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Preface

INTRODUCTION

Advanced Mechanics of Materials and Applied Elasticity, Sixth Edition, is an outgrowth 
of classroom notes prepared in connection with advanced undergraduate and first-year 
graduate courses in the mechanics of solids and elasticity. It is designed to satisfy the 
requirements of courses subsequent to an elementary treatment of the strength of materi-
als. In addition to its applicability to aeronautical, civil, and mechanical engineering and 
to engineering mechanics curricula, the text is useful to practicing engineers. Emphasis is 
given to numerical techniques (which lend themselves to computerization) in the solution 
of problems resisting analytical treatment. The attention devoted to numerical solutions is 
not intended to deny the value of classical analysis, which is given a rather full treatment. 
Instead, the coverage provided here seeks to fill what we believe to be a void in the world 
of textbooks.

We have attempted to present a balance between the theory necessary to gain insight 
into the mechanics, but which can often offer no more than crude approximations to real 
problems because of simplifications related to geometry and conditions of loading, and 
numerical solutions, which are so useful in presenting stress analysis in a more realistic 
setting. This text emphasizes those aspects of theory and application that prepare a student 
for more advanced study or for professional practice in design and analysis.

The theory of elasticity plays three important roles in the text. First, it provides exact 
solutions where the configurations of loading and boundary are relatively simple. Second, 
it provides a check on the limitations of the mechanics of materials approach. Third, it 
serves as the basis of approximate solutions employing numerical analysis.

To make the text as clear as possible, the fundamentals of the mechanics of materi-
als are addressed as necessary. The physical significance of the solutions and practical 
applications are also emphasized. In addition, we have made a special effort to illus-
trate important principles and applications with numerical examples. Consistent with 
announced national policy, problems are included in the text in which the physical quan-
tities are expressed in the International System of Units (SI). All important quantities 
are defined in both SI and U.S. Customary System (USCS) of units. A sign convention, 
consistent with vector mechanics, is employed throughout for loads, internal forces, and 
stresses. This convention conforms to that used in most classical strength of materials and 
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elasticity texts, as well as to that most often employed in the numerical analysis of com-
plex structures.

ORGANIZATION OF THE TEXT

Because of its extensive subdivision into a variety of topics and use of alternative meth-
ods of analysis, this text provides great flexibility for instructors when choosing assign-
ments to cover courses of varying length and content. Most chapters are substantially 
self-contained, so the order of presentation can be smoothly altered to meet an instructor’s 
preference. Ideally, Chapters 1 and 2, which address the analysis of basic concepts, should 
be studied first. The emphasis placed on the treatment of two-dimensional problems in 
elasticity (Chapter 3) may then differ according to the scope of the course.

This sixth edition of Advanced Mechanics of Materials and Applied Elasticity seeks to 
preserve the objectives and emphases of the previous editions. Every effort has been made 
to provide a more complete and current text through the inclusion of new material dealing 
with the fundamental principles of stress analysis and design: stress concentrations, contact 
stresses, failure criteria, fracture mechanics, compound cylinders, finite element analysis 
(FEA), energy and variational methods, buckling of stepped columns, common shell types, 
case studies in analysis and design, and MATLAB solutions. The entire text has been reex-
amined, and many improvements have been made throughout by a process of elimination 
and rearrangement. Some sections have been expanded to improve on previous expositions.

The references (identified in brackets), which are provided as an aid to those students 
who wish to pursue certain aspects of a subject in further depth, have been updated and 
listed at the end of each chapter. We have resisted the temptation to increase the mate-
rial covered except where absolutely necessary. Nevertheless, we have added a number 
of illustrative examples and problems important in engineering practice and design. Extra 
care has been taken in the presentation and solution of the sample problems. All the prob-
lem sets have been reviewed and checked to ensure both their clarity and their numerical 
accuracy. Most changes in subject-matter coverage were prompted by the suggestions of 
faculty familiar with earlier editions.

In this sixth edition, we have maintained the previous editions’ clarity of presentation, 
simplicity as the subject permits, unpretentious depth, an effort to encourage intuitive 
understanding, and a shunning of the irrelevant. In this context, as throughout, emphasis 
is placed on the use of fundamentals to help build students’ understanding and ability to 
solve the more complex problems.

SUPPLEMENTS

The book is accompanied by a comprehensive instructor’s Solutions Manual. Written and 
class tested, it features complete solutions to all problems in the text. Answers to selected 
problems are given at the end of the book. The password-protected Solutions Manual is 
available for adopters at the Pearson Instructor Resource Center, pearsonhighered.com/irc.

http://pearsonhighered.com/irc


Preface� xix

Optional Material is also available from the Pearson Resource Center, pearsonhigh-
ered.com/irc. This material includes PowerPoint slides of figures and tables, and solutions 
using MATLAB for a variety of sample problems of practical importance. The book, how-
ever, is independent of any software package.

Register your copy of Advanced Mechanics of Materials and Applied Elasticity, 
Sixth Edition, on the InformIT site for convenient access to updates and corrections 
as they become available. To start the registration process, go to informit.com/reg-
ister and log in or create an account. Enter the product ISBN (9780134859286) and 
click Submit. Look on the Registered Products tab for an Access Bonus Content link 
next to this product, and follow that link to access any available bonus materials. If 
you would like to be notified of exclusive offers on new editions and updates, please 
check the box to receive email from us.

http://pearsonhighered.com/irc
http://pearsonhighered.com/irc
http://informit.com/register
http://informit.com/register
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Symbols

Roman Letters
A	 area
B	 width
C	 carryover factor, torsional rigidity
c	 distance from neutral axis to outer fiber
D	 distribution factor, flexural rigidity of plate
[D]	 elasticity matrix
d	 diameter, distance
E	 modulus of elasticity in tension or compression
Es	 modulus of plasticity or secant modulus
Et	 tangent modulus
e	 dilatation, distance, eccentricity
{F}	 nodal force matrix of bar and beam finite elements
F	 body force per unit volume, concentrated force
f	 coefficient of friction
{   f}	 displacement function of finite element
G	 modulus of elasticity in shear or modulus of rigidity
g	 acceleration of gravity (≈9.81 m/s2)
h	 depth of beam, height, membrane deflection, mesh width
I	 moment of inertia of area, stress invariant
J	 polar moment of inertia of area, strain invariant
K	� bulk modulus, spring constant of an elastic support, stiffness factor, thermal con-

ductivity, fatigue factor, strength coefficient, stress concentration factor
[K  ]	 stiffness matrix of whole structure
k	 constant, modulus of elastic foundation, spring constant
[k]	 stiffness matrix of finite element
L	 length, span
l, m, n	 direction cosines
M	 moment
Mxy	 twisting moment in plates
m	 moment caused by unit load
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N	 fatigue life (cycles), force
n	 factor of safety, number, strain hardening index
P	 concentrated force
p	 distributed load per unit length or area, pressure, stress resultant
Q	 first moment of area, heat flow per unit length, shearing force
{Q}	 nodal force matrix of two-dimensional finite element
R	 radius, reaction
r	 radius, radius of gyration
r, θ	 polar coordinates
S	 elastic section modulus, shear center
s	 distance along a line or a curve
T	 temperature, twisting couple or torque
t	 thickness
U	 strain energy
Uo	 strain energy per unit volume
U*	 complementary energy
u, u, w	 components of displacement
V	 shearing force, volume
u	 velocity
W	 weight, work
x, y, z	 rectangular coordinates
Z	 plastic section modulus

Greek Letters
α	 angle, coefficient of thermal expansion, form factor for shear
b	 numerical factor, angle
γ	 shear strain, weight per unit volume or specific weight, angle
δ	� deflection, finite difference operator, variational symbol, displacement
{δ}	 nodal displacement matrix of finite element
	 change of a function
ε	 normal strain
θ	 angle, angle of twist per unit length, slope
ν	 Poisson’s ratio
λ	 axial load factor, Lamé constant
Π	 potential energy
ρ	 density (mass per unit volume), radius
σ	 normal stress
τ	 shear stress
φ	 total angle of twist
F	 stress function
ω	 angular velocity
ψ	 stream function

∆
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C H A P T E R  5

5.1  INTRODUCTION

In this chapter we are concerned with the bending of straight as well as curved beams—
that is, structural elements possessing one dimension significantly greater than the other 
two, usually loaded in a direction normal to the longitudinal axis. We first examine the 
elasticity or “exact” solutions of beams that are straight and made of homogeneous, lin-
early elastic materials. Then, we consider solutions for straight beams using mechanics 
of materials or elementary theory, special cases involving members made of composite 
materials, and the shear center. The deflections and stresses in beams caused by pure 
bending as well as those due to lateral loading are discussed. We analyze stresses in 
curved beams using both exact and elementary methods, and compare the results of the 
various theories.

Except in the case of very simple shapes and loading systems, the theory of elastic-
ity yields beam solutions only with considerable difficulty. Practical considerations often 
lead to assumptions about stress and deformation that result in mechanics of materials or 
elementary theory solutions. The theory of elasticity can sometimes be applied to test the 
validity of such assumptions. This theory has three roles in these problems: It can serve to 
place limitations on the use of the elementary theory, it can be used as the basis of approx-
imate solutions through numerical analysis, and it can provide exact solutions for simple 
configurations of loading and shape.

Bending of Beams
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Part A: Exact Solutions

5.2  PURE BENDING OF BEAMS OF SYMMETRICAL CROSS SECTION

The simplest case of pure bending is that of a beam possessing a vertical axis of sym-
metry, subjected to equal and opposite end couples (Fig. 5.1a). The semi-inverse method 
is now applied to analyze this problem. The moment Mz shown in Fig. 5.1a is defined as 
positive, because it acts on a positive (negative) face with its vector in the positive (nega-
tive) coordinate direction. This sign convention agrees with that of stress (Section 1.5). 
We will assume that the normal stress over the cross section varies linearly with y and that 
the remaining stress components are zero:

	 σ σ σ τ τ τ= = = = = =kyx y z xy xz yz, 0 	 (5.1)

Here k is a constant, and =y 0 contains the neutral surface—that is, the surface along 
which σ x = 0. The intersection of the neutral surface and the cross section locates the neu-
tral axis (abbreviated NA). Figure 5.1b shows the linear stress field in a section located an 
arbitrary distance a from the left end.

Since Eqs. (5.1) indicate that the lateral surfaces are free of stress, we need only be 
assured that the stresses are consistent with the boundary conditions at the ends. These 
conditions of equilibrium require that the resultant of the internal forces be zero and that 
the moments of the internal forces about the neutral axis equal the applied moment

	 ∫ ∫σ σ= − =dA y dA MxA x zA
0, 	 (5.2)

where A is the cross-sectional area. Note that the zero stress components τ τxy xz,  in 
Eqs. (5.1) satisfy the conditions that no y- and z-directed forces exist at the end faces. 
Moreover, because of the y symmetry of the section, σ kyx =  produces no moment about 
the y axis. The negative sign in the second expression implies that a positive moment Mz 
is one that results in compressive (negative) stress at points of positive y. Substituting Eqs. 
(5.1) into Eqs. (5.2) yields

	 ∫ ∫= − =k y dA k y dA M
A zA

0, 2 	 (5.3a, b)

Mz Mz Mz

N.A.
x

y

x

a z

y

y

z

dA

Mz

y
a

(a) (b)

σx

Figure 5.1.  �(a) Beam of singly symmetric cross section in pure bending; (b) stress distribution 
across cross section of the beam.
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Since ≠k 0, Eq. (5.3a) indicates that the first moment of cross-sectional area about the 
neutral axis is zero. This requires that the neutral and centroidal axes of the cross section 
coincide. Neglecting body forces, it is clear that the equations of equilibrium (3.4), are 
satisfied by Eqs. (5.1). It can also readily be verified that Eqs. (5.1) together with Hooke’s 
law fulfill the compatibility conditions, Eq. (2.12). Thus, Eqs. (5.1) represent an exact 
solution.

The integral in Eq. (5.3b) defines the moment of inertia I z of the cross section about 
the z axis of the beam cross section (Appendix C); therefore,

	 = −k
M
I

z

z

	 (a)

An expression for normal stress can now be written by combining Eqs. (5.1) and (a):

	 σ = − M y
Ix

z

z

	 (5.4)

This is the familiar elastic flexure formula applicable to straight beams.
Since, at a given section, M and I are constant, the maximum stress is obtained from 

Eq. (5.4) by taking =y c| |max :

	 σ = = =Mc
I

M
I c

M
S/max 	 (5.5)

where S is the elastic section modulus. Equation (5.5) is widely employed in practice 
because of its simplicity. To facilitate its use, section moduli for numerous common sec-
tions are tabulated in various handbooks. A fictitious stress in extreme fibers, computed 
from Eq. (5.5) for the experimentally obtained ultimate bending moment (Section 12.7), is 
termed the modulus of rupture of the material in bending. This quantity, σ = M Su/ ,max  is 
frequently used as a measure of the bending strength of materials.

5.2.1  Kinematic Relationships

To gain further insight into the beam problem, we now consider the geometry of 
deformation—that is, beam kinematics. Fundamental to this discussion is the hypothesis 
that sections originally plane remain so subsequent to bending. For a beam of symmetrical 
cross section, Hooke’s law and Eq. (5.4) lead to

	
ε ε ε ν

γ γ γ

= − = =

= = =

M y
EI

M y
EIx

z

z
y z

z

z

xy xz yz

,

0
	 (5.6)

where EIz  is the flexural rigidity.
Let us examine the deflection of the beam axis, whose axial deformation is zero. 

Figure 5.2a shows an element of an initially straight beam, now in a deformed state. 
Because the beam is subjected to pure bending, uniform throughout, each element of 
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infinitesimal length experiences identical deformation, with the result that the beam cur-
vature is everywhere the same. The deflected axis of the beam or the deflection curve is 
thus shown deformed, with radius of curvature rx . The curvature of the beam axis in the xy 
plane in terms of the y deflection υ is

	
υ
υ

υ=
+

≈
r

d dx
d dx

d
dxx

1 /

[1 ( / ) ]

2 2

2 3/2

2

2 	 (5.7)

where the approximate form is valid for small deformations ( υd dx/ 1). The sign con-
vention for curvature of the beam axis is such that this sign is positive when the beam is 
bent concave downward, as shown in the figure.

As shown by the geometry in Fig. 5.2b, the shaded sectors are similar. Hence, the 
radius of curvature and the strain are related as follows:

	 θ ε
= = −d

ds
r

ds
yx

x 	 (5.8)

where ds is the arc length mn along the longitudinal axis of the beam. For a small dis-
placement, ds ≈ dx and θ  represents the slope dυ/dx of the beam axis. Clearly, for the 
positive curvature shown in Fig. 5.2a, θ  increases as we move from left to right along the 
beam axis. On the basis of Eqs. (5.6) and (5.8),

	
ε

= − =
r y

M
EIx

x z

z

1
	 (5.9a)

Following a similar procedure and noting that ε ≈ νε−z x, we may also obtain the curvature 
in the yz plane as

	
ε= =

r y
vM
EIz

z z

z

1
– – 	 (5.9b)
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dθ
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Figure 5.2.  (a) Segment of a bent beam; (b) geometry of deformation.
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The basic equation of the deflection curve of a beam is obtained by combining Eqs. 
(5.7) and (5.9a) as follows:

	
υd

dx
M
EI

z

z

=
2

2 	 (5.10)

This expression, relating the beam curvature to the bending moment, is known as the 
Bernoulli–Euler law of elementary bending theory. It is observed from Fig. 5.2 and 
Eq. (5.10) that a positive moment produces a positive curvature. If the sign convention 
adopted in this section for either moment or deflection (and curvature) is reversed, the 
plus sign in Eq. (5.10) should likewise be reversed.

Reference to Fig. 5.2a reveals that the top and bottom lateral surfaces have been 
deformed into saddle-shaped or anticlastic surfaces of curvature rz1/ . The vertical sides 
have been simultaneously rotated as a result of bending. Examining Eq. (5.9b) suggests a 
method for determining Poisson’s ratio [Ref. 5.1]. For a given beam and bending moment, 
a measurement of rz1/  leads directly to v. The effect of anticlastic curvature is small when 
the beam depth is comparable to its width.

5.2.2  Timoshenko Beam Theory

The Timoshenko theory of beams, developed by S. P. Timoshenko at the beginning 
of the twentieth century, constitutes an improvement over the Euler–Bernoulli the-
ory. In the static case, the difference between the two hypotheses is that the former 
includes the effect of shear stresses on the deformation by assuming a constant shear 
over the beam height, whereas the latter ignores the influence of transverse shear on 
beam deformation. The Timoshenko theory is also said to be an extension of the ordi-
nary beam theory that allows for the effect of the transverse shear deformation while 
relaxing the assumption that plane sections remain plane and normal to the deformed 
beam axis.

The Timoshenko beam theory is well suited to describing the behavior of short 
beams and sandwich composite beams. In the dynamic case, the theory incorporates 
shear deformation as well as rotational inertia effects, and it will be more accurate for 
not very slender beams. By effectively taking into account the mechanism of deforma-
tion, Timoshenko’s theory lowers the stiffness of the beam, with the result being a larger 
deflection under static load and lower predicted fundamental frequencies of vibration for a 
prescribed set of boundary conditions.

5.3  PURE BENDING OF BEAMS OF ASYMMETRICAL CROSS SECTION

In this section, we extend the discussion in Section 5.2 to the more general case in which 
a beam of arbitrary cross section is subjected to end couples M y and Mz about the y and 
z axes, respectively (Fig. 5.3). Following a procedure similar to that described in Section 
5.2, plane sections are again taken to remain plane. Assume that the normal stress σ x 
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acting at a point within dA is a linear function of the y and z coordinates of the point; 
assume further that the remaining stresses are zero. Then the stress field is

	 σ
σ σ τ τ τ

= + +
= = = = =

c c y c zx

y z xy xz yz 0
1 2 3 	 (5.11)

where c c c, ,1 2 3 are constants to be evaluated.
The equilibrium conditions at the beam ends, as before, relate to the force and bend-

ing moment:

	 ∫ σ =dAxA
0 	 (a)

	 ∫ ∫σ σ= − =z dA M y dA Mx yA x zA
, 	 (b, c)

Carrying σ x, as given by Eq. (5.11), into Eqs. (a), (b), and (c) results in the following 
expressions:

	 ∫ ∫ ∫+ + =c dA c y dA c z dA
A A A

01 2 3
	 (d)

	 ∫ ∫ ∫+ + =c z dA c yz dA c z dA M
A A yA1 2 3

2 	 (e)

	 ∫ ∫ ∫+ + = −c y dA c y dA c yz dA M
A A zA1 2

2
3

	 (f)

For the origin of the y and z axes to be coincident with the centroid of the section, it is 
required that

	 ∫ ∫= =y dA z dA
A A

0
	 (g)

Based on Eq. (d), we conclude that =c 01 ; based on Eqs. (5.11), we conclude that σ =x 0 
at the origin. Thus, the neutral axis passes through the centroid, as in the beam of sym-
metrical section. In addition, the field of stress described by Eqs. (5.11) satisfies the 
equations of equilibrium and compatibility and the lateral surfaces are free of stress. Now 
consider the defining relationships

	 ∫∫∫ =I z dA I y dA I yz dAy z yz AAA
= , = ,2 2 	 (5.12)

My

MzCN.A.

z

y

dA

z′

y ′y

z
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φ

Figure 5.3.  �Pure bending of beams 
of asymmetrical cross 
section.
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The quantities I y and I z are the moments of inertia about the y and z axes, respectively, 
and I yz  is the product of inertia about the y and z axes. From Eqs. (e) and (f), together with 
Eqs. (5.12), we obtain expressions for c2 and c3.

