
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134845623
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134845623
https://plusone.google.com/share?url=http://www.informit.com/title/9780134845623
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134845623
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134845623/Free-Sample-Chapter

Machine Learning

with Python

for Everyone

Machine Learning

with Python

for Everyone

Mark E. Fenner

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2019938761

Copyright © 2020 Pearson Education, Inc.

Cover image: cono0430/Shutterstock

Pages 58, 87: Screenshot of seaborn © 2012–2018 Michael Waskom.
Pages 167, 177, 192, 201, 278, 284, 479, 493: Screenshot of seaborn heatmap © 2012–2018 Michael

Waskom.
Pages 178, 185, 196, 197, 327, 328: Screenshot of seaborn swarmplot © 2012–2018 Michael Waskom.
Page 222: Screenshot of seaborn stripplot © 2012–2018 Michael Waskom.
Pages 351, 354: Screenshot of seaborn implot © 2012–2018 Michael Waskom.
Pages 352, 353, 355: Screenshot of seaborn distplot © 2012–2018 Michael Waskom.
Pages 460, 461: Screenshot of Manifold © 2007–2018, scikit-learn developers.
Page 480: Screenshot of cluster © 2007–2018, scikit-learn developers.
Pages 483, 484, 485: Image of accordion, Vereshchagin Dmitry/Shutterstock.
Page 485: Image of fighter jet, 3dgenerator/123RF.
Page 525: Screenshot of seaborn jointplot © 2012–2018 Michael Waskom.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-484562-3
ISBN-10: 0-13-484562-5

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/

To my son, Ethan—
with the eternal hope of a better tomorrow

This page intentionally left blank

Contents

Foreword xxi

Preface xxiii

About the Author xxvii

I First Steps 1

1 Let’s Discuss Learning 3
1.1 Welcome 3

1.2 Scope, Terminology, Prediction,

and Data 4

1.2.1 Features 5

1.2.2 Target Values and

Predictions 6

1.3 Putting the Machine in Machine

Learning 7

1.4 Examples of Learning Systems 9

1.4.1 Predicting Categories: Examples of

Classifiers 9

1.4.2 Predicting Values: Examples of

Regressors 10

1.5 Evaluating Learning Systems 11

1.5.1 Correctness 11

1.5.2 Resource Consumption 12

1.6 A Process for Building Learning

Systems 13

1.7 Assumptions and Reality of Learning 15

1.8 End-of-Chapter Material 17

1.8.1 The Road Ahead 17

1.8.2 Notes 17

2 Some Technical Background 19
2.1 About Our Setup 19

2.2 The Need for Mathematical Language 19

viii Contents

2.3 Our Software for Tackling Machine

Learning 20

2.4 Probability 21

2.4.1 Primitive Events 22

2.4.2 Independence 23

2.4.3 Conditional Probability 24

2.4.4 Distributions 25

2.5 Linear Combinations, Weighted Sums,

and Dot Products 28

2.5.1 Weighted Average 30

2.5.2 Sums of Squares 32

2.5.3 Sum of Squared Errors 33

2.6 A Geometric View: Points in

Space 34

2.6.1 Lines 34

2.6.2 Beyond Lines 39

2.7 Notation and the Plus-One Trick 43

2.8 Getting Groovy, Breaking the

Straight-Jacket, and Nonlinearity 45

2.9 NumPy versus “All the Maths” 47

2.9.1 Back to 1D versus 2D 49

2.10 Floating-Point Issues 52

2.11 EOC 53

2.11.1 Summary 53

2.11.2 Notes 54

3 Predicting Categories: Getting Started
with Classification 55
3.1 Classification Tasks 55

3.2 A Simple Classification Dataset 56

3.3 Training and Testing: Don’t Teach

to the Test 59

3.4 Evaluation: Grading the Exam 62

3.5 Simple Classifier #1:

Nearest Neighbors, Long Distance

Relationships, and Assumptions 63

3.5.1 Defining Similarity 63

3.5.2 The k in k-NN 64

3.5.3 Answer Combination 64

Contents ix

3.5.4 k-NN, Parameters, and

Nonparametric Methods 65

3.5.5 Building a k-NN Classification

Model 66

3.6 Simple Classifier #2: Naive Bayes,

Probability, and Broken Promises 68

3.7 Simplistic Evaluation of Classifiers 70

3.7.1 Learning Performance 70

3.7.2 Resource Utilization in

Classification 71

3.7.3 Stand-Alone Resource

Evaluation 77

3.8 EOC 81

3.8.1 Sophomore Warning: Limitations

and Open Issues 81

3.8.2 Summary 82

3.8.3 Notes 82

3.8.4 Exercises 83

4 Predicting Numerical Values: Getting Started
with Regression 85
4.1 A Simple Regression Dataset 85

4.2 Nearest-Neighbors Regression and Summary

Statistics 87

4.2.1 Measures of Center: Median and

Mean 88

4.2.2 Building a k-NN Regression

Model 90

4.3 Linear Regression and Errors 91

4.3.1 No Flat Earth: Why We Need

Slope 92

4.3.2 Tilting the Field 94

4.3.3 Performing Linear

Regression 97

4.4 Optimization: Picking the Best Answer 98

4.4.1 Random Guess 98

4.4.2 Random Step 99

4.4.3 Smart Step 99

4.4.4 Calculated Shortcuts 100

x Contents

4.4.5 Application to Linear

Regression 101

4.5 Simple Evaluation and Comparison

of Regressors 101

4.5.1 Root Mean Squared

Error 101

4.5.2 Learning Performance 102

4.5.3 Resource Utilization in

Regression 102

4.6 EOC 104

4.6.1 Limitations and Open

Issues 104

4.6.2 Summary 105

4.6.3 Notes 105

4.6.4 Exercises 105

II Evaluation 107

5 Evaluating and Comparing Learners 109
5.1 Evaluation and Why Less Is More 109

5.2 Terminology for Learning Phases 110

5.2.1 Back to the Machines 110

5.2.2 More Technically

Speaking . . . 113

5.3 Major Tom, There’s Something Wrong:

Overfitting and Underfitting 116

5.3.1 Synthetic Data and Linear

Regression 117

5.3.2 Manually Manipulating Model

Complexity 118

5.3.3 Goldilocks: Visualizing

Overfitting, Underfitting, and

“Just Right” 120

5.3.4 Simplicity 124

5.3.5 Take-Home Notes on

Overfitting 124

5.4 From Errors to Costs 125

5.4.1 Loss 125

5.4.2 Cost 126

Contents xi

5.4.3 Score 127

5.5 (Re)Sampling: Making More from Less 128

5.5.1 Cross-Validation 128

5.5.2 Stratification 132

5.5.3 Repeated Train-Test Splits 133

5.5.4 A Better Way and Shuffling 137

5.5.5 Leave-One-Out

Cross-Validation 140

5.6 Break-It-Down: Deconstructing Error into Bias

and Variance 142

5.6.1 Variance of the Data 143

5.6.2 Variance of the Model 144

5.6.3 Bias of the Model 144

5.6.4 All Together Now 145

5.6.5 Examples of Bias-Variance

Tradeoffs 145

5.7 Graphical Evaluation and Comparison 149

5.7.1 Learning Curves: How Much Data

Do We Need? 150

5.7.2 Complexity Curves 152

5.8 Comparing Learners with

Cross-Validation 154

5.9 EOC 155

5.9.1 Summary 155

5.9.2 Notes 155

5.9.3 Exercises 157

6 Evaluating Classifiers 159
6.1 Baseline Classifiers 159

6.2 Beyond Accuracy: Metrics

for Classification 161

6.2.1 Eliminating Confusion from the

Confusion Matrix 163

6.2.2 Ways of Being Wrong 164

6.2.3 Metrics from the Confusion

Matrix 165

6.2.4 Coding the Confusion Matrix 166

6.2.5 Dealing with Multiple Classes:

Multiclass Averaging 168

xii Contents

6.2.6 F1 170

6.3 ROC Curves 170

6.3.1 Patterns in the ROC 173

6.3.2 Binary ROC 174

6.3.3 AUC: Area-Under-the-(ROC)-

Curve 177

6.3.4 Multiclass Learners,

One-versus-Rest, and

ROC 179

6.4 Another Take on Multiclass:

One-versus-One 181

6.4.1 Multiclass AUC Part Two: The

Quest for a Single

Value 182

6.5 Precision-Recall Curves 185

6.5.1 A Note on Precision-Recall

Tradeoff 185

6.5.2 Constructing a

Precision-Recall Curve 186

6.6 Cumulative Response and Lift

Curves 187

6.7 More Sophisticated Evaluation

of Classifiers: Take Two 190

6.7.1 Binary 190

6.7.2 A Novel Multiclass

Problem 195

6.8 EOC 201

6.8.1 Summary 201

6.8.2 Notes 202

6.8.3 Exercises 203

7 Evaluating Regressors 205
7.1 Baseline Regressors 205

7.2 Additional Measures for

Regression 207

7.2.1 Creating Our Own Evaluation

Metric 207

7.2.2 Other Built-in Regression

Metrics 208

7.2.3 R2 209

Contents xiii

7.3 Residual Plots 214

7.3.1 Error Plots 215

7.3.2 Residual Plots 217

7.4 A First Look at Standardization 221

7.5 Evaluating Regressors in a More

Sophisticated Way: Take Two 225

7.5.1 Cross-Validated Results on

Multiple Metrics 226

7.5.2 Summarizing Cross-Validated

Results 230

7.5.3 Residuals 230

7.6 EOC 232

7.6.1 Summary 232

7.6.2 Notes 232

7.6.3 Exercises 234

III More Methods and Fundamentals 235

8 More Classification Methods 237
8.1 Revisiting Classification 237

8.2 Decision Trees 239

8.2.1 Tree-Building Algorithms 242

8.2.2 Let’s Go: Decision Tree Time 245

8.2.3 Bias and Variance in Decision

Trees 249

8.3 Support Vector Classifiers 249

8.3.1 Performing SVC 253

8.3.2 Bias and Variance in SVCs 256

8.4 Logistic Regression 259

8.4.1 Betting Odds 259

8.4.2 Probabilities, Odds, and

Log-Odds 262

8.4.3 Just Do It: Logistic Regression

Edition 267

8.4.4 A Logistic Regression: A Space

Oddity 268

xiv Contents

8.5 Discriminant Analysis 269

8.5.1 Covariance 270

8.5.2 The Methods 282

8.5.3 Performing DA 283

8.6 Assumptions, Biases, and

Classifiers 285

8.7 Comparison of Classifiers: Take

Three 287

8.7.1 Digits 287

8.8 EOC 290

8.8.1 Summary 290

8.8.2 Notes 290

8.8.3 Exercises 293

9 More Regression Methods 295
9.1 Linear Regression in the Penalty Box:

Regularization 295

9.1.1 Performing Regularized

Regression 300

9.2 Support Vector Regression 301

9.2.1 Hinge Loss 301

9.2.2 From Linear Regression to

Regularized Regression to

Support Vector

Regression 305

9.2.3 Just Do It—SVR Style 307

9.3 Piecewise Constant Regression 308

9.3.1 Implementing a Piecewise

Constant Regressor 310

9.3.2 General Notes on

Implementing Models 311

9.4 Regression Trees 313

9.4.1 Performing Regression with

Trees 313

9.5 Comparison of Regressors: Take

Three 314

9.6 EOC 318

9.6.1 Summary 318

9.6.2 Notes 318

9.6.3 Exercises 319

Contents xv

10Manual Feature Engineering: Manipulating
Data for Fun and Profit 321
10.1 Feature Engineering Terminology and

Motivation 321

10.1.1 Why Engineer Features? 322

10.1.2 When Does Engineering

Happen? 323

10.1.3 How Does Feature Engineering

Occur? 324

10.2 Feature Selection and Data Reduction:

Taking out the Trash 324

10.3 Feature Scaling 325

10.4 Discretization 329

10.5 Categorical Coding 332

10.5.1 Another Way to Code and the

Curious Case of the Missing

Intercept 334

10.6 Relationships and Interactions 341

10.6.1 Manual Feature Construction 341

10.6.2 Interactions 343

10.6.3 Adding Features with

Transformers 348

10.7 Target Manipulations 350

10.7.1 Manipulating the Input

Space 351

10.7.2 Manipulating the Target 353

10.8 EOC 356

10.8.1 Summary 356

10.8.2 Notes 356

10.8.3 Exercises 357

11 Tuning Hyperparameters and Pipelines 359
11.1 Models, Parameters, Hyperparameters 360

11.2 Tuning Hyperparameters 362

11.2.1 A Note on Computer Science and

Learning Terminology 362

11.2.2 An Example of Complete

Search 362

11.2.3 Using Randomness to Search for a

Needle in a Haystack 368

xvi Contents

11.3 Down the Recursive Rabbit Hole:

Nested Cross-Validation 370

11.3.1 Cross-Validation, Redux 370

11.3.2 GridSearch as a Model 371

11.3.3 Cross-Validation Nested

within Cross-Validation 372

11.3.4 Comments on Nested

CV 375

11.4 Pipelines 377

11.4.1 A Simple Pipeline 378

11.4.2 A More Complex

Pipeline 379

11.5 Pipelines and Tuning Together 380

11.6 EOC 382

11.6.1 Summary 382

11.6.2 Notes 382

11.6.3 Exercises 383

IV Adding Complexity 385

12 Combining Learners 387
12.1 Ensembles 387

12.2 Voting Ensembles 389

12.3 Bagging and Random Forests 390

12.3.1 Bootstrapping 390

12.3.2 From Bootstrapping to

Bagging 394

12.3.3 Through the Random

Forest 396

12.4 Boosting 398

12.4.1 Boosting Details 399

12.5 Comparing the Tree-Ensemble

Methods 401

12.6 EOC 405

12.6.1 Summary 405

12.6.2 Notes 405

12.6.3 Exercises 406

Contents xvii

13Models That Engineer Features for Us 409
13.1 Feature Selection 411

13.1.1 Single-Step Filtering with

Metric-Based Feature

Selection 412

13.1.2 Model-Based Feature

Selection 423

13.1.3 Integrating Feature Selection with

a Learning Pipeline 426

13.2 Feature Construction with Kernels 428

13.2.1 A Kernel Motivator 428

13.2.2 Manual Kernel Methods 433

13.2.3 Kernel Methods and Kernel

Options 438

13.2.4 Kernelized SVCs: SVMs 442

13.2.5 Take-Home Notes on SVM and an

Example 443

13.3 Principal Components Analysis:

An Unsupervised Technique 445

13.3.1 A Warm Up: Centering 445

13.3.2 Finding a Different Best Line 448

13.3.3 A First PCA 449

13.3.4 Under the Hood of PCA 452

13.3.5 A Finale: Comments on General

PCA 457

13.3.6 Kernel PCA and Manifold

Methods 458

13.4 EOC 462

13.4.1 Summary 462

13.4.2 Notes 462

13.4.3 Exercises 467

14 Feature Engineering for Domains:
Domain-Specific Learning 469
14.1 Working with Text 470

14.1.1 Encoding Text 471

14.1.2 Example of Text Learning 476

14.2 Clustering 479

14.2.1 k-Means Clustering 479

xviii Contents

14.3 Working with Images 481

14.3.1 Bag of Visual Words 481

14.3.2 Our Image Data 482

14.3.3 An End-to-End System 483

14.3.4 Complete Code of BoVW

Transformer 491

14.4 EOC 493

14.4.1 Summary 493

14.4.2 Notes 494

14.4.3 Exercises 495

15 Connections, Extensions, and Further
Directions 497
15.1 Optimization 497

15.2 Linear Regression from Raw

Materials 500

15.2.1 A Graphical View of Linear

Regression 504

15.3 Building Logistic Regression from Raw

Materials 504

15.3.1 Logistic Regression with

Zero-One Coding 506

15.3.2 Logistic Regression with

Plus-One Minus-One

Coding 508

15.3.3 A Graphical View of Logistic

Regression 509

15.4 SVM from Raw Materials 510

15.5 Neural Networks 512

15.5.1 A NN View of Linear

Regression 512

15.5.2 A NN View of Logistic

Regression 515

15.5.3 Beyond Basic Neural

Networks 516

15.6 Probabilistic Graphical Models 516

15.6.1 Sampling 518

15.6.2 A PGM View of Linear

Regression 519

Contents xix

15.6.3 A PGM View of Logistic

Regression 523

15.7 EOC 525

15.7.1 Summary 525

15.7.2 Notes 526

15.7.3 Exercises 527

A mlwpy.py Listing 529

Index 537

This page intentionally left blank

Foreword

Whether it is called statistics, data science, machine learning, or artificial intelligence,
learning patterns from data is transforming the world. Nearly every industry imaginable
has been touched (or soon will be) by machine learning. The combined progress of both
hardware and software improvements are driving rapid advancements in the field, though it
is upon software that most people focus their attention.

