
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134997834
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134997834
https://plusone.google.com/share?url=http://www.informit.com/title/9780134997834
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134997834
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134997834

A Tour of C++
Second Edition

A Tour of C++
Second Edition

Bjarne Stroustrup

Boston • Columbus • New York • San Francisco • Amsterdam • Cape To wn
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic
versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding inter-
ests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2018941627

Copyright © 2018 by Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the publisher prior to
any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechani-
cal, photocopying, recording, or likewise. For information regarding permissions, request forms and the appropriate contacts
within the Pearson Education Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

This book was typeset in Times and Helvetica by the author.

ISBN-13: 978-0-13-499783-4
ISBN-10: 0-13-499783-2
First printing, June 2018
1 18

http://informit.com/aw
http://www.pearsoned.com/permissions/

Contents

Preface xi

1 The Basics 1

1.1 Introduction ... 1
1.2 Programs ... 2
1.3 Functions ... 4
1.4 Types, Variables, and Arithmetic .. 5
1.5 Scope and Lifetime ... 9
1.6 Constants ... 9
1.7 Pointers, Arrays, and References .. 11
1.8 Tests .. 14
1.9 Mapping to Hardware ... 16

1.10 Advice ... 18

2 User-Defined Types 21

2.1 Introduction ... 21
2.2 Structures .. 22
2.3 Classes .. 23
2.4 Unions ... 25
2.5 Enumerations .. 26
2.6 Advice ... 27

vi Contents

3 Modularity 29

3.1 Introduction ... 29
3.2 Separate Compilation .. 30
3.3 Modules (C++20) .. 32
3.4 Namespaces ... 34
3.5 Error Handling .. 35
3.6 Function Arguments and Return Values 36
3.7 Advice ... 46

4 Classes 47

4.1 Introduction ... 47
4.2 Concrete Types .. 48
4.3 Abstract Types .. 54
4.4 Virtual Functions ... 56
4.5 Class Hierarchies .. 57
4.7 Advice ... 63

5 Essential Operations 65

5.1 Introduction ... 65
5.2 Copy and Move ... 52
5.3 Resource Management .. 72
5.4 Conventional Operations ... 74
5.5 Advice ... 77

6 Templates 79

6.1 Introduction ... 79
6.2 Parameterized Types ... 79
6.3 Parameterized Operations ... 84
6.4 Template Mechanisms .. 89
6.5 Advice ... 92

7 Concepts and Generic Programming 93

7.1 Introduction ... 93
7.2 Concepts .. 94
7.3 Generic Programming ... 98
7.4 Variadic Templates .. 100
7.5 Template Compilation Model ... 104
7.6 Advice ... 104

vii

8 Library Overview 107

8.1 Introduction ... 107
8.2 Standard-Library Components .. 108
8.3 Standard-Library Headers and Namespace 109
8.4 Advice ... 110

9 Strings and Regular Expressions 111

9.1 Introduction ... 111
9.2 Strings ... 111
9.3 String Views .. 114
9.4 Regular Expressions .. 116
9.5 Advice ... 122

10 Input and Output 123

10.1 Introduction ... 123
10.2 Output ... 123
10.3 Input .. 125
10.4 I/O State .. 127
10.5 I/O of User-Defined Types .. 128
10.6 Formatting ... 129
10.7 File Streams .. 130
10.8 String Streams ... 130
10.9 C-style I/O ... 131

10.10 File System ... 132
10.11 Advice ... 136

11 Containers 137

11.1 Introduction ... 137
11.2 vector ... 138
11.3 list .. 142
11.4 map .. 144
11.5 unordered_map .. 144
11.6 Container Overview .. 146
11.7 Advice ... 148

12 Algorithms 149

12.1 Introduction ... 149
12.2 Use of Iterators .. 150
12.3 Iterator Types .. 153

viii Contents

12.4 Stream Iterators ... 154
12.5 Predicates .. 155
12.6 Algorithm Overview ... 156
12.7 Concepts (C++20) ... 157
12.8 Container Algorithms ... 160
12.9 Parallel Algorithms ... 161

12.10 Advice ... 161

13 Utilities 163

13.1 Introduction ... 163
13.2 Resource Management .. 164
13.3 Range Checking: span .. 168
13.4 Specialized Containers .. 170
13.5 Alternatives ... 174
13.6 Allocators .. 178
13.7 Time .. 179
13.8 Function Adaption .. 180
13.9 Type Functions .. 181

13.10 Advice ... 185

14 Numerics 187

14.1 Introduction ... 187
14.2 Mathematical Functions .. 188
14.3 Numerical Algorithms .. 189
14.4 Complex Numbers .. 190
14.5 Random Numbers ... 191
14.6 Vector Arithmetic .. 192
14.7 Numeric Limits ... 193
14.8 Advice ... 193

15 Concurrency 195

15.1 Introduction ... 195
15.2 Tasks and threads .. 196
15.3 Passing Arguments .. 197
15.4 Returning Results .. 198
15.5 Sharing Data .. 199
15.6 Waiting for Events .. 200
15.7 Communicating Tasks ... 202
15.8 Advice ... 205

ix

16 History and Compatibility 207

16.1 History .. 207
16.2 C++ Feature Evolution .. 214
16.3 C/C++ Compatibility .. 218
16.4 Bibliography ... 222
16.5 Advice ... 225

Index 227

This page intentionally left blank

Preface

When you wish to instruct,
be brief.
– Cicero

C++ feels like a new language. That is, I can express my ideas more clearly, more simply, and
more directly today than I could in C++98. Furthermore, the resulting programs are better checked
by the compiler and run faster.

This book gives an overview of C++ as defined by C++17, the current ISO C++ standard, and
implemented by the major C++ suppliers. In addition, it mentions concepts and modules, as defined
in ISO Technical Specifications and in current use, but not scheduled for inclusion into the standard
until C++20.

Like other modern languages, C++ is large and there are a large number of libraries needed for
effective use. This thin book aims to give an experienced programmer an idea of what constitutes
modern C++. It covers most major language features and the major standard-library components.
This book can be read in just a few hours but, obviously, there is much more to writing good C++
than can be learned in a day. Howev er, the aim here is not mastery, but to give an overview, to giv e
key examples, and to help a programmer get started.

The assumption is that you have programmed before. If not, please consider reading a text-
book, such as Programming: Principles and Practice Using C++ (Second edition) [Strous-
trup,2014], before continuing here. Even if you have programmed before, the language you used or
the applications you wrote may be very different from the style of C++ presented here.

Think of a sightseeing tour of a city, such as Copenhagen or New York. In just a few hours, you
are given a quick peek at the major attractions, told a few background stories, and given some sug-
gestions about what to do next. You do not know the city after such a tour. You do not understand
all you have seen and heard. You do not know how to navigate the formal and informal rules that
govern life in the city. To really know a city, you have to liv e in it, often for years. However, with a
bit of luck, you will have gained a bit of an overview, a notion of what is special about the city, and
ideas of what might be of interest to you. After the tour, the real exploration can begin.

xii Preface

This tour presents the major C++ language features as they support programming styles, such as
object-oriented and generic programming. It does not attempt to provide a detailed, reference-man-
ual, feature-by-feature view of the language. In the best textbook tradition, I try to explain a feature
before I use it, but that is not always possible and not everybody reads the text strictly sequentially.
So, the reader is encouraged to use the cross references and the index.

Similarly, this tour presents the standard libraries in terms of examples, rather than exhaustively.
It does not describe libraries beyond those defined by the ISO standard. The reader can search out
supporting material as needed. [Stroustrup,2013] and [Stroustrup,2014] are examples of such
material, but there is an enormous amount of material (of varying quality) available on the Web,
e.g., [Cppreference]. For example, when I mention a standard-library function or class, its defini-
tion can easily be looked up, and by examining its documentation, many related facilities can be
found.

This tour presents C++ as an integrated whole, rather than as a layer cake. Consequently, it
does not identify language features as present in C, part of C++98, or new in C++11, C++14, or
C++17. Such information can be found in Chapter 16 (History and Compatibility). I focus on fun-
damentals and try to be brief, but I have not completely resisted the temptation to overrepresent
novel features. This also seems to satisfy the curiosity of many readers who already know some
older version of C++.