5.3.1  Stress Distribution

Substitution of the constants into Eqs. (5.11) results in the following generalized flexure 
formula:

	 σ =
+ − +

−
M I M I z M I M I y

I I Ix
y z z yz y yz z y

y z yz

( ) ( )
2 	 (5.13)

The equation of the neutral axis is found by equating this expression to zero:

	 + − + =M I M I z M I M I yy z z yz y yz z y( ) ( ) 0 	 (5.14)

This is an inclined line through the centroid C. The angle φ between the neutral axis and 
the z axis is determined as follows:

	 θ = =
+
+

y
z

M I M I

M I M I
y z z yz

y yz z y

tan 	 (5.15)

The angle φ  (measured from the z axis) is positive in the clockwise direction, as shown 
in Fig. 5.3. The highest bending stress occurs at a point located farthest from the 
neutral axis.

There is a specific orientation of the y and z axes for which the product of inertia I yz  
vanishes. Labeling the axes so oriented as ′y  and ′z , we have =′ ′I y z 0. The flexure for-
mula under these circumstances becomes

	 σ
′

− ′′ ′

′

M z

I
M y

Ix
y

y

z

z

= 	 (5.16)

The ′y  and ′z  axes now coincide with the principal axes of inertia of the cross section, 
and we can find the stresses at any point by applying Eq. (5.13) or Eq. (5.16).

The kinematic relationships discussed in Section 5.2 are valid for beams of asym-
metrical section provided that y and z represent the principal axes.

5.3.2  Transformation of Inertia Moments

Recall that the two-dimensional stress (or strain) and the moment of inertia of an area 
are second-order tensors (Section 1.17). Thus, the transformation equations for stress 
and moment of inertia are analogous (Section C.2.2). In turn, the Mohr’s circle analysis 
and all conclusions drawn for stress apply to the moment of inertia. With reference to the 
coordinate axes shown in Fig. 5.3, applying Eq. (C.12a), the moment of inertia about the 

′y  axis is

	 θ θ=
+ −

−′I
I I I I

Iy
y z y z

yz2
+

2
cos2 sin 2 	 (5.17)
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From Eq. (C.13), the orientation of the principal axes is given by

	 θ = −
−
I

I Ip
yz

y z

tan 2
2

	 (5.18)

The principal moments of inertia, I1 and I ,2  from Eq. (C.14) are

	 =
+

±
−





+I
I I I I

Ix y x y
xy2 21,2

2
2

	 (5.19)

where the subscripts 1 and 2 refer to the maximum and minimum values, respectively.
Determination of the moments of inertia and stresses in an asymmetrical section is 

illustrated in Example 5.1.

EXAMPLE 5.1  Analysis of an Angle in Pure Bending
A 150- by 150-mm slender angle of 20-mm thickness is subjected to oppo-
sitely directed end couples ⋅=Mz 11 kN m at the centroid of the cross section. 
What bending stresses exist at points A and B on a section away from the ends 
(Fig. 5.4a)? Determine the orientation of the neutral axis.

Solution  Equations (5.13) and (5.16) are applied to obtain the normal stress. 
This requires first determining a number of section properties through the use 
of familiar expressions of mechanics given in Appendix C. The computer pro-
gram presented in Table C.2 provides a check of the numerical values obtained 
here for the area characteristics and may be extended to compute the stresses.

Location of the Centroid C. Let y and z  represent the distances from C to 
arbitrary reference lines (denoted as Z and Y ):

	 =
Σ
Σ

=
+
+

=
× × + × ×

× + ×
=z

A z
A

A z A z
A A

i i

i
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Figure 5.4.  Example 5.1. An equal-leg-angle cross section of beam.
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where zi represents the z distance from the Y reference line to the centroid of 
each subarea (A1 and A2) composing the total cross section. Since the section 
is symmetrical, =z y.

Moments and Products of Inertia. For a rectangular section of depth h and 
width b, the moment of inertia about the neutral z  axis is =I bhz /123  (Table 
C.1). We now use the yz axes as reference axes through C. Representing the 
distances from C to the centroids of each subarea by dy ,

1
 dy ,2  dz1, and dz2 we 

obtain the moments of inertia with respect to these axes using the parallel-axis 
theorem. Applying Eq. (C.9),

	 ∑= + = + + +I I Ad I A d I A dz z y z y z y( )2
1 1 1

2
2 2 2

2 	

Thus, referring to Fig. 5.4a,

	 = = × × + × ×

× × × ×

= ×

I Iz y 20 (130) 130 20 (40)

+ 150 (20) +150 20 (35)

11.596 10 mm

1
12

3 2

1
12

3 2

6 4

	

The transfer formula, Eq. (C.11), for a product of inertia yields

	

= ∑ +

= + × × × − + + × × − ×

= − ×

I I Ad dyz yz y z( )

0 130 20 40 ( 35) 0 150 20 ( 35) 30

6.79 10 mm6 4

	

Stresses Using Eq. (5.13). We have = = − = − = − =y y z z MA B A B y0.105 m, 0.045 m, 0.045 m, 0.045 m, and 0 
= = − = − = − =y y z z MA B A B y0.105 m, 0.045 m, 0.045 m, 0.045 m, and 0. Hence,

	 σ =
−

−
M I z I y

I I Ix A
z yz A y A

y z yz

( )
( )

2 	

	 [ ]− − −
− − 

−−=
11(10 ) ( 6.79)( 0.045) (11.596)(0.105)

(11.596) ( 6.79) 10
= 114 MPa

3

2 2 6
	 (h)

Similarly,

	 σ [ ]=
− − − −

− − 
=−x B( )

11(10 ) ( 6.79)( 0.045) (11.596)( 0.045)

(11.596) ( 679) 10
103 MPa

3

2 2 6
	

Alternatively, these stresses may be calculated as described next.
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Directions of the Principal Axes and the Principal Moments of Inertia. 
Employing Eq. (5.18), we have

	 θ θ= − −
−

= ∞ = ° °p ptan 2
2( 6.79)

11.596 11.596
, 2 90 or 270 	

Therefore, the two values of θ p are 45° and 135°. Substituting the first of these 
values into Eq. (5.17), we obtain = + °′I y [11.596 6.79sin 90 ]. Since the princi-
pal moments of inertia are, by application of Eq. (5.19),

	 [ ]= ± + = ±I [11.596 0 6.79 ]10 11.596 6.79 101,2
2 6 6 	

we see that = = ×′I I y 18.386 10 mm1
6 4 and = = ×′I I z 4.8062  10 mm6 4. The 

principal axes are indicated in Fig. 5.4b as the ′ ′y z  axes.

Stresses Using Eq. (5.16). The components of bending moment about the 
principal axes are

	
⋅
⋅

= ° =

= ° =
′

′

M

M

y

z

11(10 ) sin 45 7778 N m

11(10 ) cos45 7778 N m

3

3
	

Equation (5.16) is now applied, referring to Fig 5.4b, with ′ =yA 0.043 m, 
′ = −zA 0.106 m, ′ = −yB 0.0636 m, and ′ =zB 0 determined from geometric 

considerations:

	
σ

σ

= −
×

−
×

= −

= − −
×

=

− −

−

x A

x B

( )
7778( 0.106)

18.386 10

7778(0.043)

4806 10
114 MPa

( ) 0
7778( 0.0636)

4.806 10
103 MPa

6 6

6

	

as before.

Direction of the Neutral Axis. From Eq. (5.15), with =M y 0,

	 φ φ= = − = − °
I

I
yz

y

tan or arctan
6.79

11.596
30.4 	

The negative sign indicates that the neutral is located counterclockwise from 
the z axis (Fig. 5.4b).

5.4  BENDING OF A CANTILEVER OF NARROW SECTION

Consider a narrow cantilever beam of rectangular cross section, loaded at its free end by 
a concentrated force of magnitude such that the beam weight may be neglected (Fig. 5.5). 
This situation may be regarded as a case of plane stress provided that the beam thickness t 
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is small relative to the beam depth 2h. The distribution of stress in the beam, as we found 
in Example 3.1, is given by

	 σ σ τ− 



 − −

Px
I

y
P
I

h yx y xy= , =0, =
2

( )2 2 	 (3.21)

To derive expressions for the beam displacement, we must relate stress, described by 
Eq. (3.21), to strain. This is accomplished through the use of the strain-displacement rela-
tions and Hooke’s law:

	
υ ν∂

∂
= −

∂
∂

=
u
x

Pxy
EI y

Pxy
EI

, 	 (a, b)

	
υ ν τ ν∂

∂
+

∂
∂

=
+

= −
+

−
u
y x E

P
EI

h yxy2(1 ) (1 )
( )2 2 	 (c)

Integration of Eqs. (a) and (b) yields

	 = − +u
Px y

EI
u y

2
( )

2

1 	 (d)

	 υ ν υ= +
Pxy
EI

x
2

( )
2

1 	 (e)

Differentiating Eqs. (d) and (e) with respect to y and x, respectively, and substituting into 
Eq. (c), we have

	 ν υ ν
− + = − + −

+du
dy

P
EI

y
d
dx

P
EI

x
Ph

EI2
(2 )

2

(1 )1 2 1 2
2

	

In this expression, note that the left and right sides depend only on y and x, respec-
tively. These variables are independent of each other, so we conclude that the equation can 
be valid only if each side is equal to the same constant:

	 ν υ ν− + = − + + = −du
dy

P
EI

y a
d
dx

Px
EI

Ph
EI

a
2

(2 ) ,
2

(1 )1 2
1

1
2 2

1 	

These are integrated to yield

	 ν= + + +u y
P
EI

y a y a( )
6

(2 )1
3

1 2 	

	 υ ν
= −

+
− +x

Px
EI

Pxh
EI

a x a( )
6

(1 )
1

3 2

1 3 	

2h P

y

L

x

Figure 5.5.  �Deflections of an end-
loaded cantilever beam.
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in which a2 and a3 are constants of integration. The displacements may now be written

	 ν= − + + + +u
Px y

EI
P
EI

y a y a
2 6

(2 )
2

3
1 2 	 (5.20a)

	 υ ν ν
= + −

+
− +

Pxy
EI

Px
EI

Pxh
EI

a x a
2 6

(1 )2 3 2

1 2 	 (5.20b)

The constants a ,1  a ,2  and a3 depend on known conditions. If, for example, the situa-
tion at the fixed end is such that

	
∂
∂

υ = =u
x

u x L y= 0, = = 0 at , 0 	

then, from Eqs. (5.20),

	
ν

= = = +
+

a
PL
EI

a a
PL
EI

PLh
EI2

, 0,
3

(1 )
1

2

2 3

3 2

	

The beam displacement is therefore

	 ( ) ( )
= − +

+
u

p
EI

L x y
v Py
EI2

2

6
2 2

3

	 (5.21)

	 υ ν ν= + + − + + −










P
EI

x L x
y L h L x

6 3 2
( ) (1 )( )

3 3
2 2 2 	 (5.22)

On examining these equations, it becomes that u and υ do not obey a simple linear 
relationship with y and x. We conclude that plane sections do not, as assumed in elemen-
tary theory, remain plane subsequent to bending.

5.4.1  Comparison of the Results with the Elementary Theory Results

The vertical displacement of the beam axis is obtained by substituting =y 0 into Eq. (5.22):

	 υ ν= − + + −=
Px
EI

PL x
EI

PL
EI

Ph
EI

L xy( )
6 2

+
3

(1 )
( )0

3 2 3 2

	 (5.23)

Introducing this relation into Eq. (5.7), the radius of curvature is given by

	 ≈
r

Px
EI

M
EIx

1
= 	

provided that υd dx/  is a small quantity. Once again, we obtain Eq. (5.9a), the beam curvature– 
moment relationship of elementary bending theory.

It is also a simple matter to compare the total vertical deflection at the free end =x( 0) 
with the deflection derived in elementary theory. Substituting =x 0 into Eq. (5.23), the 
total deflection is

	 υ ν+
= =

PL
EI

Ph L
EI

PL
EI

Ph L
GIx y( ) =

3
+

(1 )
=

3
+

20

3 2 3 2

	 (5.24)
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where the deflection associated with shear is clearly =Ph L GI PL GA/2 3 /2 .2  The ratio 
of the shear deflection to the bending deflection at =x 0 provides a measure of beam 
slenderness:

	 ν ≈











Ph L GI
PL EI

h E
L G

h
L

h
L

/2

/3
=

3

2
=

3

4
(1+ )

2 22

3

2

2

2 2

	

If, for example, =L h10(2 ), the preceding quotient is only 1
100. For a slender beam, h L2  

and the deflection is mainly due to bending. In contrast, in cases involving vibration at 
higher modes, and in wave propagation, the effect of shear is of great importance in slen-
der as well as in other beams.

In the case of wide beams t h( 2 ), Eq. (5.24) must be modified by replacing E and ν 
as indicated in Table 3.1.

5.5  BENDING OF A SIMPLY SUPPORTED NARROW BEAM

In this section, we consider the stress distribution in a narrow beam of thickness t and 
depth 2h subjected to a uniformly distributed loading (Fig. 5.6). The situation described 
here is one of plane stress, subject to the following boundary conditions, consistent with 
the origin of an x, y coordinate system located at midspan and midheight of the beam, as 
shown:

	 τ σ σ= = = −=± =+ =− p txy y h y y h y y h( ) 0, ( ) 0, ( ) / 	 (a)

Since no longitudinal load is applied at the ends, it would appear reasonable to state that 
σ =x 0 at =x L± . However, this boundary condition leads to a complicated solution, and a 
less severe statement is used instead:

	 ∫ σ =
−

t dyxh

h
0

	 (b)

The corresponding condition for bending couples at =x L±  is

	 ∫ σ =
−

ty dyxh

h
0 	 (c)

For y equilibrium, it is required that

	 ∫ τ = ± = ±
−

t dy pL x Lxyh

h
	 (d)

2h

L L

x

y

pFigure 5.6.  �Bending of a simply supported 
beam with a uniform load.
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5.5.1  Use of Stress Functions

The problem is treated by superimposing the solutions Φ Φ,2 3, and Φ5 (Section 3.6) with

	 = = = = = = = =c b a c a b c e 02 2 3 3 5 5 5 5 	
We then have

	 Φ = Φ + Φ + Φ = + + + −a
x

b
x y

d
y

d
x y

d
y

2 2 6 6

2

602 3 5
2 2 3 2 3 3 5 2 3 5 5 	

The stresses are

	

σ

σ

τ

= + −

= + +

= − −

d y d x y y

a b y
d

y

b d xy

x

y

xy X

( )

3

3 5
2 2

3
3

2 3
5 3

3 5
2

	 (e)

The conditions (a) are

	

− − =

+ + =

− − = −

b d h

a b h
d

h

a b h
d

h
p
t

0

3
0

3

3 5
2

2 3
5 3

2 3
5 3

	

and the solution is

	 − −a
p
t

b
p
th

d
p

th
=

2
, =

3

4
, =

3

42 3 5 3 	

The constant d3 is obtained from condition (c) as follows:

	 ∫ + −











=
−

d y d L y y yt dy
h

h 2

3
03 5

2 3 	

or

	 − −



 −







d d L h
p
th

L
h

=
2

5
=

3

4

2

53 5
2 2

2

2 	

Expressions (e), together with the values obtained for the constants, also fulfill conditions 
(b) and (d).

The state of stress is thus represented by

	 σ = − + −






py
I

L x
py
I

y h
x 2

( )
3 5

2 2
2 2

	 (5.25a)

	 σ = − − +






p
I

y
h y

h
y 2 3

2

3

3
2

3

	 (5.25b)

	 τ ( )− −px
I

h yxy =
2

2 2 	 (5.25c)
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where =I th2
3

3 is the area moment of inertia taken about a line through the centroid, par-
allel to the z axis. Although the solutions given by Eqs. (5.25) satisfy the equations of 
elasticity and the boundary conditions, they are not exact. We can see this by substitut-
ing =x L±  into Eq. (5.25a) to obtain the following expression for the normal distributed 
forces per unit area at the ends:

	 −






p
py
I

y h
x =

3 5

2 2

	

This state cannot exist, as no forces act at the ends. From Saint-Venant’s principle, how-
ever, we may conclude that the solutions do predict the correct stresses throughout the 
beam, except near the supports.

5.5.2  Comparison of the Results with the Elementary Theory Results

Recall that the longitudinal normal stress derived from elementary beam theory is 
σ = −My Ix / ; this is equivalent to the first term of Eq. (5.25a). The second term is then the 
difference between the longitudinal stress results given by the two approaches. To gauge 
the magnitude of the deviation, consider the ratio of the second term of Eq. (5.25a) to the 
result of elementary theory at =x 0. At this point, the bending moment is a maximum. 
Substituting =y h for the condition of maximum stress, we obtain

	
σ

σ
∆ −

= 





ph I h h
phL I

h
L

x

x( )
=

( / )( /3 /5)

/2

4

15elem. theory

2 2

2

2

	

For a beam of length 10 times its depth, this ratio is small, 1
1500 . For beams of ordinary 

proportions, we can conclude that elementary theory provides a result of sufficient accu-
racy for σ x. On the one hand, for σ y, this stress is not found in the elementary theory. On 
the other hand, the result for τ xy is the same as that yielded by elementary beam theory.

The displacement of the beam may be determined in a manner similar to that 
described for a cantilever beam (Section 5.4).

Part B: Approximate Solutions

5.6  ELEMENTARY THEORY OF BENDING

We may conclude, on the basis of the previous sections, that exact solutions are difficult 
to obtain. We also observed that for a slender beam, the results of the exact theory do not 
differ markedly from those found with the mechanics of materials or elementary approach 
provided that solutions close to the ends are not required. The bending deflection is very 
much larger than the shear deflection, so the stress associated with the former predomi-
nates. As a consequence, the normal strain ε y resulting from transverse loading may be 
neglected.
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Because it is more easily applied, the elementary approach is usually preferred in 
engineering practice. The exact and elementary theories should be regarded as comple-
mentary—rather than competitive—approaches, enabling the analyst to obtain the degree 
of accuracy required in the context of the specific problem at hand.

5.6.1  Assumptions of Elementary Theory

The basic presuppositions of the elementary theory [Ref. 5.2], for a slender beam whose 
cross section is symmetrical about the vertical plane of loading, are

	 ε υ γ υ
= = = + =

y
u
y xy xy

∂

∂
0,

∂

∂

∂

∂
0 	

	 ε σ
=

Ex
x     (independent of z)�

(5.26)

	 ε γ γ= = =z yz xz0, 0 	 (5.27)

The first equation of Eqs. (5.26) is equivalent to the assertion υ υ= x( ). Thus, all points 
in a beam at a given longitudinal location x experience identical deformation. The second 
equation of Eqs. (5.26), together with υ υ= x( ), yields, after integration,

	
υ

= −u y
d
dx

u x+ ( )0 	 (a)

The third equation of Eqs. (5.26) and Eqs. (5.27) imply that the beam is considered nar-
row, and we have a case of plane stress.

