

Binary operators for magic methods, 296
Binomial Theorem, 370
Bins for histograms, 446–452
Bitwise operators

Boolean arrays, 416–417
combined, 98
inversion, 308
listed in order of precedence, 547
magic methods, 296
shift, 296, 313

bool dtype value, 394
bool function, 551–552
_ _bool_ _ method

conversions, 296, 314–315
description, 308
object representation, 299

Boolean values
arrays, 415–419
benefits, 107
conversions, 296, 299, 314–315

dtype, 394
format specifier, 270
operators, 15–16
string methods, 48–49

break statement
overview, 591
while statements, 13

Building strings, 44–46
Built-in functions, 549–576
Bytes

big endian vs. little endian, 276–278
format specifier, 270

bytes function, 552
bytes package, 247–248, 268

C
c color character, 443
c format specifier, 270
c type specifier, 173
calc_binary function definition, 176
calcsize function, 270–271
Calculator in Money class, 342–345
_ _call_ _ method, 296
callable function, 552
Canonical number example for regular

expressions, 217–218
Canonical representation in source code,

161–162
Cards in Deck class, 365–370
Carets (^)

regular expressions, 194, 196–197
shape characters, 444
symmetric difference set operator, 580
text justification, 165

Case conversion methods, 49–50
Case sensitivity

Boolean values, 13
comparisons, 43
list sorts, 77
names, 4
regular expressions, 192–193
strings, 36

Overland_Book.indb 608Overland_Book.indb 608 4/30/19 1:38 PM4/30/19 1:38 PM

Index 609

casefold method, 36, 77
ceil function, 377
_ _ceil_ _ method, 296, 308
center method, 54–55
Centering text, 55–56, 165–166
Chained comparisons, 108–109
Character codes, 42–44
Character sets for regular expressions

description, 185–186, 193
working with, 195–197

Characters
format specifier, 270
replacing, 108
strings as lists of, 107

Charts. See Graphs and charts
chflags function, 249
chmod function, 249
chown function, 249
chr function

description, 552
strings, 43

chroot function, 248
Circles, aspect ratio, 452–454
class statement, 591–593
Classes

attributes, 322–323
complex, 353–357
Decimal, 329–332
doc strings, 117–119
floating-point limitations, 328–329
forward reference problem, 289–290
Fraction, 349–353
inheritance, 293–295
_ _init_ _ and _ _new_ _ methods,

288–289
instance variables, 286–288
magic methods, 295–298
methods, 290–292
Money. See Money class
multiple argument types, 320–322
numeric, 327–328
review questions, 324–325

suggested problems, 325
summary, 323–324
syntax, 285–287
variables, 292

clear method
dict_obj, 583
lists, 73
set_obj, 578

close method, 254
_ _cmp_ _ method, 302
Code, module-level, 19, 30
Code point order

lists, 72
strings, 37

Code refactoring
RPN application, 268
stock-market application, 525–526

Collections
dictionaries and sets, 87–89
lists. See Lists
magic methods, 316–318

Colons (:)
dictionaries, 88
for statements, 23
format method, 163
function definitions, 9
if statements, 11
lists, 65
multidimensional slicing, 413
print-field width, 163–164
regular expressions, 215
text justification, 165

Color characters, plotting, 443
Columns in arrays, 424–428
Combined assignment operators

description, 4–5
precedence, 548
working with, 98–100

Comma-separated value (CSV) files, 472
Command line

arguments, 138–141
Macintosh systems, 116–117

Overland_Book.indb 609Overland_Book.indb 609 4/30/19 1:38 PM4/30/19 1:38 PM

Index610

Command line(continued)
pip utility, 117
review questions, 142
suggested problems, 142–143
summary, 141–142
Windows-based systems, 115–116

Commas (,)
arguments, 16
lists, 22
thousands place separator, 152, 154,

168–170
Comments, 3
Comparisons

chained, 108–109
lists, 68–69, 72
magic methods, 296, 300–304
operator summary, 15–16
strings, 37

compile function
description, 553
regular expressions, 190

Compiling regular expressions, 188–192
complex class

description, 328
overview, 353–357

complex functions, 553–555
_ _complex_ _ method, 296, 314–315
Compound interest, plotting, 444–446
Concatenation

join method, 44–46
lists, 67
strings, 21, 36–38

Consonants, testing for, 43
Containers in magic methods, 296
Containment in Money class, 336–338
_ _contains_ _ method, 296, 317
continue statement

overview, 593
while statements, 13

Control structures
for statements, 23–25
if statements, 11–12

RPN application, 502–504
while statements, 12–14

Conversions
characters, 43–44
complex numbers, 354
degree and radian functions, 376
to fixed-length fields, 269–271
magic methods, 296, 314–315
numeric, 34–36
repr vs. string, 161–162
string functions, 47–48

copy function
description, 393
overview, 402

copy method
dict_obj, 584
set_obj, 578

Copying
arrays, 363, 402
lists, 61, 69–71

corrcoef function, 474
Correlation coefficients, 474
cos function

math package, 376
numpy package, 431, 437
tree height calculation, 379–380

cosh function, 377
Cosine waves

plotting, 437–439
vs. sine, 442–443

count method
lists, 75
strings, 51

count_nums function definition, 130–131
CSV (comma-separated value) files, 472
Curly braces ({})

dictionaries, 26
format method, 157–158
line continuation, 97
sets, 87
variable-size fields, 177

Currency. See Money class

Overland_Book.indb 610Overland_Book.indb 610 4/30/19 1:38 PM4/30/19 1:38 PM

Index 611

D
\d character in regular expressions, 183–184,

194–195
%d format specifier, 147
d format specifier, 270
D shape character for plotting lines, 444
d shape character for plotting lines, 444
d type specifier, 173
Data dictionaries for symbol tables, 262–265
Data frames, 123
Data reader for stock-market application,

519–521
Data types

arguments, 18–19, 320–322
dictionary keys, 27
elementary, 6–7
lists, 60
type specifiers, 173–174

deal function definition, 366–370
DEBUG flag, 192–193
Decimal class, 329–332

application, 335–336
description, 327
overview, 329–332
review questions, 357–358
special operations, 332–334
suggested problems, 358
summary, 357

Decimal numbers
testing for, 48
type specifier, 173

decimal package, 122
Decimal points (.)

floating point data, 6
format specifiers, 154–156
precision field, 149, 170–171
regular expressions, 224–225, 230

