
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134687476
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134687476
https://plusone.google.com/share?url=http://www.informit.com/title/9780134687476
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134687476
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134687476/Free-Sample-Chapter

Python Without Fear

Overland_Book.indb iOverland_Book.indb i 8/31/17 12:56 PM8/31/17 12:56 PM

This page intentionally left blank

Python Without Fear
A Beginner’s Guide That
Makes You Feel Smart

Brian Overland

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Overland_Book.indb iiiOverland_Book.indb iii 8/31/17 12:56 PM8/31/17 12:56 PM

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or
in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising
out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Catalog Number: 2017946292

Copyright © 2018 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information regarding permissions,
request forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-468747-6
ISBN-10: 0-13-468747-7
1 17

Overland_Book.indb ivOverland_Book.indb iv 8/31/17 12:56 PM8/31/17 12:56 PM

corpsales@pearsoned.com
governmentsales@pearsoned.com
international@pearsoned.com
http://www.informit.com/aw
http://www.pearsoned.com/permissions/

For all my beloved four-legged friends:
Skyler, Orlando, Madison, Cleo, and Pogo.

Overland_Book.indb vOverland_Book.indb v 8/31/17 12:56 PM8/31/17 12:56 PM

This page intentionally left blank

vii

Contents

Preface xvii

Steering Around the “Gotchas” xvii
How to Think “Pythonically” xvii
Intermediate and Advanced Features xviii
Learning in Many Different Styles xviii
What’s Going on “Under the Hood” xviii
Why Python? xix

Acknowledgments xxi

Author Bio xxiii

Chapter 1 Meet the Python 1

A Brief History of Python 1
How Python Is Different 2
How This Book Works 3
Installing Python 4
Begin Using Python with IDLE 6
Correcting Mistakes from Within IDLE 6
Dealing with Ends of Lines 7
Additional Help: Online Sources 8

Overland_Book.indb viiOverland_Book.indb vii 8/31/17 12:56 PM8/31/17 12:56 PM

Contentsviii

Chapter 2 A Python Safari: Numbers 9

Python and Numbers 9
Interlude Why Doesn’t C++ Support Infinite Integers? 11
Interlude How Big Is a Google? 13

Python and Floating-Point Numbers 14
Assigning Numbers to Variables 17

Interlude What Do Python Assignments Really Do? 21
Variable-Naming Conventions in This Book 23
Some Python Shortcuts 23
Chapter 2 Summary 26

Chapter 3 Your First Programs 29

Temperatures Rising? 29
Interlude Python’s Use of Indentation 33

Putting in a Print Message 35
Syntax Summaries 36

Example 3.1. Quadratic Equation as a Function 38
How It Works 39

Getting String Input 41
Getting Numeric Input 43

Example 3.2. Quadratic Formula with I/O 44
How It Works 45

Formatted Output String 46
Example 3.3. Distance Formula in a Script 47
How It Works 48

Chapter 3 Summary 50

Chapter 4 Decisions and Looping 53

Decisions Inside a Computer Program 53
Conditional and Boolean Operators 55
The if, elif, and else Keywords 56

Interlude Programs and Robots in Westworld 56
Example 4.1. Enter Your Age 59
How It Works 60

Overland_Book.indb viiiOverland_Book.indb viii 8/31/17 12:56 PM8/31/17 12:56 PM

Contents ix

while: Looping the Loop 60
Example 4.2. Factorials 63
How It Works 64
Optimizing the Code 65
Example 4.3. Printing Fibonacci Numbers 67
How It Works 69

“Give Me a break” Statement 70
Example 4.4. A Number-Guessing Game 71
How It Works 72
Interlude Binary Searches and “O” Complexity 74

Chapter 4 Summary 75

Chapter 5 Python Lists 77

The Python Way: The World Is Made of Collections 77
Processing Lists with for 80
Modifying Elements with for (You Can't!) 82