At =y 0, the bending deformation should vanish. Referring to Eq. (a), it is clear that 
( )u xo  must represent axial deformation. The term υd dx/  is the slope θ   of the beam axis, as 

shown in Fig. 5.7a, and is very much smaller than unity. Therefore,

	
υ θ= − = −u y

d
dx

y 	

The slope is positive when clockwise, provided that the x and y axes have the directions 
shown. Since u is a linear function of y, this equation restates the kinematic hypothesis of 
the elementary theory of bending: Plane sections perpendicular to the longitudinal axis 
of the beam remain plane subsequent to bending. This assumption is confirmed by the 
exact theory only in the case of pure bending.

x
p

V

x

dx

V + dV

M + dMM
dv
dx

v

y
y

yu = −y
Beam axis

(a) (b)

= θ

dv
dx

Figure 5.7.  �(a) Longitudinal displacements in a beam due to rotation of a 
plane section; (b) element between adjoining sections of a beam.



258� Chapter  5    Bending of Beams

5.6.2  Method of Integration

In the next section, we obtain the stress distribution in a beam according to the elemen-
tary theory. We now derive some useful relations involving the shear force V, the bending 
moment M, the load per unit length p, the slope θ , and the deflection. Consider a beam 
element of length dx subjected to a distributed loading (Fig. 5.7b). Since dx is small, we 
omit the variation in the load per unit length p. In the free-body diagram, all the forces 
and the moments are positive. The shear force obeys the sign convention discussed in 
Section 1.4, while the bending moment is in agreement with the convention adopted in 
Section 5.2.

In general, the shear force and bending moment vary with the distance x, such that 
these quantities will have different values on each face of the element. The increments in 
shear force and bending moment are denoted by dV and dM, respectively. The equilibrium 
of forces in the vertical direction is governed by − + − =V V dV p dx( ) 0 or

	 −dV
dx

p= 	 (5.28)

That is, the rate of change of shear force with respect to x is equal to the algebraic value of 
the distributed loading. Equilibrium of the moments about a z axis through the left end of 
the element, neglecting the higher-order infinitesimals, leads to

	 −dM
dx

V= 	 (5.29)

This relation states that the rate of change of bending moment is equal to the algebraic 
value of the shear force—a relation that is valid only if a distributed load or no load acts 
on the beam segment. Combining Eqs. (5.28) and (5.29), we have

	 =d M
dx

p
2

2 	 (5.30)

The basic equation of bending of a beam, Eq. (5.10), combined with Eq. (5.30), may now 
be written as

	
υ





=d
dx

EI
d
dx

p
2

2

2

2 	 (5.31)

For a beam of constant flexural rigidity EI, the beam equations derived here may be 
expressed as

	

∫

υ υ

υ υ

υ υ

υ υ

= =

= ′′′ = −

= ′′ =

= ′ =

EI
d
dx

EI p

EI
d
dx

EI V

EI
d
dx

EI M

EI
d
dx

EI Mdx

4

4
IV

3

3

2

2

	 (5.32)
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These relationships also apply to wide beams provided that we substitute ν−E/(1 )2  for E 
(Table 3.1).

In many problems of practical importance, the deflection due to transverse loading of 
a beam may be obtained through successive integration of the beam equation:

	

∫
∫ ∫
∫ ∫ ∫
∫ ∫ ∫ ∫

υ

υ

υ

υ

υ

=

′′′ = +

′′ = + +

′ = + + +

= + + + +

EI p

EI p dx c

EI dx p dx c x c

EI dx dx p dx c x c x c

EI dx dx dx p dx c x c x c x c

x

x x

x x x

x x x x

IV

10

0 1 20

0 0

1
2 1

2
2 30

0 0 0

1
6 1

3 1
2 2

2
3 40

	 (5.33)

Alternatively, we could begin with υ′′ =EI M x( )  and integrate twice to obtain

	 ∫ ∫υ = + +EI dx M dx c x c
x x

0 3 40
	 (5.34)

In either case, the constants c ,1  c ,2  c3 and c ,4  which correspond to the homogeneous 
solution of the differential equations, may be evaluated from the boundary conditions. 
The constants c c c EI, , /1 2 3 , and c EI/4  represent the values at the origin of V, M, θ , and 
υ, respectively. In the method of successive integration, there is no need to distinguish 
between statically determinate and statically indeterminate systems (Section 5.11), 
because the equilibrium equations represent only two of the boundary conditions (on the 
first two integrals), and because the total number of boundary conditions is always equal 
to the total number of unknowns.

EXAMPLE 5.2  Displacements of a Cantilever Beam
A cantilever beam AB of length L and constant flexural rigidity EI carries a 
moment Mo at its free end A (Fig. 5.8a). Derive the equation of the deflection 
curve and determine the slope and deflection at A.

Solution  From the free-body diagram of Fig. 5.8b, observe that the bending 
moment is +Mo throughout the beam. Thus, the third of Eqs. (5.32) becomes

	 υ′′ =EI Mo	

Mo Mo O M

y

A A

xL

(a) (b)

B
x

Figure 5.8.  �Example 5.2. (a) A cantilever beam is subjected to moment at its 
free end; (b) free-body diagram of part AO.
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Integration yields

	 υ′ = +EI M x co 1 	

The constant of integration c1 can be found from the condition that the slope 
is zero at the support; therefore, we have υ′ =L( ) 0 from which = −c M Lo .1  
The slope is then

	 υ′ = −
M
EI

x Lo ( )	 (5.35)

Integrating, we obtain

	 υ = − +
M
EI

x Lx co

2
( 2 )2

2	

The boundary condition on the deflection at the support is υ ( ) =L 0, which 
yields =c M L EIo /22

2 . The equation of the deflection curve is thus a parabola:

	 υ = + −
M
EI

L x Lxo

2
( 2 )2 2 	 (5.36)

However, every element of the beam experiences the same moments and defor-
mation. The deflection curve should, therefore, be part of a circle. This inconsis-
tency results from the use of an approximation for the curvature, Eq. (5.7). The 
error is very small, however, when the deformation υ is small [Ref. 5.1].

The slope and deflection at A are readily found by letting =x 0 in Eqs. 
(5.35) and (5.36):

	 θ υ= − =
M L
EI

M L
EIA

o
A

o,
2

2

	 (5.37)

The minus sign indicates that the angle of rotation is counterclockwise 
(Fig. 5.8a).

5.7  NORMAL AND SHEAR STRESSES

When a beam is bent by transverse loads, usually both a bending moment M and a shear 
force V act on each cross section. The distribution of the normal stress associated with the 
bending moment is given by the flexure formula, Eq. (5.4):

	 σ = −
My
Ix 	 (5.38)

where M and I are taken with respect to the z axis (Fig. 5.7).
In accordance with the assumptions of elementary bending, Eqs. (5.26) and (5.27), 

we omit the contribution of the shear strains to beam deformation in these calculations. 
However, shear stresses do exist, and the shearing forces are the resultant of the stresses. 
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The shearing stress τ xy acting at section mn, which is assumed to be uniformly distributed 
over the area ⋅b dx, can be determined on the basis of equilibrium of forces acting on the 
shaded part of the beam element (Fig. 5.9). Here b is the width of the beam a distance 
y1 from the neutral axis, and dx is the length of the element. The distribution of normal 
stresses produced by M and +M dM  is indicated in the figure. The normal force distrib-
uted over the left face mr on the shaded area A* is equal to

	 ∫∫ ∫σ = −
−

dy dz
My
I

dAxy

h

b

b

A/2

/2

1

1

*

	

Similarly, an expression for the normal force on the right face ns may be written in 
terms of +M dM . The equilibrium of x-directed forces acting on the beam element is gov-
erned by

	 ∫ ∫ τ− + − − =M dM y
I

dA
My
I

dA b dx
A xyA

( )
* *

	

from which we have

	 ∫τ = −
Ib

dM
dx

y dAxy A

1
*

	

After substituting in Eq. (5.29), we obtain the shear formula (also called the shear 
stress formula) for beams:

	 ∫τ = =
V
Ib

y dA
VQ
Ibxy A*

	 (5.39)

The integral represented by Q is the first moment of the shaded area A* with respect to the 
neutral axis z:

	 ∫= =Q y dA A y
A

*
*

	 (5.40)

By definition, y is the distance from the neutral axis to the centroid of A*. In the case 
of sections of regular geometry, A y*  provides a convenient means of calculating Q. The 
shear force acting across the width of the beam per unit length

	 τ= =q b
VQ

Ixy 	 (a)

is called the shear flow.

M M +dM
τxy

y

y
x

h2

A*h1
y1m n

r s

C
z

b

y

dx

Figure 5.9.  �(a) Beam segment for analyzing shear stress; (b) cross 
section of beam.



262� Chapter  5    Bending of Beams

5.7.1  Rectangular Cross Section

In the case of a rectangular cross section of width b and depth 2h, the shear stress at y1 is

	
V
Ib

y dy dz
V
I

h yxy y

h

b

b

2
2

1
2

/2

/2

1
∫∫τ ( )= = −

−
	 (5.41)

This equation shows that the shear stress varies parabolically with y1. It is zero when 
=y h±1 , and has its maximum value at the neutral axis:

	 τ = =
Vh

I
V
A2

3

2max

2

	 (5.42)

where A = 2bh is the area of the rectangular cross section. Note that the maximum shear 
stress (either horizontal or vertical: τ τ=xy yx) is 1.5 times larger than the average shear 
stress V/A. As observed in Section 5.4, for a thin rectangular beam, Eq. (5.42) is the exact 
distribution of shear stress. More generally, for wide rectangular sections and for other 
sections, Eq. (5.39) yields only approximate values of the shearing stress.

5.7.2  Various Cross Sections

Because the shear formula for beams is based on the flexure formula, the limitations of the 
bending formula apply when it is used. Problems involving various types of cross sections 
can be solved by following procedures identical to that for rectangular sections. Table 5.1 

Table 5.1.  Maximum Shearing Stress for Some Typical Beam Cross-Sectional Forms

Cross Section Maximum Shearing Stress Location

Rectangle	

NA

V
τ =

V
A

3

2max

NA

Circle	

NA

V
τ =

V
A

4

3max

NA

Hollow Circle	

NA

V
τ =

V
A

2max

NA

Triangle	 V

NA

τ =
V
A

3

2max

Halfway between top and 
bottom

Diamond	 V

NA
h

τ =
V
A

9

8max

At h/8 above and below 
the NA

Notes: A, cross-sectional area; V, transverse shear force; NA, the neutral axis.
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shows some typical cases. Observe that shear stress can always be expressed as a constant 
times the average shear stress (P/A), where the constant is a function of the cross-sectional 
form. Nevertheless, the maximum shear stress does not always occur at the neutral axis. For 
instance, in the case of a cross section having nonparallel sides, such as a triangular section, 
the maximum value of Q/b (and thus τ xy) occurs at midheight, h/2, while the neutral axis is 
located at a distance h/3 from the base.

The following examples illustrate the application of the normal and shear stress 
formulas.

EXAMPLE 5.3  Stresses in a Beam of T-Shaped Cross Section
A simply supported beam of length L carries a concentrated load P 
(Fig. 5.10a). Find: (a) The maximum shear stress, the shear flow qj, and the 
shear stress T j in the joint between the flange and the web; (b) the maximum 
bending stress. Given: P = 5 kN and L = 4 m.

Solution  The distance y from the Z axis to the centroid is obtained as fol-
lows (Fig. 5.10a):

	
20 60 70 60 20 30

20 60 60 20
50 mm1 1 2 2

1 2

( ) ( )
( ) ( )

= +
+

= +
+

=y
A y A y

A A
	

The moment of inertia I about the NA is determined by the parallel axis theorem:

	 ( )( ) ( )( ) ( )( ) ( )( )= + + + = ×I 60 20 20 60 20 20 60 20 60 20 136 10 mm1
12

3 2 1
12

3 2 4 4 	

The shear and moment diagrams (Figs. 5.10b and c) are sketched by applying 
the method of sections.

a.	The maximum shearing stress in the beam takes place at the NA on the 
cross section supporting the largest shear force V. Consequently, ( )= = ×Q 50 20 25 25 10 mmNA

3 3 
( )= = ×Q 50 20 25 25 10 mmNA

3 3. The shear force equals 2.5 kN on all cross sec-
tions of the beam (Fig. 5.10b), Thus,

	
2.5 10 25 10

136 10 0.02
2.3 MPamax

max NA
3 6

8τ
( )

( )
= =

× ×
×

=
−

−
V Q

lb
	

The first moment of the area of the flange about the NA is

	 ( )= = ×Qf 20 60 20 24 10 mm .3 3 	

Shear flow and shear stress in the joint are

	
( )

= =
× ×

×
=

−

−q
VQ

Ij
f 2.5 10 24 10

136 10
44.1 kN/m

3 6

8 	

and t j = qj/b = 44.1/0.02 = 2.205 MPa.
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b.	The largest moment takes place at midspan (Fig. 5.10c). Equation (5.39) is 
therefore

	 σ ( )
= =

×
×

=−
Mc
I

5 10 0.05

136 10
183.8 MPamax

3

8 	

EXAMPLE 5.4  Shear Stresses in a Flanged Beam
A cantilever wide-flange beam is loaded by a force P at the free end act-
ing through the centroid of the section. The beam is of constant thickness t 
(Fig. 5.11a). Determine the shear stress distribution in the section.

Solution  The vertical shear force at every section is P. It is assumed that the 
shear stress τ xy is uniformly distributed over the web thickness. Then, in the 
web, for 0 1 1≤ ≤y h  and applying Eq. (5.39),

	 τ = = − +
−



 + − +

−











V
Ib

A y
P
It

b h h h
h h

t h y y
h y

xy ( )
2

( )
2

*
1 1

1
1 1 1

1 1 	

(c)

(a)

(b)

M

x

 = 5 kN·m
4

PL

V

x

 = 2.5 kN

2
P

2
P

Py

A
C B x

y

A1

A2

Z

z
N. A.

20 mm

60 mm

60 mm

20 mm

2
L

2
L

y = 50 mm

2
P

2
P

Figure 5.10.  �Example 5.3. (a) Load diagram and beam cross section; (b) shear dia-
gram; (c) moment diagram.
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This equation may be written as

	
2

2
1
2

1
2

1
2τ ( ) ( )= − + − 

P
It

b h h t h yxy 	 (b)

The shearing stress thus varies parabolically in the web (Fig. 5.11b). The 
extreme values of τ xy found at y = 01  and = ±y h1 1 are, from Eq. (b), as 
follows:

	
2

( ),
2

( )max
2

1
2

1
2

min
2

1
2τ τ= − + = −

P
It

bh bh th
Pb
It

h h 	

Usually t b , so that the maximum and minimum stresses do not differ 
appreciably, as is seen in the figure. Similarly, the shear stress in the flange, 
for < ≤h y h1 1 , is

	 ( )
2 2

( )1 1
1 2

1
2τ = − + −











= −P
Ib

b h y y
h y P

I
h yxz 	 (c)

This is the parabolic equation for the variation of stress in the flange, shown 
by the dashed lines in Fig. 5.11b.

Comments  Clearly, for a thin flange, the shear stress is very small as 
compared with the shear stress in the web. As a consequence, the approxi-
mate average value of shear stress in the beam may be found by dividing 
P by the web cross section, with the web height assumed to be equal to the 
beam’s overall height: τ = P/2avg . This result is indicated by the dotted lines 
in Fig. 5.11b.

The distribution of stress given by Eq. (c) is fictitious, because the inner 
planes of the flanges must be free of shearing stress, as they are load-free 
boundaries of the beam. This contradiction cannot be resolved by the elemen-
tary theory; instead, the theory of elasticity must be applied to obtain the cor-
rect solution. Fortunately, this defect of the shearing stress formula does not 
lead to serious error since, as pointed out previously, the web carries almost 
all the shear force. To reduce the stress concentration at the juncture of the 
web and the flange, the sharp corners should be rounded.

b

z
h h1

h C

(a)

P

t
h1

y1

y

τmax

τmin

τavg

(b)

Figure 5.11.  �Example 5.4. (a) 
Cross section of a 
wide-flange beam; 
(b) shearing stress 
distribution.
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EXAMPLE 5.5  Beam of Circular Cross Section
A cantilever beam of circular cross section supports a concentrated load P at 
its free end (Fig. 5.12a). The shear force V in this beam is constant and equal 
to the magnitude of the load P = V. Find the maximum shearing stresses (a) in 
a solid cross section and (b) in a hollow cross section.

Assumptions: All shear stresses do not act parallel to the y axis. At a point 
such as a or b on the boundary of the cross section, the shear stress τ  must act 
parallel to the boundary. The shear stresses at line ab across the cross section 
are not parallel to the y axis and cannot be determined by the shear formula, 
τ = VQ/Ib. The maximum shear stresses occur along the neutral axis z, are 
uniformly distributed, and act parallel to the y axis. These stresses are within 
approximately 5% of their true value [Ref. 5.1].

Solution
a.	Solid Cross Section (Fig. 5.12b). The shear formula may be used to cal-

culate, with reasonable accuracy, the shear stresses at the neutral axis. The 
area properties for a circular cross section of radius c (see Table C.1) are

	
4 2

4

3

2

3

4
*

2 2π π
π

= = = 



 =I

c
Q A y

c c c
	 (d)

and b = 2c. The maximum shear stress is thus

	
4

3

4

3max 2τ
π

= = =VQ
Ib

V
c

V
A

	 (e)

where A is the cross-sectional area of the beam.

Comment  This result shows that the largest shear stress in a circular beam is 
4/3 times the average shear stress τ = V A/avg .
b.	Hollow Circular Cross Section (Fig. 5.11c). Equation (5.43) applies with 

equal rigor to circular tubes, since the same assumptions stated in the fore-
going are valid. But in this case, by Eq. (C.3), we have

	 π= − = − = −Q c c b c c A c c( ), 2( ), ( )2
3 2

3
1
3

2 1 2
2

1
2 	

x

P

y

z

2c

y

a b

edz
N.A.

2c

τmax

τ

y

z
r

c1
c2

(a) (b) (c)

Figure 5.12.  �Example 5.5. (a) A cantilever beam under a load P; (b) shear stress distribution on 
a circular cross section; (c) hollow circular cross section.
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and

	
4 2

4
1
4π ( )= −I c c 	

So, the maximum shear stress may be written in the following form:

	 τ = = + +
+

VQ
Ib

V
A

c c c c
c c

4

3max
2
2

2 1 1
2

2
2

1
2 	 (f)

Comment  Note that for c1 = 0, Eq. (e) reduces to Eq. (5.43) for a solid circular 
beam, as expected. In the special case of a thin-walled tube, we have r/t > 10, 
where r and t represent the mean radius and thickness, respectively. As a theoreti-
cal limiting case, setting c c r= =2 1  means that Eq. (e) results in 2 / .maxτ = V A

5.7.3  Beam of Constant Strength

When a beam is stressed to a constant permissible stress, σ all throughout, then clearly the 
beam material is used to its greatest capacity. For a given material, such a design is of 
minimum weight. At any cross section, the required section modulus S is defined as

	
σ

=s
M

all

	 (5.43)

where M presents the bending moment on an arbitrary section. Tapered beams designed in 
this way are called beams of constant strength. Ultimately, the shear stress at those beam 
locations where the moment is small controls the design.

Examples of beams with uniform strength include leaf springs and certain cast 
machine elements. For a structural member, fabrication and design constraints make it 
impractical to produce a beam of constant stress. Hence, welded cover plates are often 
used for parts of prismatic beams where the moment is large—for instance, in a bridge 
girder. When the angle between the sides of a tapered beam is small, the flexure formula 
allows for little error. On the contrary, the results found by applying the shear stress for-
mula may not be accurate enough for nonprismatic beams. Often, a modified form of 
this formula is used for design purposes. The exact distribution in a rectangular wedge is 
found by applying the theory of elasticity (Section 3.10).