Deck class
objects, 365–368
pictograms, 368–370

decode function, 271

Decorator functions, 128–132
Deep copying of lists, 69–71
def statement

function definitions, 9
overview, 594

Default arguments, 18
Degree and radian conversion functions, 376
degrees function, 376
del statement, 594
delattr function, 555
Delimiters

split, 53–54
strings, 161
text files, 472–473

_ _delitem_ _ method, 296, 316
Denominators in fractions, 349–353
DFAs (deterministic finite automata), 189
Dictionaries

dictionary comprehension, 87–89
methods, 583–586
overview, 26–27
symbol tables, 262–265

difference method for sets, 578
difference_update method for sets, 578
Digits in regular expressions, 183–184, 194–195
dir function, 555–556
discard method, 579
Distance operator for magic methods, 307
Distributions for random numbers, 359
Division

arrays, 407
floating point and integer values, 6–7
magic methods, 305
operators, 5
reflection, 311

divmod function
description, 556
tuples, 7

_ _divmod_ _ method, 305
do_duo_plot function definition, 527–529
do_highlow_plot function definition, 531

Overland_Book.indb 611Overland_Book.indb 611 4/30/19 1:38 PM4/30/19 1:38 PM

Index612

do_input function definition, 498–499
do_movingavg_plot function definition, 539
do_plot function definition, 521–522, 526
do_println function definition, 498
do_prints function definition, 498
do_printvar function definition, 498–499
do_split_plot function definition, 537
do_trials function definition, 361–363
do_volume_plot function definition, 534
Doc strings, 117–119
Dollar signs ($) in regular expressions,

185–187, 194
DOS Box application, 116
dot linear-algebra function

arrays, 457–460
description, 463

Dot product, 456–460
DOTALL flag in regular expressions, 193,

224, 226
Dots (.)

decimal points. See Decimal points (.)
function qualifiers, 120
functions, 46
instance variables, 287
regular expressions, 194
shape characters, 444

dump method, 254, 279
dumps method, 254
Dunder methods, 295
Dynamic attributes, 322–323

E
e constant, 376–377, 432
%E format specifier, 147
%e format specifier, 147
E type specifier, 173
e type specifier, 173
Elementary data types, 6–7
elif statements

example, 12
overview, 595

else clause
exceptions, 250
if statements, 11–12
loops, 106
overview, 595

empty function
description, 393
overview, 397–398

end attribute in regular expressions, 204
endswith method, 50–51
enum values with range, 113
enumerate function

description, 556–557
lists, 64

EOFError exceptions, 280
_ _eq_ _ method, 296, 302
Equal signs (=)

Boolean arrays, 416
equality tests, 15
lists, 68–69
magic methods, 300
precedence, 548
regular expressions, 216
strings, 37
text justification, 165–166

Equality
Boolean operators, 15
decimal objects, 333
lists, 68–69
sets, 28
strings, 36

eval function
command strings, 81
description, 557–558

eval_scores function definition, 74
except statements

overview, 595
try blocks, 250

Exclamation points (!)
inequality tests, 15
lists, 68–69

Overland_Book.indb 612Overland_Book.indb 612 4/30/19 1:38 PM4/30/19 1:38 PM

Index 613

magic methods, 300
regular expressions, 216
RPN application, 504–508
strings, 37

exec functions, 249, 558
exp function, 432
Expectations in random behavior, 361
Exponentiation operators, 5, 432
Exponents

format specifier, 147
logarithmic functions, 381–382

Expressions, regular. See Regular expressions
extend function, 73
eye function

description, 393
overview, 398–399

F
f dtype value, 394
%F format specifier, 147
%f format specifier, 147
f format specifier, 270
f type specifier, 173
False keyword, 15–16, 107
fibo function definition, 101
Fibonacci sequence

generating, 137–138
printing, 14
RPN application, 504–505
tuples application, 101

FileNotFoundError exception, 250
Files

binary. See Binary files
converting data to fixed-length fields,

269–271
file/directory system, 248–249
file-opening exceptions, 249–252
file pointer, 257–258
numpy package, 471–474
read/write operations. See Read/write

operations
review questions, 283

suggested problems, 283–284
summary, 282
text. See Text files
with keyword, 252

Fill characters
strings, 56, 172–173
text justification, 164–166

filter function
description, 558–559
lists, 81

finally clause, 250, 600
Financial applications, 464–467
Financial data from Internet. See Stock-

market application
find_divisor function definition, 106
find method, 52
findall function, 206–209
First-class objects, functions as, 123–124
Fixed-length fields, converting to, 269–271
Fixed-length strings in read/write operations,

273–274
Flags in regular expressions, 192–193
float dtype value, 394
float function, 559
_ _float_ _ method, 296, 314–315
float32 dtype value, 394
float64 dtype value, 394
Floating-point numbers

conversions, 35
dividing, 6–7
format specifier, 147, 270
problems with rounding errors, 328–329
overview, 6
type specifier, 173

floor function, 377
_ _floor_ _ method, 296, 308
_ _floordiv_ _ method, 305
for statements

intelligent use, 97–98
one-line, 111
overview, 595–596
working with, 23–25

Overland_Book.indb 613Overland_Book.indb 613 4/30/19 1:38 PM4/30/19 1:38 PM

Index614

fork function, 248
format function

description, 559–560
working with, 152–156

format method
format specifiers. See Format specifiers
working with, 156–158

_ _format_ _ method, 153, 295, 297–298
Format specifiers

leading-zero character, 167–168
overview, 162–163
precision, 170–173
print-field width, 163–164
sign character, 166–167
text formatting, 147–150
text justification, 164–166
thousands place separator, 168–170
type specifiers, 173–176

Formatting text, 145
format function, 152–156
format method, 156–158
format specifiers. See Format specifiers
ordering by position, 158–161
percent sign operator, description,

145–146
percent sign operator, format specifiers,

147–150
percent sign operator, variable-length

print fields, 150–152
repr conversions, 161–162
review questions, 179
suggested problems, 179–180
summary, 178–179
variable-size fields, 176–178

Forward reference problem, 19, 289–290
Fraction class, 328, 349–353
Fractions, floating-point limitations, 328
fractions package, 122, 306
from syntax for import statement, 483
fromfunction function

description, 393
overview, 403–405

frozenset function, 560
full function

description, 393
overview, 401–402

fullmatch function, 187
Functions

arguments and return values, 16–19
built-in, 549–576
decorators and profilers, 128–132
default arguments, 17
definitions, 9–11
doc strings, 117–119
as first-class objects, 123–124
forward reference problem, 19
lists, 71–73
named arguments, 19
strings, 46–47
switch simulation, 109–110
variable-length argument lists, 125–128

functools package, 82
Fundamentals

arithmetic operators, 5
Boolean operators, 15–16
combined assignment operators, 4–5
data types, 6–7
dictionaries, 26–27
Fibonacci sequence application, 14–15
for statements, 23–25
forward reference problem, 19
function arguments and return values,

16–19
function definitions, 9–11
global and local variables, 29–31
if statements, 11–12
input and output, 7–9
lists, 21–23
quick start, 1–4
review questions, 31–32
sets, 28–29
strings, 19–21
suggested problems, 32
summary, 31