While many languages are used for machine learning, including R, C/C++, Fortran,
and Go, Python has proven remarkably popular. This is in large part thanks to scikit-learn,
which makes it easy to not only train a host of different models but to also engineer
features, evaluate the model quality, and score new data. The scikit-learn project has
quickly become one of Python’s most important and powerful software libraries.

While advanced mathematical concepts underpin machine learning, it is entirely
possible to train complex models without a thorough background in calculus and matrix
algebra. For many people, getting into machine learning through programming, rather
than math, is a more attainable goal. That is precisely the goal of this book: to use Python
as a hook into machine learning and then add in some math as needed. Following in the
footsteps of R for Everyone and Pandas for Everyone, Machine Learning with Python for Everyone
strives to be open and accessible to anyone looking to learn about this exciting area of
math and computation.

Mark Fenner has spent years practicing the communication of science and machine
learning concepts to people of varying backgrounds, honing his ability to break down
complex ideas into simple components. That experience results in a form of storytelling
that explains concepts while minimizing jargon and providing concrete examples. The
book is easy to read, with many code samples so the reader can follow along on their
computer.

With more people than ever eager to understand and implement machine learning, it is
essential to have practical resources to guide them, both quickly and thoughtfully. Mark
fills that need with this insightful and engaging text. Machine Learning with Python for
Everyone lives up to its name, allowing people with all manner of previous training to
quickly improve their machine learning knowledge and skills, greatly increasing access to
this important field.

Jared Lander,
Series Editor

This page intentionally left blank

Preface

In 1983, the movie WarGames came out. I was a preteen and I was absolutely engrossed:
by the possibility of a nuclear apocalypse, by the almost magical way the lead character
interacted with computer systems, but mostly by the potential of machines that could learn.
I spent years studying the strategic nuclear arsenals of the East and the West—fortunately
with a naivete of a tweener—but it was almost ten years before I took my first serious
steps in computer programming. Teaching a computer to do a set process was amazing.
Learning the intricacies of complex systems and bending them around my curiosity was a
great experience. Still, I had a large step forward to take. A few short years later, I worked
with my first program that was explicitly designed to learn. I was blown away and I knew
I found my intellectual home. I want to share the world of computer programs that learn
with you.

Audience
Who do I think you are? I’ve written Machine Learning with Python for Everyone for the
absolute beginner to machine learning. Even more so, you may well have very little
college-level mathematics in your toolbox and I’m not going to try to change that. While
many machine learning books are very heavy on mathematical concepts and equations,
I’ve done my best to minimize the amount of mathematical luggage you’ll have to carry. I
do expect, given the book’s title, that you’ll have some basic proficiency in Python. If you
can read Python, you’ll be able to get a lot more out of our discussions. While many books
on machine learning rely on mathematics, I’m relying on stories, pictures, and Python
code to communicate with you. There will be the occasional equation. Largely, these can
be skipped if you are so inclined. But, if I’ve done my job well, I’ll have given you enough
context around the equation to maybe—just maybe—understand what it is trying to say.

Why might you have this book in your hand? The least common denominator is that
all of my readers want to learn about machine learning. Now, you might be coming from
very different backgrounds: a student in an introductory computing class focused on
machine learning, a mid-career business analyst who all of sudden has been thrust beyond
the limits of spreadsheet analysis, a tech hobbyist looking to expand her interests, or a
scientist needing to analyze data in a new way. Machine learning is permeating society.
Depending on your background, Machine Learning with Python for Everyone has different
things to offer you. Even a mathematically sophisticated reader who is looking to do a
break-in to machine learning using Python can get a lot out of this book.

So, my goal is to take someone with an interest or need to do some machine learning
and teach them the process and the most important concepts of machine learning in a
concrete way using the Python scikit-learn library and some of its friends. You’ll come

xxiv Preface

away with overall patterns, strategies, pitfalls, and gotchas that will be applicable in every
learning system you ever study, build, or use.

Approach
Many books that try to explain mathematical topics, such as machine learning, do so by
presenting equations as if they tell a story to the uninitiated. I think that leaves many of
us—even those of us who like mathematics!—stuck. Personally, I build a far better mental
picture of the process of machine learning by combining visual and verbal descriptions
with running code. I’m a computer scientist at heart and by training. I love building things.
Building things is how I know that I’ve reached a level where I really understand them.
You might be familiar with the phrase, “If you really want to know something, teach it to
someone.” Well, there’s a follow-on. “If you really want to know something, teach a
computer to do it!” That’s my take on how I’m going to teach you machine learning.
With minimal mathematics, I want to give you the concepts behind the most important
and frequently used machine learning tools and techniques. Then, I want you to
immediately see how to make a computer do it. One note: we won’t be programming
these methods from scratch. We’ll be standing on the shoulders of giants and using some
very powerful, time-saving, prebuilt software libraries (more on that shortly).

We won’t be covering all of these libraries in great detail—there is simply too much
material to do that. Instead, we are going to be practical. We are going to use the best tool
for the job. I’ll explain enough to orient you in the concept we’re using—and then we’ll
get to using it. For our mathematically inclined colleagues, I’ll give pointers to more
in-depth references they can pursue. I’ll save most of this for end-of-the-chapter notes so
the rest of us can skip it easily.

If you are flipping through this introduction, deciding if you want to invest time in this
book, I want to give you some insight into things that are out-of-scope for us. We aren’t
going to dive into mathematical proofs or rely on mathematics to explain things. There are
many books out there that follow that path and I’ll give pointers to my favorites at the ends
of the chapters. Likewise, I’m going to assume that you are fluent in basic- to intermediate-
level Python programming. However, for more advanced Python topics—and things that
show up from third-party packages like NumPy or Pandas—I’ll explain enough of what’s
going on so that you can understand each technique and its context.

Overview
In Part I, we establish a foundation. I’ll give you some verbal and conceptual
introductions to machine learning in Chapter 1. In Chapter 2 we introduce and take a
slightly different approach to some mathematical and computational topics that show up
repeatedly in machine learning. Chapters 3 and 4 walk you through your first steps in
building, training, and evaluating learning systems that classify examples (classifiers) and
quantify examples (regressors).

Part II shifts our focus to the most important aspect of applied machine learning
systems: evaluating the success of our system in a realistic way. Chapter 5 talks about general

Preface xxv

evaluation techniques that will apply to all of our learning systems. Chapters 6 and 7 take
those general techniques and add evaluation capabilities for classifiers and regressors.

Part III broadens our toolbox of learning techniques and fills out the components of a
practical learning system. Chapters 8 and 9 give us additional classification and regression
techniques. Chapter 10 describes feature engineering: how we smooth the edges of rough
data into forms that we can use for learning. Chapter 11 shows how to chain multiple steps
together as a single learner and how to tune a learner’s inner workings for better
performance.

Part IV takes us beyond the basics and discusses more recent techniques that are
driving machine learning forward. We look at learners that are made up of multiple little
learners in Chapter 12. Chapter 13 discusses learning techniques that incorporate
automated feature engineering. Chapter 14 is a wonderful capstone because it takes the
techniques we describe throughout the book and applies them to two particularly
interesting types of data: images and text. Chapter 15 both reviews many of the techniques
we discuss and shows how they relate to more advanced learning architectures—neural
networks and graphical models.

Our main focus is on the techniques of machine learning. We will investigate a number
of learning algorithms and other processing methods along the way. However,
completeness is not our goal. We’ll discuss the most common techniques and only glance
briefly at the two large subareas of machine learning: graphical models and neural, or deep,
networks. However, we will see how the techniques we focus on relate to these more
advanced methods.

Another topic we won’t cover is implementing specific learning algorithms. We’ll build
on top of the algorithms that are already available in scikit-learn and friends; we’ll create
larger solutions using them as components. Still, someone has to implement the gears and
cogs inside the black-box we funnel data into. If you are really interested in implementation
aspects, you are in good company: I love them! Have all your friends buy a copy of this
book, so I can argue I need to write a follow-up that dives into these lower-level details.

Acknowledgments
I must take a few moments to thank several people that have contributed greatly to this
book. My editor at Pearson, Debra Williams Cauley, has been instrumental in every phase
of this book’s development. From our initial meetings, to her probing for a topic that
might meet both our needs, to gently shepherding me through many (many!) early drafts,
to constantly giving me just enough of a push to keep going, and finally climbing the
steepest parts of the mountain at its peak . . . through all of these phases, Debra has shown
the highest degrees of professionalism. I can only respond with a heartfelt thank you.

My wife, Dr. Barbara Fenner, also deserves more praise and thanks than I can give her
in this short space. In addition to the burdens that any partner of an author must bear, she
also served as my primary draft reader and our intrepid illustrator. She did the hard work of
drafting all of the non-computer-generated diagrams in this book. While this is not our
first joint academic project, it has been turned into the longest. Her patience is, by all
appearances, never ending. Barbara, I thank you!

xxvi Preface

My primary technical reader was Marilyn Roth. Marilyn was unfailingly positive
towards even my most egregious errors. Machine Learning with Python for Everyone is
immeasurably better for her input. Thank you.

I would also like to thank several members of Pearson’s editorial staff: Alina Kirsanova
and Dmitry Kirsanov, Julie Nahil, and many other behind-the-scenes folks that I didn’t
have the pleasure of meeting. This book would not exist without you and your
hardworking professionalism. Thank you.

Publisher’s Note
The text contains unavoidable references to color in figures. To assist readers of the print
edition, color PDFs of figures are available for download at http://informit.com/title
/9780134845623.

For formatting purposes, decimal values in many tables have been manually rounded to
two place values. In several instances, Python code and comments have been slightly
modified—all such modifications should result in valid programs.

Online resources for this book are available at https://github.com/mfenner1.

Register your copy of Machine Learning with Python for Everyone on the InformIT site for
convenient access to updates and/or corrections as they become available. To start the reg-
istration process, go to informit.com/register and log in or create an account. Enter the
product ISBN (9780134845623) and click Submit. Look on the Registered Products tab
for an Access Bonus Content link next to this product, and follow that link to access any
available bonus materials. If you would like to be notified of exclusive offers on new editions
and updates, please check the box to receive email from us.

http://informit.com/title/9780134845623
http://informit.com/title/9780134845623
https://github.com/mfenner1
http://informit.com/register

About the Author

Mark Fenner, PhD, has been teaching computing and mathematics to adult
audiences—from first-year college students to grizzled veterans of industry—since 1999.
In that time, he has also done research in machine learning, bioinformatics, and computer
security. His projects have addressed design, implementation, and performance of machine
learning and numerical algorithms; security analysis of software repositories; learning
systems for user anomaly detection; probabilistic modeling of protein function; and analysis
and visualization of ecological and microscopy data. He has a deep love of computing and
mathematics, history, and adventure sports. When he is not actively engaged in writing,
teaching, or coding, he can be found launching himself, with abandon, through the woods
on his mountain bike or sipping a post-ride beer at a swimming hole. Mark holds a nidan
rank in judo and is a certified Wilderness First Responder. He and his wife are graduates
of Allegheny College and the University of Pittsburgh. Mark holds a PhD in computer
science. He lives in northeastern Pennsylvania with his family and works through his
company, Fenner Training and Consulting, LLC.

This page intentionally left blank

3

Predicting Categories: Getting
Started with Classification

In [1]:

setup

from mlwpy import *

%matplotlib inline

3.1 Classification Tasks
Now that we’ve laid a bit of groundwork, let’s turn our attention to the main attraction:
building and evaluating learning systems. We’ll start with classification and we need some
data to play with. If that weren’t enough, we need to establish some evaluation criteria for
success. All of these are just ahead.

Let me squeeze in a few quick notes on terminology. If there are only two target classes
for output, we can call a learning task binary classification. You can think about {Yes,No},
{Red,Black}, or {True,False} targets. Very often, binary problems are described
mathematically using {−1,+1} or {0, 1}. Computer scientists love to encode
{False,True} into the numbers {0, 1} as the output values. In reality, {−1,+1} or {0, 1}
are both used for mathematical convenience, and it won’t make much of a difference to us.
(The two encodings often cause head-scratching if you lose focus reading two different
mathematical presentations. You might see one in a blog post and the other in an article
and you can’t reconcile them. I’ll be sure to point out any differences in this book.) With
more than two target classes, we have a multiclass problem.

Some classifiers try to make a decision about the output in a direct fashion. The direct
approach gives us great flexibility in the relationships we find, but that very flexibility
means that we aren’t tied down to assumptions that might lead us to better decisions.
These assumptions are similar to limiting the suspects in a crime to people that were near
where the crime occurred. Sure, we could start with no assumptions at all and equally
consider suspects from London, Tokyo, and New York for a crime that occurred in

56 Chapter 3 Predicting Categories: Getting Started with Classification

Nashville. But, adding an assumption that the suspect is in Tennessee should lead to a
better pool of suspects.

Other classifiers break the decision into a two-step process: (1) build a model of how
likely the outcomes are and (2) pick the most likely outcome. Sometimes we prefer the
second approach because we care about the grades of the prediction. For example, we
might want to know how likely it is that someone is sick. That is, we want to know that
there is a 90% chance someone is sick, versus a more generic estimate “yes, we think they
are sick.” That becomes important when the real-world cost of our predictions is high.
When cost matters, we can combine the probabilities of events with the costs of those
events and come up with a decision model to choose a real-world action that balances
these, possibly competing, demands. We will consider one example of each type of
classifier: Nearest Neighbors goes directly to an output class, while Naive Bayes makes an
intermediate stop at an estimated probability.