EXAMPLE 5.6  Design of a Uniform Strength Beam
A cantilever beam of constant strength and rectangular cross section is to 
carry a concentrated load P at the free end (Fig. 5.13a). Find the required 
cross-sectional area for two cases: (a) the width b is constant; (b) the height h 
is constant.

Solution
a.	 At a distance x from A, M = Px and S = bh2/6. By applying Eq. (5.43), we have

	
σ

=
bh Px
6

2

all

	 (g)
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Likewise, at a fixed end (x = L and h = h1),

	
σ

=bh PL
6

1
2

all

	

Dividing Eq. (g) by the preceding relationship leads to

	 =h h
x
L1 	 (h)

Thus, the depth of the beam varies parabolically from the free end (Fig. 5.13b).
b.	Equation (g) now gives

	
σ

=






=b
P

h
x

b
L

x
6
2

all

1 	 (i)

Comments  In Eq. (i), the term in parentheses represents a constant and is 
set equal to b1/L; hence, when x = L, the width is b1 (Fig. 5.13c). Clearly, 
the cross section of the beam near end A must be designed to resist the shear 
force, as depicted by the dashed lines in the figure.

5.8  EFFECT OF TRANSVERSE NORMAL STRESS

When a beam is subjected to a transverse load, a transverse normal stress is created. 
According to Eq. (5.26), this stress is not related to the normal strain ε y, so it cannot be 
determined using Hooke’s law. However, an expression for the average transverse normal 
stress can be obtained from the equilibrium requirement of force balance along the axis of 

P

L

x

P

A
h

b

B

h1

P

x

(a)

(b)

(c)

b1

Figure 5.13.  �Example 5.6. (a) Constant-
strength cantilever; (b) side 
view; (c) top view.
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the beam. For this purpose, a procedure is used similar to that employed for determining 
the shear stress in Section 5.7.

Consider, for example, a rectangular cantilever beam of width b and depth 2h subject 
to a uniform load of intensity p (Fig. 5.14a). The free-body diagram of an isolated beam 
segment of length dx is shown in Fig. 5.14b. Passing a horizontal plane through this seg-
ment results in the free-body diagram of Fig. 5.14c, for which the condition of statics 
Σ =Fy 0 yields

	 ∫∫ ∫σ
τ τ

⋅ =
∂
∂

⋅ =
∂
∂− /2

/2
bdx

x
dx dy dz b

x
dx dyy

xy

y

h

b

b xy

y

h 	 (a)

Here, the shear stress is defined by Eq. (5.41) as

	 τ = − = − 















V
I

h y
V
bh

y
hxy 2

( )
3

4
12 2

2

	 (b)

After substituting Eqs. (5.28) and (b) into Eq. (a), we have

	 ∫σ = − − 








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




p
bh

y
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dyy y

h 3
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Integration yields the transverse normal stress in the form

	 σ = − − 



 + 















p
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y
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y
hy

1

2

3

4

1

4

3

	 (5.44a)

This stress varies as a cubic parabola, ranging from − plb at the surface ( )= −y h  where 
the load acts, to zero at the opposite surface ( )=y h .

The distribution of the bending and the shear stresses in a uniformly loaded cantilever 
beam (Fig. 5.12a) is determined from Eqs. (5.38) and (b):

	

σ

τ

= − = − −

= − − 






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
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


My
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L x
y
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4
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3

4
( ) 1
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2 	 (5.44b)

(c)(b)(a)
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Figure 5.14.  �(a) Uniformly loaded cantilever beam of rectangular cross section; (b) free-body 
diagram of a segment; (c) stresses in a beam element.
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The largest values of σ τx xy, , and σ y given by Eqs. (5.44) are

	 σ τ σ= ± = = −
pL
bh

pL
bh

p
bx y

3

4
,

3

4
,, max

2

2 max , max 	 (c)

To compare the magnitudes of the maximum stresses, consider the following ratios:

	 ,
4

3
max

, max

, max

, max

2τ
σ

σ
σ

= = 





h
L

h
Lx

y

x

	 (d, e)

Because L is much greater than h in most beams ( ≥L h20 ), the shear and the transverse 
normal stresses will usually be orders of magnitude smaller than the bending stresses. 
This justification is the rationale for assuming γ =xy 0 and ε =y 0 in the technical theory 
of bending. Note that Eq. (e) results in even smaller values than Eq. (d). Therefore, in 
practice, it is reasonable to neglect σ y.

The foregoing conclusion applies, in most cases, to beams of a variety of cross-
sectional shapes and under various load configurations. Clearly, the factor of proportion-
ality in Eqs. (d) and (e) will differ for beams of different sectional forms and for different 
loadings of a given beam.

5.9  COMPOSITE BEAMS

Beams constructed of two or more materials having different moduli of elasticity are 
referred to as composite beams. Examples include multilayer beams made by bonding 
together multiple sheets, sandwich beams consisting of high-strength material faces sepa-
rated by a relatively thick layer of low-strength material such as plastic foam, and rein-
forced concrete beams. The assumptions of the technical theory for a homogeneous beam 
(Section 5.6) are valid for a beam composed of more than one material.

5.9.1  Transformed Section Method

To analyze composite beams, we will use the common transformed-section method. In 
this technique, the cross sections of several materials are transformed into an equivalent 
cross section of one material on which the resisting forces and the neutral axis are the 
same as on the original section. The usual flexure formula is then applied to the new sec-
tion. To illustrate this method, we will use a frequently encountered example: a beam with 
a symmetrical cross section built of two different materials (Fig. 5.15a).

The cross sections of the beam remain plane during bending. Hence, the condition 
of geometric compatibility of deformation is satisfied. It follows that the normal strain 
ε x varies linearly with the distance y from the neutral axis of the section; that is, ε = kyx  
(Figs. 5.15a and b). The location of the neutral axis is yet to be determined. Both materials 
composing the beam are assumed to obey Hooke’s law, and their moduli of elasticity are 
designated as E1 and E2. Then, the stress–strain relation gives

	 ,1 1 1 2 2 2 2σ ε σ ε= = = =E E ky E E kyx x x 	 (5.45a, b)
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This result is sketched in Fig. 5.13c for the assumption that .2 1>E E  We introduce the 
notation

	 2

1

=n
E
E

	 (5.46)

where n is called the modular ratio. Note that >n 1 in Eq. (5.46). However, this choice is 
arbitrary; the technique applies as well for n < 1.

5.9.2  Equation of Neutral Axis

Referring to the cross section (Figs. 5.15a and c), the equilibrium equations Σ =Fx 0  and 
Σ =Mz 0 lead to

	 ∫ ∫ ∫σ σ σ= + = 01 2
1 2

dA dA dAxA xA xA
	 (a)

	 ∫∫ σ σ σ− = − − =1 2
1

y dA y dA y dA Mx x xAA 	 (b)

where A1 and A2 denote the cross-sectional areas for materials 1 and 2, respectively. 
Substituting σ σx x,1 2 and n, as given by Eqs. (5.45) and (5.46), into Eq. (a) results in

	 y dA n y dA
A A

0
1 2

∫ ∫+ = 	 (5.47)

Using the top of the section as a reference (Fig. 5.15a), from Eq. (5.47) with

	 ( ) ( ) 0
1 2

∫ ∫− + − =Y y dA n Y y dA
A A

	

or, setting

	 and1 1 2 2
1 2

∫ ∫= =Y dA y A Y dA y A
A A 	

we have

	 01 1 1 2 2 2− + − =A y A y nA y nA y 	
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y y
y1 εx
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Figure 5.15.  �Beam composed of two materials: (a) composite cross section; (b) strain dis-
tribution; (d) transformed cross section.
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This expression yields an alternative form of Eq. (5.47):

	 1 1 2 2

1 2

= +
+

y
A y nA y

A nA
	 (5.47′)

Equations (5.47) and (5.47′) can be used to locate the neutral axis for a beam of two 
materials. These equations show that the transformed section will have the same neutral 
axis as the original beam, provided the width of area 2 is changed by a factor n and area 1 
remains the same (Fig. 5.15d). Clearly, this widening must be effected in a direction par-
allel to the neutral axis, since the distance y2 to the centroid of area 2 remains unchanged. 
The new section constructed in this way represents the cross section of a beam made of a 
homogeneous material with a modulus of elasticity E1 and with a neutral axis that passes 
through its centroid, as shown in Fig. 5.15d.

5.9.3  Stresses in the Transformed Beam

Similarly, condition (b) together with Eqs. (5.45) and (5.46) leads to

	 ∫∫( )= − + y dAM kE y dA n
AA

2
1

2

21

	

or

	 = − + = −M kE I nI kE It( )1 1 2 1 	 (5.48)

where I1 and I2 are the moments of inertia about the neutral axis of the cross-sectional 
areas 1 and 2, respectively. Note that

	 I I nIt = +1 2 	 (5.49)

is the moment of inertia of the entire transformed area about the neutral axis. From Eq. 
(5.48), we have

	
1

= −k
M

E It

	

The flexure formulas for a composite beam are obtained by introducing this relation 
into Eqs. (5.45):

	 ,1 2σ σ= − = −My
I

nMy
Ix

t
x

t

	 (5.50)

where σ x1 and σ x2 are the stresses in materials 1 and 2, respectively. Note that when 
E E E= = ,1 2  Eqs. (5.50) reduce to the flexure formula for a beam of homogeneous mate-
rial, as expected.

5.9.4  Composite Beams of Multi Materials

The preceding discussion may be extended to include composite beams consisting of 
more than two materials. It is readily shown that for m different materials, Eqs. (5.47′), 
(5.49), and (5.50) take the forms

	
Σ
Σ

=
+
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=y
A y n A y

A n A
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	 = + ΣI I n It i i1 	 (5.52)

	 σ σ= − = −My
I

n My
Ix

t
xi

i

t

,1 	 (5.53)

where i m= 2, 3, . . . ,  denotes the ith material.
The use of the formulas developed in this section is demonstrated in the solutions of 

the numerical problems in Examples 5.7 and 5.8.

EXAMPLE 5.7  Aluminum-Reinforced Wood Beam
A wood beam with Ew = 8.75 GPa, 100 mm wide by 220 mm deep, has an 
aluminum plate Ea = 70 GPa with a net section 80 mm by 20 mm securely 
fastened to its bottom face, as shown in Fig. 5.16a. Dimensions are given in 
millimeters. The beam is subjected to a bending moment of ⋅20 kN m around 
a horizontal axis. Calculate the maximum stresses in both materials (a) 
using a transformed section of wood and (b) using a transformed section of 
aluminum.

Solution
a.	The modular ratio is = =n E Ea w/ 8. The centroid and the moment of inertia 

about the neutral axis of the transformed section (Fig. 5.16b) are
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Figure 5.16.  �Example 5.7. (a) Composite cross section; (b) equivalent wood cross 
section; (c) equivalent aluminum cross section.
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In turn, the maximum stresses in the wood and aluminum portions are
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σ

= = × =

= = × =
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At the juncture of the two parts,

	
σ

σ σ
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= = =

−
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a w
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b.	For this case, the modular ratio is = =n E Ew a/ 1/8 and the transformed area 
is shown in Fig. 5.16c. We now have

	 = + + +

= ×
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Then
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as have already been found in part (a).

EXAMPLE 5.8  Steel-Reinforced-Concrete Beam
A concrete beam of width b = 250 mm and effective depth d = 400 mm 
is reinforced with three steel bars, providing a total cross-sectional area 
As = 1000 mm2 (Fig. 5.17a). Dimensions are given in millimeters. Note that 
it is usual for an approximate allowance a = 50 mm to be used to protect 
the steel from corrosion and fire. Let = =n E Es c/ 10. Calculate the maxi-
mum stresses in the materials produced by a negative bending moment of 

⋅=M 60 kN m.

Solution  Concrete is very weak in tension but strong in compression. Thus, 
only the portion of the cross section located a distance kd above the neutral 
axis is used in the transformed section (Fig. 5.17b); the concrete is assumed to 
take no tension. The transformed area of the steel nAs is identified by a single 
dimension from the neutral axis to its centroid. The compressive stress in the 
concrete is assumed to vary linearly from the neutral axis, and the steel is 
assumed to be uniformly stressed.
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The condition that the first moment of the transformed section with 
respect to the neutral axis be zero is satisfied by

	 − − =b kd
kd

nA d kds( )
2

( ) 0	

or

	 + − =kd kd
n

b
A

n
b

dAs s( ) ( )
2 2

02 	 (5.54)

By solving this quadratic expression for kd, we can obtain the position of the 
neutral axis.

Introducing the data given, Eq. (5.54) reduces to

	 + − × =kd kd( ) 80( ) 32 10 02 3 	

from which

	 kd k= =143.3 mm and hence 0.358 	 (c)

The moment of inertia of the transformed cross section about the neutral axis is
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Thus, the peak compressive stress in the concrete and the tensile stress in the 
steel are
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Figure 5.17.  �Example 5.8. (a) Reinforced-concrete cross section; (b) equivalent con-
crete cross section; (c) compressive force C in concrete and tensile force 
T in the steel rods.
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These stresses act as shown in Fig. 5.15c.
An alternative method of solution is to obtain σ c, max and σ s from a free-

body diagram of the portion of the beam (Fig. 5.17c) without computing It . 
The first equilibrium condition, Σ =Fx 0, gives C T= , where

	 ⋅σ σ= =C b kd T Ac s s( ), ( )1
2 , max 	 (d)

are the compressive and tensile stress resultants, respectively. From the sec-
ond requirement of statics, Σ =Mz 0, we have

	 = − = −M Cd kl Td kl(1 3) (1 3)	 (e)

Equations (d) and (e) result in

	 σ σ=
−

=
−

M
bd k k

M
A d kc s

s

2

(1 /3)
,

(1 /3), max 2 	 (5.55)

Substituting the data given and Eq. (c) into Eq. (5.55) yields
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as before.

5.10  SHEAR CENTER

Given any cross-sectional configuration, one point may be found in the plane of the 
cross section through which the resultant of the transverse shearing stresses passes. 
A  transverse  load applied on the beam must act through this point, called the shear 
center or flexural center, if no twisting is to occur [Ref. 5.3]. The center of shear 
is sometimes defined as the point in the end section of a cantilever beam at which an 
applied load results in bending only. When the load does not act through the shear center, 
in addition to bending, a twisting action results (Section 6.1).

The location of the shear center is independent of the direction and magnitude of 
the transverse forces. For singly symmetrical sections, the shear center lies on the axis of 
symmetry, while for a beam with two axes of symmetry, the shear center coincides with 
their point of intersection (also the centroid). It is not necessary, in general, for the shear 
center to lie on a principal axis, and it may be located outside the cross section of the 
beam.
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5.10.1  Thin-Walled Open Cross Sections

For thin-walled sections, the shearing stresses are taken to be distributed uniformly over 
the thickness of the wall and directed so as to parallel the boundary of the cross section. 
If the shear center S for the typical section of Fig. 5.18a is required, we begin by calcu-
lating the shear stresses by means of Eq. (5.39). The moment M x of these stresses about 
arbitrary point A is then obtained. Since the external moment attributable to Vy  about A is 
V ey , the distance between A and the shear center is given by

	 e
M
V

x

y

= 	 (5.56)

If the force is parallel to the z axis rather than the y axis, the position of the line of 
action may be established in the manner discussed previously. If both Vy  and Vz exist, the 
shear center is located at the intersection of the two lines of action.

The determination of M x is simplified by propitious selection of point A, such as in 
Fig. 5.18b. There, the moment M x of the shear forces about A is zero; point A is also the 
shear center. For all sections consisting of two intersecting rectangular elements, the same 
situation exists.

For thin-walled box beams (with boxlike cross section), the point or points in the wall 
where the shear flow τ= =q xy0 (or 0) is unknown. Here, shear flow is represented by the 
superposition of transverse and torsional flow (see Section 6.8). Hence, the unit angle of 
twist equation, Eq. (6.23), along with =q VQ I/ , is required to find the shear flow for a 
cross section of a box beam. The analysis procedure is as follows: First, introduce a free 
edge by cutting the section open; second, close it again by obtaining the shear flow that 
makes the angle of twist in the beam zero [Refs. 5.4 through 5.6].

In the following examples, the shear center of an open, thin-walled section is deter-
mined for two typical situations. In the first, the section has only one axis of symmetry; in 
the second, there is an asymmetrical section.

EXAMPLE 5.9  Shearing Stress Distribution in a Channel Section
Locate the shear center of the channel section loaded as a cantilever 
(Fig.  5.19a). Assume that the flange thicknesses are small when compared 
with the depth and width of the section.
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(a) (b) (c)
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e
z
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τ

Figure 5.18.  Shear centers.
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Solution  The shearing stress in the upper flange at any section nn will be 
found first. This section is located a distance s from the free edge m, as shown 
in the figure. At m, the shearing stress is zero. The first moment of area st1 
about the z axis is Q st hz = .1  The shear stress at nn, from Eq. (5.39), is thus

	 τ = =
V Q

I b
P

sh
Ixz

y z

z z

	 (a)

The direction of τ  along the flange can be determined from the equilibrium 
of the forces acting on an element of length dx and width s (Fig. 5.19b). Here 
the normal force σ=N t s x1 , owing to the bending of the beam, increases with 
dx by dN. Hence, the x equilibrium of the element requires that ⋅τ t dx1  must 
be directed as shown in the figure. This flange force is directed to the left, 
because the shear forces must intersect at the corner of the element.

The distribution of the shear stress τ xz on the flange, as Eq. (a) indicates, 
is linear with s. Its maximum value occurs at

	 τ = P
bh
Iz

1 	 (b)

Similarly, the value of stress τ xy at the top of the web is

	 τ = P
bt h
t I2

1

2 2

	 (c) 

The stress varies parabolically over the web, and its maximum value is found 
at the neutral axis. Figure 5.19c sketches the shear stress distribution in the 
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Figure 5.19.  �Example 5.9. (a) Cantilever beam with a concentrated load at the 
free end; (b) an element of the upper flange; (c) shear distribution; 
(d) location of the shear center S.
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channel. As the shear stress is linearly distributed across the flange length, 
from Eq. (b), the flange force is expressed by

	 τ= =F bt P
b ht

Iz21
1
2 1 1

2
1 	 (d)

Symmetry of the section dictates that F F=1 3 (Fig. 5.19d). We will 
assume that the web force F P=2 , since the vertical shearing force transmitted 
by the flange is negligibly small, as shown in Example 5.3. The shearing force 
components acting in the section must be statically equivalent to the resultant 
shear load P. Thus, the principle of the moments for the system of forces in 
Fig. 5.19d or Eq. (5.56), applied at A, yields M Pe F hx = = 2 1 . Substituting F1 
from Eq. (d) into this expression, we obtain

	 =e
b h t

I z

2 2
1 	

Since for the usual channel section t1 is small in comparison to b or h, the sim-
plified moment of inertia has the following form:

	 = +I t h bt hz 22
3 2

3
1

2 	

The shear center is, in turn, located by the expression

	 =
+

e
b t

ht bt3
3
2

2
1

2 1

	 (e)

Comments  Note that e depends on only the section dimensions. Exami-
nation reveals that e may vary from a minimum of zero to a maximum of 
b/2. A zero or near-zero value of e corresponds to either a flangeless beam 

= =b e( 0, 0) or an especially deep beam h b( ). The extreme case, e = b/2, 
is obtained for an infinitely wide beam.