Example 5.1. A Sorting Application 83
How It Works 84
Optimizing the Code 84

Indexing and Slicing 85
Copying Data to Slices 88
Ranges 89

Example 5.2. Revised Factorial Program 91
How It Works 91
Optimizing the Code 92
Example 5.3. Sieve of Eratosthenes 93
How It Works 94
Optimizing the Code 96

List Functions and the in Keyword 97
Interlude Who Was Eratosthenes? 98

Chapter 5 Summary 99

Chapter 6 List Comprehension and Enumeration 101

Indexes and the enumerate Function 101
The Format String Method Revisited 103

Example 6.1. Printing a Table 104
How It Works 105

Overland_Book.indb ixOverland_Book.indb ix 8/31/17 12:56 PM8/31/17 12:56 PM

Contentsx

Simple List Comprehension 106
Example 6.2. Difference Between Squares 109
How It Works 110
Interlude Proving the Equation 111

“Two-Dimensional” List Comprehension 112
List Comprehension with Conditional 114

Example 6.3. Sieve of Eratosthenes 2 115
How It Works 116
Optimizing the Code: Sets 117
Example 6.4. Pythagorean Triples 118
How It Works 119
Interlude The Importance of Pythagoras 120

Chapter 6 Summary 123

Chapter 7 Python Strings 125

Creating a String with Quote Marks 125
Indexing and “Slicing” 127
String/Number Conversions 130

Example 7.1. Count Trailing Zeros 131
How It Works 132
Interlude Python Characters vs. Python Strings 135

Stripping for Fun and Profit 135
Example 7.2. Count Zeros, Version 2 137
How It Works 137

Let’s Split: The split Method 138
Building Strings with Concatenation (+) 139

Example 7.3. Sort Words on a Line 141
How It Works 142

The join Method 143
Chapter 7 Summary 144

Chapter 8 Single-Character Ops 147

Naming Conventions in This Chapter 147
Accessing Individual Characters (A Review) 148
Getting Help with String Methods 148
Testing Uppercase vs. Lowercase 149
Converting Case of Letters 150

Overland_Book.indb xOverland_Book.indb x 8/31/17 12:56 PM8/31/17 12:56 PM

Contents xi

Testing for Palindromes 151
Example 8.1. Convert Strings to All Caps 152
How It Works 153
Optimizing the Code 154
Example 8.2. Completing the Palindrome Test 154
How It Works 156
Optimizing the Code 157
Interlude Famous Palindromes 158

Converting to ASCII Code 159
Converting ASCII to Character 160

Example 8.3. Encode Strings 161
How It Works 162
Interlude The Art of Cryptography 164
Example 8.4. Decode Strings 164
How It Works 165

Chapter 8 Summary 166

Chapter 9 Advanced Function Techniques 167

Multiple Arguments 167
Returning More Than One Value 168

Interlude Passing and Modifying Lists 170
Example 9.1. Difference and Sum of Two Points 172
How It Works 172

Arguments by Name 173
Default Arguments 174

Example 9.2. Adding Machine 176
How It Works 176
Optimizing the Code 177

Importing Functions from Modules 178
Example 9.3. Dice Game (Craps) 179
How It Works 180
Interlude Casino Odds Making 182

Chapter 9 Summary 185

Chapter 10 Local and Global Variables 187

Local Variables, What Are They Good For? 187
Locals vs. Globals 188
Introducing the global Keyword 190

Overland_Book.indb xiOverland_Book.indb xi 8/31/17 12:56 PM8/31/17 12:56 PM

Contentsxii

The Python “Local Variable Trap” 190
Interlude Does C++ Have Easier Scope Rules? 191
Example 10.1. Beatles Personality Profile (BPP) 192
How It Works 195
Example 10.2. Roman Numerals 196
How It Works 197
Optimizing the Code 198
Interlude What’s Up with Roman Numerals? 200
Example 10.3. Decode Roman Numerals 201
How It Works 202
Optimizing the Code 203

Chapter 10 Summary 204

Chapter 11 File Ops 207

Text Files vs. Binary Files 207
The Op System (os) Module 208

Interlude Running on Other Systems 211
Open a File 211
Let’s Write a Text File 213