A programming language reference manual or standard simply states what can be done, but pro-
grammers are often more interested in learning how to use the language well. This aspect is partly
addressed in the selection of topics covered, partly in the text, and specifically in the advice sec-
tions. More advice about what constitutes good modern C++ can be found in the C++ Core Guide-
lines [Stroustrup,2015]. The core guidelines can be a good source for further exploration of the
ideas presented in this book. You may note a remarkable similarity of the advice formulation and
ev en the numbering of advice between the Core Guidelines and this book. One reason is that the
first edition of A Tour of C++ was a major source of the initial Core Guidelines.

Acknowledgments
Some of the material presented here is borrowed from TC++PL4 [Stroustrup,2013], so thanks to all
who helped completing that book.

Thanks to all who help complete and correct the first edition of ‘‘A Tour of C++.’’
Thanks to Morgan Stanley for giving me time to write this second edition. Thanks to the

Columbia University Spring 2018 ‘‘Design Using C++’’ class for finding many a typo and bug in
an early draft of this book and for making many constructive suggestions.

Thanks to Paul Anderson, Chuck Allison, Peter Gottschling, William Mons, Charles Wilson,
and Sergey Zubkov for reviewing the book and suggesting many improvements.

Manhattan, New York Bjarne Stroustrup

3
Modularity

Don’t interrupt me while I’m interrupting.
– Winston S. Churchill

• Introduction
• Separate Compilation
• Modules
• Namespaces
• Error Handling

Exceptions; Invariants; Error-Handling Alternatives; Contracts; Static Assertions
• Function Arguments and Return Values

Argument Passing; Value Return; Structured Binding
• Advice

3.1 Introduction
A C++ program consists of many separately developed parts, such as functions (§1.2.1), user-
defined types (Chapter 2), class hierarchies (§4.5), and templates (Chapter 6). The key to managing
this is to clearly define the interactions among those parts. The first and most important step is to
distinguish between the interface to a part and its implementation. At the language level, C++ rep-
resents interfaces by declarations. A declaration specifies all that’s needed to use a function or a
type. For example:

double sqrt(double); // the square root function takes a double and returns a double

class Vector {
public:

Vector(int s);
double& operator[](int i);
int size();

30 Modularity Chapter 3

private:
double∗ elem; // elem points to an array of sz doubles
int sz;

};

The key point here is that the function bodies, the function definitions, are ‘‘elsewhere.’’ For this
example, we might like for the representation of Vector to be ‘‘elsewhere’’ also, but we will deal
with that later (abstract types; §4.3). The definition of sqr t() will look like this:

double sqrt(double d) // definition of sqrt()
{

// ... algorithm as found in math textbook ...
}

For Vector, we need to define all three member functions:

Vector::Vector(int s) // definition of the constructor
:elem{new double[s]}, sz{s} // initialize members

{
}

double& Vector::operator[](int i) // definition of subscripting
{

return elem[i];
}

int Vector::siz e() // definition of size()
{

return sz;
}

We must define Vector’s functions, but not sqr t() because it is part of the standard library. Howev er,
that makes no real difference: a library is simply ‘‘some other code we happen to use’’ written with
the same language facilities we use.

There can be many declarations for an entity, such as a function, but only one definition.

3.2 Separate Compilation
C++ supports a notion of separate compilation where user code sees only declarations of the types
and functions used. The definitions of those types and functions are in separate source files and are
compiled separately. This can be used to organize a program into a set of semi-independent code
fragments. Such separation can be used to minimize compilation times and to strictly enforce sepa-
ration of logically distinct parts of a program (thus minimizing the chance of errors). A library is
often a collection of separately compiled code fragments (e.g., functions).

Typically, we place the declarations that specify the interface to a module in a file with a name
indicating its intended use. For example:

Section 3.2 Separate Compilation 31

// Vector.h:

class Vector {
public:

Vector(int s);
double& operator[](int i);
int size();

private:
double∗ elem; // elem points to an array of sz doubles
int sz;

};

This declaration would be placed in a file Vector.h. Users then include that file, called a header file,
to access that interface. For example:

// user.cpp:

#include "Vector.h" // get Vector’s interface
#include <cmath> // get the standard-librar y math function interface including sqrt()

double sqrt_sum(Vector& v)
{

double sum = 0;
for (int i=0; i!=v.siz e(); ++i)

sum+=std::sqr t(v[i]); // sum of square roots
return sum;

}

To help the compiler ensure consistency, the .cpp file providing the implementation of Vector will
also include the .h file providing its interface:

// Vector.cpp:

#include "Vector.h" // get Vector’s interface

Vector::Vector(int s)
:elem{new double[s]}, sz{s} // initialize members

{
}

double& Vector::operator[](int i)
{

return elem[i];
}

int Vector::siz e()
{

return sz;
}

The code in user.cpp and Vector.cpp shares the Vector interface information presented in Vector.h,

32 Modularity Chapter 3

but the two files are otherwise independent and can be separately compiled. Graphically, the pro-
gram fragments can be represented like this:

Vector interface

#include "Vector.h"

use Vector

#include "Vector.h"

define Vector

Vector.h:

user.cpp: Vector.cpp:

Strictly speaking, using separate compilation isn’t a language issue; it is an issue of how best to
take advantage of a particular language implementation. However, it is of great practical impor-
tance. The best approach to program organization is to think of the program as a set of modules
with well-defined dependencies, represent that modularity logically through language features, and
then exploit the modularity physically through files for effective separate compilation.

A .cpp file that is compiled by itself (including the h files it #includes) is called a translation
unit. A program can consist of many thousand translation units.

3.3 Modules (C++20)
The use of #includes is a very old, error-prone, and rather expensive way of composing programs
out of parts. If you #include header.h in 101 translation units, the text of header.h will be processed
by the compiler 101 times. If you #include header1.h before header2.h the declarations and macros
in header1.h might affect the meaning of the code in header2.h. If instead you #include header2.h

before header1.h, it is header2.h that might affect the code in header1.h. Obviously, this is not ideal,
and in fact it has been a major source of cost and bugs since 1972 when this mechanism was first
introduced into C.

We are finally about to get a better way of expressing physical modules in C++. The language
feature, called modules is not yet ISO C++, but it is an ISO Technical Specification [ModulesTS].
Implementations are in use, so I risk recommending it here even though details are likely to change
and it may be years before everybody can use it in production code. Old code, in this case code
using #include, can ‘‘live’’ for a very long time because it can be costly and time consuming to
update.

Consider how to express the Vector and use() example from §3.2 using modules:

// file Vector.cpp:

module; // this compilation will define a module

// ... here we put stuff that Vector might need for its implementation ...

Section 3.3 Modules (C++20) 33

expor t module Vector; // defining the module called "Vector"

expor t class Vector {
public:

Vector(int s);
double& operator[](int i);
int size();

private:
double∗ elem; // elem points to an array of sz doubles
int sz;

};

Vector::Vector(int s)
:elem{new double[s]}, sz{s} // initialize members

{
}

double& Vector::operator[](int i)
{

return elem[i];
}

int Vector::siz e()
{

return sz;
}

expor t int size(const Vector& v) { return v.siz e(); }

This defines a module called Vector, which exports the class Vector, all its member functions, and
the non-member function siz e().

The way we use this module is to impor t it where we need it. For example:

// file user.cpp:

impor t Vector; // get Vector’s interface
#include <cmath> // get the standard-librar y math function interface including sqrt()

double sqrt_sum(Vector& v)
{

double sum = 0;
for (int i=0; i!=v.siz e(); ++i)

sum+=std::sqr t(v[i]); // sum of square roots
return sum;

}

I could have impor ted the standard library mathematical functions also, but I used the old-fashioned
#include just to show that you can mix old and new. Such mixing is essential for gradually upgrad-
ing older code from using #include to impor t.

34 Modularity Chapter 3

The differences between headers and modules are not just syntactic.
• A module is compiled once only (rather than in each translation unit in which it is used).
• Two modules can be impor ted in either order without changing their meaning.
• If you import something into a module, users of your module do not implicitly gain access

to (and are not bothered by) what you imported: impor t is not transitive.
The effects on maintainability and compile-time performance can be spectacular.

3.4 Namespaces
In addition to functions (§1.3), classes (§2.3), and enumerations (§2.5), C++ offers namespaces as a
mechanism for expressing that some declarations belong together and that their names shouldn’t
clash with other names. For example, I might want to experiment with my own complex number
type (§4.2.1, §14.4):

namespace My_code {
class complex {

// ...
};

complex sqr t(complex);
// ...

int main();
}

int My_code::main()
{

complex z {1,2};
auto z2 = sqrt(z);
std::cout << '{' << z2.real() << ',' << z2.imag() << "}\n";
// ...