EXAMPLE 5.10  Shear Flow in an Asymmetrical Channel Section
Locate the shear center S for the asymmetrical channel section shown in 
Fig. 5.20a. All dimensions are in millimeters. Assume that the beam thickness 
t = 125 mm is constant.

Solution  The centroid C of the section is located by y and z  with respect to 
nonprincipal axes z and y. By performing the procedure given in Example 5.1, we 
obtain =y 15.63 mm, =z 5.21 mm , = =I Iy z4765.62 mm , 21,054.69 mm4 4, 
and I yz = 3984.37 mm4 . Equation (5.18) then yields the direction of the prin-
cipal axis ′ ′x y,  as θ = °p 13.05 , and Eq. (5.19) gives the principal moments of 
inertia as = =′ ′I Iy z3828.12 mm , 21,953.12 mm4 4 (Fig. 5.20a).

Let us now assume that a shear load ′Vy  is applied in the ′ ′y z,  plane (Fig. 
5.20b). This force may be considered the resultant of force components F F,1 2 , 
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and F3 acting in the flanges and web in the directions indicated in the figure. 
The algebra will be minimized if we choose point A, where F2 and F3 inter-
sect, in finding the line of action of ′Vy  by applying the principle of moments. 
To do so, we need to determine the value of F1 acting in the upper flange. The 
shear stress τ xz in this flange, from Eq. (5.39), is

	 τ ( )= = + 
′ ′

′

′

′

V Q

I b

V

I t
st sxz

y z

z

y

z

19.55 sin13.05°1
2 	 (f )

where s is measured from right to left along the flange. Note that ′Qz  the 
bracketed expression, is the first moment of the shaded flange element area 
with respect to the ′z  axis. The constant 19.55 is obtained from the geometry 
of the section. After substituting the numerical values and integrating Eq. (f), 
the total shear force in the upper flange is found to be

	 ∫ ∫τ= = + ° =′

′
′F t ds

V t

I
s s ds Vxz

y

z

s

y(19.55 sin13.05 ) 0.09121 0

1
20

12.5
	 (g)

Application of the principle of moments at A gives =′ ′V e Fy z 37.5 .1  
Introducing F1 from Eq. (g) into this equation, the distance ′ez , which locates 
the line of action of ′Vy  from A, is

	 =′ 3.42 mmez 	 (h)

Next, assume that the shear loading ′Vz  acts on the beam (Fig. 5.20c). The 
distance ′ey  may be obtained as in the situation just described. Because of ′Vz  
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Figure 5.20.  �Example 5.10. (a) Portion of a beam with a channel cross section; 
(b) shear flow; (c) location of the shear center S.
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the force components F1 to F4 will be produced in the section. The shear stress 
in the upper flange is given by

	 τ = = − °′ ′

′

′

′

V Q

I b
V
I t

st sxz
z y

y

z

y

[ (12.05 cos13.05 )]1
2 	 (i)

The quantity ′Qy  represents the first moment of the flange segment area with 
respect to the ′y  axis, and 12.05 is found from the geometry of the section. 
The total force F1 in the flange is

	 ∫= − ° =′

′
′F

V
I

st s ds Vz

y
z(12.05 cos13.05 ) 0.2041

1
20

12.5
	

The principle of moments applied at = =′ ′ ′A V e F Vz y z, 37.5 7.651  leads to

	 =′ey 7.65 mm 	 ( j)

Thus, the intersection of the lines of action of ′Vy  and ′Vz , and ′ez  and ′ey , 
locates the shear center S of the asymmetrical channel section.

5.10.2  Arbitrary Solid Cross Sections

The preceding considerations can be extended to beams of arbitrary solid cross section, 
in which the shearing stress varies with both cross-sectional coordinates y and z. For these 
sections, the exact theory can, in some cases, be successfully applied to locate the shear 
center. Examine the section of Fig. 5.18c subjected to the shear force Vz , which produces 
the stresses indicated. Denote y and z as the principal directions. The moment about the x 
axis is then

	 ∫∫ τ τ= −M z y dz dyx xy xz( ) 	 (5.57)

Vz must be located a distance e from the z axis, where =e M Vx z/ .

5.11  STATICALLY INDETERMINATE SYSTEMS

A large class of problems of considerable practical interest relate to structural systems for 
which the equations of statics are not sufficient (but are necessary) for determination of 
the reactions or other unknown forces. Such systems are called statically indeterminate, 
and they require supplementary information for their solution. Additional equations usu-
ally describe certain geometric conditions associated with displacement or strain. These 
equations of compatibility state that the strain owing to deflection or rotation must pre-
serve continuity.

With this additional information, the solution proceeds in essentially the same man-
ner as for statically determinate systems. The number of reactions in excess of the number 
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of equilibrium equations is called the degree of statical indeterminacy. Any reaction in 
excess of that which can be obtained by statics alone is said to be redundant. Thus, the 
number of redundants is the same as the degree of indeterminacy.

Several methods are available to analyze statically indeterminate structures. The prin-
ciple of superposition, briefly discussed next, is an effective approach for many cases. In 
Section 5.6 and in Chapters 7 and 10, a number of commonly employed methods are dis-
cussed for the solution of the indeterminate beam, frame, and truss problems.

5.11.1  The Method of Superposition

In the event of complicated load configurations, the method of superposition may be used 
to good advantage to simplify the analysis. Consider, for example, the continuous beam 
shown in Fig. 5.21a, which is then replaced by the beams shown in Fig. 5.21b and c. 
At point A, the beam now experiences the deflections υA P( )  and υA R( )  due to P and R, 
respectively. Subject to the restrictions imposed by small deformation theory and a mate-
rial obeying Hooke’s law, the deflections and stresses are linear functions of transverse 
loadings, and superposition is valid:

	
υ υ υ
σ σ σ

= +
= +

A A P A R

A A P A R

( ) ( )

( ) ( )
	

This procedure may, in principle, be extended to situations involving any degree of 
indeterminacy.

EXAMPLE 5.11  Displacements of a Propped Cantilever Beam
Figure 5.22 shows a propped cantilever beam AB subject to a uniform load 
of intensity p. Determine (a) the reactions, (b) the equation of the deflection 
curve, and (c) the slope at A.

Solution  Reactions R RA B,  and M B are statically indeterminate because 
there are only two equilibrium conditions Σ = Σ =F My z( 0, 0); thus, the beam 
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Figure 5.21.  �Superposition of displacements 
in a continuous beam.
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is statically indeterminate to the first degree. With the origin of coordinates 
taken at the left support, the equation for the beam moment is

	 = − + 1
2

2M R x pxA
	

The third of Eqs. (5.32) then becomes

	 υ′′ = − +EI R x pxA
1
2

2 	

and successive integrations yield

	
υ

υ

′ = − + +

= − + + +

EI R x px c

EI R x px c x c

A

A

1
2

2 1
6

3
1

1
6

3 1
24

4
1 2

	 (a)

There are three unknown quantities in these equations c c( , ,1 2  and RA) and 
three boundary conditions:

	 υ υ υ= ′ = =L L(0) 0, ( ) 0, ( ) 0 	 (b)

a.	Introducing Eqs. (b) into the preceding expressions, we obtain = =c c pL0, /482 1
3, 

= =c c pL0, /482 1
3  and

	 =R pLA
3
8 	 (5.58a)

We can now determine the remaining reactions from the equations of 
equilibrium:

	 = =R pL M pLB B,5
8

1
8

2 	 (5.58b, c)

b.	By substituting for R cA, 1 and c2 in Eq. (a), we obtain the equation of the 
deflection curve:

	 υ = − +p
EI

x Lx L x
48

(2 3 )4 3 3 	 (5.59)

c.	 Differentiating Eq. (5.59) with respect to x, we obtain the equation of the 
angle of rotation:

	 θ = − +p
EI

x Lx L
48

(8 9 )3 2 3 	 (5.60)

Setting =x 0, we have the slope at A:

	 θ = pL
EIA 48

3

	 (5.61)
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Figure 5.22.  �Example 5.11. A propped 
beam under uniform load.
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EXAMPLE 5.12  Reactions of a Propped Cantilever Beam
Consider again the statically indeterminate beam shown in Fig. 5.22. Determine 
the reactions using the method of superposition.

Solution  Reaction RA is selected as redundant; it becomes an unknown 
load when we eliminate the support at A (Fig. 5.23a). The loading is resolved 
into those shown in Figs. 5.23b and 5.23c. The solution for each case is (see 
Table D.4)

	 υ υ= = −pL
EI

R L
EIA P A R
A( )

8
, ( )

3

4 3

	

The compatibility condition for the original beam requires that

	 υ = − =pL
EI

R L
EIA
A

8 3
0

4 3

	

from which = 3 /8.R pLA  Reaction RB and moment M B can now be found 
from the equilibrium requirements. The results correspond to those of 
Example 5.11.

5.12  ENERGY METHOD FOR DEFLECTIONS

Strain energy methods are frequently employed to analyze the deflections of beams and 
other structural elements. Of the many approaches available, Castigliano’s second theo-
rem is one of the most widely used. To apply this theory, the strain energy must be rep-
resented as a function of loading. Detailed discussions of energy techniques are found 
in Chapter 10. In this section, we limit ourselves to a simple example to illustrate how 
the strain energy in a beam is evaluated and how the deflection is obtained by the use of 
Castigliano’s theorem (Section 10.4).

The strain energy stored in a beam under bending stress σ x only, substituting 
υ=M EI d dx( / )2 2  into Eq. (2.63), is expressed in the form

	 ∫ ∫
υ= =







U
M dx

EI
EI d

dx
dxb 2 2

2 2

2

2

	 (5.62)
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Figure 5.23.  �Example 5.12. Method of superposition: (a) reaction RA is selected as redundant; 
(b) deflection at end A due to load P; (c) deflection at end A due to reaction RA.
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where the integrations are carried out over the beam length. We next determine the strain 
energy stored in a beam that is only due to the shear loading V. As described in Section 
5.7, this force produces shear stress τ xy at every point in the beam. The strain energy den-
sity is, from Eq. (2.50), τ=U Go xy /2 . Substituting τ xy as expressed by Eq. (5.39), we have 
U V Q GI bo = /22 2 2 2. Integrating this expression over the volume of the beam of cross-
sectional area A, we obtain

	 ∫ ∫=








U

V
GI

Q
b

dA dxs 2

2

2

2

2 	 (a)

5.12.1  Form Factor for Shear

Let us denote

	 ∫α = A
I

Q
b

dA2

2

2 	 (5.63)

This value is termed the shape or form factor for shear. When it is substituted in Eq. (a), 
we obtain

	 ∫
α=U

V dx
AGs 2

2

	 (5.64)

where the integration is carried over the beam length. The form factor is a dimensionless 
quantity specific to a given cross-section geometry.

For example, for a rectangular cross section of width b and height 2h, the first 
moment Q, from Eq. (5.41), is = −Q b h y( /2)( )2

1
2 . Because =A I bh/ 9/2 ,2 5  Eq. (5.63) pro-

vides the following result:

	 ∫α = − =
−bh

h y b dy
h

h9

2
( )5

1
4

2
1
2 2

1
6
5 	 (b)

In a like manner, the form factor for other cross sections can be determined. Table 5.2 lists 
several typical cases. Following the determination of α , the strain energy is evaluated by 
applying Eq. (5.64).

Cross Section Form Factor α
A.	Rectangle 6/5

B.	 I-section, box section, or channelsa A/Aweb

C.	 Circle 10/9

D.	 Thin-walled circular 2
aA = area of the entire section, Aweb = area of the web ht, where h is the beam depth and t is the web 
thickness.

Table 5.2.  Form Factor for Shear for Various Beam Cross Sections
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For a linearly elastic beam, Castigliano’s theorem, from Eq. (10.3), is expressed by

	 δ ∂
∂

=
U
P

	 (c)

where P is a load acting on the beam and δ  is the displacement of the point of application 
in the direction of P. Note that the strain energy U U Ub s= +  is expressed as a function of 
the externally applied forces (or moments).

As an illustration, consider the bending of a cantilever beam of rectangular cross 
section and length L, subjected to a concentrated force P at the free end (Fig. 5.5). The 
bending moment at any section is =M Px and the shear force V is equal in magnitude to 
P. Substituting these together with α = 6

5 into Eqs. (5.62) and (5.64) and integrating, we 
find the strain energy stored in the cantilever to be

	 U
P L

EI
P L
AG

= +
6

3

5

2 3 2

	

The displacement of the free end owing to bending and shear is, by application of 
Castigliano’s theorem, therefore

	 δ υ= = +
PL
EI

PL
AG3

6

5

3

	

The exact solution is given by Eq. (5.24).

Part C: Curved Beams

5.13  ELASTICITY THEORY

Our treatment of stresses and deflections caused by the bending has been restricted so far 
to straight members. In real-world applications, many members—such as crane hooks, 
chain links, C-lamps, and punch-press frames—are curved and loaded as beams. Part C 
deals with the stresses caused by the bending of bars that are initially curved.

A curved bar or beam is a structural element for which the locus of the centroids of 
the cross sections is a curved line. This section focuses on an application of the theory of 
elasticity to a bar characterized by a constant narrow rectangular cross section and a cir-
cular axis. The axis of symmetry of the cross section lies in a single plane throughout the 
length of the member.

5.13.1  Equations of Equilibrium and Compatibility

Consider a beam subjected to equal end couples M such that bending takes place in the 
plane of curvature, as shown in Fig. 5.24a. Given that the bending moment remains con-
stant along the length of the bar, the stress distribution should be identical in any radial 
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cross section. Stated differently, we seek a distribution of stress displaying θ  indepen-
dence. It is clear that the appropriate expression of equilibrium is Eq. (8.2):

	
σ σ σ

+
−

=θd
dr r

r r 0	 (a)

and that the condition of compatibility for plane stress, Eq. (3.41),

	
σ σ σ σ+

+
+

=θ θd
dr r

d
dr

r r( ) 1 ( )
0

2

2 	

must also be satisfied. The latter is an equidimensional equation, which can be reduced 
to a second-order equation with constant coefficients by substituting r et=  or t r= ln . 
Direct integration then leads to σ σ+ = ′′ + ′θ c c rr ln , which may be written in the form 
σ σ+ = ′′′ + ′θ c cr  In r a( / ). Solving this expression together with Eq. (a) results in the fol-
lowing equations for the radial and tangential stress:

	
σ

σ

= + +

= + +



 −θ

c c
r
a

c
r

c c
r
a

c
r

r 1n

1 1n

1 2
3
2

1 2
3
2

	 (5.65)

5.13.2  Boundary Conditions

To evaluate the constants of integration, the boundary conditions are applied as follows:

1.	 No normal forces act along the curved boundaries at r a=  and r b= , so that

	 σ σ= == =r r a r r b( ) ( ) 0	 (b)

2.	 Because there is no force acting at the ends, the normal stresses acting at the straight 
edges of the bar must be distributed to yield a zero resultant:

	 ∫ σ =θt dr
a

b
0 	 (c)

where t represents the beam thickness.

O

M

b
r

m

a
M

(a)

(b)
t

h

m

nn

σθ

dθ

σr
σθ

+

Figure 5.24.  Pure bending of a curved beam of rectangular cross section.
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3.	 The normal stresses at the ends must produce a couple M:

	 ∫ σ =θt r dr M
b

a
	 (d)

The conditions (c) and (d) apply not just at the ends; that is, because of σθ  indepen-
dence, they apply at any θ . In addition, shearing stresses are assumed to be zero through-
out the beam, so τ =θr 0 is satisfied at the boundaries, where no tangential forces exist.

Combining the first equation of Eqs. (5.65) with the condition (b), we find that

	 = − −






=c a c c
a
b

c
b
a

, 1 ln3
2

1 1

2

2 2 	

These constants together with the second of Eqs. (5.65) satisfy condition (c). Thus, we have

	 =
−

=
−

ln( / )
,

ln( / )
1

2

2 2 2 3

2 2

2 2 2c
b b a

a b
c c

a b b a
b a

c 	 (e)

Finally, substitution of the second of Eqs. (5.65) and (e) into (d) provides

	 =
−

c
M
N

b a
tb

4( )
2

2 2

4 	 (f)

where

	 = −






−N
a
b

a
b

b
a

1 4 ln
2

2

2 2

2
2

	 (5.66)

5.13.3  Stress Distribution

When the expressions for constants c c, ,1 2  and c3 are inserted into Eq. (5.65), the follow-
ing equations are obtained for the radial stress and tangential stress:

	

σ

σ

= −






− −
















= −






+



 − +















θ

M
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a
b

r
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a
r
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M
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4

1 ln 1 ln

4
1 1 ln 1 ln

2
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2

2

2

2

2

2

2

2

	 (5.67)

If the end moments are applied so that the force couples producing them are distrib-
uted in the manner indicated by Eq. (5.67), then these equations are applicable throughout 
the bar. If the distribution of applied stress (to produce M) differs from Eq. (5.67), the 
results may be regarded as valid in regions away from the ends, in accordance with Saint-
Venant’s principle.

These results, when applied to a beam with radius a, large relative to its depth h, yield 
an interesting comparison between straight and curved beam theory. For slender beams 
with h << a, the radial stress σ r in Eq. (5.67) becomes negligible, and the tangential stress 
σθ  is approximately the same as that obtained from My/I. Note that the radial stresses 
developed in nonslender curved beams made of isotropic materials are small enough that 
they can be neglected in analysis and design.
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The bending moment is taken as positive when it tends to decrease the radius of 
curvature of the beam, as in Fig. 5.24a. Employing this sign convention, σ r as determined 
from Eq. (5.67) is always negative, indicating that this stress is compressive. Similarly, 
when σθ  is positive, the stress is tensile; otherwise, it is compressive. Figure 5.24b plots 
the stresses at section mn. Note that the maximum stress magnitude is found at the 
extreme fiber of the concave side.

5.13.4  Deflections

Substitution of σ r and σθ  from Eq. (5.67) into Hooke’s law provides expressions for the 
strains ε εθ r, , and γ θr . The displacements u and υ then follow, upon integration, from the 
strain-displacement relationships, described by Eqs. (3.33). The resulting displacements 
indicate that plane sections of the curved beam subjected to pure bending remain plane 
subsequent to bending. Castigliano’s theorem (Section 5.12) is a particularly attractive 
method for determining the deflection of curved members.

For beams in which the depth of the member is small relative to the radius of curva-
ture or, as is usually assumed, >r c/ 4, the initial curvature may be neglected in evaluating 
the strain energy. In such a case, r  represents the radius to the centroid, and c is the dis-
tance from the centroid to the extreme fiber on the concave side. Thus, the strain energy 
due to the bending of a straight beam [Eq. (5.62)] is also a good approximation for curved, 
slender beams.

5.14  CURVED BEAM FORMULA

The approach to curved beams explored in this section was developed by E. Winkler 
(1835–1888). As an extension of the elementary theory of straight beams, Winkler’s the-
ory assumes that all conditions required to make the straight-beam formula applicable are 
satisfied except that the beam is initially curved.

Consider the pure bending of a curved beam as illustrated in Fig. 5.25a. The distance 
from the center of curvature to the centroidal axis is r . The positive y coordinate is mea-
sured toward the center of curvature O from the neutral axis (Fig. 5.25b). The outer and 
inner fibers are at distances of ro and ri from the center of curvature, respectively.