Example 11.1. Write File with Prompt 214
How It Works 214

Read a Text File 216
Files and Exception Handling 217

Interlude Advantages of try/except 219
Example 11.2. Text Read with Line Numbers 220
How It Works 221

Other File Modes 223
Chapter 11 Summary 224

Chapter 12 Dictionaries and Sets 227

Why Do We Need Dictionaries, Ms. Librarian? 227
Adding and Changing Key-Value Pairs 229
Accessing Values 230
Searching for Keys 231

Interlude What Explains Dictionary “Magic”? 232
Example 12.1. Personal Phone Book 232
How It Works 234

Overland_Book.indb xiiOverland_Book.indb xii 8/31/17 12:56 PM8/31/17 12:56 PM

Contents xiii

Converting Dictionaries to Lists 235
Example 12.2. Reading Items by Prefix 236
How It Works 238
Example 12.3. Loading and Saving to a File 238
How It Works 240

All About Sets 241
Operations on Sets 242

Interlude What’s So Important About Sets? 244
Example 12.4. Revised Sieve of Eratosthenes 244
How It Works 245

Chapter 12 Summary 246

Chapter 13 Matrixes: 2-D Lists 249

Simple Matrixes 249
Accessing Elements 250
Irregular Matrixes and Length of a Row 251
Multiplication (*) and Lists 252
The Python Matrix Problem 253
How to Create N*M Matrixes: The Solution 254

Interlude Why Isn’t It Easier? 255
Example 13.1. Multiplication Table 256
How It Works 257
Example 13.2. User-Initialized Matrix 258
How It Works 259
Optimizing the Code 260

How to Rotate a Matrix 261
Interlude Pros and Cons of Garbage Collection 263
Example 13.3. Complete Rotation Example 264
How It Works 266
Optimizing the Code 267

Chapter 13 Summary 268

Chapter 14 Winning at Tic-Tac-Toe 271

Design of a Tic-Tac-Toe Board 271
Plan of This Chapter 273

Phase 1 273
Phase 2 273
Phase 3 273

Overland_Book.indb xiiiOverland_Book.indb xiii 8/31/17 12:56 PM8/31/17 12:56 PM

Contentsxiv

Python One-Line if/else 274
Example 14.1. Simple Two-Player Game 274
How It Works 276
Interlude Variations on Tic-Tac-Toe 279

The count Method for Lists 279
Example 14.2. Two-Player Game with Win Detection 279
How It Works 282

Introducing the Computer Player 285
Example 14.3. Computer Play: The Computer Goes First 287
How It Works 290
Playing Second 291
Interlude The Art of Heuristics 292

Chapter 14 Summary 294

Chapter 15 Classes and Objects I 295

What’s an Object? 295
Classes in Python 296

How Do I Define a Simple Class? 297
How Do I Use a Class to Create Objects? 297
How Do I Attach Data to Objects? 298
How Do I Write Methods? 300

The All-Important _ _init_ _ Method 301
Interlude Why This self Obsession? 302

Design for a Database Class 303
Interlude C++ Classes Compared to Python 304
Example 15.1. Tracking Employees 305
How It Works 307

Defining Other Methods 309
Design for a Point3D Class 310
Point3D Class and Default Arguments 312
Three-Dimensional Tic-Tac-Toe 312

Example 15.2. Looking for a 3-D Win 313
How It Works 314
Example 15.3. Calculating Ways of Winning 315
How It Works 317
Optimizing the Code 317

Chapter 15 Summary 318

Overland_Book.indb xivOverland_Book.indb xiv 8/31/17 12:56 PM8/31/17 12:56 PM

Contents xv

Chapter 16 Classes and Objects II 321

Getting Help from Doc Strings 321
Function Typing and “Overloading” 323

Interlude What Is Duck Typing? 325
Variable-Length Argument Lists 326

Example 16.1. PointN Class 327
How It Works 329
Optimizing the Code 330

Inheritance 331
The Fraction Class 333

Example 16.2. Extending the Fraction Class 334
How It Works 335

Class Variables and Methods 337
Instance Variables as “Default” Values 339

Example 16.3. Polygon “Automated” Class 340
How It Works 342
Interlude OOPS, What Is It Good For? 343