3.2 A Simple Classification Dataset
The iris dataset is included with sklearn and it has a long, rich history in machine learning
and statistics. It is sometimes called Fisher’s Iris Dataset because Sir Ronald Fisher, a
mid-20th-century statistician, used it as the sample data in one of the first academic papers
that dealt with what we now call classification. Curiously, Edgar Anderson was responsible
for gathering the data, but his name is not as frequently associated with the data. Bummer.
History aside, what is the iris data? Each row describes one iris—that’s a flower, by the
way—in terms of the length and width of that flower’s sepals and petals (Figure 3.1).
Those are the big flowery parts and little flowery parts, if you want to be highly technical.
So, we have four total measurements per iris. Each of the measurements is a length of one
aspect of that iris. The final column, our classification target, is the particular species—one
of three—of that iris: setosa, versicolor, or virginica.

We’ll load the iris data, take a quick tabular look at a few rows, and look at some graphs
of the data.

In [2]:

iris = datasets.load_iris()

iris_df = pd.DataFrame(iris.data,

columns=iris.feature_names)

iris_df['target'] = iris.target

display(pd.concat([iris_df.head(3),

iris_df.tail(3)]))

3.2 A Simple Classification Dataset 57

Figure 3.1 An iris and its parts.

sepal length sepal width petal length petal width target

(cm) (cm) (cm) (cm)

0 5.1000 3.5000 1.4000 0.2000 0

1 4.9000 3.0000 1.4000 0.2000 0

2 4.7000 3.2000 1.3000 0.2000 0

147 6.5000 3.0000 5.2000 2.0000 2

148 6.2000 3.4000 5.4000 2.3000 2

149 5.9000 3.0000 5.1000 1.8000 2

In [3]:

sns.pairplot(iris_df, hue='target', size=1.5);

58 Chapter 3 Predicting Categories: Getting Started with Classification

sns.pairplot gives us a nice panel of graphics. Along the diagonal from the top-left to
bottom-right corner, we see histograms of the frequency of the different types of iris
differentiated by color. The off-diagonal entries—everything not on that diagonal—are
scatter plots of pairs of features. You’ll notice that these pairs occur twice—once above
and once below the diagonal—but that each plot for a pair is flipped axis-wise on the
other side of the diagonal. For example, near the bottom-right corner, we see petal width
against target and then we see target against petal width (across the diagonal). When we flip
the axes, we change up-down orientation to left-right orientation.

In several of the plots, the blue group (target 0) seems to stand apart from the other two
groups. Which species is this?

In [4]:

print('targets: {}'.format(iris.target_names),

iris.target_names[0], sep="\n")

targets: ['setosa' 'versicolor' 'virginica']

setosa

So, looks like setosa is easy to separate or partition off from the others. The vs, versicolor
and virginica, are more intertwined.

3.3 Training and Testing: Don’t Teach to the Test 59

3.3 Training and Testing: Don’t Teach
to the Test

Let’s briefly turn our attention to how we are going to use our data. Imagine you are
taking a class (Figure 3.2). Let’s go wild and pretend you are studying machine learning.
Besides wanting a good grade, when you take a class to learn a subject, you want to be able
to use that subject in the real world. Our grade is a surrogate measure for how well we will
do in the real world. Yes, I can see your grumpy faces: grades can be very bad estimates of
how well we do in the real world. Well, we’re in luck! We get to try to make good grades
that really tell us how well we will do when we get out there to face reality (and, perhaps,
our student loans).

Figure 3.2 School work: training, testing, and evaluating.

So, back to our classroom setting. A common way of evaluating students is to teach
them some material and then test them on it. You might be familiar with the phrase
“teaching to the test.” It is usually regarded as a bad thing. Why? Because, if we teach to
the test, the students will do better on the test than on other, new problems they have
never seen before. They know the specific answers for the test problems, but they’ve
missed out on the general knowledge and techniques they need to answer novel problems.
Again, remember our goal. We want to do well in the real-world use of our subject. In a
machine learning scenario, we want to do well on unseen examples. Our performance on
unseen examples is called generalization. If we test ourselves on data we have already seen,
we will have an overinflated estimate of our abilities on novel data.

Teachers prefer to assess students on novel problems. Why? Teachers care about how
the students will do on new, never-before-seen problems. If they practice on a specific
problem and figure out what’s right or wrong about their answer to it, we want that new
nugget of knowledge to be something general that they can apply to other problems. If we
want to estimate how well the student will do on novel problems, we have to evaluate
them on novel problems. Are you starting to feel bad about studying old exams yet?

60 Chapter 3 Predicting Categories: Getting Started with Classification

I don’t want to get into too many details of too many tasks here. Still, there is one
complication I feel compelled to introduce. Many presentations of learning start off using a
teach-to-the-test evaluation scheme called in-sample evaluation or training error. These have
their uses. However, not teaching to the test is such an important concept in learning
systems that I refuse to start you off on the wrong foot! We just can’t take an easy way out. We
are going to put on our big girl and big boy pants and do this like adults with a real,
out-of-sample or test error evaluation. We can use these as an estimate for our ability to
generalize to unseen, future examples.

Fortunately, sklearn gives us some support here. We’re going to use a tool from
sklearn to avoid teaching to the test. The train_test_split function segments our
dataset that lives in the Python variable iris. Remember, that dataset has two components
already: the features and the target. Our new segmentation is going to split it into two
buckets of examples:

1. A portion of the data that we will use to study and build up our understanding and
2. A portion of the data that we will use to test ourselves.

We will only study—that is, learn from—the training data. To keep ourselves honest,
we will only evaluate ourselves on the testing data. We promise not to peek at the testing
data. We started by breaking our dataset into two parts: features and target. Now, we’re
breaking each of those into two pieces:

1. Features → training features and testing features
2. Targets → training targets and testing targets

We’ll get into more details about train_test_split later. Here’s what a basic call
looks like:

In [5]:

simple train-test split

(iris_train_ftrs, iris_test_ftrs,

iris_train_tgt, iris_test_tgt) = skms.train_test_split(iris.data,

iris.target,

test_size=.25)

print("Train features shape:", iris_train_ftrs.shape)

print("Test features shape:", iris_test_ftrs.shape)

Train features shape: (112, 4)

Test features shape: (38, 4)

So, our training data has 112 examples described by four features. Our testing data has
38 examples described by the same four attributes.

If you’re confused about the two splits, check out Figure 3.3. Imagine we have a box
drawn around a table of our total data. We identify a special column and put that special
column on the right-hand side. We draw a vertical line that separates that rightmost
column from the rest of the data. That vertical line is the split between our predictive

3.3 Training and Testing: Don’t Teach to the Test 61

Figure 3.3 Training and testing with features and a target in a table.

features and the target feature. Now, somewhere on the box we draw a horizontal
line—maybe three quarters of the way towards the bottom.

The area above the horizontal line represents the part of the data that we use for
training. The area below the line is—you got it!—the testing data. And the vertical line?
That single, special column is our target feature. In some learning scenarios, there might
be multiple target features, but those situations don’t fundamentally alter our discussion.
Often, we need relatively more data to learn from and we are content with evaluating
ourselves on somewhat less data, so the training part might be greater than 50 percent of
the data and testing less than 50 percent. Typically, we sort data into training and testing
randomly: imagine shuffling the examples like a deck of cards and taking the top part for
training and the bottom part for testing.

Table 3.1 lists the pieces and how they relate to the iris dataset. Notice that I’ve used
both some English phrases and some abbreviations for the different parts. I’ll do my best to
be consistent with this terminology. You’ll find some differences, as you go from book A
to blog B and from article C to talk D, in the use of these terms. That isn’t the end of the
world and there are usually close similarities. Do take a moment, however, to orient
yourself when you start following a new discussion of machine learning.

Table 3.1 Relationship between Python variables and iris data components.

iris Python variable Symbol Phrase
iris Dall (total) dataset

iris.data Dftrs train and test features

iris.target Dtgt train and test targets

iris_train_ftrs Dtrain training features

iris_test_ftrs Dtest testing features

iris_train_tgt Dtraintgt training target

iris_test_tgt Dtesttgt testing target

One slight hiccup in the table is that iris.data refers to all of the input features. But
this is the terminology that scikit-learn chose. Unfortunately, the Python variable name
data is sort of like the mathematical x: they are both generic identifiers. data, as a name,
can refer to just about any body of information. So, while scikit-learn is using a specific
sense of the word data in iris.data, I’m going to use a more specific indicator, Dftrs, for
the features of the whole dataset.

62 Chapter 3 Predicting Categories: Getting Started with Classification

3.4 Evaluation: Grading the Exam
We’ve talked a bit about how we want to design our evaluation: we don’t teach to the test.
So, we train on one set of questions and then evaluate on a new set of questions. How are
we going to compute a grade or a score from the exam? For now—and we’ll dive into this
later—we are simply going to ask, “Is the answer correct?” If the answer is true and we
predicted true, then we get a point! If the answer is false and we predicted true, we don’t get
a point. Cue :sadface:. Every correct answer will count as one point. Every missed answer
will count as zero points. Every question will count equally for one or zero points. In the
end, we want to know the percent we got correct, so we add up the points and divide by
the number of questions. This type of evaluation is called accuracy, its formula being
#correct answers

#questions . It is very much like scoring a multiple-choice exam.

So, let’s write a snippet of code that captures this idea. We’ll have a very short exam
with four true-false questions. We’ll imagine a student who finds themself in a bind and, in
a last act of desperation, answers every question with True. Here’s the scenario:

In [6]:

answer_key = np.array([True, True, False, True])

student_answers = np.array([True, True, True, True]) # desperate student!

We can calculate the accuracy by hand in three steps:

1. Mark each answer right or wrong.
2. Add up the correct answers.
3. Calculate the percent.

In [7]:

correct = answer_key == student_answers

num_correct = correct.sum() # True == 1, add them up

print("manual accuracy:", num_correct / len(answer_key))

manual accuracy: 0.75

Behind the scenes, sklearn’s metrics.accuracy_score is doing an equivalent calculation:

In [8]:

print("sklearn accuracy:",

metrics.accuracy_score(answer_key,

student_answers))

sklearn accuracy: 0.75

So far, we’ve introduced two key components in our evaluation. First, we identified
which material we study from and which material we test from. Second, we decided on a
method to score the exam. We are now ready to introduce our first learning method, train
it, test it, and evaluate it.

3.5 Simple Classifier #1: Nearest Neighbors, Long Distance Relationships, and Assumptions 63

3.5 Simple Classifier #1:
Nearest Neighbors, Long Distance
Relationships, and Assumptions

One of the simpler ideas for making predictions from a labeled dataset is:

1. Find a way to describe the similarity of two different examples.
2. When you need to make a prediction on a new, unknown example, simply take the

value from the most similar known example.

This process is the nearest-neighbors algorithm in a nutshell. I have three friends Mark,
Barb, Ethan for whom I know their favorite snacks. A new friend, Andy, is most like Mark.
Mark’s favorite snack is Cheetos. I predict that Andy’s favorite snack is the same as Mark’s:
Cheetos.

There are many ways we can modify this basic template. We may consider more than
just the single most similar example:

1. Describe similarity between pairs of examples.
2. Pick several of the most-similar examples.
3. Combine those picks to get a single answer.

3.5.1 Defining Similarity
We have complete control over what similar means. We could define it by calculating a
distance between pairs of examples: similarity = distance(example_one, example_two).
Then, our idea of similarity becomes encoded in the way we calculate the distance. Similar
things are close—a small distance apart. Dissimilar things are far away—a large distance
apart.

Let’s look at three ways of calculating the similarity of a pair of examples. The first,
Euclidean distance, harkens back to high-school geometry or trig. We treat the two
examples as points in space. Together, the two points define a line. We let that line be the
hypotenuse of a right triangle and, armed with the Pythagorean theorem, use the other
two sides of the triangle to calculate a distance (Figure 3.4). You might recall that
c2 = a2 + b2 or c =

√
a2 + b2. Or, you might just recall it as painful. Don’t worry, we

don’t have to do the calculation. scikit-learn can be told, “Do that thing for me.” By
now, you might be concerned that my next example can only get worse. Well, frankly, it
could. The Minkowski distance would lead us down a path to Einstein and his theory of
relativity . . . but we’re going to avoid that black (rabbit) hole.

Instead, another option for calculating similarity makes sense when we have examples
that consist of simple Yes,No or True,False features. With Boolean data, I can compare two
examples very nicely by counting up the number of features that are different. This simple
idea is clever enough that it has a name: the Hamming distance. You might recognize this as
a close cousin—maybe even a sibling or evil twin—of accuracy. Accuracy is the percent
correct—the percent of answers the same as the target—which is correct

total . Hamming distance
is the number of differences. The practical implication is that when two sets of answers agree

64 Chapter 3 Predicting Categories: Getting Started with Classification

Figure 3.4 Distances from components.

completely, we want the accuracy to be high: 100%. When two sets of features are
identical, we want the similarity distance between them to be low: 0.

You might have noticed that these notions of similarity have names—Euclid(-ean),
Minkowski, Hamming Distance—that all fit the template of FamousMathDude Distance.
Aside from the math dude part, the reason they share the term distance is because they obey
the mathematical rules for what constitutes a distance. They are also called metrics by the
mathematical wizards-that-be—as in distance metric or, informally, a distance measure.
These mathematical terms will sometimes slip through in conversation and
documentation. sklearn’s list of possible distance calculators is in the documentation for
neighbors.DistanceMetric: there are about twenty metrics defined there.

3.5.2 The k in k-NN
Choices certainly make our lives complicated. After going to the trouble of choosing how
to measure our local neighborhood, we have to decide how to combine the different
opinions in the neighborhood. We can think about that as determining who gets to vote
and how we will combine those votes.

Instead of considering only the nearest neighbor, we might consider some small number
of nearby neighbors. Conceptually, expanding our neighborhood gives us more
perspectives. From a technical viewpoint, an expanded neighborhood protects us from
noise in the data (we’ll come back to this in far more detail later). Common numbers of
neighbors are 1, 3, 10, or 20. Incidentally, a common name for this technique, and the
abbreviation we’ll use in this book, is k-NN for “k-Nearest Neighbors”. If we’re talking
about k-NN for classification and need to clarify that, I’ll tack a C on there: k-NN-C.

3.5.3 Answer Combination
We have one last loose end to tie down. We must decide how we combine the known
values (votes) from the close, or similar, neighbors. If we have an animal classification
problem, four of our nearest neighbors might vote for cat, cat, dog, and zebra. How do we
respond for our test example? It seems like taking the most frequent response, cat, would
be a decent method.

3.5 Simple Classifier #1: Nearest Neighbors, Long Distance Relationships, and Assumptions 65

In a very cool twist, we can use the exact same neighbor-based technique in regression
problems where we try to predict a numerical value. The only thing we have to change is
how we combine our neighbors’ targets. If three of our nearest neighbors gave us
numerical values of 3.1, 2.2, and 7.1, how do we combine them? We could use any
statistic we wanted, but the mean (average) and the median (middle) are two common and
useful choices. We’ll come back to k-NN for regression in the next chapter.

3.5.4 k-NN, Parameters, and Nonparametric Methods
Since k-NN is the first model we’re discussing, it is a bit difficult to compare it to other
methods. We’ll save some of those comparisons for later. There’s one major difference we
can dive into right now. I hope that grabbed your attention.