Overland_Book.indb 614Overland_Book.indb 614 4/30/19 1:38 PM4/30/19 1:38 PM

Index 615

tuples, 25–26
variables and names, 4
while statements, 12–14

Future values in financial applications,
464–465

G
g color character in plotting lines, 443
%G format specifier, 147
%g format specifier, 147
G type specifier, 173
g type specifier, 173
Game of Life simulation, 414–415
Garbage collection, 46
_ _ge_ _ method, 302
gen_rand function definition, 375
Generators, 132

iterators, 132–133
overview, 133–138

get_circ function definition, 378
get_circle_area function definition, 483
get_height function definition, 380
get method, 27, 584
Get-random-number operator, 504–508
get_square_area function definition, 483
get_std1 function definition, 423
get_std2 function definition, 423
get_std3 function definition, 423
get_str function definition, 498
get_triangle_area function definition, 484
getattr function

description, 560
dynamic attributes, 323
stock-market application, 527–530

getcontext function, 334
getenv function, 249
getenvb function, 249
_ _getitem_ _ method, 296, 316
_ _getstate_ _ method, 296
getwcd function, 248

global statement
overview, 596–597
RPN application, 500–501
variables, 30–31

Global variables, 29–31
globals function, 560
Golden ratio, 378
Googleplex, 6
Graphs and charts

axes adjustments, 467–468
high and low data, 530–533
moving-average lines, 538–540
pie, 455–456
splitting, 536–537
stock-market application, 521–523,

527–530
subplots, 536–537
time periods, 534–536
titles and legends, 524–525

Greater-than operator in RPN application,
504–508

Greater than signs (>)
big endian mode, 277
Boolean arrays, 416
equality tests, 15
lists, 68–69
magic methods, 300
RPN application, 504–508
shape characters, 444
strings, 37
text justification, 165

Greedy vs. non-greedy matching in regular
expressions, 219–224

Ground division
integers, 7
operators, 5

group attribute for regular expressions,
203–205

groupdict attribute for regular expressions,
204

Overland_Book.indb 615Overland_Book.indb 615 4/30/19 1:38 PM4/30/19 1:38 PM

Index616

Grouping problem in regular expressions,
208–209

Groups
named, 231–234
noncapture, 217–219
regular expressions, 193, 198–199

groups attribute for regular expressions, 204
_ _gt_ _ method, 296, 302
Guessing game

logarithmic functions, 382–384
RPN application, 507–508

H
H format specifier, 270
h format specifier, 270
H shape character in plotting lines, 444
h shape character in plotting lines, 444
hasattr function, 561
hash function, 561
_ _hash_ _ method, 299
Hashtags (#)

comments, 3
regular expressions, 216

hcos function, 432
Height of tree calculations, 378–380
help function, 561
help statement for strings, 19
hex function

conversion functions, 48
description, 561

_ _hex_ _ method, 296, 314–315
Hexadecimal numbers

conversions, 35, 47–48
format specifier, 147–148
type specifier, 174–175

High and low data in stock-market
application, 530–533

hist function, 447
histogram function, 449–452
Histograms, 446–452
hsin function, 432

htan function, 432
Hyperbolic functions, 377

I
i dtype value, 394
%i format specifier, 147
I/O directives in RPN application, 496–499
_ _iadd_ _ method, 296, 313
_ _iand_ _ method, 313
id function, 561
Identifiers, testing for, 48
_ _idiv_ _ method, 313
IDLE (interactive development environment), 1
idle3 command, 391
if statements

indentation, 11–12
introduction to, 11
one-line, 112–113
overview, 597–598

ignore_case function definition, 77
IGNORECASE flag, 192–193, 196
_ _igrounddiv_ _ method, 313
_ _ilshift_ _ method, 313
Imaginary portion of complex numbers,

353–357
Imag portion in complex numbers, 354
Immutability

defined, 21
dictionary keys, 27
set members, 28
strings, 21, 33–34
tuples, 26

_ _imod_ _ method, 313
import statement

modules, 478–479
overview, 598
packages, 119–121
variations, 482–484

Importing packages, 119–121
_ _imul_ _ method, 313
_ _imult_ _ method, 296

Overland_Book.indb 616Overland_Book.indb 616 4/30/19 1:38 PM4/30/19 1:38 PM

Index 617

in operator
lists, 68
sets, 577
strings, 37, 43–44

In-place operators
assignments, 98–100
magic methods, 312–314

Indentation
doc strings, 118
for statements, 23
function definitions, 9–10
if statements, 11–12
overview, 589–590

_ _index_ _ method, 296, 314–315
index method

lists, 75
strings, 52

IndexError exception, 62
Indexes

characters, 20
lists, 24, 61–65, 73–74
ordering by position, 159–161
strings, 39–42

Inequality tests, 15
inf value, 377
Infix notation, 79
info function, 433
Inheritance

classes, 293–295
collections, 318
Money class, 336–337, 347–349

_ _init_ _ method
Deck class, 366–367, 369
description, 295
Money class, 341, 345, 347–348
overview, 288–289

inner linear-algebra function, 463
INPUT directive in RPN application,

496–497
input function

description, 562

strings, 47
working with, 8–9

Input operations, 562
overview, 7–9
splitting input, 53–54
text files, 254–257

insert function, 73
install command in pip utility, 434
Instances, 286–288
Instantiating classes, 289–290
int dtype value, 394
int function

conversions, 35
description, 562

_ _int_ _ method, 296, 314–315
int8 dtype value, 394
int16 dtype value, 394
int32 dtype value, 394
int64 dtype value, 394
Integers

conversions, 35
dividing, 6–7
format specifier, 147, 270
Fraction class, 349
overview, 6
random-integer game, 363–364

Interactive development environment
(IDLE), 1

Interest and interest rates
financial applications, 464–465
plotting, 444–446

Internet financial data. See Stock-market
application

intersection method, 28–29, 579
intersection_update method, 579
Inverse trigonometric functions, 376
_ _invert_ _ method, 308
Inverting dictionaries, 89
_ _ior_ _ method, 313
ipmt function, 466
_ _ipow_ _ method, 314

Overland_Book.indb 617Overland_Book.indb 617 4/30/19 1:38 PM4/30/19 1:38 PM

Index618

IQ score histogram example, 446–452
 irshift_ _ method, 313
is operator, 37–38
is not operator

correct use, 110–111
strings, 37–38

isalnum method, 48
isalpha method, 48
isdecimal method, 48
isdigit method, 48
isdisjoint method, 579
isfile function, 249
isidentifier method, 48
isinstance function, 321–322

description, 562
variable type, 17

islower method, 48
isprintable method, 48
isspace method, 49
issubclass function, 563
issubset method, 579
issuperset method, 580
istitle method, 49
_ _isub_ _ method, 296, 313
isupper method, 49
items method, 89, 585
iter function, 563–564
_ _iter_ _ method, 296, 316, 319–320
Iterative searches in regular expressions,