Chapter 16 Summary 344

Chapter 17 Conway’s Game of Life 347

Interlude The Impact of “Life” 347
Game of Life: The Rules of the Game 348
Generating the Neighbor Count 350
Design of the Program 352

Example 17.1. The Customized Matrix Class 352
How It Works 353

Moving the Matrix Class to a Module 354
Example 17.2. Printing a Life Matrix 355
How It Works 355

The Famous Slider Pattern 358
Example 17.3. The Whole Game of Life Program 358
How It Works 360
Interlude Does “Life” Create Life? 363

Chapter 17 Summary 364

Overland_Book.indb xvOverland_Book.indb xv 8/31/17 12:56 PM8/31/17 12:56 PM

Contentsxvi

Chapter 18 Advanced Pythonic Techniques 367

Generators 367
Exploiting the Power of Generators 369

Example 18.1. A Custom Random-Number Generator 370
How It Works 372
Interlude How Random Is “Random”? 373

Properties 375
Getter Methods 376
Setter Methods 377
Putting Getters and Setters Together 378
Example 18.2. Multilevel Temperature Object 379
How It Works 380

Decorators: Functions Enclosing Other Functions 382
Python Decoration 385

Example 18.3. Decorators as Debugging Tools 387
How It Works 388

Chapter 18 Summary 389

Appendix A Python Operator Precedence Table 391

Appendix B Summary of Most Important Formatting Rules
for Python 3.0 393

1. Formatting Ordinary Text 393
2. Formatting Arguments 393
3. Specifying Order of Arguments 393
4. Right Justification Within Field of Size N 394
5. Left Justification Within Field of Size N 394
6. Truncation: Limit Size of Print Field 394
7. Combined Truncation and Justification 395
8. Length and Precision of Floating-Point Numbers 395
9. The Padding Character 395

Appendix C Glossary 397

Index 407

Overland_Book.indb xviOverland_Book.indb xvi 8/31/17 12:56 PM8/31/17 12:56 PM

xvii

Preface

There’s a lot of free programming instruction out there, and much of it’s about
Python. So for a book to be worth your while, it’s got to be good…it’s got to
be really, really, really good.

I wrote this book because it’s the book I wish was around when I was first
learning Python a few years back. Like everybody else, I conquered one concept
at a time by looking at almost a dozen different books and consulting dozens
of web sites.

But this is Python, and it’s not supposed to be difficult!
The problem is that not all learning is as easy or fast as it should be. And

not all books or learning sites are fun. You can, for example, go from site to
site just trying to find the explanation that really works.

Here’s what this book does that I wish I’d had when I started learning.

Steering Around the “Gotchas”
Many things are relatively easy to do in Python, but a few things that ought
to be easy are harder than they’d be in other languages. This is especially
true if you have any prior background in programming. The “Python way”
of doing things is often so different from the approach you’d use in any other
language, you can stare at the screen for hours until someone points out the
easy solution.

Or you can buy this book.

How to Think “Pythonically”
Closely related to the issue of “gotchas” is the understanding of how to think
in Python. Until you understand Python’s unique way of modeling the world,

Overland_Book.indb xviiOverland_Book.indb xvii 8/31/17 12:56 PM8/31/17 12:56 PM

Prefacexviii

you might end up writing a program the way a C programmer would. It runs,
but it doesn’t use any of the features that make Python such a fast develop-
ment tool.

a_list = ['Don\'t', 'do', 'this', 'the' ,'C', 'way']
for x in a_list:
 print(x, end=' ')

This little snippet prints

Don't do this the C way

Intermediate and Advanced Features
Again, although Python is generally easier than other languages, that’s not
universally true. Some of the important intermediate features of Python are
difficult to understand unless well explained. This book pays a lot of atten-
tion to intermediate and even advanced features, including list comprehension,
generators, multidimensional lists (matrixes), and decorators.