}

int main()
{

return My_code::main();
}

By putting my code into the namespace My_code, I make sure that my names do not conflict with
the standard-library names in namespace std (§3.4). That precaution is wise, because the standard
library does provide support for complex arithmetic (§4.2.1, §14.4).

The simplest way to access a name in another namespace is to qualify it with the namespace
name (e.g., std::cout and My_code::main). The ‘‘real main()’’ is defined in the global namespace,
that is, not local to a defined namespace, class, or function.

If repeatedly qualifying a name becomes tedious or distracting, we can bring the name into a
scope with a using-declaration:

Section 3.4 Namespaces 35

void my_code(vector<int>& x, vector<int>& y)
{

using std::swap; // use the standard-librar y sw ap
// ...
swap(x,y); // std::swap()
other::swap(x,y); // some other swap()
// ...

}

A using-declaration makes a name from a namespace usable as if it was declared in the scope in
which it appears. After using std::swap, it is exactly as if swap had been declared in my_code().

To gain access to all names in the standard-library namespace, we can use a using-directive:

using namespace std;

A using-directive makes unqualified names from the named namespace accessible from the scope
in which we placed the directive. So after the using-directive for std, we can simply write cout

rather than std::cout. By using a using-directive, we lose the ability to selectively use names from
that namespace, so this facility should be used carefully, usually for a library that’s pervasive in an
application (e.g., std) or during a transition for an application that didn’t use namespaces.

Namespaces are primarily used to organize larger program components, such as libraries. They
simplify the composition of a program out of separately developed parts.

3.5 Error Handling
Error handling is a large and complex topic with concerns and ramifications that go far beyond lan-
guage facilities into programming techniques and tools. However, C++ provides a few features to
help. The major tool is the type system itself. Instead of painstakingly building up our applications
from the built-in types (e.g., char, int, and double) and statements (e.g., if, while , and for), we build
types (e.g., string, map, and reg ex) and algorithms (e.g., sor t(), find_if(), and draw_all()) that are
appropriate for our applications. Such higher-level constructs simplify our programming, limit our
opportunities for mistakes (e.g., you are unlikely to try to apply a tree traversal to a dialog box), and
increase the compiler’s chances of catching errors. The majority of C++ language constructs are
dedicated to the design and implementation of elegant and efficient abstractions (e.g., user-defined
types and algorithms using them). One effect of such abstraction is that the point where a run-time
error can be detected is separated from the point where it can be handled. As programs grow, and
especially when libraries are used extensively, standards for handling errors become important. It
is a good idea to articulate a strategy for error handling early on in the development of a program.

3.5.1 Exceptions

Consider again the Vector example. What ought to be done when we try to access an element that
is out of range for the vector from §2.3?

• The writer of Vector doesn’t know what the user would like to hav e done in this case (the
writer of Vector typically doesn’t even know in which program the vector will be running).

36 Modularity Chapter 3

• The user of Vector cannot consistently detect the problem (if the user could, the out-of-range
access wouldn’t happen in the first place).

Assuming that out-of-range access is a kind of error that we want to recover from, the solution is
for the Vector implementer to detect the attempted out-of-range access and tell the user about it.
The user can then take appropriate action. For example, Vector::operator[]() can detect an attempted
out-of-range access and throw an out_of_rang e exception:

double& Vector::operator[](int i)
{

if (i<0 || size()<=i)
throw out_of_rang e{"Vector::operator[]"};

return elem[i];
}

The throw transfers control to a handler for exceptions of type out_of_rang e in some function that
directly or indirectly called Vector::operator[](). To do that, the implementation will unwind the
function call stack as needed to get back to the context of that caller. That is, the exception han-
dling mechanism will exit scopes and functions as needed to get back to a caller that has expressed
interest in handling that kind of exception, invoking destructors (§4.2.2) along the way as needed.
For example:

void f(Vector& v)
{

// ...
tr y { // exceptions here are handled by the handler defined below

v[v.siz e()] = 7; // tr y to access beyond the end of v
}
catch (out_of_rang e& err) { // oops: out_of_range error

// ... handle range error ...
cerr << err.what() << '\n';

}
// ...

}

We put code for which we are interested in handling exceptions into a tr y-block. The attempted
assignment to v[v.siz e()] will fail. Therefore, the catch-clause providing a handler for exceptions of
type out_of_rang e will be entered. The out_of_rang e type is defined in the standard library (in
<stdexcept>) and is in fact used by some standard-library container access functions.

I caught the exception by reference to avoid copying and used the what() function to print the
error message put into it at the throw-point.

Use of the exception-handling mechanisms can make error handling simpler, more systematic,
and more readable. To achieve that, don’t overuse tr y-statements. The main technique for making
error handling simple and systematic (called Resource Acquisition Is Initialization; RAII) is
explained in §4.2.2. The basic idea behind RAII is for a constructor to acquire all resources neces-
sary for a class to operate and have the destructor release all resources, thus making resource
release guaranteed and implicit.

Section 3.5.1 Exceptions 37

A function that should never throw an exception can be declared noexcept. For example:

void user(int sz) noexcept
{

Vector v(sz);
iota(&v[0],&v[sz],1); // fill v with 1,2,3,4... (see §14.3)
// ...

}

If all good intent and planning fails, so that user() still throws, std::terminate() is called to immedi-
ately terminate the program.

3.5.2 Invariants

The use of exceptions to signal out-of-range access is an example of a function checking its argu-
ment and refusing to act because a basic assumption, a precondition, didn’t hold. Had we formally
specified Vector’s subscript operator, we would have said something like ‘‘the index must be in the
[0:siz e()) range,’’ and that was in fact what we tested in our operator[](). The [a:b) notation specifies
a half-open range, meaning that a is part of the range, but b is not. Whenever we define a function,
we should consider what its preconditions are and consider whether to test them (§3.5.3). For most
applications it is a good idea to test simple invariants; see also §3.5.4.

However, operator[]() operates on objects of type Vector and nothing it does makes any sense
unless the members of Vector have ‘‘reasonable’’ values. In particular, we did say ‘‘elem points to
an array of sz doubles’’ but we only said that in a comment. Such a statement of what is assumed
to be true for a class is called a class invariant, or simply an invariant. It is the job of a constructor
to establish the invariant for its class (so that the member functions can rely on it) and for the mem-
ber functions to make sure that the invariant holds when they exit. Unfortunately, our Vector con-
structor only partially did its job. It properly initialized the Vector members, but it failed to check
that the arguments passed to it made sense. Consider:

Vector v(−27);

This is likely to cause chaos.
Here is a more appropriate definition:

Vector::Vector(int s)
{

if (s<0)
throw length_error{"Vector constructor: negative size"};

elem = new double[s];
sz = s;

}

I use the standard-library exception length_error to report a non-positive number of elements
because some standard-library operations use that exception to report problems of this kind. If
operator new can’t find memory to allocate, it throws a std::bad_alloc. We can now write:

38 Modularity Chapter 3

void test()
{

tr y {
Vector v(−27);

}
catch (std::length_error& err) {

// handle negative size
}
catch (std::bad_alloc& err) {

// handle memory exhaustion
}

}

You can define your own classes to be used as exceptions and have them carry arbitrary information
from a point where an error is detected to a point where it can be handled (§3.5.1).

Often, a function has no way of completing its assigned task after an exception is thrown.
Then, ‘‘handling’’ an exception means doing some minimal local cleanup and rethrowing the
exception. For example:

void test()
{

tr y {
Vector v(−27);

}
catch (std::length_error&) { // do something and rethrow

cerr << "test failed: length error\n";
throw; // rethrow

}
catch (std::bad_alloc&) { // Ouch! this program is not designed to handle memory exhaustion

std::terminate(); // ter minate the program
}

}

In well-designed code tr y-blocks are rare. Av oid overuse by systematically using the RAII tech-
nique (§4.2.2, §5.3).

The notion of invariants is central to the design of classes, and preconditions serve a similar role
in the design of functions. Invariants

• help us to understand precisely what we want
• force us to be specific; that gives us a better chance of getting our code correct (after debug-

ging and testing).
The notion of invariants underlies C++’s notions of resource management supported by construc-
tors (Chapter 4) and destructors (§4.2.2, §13.2).

3.5.3 Error-Handling Alternatives

Error handling is a major issue in all real-world software, so naturally there are a variety of
approaches. If an error is detected and it cannot be handled locally in a function, the function must
somehow communicate the problem to some caller. Throwing an exception is C++’s most general
mechanism for that.