206–208
Iterators

description, 132–133
random-number generators, 375

_ _ixor_ _ method, 314

J
jnz_op function definition, 504
join method, 44–46
Jump-if-not-zero structure, 502–504
Justification

fill and align characters, 164–166

format specifier, 148
strings, 55–56

K
k color character in plotting lines, 443
Key-value pairs in dictionaries, 26–27
KeyError exceptions

Money class, 341
RPN application, 502

Keys
immutable, 33
list sorts, 76–77

keys method, 585
Keyword arguments (named arguments),

17
Keywords, 4
kill function, 248
kron function, 463
**kwargs list, 127–128

L
L format specifier, 270
l format specifier, 270
Lambda functions

overview, 83–84
RPN application, 239–240

Large numbers, underscores inside, 115
Last-in-first-out (LIFO) devices, 78
lastindex attribute for regular expressions,

203–204
Law of Large Numbers, 361, 371–372
Lazy vs. greedy matching in regular

expressions, 219–224
_ _le_ _ method, 302
Leading spaces, stripping, 54–55
Leading-zero character, 167–168
Left justification

format specifier, 148
text, 55, 165–166

legend function, 524
Legends in charts, 524–525

Overland_Book.indb 618Overland_Book.indb 618 4/30/19 1:38 PM4/30/19 1:38 PM

Index 619

len function
description, 564
lists, 71–72
strings, 47

_ _len_ _ method, 296, 316
Less than signs (<)

Boolean arrays, 416
lists, 68–69
little endian mode, 277
magic methods, 300
regular expressions, 216
shape characters, 444
strings, 37
text justification, 165–166

LIFO (last-in-first-out) devices, 78
limit_denominator method, 351
linalg.det function, 463
Line continuation, 96–97
Line-number checking in RPN application,

500–502
Linear algebra, 456–463
Lines, plotting, 435–444
linspace function

description, 393
line plotting, 437–438
numpy, 433, 445
overview, 396–397

List comprehension, 84–87
list function, 564–565
listdir function, 248–249
Lists

vs. arrays, 388–389
bytes, 268
of characters, strings as, 107
contents, 75
copying, 61, 69–71
creating, 59–60
for statements, 24
functions, 71–73
in-place operations, 99
indexing, 61–64
lambda functions, 83–84

list comprehension, 84–87
modifying, 73–74
multidimensional, 90–93
multiplication, 104–105
negative indexing, 63
operators, 67–69
overview, 21–23
passing arguments through, 89–90
reduce function, 81–83
reorganizing, 75–77
review questions, 93–94
RPN application, 78–81
slicing, 64–67
as stacks, 78–81
vs. strings, 39
suggested problems, 94
summary, 93

Literal characters in regular expressions, 182
Little endian bytes vs. big endian, 276–278
ljust method, 54–55
load method, 254, 279
load_stock function definition, 519–520
Local variables, 29–31
LOCALE flag, 193
locals function, 565
log function

description, 381
math package, 377
numpy package, 432

log2 function
description, 381
math package, 377
numpy package, 432

log10 function
description, 381
math package, 377
numpy package, 432

Logarithmic functions
math package, 377
numpy package, 432
working with, 381–384

Logical and operation, 15

Overland_Book.indb 619Overland_Book.indb 619 4/30/19 1:38 PM4/30/19 1:38 PM

Index620

Logical not operation, 16
Logical or operation, 16
Look-ahead feature in regular expressions

multiple patterns, 227–228
negative, 229–231
overview, 224–227

Loops
else statements, 106
for statements, 23–25
unnecessary, 108
while statements, 12–14

lower method, 36, 49–50
Lowercase characters

converting to, 48
testing for, 48

_ _lshift_ _ method, 296
lstrip method, 54–55
_ _lt_ _ method, 296, 302

M
m color character in plotting lines, 443
Macintosh systems, command line, 116–117
Magic methods, 285

arithmetic operators, 304–307
collections, 316–318
comparisons, 300–304
conversion, 314–315
in-place operators, 312–314
_ _iter_ _ and _ _next_ _, 319–320
objects, 298–300
overview, 295–296
reflection, 310–312
review questions, 324–325
strings, 297–298
suggested problems, 325
summary, 323–324
unary arithmetic operators, 308–310

 _ _main_ _ module, 477–478, 488–490
make_evens_gen function definition, 135–137
make_timer function definition, 129–130
makedir function, 248
makeplot function, 525–529, 532

map function
description, 565–566
lists, 81

match function in regular expressions,
184–188

match object in regular expressions, 203–204
Matching, greedy vs. non-greedy, 219–224
Math operations in numpy package, 431–433
math package, 120

description, 122
function categories, 376–377
logarithmic functions, 381–384
overview, 376
review questions, 385
special values, 377–378
suggested problems, 386
summary, 385
trigonometric functions, 378–380

matplotlib package
circles and aspect ratio, 452–454
compound interest plotting, 444–446
downloading, 434
histograms, 446–452
line plotting, 435–444
overview, 388
pie charts, 455–456
review questions, 475
suggested problems, 476
summary, 475

matplotlib.pyplot package
description, 123
overview, 388

Matrixes
large, 91–93
multidimensional lists, 90–91
unbalanced, 91
See also numpy package

max function
arrays, 420
description, 566
lists, 71–72
strings, 47

Overland_Book.indb 620Overland_Book.indb 620 4/30/19 1:38 PM4/30/19 1:38 PM

Index 621

mean function for arrays, 420, 422, 425
Mean value

arrays, 421–422
normal distribution, 370–371

median function, 420
Median value

description, 94
numpy, 420–421

Meta characters in regular expressions, 194–195
Metafunctions, 124
Methods

magic. See Magic methods
overview, 290–291
public and private, 292
strings, 46–47

min function
arrays, 420
description, 566–567
lists, 71–72
strings, 47

Minus signs (-)
arrays, 407
difference set operator, 578
format specifiers, 148, 167
magic methods, 307
regular expressions, 186, 196
subtraction, 5
text justification, 165

_ _missing_ _ method, 317
Mixed-data records in arrays, 469–471
mkdir function, 248
Module-level code, 19, 30
ModuleNotFoundError exception, 390
Modules

_ _all_ _ symbol, 484–487
import statement, 482–484
 _ _main_ _, 488–490
mutual importing, 490–492
overview, 477–478
review questions, 514
RPN application. See Reverse Polish

Notation (RPN) application

suggested problems, 514–515
summary, 513–514
two-module example, 478–482
variables, 487–488