Learning in Many Different Styles
In this book, I present a more varied teaching style than you’ll likely find else-
where. I make heavy use of examples, of course, but sometimes it’s the right
conceptual figure or analogy that makes all the difference. Or sometimes it’s
working on exercises that challenge you to do variations on what’s just been
taught. But all of the book’s teaching styles reinforce the same ideas.

What’s Going on “Under the Hood”
Although this book is for people who may be new to programming altogether,
it also caters to people who want to know how Python works and how it’s fun-
damentally different “under the hood.” That is, how does Python carry out
the operations internally? If you want more than just a simplistic introduction,
this book is for you.

Overland_Book.indb xviiiOverland_Book.indb xviii 8/31/17 12:56 PM8/31/17 12:56 PM

Preface xix

Why Python?
Of course, if you’re trying to decide between programming languages, you’ll
want to know why you should be using Python in the first place.

Python is quickly taking over much of the programming world. There are
some things that still require the low-level capabilities of C or C++, but you’ll
find that Python is a rapid application development tool; it multiplies the
effort of the programmer. Often, in a few lines of code, you’ll be able to do
amazing things.

More specifically, a program that might take 100 lines in Python could
potentially take 1,000 or 2,000 lines to write in C. You can use Python as
“proof of concept”: write a Python program in an afternoon to see whether
it fulfills the needs of your project; then after you’re convinced the program is
useful, you can rewrite it in C or C++, if desired, to make more efficient use of
computer resources.

With that in mind, I’ll hope you’ll join me on this fun, exciting, entertaining
journey. And remember this:

x = ['Python', 'is', 'cool']
print(' '.join(x))

Register your copy of Python Without Fear on the InformIT site for con-
venient access to updates and/or corrections as they become available. To
start the registration process, go toinformit.com/register and log in or create
an account. Enter the product ISBN (9780134687476) and click Submit. Look
on the Registered Products tab for an Access Bonus Content link next to
this product, and follow that link to access any available bonus materials.
If you would like to be notified of exclusive offers on new editions and
updates, please check the box to receive email from us.

Overland_Book.indb xixOverland_Book.indb xix 8/31/17 12:56 PM8/31/17 12:56 PM

http://toinformit.com/register

This page intentionally left blank

xxi

Acknowledgments

It’s customary for authors to write an acknowledgments page, but in this case,
there’s a particularly good reason for one. There is no chapter in this book
that wasn’t strongly influenced by one of the collaborators: retired Microsoft
programmer (and software development engineer) John Bennett.

John, who has used Python for a number of years—frequently to help
implement his own high-level script languages—was particularly helpful in
pointing out that this book should showcase “the Python way of doing things.”
So the book covers not just how to transcribe a Python version of a C++
solution but rather how to take full advantage of Python concepts—that is, how
to “think in Python.”

I should also note that this book exists largely because of the moral support
of two fine acquisition editors: Kim Boedigheimer, who championed the
project early on, and Greg Doench, whom she handed the project off to.

Developmental and technical editors Michael Thurston and John Wargo made
important suggestions that improved the product. My thanks go to them, as well
as the editorial team that so smoothly and cheerfully saw the manuscript
through its final phases: Julie Nahil, Kim Wimpsett, Angela Urquhart, and
Andrea Archer.

Overland_Book.indb xxiOverland_Book.indb xxi 8/31/17 12:56 PM8/31/17 12:56 PM

Overland_Book.indb xxiiOverland_Book.indb xxii 8/31/17 12:56 PM8/31/17 12:56 PM

This page intentionally left blank

xxiii

Author Bio

At one time or another, Brian Overland was in charge of, or at least influential in,
documenting all the languages that Microsoft Corporation ever sold: Macro
Assembler, FORTRAN, COBOL, Pascal, Visual Basic, C, and C++. Unlike
some people, he wrote a lot of code in all these languages. He’d never document
a language he couldn’t write decent programs in.