Recall the analogy of a learning model as a machine with knobs and levers on the side.
Unlike many other models, k-NN outputs—the predictions—can’t be computed from an
input example and the values of a small, fixed set of adjustable knobs. We need all of the
training data to figure out our output value. Really? Imagine that we throw out just one of
our training examples. That example might be the nearest neighbor of a new test example.
Surely, missing that training example will affect our output. There are other machine
learning methods that have a similar requirement. Still others need some, but not all, of the
training data when it comes to test time.

Now, you might argue that for a fixed amount of training data there could be a fixed
number of knobs: say, 100 examples and 1 knob per example, giving 100 knobs. Fair
enough. But then I add one example—and, poof, you now need 101 knobs, and that’s a
different machine. In this sense, the number of knobs on the k-NN machine depends on
the number of examples in the training data. There is a better way to describe this
dependency. Our factory machine had a side tray where we could feed additional
information. We can treat the training data as this additional information. Whatever we
choose, if we need either (1) a growing number of knobs or (2) the side-input tray, we say
the type of machine is nonparametric. k-NN is a nonparametric learning method.

Nonparametric learning methods can have parameters. (Thank you for nothing, formal
definitions.) What’s going on here? When we call a method nonparametric, it means that
with this method, the relationship between features and targets cannot be captured solely
using a fixed number of parameters. For statisticians, this concept is related to the idea of
parametric versus nonparametric statistics: nonparametric statistics assume less about a
basket of data. However, recall that we are not making any assumptions about the way our
black-box factory machine relates to reality. Parametric models (1) make an assumption
about the form of the model and then (2) pick a specific model by setting the parameters.
This corresponds to the two questions: what knobs are on the machine, and what values
are they set to? We don’t make assumptions like that with k-NN. However, k-NN does
make and rely on assumptions. The most important assumption is that our similarity
calculation is related to the actual example similarity that we want to capture.

66 Chapter 3 Predicting Categories: Getting Started with Classification

3.5.5 Building a k-NN Classification Model
k-NN is our first example of a model. Remember, a supervised model is anything that
captures the relationship between our features and our target. We need to discuss a few
concepts that swirl around the idea of a model, so let’s provide a bit of context first. Let’s
write down a small process we want to walk through:

1. We want to use 3-NN—three nearest neighbors—as our model.
2. We want that model to capture the relationship between the iris training features and

the iris training target.
3. We want to use that model to predict—on previously unseen test examples—the iris

target species.
4. Finally, we want to evaluate the quality of those predictions, using accuracy, by

comparing predictions against reality. We didn’t peek at these known answers, but
we can use them as an answer key for the test.

There’s a diagram of the flow of information in Figure 3.5.

Figure 3.5 Workflow of training, testing, and evaluation for 3-NN.

As an aside on sklearn’s terminology, in their documentation an estimator is fit on some
data and then used to predict on some data. If we have a training and testing split, we fit the
estimator on training data and then use the fit-estimator to predict on the test data. So, let’s

1. Create a 3-NN model,
2. Fit that model on the training data,
3. Use that model to predict on the test data, and
4. Evaluate those predictions using accuracy.

3.5 Simple Classifier #1: Nearest Neighbors, Long Distance Relationships, and Assumptions 67

In [9]:

default n_neighbors = 5

knn = neighbors.KNeighborsClassifier(n_neighbors=3)

fit = knn.fit(iris_train_ftrs, iris_train_tgt)

preds = fit.predict(iris_test_ftrs)

evaluate our predictions against the held-back testing targets

print("3NN accuracy:",

metrics.accuracy_score(iris_test_tgt, preds))

3NN accuracy: 1.0

Wow, 100%. We’re doing great! This machine learning stuff seems pretty easy—except
when it isn’t. We’ll come back to that shortly. We can abstract away the details of k-NN
classification and write a simplified workflow template for building and assessing models in
sklearn:

1. Build the model,
2. Fit the model using the training data,
3. Predict using the fit model on the testing data, and
4. Evaluate the quality of the predictions.

We can connect this workflow back to our conception of a model as a machine. The
equivalent steps are:

1. Construct the machine, including its knobs,
2. Adjust the knobs and feed the side-inputs appropriately to capture the training data,
3. Run new examples through the machine to see what the outputs are, and
4. Evaluate the quality of the outputs.

Here’s one last, quick note. The 3 in our 3-nearest-neighbors is not something that we
adjust by training. It is part of the internal machinery of our learning machine. There is no
knob on our machine for turning the 3 to a 5. If we want a 5-NN machine, we have to
build a completely different machine. The 3 is not something that is adjusted by the k-NN
training process. The 3 is a hyperparameter. Hyperparameters are not trained or manipulated
by the learning method they help define. An equivalent scenario is agreeing to the rules of
a game and then playing the game under that fixed set of rules. Unless we’re playing
Calvinball or acting like Neo in The Matrix—where the flux of the rules is the point—the
rules are static for the duration of the game. You can think of hyperparameters as being
predetermined and fixed in place before we get a chance to do anything with them while
learning. Adjusting them involves conceptually, and literally, working outside the learning
box or the factory machine. We’ll discuss this topic more in Chapter 11.

68 Chapter 3 Predicting Categories: Getting Started with Classification

3.6 Simple Classifier #2: Naive Bayes,
Probability, and Broken Promises

Another basic classification technique that draws directly on probability for its inspiration
and operation is the Naive Bayes classifier. To give you insight into the underlying
probability ideas, let me start by describing a scenario.

There’s a casino that has two tables where you can sit down and play games of chance.
At either table, you can play a dice game and a card game. One table is fair and the other
table is rigged. Don’t fall over in surprise, but we’ll call these Fair and Rigged. If you sit at
Rigged, the dice you roll have been tweaked and will only come up with six pips—the dots
on the dice—one time in ten. The rest of the values are spread equally likely among 1, 2,
3, 4, and 5 pips. If you play cards, the scenario is even worse: the deck at the rigged table
has no face cards—kings, queens, or jacks—in it. I’ve sketched this out in Figure 3.6. For
those who want to nitpick, you can’t tell these modifications have been made because the
dice are visibly identical, the card deck is in an opaque card holder, and you make no
physical contact with either the dice or the deck.

Figure 3.6 Fair and rigged tables at a casino.

Suppose I tell you—truthfully!—that you are sitting at Rigged. Then, when you play
cards for a while and never see a face card, you aren’t surprised. You also won’t expect to
see sixes on the die very often. Still, if you know you are at Rigged, neither of the outcomes
of the dice or card events is going to add anything to your knowledge about the other. We
know we are at Rigged, so inferring that we are Rigged doesn’t add a new fact to our
knowledge—although in the real world, confirmation of facts is nice.

Without knowing what table we are at, when we start seeing outcomes we receive
information that indicates which table we are at. That can be turned into concrete
predictions about the dice and cards. If we know which table we’re at, that process is
short-circuited and we can go directly to predictions about the dice and cards. The
information about the table cuts off any gains from seeing a die or card outcome. The
story is similar at Fair. If I tell you that you just sat down at the fair table, you would expect
all the dice rolls to happen with the same probability and the face cards to come up every
so often.

Now, imagine you are blindfolded and led to a table. You only know that there are two
tables and you know what is happening at both—you know Rigged and Fair exist.

3.6 Simple Classifier #2: Naive Bayes, Probability, and Broken Promises 69

However, you don’t know whether you are at Rigged or Fair. You sit down and the
blindfold is removed. If you are dealt a face card, you immediately know you are at the Fair
table. When we knew the table we were sitting at, knowing something about the dice
didn’t tell us anything additional about the cards or vice versa. Now that we don’t know
the table, we might get some information about the dice from the cards. If we see a face
card, which doesn’t exist at Rigged, we know we aren’t at Rigged. We must be at Fair. (That’s
double negative logic put to good use.) As a result, we know that sixes are going to show
up regularly.

Our key takeaway is that there is no communication or causation between the dice and the cards
at one of the tables. Once we sit at Rigged, picking a card doesn’t adjust the dice odds. The
way mathematicians describe this is by saying the cards and the dice are conditionally
independent given the table.

That scenario lets us discuss the main ideas of Naive Bayes (NB). The key component
of NB is that it treats the features as if they are conditionally independent of each other
given the class, just like the dice and cards at one of the tables. Knowing the table solidifies
our ideas about what dice and cards we’ll see. Likewise, knowing a class sets our ideas
about what feature values we expect to see.

Since independence of probabilities plays out mathematically as multiplication, we get
a very simple description of probabilities in a NB model. The likelihood of features for a
given class can be calculated from the training data. From the training data, we store the
probabilities of seeing particular features within each target class. For testing, we look
up probabilities of feature values associated with a potential target class and multiply them
together along with the overall class probability. We do that for each possible class. Then,
we choose the class with the highest overall probability.

I constructed the casino scenario to explain what is happening with NB. However,
when we use NB as our classification technique, we assume that the conditional independence
between features holds, and then we run calculations on the data. We could be wrong. The
assumptions might be broken! For example, we might not know that every time we roll a
specific value on the dice, the dealers—who are very good card sharks—are manipulating
the deck we draw from. If that were the case, there would be a connection between the
deck and dice; our assumption that there is no connection would be wrong. To quote a
famous statistician, George Box, “All models are wrong but some are useful.” Indeed.

Naive Bayes can be very useful. It turns out to be unreasonably useful in text
classification. This is almost mind-blowing. It seems obvious that the words in a sentence
depend on each other and on their order. We don’t pick words at random; we
intentionally put the right words together, in the right order, to communicate specific
ideas. How can a method which ignores the relationship between words—which are the
basis of our features in text classification—be so useful? The reasoning behind NB’s
success is two-fold. First, Naive Bayes is a relatively simple learning method that is hard to
distract with irrelevant details. Second, since it is particularly simple, it benefits from
having lots of data fed into it. I’m being slightly vague here, but you’ll need to jump ahead
to the discussion of overfitting (Section 5.3) to get more out of me.

Let’s build, fit, and evaluate a simple NB model.

70 Chapter 3 Predicting Categories: Getting Started with Classification

In [10]:

nb = naive_bayes.GaussianNB()

fit = nb.fit(iris_train_ftrs, iris_train_tgt)

preds = fit.predict(iris_test_ftrs)

print("NB accuracy:",

metrics.accuracy_score(iris_test_tgt, preds))

NB accuracy: 1.0

Again, we are perfect. Don’t be misled, though. Our success says more about the ease of
the dataset than our skills at machine learning.

3.7 Simplistic Evaluation of Classifiers
We have everything lined up for the fireworks! We have data, we have methods, and we
have an evaluation scheme. As the Italians say, “Andiamo!” Let’s go!

3.7.1 Learning Performance
Shortly, we’ll see a simple Python program to compare our two learners: k-NN and NB.
Instead of using the names imported by our setup statement from mlwpy import * at the
start of the chapter, it has its imports written out. This code is what you would write in a
stand-alone script or in a notebook that doesn’t import our convenience setup. You’ll
notice that we rewrote the train_test_split call and we also made the test set size
significantly bigger. Why? Training on less data makes it a harder problem. You’ll also
notice that I sent an extra argument to train_test_split: random_state=42 hacks the
randomness of the train-test split and gives us a repeatable result. Without it, every run of
the cell would result in different evaluations. Normally we want that, but here I want to be
able to talk about the results knowing what they are.

In [11]:

stand-alone code

from sklearn import (datasets, metrics,

model_selection as skms,

naive_bayes, neighbors)

we set random_state so the results are reproducible

otherwise, we get different training and testing sets

more details in Chapter 5

iris = datasets.load_iris()

3.7 Simplistic Evaluation of Classifiers 71

(iris_train_ftrs, iris_test_ftrs,

iris_train_tgt, iris_test_tgt) = skms.train_test_split(iris.data,

iris.target,

test_size=.90,

random_state=42)

models = {'kNN': neighbors.KNeighborsClassifier(n_neighbors=3),

'NB' : naive_bayes.GaussianNB()}

for name, model in models.items():

fit = model.fit(iris_train_ftrs, iris_train_tgt)

predictions = fit.predict(iris_test_ftrs)

score = metrics.accuracy_score(iris_test_tgt, predictions)

print("{:>3s}: {:0.2f}".format(name,score))

kNN: 0.96

NB: 0.81

With a test set size of 90% of the data, k-NN does fairly well and NB does a bit meh on
this train-test split. If you rerun this code many times without random_state set and you
use a more moderate amount of testing data, we get upwards of 97+% accuracy on both
methods for many repeated runs. So, from a learning performance perspective, iris is a
fairly easy problem. It is reasonably easy to distinguish the different types of flowers, based
on the measurements we have, using very simple classifiers.

3.7.2 Resource Utilization in Classification
Everything we do on a computer comes with a cost in terms of processing time and
memory. Often, computer scientists will talk about memory as storage space or, simply,
space. Thus, we talk about the time and space usage of a program or an algorithm. It may
seem a bit old-fashioned to worry about resource usage on a computer; today’s computer
are orders of magnitude faster and larger in processing and storage capabilities than their
ancestors of even a few years ago—let alone the behemoth machines of the 1960s and
1970s. So why are we going down a potentially diverting rabbit hole? There are two major
reasons: extrapolation and the limits of theoretical analysis.

3.7.2.1 Extrapolation
Today, much of data science and machine learning is driven by big data. The very nature of
big data is that it pushes the limits of our computational resources. Big data is a relative
term: what’s big for you might not be too big for someone with the skills and budget to
compute on a large cluster of machines with GPUs (graphics processing units). One
possible breaking point after which I don’t have small data is when the problem is so large
that I can’t solve it on my laptop in a “reasonable” amount of time.

72 Chapter 3 Predicting Categories: Getting Started with Classification

If I’m doing my prototyping and development on my laptop—so I can sip a mojito
under a palm tree in the Caribbean while I’m working—how can I know what sort
of resources I will need when I scale up to the full-sized problem? Well, I can take
measurements of smaller problems of increasing sizes and make some educated guesses
about what will happen with the full dataset. To do that, I need to quantify what’s
happening with the smaller data in time and space. In fairness, it is only an estimate, and
adding computational horsepower doesn’t always get a one-to-one payback. Doubling my
available memory won’t always double the size of the dataset I can process.

3.7.2.2 Limits of Theory
Some of you might be aware of a subfield of computer science called algorithm analysis
whose job is to develop equations that relate the time and memory use of a computing
task to the size of that task’s input. For example, we might say that the new learning
method Foo will take 2n+ 27 steps on n input examples. (That’s a drastic simplification:
we almost certainly care about how many features there are in these examples.)

So, if there is a theoretical way to know the resources needed by an algorithm, why do
we care about measuring them? I’m glad you asked. Algorithm analysis typically abstracts
away certain mathematical details, like constant factors and terms, that can be practically
relevant to real-world run times. Algorithm analysis also (1) makes certain strong or
mathematically convenient assumptions, particularly regarding the average case analysis,
(2) can ignore implementation details like system architecture, and (3) often uses
algorithmic idealizations, devoid of real-world practicalities and necessities, to reach its
conclusions.

In short, the only way to know how a real-world computational system is going to
consume resources, short of some specialized cases that don’t apply here, is to run it and
measure it. Now, it is just as possible to screw this up: you could run and measure under
idealized or nonrealistic conditions. We don’t want to throw out algorithmic analysis
altogether. My critiques are not failures of algorithm analysis; it’s simply open-eyed
understanding its limits. Algorithm analysis will always tell us some fundamental truths
about how different algorithms compare and how they behave on bigger-and-bigger
inputs.