Modulus division
description, 7
operators, 5
reflection, 311

money_calc function definition, 343, 346
Money class, 327

calculator, 342–345
containment, 336–338
default currency, 345–346
designing, 336–337
displaying objects, 338
inheritance, 347–349
operations, 339–342
review questions, 357–358
suggested problems, 358
summary, 357

monthly_payment function definition,
465–467

Mortgage payments, 464–467
Moving-average lines, 538–540
mpl_toolkits package, 463–464
mul_func function definition, 82
_ _mul_ _ method, 305–307, 321–322
_ _mult_ _ method, 296
Multidimensional array slicing, 412–415
Multidimensional lists, 90–93
MULTILINE flag for regular expressions,

193, 225–226
Multiple argument types for classes, 320–322
Multiple assignment, 100–101
Multiple charts in stock-market application,

527–530
Multiple inheritance, 294–295
Multiple lines, plotting, 441–444
Multiple patterns in regular expressions,

227–228
Multiple statements on one line, 112
Multiple values, returning, 105–106

Overland_Book.indb 621Overland_Book.indb 621 4/30/19 1:38 PM4/30/19 1:38 PM

Index622

Multiplication
arrays, 407, 409, 456–462
complex numbers, 355
in-place, 313
lists, 69, 92, 104–105
magic methods, 305, 307
operators, 5
reduce function, 82
reflection, 311
regular expressions, 182
strings, 37–39, 104–105

Multiplication table, 405–406
Mutual importing of modules, 490–492

N
n type specifier, 174
 _ _name_ _ module, 477–478
Named groups in regular expressions,

231–234
Names

mangling, 292
variables, 4

nan value, 377
ndarray class

math operations, 431
statistical-analysis functions, 420

ndarray data type, 391
_ _ne_ _ method, 302
_ _neg_ _ method, 296, 308–309
Negative indexes

lists, 63
strings, 39

Negative look-ahead in regular expressions,
229–231

Nested blocks, 10
new_hand function definition, 368
 _ _new_ _ method, 295

Money class, 347–348
overview, 288–289

Newlines, printing, 8
next function for generators, 133–135

_ _next_ _ method, 296, 317, 319–320
NFAs (nondeterministic finite automata), 189
Non-greedy vs. greedy matching in regular

expressions, 219–224
Non-overlapping searches in regular

expressions, 206
Noncapture groups in regular expressions,

217–219
Nondeterministic finite automata (NFAs),

189
None value

Boolean value, 107
dictionaries, 27
equality tests, 38
return value, 17
split, 54

nonlocal statement, 598
Nonnegative indexes for lists, 61–62
_ _nonzero_ _ method, 299
Normal distribution, 370–373
normalize method, 332–333
normalvariate function, 360, 371–372
not operation

Boolean value, 107
logical, 16

not in operator
lists, 68
strings, 37, 43

NotImplemented return value, 307, 310,
321–322

np_sieve function definition, 419
Numerators in fractions, 349–353
Numeric classes, 327–328
Numeric conversions with strings, 34–36
numpy package

arrays. See Arrays
axes adjustments, 467–468
circles and aspect ratio, 452–454
compound interest plotting, 444–446
description, 122
downloading and importing, 390–391

Overland_Book.indb 622Overland_Book.indb 622 4/30/19 1:38 PM4/30/19 1:38 PM

Index 623

financial applications, 464–467
line plotting, 435–444
linear algebra, 456–463
math operations, 431–433
mixed-data records, 469–471
overview, 387–388
pie charts, 455–456
read/write operations, 471–474
review questions, 429–430, 475
suggested problems, 430, 476
sum example, 391–392
summary, 429, 475
three-dimensional plotting, 463–464

numpy.random package
description, 123
overview, 388

O
%o format specifier, 147–148, 155
o shape character in plotting lines, 444
o type specifier, 174–175
Objects

magic methods, 298–300
syntax, 285–287

oct function
conversion functions, 48
description, 567

_ _oct_ _ method, 314–315
Octal numbers

conversions, 35, 47–48
format specifier, 147–148
type specifier, 174–175

One-line statements
for loops, 111
if/then/else, 112–113

ones function
description, 393
overview, 399–400

open function, 567–568
open method

description, 252–253
shelve package, 280

open_rpn_file function definition, 261, 266,
495

Operating system package, 248
operator package, 505
Operators

arithmetic, 5
Boolean and comparison, 15–16
combined assignment, 4–5, 98–100
lists, 67–69
magic methods, 304–312
precedence and summary, 547–548
strings, 36–38

_ _or_ _ method, 296
or operation, logical, 16
OR operator (|)

Boolean arrays, 416–417
regular expressions flags, 192–193

_ _orc_ _ method, 296
ord function

description, 568
strings, 36, 43

Order
lists, 22, 60
by position, 158–161
sets, 28

os package, 248–249
os.path package, 249
Outer linear-algebra function

arrays, 460–462
description, 463

Outer product for arrays, 460–462
Output operations

overview, 7–9
text files, 254–257

P
p format specifier, 270
p shape character in plotting lines, 444
pack function, 269, 271–273, 275
Packages

common, 121–123
importing, 119–121

Overland_Book.indb 623Overland_Book.indb 623 4/30/19 1:38 PM4/30/19 1:38 PM

Index624

Packages(continued)
pip utility, 117
review questions, 142
suggested problems, 142–143
summary, 141–142

Padding in text justification, 165–166
pandas package

description, 123
stock-market application, 518

pandas_datareader package, 518
Parentheses ()

Boolean arrays, 416
complex numbers, 355
function definitions, 9–11
line continuation, 97
operator precedence, 5, 548
print statement, 8, 146
regular expressions, 191, 198–199
tuples, 25

pass statement
if statements, 12
overview, 599

Passing arguments through lists, 89–90
Passwords and regular expressions, 200–203,

227–228
PATH setting in Windows-based systems, 116
Pattern quantifiers in regular expressions,

197–199
Pattern searches in regular expressions,

205–206
Payment periods in financial applications, 464
Pearson correlation coefficient, 474
Pentagrams, plotting, 439–440
Percent sign operator (%)

format specifiers, 147–150
percentages display, 174–175
remainder division, 5, 7
text formatting, 145–146
type specifier, 175–176
variable-length print fields, 150–152

phi value, 378

Phone number example for regular
expressions, 183–185

pi constant, 376–378, 432
pickle package, 247–248, 278–280
Pictograms with Deck class, 368–370
Pie charts, 455–456
pie function, 455–456
pip utility

description, 390
downloading, 434
package downloads, 117

pip3 utility
description, 390
downloading, 434

play_the_game function definition, 364
plot function

matplotlib package, 435
multiple lines, 441–443
pentagrams, 439–440
stock-market application, 523