For years, he was Microsoft’s “go to” man for writing up the use of utilities
needed to support new technologies, such as RISC processing, linker extensions,
and exception handling.

The Python language first grabbed his attention a few years ago, when he
realized that he could write many of his favorite applications—the Game of
Life, for example, or a Reverse Polish Notation interpreter—in a smaller space
than any computer language he’d ever seen.

When he’s not exploring new computer languages, he does a lot of other
things, many of them involving writing. He’s an enthusiastic reviewer of films
and writer of fiction. He’s twice been a finalist in the Pacific Northwest Literary
Contest.

Overland_Book.indb xxiiiOverland_Book.indb xxiii 8/31/17 12:56 PM8/31/17 12:56 PM

Overland_Book.indb xxivOverland_Book.indb xxiv 8/31/17 12:56 PM8/31/17 12:56 PM

This page intentionally left blank

29

3 Your First
Programs

Programming is like writing a script, creating a predetermined list of words
and actions for actors to perform night after night. A Python function is not
so different. From within the interactive environment, you can execute a func-
tion as often as you like, and it will execute the same predefined “script.” (The
term script can also refer to an entire program.)

Within the Python interactive development environment (IDLE), writing
functions is the beginning of true programming. In this chapter, I explore how
to write functions, including the following:

 Using functions to calculate formulas

 Getting string and numeric input

 Writing formatted output

Temperatures Rising?
I happen to live in the Northwest corner of the United States, and I have Canadian
relatives. When they discuss the weather, they’re always talking Celsius. They
might say, “Temperature’s all the way up to 25 degrees. Gettin’ pretty warm, eh?”

For people accustomed to the Fahrenheit scale, 25 is cold enough to freeze
your proverbial hockey stick. So I have to mentally run a conversion.

fahr = cels * 1.8 + 32

If you have the Python interactive environment running, this is an easy cal-
culation. I can convert 20 degrees in my head, but what about 25? Let’s use
Python! The following statements assign a value to the name cels (a vari-
able), use that value to assign another value to the name fahr, and then finally
display what the fahr value is.

Overland_Book.indb 29Overland_Book.indb 29 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 3 Your First Programs30

>>>cels = 25
>>>fahr = cels * 1.8 + 32
>>>fahr
77.0

So, 25 “Canadian” degrees are 77.0 degrees on the “real” (that is, the Amer-
ican) temperature scale. That’s comfortably warm, isn’t it? For those living
north of the border, it’s practically blistering.

Python prints the answer with a decimal point: 77.0. That’s because when the
interactive environment combined my input with the floating-point value 1.8, it
promoted all the data to floating-point format.

Let’s try another one. What is the Fahrenheit value of 32 degrees Celsius?
Actually, there’s a faster way to do this calculation. We don’t have to use vari-
ables unless we want to do so.

>>>32 * 1.8 + 32.0
89.6

Thirty-two degrees on the Celsius scale is 89.6 Fahrenheit. For a Canadian,
that’s practically burning up.

But I’d like to make this calculation even easier. What I’d really like to do is
just enter a function name followed by a value to convert.

>>>convert(32)
89.6

And—here is the critical part—if this function worked generally, as if it
were part of Python, I could use it to convert any number from Celsius to
Fahrenheit. All I’d have to do is enter a different argument.

>>>convert(10)
50.0
>>>convert(20)
68.0
>>>convert(22.5)
72.5

But Python lets me create my own such function. This is what the def key-
word does: define a new function. We could write it this way from within the
interactive environment:

>>>def convert(fahr):
 cels = fahr * 1.8 + 32.0
 return cels

>>>

Overland_Book.indb 30Overland_Book.indb 30 8/31/17 12:56 PM8/31/17 12:56 PM

Temperatures Rising? 31
3

Notice that these statements by themselves don’t seem to do anything.
Actually, they do quite a bit. They associate the symbolic name convert with
something referred to as a callable in Python, that is, a function.

If you display the “value” of the function, by itself, you get a cryptic
message.

>>>convert
<function convert at 0x1040667b8>

This message tells you that convert has been successfully associated with
a function. There were no syntax errors; however, runtime errors are always
possible.