Section 3.5.3 Error-Handling Alternatives 39

There are languages where exceptions are designed simply to provide an alternate mechanism
for returning values. C++ is not such a language: exceptions are designed to be used to report fail-
ure to complete a given task. Exceptions are integrated with constructors and destructors to provide
a coherent framework for error handling and resource management (§4.2.2, §5.3). Compilers are
optimized to make returning a value much cheaper than throwing the same value as an exception.

Throwing an exception is not the only way of reporting an error that cannot be handled locally.
A function can indicate that it cannot perform its alotted task by:

• throwing an exception
• somehow return a value indicating failure
• terminating the program (by invoking a function like terminate(), exit(), or abor t()).

We return an error indicator (an ‘‘error code’’) when:
• A failure is normal and expected. For example, it is quite normal for a request to open a file

to fail (maybe there is no file of that name or maybe the file cannot be opened with the per-
missions requested).

• An immediate caller can reasonably be expected to handle the failure.
We throw an exception when:

• An error is so rare that a programmer is likely to forget to check for it. For example, when
did you last check the return value of printf()?

• An error cannot be handled by an immediate caller. Instead, the error has to percolate back
to an ultimate caller. For example, it is infeasible to have every function in an application
reliably handle every allocation failure or network outage.

• New kinds of errors can be added in lower-modules of an application so that higher-level
modules are not written to cope with such errors. For example, when a previously single-
threaded application is modified to use multiple threads or resources are placed remotely to
be accessed over a network.

• No suitable return path for errors codes are available. For example, a constructor does not
have a return value for a ‘‘caller’’ to check. In particular, constructors may be invoked for
several local variables or in a partially constructed complex object so that clean-up based on
error codes would be quite complicated.

• The return path of a function is made more complicated or expensive by a need to pass both
a value and an error indicator back (e.g., a pair; §13.4.3), possibly leading to the use of out-
parameters, non-local error-status indicators, or other workarounds.

• The error has to be transmitted up a call chain to an ‘‘ultimate caller.’’ Repeatedly checking
an error-code would be tedious, expensive, and error-prone.

• The recovery from errors depends on the results of several function calls, leading to the need
to maintain local state between calls and complicated control structures.

• The function that found the error was a callback (a function argument), so the immediate
caller may not even know what function was called.

• An error implies that some ‘‘undo action’’ is needed.
We terminate when

• An error is of a kind from which we cannot recover. For example, for many – but not all –
systems there is no reasonable way to recover from memory exhaustion.

• The system is one where error-handling is based on restarting a thread, process, or computer
whenever a non-trivial error is detected.

40 Modularity Chapter 3

One way to ensure termination is to add noexcept to a function so that a throw from anywhere in the
function’s implementation will turn into a terminate(). Note that there are applications that can’t
accept unconditional terminations, so alternatives must be used.

Unfortunately, these conditions are not always logically disjoint and easy to apply. The size and
complexity of a program matters. Sometimes the tradeoffs change as an application evolves.
Experience is required. When in doubt, prefer exceptions because their use scales better, and don’t
require external tools to check that all errors are handled.

Don’t believe that all error codes or all exceptions are bad; there are clear uses for both. Fur-
thermore, do not believe the myth that exception handling is slow; it is often faster than correct han-
dling of complex or rare error conditions, and of repeated tests of error codes.

RAII (§4.2.2, §5.3) is essential for simple and efficient error-handling using exceptions. Code
littered with tr y-blocks often simply reflects the worst aspects of error-handling strategies conceived
for error codes.

3.5.4 Contracts

There is currently no general and standard way of writing optional run-time tests of invariants, pre-
conditions, etc. A contract mechanism is proposed for C++20 [Garcia,2016] [Garcia,2018]. The
aim is to support users who want to rely on testing to get programs right – running with extensive
run-time checks – but then deploy code with minimal checks. This is popular in high-performance
applications in organizations that rely on systematic and extensive checking.

For now, we hav e to rely on ad hoc mechanisms. For example, we could use a command-line
macro to control a run-time check:

double& Vector::operator[](int i)
{

if (RANGE_CHECK && (i<0 || size()<=i))
throw out_of_rang e{"Vector::operator[]"};

return elem[i];
}

The standard library offers the debug macro, asser t(), to assert that a condition must hold at run
time. For example:

void f(const char∗ p)
{

asser t(p!=nullptr); // p must not be the nullptr
// ...

}

If the condition of an asser t() fails in ‘‘debug mode,’’ the program terminates. If we are not in
debug mode, the asser t() is not checked. That’s pretty crude and inflexible, but often sufficient.

3.5.5 Static Assertions

Exceptions report errors found at run time. If an error can be found at compile time, it is usually
preferable to do so. That’s what much of the type system and the facilities for specifying the inter-
faces to user-defined types are for. Howev er, we can also perform simple checks on most

Section 3.5.5 Static Assertions 41

properties that are known at compile time and report failures to meet our expectations as compiler
error messages. For example:

static_asser t(4<=sizeof(int), "integers are too small"); // check integer size

This will write integ ers are too small if 4<=siz eof(int) does not hold; that is, if an int on this system
does not have at least 4 bytes. We call such statements of expectations assertions.

The static_asser t mechanism can be used for anything that can be expressed in terms of constant
expressions (§1.6). For example:

constexpr double C = 299792.458; // km/s

void f(double speed)
{

constexpr double local_max = 160.0/(60∗60); // 160 km/h == 160.0/(60*60) km/s

static_asser t(speed<C,"can't go that fast"); // error : speed must be a constant
static_asser t(local_max<C,"can't go that fast"); // OK

// ...
}

In general, static_asser t(A,S) prints S as a compiler error message if A is not true. If you don’t want
a specific message printed, leave out the S and the compiler will supply a default message:

static_asser t(4<=sizeof(int)); // use default message

The default message is typically the source location of the static_asser t plus a character representa-
tion of the asserted predicate.

The most important uses of static_asser t come when we make assertions about types used as
parameters in generic programming (§7.2, §13.9).

3.6 Function Arguments and Return Values
The primary and recommended way of passing information from one part of a program to another
is through a function call. Information needed to perform a task is passed as arguments to a func-
tion and the results produced are passed back as return values. For example:

int sum(const vector<int>& v)
{

int s = 0;
for (const int i : v)

s += i;
return s;

}

vector fib = {1,2,3,5,8,13,21};

int x = sum(fib); // x becomes 53

42 Modularity Chapter 3

There are other paths through which information can be passed between functions, such as global
variables (§1.5), pointer and reference parameters (§3.6.1), and shared state in a class object (Chap-
ter 4). Global variables are strongly discouraged as a known source of errors, and state should typi-
cally be shared only between functions jointly implementing a well-defined abstraction (e.g., mem-
ber functions of a class; §2.3).

Given the importance of passing information to and from functions, it is not surprising that
there are a variety of ways of doing it. Ke y concerns are:

• Is an object copied or shared?
• If an object is shared, is it mutable?
• Is an object moved, leaving an ‘‘empty object’’ behind (§5.2.2)?

The default behavior for both argument passing and value return is ‘‘copy’’ (§1.9), but some copies
can implicitly be optimized to moves.

In the sum() example, the resulting int is copied out of sum() but it would be inefficient and
pointless to copy the potentially very large vector into sum(), so the argument is passed by reference
(indicated by the &; §1.7).

The sum() has no reason to modify its argument. This immutability is indicated by declaring the
vector argument const (§1.6), so the vector is passed by const-reference.

3.6.1 Argument Passing

First consider how to get values into a function. By default we copy (‘‘pass-by-value’’) and if we
want to refer to an object in the caller’s environment, we use a reference (‘‘pass-by-reference’’).
For example:

void test(vector<int> v, vector<int>& rv) // v is passed by value; rv is passed by reference
{

v[1] = 99; // modify v (a local var iable)
rv[2] = 66; // modify whatever rv refers to

}

int main()
{

vector fib = {1,2,3,5,8,13,21};
test(fib,fib);
cout << fib[1] << ' ' << fib[2] << '\n'; // pr ints 2 66

}

When we care about performance, we usually pass small values by-value and larger ones by-refer-
ence. Here ‘‘small’’ means ‘‘something that’s really cheap to copy.’’ Exactly what ‘‘small’’ means
depends on machine architecture, but ‘‘the size of two or three pointers or less’’ is a good rule of
thumb.

If we want to pass by reference for performance reasons but don’t need to modify the argument,
we pass-by-const-reference as in the sum() example. This is by far the most common case in ordi-
nary good code: it is fast and not error-prone.