I’d like to show off a few methods of comparing the resource utilization of our two
classifiers. A few caveats: quantifying program behavior can be very difficult. Everything
occurring on your system can potentially have a significant impact on your learning
system’s resource utilization. Every difference in your input can affect your system’s
behavior: more examples, more features, different types of features (numerical versus
symbolic), and different hyperparameters can all make the same learning algorithm behave
differently and consume different resources.

3.7.2.3 Units of Measure
We need to make one small digression. We’re going to be measuring the resources used
by computer programs. Time is measured in seconds, and space is measured in bytes.
One byte is eight bits: it can hold the answers to eight yes/no questions. Eight bits can

3.7 Simplistic Evaluation of Classifiers 73

distinguish between 256 different values—so far, so good. However, we’ll be dealing with
values that are significantly larger or smaller than our normal experience. I want you to be
able to connect with these values.

We need to deal with SI prefixes. SI is short for the International Standard of scientific
abbreviations—but, coming from a Romance language, the adjective is after the noun, so
the IS is swapped. The prefixes that are important for us are in Table 3.2. Remember that
the exponent is the x in 10x; it’s also the number of “padded zeros” on the right. That is,
kilo means 103 = 1000 and 1000 has three zeros on the right. The examples are distances
that would be reasonable to measure, using that prefix, applied to meters.

Table 3.2 SI prefixes and length scale examples.

Prefix Verbal Exponent Example Distance
T tera 12 orbit of Neptune around the Sun

G giga 9 orbit of the Moon around the Earth

M mega 6 diameter of the Moon

K kilo 3 a nice walk

0 1 meter ∼ 1 step

m milli −3 mosquito

µ micro −6 bacteria

n nano −9 DNA

There is another complicating factor. Computers typically work with base-2 amounts
of storage, not base-10. So, instead of 10x we deal with 2x. Strictly speaking—and
scientists are nothing if not strict—we need to account for this difference. For memory,
we have some additional prefixes (Table 3.3) that you’ll see in use soon.

Table 3.3 SI base-two prefixes and memory scale examples.

Prefix Verbal Prefix Number of Bytes Example
KiB kibi 2

10
a list of about 1000 numbers

MiB mebi 2
20

a short song as an MP3

GiB gibi 2
30

a feature-length movie

TiB tebi 2
40

a family archive of photos and movies

So, 2 MiB is two mebi-bytes equal to 220 bytes. You’ll notice that the base-2 prefixes are
also pronounced differently. Ugh. You might wonder why these step up by 10s, not by 3s
as in the base-10 values. Since 210 = 1024 ∼ 1000 = 103, multiplying by ten 2s is fairly
close to multiplying by three 10s. Unfortunately, these binary prefixes, defined by large
standards bodies, haven’t necessarily trickled down to daily conversational use. The good
news is that within one measuring system, you’ll probably only see MiB or MB, not both.
When you see MiB, just know that it isn’t quite MB.

74 Chapter 3 Predicting Categories: Getting Started with Classification

3.7.2.4 Time
In a Jupyter notebook, we have some nice tools to measure execution times. These are
great for measuring the time use of small snippets of code. If we have two different ways of
coding a solution to a problem and want to compare their speed, or just want to measure
how long a snippet of code takes, we can use Python’s timeit module. The Jupyter cell
magic %timeit gives us a convenient interface to time a line of code:

In [12]:

%timeit -r1 datasets.load_iris()

1000 loops, best of 1: 1.4 ms per loop

The -r1 tells timeit to measure the timing of the snippet once. If we give a higher r,
for repeats, the code will be run multiple times and we will get statistics. Recent versions
of Jupyter default to calculating the mean and standard deviation of the results. Fortunately,
for a single result we just get that single value. If you are concerned about the 1000 loops,
check out my note on it at the end of the chapter.

%%timeit—the two-percents make it a cell magic—applies the same strategy to the
entire block of code in a cell:

In [13]:

%%timeit -r1 -n1

(iris_train_ftrs, iris_test_ftrs,

iris_train_tgt, iris_test_tgt) = skms.train_test_split(iris.data,

iris.target,

test_size=.25)

1 loop, best of 1: 638 µs per loop

And now let’s point our chronometer (timeit) at our learning workflow:

In [14]:

%%timeit -r1

nb = naive_bayes.GaussianNB()

fit = nb.fit(iris_train_ftrs, iris_train_tgt)

preds = fit.predict(iris_test_ftrs)

metrics.accuracy_score(iris_test_tgt, preds)

1000 loops, best of 1: 1.07 ms per loop

3.7 Simplistic Evaluation of Classifiers 75

In [15]:

%%timeit -r1

knn = neighbors.KNeighborsClassifier(n_neighbors=3)

fit = knn.fit(iris_train_ftrs, iris_train_tgt)

preds = fit.predict(iris_test_ftrs)

metrics.accuracy_score(iris_test_tgt, preds)

1000 loops, best of 1: 1.3 ms per loop

If we just want to time one line in a cell—for example, we only want to see how long it
takes to fit the models—we can use a single-percent version, called a line magic, of timeit:

In [16]:

fitting

nb = naive_bayes.GaussianNB()

%timeit -r1 fit = nb.fit(iris_train_ftrs, iris_train_tgt)

knn = neighbors.KNeighborsClassifier(n_neighbors=3)

%timeit -r1 fit = knn.fit(iris_train_ftrs, iris_train_tgt)

1000 loops, best of 1: 708 µs per loop

1000 loops, best of 1: 425 µs per loop

In [17]:

predicting

nb = naive_bayes.GaussianNB()

fit = nb.fit(iris_train_ftrs, iris_train_tgt)

%timeit -r1 preds = fit.predict(iris_test_ftrs)

knn = neighbors.KNeighborsClassifier(n_neighbors=3)

fit = knn.fit(iris_train_ftrs, iris_train_tgt)

%timeit -r1 preds = fit.predict(iris_test_ftrs)

1000 loops, best of 1: 244 µs per loop

1000 loops, best of 1: 644 µs per loop

There seems to be a bit of a tradeoff. k-NN is faster to fit, but is slower to predict.
Conversely, NB takes a bit of time to fit, but is faster predicting. If you’re wondering why I
didn’t reuse the knn and nb from the prior cell, it’s because when you %timeit, variable
assignment are trapped inside the timeit magic and don’t leak back out to our main code.
For example, trying to use preds as “normal” code in the prior cell will results in a
NameError.

76 Chapter 3 Predicting Categories: Getting Started with Classification

3.7.2.5 Memory
We can also do a very similar sequence of steps for quick-and-dirty measurements
of memory use. However, two issues raise their ugly heads: (1) our tool isn’t built
into Jupyter, so we need to install it and (2) there are technical details—err,
opportunities?—that we’ll get to in a moment. As far as installation goes, install the
memory_profiler module with pip or conda at your terminal command line:

pip install memory_profiler

conda install memory_profiler

Then, in your notebook you will be able to use %load_ext. This is Jupyter’s command
to load a Jupyter extension module—sort of like Python’s import. For memory_profiler,
we use it like this:

%load_ext memory_profiler

Here it goes:

In [18]:

%load_ext memory_profiler

Use it is just like %%timeit. Here’s the cell magic version for Naive Bayes:

In [19]:

%%memit

nb = naive_bayes.GaussianNB()

fit = nb.fit(iris_train_ftrs, iris_train_tgt)

preds = fit.predict(iris_test_ftrs)

peak memory: 144.79 MiB, increment: 0.05 MiB

And for Nearest Neighbors:

In [20]:

%%memit

knn = neighbors.KNeighborsClassifier(n_neighbors=3)

fit = knn.fit(iris_train_ftrs, iris_train_tgt)

preds = fit.predict(iris_test_ftrs)

peak memory: 144.79 MiB, increment: 0.00 MiB

3.7.2.6 Complicating Factors
You may never have considered what happens with memory on your computer. In the late
2010s, you might have 4 or 8GB of system memory, RAM, on your laptop. I have 32GB

3.7 Simplistic Evaluation of Classifiers 77

on my workhorse powerstation—or workstation powerhorse, if you prefer. Regardless,
that system memory is shared by each and every running program on your computer. It is
the job of the operating system—Windows, OSX, Linux are common culprits—to
manage that memory and respond to applications’ requests to use it. The OS has to be a bit
of a playground supervisor to enforce sharing between the different programs.

Our small Python programs, too, are playing on that playground. We have to share with
others. As we request resources like memory—or time on the playground swing—the OS
will respond and give us a block of memory to use. We might actually get more memory
than we request (more on that in a second). Likewise, when we are done with a block of
memory—and being the polite playground children that we are—we will return it to the
playground monitor. In both our request for memory and our return of the memory, the
process incurs management overhead. Two ways that OSes simplify the process and reduce
the overhead are (1) by granting memory in blocks that might be more than we need and
(2) by possibly letting us keep using memory, after we’ve said we’re done with it, until
someone else actively needs it. The net result of this is that determining the actual amount
of memory that we are using—versus the amount the operating system has walled off for
us—can be very tricky. Measuring additional requests within a running program is even
more difficult.

Another issue further complicates matters. Python is a memory-managed language: it
has its own memory management facilities on top of the OS. If you were to rerun the
above cells in a Jupyter notebook, you might see a memory increment of 0.00 MiB and
wonder what circuits just got fried. In that case, the old memory we used was released by
us—and the operating system never shuffled it off to someone else. So, when we needed
more memory, we were able to reuse the old memory and didn’t need any new memory
from the OS. It is almost as if the memory was released and reclaimed by us so quickly that
it was never actually gone! Now, whether or not we see an increment is also dependent on
(1) what the notebook cell is doing, (2) what other memory our program has claimed and
is using, (3) every other program that is running on the computer, and (4) the exact details
of the operating system’s memory manager. To learn more, check out a course or textbook
on operating systems.

3.7.3 Stand-Alone Resource Evaluation
To minimize these concerns and to reduce confounding variables, it is extremely useful to
write small, stand-alone programs when testing memory use. We can make the script
general enough to be useful for stand-alone timing, as well.

In [21]:

!cat scripts/knn_memtest.py

import memory_profiler, sys

from mlwpy import *

@memory_profiler.profile(precision=4)

78 Chapter 3 Predicting Categories: Getting Started with Classification

def knn_memtest(train, train_tgt, test):

knn = neighbors.KNeighborsClassifier(n_neighbors=3)

fit = knn.fit(train, train_tgt)

preds = fit.predict(test)

if __name__ == "__main__":

iris = datasets.load_iris()

tts = skms.train_test_split(iris.data,

iris.target,

test_size=.25)

(iris_train_ftrs, iris_test_ftrs,

iris_train_tgt, iris_test_tgt) = tts

tup = (iris_train_ftrs, iris_train_tgt, iris_test_ftrs)

knn_memtest(*tup)

There are a few ways to use memory_profiler. We’ve seen the line and cell magics in
the previous section. In knn_memtest.py, we use the @memory_profiler.profile decorator.
That extra line of Python tells the memory profiler to track the memory usage of
knn_memtest on a line-by-line basis. When we run the script, we see memory-related
output for each line of knn_memtest:

In [22]:

!python scripts/knn_memtest.py

Filename: scripts/knn_memtest.py

output modified for formatting purposes

Line # Mem usage Increment Line Contents

==

4 120.5430 MiB 120.5430 MiB @memory_profiler.profile(precision=4)

5 def knn_memtest(train, train_tgt, test):

6 120.5430 MiB 0.0000 MiB knn = neighbors.

KNeighborsClassifier(n_neighbors=3)

7 120.7188 MiB 0.1758 MiB fit = knn.fit(train, train_tgt)

8 120.8125 MiB 0.0938 MiB preds = fit.predict(test)

Here’s another stand-alone script to measure the memory usage of Naive Bayes:

In [23]:

import functools as ft

import memory_profiler

from mlwpy import *

def nb_go(train_ftrs, test_ftrs, train_tgt):

nb = naive_bayes.GaussianNB()

3.7 Simplistic Evaluation of Classifiers 79

fit = nb.fit(train_ftrs, train_tgt)

preds = fit.predict(test_ftrs)

def split_data(dataset):

split = skms.train_test_split(dataset.data,

dataset.target,

test_size=.25)

return split[:-1] # don't need test tgt

def msr_mem(go, args):

base = memory_profiler.memory_usage()[0]

mu = memory_profiler.memory_usage((go, args),

max_usage=True)[0]

print("{:<3}: ~{:.4f} MiB".format(go.__name__, mu-base))

if __name__ == "__main__":

msr = msr_mem

go = nb_go

sd = split_data(datasets.load_iris())

msr(go, sd)

nb_go: ~0.0078 MiB

nb_go has the model-fit-predict pattern we saw above. split_data just wraps
train_test_split in a convenient way to use with nb_go. The new piece is setting up the
timing wrapper in msr_mem. Essentially, we ask what memory is used now, run nb_go, and
then see the maximum memory used along the way. Then, we take that max, subtract
what we were using before, max-baseline, and that’s the peak memory used by nb_go.
nb_go gets passed in to msr_mem as go and then finds its way to memory_usage.

We can write a similar msr_time driver to evaluate time, and we can write a similar
knn_go to kick off a k-NN classifier for measuring time and memory. Here are all four
pieces in a single script:

In [24]:

!cat scripts/perf_01.py

import timeit, sys

import functools as ft

import memory_profiler

from mlwpy import *

def knn_go(train_ftrs, test_ftrs, train_tgt):

knn = neighbors.KNeighborsClassifier(n_neighbors=3)

fit = knn.fit(train_ftrs, train_tgt)

80 Chapter 3 Predicting Categories: Getting Started with Classification

preds = fit.predict(test_ftrs)

def nb_go(train_ftrs, test_ftrs, train_tgt):

nb = naive_bayes.GaussianNB()

fit = nb.fit(train_ftrs, train_tgt)

preds = fit.predict(test_ftrs)

def split_data(dataset):

split = skms.train_test_split(dataset.data,

dataset.target,

test_size=.25)

return split[:-1] # don't need test tgt

def msr_time(go, args):

call = ft.partial(go, *args)

tu = min(timeit.Timer(call).repeat(repeat=3, number=100))

print("{:<6}: ~{:.4f} sec".format(go.__name__, tu))

def msr_mem(go, args):

base = memory_profiler.memory_usage()[0]

mu = memory_profiler.memory_usage((go, args),

max_usage=True)[0]

print("{:<3}: ~{:.4f} MiB".format(go.__name__, mu-base))

if __name__ == "__main__":

which_msr = sys.argv[1]

which_go = sys.argv[2]

msr = {'time': msr_time, 'mem':msr_mem}[which_msr]

go = {'nb' : nb_go, 'knn': knn_go}[which_go]

sd = split_data(datasets.load_iris())

msr(go, sd)

With all this excitement, let’s see where we end up using Naive Bayes:

In [25]:

!python scripts/perf_01.py mem nb

!python scripts/perf_01.py time nb

nb_go: ~0.1445 MiB

nb_go : ~0.1004 sec

3.8 EOC 81

And with k-NN:

In [26]:

!python scripts/perf_01.py mem knn

!python scripts/perf_01.py time knn

knn_go: ~0.3906 MiB

knn_go: ~0.1035 sec

In summary, our learning and resource performance metrics look like this (the numbers
may vary a bit):

Method Accuracy ~Time(s) ~Memory (MiB)

k-NN 0.96 0.10 .40

NB 0.80 0.10 .14

Don’t read too much into the accuracy scores! I’ll tell you why in a minute.