Plotting
compound interest, 444–446
lines, 435–444
three-dimensional, 463–464

Plus signs (+)
addition, 5
arrays, 407
Boolean arrays, 416
complex numbers, 354
format specifiers, 166–167
lists, 67
regular expressions, 182–183, 190, 215
shape characters, 444
strings, 21, 36–37

pmt function, 464–467
Point class, 306–307
Polymorphism, 293
pop method

dict_obj, 585
lists, 75, 78–80
set_obj, 580

Overland_Book.indb 624Overland_Book.indb 624 4/30/19 1:38 PM4/30/19 1:38 PM

Index 625

popitem method, 585
_ _pos_ _ method, 296, 308
Position, ordering by, 158–161
Positional expansion operator, 126
Positive indexes for lists, 62
Postfix languages, 79
pow function

description, 569
math package, 377

_ _pow_ _ method, 296, 305
power function in numpy, 432–433
Power functions

arrays, 407
magic methods, 296, 305
math package, 377
reflection, 311

ppmt function, 466
pr_normal_chart function definition, 371–372
pr_vals_2 function definition, 128
Precedence of operators, 5, 547–548
Precision

format function, 154–156
format specifiers, 148–150, 170–173
Fraction class, 349
strings, 172–173

Present values in financial applications, 464
Prime numbers with Sieve of Eratosthenes,

410–412
Print fields

print-field width, 163–164
variable-length, 150–152

print function
Decimal class, 331–332
description, 569
format specifiers, 147–150
with IDLE, 114
text files, 256
text formatting, 145–146
working with, 8–9

print_me function definition, 291
print_nums function definition, 13
Printable characters, testing for, 48

PRINTLN directive, 496–497
PRINTS directive, 496–497
PRINTVAR directive, 496–497
Private variables and methods, 292,

487–488
Processes, functions for, 248
Profilers, function, 128–132
Pseudo-random sequences, 359, 374
Public variables and methods, 292, 487–488
putenvb function, 249
pydoc utility, 117–119
pyplot function, 435

Q
Q format specifier, 270
q format specifier, 270
quad function definition, 117–119, 139–140
Quantifiers in regular expressions, 193–194,

197–199
Question marks (?)

format specifier, 270
jump-if-not-zero structure, 502–504
regular expressions, 215–216

Quotation marks (" ') in strings, 19–20

R
r character as raw-string indicator, 184
r color character used in plotting lines, 443
%r format specifier, 147, 150
_ _radd_ _ method, 296, 311
radians function

math package, 376
numpy package, 432
tree height calculation, 380

raise statement, 599
randint function

description, 359–360
in do_trials, 362
RPN application, 506

random function, 360
Random numbers in RPN application,

504–508

Overland_Book.indb 625Overland_Book.indb 625 4/30/19 1:38 PM4/30/19 1:38 PM

Index626

random package
Deck class, 365–370
description, 122
Fibonacci sequence application, 15
functions, 360
normal distribution, 370–373
overview, 359
random-integer game, 363–364
random-number generator, 374–376
review questions, 385
suggested problems, 386
summary, 385
testing random behavior, 361–363

range function
description, 570
enum values with, 113
for statements, 23–25
list enumeration, 63–64

raw_input function, 8
Raw strings, used in regular expressions, 184
_ _rdivmod_ _ method, 311
re package

description, 122
regular expressions, 184

re.Scanner class, 236–243
re.split function, 234–236
read_fixed_str function definition, 273
read_floats function definition, 272
read method, 253, 255–256
read_num function definition, 272
read_rec function definition, 275
read_var_str function definition, 274
Read/write operations

big endian vs. little endian, 276–278
binary files, 268–278
fixed-length strings, 273–274
numpy package, 471–474
one number at a time, 272
pickle package, 278–280
several numbers at a time, 272–273
shelve package, 280–282

strings and numerics together, 275–276
summary, 252–254
text files, 254–257
variable-length strings, 274

readline method, 253, 255–256
readlines method, 253, 255–257
real function, 354
Real portion in complex numbers, 353–357
Reciprocal functions, plotting, 437
reduce function, 81–83
Refactoring code

RPN application, 268
stock-market application, 525–526

Refining matches for regular expressions,
185–188

Reflection magic methods, 296, 301, 310–312
Regex flags in regular expressions, 192–193
regex package, 189
Regular expressions, 181

advanced grammar, 215–216
backtracking, 199–200
basic syntax, 193
character sets, 195–197
compiling vs. running, 188–192
flags, 192–193
greedy vs. non-greedy matching, 219–224
grouping problem, 208–209
introduction, 181–182
iterative searches, 206–208
look-ahead feature, 224–227
look-ahead feature, multiple patterns,

227–228
look-ahead feature, negative, 229–231
match object, 203–204
meta characters, 194–195
named groups, 231–234
noncapture groups, 217–219
password example, 200–203
pattern quantifiers, 197–199
pattern searches, 205–206
phone number example, 183–185

Overland_Book.indb 626Overland_Book.indb 626 4/30/19 1:38 PM4/30/19 1:38 PM

Index 627

re.split function, 234–236
refining matches, 185–188
repeated patterns, 210–211
replacing text, 211–213
review questions, 213–214, 243–244
scanner class, 236–243
suggested problems, 214, 244
summary, 213, 243

Remainder division
integers, 7
operators, 5
reflection, 311

remove method
lists, 73–74
sets, 28, 580

removedirs function, 248
rename function, 248
Reorganizing lists, 75–77
Repeated patterns in regular expressions,

210–211
replace method

characters, 108
strings, 53

Replacing
characters, 108
substrings, 53
text, 211–213

repr function
description, 570–571
repr conversions vs. string, 161–162

_ _repr_ _ method
description, 297–298
Money class, 342

reset_index method, 521, 534
reshape function, 408
return statement

functions, 16–19
overview, 599

Return values
functions, 16–19
multiple, 105–106

reverse function for lists, 75–77

Reverse Polish Notation (RPN) application
assignment operator, 262–268
changes, 499–500
final structure, 508–513
greater-than and get-random-number

operators, 504–508
I/O directives, 496–499
jump-if-not-zero structure, 502–504
line-number checking, 500–502
lists, 78–81
modules, 493–496
regular expressions, 234–236
review questions, 514
scanner class, 236–243
suggested problems, 514–515
summary, 513–514
text files, 258–268

reversed function
description, 571
lists, 71–72
strings, 47

_ _reversed_ _ method, 317
rfind method, 52
_ _rfloordiv_ _ method, 311
Right justification, 55–56, 165–166
rjust method, 54–56
rmdir function, 248
_ _rmod method, 311
_ _rmul_ _ method, 311
_ _rmult_ _ method, 296
rolling function, 538–539
round function

description, 571–572
floating-point numbers, 329

ROUND_HALF_EVEN rounding, 334
_ _round_ _ method, 296, 308
Rounding

decimal objects, 332–334
floating-point limitations, 328–330
magic methods, 296, 308
precision specifier, 170
reflection, 311