5.14.1  Basic Assumptions

Derivation of the stress in the beam is again based on the three principles of solid mechan-
ics and the familiar presuppositions:

1.	 All cross sections possess a vertical axis of symmetry lying in the plane of the centroi-
dal axis passing through C.

2.	 The beam is subjected to end couples M. The bending moment vector is everywhere 
normal to the plane of symmetry of the beam.

3.	 Sections originally plane and perpendicular to the centroidal beam axis remain so sub-
sequent to bending. (The influence of transverse shear on beam deformation is not 
taken into account.)
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Referring to assumption (3), note the relationship in Fig. 5.25a between lines bc and ef 
representing the plane sections before and after the bending of an initially curved beam. 
Note also that the initial length of a beam fiber such as gh depends on the distance r from 
the center of curvature O. On the basis of plane sections remaining plane, we can state 
that the total deformation of a beam fiber obeys a linear law, as the beam element rotates 
through small angle.

5.14.2  Location of the Neutral Axis

In Fig. 5.25a, it is clear that the initial length of any arbitrary fiber gh of the beam 
depends on the distance r from the center of curvature O. Thus, the total deformation of 
a beam fiber obeys a linear law, as the beam element rotates through a small angle θd .  
Conversely, the normal or tangential strain εθ does not follow a linear relationship. The 
contraction of fiber gh equals θ− −R r d( ) , where R is the distance from O to the neutral 
axis (yet to be determined) and its initial length is θr . So, the normal strain of this fiber is 
given by ε θ θ= − −θ R r d r( ) / . For convenience, we denote λ θ θ= d / , which is constant for 
any element.

The tangential normal stress, acting on an area dA of the cross section, can now be 
obtained through the use of Hooke’s law, σ ε=θ θE . It follows that

	 σ λ= −
−

θ E
R r

r
	 (a)

The equations of equilibrium, ∑ =Fx 0 and ∑ =Mz 0 are, respectively,

	 ∫σ =θ dA 0 	 (b)

	 ∫σ − =θ R r dA M( ) 	 (c)

(a)

(b) (c)

M

M

ro

r
riR

e
θ

ex

c c
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b bf
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N.A. y

y
z

dA Straight beam

Curved
beam

dθ

θ

θ + dθ

r

Figure 5.25.  �(a) Curved beam in pure bending with a cross-sectional vertical (y) axis of symmetry; 
(b) cross section; (c) stress distributions over the cross section.
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When the tangential stress of Eq. (a) is inserted into Eq. (b), we obtain

	 ∫ λ−
−



 =E

R r
r

dA
A

0	 (d)

Since λE  and R are constants, they may be moved outside the integral sign, as follows:

	 ∫ ∫λ −



 =E R

dA
r

dA
A A

0 	

The radius of the neutral axis R is then written in the form

	

∫
=R

A
dA
rA

	 (5.68)

where A is the cross-sectional area of the beam. The integral in Eq. (5.68) may be evalu-
ated for various cross-sectional shapes (see Example 5.13 and Probs. 5.46 through 5.48). 
For reference, Table 5.3 lists explicit formulas for R and A for some commonly used cases.

The distance e between the centroidal axis and the neutral axis (y = 0) of the cross 
section of a curved beam (Fig. 5.25b) is equal to

	 = −e r R	 (5.69)

Thus, in a curved member, the neutral axis does not coincide with the centroidal axis. This 
differs from the case involving straight elastic beams.

5.14.3  Tangential Stress

Once we know the location of the neutral axis, we can obtain the equation for the stress 
distribution by introducing Eq. (a) into Eq. (c). Therefore,

	 ∫λ=
−

M E
R r

r
dA

A

( )2

	

Expanding this equation, we have

	 ∫ ∫ ∫λ= − +



M E R

dA
r

R dA r dA
A A A

22 	

Here, the first integral is equivalent to A/R, as determined by Eq. (5.68), and the second 
integral equals the cross-sectional area A. The third integral, by definition, represents rA, 
where r  is the radius of the centroidal axis. Therefore, λ λ= − =M E A r R E Ae( ) .

We now introduce E from Eq. (a) into the discussion and solve for σθ  from the result-
ing expression. Then, the tangential stress in a curved beam, subject to pure bending at a 
distance r from the center of curvature, is expressed in the following form:

	 σ =
−

θ
M R r

Aer
( )

	 (5.70)
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Cross Section Radius of Neutral Surface R
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Table 5.3.  �Properties for Various Cross-Sectional Shapes
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where e is defined by Eq. (5.69). Alternatively, substituting = −y R r  or = −r R y  
(Fig. 5.25a) into Eq. (5.70) yields

	 σ = −
−θ

My
Ae R y( )

	 (5.71)

5.14.4  Winkler’s Formula

Equations (5.70) and (5.71) represent two forms of the curved-beam formula. Another 
alternative form of these equations is often referred to as Winkler’s formula. The variation 
of stress over the cross section is hyperbolic, as sketched in Fig. 5.25c. The sign convention 
applied to bending moment is the same as that used in Section 5.13—namely, the bending 
moment is positive when directed toward the concave side of the beam, as shown in the fig-
ure. If Eq. (5.70) or Eq. (5.71) results in a positive value, a tensile stress is present.

5.15  COMPARISON OF THE RESULTS OF VARIOUS THEORIES

We now examine the solutions obtained in Sections 5.13 and 5.14 with results determined 
using the flexure formula for straight beams. To do so, we consider a curved beam of 
rectangular cross section and unit thickness experiencing pure bending. The tangential 
stress predicted by the elementary theory (based on a linear distribution of stress) is My/I. 
The Winkler approach, which leads to a hyperbolic distribution, is given by Eq. (5.70) or 
Eq. (5.71), while the exact theory results in Eqs. (5.67). In each case, the maximum and 
minimum values of stress are expressed by

	 σ =θ m
M
a2 	 (5.72)

Table 5.4 lists values of m as a function of b/a for the four cases cited [Ref. 5.1], in 
which =b ro  and =a rj  (see Figs. 5.24 and 5.25). As can be seen, there is good agree-
ment between the exact and Winkler results. On this basis, as well as from more exten-
sive comparisons, we may conclude that the Winkler approach is adequate for practical 
applications. Its advantage lies in the relative ease with which it may be applied to any 
symmetric section.

b/a Flexure Formula

Curved Beam Formula Elasticity Theory

r = a r = b r = a r = b

1.3 ±66.67 -72.980 61.270 -73.050 61.350

1.5 ±24.00 -26.971 20.647 -27.858 21.275

2.0 ±6.00 -7.725 4.863 -7.755 4.917

3.0 ±1.50 -2.285 1.095 -2.292 1.130

Table 5.4.  �The Values of m for Typical Ratios of Outer Radius b to Inner Radius a
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The agreement between the Winkler approach and the exact analyses is not as good 
in situations involved combined loading as it is for the case of pure bending. As might be 
expected, for beams of only slight curvature, the simple flexure formula provides good 
results while requiring only simple computation. The linear and hyperbolic stress distri-
butions are approximately the same for b/a = 1.1. As the curvature of the beam increases 

>b a( / 1.3), the stress on the concave side rapidly increases over the one given by the flex-
ure formula.

5.15.1  Correction of σ θ for Beams with Thin-Walled Cross Sections

Where I-beams, T-beams, or thin-walled tubular curved beams are involved, the 
approaches developed in this chapter will not accurately predict the stresses in the system. 
The error in such cases is attributable to the high stresses existing in certain sections such 
as the flanges, which cause significant beam distortion. A modified Winkler’s equation 
can be applied in such situations if more accurate results are required [Ref. 5.6]. The dis-
tortion, and thus the error in σθ , is reduced when the flange thickness is increased. Given 
that material yielding is highly localized, its effect is not of concern unless the curved 
beam is under fatigue loading.

EXAMPLE 5.13  Maximum Stress in a Curved Rectangular Bar
A rectangular aluminum bar having mean radius r  carries end moments M, 
as illustrated in Fig. 5.26. Calculate the stresses in the member using (a) the 
flexure formula and (b) the curved beam formula.

Given: ⋅= = =M b h1.2 kN m, 30 mm, 50 mm, and =r 125mm.

Solution  The subscripts i and o refer to the quantities of the inside and out-
side fibers, respectively.

dr

O

b

h

ri

r
ro

M Mr

dr

O

ri
ro

(a) (b)

Figure 5.26.  �Example 5.13. (a) Rectangular curved beam in pure bending; 
(b) cross section.
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a.	Applying the flexure formula, Eq. (5.38) with =y hl2, we obtain

	 σ σ= − = ==
1200(0.025)

(0.03)(0.05)
96 MPa

1
12

3

My
I

o i 	

This is the result we would get for a straight beam.
b.	We first derive the expression for the radius R of the neutral axis. From 

Fig. 5.26, =A bh and =dA bdr. Integration of Eq. (5.68) between the limits 
ri and ro results in

	

∫ ∫ ∫
= = =R

A
dA
r

bh
bdr

r

h
dr
rA r

r

r

ro o

i i

	

or

	 =R
h
r
r
o

i

In
	 (5.73)

The given data lead to

	 = = =A bh (30)(50) 1500 mm2 	

	 = − = − =r r hi 125 25 100 mm1
2

	

	 = + = + =r r ho 125 25 150 mm1
2

	

Then, Eqs. (5.73) and (5.69) yield, respectively,

	 = = =R
h
r
r
o

i

ln

50

ln
123.3152 mm

3
2

	

	 = − = − =e r R 125 123.3152 1.6848 mm 	

Note that the radius of the neutral axis R must be calculated with five 
significant figures.

The maximum compressive and tensile stresses are calculated by using 
Eq. (5.70) as follows:

	

σ

σ

=
−

=
−

= −

=
−

= −
−

=

− −

− −

M R r
Aer

M R r
Aer

i
i

i

o
o

o

( ) 1.2(123.3152 100)

1.5(10 )(1.6848(10 )(0.1))

110.7 MPa
( ) 1.2(123.3152 150)

1.5(10 )(1.6848(10 )(0.15))

84.5 MPa

3 3

3 3

	

The negative sign means a compressive stress.



296� Chapter  5    Bending of Beams

Comment  The maximum stress 96 MPa obtained in part (a) by the flexure 
formula represents an error of about 13% from the more accurate value for 
the maximum stress (110.7 MPa) found in part (b).

5.16  COMBINED TANGENTIAL AND NORMAL STRESSES

Curved beams are often loaded so that there is both an axial force and a moment on the 
cross section. The tangential stress given by Eq. (5.70) may then be algebraically added to 
the stress due to an axial force P acting through the centroid of cross-sectional area A. For 
this simple case of superposition, the total stress at a point located at distance r from the 
center of curvature O may be expressed as follows:

	 σ ( )
= −

−
θ

P
A

M R r
Aer

	 (5.74)

As before, a negative sign would be associated with a compressive load P.
Of course, the theory developed in this section applies only to the elastic stress dis-

tribution in curved beams. Stresses in straight members under various combined loads are 
discussed in detail throughout this text.

The following problems illustrate the application of the formulas developed to stati-
cally determinate and statically indeterminate beams under combined loadings. In the lat-
ter case, the energy method (Section 10.4) facilitates the determination of the unknown, 
redundant moment in the member.

CASE STUDY 5.1  Stresses in a Steel Crane Hook by Various Methods
A load P is applied to the simple steel hook having a rectangular cross section, 
as illustrated in Fig. 5.27a. Find the tangential stresses at points A and B, using 
(a) the curved beam formula, (b) the flexure formula, and (c) elasticity theory.

Given: P = 6 kN, r  = 50 mm, b = 25 mm, and h = 32 mm.

Solution
a.	Curved Beam Formula. For the given numerical values, we obtain 

(Fig. 5.27b):

	 = = =
= − = − =

= + = + =

A bh

r r h

r r h
i

o
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50 16 34 mm

50 16 66 mm

2

1
2

1
2

	

Then, Eqs. (5.73) and (5.69) result in

	
= = =

= − = − =

R
h
r
r

e r R
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ln
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48.2441 mm
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To maintain applied force P in equilibrium, there must be an axial tensile 
force P and a moment M = -Pr  at the centroid of the section (Fig. 5.27c). 
Then, by Eq. (5.74), the stress at the inner edge (r = ri) of the section A–B is
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(5.75a)

Likewise, the stress at the outer edge 


( )=r r  is
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(5.75b)

The negative sign of σθ B( )  means a compressive stress is present. The 
maximum tensile stress is at A and equals 97 MPa.

A

P
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B BO O

r = 50 mm

r = 50 mm

h = 32 mm

b = 25 mm

50 mm

(a) (b) (c)

B A AO
C

P

P

M

Figure 5.27.  Case Study 5.1. A crane hook of rectangular cross section.
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Comment  The stress due to the axial force,

	 = =
P
A

6000

0.0008
7.5 MPa 	

is negligibly small compared to the combined stresses at points A and B of the 
cross section.
b.	Flexure Formula. Equation (5.5), with ⋅= = =M Pr 6(50) 300N m, gives

	
σ σ= − = = =θ θ

My
IB A( ) ( )

3.00(0.01.6)

(0025)(0032)
70.3 MPa

1
12

3

	

c.	 Elasticity Theory. Using Eq. (5.66) with = =a ri 34 mm and = =b ro  66 mm, 
we find

	 = − 













 − 









 =N 1

34

66
4

34

66
ln

66

34
0.0726

2 2 2
2 	

Superposition of -P/A and the second of Eqs. (5.67) with t = 25 mm at 
r = a leads to

	 σ = − + −






+ − +










= − − = −

θ A( )
6000

0.0008

4(300)

(0.025)(0.066) (0.0726)
1

34

66
(1 0) (1 1) ln

66

34

7.5 89.85 97.4 MPa

2

2

2 	

Similarly, at r = b, we find σ = − + =θ B( ) 7.5 58.1 50.6 MPa.

Comments  The results obtained with the curved-beam formula and with 
elasticity theory are in good agreement. In contrast, the flexure formula pro-
vides a result with unacceptable accuracy for the tangential stress in this non-
slender curved beam.

EXAMPLE 5.14  Ring with a Diametral Bar
A steel ring of 350-mm mean diameter and of uniform rectangular section 
60 mm wide and 12 mm thick is shown in Fig. 5.28a. A rigid bar is fitted 
across diameter AB, and a tensile force P is applied to the ring as shown. 
Assuming an allowable stress of 140 MPa, determine the maximum tensile 
force that can be carried by the ring.

Solution  Let the thrust induced in bar AB be denoted by 2F. The moment at 
any section a–a (Fig. 5.28b) is then

	 θ θ= − + + −θM Fr M
Pr

Bsin
2

(1 cos ) 	 (a)



5.16    Combined Tangential and Normal Stresses� 299

Note that before and after deformation, the relative slope between B and C 
remains unchanged. Therefore, the relative angular rotation between B and C 
is zero. Applying Eq. (5.32), we obtain

	 ∫∫θ θ= = =θ θ
π

EI M dx r M d
B

C
0

0

/2 	

where θ= =dx ds rd  is the length of beam segment corresponding to θd . 
Substituting in Eq. (a), this becomes, after integrating,

	 π π
+ −



 − =M Pr FrB 2

1 01
2

1
2 	 (b)

This expression involves two unknowns, M B and F. Another expression in 
terms of M B and F is found by recognizing that the deflection at B is zero. By 
applying Castigliano’s theorem,

	 ∫δ ∂
∂

∂
∂

θ= = =θ
θπU

F EI
M

M
F

r dB
1

( ) 0
0

/2 	

where U is the strain energy of the segment. This expression, upon introduc-
tion of Eq. (a), takes the form

	 ∫ θ θ θ θ{ }− + + − =
π

F r M
Pr

dBsin
2

(1 cos ) sin 0
0

/2 	

After integration,

	 π− + + =F r Pr M B 01
4

1
4

	 (c)

Solution of Eqs. (b) and (c) yields

	 =M PrB 0.1106 	

C

P

A B
175 mm

12 mm

D
P

(a)

(b)

MB

P/2

F
B

ds
C

a
a

θ

dθ

r

Figure 5.28.  �Example 5.14. (a) Ring with a bar AB is 
subjected to a concentrated load P; (b) 
moment at a section.
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and =FR Pr0.4591 . Substituting Eq. (a) gives

	 = − + + =M Fr M Pr PrC B 0.15151
2 	

Thus, >M MC B.
Since = =r c/ 0.175/0.006 29, the simple flexure formula offers the most 

efficient means of computation. The maximum stress is found at points 
A and B:

	 σ = + = + =θ
P
A

M c
I

P P PA B
B( )

/2
694 13,441 14,135, 	

Similarly, at C and D,

	 σ = =θ
M c

I
PC D

c( ) 18,411, 	

Hence σ σ>θ θC B , and we have σ = × = P140 10 18,411 .max
6  The maximum 

tensile load is therefore P = 7.604 kN.
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P RO B L E M S

Sections 5.1 through 5.5

5.1.	A simply supported beam constructed of a ×0.15 0.015 m angle is loaded by 
concentrated force =P 22.5 kN at its midspan (Fig. P5.1). Calculate stress σ x at 
A and the orientation of the neutral axis. Neglect the effect of shear in bending 
and assume that beam twisting is prevented.

5.2.	A wood cantilever beam with cross section as shown in Fig. P5.2 is sub-
jected to an inclined load P at its free end. Determine (a) the orientation 
of the neutral axis and (b) the maximum bending stress. Given: P = 1 kN, 
α = ° = =b h30 , 80 mm, 150 mm, and length L = 1.2 m.
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5.3.	A moment Mo is applied to a beam of the cross section shown in Fig. P5.3 with 
its vector forming an angle α . Use =b 100 mm, =h 40 mm, ⋅=Mo 800N m, and 
α = °25 . Calculate (a) the orientation of the neutral axis and (b) the maximum 
bending stress.

5.4.	Couples =M My o and =M Mz o1.5  are applied to a beam of cross section shown 
in Fig. P5.4. Determine the largest allowable value of Mo for the maximum stress 
not to exceed 80 MPa. All dimensions are in millimeters.

5.5.	For the simply supported beam shown in Fig. P5.5, determine the bending stress 
at points D and E. The cross section is a × ×0.15 0.15 0.02 m angle (Fig. 5.4).

5.6.	A concentrated load P acts on a cantilever, as shown in Fig. P5.6. The 
beam is constructed of a 2024-T4 aluminum alloy having a yield strength 

h
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C

y Mo

z

α

Figure P5.3.
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σ = = = =L t c290 MPa, 1.5 m, 20 mm, 60 mm,yp  and =b 80 mm. Based on a 
factor of safety =n 1.2 against initiation of yielding, calculate the magnitude of P 
for (a) α = °0  and (b) α = °15 . Neglect the effect of shear in bending and assume 
that beam twisting is prevented.

5.7.	Re-solve Prob. 5.6 for α = °30 . Assume the remaining data are unchanged.
5.8.	A cantilever beam has a Z section of uniform thickness for which = =I th I thy z,2

3
3 8

3
3 

= =I th I thy z,2
3

3 8
3

3and = −I thyz
3. Determine the maximum bending stress in the beam sub-

jected to a load P at its free end (Fig. P5.8).
5.9.	A beam with cross section as shown in Fig. P5.9 is acted on by a moment 

⋅=Mo 3kN m, with its vector forming an angle α = °20 . Determine (a) the orien-
tation of the neutral axis and (b) the maximum bending stress.