3.8 EOC
3.8.1 Sophomore Warning: Limitations and Open Issues
There are several caveats to what we’ve done in this chapter:

. We compared these learners on a single dataset.. We used a very simple dataset.. We did no preprocessing on the dataset.. We used a single train-test split.. We used accuracy to evaluate the performance.. We didn’t try different numbers of neighbors.. We only compared two simple models.

Each one of these caveats is great! It means we have more to talk about in the
forthcoming chapters. In fact, discussing why these are concerns and figuring out how to
address them is the point of this book. Some of these issues have no fixed answer. For
example, no one learner is best on all datasets. So, to find a good learner for a particular
problem, we often try several different learners and pick the one that does the best on that
particular problem. If that sounds like teaching-to-the-test, you’re right! We have to be very
careful in how we select the model we use from many potential models. Some of these
issues, like our use of accuracy, will spawn a long discussion of how we quantify and
visualize the performance of classifiers.

82 Chapter 3 Predicting Categories: Getting Started with Classification

3.8.2 Summary
Wrapping up our discussion, we’ve seen several things in this chapter:

1. iris, a simple real-world dataset
2. Nearest-neighbors and Naive Bayes classifiers
3. The concept of training and testing data
4. Measuring learning performance with accuracy
5. Measuring time and space usage within a Jupyter notebook and via stand-alone

scripts

3.8.3 Notes
If you happen to be a botanist or are otherwise curious, you can read Anderson’s original
paper on irises: www.jstor.org/stable/2394164. The version of the iris data with sklearn

comes from the UCI Data repository: https://archive.ics.uci.edu/ml/datasets/iris.

The Minkowski distance isn’t really as scary as it seems. There’s another distance called
the Manhattan distance. It is the distance it would take to walk as directly as possible from
one point to the other, if we were on a fixed grid of streets like in Manhattan. It simply
adds up the absolute values of the feature differences without squares or square roots. All
Minkowski does is extend the formulas so we can pick Manhattan, Euclidean, or other
distances by varying a value p. The weirdness comes in when we make p very, very big:
p → ∞. Of course, that has its own name: the Chebyshev distance.

If you’ve seen theoretical resource analysis of algorithms before, you might remember
the terms complexity analysis or Big-O notation. The Big-O analysis simplifies statements
on the upper bounds of resource use, as input size grows, with mathematical statements
like O(n2)—hence the name Big-O.

I briefly mentioned graphics processing units (GPUs). When you look at the
mathematics of computer graphics, like the visuals in modern video games, it is all about
describing points in space. And when we play with data, we often talk about examples as
points in space. The “natural” mathematical language to describe this is matrix algebra.
GPUs are designed to perform matrix algebra at warp speed. So, it turns out that machine
learning algorithms can be run very, very efficiently on GPUs. Modern projects like
Theano, TensorFlow, and Keras are designed to take advantage of GPUs for learning tasks,
often using a type of learning model called a neural network. We’ll briefly introduce these in
Chapter 15.

In this chapter, we used Naive Bayes on discrete data. Therefore, learning involved
making a table of how often values occurred for the different target classes. When we have
continuous numerical values, the game is a bit different. In that case, learning means
figuring out the center and spread of a distribution of values. Often, we assume that a
normal distribution works well with the data; the process is then called Gaussian Naive
Bayes—Gaussian and normal are essentially synonyms. Note that we are making an
assumption—it might work well but we might also be wrong. We’ll talk more about GNB
in Section 8.5.

http://www.jstor.org/stable/2394164
https://archive.ics.uci.edu/ml/datasets/iris

3.8 EOC 83

In any chapter that discusses performance, I would be remiss if I didn’t tell you that
“premature optimization is the root of all evil . . . in programming.” This quote is from an
essay form of Donald Knuth’s 1974 Turing Award—the Nobel Prize of Computer
Science—acceptance speech. Knuth is, needless to say, a giant in the discipline. There are
two points that underlie his quote. Point one: in a computer system, the majority of the
execution time is usually tied up in a small part of the code. This observation is a form of
the Pareto principle or the 80–20 rule. Point two: optimizing code is hard, error-prone,
and makes the code more difficult to understand, maintain, and adapt. Putting these two
points together tells us that we can waste an awful lot of programmer time optimizing code
that isn’t contributing to the overall performance of our system. So, what’s the better way?
(1) Write a good, solid, working system and then measure its performance. (2) Find the
bottlenecks—the slow and/or calculation-intensive portions of the program. (3) Optimize
those bottlenecks. We only do the work that we know needs to be done and has a chance
at meeting our goals. We also do as little of this intense work as possible. One note: inner
loops—the innermost nestings of repetition—are often the most fruitful targets for
optimization because they are, by definition, code that is repeated the most times.

Recent versions of Jupyter now report a mean and standard deviation for %timeit
results. However, the Python core developers and documenters prefer a different strategy
for analyzing timeit results: they prefer either (1) taking the minimum of several repeated
runs to give an idea of best-case performance, which will be more consistent for
comparison sake, or (2) looking at all of the results as a whole, without summary. I think
that (2) is always a good idea in data analysis. The mean and standard deviation are not
robust; they respond poorly to outliers. Also, while the mean and standard deviation
completely characterize normally distributed data, other distributions will be characterized
in very different ways; see Chebyshev’s inequality for details. I would be far happier if
Jupyter reported medians and inter-quartile ranges (those are the 50th percentile and the
75th–25th percentiles). These are robust to outliers and are not based on distributional
assumptions about the data.

What was up with the 1000 loops in the timeit results? Essentially, we are stacking
multiple runs of the same, potentially short-lived, task one after the other so we get a
longer-running pseudo-task. This longer-running task plays more nicely with the level of
detail that the timing functions of the operating system support. Imagine measuring a
100-yard dash using a sundial. It’s going to be very hard because there’s a mismatch
between the time scales. As we repeat the task multiple times—our poor sprinters might
get worn out but, fortunately, Python keeps chugging along—we may get more
meaningful measurements. Without specifying a number, timeit will attempt to find a
good number for you. In turn, this may take a while because it will try increasing values for
number. There’s also a repeat value you can use with timeit; repeat is an outer loop around
the whole process. That’s what we discussed computing statistics on in the prior paragraph.

3.8.4 Exercises
You might be interested in trying some classification problems on your own. You can
follow the model of the sample code in this chapter with some other classification datasets

84 Chapter 3 Predicting Categories: Getting Started with Classification

from sklearn: datasets.load_wine and datasets.load_breast_cancer will get you
started. You can also download numerous datasets from online resources like:

. The UCI Machine Learning Repository,
https://archive.ics.uci.edu/ml/datasets.html. Kaggle, www.kaggle.com/datasets

https://archive.ics.uci.edu/ml/datasets.html
http://www.kaggle.com/datasets

Index

Symbols

+1 trick, 38, 43–45, 336, 521
1-NN model, 145, 154–156

for the circle problem, 464
3-NN model, 66, 193
3D datasets, 460–461
80–20 rule, 83∑

, in math, 30

A

accuracy, 15, 27, 163
calculating, 62
fundamental limits of, 163

accuracy_score, 62
AdaBoost, 400, 405
AdaBoostClassifier, 400, 403–406
additive model, 318
aggregation, 390
algorithms

analysis of, 72
genetic, 101
less important than data, 15

amoeba (StackExchange user), 465
analytic learning, 18
Anderson, Edgar, 56
ANOVAs test, 463
area under the curve (AUC), 177–178,
182–193, 202

arguments, of a function, 362
arithmetic mean, 170, see also average
array (NumPy), 276, 494
assessment, 113–115

assumptions, 55, 270, 282, 286–287, 439
attributes, 4–5
average

computing from confusion matrix, 170
simple, 30
weighted, 31–32, 34, 89

average centered dot product, see
covariance

B

background knowledge, 322, 331, 439
bag of global visual words (BoGVW), 483,
488–490

bag of visual words (BoVW), 481–483
transformer for, 491–493

bag of words (BOW), 471–473
normalizing, 474–476

bagged classifiers
creating, 394
implementing, 407

bagging, 390, 394
basic algorithm for, 395
bias-variance in, 396

BaggingRegressor, 407
base models

overfitting, 396
well-calibrated, 407

BaseEstimator, 311
baseline methods, 159–161, 189, 191
baseline regressors, 205–207
baseline values, 356
basketball players, 397
Bayes optimal classifier, 464

538 INDEX

betting odds, 259–262
bias, 110, 144–145, 292

addressing, 350–351
in combined models, 390
in SVCs, 256–259
number of, 148
reducing, 396, 400, 406

bias-variance tradeoffs, 145–149, 154, 396
in decision trees, 249
in performance estimating, 382

big data, 71
Big-O analysis, 82
bigrams, 471
binary classification, 55, 174, 267

confusion matrix for, 164
binomials, 524
bivariate correlation, 415
black holes, models of, 467
body mass index (BMI), 322, 410–411
boosting, 398–401, 406
bootstrap aggregation, see bagging
bootstrap mean, 391–393
bootstrapping, 157, 390–394
Box, George, 69

C

C4.5, C5.0, CART algorithms, 244
calculated shortcut strategy, 100–101, 104
Caltech101 dataset, 482–483
Calvinball game, 67
card games, 21

rigged, 68–69
case-based reasoning, 18
categorical coding, 332–341
categorical features, 5–7, 18, 346

numerical values for, 85–86
categories, 332

predicting, 9–10
Cauchy-Schwart inequality, 463
causality, 233

Celsius, converting to Fahrenheit,
325–326

center, see mean
classification, 7, 55–58

binary, 55, 164, 174, 267
nonlinear, 418–419

classification_report, 169–170
ClassifierMixin, 202
classifiers

baseline, 159–161, 189, 191
comparing, 287–290, 368
evaluating, 70–71, 159–203,
238–239

making decisions, 55–56
simple, 63–81
smart, 189

closures, 382, 394
clustering, 18, 479–481

on subsets of features, 494
coefficient of determination, 130
coin flipping, 21

and binomials, 524
increasing number of, 25–27

collections, 20
collinearity, 340, 356
combinations, 41
combinatorics, 423
complexity, 124–125

cost of increasing, 12
evaluating, 152–154, 363–365
manipulating, 119–123
penalizing, 300, 306, 502
trading off for errors, 125–126,
295–301

complexity analysis, 82
compound events, 22–23
compression, 13
computational learning theory, 15
computer graphics, 82
computer memory, see memory
computer science, 362
confounding factors, 233

INDEX 539

confusion matrix, 164, 171–178
computing averages from, 168, 170

constant, 160–161
constant linear model, 146
constants, 35–38
contrast coding, 356
conveyor belt, 377
convolutional neural network, 516
corpus, 472
corrcoef (NumPy), 416
correctness, 11–12
correlation, 415–417, 423, 464

squared, 415–417
Cortez, Paulo, 195, 203
cosine similarity, 462–463
cost, 126–127

comparing, for different models, 127
lowering, 299, 497–500
of predictions, 56

CountVectorizer, 473
covariance, 270–292, 415–417

between all pairs of features, 278
exploring graphically, 292
length-normalized, 463
not affected by data shifting, 451
visualizing, 275–281

covariance matrix (CM), 279–283, 451,
456
computing, 455
diagonal, 281
eigendecomposition of, 452, 456, 459
for multiple classes, 281–282

CRISP-DM process, 18
cross-validation (CV), 128–131

2-fold, 132–133
3-fold, 128–130
5-fold, 129–130, 132
as a single learner, 230
comparing learners with, 154–155
extracting scores from, 192
feature engineering during, 323
flat, 370–371, 376

leave-one-out, 140–142
minimum number of examples for, 152
nested, 157, 370–377
on multiple metrics, 226–229
with boosting, 403
wrapping methods inside, 370–372

cross_val_predict, 192, 230
cross_val_score, 130, 132, 137, 196,
207, 379

Cumulative Response curve, 189
curves, 45–47

using kernels with, 461
cut, 328, 330–331

D

data
accuracy of, 15
big, 71
centering, 221, 322, 325, 445–447,
451, 457

cleaning, 323
collecting, 14
converting to tabular, 470
fuzzy towards the tails, 88
geometric view of, 410
incomplete, 16
making assumptions about, 270
modeling, 14
more important than algorithms, 15
multimodal, 327, 357
noisiness of, 15
nonlinear, 285
preparing, 14
preprocessing, 341
reducing, 250–252, 324–325, 461
redundant, 324, 340, 411
scaling, 85, 221, 445, 447
sparse, 333, 356, 471, 473
standardized, 105, 221–225, 231,
315–316, 447

synthetic, 117

540 INDEX

data (continued)
total amount of variation in, 451
transforming, see feature engineering
variance of, 143, 145, 445
weighted, 399–400

DataFrame, 323, 363–364
datasets

3D, 460–461
applying learners to, 394
examples in, 5
features in, 5
finding relationships in, 445
missing values in, 322
multiple, 128, 156
poorly represented classes in, 133
reducing, 449
single, distribution from, 390
testing, see testing datasets
training, see training datasets

datasets.load_boston, 105, 234
datasets.load_breast_cancer, 84, 203
datasets.load_digits, 319
datasets.load_wine, 84, 203
decision stumps, 399, 401–403
decision trees (DT), 239–249, 290–291,
464
bagged, 395
bias-variance tradeoffs in, 249
building, 244, 291
depth of, 241, 249
flexibility of, 313
for nonlinear data, 285–286
performance of, 429–430
prone to overfitting, 241
selecting features in, 325, 412
unique identifiers in, 241, 322
viewed as ensembles, 405
vs. random forests, 396

DecisionTreeClassifier, 247
decomposition, 452, 455
deep neural networks, 481
democratic legislature, 388

dependent variables, see targets
deployment, 14
Descartes, René, 170
design matrix, 336, 347
diabetes dataset, 85, 105, 322, 416
diagonal covariance matrix, 281
Diagonal Linear Discriminant Analysis
(DLDA), 282–285, 292

diagrams, drawing, 245
dice rolling, 21–24

expected value of, 31–32
rigged, 68–69

Dietterich, Tom, 375
digits dataset, 287–290, 401
Dijkstra, Edsger, 54
directions, 441, 445

finding the best, 449, 459
with PCA, 451

discontinuous target, 308
discretization, 329–332
discriminant analysis (DA), 269–287,
290–292
performing, 283–285
variations of, 270, 282–285

distances, 63–64
as weights, 90
sum product of, 275
total, 94

distractions, 109–110, 117
distributions, 25–27

binomial, 524
from a single dataset, 390
normal, 27, 520–524
of the mean, 390–391
random, 369

domain knowledge, see background
knowledge

dot, 29–30, 38, 47–52, 245, 455
dot products, 29–30, 38, 47–52

advantages of, 43
and kernels, 438–441, 458–459, 461
average centered, see covariance