It is not uncommon for a function argument to have a default value; that is, a value that is con-
sidered preferred or just the most common. We can specify such a default by a default function
argument. For example:

Section 3.6.1 Argument Passing 43

void print(int value , int base =10); // pr int value in base "base"

print(x,16); // hexadecimal
print(x,60); // sexagesimal (Sumerian)
print(x); // use the dafault: decimal

This is a notationally simpler alternative to overloading:

void print(int value , int base); // pr int value in base "base"

void print(int value) // pr int value in base 10
{

print(value ,10);
}

3.6.2 Value Return

Once we have computed a result, we need to get it out of the function and back to the caller. Again,
the default for value return is to copy and for small objects that’s ideal. We return ‘‘by reference’’
only when we want to grant a caller access to something that is not local to the function. For exam-
ple:

class Vector {
public:

// ...
double& operator[](int i) { return elem[i]; } // retur n reference to ith element

private:
double∗ elem; // elem points to an array of sz
// ...

};

The ith element of a Vector exists independently of the call of the subscript operator, so we can
return a reference to it.

On the other hand, a local variable disappears when the function returns, so we should not
return a pointer or reference to it:

int& bad()
{

int x;
// ...
return x; // bad: return a reference to the local var iable x

}

Fortunately, all major C++ compilers will catch the obvious error in bad().
Returning a reference or a value of a ‘‘small’’ type is efficient, but how do we pass large

amounts of information out of a function? Consider:

44 Modularity Chapter 3

Matrix operator+(const Matrix& x, const Matrix& y)
{

Matrix res;
// ... for all res[i,j], res[i,j] = x[i,j]+y[i,j] ...
return res;

}

Matrix m1, m2;
// ...
Matrix m3 = m1+m2; // no copy

A Matrix may be very large and expensive to copy even on modern hardware. So we don’t copy, we
give Matrix a move constructor (§5.2.2) and very cheaply move the Matrix out of operator+(). We do
not need to regress to using manual memory management:

Matrix∗ add(const Matrix& x, const Matrix& y) // complicated and error-prone 20th century style
{

Matrix∗ p = new Matrix;
// ... for all *p[i,j], *p[i,j] = x[i,j]+y[i,j] ...
return p;

}

Matrix m1, m2;
// ...
Matrix∗ m3 = add(m1,m2); // just copy a pointer
// ...
delete m3; // easily forgotten

Unfortunately, returning large objects by returning a pointer to it is common in older code and a
major source of hard-to-find errors. Don’t write such code. Note that operator+() is as efficient as
add(), but far easier to define, easier to use, and less error-prone.

If a function cannot perform its required task, it can throw an exception (§3.5.1). This can help
avoid code from being littered with error-code tests for ‘‘exceptional problems.’’

The return type of a function can be deduced from its return value. For example:

auto mul(int i, double d) { return i∗d; } // here, "auto" means "deduce the return type"

This can be convenient, especially for generic functions (function templates; §6.3.1) and lambdas
(§6.3.3), but should be used carefully because a deduced type does not offer a stable interface: a
change to the implementation of the function (or lambda) can change the type.

3.6.3 Structured Binding

A function can return only a single value, but that value can be a class object with many members.
This allows us to efficiently return many values. For example:

struct Entry {
string name;
int value;

};

Section 3.6.3 Structured Binding 45

Entr y read_entr y(istream& is) // naive read function (for a better version, see §10.5)
{

string s;
int i;
is >> s >> i;
return {s,i};

}

auto e = read_entry(cin);

cout << "{ " << e.name << " , " << e.value << " }\n";

Here, {s,i} is used to construct the Entr y return value. Similarly, we can ‘‘unpack’’ an
Entr y’s members into local variables:

auto [n,v] = read_entry(is);
cout << "{ " << n << " , " << v << " }\n";

The auto [n,v] declares two local variables n and v with their types deduced from
read_entr y()’s return type. This mechanism for giving local names to members of a class
object is called structured binding.

Consider another example:

map<string,int> m;
// ... fill m ...
for (const auto [key,value] : m)

cout << "{" << key "," << value << "}\n";

As usual, we can decorate auto with const and &. For example:

void incr(map<string,int>& m) // increment the value of each element of m
{

for (auto& [key,value] : m)
++value;

}

When structured binding is used for a class with no private data, it is easy to see how the binding is
done: there must be the same number of names defined for the binding as there are nonstatic data
members of the class, and each name introduced in the binding names the corresponding member.
There will not be any difference in the object code quality compared to explicitly using a composite
object; the use of structured binding is all about how best to express an idea.

It is also possible to handle classes where access is through member functions. For example:

complex<double> z = {1,2};
auto [re,im] = z+2; // re=3; im=2

A complex has two data members, but its interface consists of access functions, such as real() and
imag(). Mapping a complex<double> to two local variables, such as re and im is feasible and effi-
cient, but the technique for doing so is beyond the scope of this book.

46 Modularity Chapter 3

3.7 Advice
[1] Distinguish between declarations (used as interfaces) and definitions (used as implementa-

tions); §3.1.
[2] Use header files to represent interfaces and to emphasize logical structure; §3.2; [CG: SF.3].
[3] #include a header in the source file that implements its functions; §3.2; [CG: SF.5].
[4] Avoid non-inline function definitions in headers; §3.2; [CG: SF.2].
[5] Prefer modules over headers (where modules are supported); §3.3.
[6] Use namespaces to express logical structure; §3.4; [CG: SF.20].
[7] Use using-directives for transition, for foundational libraries (such as std), or within a local

scope; §3.4; [CG: SF.6] [CG: SF.7].
[8] Don’t put a using-directive in a header file; §3.4; [CG: SF.7].
[9] Throw an exception to indicate that you cannot perform an assigned task; §3.5; [CG: E.2].
[10] Use exceptions for error handling only; §3.5.3; [CG: E.3].
[11] Use error codes when an immediate caller is expected to handle the error; §3.5.3.
[12] Throw an exception if the error is expected to perculate up through many function calls;

§3.5.3.
[13] If in doubt whether to use an exception or an error code, prefer exceptions; §3.5.3.
[14] Develop an error-handling strategy early in a design; §3.5; [CG: E.12].
[15] Use purpose-designed user-defined types as exceptions (not built-in types); §3.5.1.
[16] Don’t try to catch every exception in every function; §3.5; [CG: E.7].
[17] Prefer RAII to explicit tr y-blocks; §3.5.1, §3.5.2; [CG: E.6].
[18] If your function may not throw, declare it noexcept; §3.5; [CG: E.12].
[19] Let a constructor establish an invariant, and throw if it cannot; §3.5.2; [CG: E.5].
[20] Design your error-handling strategy around invariants; §3.5.2; [CG: E.4].
[21] What can be checked at compile time is usually best checked at compile time; §3.5.5 [CG:

P.4] [CG: P.5].
[22] Pass ‘‘small’’ values by value and ‘‘large‘‘ values by references; §3.6.1; [CG: F.16].
[23] Prefer pass-by-const-reference over plain pass-by-reference; _module.arguments_; [CG:

F.17].
[24] Return values as function-return values (rather than by out-parameters); §3.6.2; [CG: F.20]

[CG: F.21].
[25] Don’t overuse return-type deduction; §3.6.2.
[26] Don’t overuse structured binding; using a named return type is often clearer documentation;

§3.6.3.

I
Index

Knowledge is of two kinds.
We know a subject ourselves,

or we know where
we can find information on it.