Overland_Book.indb 627Overland_Book.indb 627 4/30/19 1:38 PM4/30/19 1:38 PM

Index628

Rows in arrays, 424–428
RPN application. See Reverse Polish

Notation (RPN) application
_ _rpow_ _ method, 311
rstrip method, 54–55
_ _rsub_ _ method, 296, 311
_ _rtruediv_ _ method, 311
Run Module command, 480
Running regular expressions, 188–192

S
\S character in regular expressions, 194
\s character in regular expressions, 194
%s format specifier, 147–148, 150
s shape character in plotting lines, 444
sample function, 360
savetxt function, 474
Scanner class, 236–243, 503–504
Scope of global and local variables, 29–31
Search-and-replace methods for strings, 50–53
search function, 205–206
Searches in regular expressions. See Regular

expressions
Seed values for random-number generators,

374
seek method, 254, 257
seekable method, 254, 257
self argument, 288, 290–291
Semicolons (;) for multiple statements, 112,

590
Separator strings, printing, 8
set function, 572
set_list_vals function definition, 89–90
set methods, 577–581
setattr function

description, 573
dynamic attributes, 323

setdefault method, 586
_ _setitem_ _ method, 296, 316
Sets

overview, 28–29
set comprehension, 87–89

_ _setstate_ _ method, 296
Shallow copying of lists, 69–71
Shape characters, plotting, 444
shelve package, 247–248, 280–282
Shift operators, 296, 313
Short-circuit logic, 15, 548
Shortcuts

Boolean values, 107
chained comparisons, 108–109
combined operator assignments,

98–100
common techniques, 95–96
else statements, 106
enum values with range, 113
for loops, 97–98
is operator, 110–111
line continuation, 96–97
list and string multiplication, 104–105
loops, 108
multiple assignment, 100–101
multiple statements onto a line, 112
one-line for loops, 111
one-line if/then/else statements,

112–113
overview, 95
print function with IDLE, 114
replace method, 108
returning multiple values, 105–106
review questions, 142
strings as lists of characters, 107
suggested problems, 142–143
summary, 141–142
switch simulation, 109–110
tuple assignment, 101–104
underscores inside large numbers, 115

show function
histograms, 447
line plotting, 439
matplotlib package, 435–436
multiple lines, 442
stock-market application, 524

shuffle function, 360, 365

Overland_Book.indb 628Overland_Book.indb 628 4/30/19 1:38 PM4/30/19 1:38 PM

Index 629

Sieve of Eratosthenes
array slicing for, 410–412
Boolean arrays, 417–419

Sigma in normal distribution, 370–371
Sign bits for decimal objects, 334
Sign character in format specifiers, 166–167
sin function

math package, 376
numpy package, 432–433, 435–436
tree height calculation, 379–380

Sine waves
vs. cosine, 442–443
plotting, 435–437

Single-character functions, 42–44
sinh function, 377
size function for arrays, 420
Slashes (/)

arrays, 407
division, 5
fractions, 352

Slicing
arrays, 410–415
lists, 64–67
strings, 39–42

sort function for lists, 22, 75–76
sorted function

description, 573
lists, 71–72
strings, 47

Space characters, testing for, 49
Spaces

fractions, 352
issues, 589–590
stripping, 54–55

span attribute, 204–205
span method, 205
spawn function, 248
Special characters in regular expressions, 182
Special operations for decimal objects,

332–334
Spheres, plotting, 463–464
Splat operator, 126

split method
dictionaries, 27
Money calculator, 342
regular expressions, 234–236
strings, 53

Splitting
charts, 536–537
strings, 53–54

sqrt function
math package, 120, 377
numpy package, 432

Square brackets ([])
line continuation, 97
lists, 22, 65, 67
regular expressions, 183, 185–186,

195–197
Stack class, 317–318
Stacks, lists as, 78–81
Standard deviation

arrays, 419–424
normal distribution, 370–371

start attribute for regular expressions, 204
startswith method, 50–51
State information for iterators, 133
State machines for regular expressions,

188–189
Statements reference, 590–603
std function, 420, 422
stderr file, 254
stdin file, 254
stdout file, 254
stock_demo module, 517
stock_load module, 517
Stock-market application

charts, 521–523, 527–530
data reader, 519–521
high and low data, 530–533
makeplot function, 525–526
moving-average lines, 538–540
overview, 517
pandas package, 518
review questions, 545

Overland_Book.indb 629Overland_Book.indb 629 4/30/19 1:38 PM4/30/19 1:38 PM

Index630

Stock-market application (continued)
subplots, 536–537
suggested problems, 545–546
summary, 544–545
time periods, 534–536
titles and legends, 524–525
user choices, 540–544

stock_plot module, 517
StopIteration exception, 135
str class, 19
str function, 573–574
_ _str_ _ method, 153

description, 298
Money class, 341, 349
representation, 295, 297

Strings
Boolean methods, 48–49
building, 44–46
case conversion methods, 49–50
conversions, 47–48, 161–162
doc, 117–119
format specifier, 147, 270
functions, 46–47
immutability, 33–34
indexing and slicing, 39–42
justifying, 55–56
as lists of characters, 107
magic methods, 297–298
multiplication, 104–105
negative indexes, 39
numeric conversions, 34–36
operators, 36–38
overview, 19–21
precision, 172–173
read/write operations, 273–276
regular expressions, 184
review questions, 57
search-and-replace methods, 50–53
single-character functions, 42–44
splitting, 53–54

stripping, 54–55
suggested problems, 57
summary, 56–57

strip method, 54–55
Stripping strings, 54–55
struct package, 247–248, 269–271
sub function for replacing text, 211–213
_ _sub_ _ method, 296, 305–307
Subclassing, 293–295
Sublists, 64–67
subplot function, 536–537
Subplots in stock-market application,

536–537
Subtraction

arrays, 407
distance operator, 307
magic methods, 305, 313
operators, 5
reflection, 311

Sum example, 391–392
sum function

arrays, 420, 425
description, 574–575
lists, 71, 73

super function, 575
Superclass initialization methods, 294
swapcase method, 49–50
Switch simulation, 109–110
Symbol tables in data dictionaries, 262–265
symmetric_difference method, 580
symmetric_difference_update method, 581
sys package, 138–139, 254
System time for random-number generators,