INDEX 541

length-normalized, 462–463
double cross strategy, 375
dual problem, solving, 459
dummy coding, see one-hot coding
dummy methods, see baseline methods

E

edit distance, 439, 464
educated guesses, 71
eigendecomposition (EIGD), 452, 456,
458, 465–466

eigenvalues and eigenvectors, 456–457
Einstein, Albert, 124
ElasticNet, 318
empirical loss, 125
ensembles, 387–390
enterprises, competitive advantages of, 16
entropy, 464
enumerate, 494
enumerate_outer, 491–492, 494
error plots, 215–217
errors

between predictions and reality, 350
ignoring, 302–305
in data collection process, 322
in measurements, 15, 142–143, 241
margin, 254
measuring, 33
minimizing, 448–449, 451
negating, 207
positive, 33
sources of, 145
trading off for complexity, 125–126,
295–301

vs. residuals, 218
vs. score, 207
weighted, 399

estimated values, see predicted values
estimators, 66
Euclidean distance, 63, 367
Euclidean space, 466

evaluation, 14, 62, 109–157
deterministic, 142

events
compound vs. primitive, 22–23
probability distribution of, 25–27
random, 21–22

examples, 5
dependent vs. independent, 391
distance between, 63–64, 438–439
duplicating by weight, 399
focusing on hard, 252, 398
grouping together, 479
learning from, 4
quantity of, 15
relationships between, 434
supporting, 252
tricky vs. bad, 144

execution time, see time
expected value, 31–32
extract-transform-load (ETL), 323
extrapolation, 71
extreme gradient boosting, 406
extreme random forest, 397–398

F

F1 calculation, 170
f_classif, 422
f_regression, 416–417
Facebook, 109, 388
factor analysis (FA), 466
factorization, 452, 455
factory machines, 7–9, 114

choosing knob values for, 115, 144,
156, 337

stringing together, 377
testing, 110–113
with a side tray, 65

Fahrenheit, converting to Celsius,
325–326

failures, in a legal system, 12
fair bet, 259

542 INDEX

false negative rate (FNR), 164–166
false positive rate (FPR), 164–166,
173–181

Fawcett, Tom, 18
feature construction, 322, 341–350,
410–411
manual, 341–343
with kernels, 428–445

feature engineering, 321–356
how to perform, 324
limitations of, 377
when to perform, 323–324

feature extraction, 322, 470
feature selection, 322, 324–325, 410–428,
449
by importance, 425
formal statistics for, 463
greedy, 423–424
integrating with a pipeline, 426–428
model-based, 423–426
modelless, 464
random, 396–397, 423, 425
recursive, 425–426

feature-and-split
finding the best, 244, 397
random, 397–398

feature-pairwise Gram matrix, 464
feature_names, 413–414
features, 5

categorical, 7, 346
causing targets, 233
conditionally independent, 69
correlation between, 415–417
counterproductive, 322
covariant, 270
different, 63
evaluating, 462–463
interactions between, 343–348
irrelevant, 15, 241, 324, 411
number of, 146–148
numerical, 6–7, 18, 225, 343–344,
346

relationships between, 417
scaling, 322, 325–329
scoring, 412–415
sets of, 423
standardizing, 85
training vs. testing, 60–61
transforming, 348–353
useful, 15, 412
variance of, 412–415

Fenner, Ethan, 237–238
Fisher’s Iris Dataset, see iris dataset
Fisher, Sir Ronald, 56
fit, 224–225, 337, 363, 367–368,
371–372, 379, 381

fit-estimators, 66
fit_intercept, 340
fit_transform, 326, 413
flash cards, 398
flashlights, messaging with,
417–418

flat surface, see planes
flipping coins, 21

and binomials, 524
increasing number of, 25–27

float, 52–53
floating-point numbers, 52–53
fmin, 500
folds, 128
forward stepwise selection, 463
fromiter (NumPy), 494
full joint distribution, 148
functions

parameters of
vs. arguments, 362
vs. values, 360–361

wrapping, 361, 502
FunctionTransformer, 348–349
functools, 20
fundraising campaign, 189
future, predicting, 7
fuzzy specialist scenario, 405

INDEX 543

G

gain curve, see Lift Versus Random curve
games

expected value of, 32
fair, 259
sets of rules for, 67

Gaussian Naive Bayes (GNB), 82, 282–287
generalization, 59, 126
genetic algorithms, 101
geometric mean, 170
get_support, 413
Ghostbusters, 218
Gini index, 202, 245, 464
Glaton regression, 7
global visual words, 483, 487–490
good old-fashioned (GOF) linear
regression, 300–301, 519–521
and complex problems, 307

gradient descent (GD), 101, 292
GradientBoostingClassifier, 400,
403–406

Gram matrix, 464
graphics processing units (GPUs), 71, 82
greediness, for feature selection, 423–424
GridSearch, 363, 368, 377, 382, 405,
427–428
wrapped inside CV, 370–372

GridSearchCV, 368, 371–377

H

Hamming distance, 63
Hand and Till M method, 183–185, 197,
200, 202

handwritten digits, 287–290
harmonic mean, 170
Hettinger, Raymond, 54
hinge loss, 301–305, 465
hist, 22
histogram, 21
hold-out test set (HOT), 114–115

hyperparameters, 67, 115
adjusting, 116
choosing, 359
cross-validation for, 371–377, 380–382
evaluating, 363–368
for tradeoffs between complexity and
errors, 126

overfitting, 370
random combinations of, 368–370
tuning, 362–369, 380–382

hyperplanes, 39

I

IBM, 3
ID3 algorithm, 244
identification variables, 241, 322, 324
identity matrix, 456, 465
illusory correlations, 233
images, 481–493

BoVW transformer for, 491–493
classification of, 9
describing, 488–490
predicting, 490–491
processing, 485–487

import, 19
in-sample evaluation, 60
independence, 23
independence assumptions, 148
independent component analysis (ICA),
466

independent variables, see features
indicator function, 243
inductive logic programming, 18
infinity-norm, 367
information gain, 325
information theory, 417
input features, 7
inputs, see features
intercept, 336–341

avoiding, 356

544 INDEX

International Standard of scientific
abbreviations (SI), 73

iris dataset, 56-58, 60-61, 82, 133,
166–168, 174, 190–195, 242, 245,
329–332, 336, 480, 495

IsoMap, 462
iteratively reweighted least squares (IRLS),
291

itertools, 20, 41

J

jackknife resampling, 157
jointplot, 524–525
Jupyter notebooks, 19

K

k-Cross-Validation (CV), 129–131
with repeated train-test splits, 137

k-Means Clustering (k-MC), 479–481
k-Nearest Neighbors (k-NN), 64–67

1-NN model, 145, 154–156, 464
3-NN model, 66, 193
algorithm of, 63
bias-variance for, 145
building models, 66–67, 91
combining values from, 64
evaluating, 70–71
metrics for, 162–163

for nonlinear data, 285
performance of, 74–76, 78–81,
429–430

picking the best k, 113, 116, 154,
363–365

k-Nearest Neighbors classification
(k-NN-C), 64

k-Nearest Neighbors regression
(k-NN-R), 87–91
comparing to linear regression,
102–104, 147–229

evaluating, 221
vs. piecewise constant regression, 310

Kaggle website, 406
Karate Kid, The, 182, 250
Keras, 82
kernel matrix, 438
kernel methods, 458

automated, 437–438
learners used with, 438
manual, 433–437
mock-up, 437

kernels, 438–445
and dot products, 438–441, 458–459,
461

approximate vs. full, 436
feature construction with, 428–445
linear, 253, 438
polynomial, 253, 437

KFold, 139–140, 368
KNeighborsClassifier, 66, 362–363
KNeighborsRegressor, 91
knn_statistic, 394–395
Knuth, Donald, 83
kurtosis, 466

L

L1 regularization, see lasso regression
L2 regularization, see ridge regression
label_binarize, 179, 183
Lasso, 300
lasso regression (L1), 300, 307

blending with ridge regression, 318
selecting features in, 325, 411, 424

learning algorithms, 8
learning curves, 131, 150–152

in sklearn, 157
learning methods

incremental/decremental, 130
nonparametric, 65
parameters of, 115
requiring normalization, 221

learning models, see models

INDEX 545

learning systems, 9–10
building, 13–15, 366
choosing, 81
combining multiple, see ensembles
evaluating, 11–13, 109–157
from examples, 4, 9–11
performance of, 102
overestimating, 109

tolerating mistakes in data, 16
used with kernel methods, 438

learning_curve, 150–152
least-squares fitting, 101
leave-one-out cross-validation (LOOCV),
140–142

length-normalized covariance, 463
length-normalized dot product, 462–463
Levenshtein distance, 464
liblinear, 291–292
libsvm, 291, 443, 465
Lift Versus Random curve, 189, 193
limited capacity, 109–110, 117
limited resources, 187
linalg.svd (NumPy), 455
line magic, 75
linear algebra, 452, 457, 465
linear combination, 28
Linear Discriminant Analysis (LDA),
282–285, 495

linear kernel, 253, 438
linear regression (LR), 91–97, 305

bias of, 350
bias-variance for, 146–147
calculating predicted values with, 97,
265

comparing to k-NN-R, 102–104, 229
complexity of, 119–123
default metric for, 209
example of, 118
for nonlinear data, 285
from raw materials, 500–504
good old-fashioned (GOF), 300–301,
307, 519–521

graphical presentation of, 504
performing, 97
piecewise, 309–313
regularized, 296–301
relating to k-NN, 147–148
selecting features in, 425
using standardized data for, 105
viewed as ensembles, 405

linear relationships, 415, 417
linearity, 285
LinearRegression, 371
LinearSVC, 253, 291, 465
lines, 34–39

between classes, 250
drawing through points, 92,
237–238

finding the best, 98–101, 253,
268–269, 350, 410, 448–449, 457,
465

piecewise, 313
sloped, 37, 94–97
straight, 91
limited capacity of, 122

local visual words, 483–488
extracting, 485–487
finding synonyms for, 487–488

log-odds, 259, 262–266
predicting, 505–508

logistic regression (LogReg), 259–269,
287, 290–292
and loss, 526
calculating predicted values with,
265

for nonlinear data, 285
from raw materials, 504–509
kernelized, 436
performance of, 429
PGM view of, 523–525
solving perfectly separable classification
problems with, 268–269

LogisticRegression, 267, 292
logreg_loss_01, 507
lookup tables, 13

546 INDEX

loss, 125–126, 295
defining, 501
hinge, 301–305, 465
minimizing, 526
vs. score, 127, 207

M

M method, 183–185, 197, 200, 202
machine learning

and math, 19–20
definition of, 4
limits of, 15
running on GPUs, 82

macro, 168
macro precision, 168
magical_minimum_finder, 500–511
make_cost, 502–503
make_scorer, 185, 196, 208
Manhattan distance, 82, 367
manifolds, 459–462

differentiable, 466–467
Mann-Whitney U statistic, 202
margin errors, 254
mathematics

1-based indexing in, 54∑
notation, 30

derivatives, 526
eigenvalues and eigenvectors, 456–457
linear algebra, 452, 457, 465
matrix algebra, 82, 465–466
optimization, 500
parameters, 318

matplotlib, 20, 22, 222–223
matrices, 456

breaking down, 457
decomposition (factorization), 452, 455
identity, 465
multiplication of, 82, 465
orthogonal, 465–466
squaring, 466

transposing, 465
Matrix, The, 67
matshow, 275–277
max_depth, 242
maximum margin separator, 252
mean, 54, 85, 271, 446

arithmetic, 170, see also average
bootstrap, 391–393
computing, 390–391, 395
definition of, 88
distribution of, 390–391
empirical, 457
for two variables, multiplying, 271
geometric, 170
harmonic, 170
multiple, for each train-test split, 231
predicting, 147, 205
weighted, 89–90

mean absolute error (MAE), 209
mean squared error (MSE), 91, 101, 130,
209

mean_squared_error, 91, 126
measurements

accuracy of, 27
critical, 16
errors in, 15, 142–143, 241
levels of, 18
overlapping, 410
rescaling, 328, 414
scales of, 412–414

median, 206, 446
computing on training data, 349
definition of, 88
predicting, 205

median absolute error, 209
medical diagnosis, 10

assessing correctness of, 11–12
confusion matrix for, 165–166
example of, 6–7
for rare diseases, 160, 163, 178

memory
constraints of, 325

INDEX 547

cost of, 71
measuring, 12, 76
relating to input size, 72
shared between programs, 76–77
testing usage of, 77–81, 102–104

memory_profiler, 78
merge, 334
meta level, 4, 17
methods

baseline, 159–161
chaining, 166

metrics.accuracy_score, 62
metrics.mean_squared_error, 91
metrics.roc_curve, 174, 179
metrics.SCORERS.keys(), 161–162, 208
micro, 168
Minkowski distance, 63, 82, 367
MinMaxScaler, 327
mistakes, see errors
Mitchell, Tom, 18
Moby Dick, 13
mode value, 446
models, 8, 66

additive, 318
bias of, 144–145
building, 14
combining, 390–398
comparing, 14
concrete, 371
evaluating, 14, 110
features working well with, 423–426,
464

fitting, 359–361, 363, 367, 370
fully defined, 371
keeping simple, 126, 295
not modifying the internal state of, 8,
361

performance of, 423
selecting, 113–114, 361–362
variability of, 144–145
workflow template for, 67, 90

Monte Carlo, see randomness

Monte Carlo cross-validation, see repeated
train-test splitting (RTTS)

Morse code, 417
most_frequent, 160–161
multiclass learners, 179–185, 195–201

averaging, 168–169
mutual information, 418–423, 464

minimizing, 466
mutual_info_classif, 419, 421–422
mutual_info_regression, 420–421

N

Naive Bayes (NB), 68–70, 292
bias-variance for, 148
evaluating, 70–71
in text classification, 69
performance of, 74–76, 78–81, 191

natural language processing (NLP), 9
nearest neighbors, see k-Nearest Neighbors
Nearest Shrunken Centroids (NSC), 292
NearestCentroids, 292
negative outcome, 163–164
nested cross-validation, 157, 370–377
Netflix, 117
neural networks, 512–516, 526
newsgroups, 476
Newton’s Method, 292
No Free Lunch Theorem, 290
noise, 15, 117

addressing, 350, 353–356
capturing, 122, 124, 126
distracting, 109–110, 296
eliminating, 144
manipulating, 117

non-normality, 350
nonic, 120
nonlinearity, 285
nonparametric learning methods, 65
nonprimitive events, see compound events
normal distribution, 27, 520–524

548 INDEX

normal equations, 101
normalization, 221, 322, 356, 474–476
Normalizer, 475
np_array_fromiter, 491–492, 494–495
np_cartesian_product, 41
numbers

binary vs. decimal, 53
floating-point, 52–53

numerical features, 6–7, 18, 225, 343–344,
346
predicting, 10–11

NumPy, 20
np.corrcoef, 416
floating-point numbers in, 52–53
np.array, 276, 494
np.dot, 29–30, 38, 47–52
np.fromiter, 494
np.histogram, 21
np.linalg.svd, 455
np.polyfit, 119
np.random.randint, 21
np.searchsorted, 310