– Samuel Johnson

Token
!=

container 147
not-equal operator 6

", string literal 3
$, regex 117
%

modulus operator 6
remainder operator 6

%=, operator 7
&

address-of operator 11
reference to 12

&&, rvalue reference 71
(, regex 117
(), call operator 85
(?: pattern 120
), regex 117
∗

contents-of operator 11
multiply operator 6
pointer to 11
regex 117

∗=, scaling operator 7

∗? lazy 118
+

plus operator 6
regex 117
str ing concatenation 111

++, increment operator 7
+=

operator 7
str ing append 112

+? lazy 118
-, minus operator 6
--, decrement operator 7
., regex 117
/, divide operator 6
// comment 2
/=, scaling operator 7
: public 55
<< 75

output operator 3
<=

container 147
less-than-or-equal operator 6

<
container 147
less-than operator 6

=
0 54
and == 7

228 Index I

assignment 16
auto 8
container 147
initializer 7
str ing assignment 112

==
= and 7
container 147
equal operator 6
str ing 112

>
container 147
greater-than operator 6

>=
container 147
greater-than-or-equal operator 6

>> 75
template arguments 215

?, regex 117
?? lazy 118
[, regex 117
[]

array 171
array of 11
str ing 112

\, backslash 3
], regex 117
ˆ, regex 117
{, regex 117
{}

grouping 2
initializer 8

{}? lazy 118
|, regex 117
}, regex 117
˜, destructor 51
0

= 54
nullptr NULL 13

A
abs() 188
abstract

class 54
type 54

accumulate() 189
acquisition RAII, resource 164
adaptor, lambda as 180
address, memory 16
address-of operator & 11
adjacent_difference() 189
aims, C++11 213
algorithm 149

container 150, 160
lifting 100

numerical 189
parallel 161
standard library 156

<algor ithm> 109, 156
alias, using 90
alignas 215
alignof 215
allocation 51
allocator new, container 178
almost container 170
alnum, regex 119
alpha, regex 119
[[:alpha:]] letter 119
ANSI C++ 212
any 177
append +=, str ing 112
argument

constrained 81
constrained template 82
default function 42
default template 98
function 41
passing, function 66
type 82
value 82

arithmetic
conversions, usual 7
operator 6
vector 192

ARM 212
array

array vs. 172
of [] 11

array 171
[] 171
data() 171
initialize 171
size() 171
vs. array 172
vs. vector 171

<array> 109
asin() 188
assembler 210
asser t() 40
assertion static_asser t 40
Assignable 158
assignment

= 16
=, str ing 112
copy 66, 69
initialization and 18
move 66, 72

associative array – see map
async() launch 204
at() 141
atan() 188

– A – Index 229

atan2() 188
AT&T Bell Laboratories 212
auto = 8
auto_ptr, deprecated 218

B
back_inser ter() 150
backslash \ 3
bad_var iant_access 176
base and derived class 55
basic_str ing 114
BCPL 219
begin() 75, 143, 147, 150
beginner, book for 1
Bell Laboratories, AT&T 212
beta() 188
bibliography 222
BidirectionalIterator 159
BidirectionalRange 160
binary search 156
binding, structured 45
bit-field, bitset and 172
bitset 172

and bit-field 172
and enum 172

blank, regex 119
block

as function body, tr y 141
tr y 36

body, function 2
book for beginner 1
bool 5
Boolean 158
BoundedRange 160
break 15

C
C 209

and C++ compatibility 218
Classic 219
difference from 218
K&R 219
void ∗ assignment, difference from 221
with Classes 208
with Classes language features 210
with Classes standard library 211

C++
ANSI 212
compatibility, C and 218
Core Guidelines 214
core language 2
history 207
ISO 212

meaning 209
modern 214
pronunciation 209
standard, ISO 2
standard library 2
standardization 212
timeline 208

C++03 212
C++0x, C++11 209, 212
C++11

aims 213
C++0x 209, 212
language features 215
library components 216

C++14
language features 216
library components 217

C++17
language features 216
library components 217

C++98 212
standard library 211

C11 218
C89 and C99 218
C99, C89 and 218
call operator () 85
callback 181
capacity() 139, 147
capture list 87
carr ies_dependency 215
cast 53
catch

clause 36
ev ery exception 141

catch(...) 141
ceil() 188
char 5
character sets, multiple 114
check

compile-time 40
run-time 40

checking, cost of range 142
chrono, namespace 179
<chrono> 109, 179, 200
class 48

concrete 48
scope 9
template 79

class
abstract 54
base and derived 55
hierarchy 57

Classic C 219
C-library header 110
clock timing 200
<cmath> 109, 188

230 Index I

cntr l, regex 119
code complexity, function and 4
comment, // 2
Common 158
CommonReference 158
common_type_t 158
communication, task 202
comparison 74

operator 6, 74
compatibility, C and C++ 218
compilation

model, template 104
separate 30

compiler 2
compile-time

check 40
computation 181
evaluation 10

complete encapsulation 66
complex 49, 190
<complex> 109, 188, 190
complexity, function and code 4
components

C++11 library 216
C++14 library 217
C++17 library 217

computation, compile-time 181
concatenation +, str ing 111
concept 81, 94

range 157
concept support 94
concrete

class 48
type 48

concurrency 195
condition, declaration in 61
condition_var iable 201

notify_one() 202
wait() 201

<condition_var iable> 201
const

immutability 9
member function 50

constant expression 10
const_cast 53
constexpr

function 10
immutability 9

const_iterator 154
constrained

argument 81
template 82
template argument 82

Constr uctible 158
constructor

and destructor 210

copy 66, 69
default 50
delegating 215
explicit 67
inheriting 216
initializer-list 52
invariant and 37
move 66, 71

container 51, 79, 137
> 147
= 147
>= 147
< 147
== 147
!= 147
<= 147
algorithm 150, 160
allocator new 178
almost 170
object in 140
overview 146
retur n 151
sor t() 181
specialized 170
standard library 146

contents-of operator ∗ 11
contract 40
conversion 67

explicit type 53
narrowing 8

conversions, usual arithmetic 7
ConvertibleTo 158
copy 68

assignment 66, 69
constructor 66, 69
cost of 70
elision 72
elision 66
memberwise 66

copy() 156
Copyable 158
CopyConstr uctible 158
copy_if() 156
Core Guidelines, C++ 214
core language, C++ 2
coroutine 211
cos() 188
cosh() 188
cost

of copy 70
of range checking 142

count() 156
count_if() 155–156
cout, output 3
<cstdlib> 110
C-style

– C – Index 231

error handling 188
string 13

D
\d, regex 119
d, regex 119
\D, regex 119
data race 196
data(), array 171
D&E 208
deadlock 199
deallocation 51
debugging template 100
declaration 5

function 4
in condition 61
interface 29

-declaration, using 34
declarator operator 12
decltype 215
decrement operator -- 7
deduction

guide 83, 176
retur n-type 44

default
constructor 50
function argument 42
member initializer 68
operations 66
template argument 98

=default 66
DefaultConstr uctible 158
definition implementation 30
delegating constructor 215
=delete 67
delete

naked 52
operator 51

deprecated
auto_ptr 218
feature 218

deque 146
derived class, base and 55
Der ivedFrom 158
Destr uctible 158
destructor 51, 66

˜ 51
constructor and 210
vir tual 59

dictionary – see map
difference

from C 218
from C void ∗ assignment 221

digit, [[:digit:]] 119
digit, regex 119

[[:digit:]] digit 119
-directive, using 35
dispatch, tag 181
distribution, random 191
divide operator / 6
domain error 188
double 5
duck typing 104
duration 179
duration_cast 179
dynamic store 51
dynamic_cast 61

is instance of 62
is kind of 62

E
EDOM 188
element requirements 140
elision, copy 66
emplace_back() 147
empty() 147
enable_if 184
encapsulation, complete 66
end() 75, 143, 147, 150
engine, random 191
enum, bitset and 172
equal operator == 6
equality preserving 159
EqualityComparable 158
equal_range() 156, 173
ERANGE 188
erase() 143, 147
err no 188
error

domain 188
handling 35
handling, C-style 188
range 188
recovery 38
run-time 35

error-code, exception vs 38
essential operations 66
evaluation

compile-time 10
order of 7

example
find_all() 151
Hello, Wor ld! 2
Rand_int 191
Vec 141

exception 35
and main() 141
catch ev ery 141
specification, removed 218
vs error-code 38

232 Index I

exclusive_scan() 189
execution policy 161
explicit type conversion 53
explicit constructor 67
exponential_distr ibution 191
expor t removed 218
expr() 188
expression

constant 10
lambda 87

exter n template 215

F
fabs() 188
facilities, standard library 108
fail_fast 170
feature, deprecated 218
features

C with Classes language 210
C++11 language 215
C++14 language 216
C++17 language 216

file, header 31
final 216
find() 150, 156
find_all() example 151
find_if() 155–156
first, pair member 173
floor() 188
fmod() 188
for

statement 11
statement, range 11

forward() 167
forwarding, perfect 168
ForwardIterator 159
forward_list 146

singly-linked list 143
<forward_list> 109
ForwardRange 160
free store 51
frexp() 188
<fstream> 109
__func__ 215
function 2

and code complexity 4
argument 41
argument, default 42
argument passing 66
body 2
body, tr y block as 141
const member 50
constexpr 10
declaration 4
implementation of vir tual 56

mathematical 188
object 85
overloading 4
return value 41
template 84
type 181
value return 66

function 180
and nullptr 180

fundamental type 5
future

and promise 202
member get() 202

<future> 109, 202

G
garbage collection 73
generic programming 93, 210
get<>()

by index 174
by type 174

get(), future member 202
graph, regex 119
greater-than operator > 6
greater-than-or-equal operator >= 6
greedy match 118, 121
grouping, {} 2
gsl

namespace 168
span 168

Guidelines, C++ Core 214

H
half-open sequence 156
handle 52

resource 69, 165
hardware, mapping to 16
hash table 144
hash<>, unordered_map 76
header