	5.10 and 5.11. As shown in the cross section in Figs. P5.10 and P5.11, a beam carries a 
moment M, with its vector forming an angle α  with the horizontal axis. Find the 
stresses at points A, B, and D.
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5.12.	For the thin cantilever shown in Fig. P5.12, the stress function is given by

	 Φ = − + − − − −c xy c
x

c
x y

c
xy

c
x y

c
xy

6 6 6 9 201 2

3

3

3

4

3

5

3 3

6

5

	

a.	Determine the stresses σ σx y, , and τ xy by using the elasticity method.
b.	Determine the stress σ x by using the elementary method.
c.	Compare the values of maximum stress obtained by the preceding approaches 

for =L h10 .
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L

y
y

z h

t

Figure P5.12.
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5.13.	Consider a cantilever beam of constant unit thickness subjected to a uniform load 
of =p 2000 kN per unit length (Fig. P5.13). Determine the maximum stress in 
the beam:
a.	Based on a stress function

	 Φ = − + + + −











−p
x xy x y

y
x0.43

( ) 0.78 tan2 2 2 1

b.	Based on the elementary theory. Compare the results of (a) and (b).

Sections 5.6 through 5.11

5.14.	A bending moment acting about the z axis is applied to a T-beam, as shown in 
Fig. P5.14. Take the thickness =t 15 mm and depth =h 90 mm. Determine the 
width b of the flange needed so that the stresses at the bottom and top of the 
beam will be in the ratio 3:1, respectively.

5.15.	A wooden, simply supported beam of length L is subjected to a uniform load 
p. Determine the beam length and the loading necessary to develop simultane-
ously σ = 8.4 MPamax  and τ = 0.7MPa.max  Take thickness =t 0.05 m and depth 
h = 0.15 m.

5.16.	A box beam supports the loading shown in Fig. P5.16. Determine the maximum 
value of P such that a flexural stress σ = 7 MPa or a shearing stress τ = 0.7 will 
not be exceeded.

t
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y

Figure P5.14.
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5.17.	Design a rectangular cantilever beam of constant strength and width b, to carry a 
uniformly distributed load of intensity w (Fig. P5.17). Assumption: Only the nor-
mal stresses due to the bending need be taken into account; the permissible stress 
equals σ all.

5.18.	Design a simply supported rectangular beam of constant strength and width b, 
supporting a uniformly distributed load of intensity w (Fig. P5.18). Assump-
tion: Only the normal stresses due to the bending need be taken into account; the 
allowable stress is σ all.

5.19.	A steel beam of the tubular cross section seen in Fig. P5.19 is subjected to 
the bending moment M about the z axis. Determine (a) the bending moment 
M and (b) the radius of curvature rx of the beam. Given: σ = = = =E b h150 MPa, 70 GPa, 120 mm, 170 mm,all  

σ = = = =E b h150 MPa, 70 GPa, 120 mm, 170 mm,all  E = 70 GPa, b = 120 mm, h = 170 mm, 
and t = 10 mm.
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5.20.	An aluminum alloy beam of hollow circular cross section is subjected to a bend-
ing moment M about the z axis (Fig. P5.20). Determine (a) the normal stress at 
point A, (b) the normal stress at point B, and (c) the radius of curvature rx of 
the beam of a transverse cross section. Given: M = 600 N ⋅ m, D = 60 mm, d = 
40 mm, E = 70 GPa, and v = 0.29.

5.21.	A simply supported beam AB of the channel cross section carries a concentrated 
load P at midpoint (Fig. P5.21). Find the maximum allowable load P based on an 
allowable normal stress of σ = 60a11  MPa in the beam.

5.22.	A uniformly loaded, simply supported rectangular beam has two 15-mm deep 
vertical grooves opposite each other on the edges at midspan, as illustrated in 
Fig. P5.22. Find the smallest permissible radius of the grooves for the case in which 
the normal stress is limited to σ = 95 MPamax . Given: = = =p L b12 kN/m, 3 m, 80 mm, 

= = =p L b12 kN/m, 3 m, 80 mm, and =h 120 mm.

z

M

A
d

D

x

y

C

B

Figure P5.20.

1.2 m

P

A B

1.2 m

400 mm
t

z

y

150 mmC
t = 25 mm

t y

Figure P5.21.

C
B

h

b

A

p

L
L/2

Figure P5.22.
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5.23.	A simple wooden beam is under a uniform load of intensity p, as illustrated 
in Fig. P5.23. (a) Find the ratio of the maximum shearing stress to the larg-
est bending stress in terms of the depth h and length L of the beam. (b) Using 
σ τ= = =b9 MPa, 1.4 MPa, 50 mm,a11 a11  and h = 160 mm, calculate the maximum 
permissible length L and the largest permissible distributed load of intensity p.

5.24.	A composite cantilever beam 140 mm wide, 300 mm deep, and 3 m long is fab-
ricated by fastening two timber planks, 60 mm × 300 mm, to the sides of a steel 
plate =Es( 200 GPa), 20 mm wide by 300 mm deep. Note that the 300-mm 
dimension is vertical. The allowable stresses in bending for timber and steel are 7 
and 120 MPa, respectively. Calculate the maximum vertical load P that the beam 
can carry at its free end.

5.25.	A simple beam pan length 3 m supports a uniformly distributed load of 40 kN/m. 
Find the required thickness t of the steel plates. Given: The cross section of 
the beam is a hollow box with wood flanges (Ew = 10.5 GPa) and steel (Es = 
210 GPa), as seen in Fig. P5.25. Let a = 62.5 mm, b = 75 mm, and h = 225 mm. 
Assumptions: The permissible stresses are 140 MPa for the steel and 10 MPa for 
the wood.

5.26.	A 180-mm-wide by 300-mm-deep wood beam =Ew( 10 GPa), 4 m long, is rein-
forced with 180-mm-wide and 10-mm-deep aluminum plates =Ea( 70 GPa) on 
the top and bottom faces. The beam is simply supported and subject to a uniform 
load of intensity 25 kN/m over its entire length. Calculate the maximum stresses 
in each material.

b

h

y

a

a

t

z

Figure P5.25.

B

b

hA

p

L

Figure P5.23.



308� Chapter  5    Bending of Beams

5.27.	Referring to the reinforced concrete beam of Fig. 5.17a, assume = = =b d As300, 450 mm, 1200 m ,2 
= = =b d As300, 450 mm, 1200 m ,2  and =n 10. Given allowable stresses in steel and con-

crete of 150 and 12 MPa, respectively, calculate the maximum bending moment 
that the section can carry.

5.28.	Referring to the reinforced concrete beam of Fig. 5.17a, assume b = 300 mm, 
d = 500 mm, and n = 8. Given the actual maximum stresses developed to be 
σ =s 80MPa and σ =c 5MPa, calculate the applied bending moment and the steel 
area required.

5.29.	A channel section of uniform thickness is loaded as shown in Fig. P5.29. Find (a) 
the distance e to the shear center, (b) the shearing stress at D, and (c) the maxi-
mum shearing stress. Given: b = 100 mm, h = 90 mm, t = 4 mm, Vy = 5 kN.

5.30.	A beam is constructed of half a hollow tube of mean radius R and wall thickness t 
(Fig. P5.30). Assuming t R, locate the shear center S. The moment of inertia of 
the section about the z axis is π=I R tlz 2.3

5.31.	An H-section beam with unequal flanges is subjected to a vertical load P 
(Fig. P5.31). The following assumptions are applicable:
1.	The total resisting shear occurs in the flanges.
2.	The rotation of a plane section during bending occurs about the symmetry axis 

so that the of curvature of both flanges are equal.
Find the location of the shear center S.
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5.32.	Determine the shear center S of the section shown in Fig. P5.32. All dimensions 
are in millimeters.

5.33.	A cantilever beam AB supports a triangularly distributed load of maximum inten-
sity po (Fig. P5.33). Determine (a) the equation of the deflection curve, (b) the 
deflection at the free end, and (c) the slope at the free end.

5.34.	The slope at the wall of a built-in beam (Fig. P5.34a) is as shown in Fig. P5.34b 
and is given by pL EI/96 .3  Determine the force acting at the simple support, 
expressed in terms of p and L.

5.35.	A fixed-ended beam of length L is subjected to a concentrated force P at a dis-
tance c away from the left end. Derive the equations of the elastic curve.

5.36.	A propped cantilever beam AB is subjected to a couple Mo acting at support B, 
as shown in Fig. P5.36. Derive the equation of the deflection curve and determine 
the reaction at the roller support.
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5.37.	A clamped-ended beam AB carries a symmetric triangular load of maximum inten-
sity p0 (Fig. P5.37). Find all reactions, the equation of the elastic curve, and the 
maximum deflection, using the second-order differential equation of the deflection.

5.38.	A welded bimetallic strip (Fig. P5.38) is initially straight. A temperature incre-
ment ∆T  causes the element to curve. The coefficients of thermal expansion of 
the constituent metals are α1 and α .2  Assuming elastic deformation and α α>2 1 
determine (a) the radius of curvature to which the strip bends, (b) the maximum 
stress occurring at the interface, and (c) the temperature increase that would 
result in the simultaneous yielding of both elements.

Sections 5.12 through 5.16

5.39.	Verify the values of α for cases B, C, and D of Table 5.2.
5.40.	Consider a curved bar subjected to pure bending (Fig. 5.24). Assume the stress 

function

	 Φ = + + +A r Br r Cr Dln ln2 2 	

Re-derive the stress field in the bar given by Eqs. (5.67).
5.41.	The allowable stress in tension and compression for the clamp body shown in 

Fig. P5.41 is 80 MPa. Calculate the maximum permissible load that the member 
can resist. Dimensions are in millimeters.
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5.42.	A curved frame of rectangular cross section is loaded as shown in Fig. P5.42. 
Determine the maximum tangential stress (a) by using the second of Eqs. (5.67) 
together with the method of superposition and (b) by applying Eq. (5.73). Given: 
h = 100 mm, =r 150 mm, and P = 70 kN.

5.43.	A curved frame having a channel-shaped cross section is subjected to bending by 
end moments M, as illustrated in Fig. P5.43. Determine the dimension b required 
if the tangential stresses at points A and B of the beam are equal in magnitude.

5.44.	A curved beam of a circular cross section of diameter d is fixed at one end and 
subjected to a concentrated load P at the free end (Fig. P5.44). Calculate (a) the 
tangential stress at point A and (b) the tangential stress at point B. Given: P = 
800 N, d = 20 mm, a = 25 mm, and b = 15 mm.
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5.45.	A circular steel frame has a cross section approximated by the trapezoidal form 
shown in Fig. P5.45. Calculate (a) the tangential stress at point A and (b) the 
tangential stress at point B. Given: ri = 100 mm, b = 75 mm, b = 50 mm, and 
P = 50 kN.

5.46.	The triangular cross section of a curved beam is shown in Fig. P5.46. Derive the 
expression for the radius R along the neutral axis. Compare the result with that 
given for Fig. D in Table 5.3.

5.47.	The circular cross section of a curved beam is illustrated in Fig. P5.47. Derive the 
expression for the radius R along the neutral axis. Compare the result with that 
given for Fig. B in Table 5.3.

5.48.	The trapezoidal cross section of a curved beam is depicted in Fig. P5.48. Derive 
the expression for the radius R along the neutral axis. Compare the result with 
that given for Fig. E in Table 5.3.

5.49.	A machine component of channel cross-sectional area is loaded as shown in Fig. 
P5.49. Calculate the tangential stress at points A and B. All dimensions are in 
millimeters.

5.50.	A load P is applied to an eye bar with rigid insert for the purpose of pulling 
(Fig. P5.50). Determine the tangential stress at points A and B (a) by the elastic-
ity theory, (b) by Winkler’s theory, and (c) by the elementary theory. Compare the 
results obtained in each case.
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5.51.	A ring of mean radius r  and constant rectangular section is subjected to a concen-
trated load (Fig. P5.51). You may omit the effect of shear in bending. Derive the 
following general expression for the tangential stress at any section of the ring:

	 σ θ
= − +

−



θ

θP
A

M
A

R r
er

( /2)cos 	 (P5.51)
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where

	 θ= − −θM Pr Pr0.182 (1 cos )1
2

	

Use Castigliano’s theorem.
5.52.	The ring shown in Fig. P5.51 has the following dimensions: =r 150 mm, 

=t 50 mm, and =h 100 mm. Taking =E G5
2 , determine (a) the tangential stress 

on the inner fiber at θ π= /4 and (b) the deflection along the line of action of the 
load P, considering the effects of the normal and shear forces, as well as bending 
moment (Section 10.4).

P

h

t θ
r

Figure P5.51.
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uniaxial tension, 108

Axially loaded bars, 111–112, 
387–389

Axis of symmetry, 689, 692
Axisymmetric elements

finite element solution for, 
464–465

stresses in circular plates, 648–650
Azar, J .J., 568

B
Bar elements

Castigliano’s theorem for, 500
numerical method for, 379–383

Bar springs, 348–351
Bars, torsion. see Torsion, 

prismatic bars
Bathe, K.I., 423, 673
Baumeister III, T., 117, 711
Beam column, 554, 556
Beams, bending

analysis of perfectly plastic, 
590–600

applying Castigliano’s theorem 
to, 500, 510–511

asymmetrical section of, 
246–251

cantilever, 145–146, 251–254, 
269, 278

composite, 270–276
of constant strength, 267–268
curvature of, 245
curved, 286–299
elasticity theory applied to, 

286–289
kinematic relations of, 244–246
normal and sheer stresses on, 

260–268
numerical methods for, 393–399
plastic deflection, 588–590
pure bending, 289
shear center and, 276–281
strain energy in, 113, 284–286
stresses in sandwich, 653–654
table of deflections and, 

705–706
tangential and normal stresses 

on, 296–300
Timoshenko beam theory, 246
under torsion, 348–349, 

373–377
transverse normal stress on, 

268–270
Beams, elastic foundations

classification of, 484–485
finite, 483–484

general theory for, 473–474
grid configurations for, 

490–492
infinite, 475–480
semi-infinite, 480–483
solution by finite differences, 

488–490
solutions for relatively stiff, 

486–488
supported by elastic elements, 

485–486
Becker, S. J., 466
Bending

beams. see Beams, bending
charts of bars/shafts in, 707–710
elementary bending theory. see 

Elementary bending theory
impact, failure criteria, 227–230
pure bending. see Pure bending
of thin plates, 636, 640

Bernoulli-Euler law, 246
Betti, E., 499
Bifurcation point, 535
Biharmonic equation, 141
Body forces, 2
Boley, B. A., 181
Bonded gages, foil and wire, 

103–104
Boresi, A. P., 51, 117, 181, 300, 423
Boundary conditions

applied to plates, 642–644
elasticity theory and, 287–288
numerical methods for, 373–377
three-dimensional problems 

and, 49–50
in torsion problems, 326–327, 

348
in two-dimensional problems, 

136, 138
Boundary value problem, elasticity, 

133
Brady, G. S., 117



Index� 723

Bredt’s formulas, 341
Bridget, F. J., 569
Brittle material, 86, 88
Broek, D., 232
Brush, D. O., 569
Buckling

of columns, 549–550, 552
energy methods applied to, 

554–562
by finite differences, 562–567
intermediate columns and 

inelastic, 544
load, 535
modes of, 538–539
of pin-ended columns, 536–538

Buckling formula, Euler’s, 538
Budynas, R. G., 181, 300, 354, 711
Bulk modulus, 98
Burr, A. H., 524

C
CAD (computer-aided design) 

software, 423
CAE (computer-aided 

engineering), 423
Calculations, engineering, 680
Cantilever beams

bending of, 251–254, 259, 278
Castigliano’s theorem for, 

510–511
plane stress in, 414–418
solving deflection problems, 

373–374, 519–522
Cartesian representations, plane 

stress, 25–26
Case studies

in plane stress, 414–422
in analysis, 7–8

Cast irons, 84–85
Castigliano’s theorem

applied to bars, beams and 
trusses, 500–501

applied to strain energy, 
284–286

fictitious loads and, 501–506
Central differences, numerical 

methods, 366–368
Ceramics, 85
Cheatham, J. B., 524
Chong, K. P., 51
Chou, P. C., 51, 117
Circular

axisymmetrically loaded plates, 
648–650

bars in torsion, 112–113, 316–
321, 351–354

contact, 171
cylinders and thermal stresses, 

460–464

Classification, of columns, 543–544
Clauser, H. R., 117
Cold working, 92, 194
Collapse load, plastic, 600–605
Columns

buckling of pin-ended, 
536–539

critical load of, 534–535
deflection response of, 539–540
design formulas for, 548–550
with different end conditions, 

540–543
eccentrically loaded, 552–554
energy methods applied to 

buckling, 554–562
imperfections in, 550–552
inelastic behavior and, 540
Johnson’s buckling criterion for, 

546–548
local buckling of, 552
long, short and intermediate, 

543–544
solution by finite differences, 

562–568
tangent modulus theory and, 

544–546
Combined stress, 17
Compatibility equations. see 

Equations of compatibility
Complete yielding, plastic, 614, 

624–626
Composite areas, moments of

centroid, 689–691
inertia, 692–700

Composite beams
equation of neutral axis, 

271–272
of multi materials, 272–276
stresses in transformed, 272
transformed section method for, 

270–271
Composites, material, 85
Compound cylinders, 443–446, 

668–670
Computational tools, numerical 

methods, 423
Computer-aided design (CAD) 

software, 423
Computer-aided engineering 

(CAE), 423
Constant strain triangular (CST), 

407
Constantan, 104
Contact

general, 178–181
pressure for compound 

cylinders, 443
spherical and cylindrical, 171–174
stress distribution, 174–178
stresses and deflections, 169–171

Conversion, SI Unit/U.S. Unit, 
701–704

Cook, R. D., 300
Coordinate transformation, bar 

element, 380–381
Coulomb, C. A., 198
Coulomb-Mohr theory, failure 

criteria, 207–210
Cozzarelli, F. A., 118
Crack, fracture mechanics, 210–213
Creep curve, 194–195
Critical load, columns, 534–535, 

560–562
Critical stress, classification of 

columns, 543–544
Crotti-Engesser theorem, 508–509
CST (constant strain triangular), 

407
Curvature, radius of, 245
Curvature of plates, 636–639
Curved beam formula, 289–293
Curved boundaries, numerical 

methods for, 370–373
Cylinders

filament-wound, 666–667
hydraulic, 34–35, 445

Cylinders, thick walled
compound, 443–446
failure theories for, 442–443
finite element solution for, 

464–466
maximum tangential stress, 

441–442
under pressure, 435–441
stresses in perfectly plastic, 

623–627
thermal stress in long circular, 

460–464
Cylindrical contacts, elasticity, 

173–174
Cylindrical shells, 668–673

D
Da Vinci, Leonardo, 2
Deflection curve, Rayleigh-Ritz 

method, 522
Deflections

of a beam column, 556–557
of beams, 373–377
for columns, 539–540
contact stresses and, 169–171
elasticity theory and, 289
energy method for, 284–286
equations of plate, 640–641
perfectly plastic simple beam, 

599–600
plastic deflection of beams, 

588–590
of rectangular plates, 650–652
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Deflections (cont.)
of a ring, 512
and slopes of beams, 705
of statically indeterminate 

beams, 706
by trigonometric series, 517–522

Deformation
analysis of stress and, 5
beam kinematics and, 244–245
of plastic, 579–580
plastic axial, 585–588
of a plate in bending, 636
torsion problems and, 324–325
work done in, 497

Deformational theory, 614
Degree of statical indeterminacy, 

282. see also Statically 
indeterminate systems

Delta rosette, 106–107
Design, mechanics of solids, 4–8
Design formulas, columns, 548–550
Deviator (distortional) stresses, 