NuSVC, 253–257, 291
Nystroem kernel, 436

O

Occam’s razor, 124, 284
odds

betting, 259–262
probability of, 262–266

one-hot coding, 333–341, 347, 356, 526
one-versus-all (OvA), 169
one-versus-one (OvO), 181–182, 253
one-versus-rest (OvR), 168, 179–182,
253, 267

OneHotEncoder, 333
OpenCV library, 485
optimization, 156, 497–500, 526

premature, 83
ordinal regression, 18
outcome, outputs, see targets

overconfidence, 109–110
and resampling, 128

overfitting, 117, 122–126, 290, 296
of base models, 396

P

pairplot, 86
pandas, 20

pd.cut, 328, 330–331
DataFrame, 323
one-hot coding in, 333–334
vs. sklearn, 323, 332

parabolas, 45
finding the best fit, 119–123
piecewise, 313

parameters, 115
adjusting, 116
choosing, 359
in computer science vs. math, 318
shuffling, 368
tuning, 362
vs. arguments, 362
vs. explicit values, 360–361

Pareto principle, 83
partitions, 242
patsy, 334–340, 344–347

connecting sklearn and, 347–348
documentation for, 356

PayPal, 189
PCA, 449–452
peeking, 225
penalization, see complexity
penalties, 300, 306, 502
percentile, 206
performance, 102

estimating, 382
evaluating, 131, 150–152, 382
measuring, 74–76, 78–81, 173, 178
overestimating, 109

physical laws, 17

INDEX 549

piecewise constant regression, 309–313,
318
implementing, 310
preprocessing inputs in, 341
vs. k-NN-R, 310

PiecewiseConstantRegression, 313
Pipeline, 378–379
pipelines, 224–225, 377–382

integrating feature selection with,
426–428

plain linear model, 146, 147
planes, 39–41

finding the best, 410, 457
playing cards, 21
plots, 40, 41
plus-one trick, 38, 43–45, 336, 521
points in space, 34–43, 82
polyfit, 119
polynomial kernel, 253
polynomials

degree of, 119, 124
quadratic, 45

positive outcome, 163–164
precision, 165

macro, 168
tradeoffs between recall and, 168,
170–173, 185–187, 202

precision-recall curve (PRC), 185–187,
202

predict, 224–225, 379, 490–491
predict_proba, 174–175
predicted values, 10–11, 33

calculating, 97, 265
prediction bar, 170–177, 186
predictions, 165

combining, 389, 395, 405
evaluating, 215–217
flipping, 202
probability of, 170
real-world cost of, 56

predictive features, 7
predictive residuals, 219

predictors, see features
premature optimization, 83
presumption of innocence, 12
prime factorization, 452
primitive events, 22–23
principal components analysis (PCA),
445–462, 465–466
feature engineering in, 324
using dot products, 458–459, 461

prior, 160–161
probabilistic graphical models (PGMs),
516–525
and linear regression, 519–523
and logistic regression, 523–525

probabilistic principal components analysis
(PPCA), 466

probabilities, 21–27
conditional, 24, 25
distribution of, 25–27, 290
expected value of, 31–32
of independent events, 23, 69
of primitive events, 22
of winning, 259–266

processing time, see time
programs

bottlenecks in, 83
memory usage of, 76–77

Provost, Foster, 18
purchasing behavior, predicting, 11
pydotplus, 245
pymc3, 519–521
Pythagorean theorem, 63
Python

indexing semantics in, 21, 54
list comprehension in, 136
memory management in, 77
using modules in the book, 20

Q

Quadratic Discriminant Analysis (QDA),
282–285

550 INDEX

quadratic polynomials, see parabolas
quantile, 206
Quinlan, Ross, 239, 244

R

R2 metric, 209–214
for mean model, 229
limitations of, 214, 233–234
misusing, 130

randint, 369
random events, 21–22
random forests (RFs), 396–398

comparing, 403
extreme, 397–398
selecting features in, 425

random guess strategy, 98–99, 101
random sampling, 325
random step strategy, 99, 101
random.randint, 21
random_state, 139–140
RandomForestClassifier, 425
RandomizedSearchCV, 369
randomness, 16

affecting data, 143
for feature selection, 423
for hyperparameters, 368–370
inherent in decisions, 241
pseudo-random, 139
to generate train-test splits, 133,
138–139

rare diseases, 160, 163, 178
rbf, 467
reality, 165

comparing to predictions, 215–217
recall, 165

tradeoffs between precision and, 168,
170–173, 185–187, 202

Receiver Operating Characteristic (ROC)
curves, 172–181, 192, 202
and multiclass problem, 179–181
area under, 177–178, 182–193, 202

binary, 174–177
patterns in, 173–174

recentering, see data, centering
rectangles

areas of, 275
drawing, 275–278
overlapping, 243

recursive feature elimination, 425–426
redundancy, 324, 340
regression, 7, 64, 85–105

comparing methods of, 306–307
definition of, 85
examples of, 10–11
metrics for, 208–214
ordinal, 18

regression trees, 313–314
RegressorMixin, 311
regressors

baseline, 205–207
comparing, 314–317
default metric for, 209
evaluating, 205–234
implementing, 311–313
performance of, 317
scoring for, 130

regularization, 296–301
performing, 300–301

regularized linear regression, 296–301, 305
reinforcement learning, 18
repeated train-test splitting (RTTS),
133–139, 156

resampling, 128, 156, 390
with replacement, 157, 391–392
without replacement, 391

rescaling, see scaling, standardizing
reshape, 333
residual plots, 217–221, 232
residuals, 218, 230–232, 350

predictive, 219
Studentized, 232

resources
consumption of, 12–13, 71

INDEX 551

limited, 187
measuring, 71–77
needed by an algorithm, 72
utilization in regression, 102–104

RFE, 425
Ridge, 300
ridge regression (L2), 300, 307

blending with lasso regression, 318
rolling dice, 21–24

expected value of, 31–32
rigged, 68–69

root mean squared error (RMSE), 101
calculating, 119
comparing regressors on, 315
high, 142
size of values in, 136

rvs, 369

S

sampling, see resampling
Samuel, Arthur, 3–4, 17
scaling, 322, 325–329

statistical, 326
scipy.stats, 369
scores, 127, 130

extracting from CV classifiers, 192
for each class, 181
vs. loss, 207

scoring function, 184
Seaborn, 20

pairplot, 86
tsplot, 151

searchsorted, 310
SelectFromModel, 424–425
selection, 113–114
SelectPercentile, 422
sensitivity, 173, 185
SGDClassifier, 267, 292
shrinkage, see complexity
shuffle, 368

ShuffleSplit, 137–139
shuffling, 137–140, 382
SIFT_create, 485
signed area, 275
Silva, Alice, 195, 203
similarity, 63–64
simple average, 30
simplicity, 124
singular value decomposition (SVD), 452,
465–466

sklearn, 19–20
3D datasets in, 460–461
baseline models in, 205
boosters in, 400
classification metrics in, 161–163,
208–209

classifiers in, 202
common interface of, 379
confusion matrix in, 173
connecting patsy and, 347–348
consistency of, 225
cross-validation in, 129–130, 132, 184
custom models in, 311
distance calculators in, 64
documentation of, 368
feature correlation in, 416–417
feature evaluation in, 463
feature selection in, 425
kernels in, 435–437, 481
learners in, 318
linear regression in, 300, 310
logistic regression in, 267
naming conventions in, 207, 362
normalization in, 356
PCA in, 449–452
pipelines in, 224–225
plotting learning curves in, 157
R2 in, 210–214, 233–234
random forests in, 396, 407
sparse-aware methods in, 356
storing data in, 333
SVC in, 253

552 INDEX

sklearn (continued)
SVR in, 307
terminology of, 61, 66, 127, 160
text representation in, 471–479, 494
thresholds in, 176
using alternative systems instead, 119
using OvR, 253
vs. pandas, 323, 332
workflow in, 67, 90

skms.cross_validate, 226–227
skpre.Normalizer, 495
Skynet, 389
smart step strategy, 99–101, 267
smoothness, 308, 406, see also complexity,
regularization

sns.pairplot, 58
softmax function, 526
sorted lists, 465
sparsity, 333, 356
specificity, 165, 173, 185
splines, 318
spread, see standard deviation
square root of the sum of squared errors,
93

squared error loss, 301
squared error points, 209
ss.geom, 369
ss.normal, 369
ss.uniform, 369
StackExchange, 465
stacking, 390
StackOverflow, 292
standard deviation, 54, 85, 221, 327
standardization, 85, 105, 221–225, 231,
327

StandardScaler, 223–225, 326–327
stationary learning tasks, 16
statistics, 87

coefficient of determination, 130, 209
distribution of the mean, 391
dummy coding, 334
for feature selection, 463

Studentized residuals, 232
variation in data, 451

statsmodels, 292, 338–341
documentation for, 356

Stochastic Gradient Descent (SGD), 267
stocks

choosing action for, 9
predicting pricing for, 11

stop words, 472–473, 494
storage space

cost of, 12–13, 71
measuring, 72

stratification, 132–133
stratified, 160–161
StratifiedKFold, 130, 403
strings, comparing, 438–439
stripplots, 135, 155
student performance, 195–201, 203,
225–226
comparing regressors on, 314–317
predicting, 10

Studentized residuals, 232
studying for a test, 109, 116–117
sum, weighted, 28, 31
sum of probabilities of events

all primitive, 22
independent, 23

sum of squared errors (SSE), 33–34,
93–94, 210–212, 271, 301
smallest, 100

sum of squares, 32–33
sum product, 30
summary statistic, 87
supervised learning from examples, 4,
9–11

Support Vector Classifiers (SVCs),
252–259, 290–291, 301, 442
bias-variance in, 256–259
boundary in, 252
computing, 291
for nonlinear data, 285–287
maximum margin separator in, 305

INDEX 553

parameters for, 254–256
performance of, 429

Support Vector Machines (SVMs), 252,
291, 442, 465
feature engineering in, 324
from raw materials, 510–511
vs. the polynomial kernel, 437

Support Vector Regression (SVR),
301–307
main options for, 307

support vectors, 252, 254
supporting examples, 252
SVC, 253–259, 291, 438
synonyms, 482–483, 487–488

T

T-distributed Stochastic Neighbor
Embedding (TSNE), 462

t-test, 463
tabular data, 470
targets, 6–7

cooperative values of, 296
discontinuous, 308
predicting, 397
training vs. testing, 60–61
transforming, 350, 353–356

task understanding, 14
tax brackets, 322, 331
teaching to the test, 59–60, 114

in picking a learner, 112–113
protecting against, 110–111, 372, 377

TensorFlow, 82
term frequency-inverse document
frequency (TF-IDF), 475–477, 495

testing datasets, 60–61, 110, 114
predicting on, 66
resampling, 128
size of, 115, 130

testing phase, see assessment, selection
tests

positive vs. negative, 163–166

specificity of, 165
text, 470–479

classification of, 69
encoding, 471–476
representing as table rows, 470–471

TfidfVectorizer, 475, 478, 495
Theano, 82
time

constraints of, 325
cost of, 13, 71
measuring, 12, 72, 74–75
relating to input size, 72

time series, plotting, 151
timeit, 74–75, 83
todense, 333, 473
Tolkien, J. R. R., 290
total distance, 94
tradeoffs, 13

between bias and variance, see
bias-variance tradeoffs

between complexity and errors, 126
between false positives and negatives,
172

between precision and recall, 168,
170–173

train-test splits, 60, 110, 115
evaluating, 70–71, 152
for cross-validation, 132
multiple, 128
randomly selected, 370
repeated, 133–139, 156

train_test_split, 60, 70–71, 79, 349
training datasets, 60–61, 110, 114

duplicating examples by weight in, 399
fitting estimators on, 66
randomly selected, 370
resampling, 128
size of, 115, 130–131, 150
unique identifiers in, 241, 322

training error, 60
training loss, 125–126, 296
training phase, 113

554 INDEX

transform, 224–225
Transformer, 435–436
TransformerMixin, 348, 379
transformers, 348–350

for images, 491–493
treatment coding, see one-hot coding
tree-building algorithms, 244
trigrams, 471
true negative rate (TNR), 164–166
true positive rate (TPR), 164–166,
173–181

Trust Region Newton’s Method, 292
tsplot, 151
Twenty Newsgroups dataset, 476
two-humped camel, see data, multimodal

U

unaccounted-for differences, 350
underfitting, 117, 122–125, 296
uniform, 160–161
unigrams, 471
unique identifiers, 241, 322, 324
univariate feature selection, 415
unsupervised activities, 445

V

validation, 110, 156, see also
cross-validation

validation sets (ValS), 114
randomly selected, 370
size of, 115

values
accuracy of, 15
actual, 33
baseline, 356
definition of, 5
discrete, 5–6
explicit, vs. function parameters,
360–361

finding the best, 98–101, 267

missing, 18, 322
numerical, 6–7, 18, 86, 225
predicting, 64, 85, 87, 91

predicted, 10–11, 33, 97, 265
target, 6–7
cooperative, 296
transforming, 350

under- vs. overestimating, 33
variance, 110, 271, 292

always positive, 272
in feature values, 412–415
in SVCs, 256–259
maximizing, 448–449, 451
not affected by data shifting, 451
of data, 143, 145, 445
of model, 144–145
reducing, 396, 400, 406

VarianceThreshold, 413
vectorizers, 495
verification, 156
vocabularies, 482

global, 487
votes, weighted, 390
VotingClassifier, 407

W

warp functions, 440
weighted

average, 31–32, 34, 89
data, 399–400
errors, 399
mean, 89–90
sum, 28, 31
votes, 390

weights
adjusting, 497–500
distributions of, 524
pairs of, 524
restricting, 105, 146
total size of, 297

INDEX 555

whuber (StackOverflow user), 292
wine dataset, 412–414, 426–428, 449
winning, odds of, 259–262
Wittgenstein, Ludwig, 18
words

adjacent, 471
counts of, 471, 473
frequency of, 474–476
in a document, 471
stop, 472–473, 494
visual, 491
global, 483, 487–490
local, 483–488

World War II, 172
wrapping functions, 361, 502

X

xgboost, 406
xor function, 341–343

Y

YouTube, 54, 109

Z

z-scoring, see standardizing
zip, 30

	Cover
	Title Page
	Copyright Page
	Contents
	Foreword
	Preface
	About the Author
	3 Predicting Categories: Getting Started with Classification
	3.1 Classification Tasks
	3.2 A Simple Classification Dataset
	3.3 Training and Testing: Don’t Teach to the Test
	3.4 Evaluation: Grading the Exam
	3.5 Simple Classifier #1: Nearest Neighbors, Long Distance Relationships, and Assumptions
	3.5.1 Defining Similarity
	3.5.2 The k in k-NN
	3.5.3 Answer Combination
	3.5.4 k-NN, Parameters, and Nonparametric Methods
	3.5.5 Building a k-NN Classification Model

	3.6 Simple Classifier #2: Naive Bayes, Probability, and Broken Promises
	3.7 Simplistic Evaluation of Classifiers
	3.7.1 Learning Performance
	3.7.2 Resource Utilization in Classification
	3.7.3 Stand-Alone Resource Evaluation

	3.8 EOC
	3.8.1 Sophomore Warning: Limitations and Open Issues
	3.8.2 Summary
	3.8.3 Notes
	3.8.4 Exercises

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	H
	J
	K
	L
	M
	N
	P
	O
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