C-library 110
file 31
standard library 109

heap 51
Hello, Wor ld! example 2
hierarchy

class 57
navigation 61

history, C++ 207
HOPL 208

– I – Index 233

I
if statement 14
immutability

const 9
constexpr 9

implementation
definition 30
inheritance 60
iterator 153
of vir tual function 56
str ing 113

in-class member initialization 215
#include 31
inclusive_scan() 189
increment operator ++ 7
index, get<>() by 174
inheritance 55

implementation 60
interface 60
multiple 211

inheriting constructor 216
initialization

and assignment 18
in-class member 215

initialize 52
array 171

initializer
= 7
{} 8
default member 68

initializer-list constructor 52
initializer_list 52
inline 49

namespace 215
inlining 49
inner_product() 189
InputIterator 159
InputRange 160
inser t() 143, 147
instantiation 81
instruction, machine 16
int 5

output bits of 172
Integral 158
interface

declaration 29
inheritance 60

invariant 37
and constructor 37

Invocable 159
InvocableRegular 159
I/O, iterator and 154
<ios> 109
<iostream> 3, 109
iota() 189
is

instance of, dynamic_cast 62
kind of, dynamic_cast 62

ISO
C++ 212
C++ standard 2

ISO-14882 212
istream_iterator 154
iterator 75, 150

and I/O 154
implementation 153

Iterator 159
iterator 143, 154
<iterator> 182
iterator_categor y 182
iterator_traits 181–182
iterator_type 182

J
join(), thread 196

K
key and value 144
K&R C 219

L
\l, regex 119
\L, regex 119
lambda

as adaptor 180
expression 87

language
and library 107
features, C with Classes 210
features, C++11 215
features, C++14 216
features, C++17 216

launch, async() 204
lazy

∗? 118
+? 118
?? 118
{}? 118
match 118, 121

ldexp() 188
leak, resource 62, 72, 164
less-than operator < 6
less-than-or-equal operator <= 6
letter, [[:alpha:]] 119
library

algorithm, standard 156
C with Classes standard 211
C++98 standard 211

234 Index I

components, C++11 216
components, C++14 217
components, C++17 217
container, standard 146
facilities, standard 108
language and 107
non-standard 107
standard 107

lifetime, scope and 9
lifting algorithm 100
<limits> 181, 193
linker 2
list

capture 87
forward_list singly-linked 143

list 142, 146
literal

", string 3
raw string 116
suffix, s 113
suffix, sv 115
type of string 113
user-defined 75, 215

literals
str ing_literals 113
str ing_view_literals 115

local scope 9
lock, reader-writer 200
log() 188
log10() 188
long long 215
lower, regex 119

M
machine instruction 16
main() 2

exception and 141
make_pair() 173
make_shared() 166
make_tuple() 174
make_unique() 166
management, resource 72, 164
map 144, 146

and unordered_map 146
<map> 109
mapped type, value 144
mapping to hardware 16
match

greedy 118, 121
lazy 118, 121

mathematical
function 188
functions, special 188
functions, standard 188

<math.h> 188

Max Munch rule 118
meaning, C++ 209
member

function, const 50
initialization, in-class 215
initializer, default 68

memberwise copy 66
mem_fn() 180
memory 73

address 16
<memor y> 109, 164, 166
merge() 156
Mergeable 159
minus operator - 6
model, template compilation 104
modern C++ 214
modf() 188
modularity 29
module 32

suport 32
modulus operator % 6
Movable 158
move 71

assignment 66, 72
constructor 66, 71

move() 72, 156, 167
MoveConstr uctible 158
moved-from

object 72
state 168

move-only type 167
multi-line pattern 117
multimap 146
multiple

character sets 114
inheritance 211
return-values 44

multiply operator ∗ 6
multiset 146
mutex 199
<mutex> 199

N
\n, newline 3
naked

delete 52
new 52

namespace scope 9
namespace 34

chrono 179
gsl 168
inline 215
pmr 178
std 3, 35, 109

narrowing conversion 8

– N – Index 235

navigation, hierarchy 61
new

container allocator 178
naked 52
operator 51

newline \n 3
noexcept 37
noexcept() 215
non-memory resource 73
non-standard library 107
noretur n 215
nor mal_distribution 191
notation, regular expression 117
not-equal operator != 6
notify_one(), condition_var iable 202
NULL 0, nullptr 13
nullptr 13

function and 180
NULL 0 13

number, random 191
<numer ic> 189
numerical algorithm 189
numer ic_limits 193

O
object 5

function 85
in container 140
moved-from 72

object-oriented programming 57, 210
operations

default 66
essential 66

operator
%= 7
+= 7
&, address-of 11
(), call 85
∗, contents-of 11
--, decrement 7
/, divide 6
==, equal 6
>, greater-than 6
>=, greater-than-or-equal 6
++, increment 7
<, less-than 6
<=, less-than-or-equal 6
-, minus 6
%, modulus 6
∗, multiply 6
!=, not-equal 6
<<, output 3
+, plus 6
%, remainder 6
∗=, scaling 7

/=, scaling 7
arithmetic 6
comparison 6, 74
declarator 12
delete 51
new 51
overloaded 51
user-defined 51

optimization, short-string 113
optional 176
order of evaluation 7
ostream_iterator 154
out_of_range 141
output

bits of int 172
cout 3
operator << 3

OutputIterator 159
OutputRange 160
overloaded operator 51
overloading, function 4
overr ide 55
overview, container 146
ownership 164

P
packaged_task thread 203
pair 173

and structured binding 174
member first 173
member second 173

par 161
parallel algorithm 161
parameterized type 79
par tial_sum() 189
par_unseq 161
passing data to task 197
pattern 116

(?: 120
multi-line 117

perfect forwarding 168
Permutable 159
phone_book example 138
plus operator + 6
pmr, namespace 178
pointer 17

smart 164
to ∗ 11

policy, execution 161
polymorphic type 54
pow() 188
precondition 37
predicate 86, 155

type 183
Predicate 159

236 Index I

pr int, regex 119
procedural programming 2
program 2
programming

generic 93, 210
object-oriented 57, 210
procedural 2

promise
future and 202
member set_exception() 202
member set_value() 202

pronunciation, C++ 209
punct, regex 119
pure vir tual 54
purpose, template 93
push_back() 52, 139, 143, 147
push_front() 143

R
R" 116
race, data 196
RAII

and resource management 36
and tr y-block 40
and tr y-statement 36
resource acquisition 164
scoped_lock and 199–200

RAII 52
Rand_int example 191
random number 191
random

distribution 191
engine 191

<random> 109, 191
RandomAccessIterator 159
RandomAccessRange 160
range

checking, cost of 142
checking Vec 140
concept 157
error 188
for statement 11

Range 157, 160
raw string literal 116
reader-writer lock 200
recovery, error 38
reduce() 189
reference 17

&&, rvalue 71
rvalue 72
to & 12

regex
] 117
[117
ˆ 117

? 117
. 117
+ 117
∗ 117
) 117
(117
$ 117
{ 117
} 117
| 117
alnum 119
alpha 119
blank 119
cntr l 119
\D 119
\d 119
d 119
digit 119
graph 119
\l 119
\L 119
lower 119
pr int 119
punct 119
regular expression 116
repetition 118
\s 119
\S 119
s 119
space 119
\U 119
\u 119
upper 119
w 119
\w 119
\W 119
xdigit 119

<regex> 109, 116
regular expression 116

regex_iterator 121
regex_search 116
regular

expression notation 117
expression <regex> 116
expression regex 116

Regular 158
reinter pret_cast 53
Relation 159
remainder operator % 6
removed

exception specification 218
expor t 218

repetition, regex 118
replace() 156

str ing 112
replace_if() 156

– R – Index 237

requirement, template 94
requirements, element 140
reser ve() 139, 147
resize() 147
resource

acquisition RAII 164
handle 69, 165
leak 62, 72, 164
management 72, 164
management, RAII and 36
non-memory 73
retention 73
safety 72

rethrow 38
return

function value 66
type, suffix 215
value, function 41

retur n
container 151
type, void 3

returning results from task 198
retur n-type deduction 44
return-values, multiple 44
riemanzeta() 188
rule