374

T
Tab characters

function definitions, 9
vs. spaces, 589

Tagged groups in regular expressions, 210–211

Overland_Book.indb 630Overland_Book.indb 630 4/30/19 1:38 PM4/30/19 1:38 PM

Index 631

Tagging in regular expressions, 217–219
tan function

math package, 376
numpy package, 432
tree height calculation, 379–380

tanh function, 377
tau value, 377
tell method, 254, 257–258
tensordot function, 463
Text

formatting. See Formatting text
justification fill and align characters,

164–166
replacing, 211–213

Text files
vs. binary, 245–246
description, 245–247
read/write operations, 252–257
review questions, 283
RPN application, 258–268
suggested problems, 283–284
summary, 282

Thousands place separator, 152, 168–170
Three-dimensional plotting, 463–464
Ticks in graphs axes, 467–468
time package, 392, 419
Time periods in stock-market application,

534–536
Title characters, testing for, 49
title method

stock-market application, 524
strings, 49

Titles for charts, 524–525
Trailing spaces, stripping, 54–55
Tree height calculations, 378–380
Trigonometric functions, 376, 378–380
True keyword

Boolean operators, 15–16, 107
while statements, 13

_ _truediv_ _ method, 305

_ _trunc_ _ method, 296, 308–309
Truncation

magic methods, 308–309
precision specifier, 170
strings, 172–173

try/except syntax
else statements, 106
exceptions, 250–251
overview, 600–601

tuple function, 575
Tuples

assignment, 14–15, 101–104
dictionary keys, 27
divmod function, 7
immutability, 33
overview, 25–26

Two-module example, 478–482
type function

description, 575
object type, 278
type testing, 320
variable type, 17

Type specifiers, 173–176
TypeError exception, 34, 43
Types. See Data types

U
U dtype value, 394
%u format specifier, 147
uint8 dtype value, 394
uint16 dtype value, 394
uint32 dtype value, 394
uint64 dtype value, 394
Unary arithmetic operators for magic

methods, 308–310
Unbalanced matrixes, 91
Underscores (_)

inside large numbers, 115
magic methods, 295
variables, 4, 292, 487–488

Overland_Book.indb 631Overland_Book.indb 631 4/30/19 1:38 PM4/30/19 1:38 PM

Index632

UNICODE flag in regular expressions, 193
Unicode values

character codes, 43
text files, 246

uniform function, 360
union method, 28–29, 581
union_update method, 581
Unnecessary loops, 108
unpack function, 270–271
Unsigned integers format specifier, 147
update method for dict_obj, 586
upper method, 36, 49–50
Uppercase characters

converting to, 48
testing for, 49

V
v shape character in plotting lines, 444
ValueError exception

lists, 60, 74
strings, 34, 52

Values in dictionaries, 26–27
values method, 586
Variable-length argument lists, 125–128
Variable-length print fields, 150–152
Variable-length string formatting, 274
Variable-size field formatting, 176–178
Variables

creating, 2
data types, 6
global and local, 29–31
instance, 286–288
lists, 59–61
module-level, 478, 487–488
names, 4
overview, 587–588
public and private, 292

Variation in random behavior, 361
vdot linear-algebra function, 463
VERBOSE flag in regular expressions, 193
Vowels, testing for, 43

W
\W character in regular expressions, 194
\w character in regular expressions, 194
w color character in plotting lines, 443
while statements, 12–14, 601
Width

format function, 154–156
format specifier, 148–149
print-field, 163–164
strings, 172–173

Wildcards in regular expressions, 193
Windows-based systems, command line, 115–116
with statements

overview, 601–602
working with, 252

Word boundaries in regular expressions, 194
wrapper function definition, 131
Wrapper functions, 128–132
writable method, 253
write_fixed_str function definition, 273
write_floats function definition, 272–273
write method, 253, 255
write_num function definition, 272
write_rec function definition, 275
write_var_str function definition, 274
writelines method, 253, 255

X
%X format specifier, 147
%x format specifier, 147–148, 155
X type specifier, 174–175
x type specifier, 174–175
xticks function, 467–468

Y
y color character, 443
yield statement

generators, 133–135, 137–138
overview, 602
random-number generators, 374–375

yticks function, 467–468

Overland_Book.indb 632Overland_Book.indb 632 4/30/19 1:38 PM4/30/19 1:38 PM

Index 633

Z
\z character in regular expressions, 194
zeros function

description, 393
overview, 400–401

Zeros, leading-zero character, 167–168
zfill method, 55–56
zip function

description, 575–576
lists, 88

Overland_Book.indb 633Overland_Book.indb 633 4/30/19 1:38 PM4/30/19 1:38 PM

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	What Makes Python Special?
	Paths to Learning: Where Do I Start?
	Clarity and Examples Are Everything
	Learning Aids: Icons
	What You’ll Learn
	Have Fun
	Acknowledgments
	About the Authors
	Chapter 4 Shortcuts, Command Line, and Packages
	4.1 Overview
	4.2 Twenty-Two Programming Shortcuts
	4.2.1 Use Python Line Continuation as Needed
	4.2.2 Use “for” Loops Intelligently
	4.2.3 Understand Combined Operator Assignment (+= etc.)
	4.2.4 Use Multiple Assignment
	4.2.5 Use Tuple Assignment
	4.2.6 Use Advanced Tuple Assignment
	4.2.7 Use List and String “Multiplication”
	4.2.8 Return Multiple Values
	4.2.9 Use Loops and the “else” Keyword
	4.2.10 Take Advantage of Boolean Values and “not”
	4.2.11 Treat Strings as Lists of Characters
	4.2.12 Eliminate Characters by Using “replace”
	4.2.13 Don’t Write Unnecessary Loops
	4.2.14 Use Chained Comparisons (n < x< m)
	4.2.15 Simulate “switch” with a Table of Functions
	4.2.16 Use the “is” Operator Correctly
	4.2.17 Use One-Line “for” Loops
	4.2.18 Squeeze Multiple Statements onto a Line
	4.2.19 Write One-Line if/then/else Statements
	4.2.20 Create Enum Values with “range”
	4.2.21 Reduce the Inefficiency of the “print” Function Within IDLE
	4.2.22 Place Underscores Inside Large Numbers

	4.3 Running Python from the Command Line
	4.3.1 Running on a Windows-Based System
	4.3.2 Running on a Macintosh System
	4.3.3 Using pip or pip3 to Download Packages

	4.4 Writing and Using Doc Strings
	4.5 Importing Packages
	4.6 A Guided Tour of Python Packages
	4.7 Functions as First-Class Objects
	4.8 Variable-Length Argument Lists
	4.8.1 The *args List
	4.8.2 The “**kwargs” List

	4.9 Decorators and Function Profilers
	4.10 Generators
	4.10.1 What’s an Iterator?
	4.10.2 Introducing Generators

	4.11 Accessing Command-Line Arguments
	Summary
	Questions for Review
	Suggested Problems

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