114, 579
Differential equations of 

equilibrium, 20
Dilatation, 93, 98
Dilatational stress tensor, 113
Direction cosines, 44, 683–686
Disks, rotating

of constant thickness, 446–449
disk flywheel, 449–453
elastic-plastic stresses in, 

612–614
thermal stresses in thin, 458–459
of uniform stress, 456–458
of variable thickness, 453–456

Dislocation, 579–580
Displacement

finite element analysis and, 
377–378

finite element solution for thin 
plates, 655–657

matrix for two-dimensional 
elements, 399–400

Rayleigh-Ritz method, 522
transformation for bar element, 

383
Ductile material, 86–87, 89, 193, 

230–232
Dummy load, energy method, 

506–508
Dynamic loading, 225–226

E
Eccentrically loaded columns, 

552–554
Edge dislocation, 579
Effective stress, 199, 615
Eigenfunctions, 539

Elastic/elasticity
Airy’s stress function, 141–143
basic relations in polar 

coordinates, 152–157
beam foundations. see Beams, 

elastic foundations
constants, 96
contact stress distribution, 

174–178
contact stresses and deflections, 

169–171
elements, beams supported by, 

485–486
general contact, 178–181
plane strain, 135–137
plane stress, 138–140
versus plastic material, 91–92
solutions for problems in, 

143–148
spherical and cylindrical 

contacts, 171–174
strain, stress and matrices, 

401–402
stress concentration factors, 

163–169
stress distribution acting on a 

beam, 161–163
stresses due to concentrated 

loads, 157–161
thermal stresses and, 149–152
three-dimensional problems, 134
two-dimensional problems, 

134–135, 140–141
Elasticity theory, beams, 286–289
Elastic-plastic

strain relations, 621
stresses in rotating disks, 612–614
torque, 606
torsion of circular shafts, 

605–609
Element nodal forces, 410–414
Elementary bending theory

comparison of results, 253–254, 
256

conclusions about, 256–257
method of integration, 258–260

Elementary formulas. see 
Mechanics of materials

Elementary theory of torsion, 
circular bars, 316–321

Ellipsoid, stress, 44
Elliptical bars, under torsion, 

328–331, 372–373. see also 
Torsion, prismatic bars

Empirical formulas, columns, 548
Endurance limit, 217
Energy, strain, 107–110
Energy methods

applied to buckling columns, 
554–562

for the bar element, 379–380
Castigliano’s theorem, 499–506
Crotti-Engesser theorem, 508–509
for deflection of beams, 

284–286
deflections by trigonometric 

series, 517–522
principle of minimum potential 

energy, 515–517
principle of virtual work, 

514–515
Rayleigh-Ritz method, 522–524
reciprocity theorem, 498–499
stability of columns and, 536
statically indeterminate systems, 

510–513
unit-or dummy-load method, 

506–508
work done in deformation, 497

Engesser formula, 545
Engineering calculations, 680
Engineering materials, table, 702–703
Equation of neutral axis, composite 

beams, 271–272
Equations. see also Formulas

axial force, 384–386
cubic equation, 39–40, 682–686
for finite differences, 368–370
Hencky’s equations, 616–619, 

620
stiffness matrix, 383
of thermoelasticity, 149–152
transformation equations, 

155–156, 248
Equations of compatibility

in beams, 286–287
in polar coordinates, 156–157
in solving torsion problem, 325
strain and, 75–76
in thermoelasticity, 149–152
in two-dimensional problems, 

137, 141
Equations of equilibrium

in beams, 286–287
of plate deflection, 640–641
in polar coordinates, 153
Prandtl’s membrane analogy, 

333–335
of shells, 661–662
in solving torsion problem, 325
in two-dimensional problems, 

136, 138
Equidimensional equation, 455
Equilateral hyperbola, 454
Equilateral triangle bar, under 

torsion, 331–332
Equilibrium

conditions of, 8–9
equations. see Equations of 

equilibrium
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Equilibrium method
applied to columns, 535
for the bar element, 379
Newton’s equilibrium method, 514

Equivalent alternating stress, 221
Euler, Leonard, 2
Eulerian coordinates, 73–74
Euler’s buckling formula, 541
Euler’s curve, 544
Exact theory, beams, 487

F
Faces, sandwich plates, 652
Factor of safety, 6–7, 213, 546–549
Failure

comparison of the yielding 
theories, 204

Coulomb-Mohr theory, 207–210
criteria for metal fatigue, 217–223
ductile-brittle transition, 

230–232
fatigue life, 223–225
fatigue: progressive fracture, 

216–217
by fracture, 195–197
fracture toughness, 213–215
impact loads, 225–227
introduction to fracture 

mechanics, 210–213
longitude and bending impact, 

227–230
maximum distortion energy 

theory, 199–200
maximum principal stress 

theory, 204–206
maximum shearing stress 

theory, 198–199
Mohr’s theory, 206–207
octahedral shearing stress 

theory, 200–203
theories. see Theories, failure
yield and fracture criteria, 

197–198
by yielding, 193–195

Fatigue
criterion table, 218
failure criteria for metal, 217–223
failure diagram, 219
life, 223–225
strength and endurance limits, 

217
tests, 216–217

Faupel, J. H., 118, 181, 466, 524, 
627, 673

Fictitious loads, Castigliano’s 
theorem, 501–506

Filament-wound cylinder, 666–667
Filleted bars, stress concentration 

charts, 707

Finite beams, elastic foundations, 
483–484

Finite differences
for beams on elastic 

foundations, 488–490
boundary conditions, 373–377
central differences, 366–368
columns and solution by, 

562–568
curved boundaries, 370–373

Finite element analysis (FEA)
axial force equation, 384–386
for the bar element, 379–383
for a beam element, 393–399
case studies in plane stress, 

414–422
computational tools, 423
for plates, 654–657
for a triangular finite element, 

407–414
for a truss, 386–393
for two-dimensional elements, 

399–402
Finite element method (FEM), 3, 

402–407
Fisher, F. E., 118, 181, 466, 524, 

627, 673
Flexural

center, 276–277
formula, 244
loading, 227
rigidity, 244, 541, 639

Flugge, W., 492
Flywheel, disks, 449–453
Foil gage, 103–104
Force transformation, bar element, 

381–382
Forces. see also by individual  

types
axial force equation, 384–386
boundary conditions of surface 

forces, 49–50
force transformation in bar 

element, 381–382
force-displacement relations, 

386–393
internal force resultants, 13–17
Kirchhoff’s force, 642
nodal forces, 379, 410–414

Form factor, for shear, 285–286
Formulas. see also Equations

Bredt’s formulas, 341
column, 548–550, 554
curved beam, 289–293
Engesser formula, 545
Euler’s buckling formula, 538, 

541
finite element method, 402–407
flexural, 244, 259, 272
Johnson’s buckling criterion, 546

Newton’s interpolation formula, 
369

secant formula, 552–554, 615
transfer formula, 692–694
Winkler’s formula, 293

Formulation, problem/solution, 
679–681

Fourier series, 517–518, 644
Fracture

criteria, 197–198
failure by, 195–197
mechanics, 210–213
progressive, 216–217
toughness, 213–215

Free-body diagram (FBD), 10, 679
Fundamental principals, of 

elasticity, 134–135

G
Gages, strain, 103–105
Galilei, Galileo, 2
General contact, elasticity, 

178–181
Generalized Hooke’s law, 96–100. 

see also Hooke’s law
Generalized plane strain, 142
Generator, shell, 670
Geometry, of deformation. see also 

Deformation
analysis of stress and, 5
beam kinematics and, 244–245
torsion problems and, 324–325

Gerber criterion, fatigue failure, 
219

Gere, J. M., 524, 568
Goodier, J., 118, 181, 300, 354
Goodman criterion, for uniaxial 

stress, 219–220
Grid configuration, beams, 

490–492
Griffith’s theory, failure by 

fracture, 195

H
Helical springs, 352–354
Hencky, H., 199
Hencky’s equations, 616–619, 620
Hertz, H., 169, 181
Hertz Theory, contact stresses, 

170–171
Hetényi, M., 118, 492
Hinge, plastic, 593–601, 604
Hodge, P. G., 627
Hoffman, O., 627
Hooke, Robert, 2
Hooke’s law

for beams in bending, 244, 252
for bending of thin plates, 638
generalized, 96–100
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Hooke’s law (cont.)
for orthotropic material, 

102–103
for plane stress, 139–140
in polar coordinates, 155
for uniaxial stress, 92–93

Huber, T. M., 199
Hydraulic cylinders, 34–35,  

445
Hydrodynamic analogy, 344–346
Hydrostatic stress, 44
Hyperbolic disk, 455–456

I
Impact loads. see also Load

basic assumptions, 227
bending, freely falling weight, 

227–228
bending, horizontally moving 

weight, 228–230
strain rate and, 226

Imperfect column, 540
Incremental theory, 620
Indicial notation, analysis of stress, 

50
Inelastic behavior, columns, 540
Inelastic buckling, 544
Inertia moments

parallel axis theorem, 692–694
principal moments of inertia, 

694–700
Infinite beams, elastic foundations, 

475–480
Inglis, C. E., 167
Initial yielding, plastic, 612
Instability phenomenon, plastic, 

582–583
Interaction curves, elastic-plastic, 

595–597
Interface pressure, compound 

cylinders, 443
Intermediate beams, 485
Internal force resultants, 13–17
Internal forces, 2
Internal friction theory, 207–210
International System of Units (SI), 

2, 701–704
Inverse method, 143
Iron, cast iron, 84–85
Irwin, G. R., 232
Isotropic

bending of thin plates, 636
engineering materials, 84
materials and generalized 

Hooke’s law, 97
sandwich plates, 654
two-dimensional problems, 

140–141
Iyengar, K .T., 492

J
Johnson, K. L., 181
Johnson-Kendall-Roberts (JKR) 

theory, 170–171
Johnson’s buckling criterion, 

546–548

K
Kelvin, William Thomas, 2
Kendall, K., 181
Kinematic relations. see Strain-

displacement relations
Kirchhoff’s force, 642
Knite, E., 423
Kotter, T., 118
Kreyzig, E., 423, 524

L
Lagrange, Joseph-Louis, 2
Lagrangian coordinates, 73–74
Lagrangian energy method, 514
Lame constants, 98
Large strain, 74
Lateral shears, 347
Levy-Mises theory, 621–622
Limit design, plastic loads, 600–605
Linear elasticity, 92
Linear strain triangular (LST) 

elements, 407
Linearly elastic material

beams, 473
Castigliano’s theorem and, 499
deformation and, 69
unit load method and, 506

Load
axially loaded, 111–112, 387–

389, 585–588
axisymmetrically loaded, 

648–650
buckling, 535
collapse, 600–605
critically loaded columns, 

534–535, 560–562
eccentrically loaded columns, 

552–554
fictitious loads and Castigliano’s 

theorem, 501–506
Mohr’s circle for torsional 

loading, 322
repeated loading, 216
stiffness matrix for deflection 

bar under combined loading, 
405–406

symmetrically loaded shells, 
660–662

ultimate load, 601
unit-or dummy-load method, 

506–508

Loading rate, ductile-brittle 
transition, 231

Local buckling, of columns, 552
Logan, D. L., 423
Logarithmic strain, 88
Long beams, 485
Long columns, 544
Longitude impact, failure criteria, 

227–230
Love, A. E. H., 2, 51
LST (linear strain triangular) 

elements, 407

M
Magnesium alloys, 85
Marin, J., 232
Material

brittle. see Brittle material
ductile. see Ductile material
elastic versus plastic, 91–92
engineering materials table, 

702–703
isotropic, 97
linearly elastic. see Linearly 

elastic material
mechanics of. see Mechanics of 

materials
multi materials beams 

(composite), 272–276
orthotropic, 101–103, 139–140
plastic behavior. see Plastic/

plasticity
MATLAB (Matrix Laboratory), 

423, 712–714
Matrices (strain, stress and 

elasticity), 655
Matrix methods, finite element 

analysis, 377–378
Maugis, D., 181
Maximum

distortion energy theory, 
199–200

principal stress theory, 204–206
radial stress, 448
shearing stress, 198–199
tangential stress, 441–442

M-code, MATLAB, 712–713
Mean strain, 114
Mean stress, 218–219
Measurement, strain, 103–107
Mechanics of materials

problems in elasticity and, 133
stress formulas, 15–17
theory of elasticity and, 1–2

Mechanism of collapse, 600–601
Meguid, S. A., 232
Membrane action, shells, 658–660
Membrane analogy. see Prandtl’s 

membrane analogy
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Membrane-roof analogy, 610–611
Mendelsson, A., 627
Meridian curve, shells, 660
Mesh refinement, 378
Messal, E. E., 686
Metal fatigue, failure criteria, 

217–223
Metals, 84–85
Method

energy methods. see Energy 
methods

equilibrium. see Equilibrium 
method

inverse and semi-inverse, 143
numerical methods. see 

Numerical methods
offset method, 86
of sections, 9–10, 270–276, 500
superposition, 69–70, 282–284

Midsurface, shells, 658
Minimum potential energy, 

principle of, 515–517
Mises, R. von, 199
Mises-Hencky yield criterion, 

200–203, 610
Modes of failure, 192
Modes of force transmission, 14
Modulus

bulk, 98
of elasticity, 90, 591
of the foundation, 473
of plasticity, 615
of rupture, 244
tangent modulus theory, 

544–545
of toughness/resilience, 109

Mohr’s circle
for curvature of plates, 638
for plane strain, 80–83
three dimensional stress, 45–49
for torsional loading, 322
two-dimensional stress, 28–35

Mohr’s theory, failure criteria, 
206–207

Mollick, L., 466
Moment

bending, twisting, 14, 642
force and moment over the ends 

of a bar, 327–333
of inertia. see Inertia moments
plane stresses and, 638–639
plastic, 592
sign convention for, 243, 639

N
Nadai, A., 232, 627
Navier, L., 2, 644
Necking, 86
Neuber, H. P., 167, 181

Neutral
axes, 244
axis equation, composite beams, 

271–272
equilibrium, 535

Newton, Sir Isaac, 2
Newton’s equilibrium method, 514
Newton’s interpolation formula, 369
Nodal forces, 379, 410–414
Nodes, unevenly spaced, 567–568
Nonlinearly elastic, 91, 499, 

508–509
Normal strain, 70
Normal stress

bending of beams and, 260–268
on an oblique plane, 42–43
shear stresses versus, 10
strain energy density for, 

108–109
tangential stresses combined 

with, 296–300
transverse normal, 268–270
transverse normal stress, 

268–270
Numerical accuracy, solving 

problems, 680
Numerical methods

for an arbitrarily oriented bar 
element, 380–383

axial force equation, 384–386
for a bar element, 379–380
for a beam element, 393–399
for boundary conditions, 

373–377
for case studies in plane stress, 

414–422
central differences, 366–368
computational tools, 423
for curved boundaries, 370–373
finite difference equations, 

368–370
finite differences, 365
finite element fundamentals, 

377–378
finite element method formula, 

402–407
force-displacement relations, 

386–393
for a triangular finite element, 

407–414
for two-dimensional elements, 

399–402

O
Oblique plane, stresses on, 42–45
Octahedral shearing stress theory, 

200–203
Octahedral stress, 44–45
Offset method, 86

Orthogonality function, 518–519
Orthotropic materials, strain, 

101–103, 139–140
Osgood, W. R., 581, 627
Out-of-plane principal strain, 139

P
Paez, T. L., 232
Pagano, N. J., 51, 118
Parallel-axis theorem, 692–694
Park, F. R., 466
Partial yielding, plastic, 612–613, 

626–627
Particle mechanics, 514
Pawlik, P. S., 51
Peak compressive stress, 275
Pearson, K., 51, 354
Perfectly plastic

beams, 590–600
stresses in a flat disk, 612–614
stresses in thick-walled cylinder, 

623–627
Permanent set/strain, 91
Perry, D. J., 568
Pierso, A. G., 232
Pilkey, W. D., 181, 711
Pin-ended columns, buckling, 

536–539, 541
Pivot points, 365
Plane strain

elasticity, problems in, 135–137
generalized, 142
Mohr’s circle for, 80–83
in a plate, 73–74
transformation of, 23
two-dimensional, 70–72

Plane stress
bending of beams and, 257
in a cantilever beam, 414–418
elasticity, problems in, 138–140
finite element applied to, 

418–421
on inclined planes, 321–324
introduction to, 13
plane-stress transformation, 

23–26
in a thick walled cylinder, 436
three-dimensional, 40
transformation of, 23–26

Planes
inclined planes, 321–324
slip planes, 193
of symmetry, orthotropic 

materials, 101–103
Plastic/plasticity

axial deformation, 585–588
behavior of material, 578–579
collapse load of structures, 

600–605
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Plastic/plasticity (cont.)
deflection of beams, 588–590
deformation, 84, 579–580
elastic material versus, 91–92
elastic-plastic stresses in 

rotating disks, 612–614
elastic-plastic torsion, 605–609
hinge, 593–601, 604
idealized stress-strain diagrams, 

580–582
instability in simple tension, 

582–584
perfectly plastic beams, 

590–600
range, 88
stresses in perfectly plastic 

cylinders, 623–627
stress-strain relations, 614–623
torsion: membrane analogy, 

610–611
types of materials, 85

Plate stress
axisymmetrically loaded 

circular, 648–650
basic assumption of, 635–636

Plate stress (cont.)
boundary conditions of, 

642–644
with circular holes, 165–168
curvature, and moment relations 

of, 638–639
deflections of rectangular, 

650–652
finite element solution for, 

654–657
governing equations of plate 

deflection, 640–641
sandwich, 652–654
simply supported rectangular, 

644–647
strain-curvature relations of, 

636–638
Poisson, S. D., 92–93
Poisson’s ratio, 92–93, 579
Polar coordinates, basic relations 

in, 152–157
Polar representations, plane stress, 

25
Polycrystalline structural metals, 

failure, 193, 196
Polynomial solutions, 144–148
Potential energy, 515–517
Power transmission, shafts in, 

323–324
Prandtl’s membrane analogy

equation of equilibrium, 
333–335

plastic torsion, 610–611
shearing stress and angle of 

twist, 335–337

Prandtl’s stress function
boundary conditions of, 

326–327
force and moments over the 

ends, 327–333
Pressure

contact, 443
cylinders under, 435–441

Principal moments of inertia, 
694–700

Principal of superposition, 69. see 
also Superposition

Principal stresses
maximum in-plane shear stress 

and, 26–28
Mohr’s circle and, 29–30
solving cubic equations, 

682–686
in three dimensions, 38–42

Prismatic bars, torsion. see 
Torsion, prismatic bars

Problem formulation/solution, 
679–681

Progressive fracture, fatigue, 
216–217

Proportional limit, 83
Pure bending

of asymmetrical section of 
beam, 246–251

of inelastic beam, 588
of perfectly plastic beams, 

590–591
of plates, 638, 650–651
strain energy for beam in, 113
of symmetrical section of beam, 

242–246
Pure shear, 13, 92

Q
Quinney, H., 232

R
Radial interference, 443
Radial stress, 450
Radians per second, rotating disks, 

446
Radius

of curvature of beams, 245
of curvature of shells, 658
of gyration, 542, 692

Ramberg, W., 627
Ramu, S. A., 492
Range stress, 218
Rankine, W. J. M, 204
Ranov, T., 466
Rayleigh, Lord, 499, 522
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