Max Munch 118
of zero 67

run-time
check 40
error 35

rvalue
reference 72
reference && 71

S
s literal suffix 113
\s, regex 119
s, regex 119
\S, regex 119
safety, resource 72
Same 158
scaling

operator /= 7
operator ∗= 7

scope
and lifetime 9
class 9
local 9
namespace 9

scoped_lock 164
and RAII 199–200
unique_lock and 201

scoped_lock() 199
search, binary 156

second, pair member 173
Semiregular 158
Sentinel 159
separate compilation 30
sequence 150

half-open 156
set 146
<set> 109
set_exception(), promise member 202
set_value(), promise member 202
shared_lock 200
shared_mutex 200
shared_ptr 164
sharing data task 199
short-string optimization 113
SignedIntegral 158
SIMD 161
Simula 207
sin() 188
singly-linked list, forward_list 143
sinh() 188
size of type 6
size() 75, 147

array 171
SizedRange 160
SizedSentinel 159
sizeof 6
sizeof() 181
size_t 90
smart pointer 164
smatch 116
sor t() 149, 156

container 181
Sor table 159
space, regex 119
span

gsl 168
str ing_view and 168

special mathematical functions 188
specialized container 170
sphbessel() 188
sqr t() 188
<sstream> 109
standard

ISO C++ 2
library 107
library algorithm 156
library, C++ 2
library, C with Classes 211
library, C++98 211
library container 146
library facilities 108
library header 109
library std 109
mathematical functions 188

standardization, C++ 212

238 Index I

state, moved-from 168
statement

for 11
if 14
range for 11
switch 14
while 14

static_asser t 193
assertion 40

static_cast 53
std

namespace 3, 35, 109
standard library 109

<stdexcept> 109
STL 211
store

dynamic 51
free 51

Str ictTotallyOrdered 158
Str ictWeakOrder 159
string

C-style 13
literal " 3
literal, raw 116
literal, type of 113
Unicode 114

str ing 111
[] 112
== 112
append += 112
assignment = 112
concatenation + 111
implementation 113
replace() 112
substr() 112

<str ing> 109, 111
str ing_literals, literals 113
str ing_span 170
str ing_view 114

and span 168
str ing_view_literals, literals 115
structured

binding 45
binding, pair and 174
binding, tuple and 174

subclass, superclass and 55
[]subscripting 147
substr(), str ing 112
suffix 75

return type 215
s literal 113
sv literal 115

superclass and subclass 55
suport, module 32
support, concept 94
sv literal suffix 115

sw ap() 76
Swappable 158
SwappableWith 158
switch statement 14
synchronized_pool_resource 178

T
table, hash 144
tag dispatch 181
tanh() 188
task

and thread 196
communication 202
passing data to 197
returning results from 198
sharing data 199

TC++PL 208
template

argument, constrained 82
argument, default 98
arguments, >> 215
compilation model 104
constrained 82
variadic 100

template 79
class 79
debugging 100
exter n 215
function 84
purpose 93
requirement 94

this 70
thread

join() 196
packaged_task 203
task and 196

<thread> 109, 196
thread_local 216
time 179
timeline, C++ 208
time_point 179
timing, clock 200
to hardware, mapping 16
transfor m_reduce() 189
translation unit 32
tr y

block 36
block as function body 141

tr y-block, RAII and 40
tr y-statement, RAII and 36
tuple 174

and structured binding 174
type 5

abstract 54
argument 82

– T – Index 239

concrete 48
conversion, explicit 53
function 181
fundamental 5
get<>() by 174
move-only 167
of string literal 113
parameterized 79
polymorphic 54
predicate 183
size of 6

typename 79, 152
<type_traits> 183
typing, duck 104

U
\U, regex 119
\u, regex 119
udl 75
Unicode string 114
unifor m_int_distribution 191
uninitialized 8
unique_copy() 149, 156
unique_lock 200–201

and scoped_lock 201
unique_ptr 62, 164
unordered_map 144, 146

hash<> 76
map and 146

<unordered_map> 109
unordered_multimap 146
unordered_multiset 146
unordered_set 146
unsigned 5
UnsignedIntegral 158
upper, regex 119
user-defined

literal 75, 215
operator 51

using
alias 90
-declaration 34
-directive 35

usual arithmetic conversions 7
<utility> 109, 173–174

V
valarray 192
<valarray> 192
value 5

argument 82
key and 144
mapped type 144

return, function 66
value_type 90
valuetype 147
variable 5
variadic template 100
variant 175
Vec

example 141
range checking 140

vector arithmetic 192
vector 138, 146

array vs. 171
<vector> 109
vector<bool> 170
vectorized 161
View 160
vir tual 54

destructor 59
function, implementation of 56
function table vtbl 56
pure 54

void
∗ 221
∗ assignment, difference from C 221
retur n type 3

vtbl, vir tual function table 56

W
w, regex 119
\w, regex 119
\W, regex 119
wait(), condition_var iable 201
WeaklyEqualityComparable 158
WG21 208
while statement 14

X
X3J16 212
xdigit, regex 119

Z
zero, rule of 67

Credits

Page ii: “I have made this letter longer than usual, because I lack the time to make it short.” Pascal, B.

(1904). The provincial letters of Blaise Pascal, J.M. Dent.
Page x: “When you wish to instruct, be brief”, Marcus Tullius Cicero - Horace for English Readers,

Being a Translation of the Poems of Quintus Horatius Flaccus into English Prose, trans. E.C.
Wickham (Oxford: Clarendon Press, 1903).

Page 1: “The first thing we do, let’s kill all the language lawyers”, paraphrasing William Shakesphere -
Henry The Sixth, Part 2 Act 4, scene 2, 71–78.

Page 21: “Don’t Panic!”, Neil Gaiman, Don’t Panic: The Official Hitchhiker’s Guide to the Galaxy
Companion Pocket Books, 1988.

Page 29: “Don’t interrupt me while I’m interrupting”, Winston Churchill (1966). “The Irrepressible
Churchill: Stories, Sayings and Impressions of Sir Winston Churchill”, World Publishing
Company.

Page 49: “Those types are not ‘abstract’; they are as real as int and float”, Doug McIlroy.
Page 67: “When someone says I want a programming language in which I need only say what I wish

done, give him a lollipop”, Alan Perlis ACM-SIGPLAN ’82, Epigrams in Programming.
Page 95: “Programming: you have to start with interesting algorithms”, Alex Stepanov.
Page 109: “Why waste time learning when ignorance is instantaneous?”, Watterson, B. (1992). Attack

of the deranged mutant killer monster snow goons: A Calvin and Hobbes collection. Kansas City:
Andrews and McMeel.

Page 113: “Prefer the standard to the offbeat”, Strunk, W., & White, E. B. (1959). The elements of
style. N.Y: Macmillan.

Page 125: “What you see is all you get”, Kernighan, B. W., & Ritchie, D. M. (1988). The C
programming language. Upper Saddle River NJ: Prentice Hall.

Page 141: “It was new. It was singular. It was simple. It must succeed!”, Horatio Nelson.
Page 153: “Do not multiply entities beyond necessity.” William Occam.
Page 160: “a finite set of rules….Input ... Output ... Effectiveness”, Donald E. Knuth: The Art of

Computer Programming. Addison-Wesley, Reading, Massachusetts. 1968.
Page 167: “The time you enjoy wasting is not wasted time.” Bertrand Russell.
Page 193: “The purpose of computing is insight, not numbers”, Hamming, R. W. (1962). Numerical

methods for scientists and engineers.
Page 193: “... but for the student, numbers are often the best road to insight.” A first course in

numerical analysis, Anthony Ralston, McGraw-Hill, 1965.
Page 201: “Keep it simple: as simple as possible, but no simpler”, Albert Einstein.
Page 215: “Hurry Slowly (festina lente)”, Octavius, Caesar Augustus quoted in Alison Jones,

Stephanie Pickering, Megan Thomson (1997). Chambers dictionary of quotations, Chambers.

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	3 Modularity
	3.1 Introduction
	3.2 Separate Compilation
	3.3 Modules (C++20)
	3.4 Namespaces
	3.5 Error Handling
	3.6 Function Arguments and Return Values
	3.7 Advice

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