Not until we execute convert do we know whether it runs without errors.
But this is easy. To execute a function, just follow it with parentheses—enclosing
any arguments, if any.

>>>convert(5)
41.0

So, 5 degrees Celsius is actually 41.0 Fahrenheit…cool but not quite freezing.
If you enter this example as shown—using the bold font to indicate what

you should type as opposed to what Python prints—and if everything goes
right, then congrats, you’ve just written your first Python function!

If instead you get a syntax error, remember that you can easily edit a func-
tion by 1) moving the cursor to any line of the function and 2) pressing Enter.
The entire function definition will reappear, and you can edit it by moving the
cursor up and down. Finally, you can reenter it again. (To reenter, put your
cursor on the end of the last line and press Enter twice.)

Before resubmitting the function definition, review the following rules:

 The definition of convert is followed by parentheses and the name of an
argument. This name stands in for the value to be converted. In this case, the
argument name is fahr.

 You must type a colon (:) at the end of the first line.

 The environment then automatically indents the next lines. Use this indenta-
tion. Don’t try to modify it—at least not yet.

 The return statement determines what value the function produces.

 Remember that in Python all names are case-sensitive.

 In the interactive environment, you terminate the function by typing an extra
blank line after you’re done.

Overland_Book.indb 31Overland_Book.indb 31 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 3 Your First Programs32

Note Ë From within the interactive environment, you should use whatever
indentations the environment creates for you. Doing otherwise may cause
Python to report errors and fail to run the program.

However, when you write Python scripts in separate text files, the preferred
convention is to use four spaces (and no tab characters). This is somewhat
arbitrary, because almost any indentation scheme works if you hold to it con-
sistently. But four spaces is the style preferred according to the PEP-8 standard
that is observed by many Python programmers.

As much as possible, this book tries to hold to this PEP-8 standard. You
can read more about this typographic standard for Python programming by
searching for PEP-8 online.

 Ç Note

Let’s take another example. Let’s define another function and this time give it the
name inch_to_cent. This function is even simpler than the convert function: it
changes inches to centimeters, according to the formula 1 inch = 2.54 centimeters.

>>>def inch_to_cent(inches):
 cent = inches * 2.54
 return cent

>>>

As with the earlier function, entering a syntactically correct definition doesn’t
immediately do anything, but it does create a callable that you can then use to
perform the inches-to-centimeter conversation whenever you want.

Here’s an example:

>>>inch_to_cent(10)
25.4
>>>inch_to_cent(7.5)
19.05

Note that the inch_to_cent function definition uses its own variable—a
local variable—named cent. Because it is local, it doesn’t affect what hap-
pens to any variable named cent outside of the function.

But the use of this variable in this case isn’t really necessary. You could
define the same function more succinctly, as follows. But the effect is the same
in either case.

>>>def inch_to_cent(x):
 return x * 2.54

>>>

Overland_Book.indb 32Overland_Book.indb 32 8/31/17 12:56 PM8/31/17 12:56 PM

Temperatures Rising? 33
3

You can conceptualize the action of a function call as follows. Each call
to the inch_to_cent function passes a particular value in parentheses. This
value is passed to the name x inside the function definition, and the return
statement produces the output after operating on the x value passed to it.

Here’s an illustration of how this works:

def convert(x):

 Number crunching

 return ftemp

convert(10)

Return value
to caller

Remember, a function must be defined before a call to that function is
executed.

Python’s Use of Indentation

Syntactically, Python is fundamentally different from all the languages in
the C-language family—including C++, Java, and C#—as well as other
languages such as BASIC. The single biggest difference is that spacing
matters, particularly indentation.

In the interactive environment, Python automatically indents state-
ments inside a control structure, such as a def, if, or while statement
block. Until you terminate that block, you should accept the indentation
and not try to “fix” it.

When you learn later in this chapter to compose text files as Python scripts,
you can indent any number of spaces you want, but you must do it consistently.
If the first statement within a block of statements is indented four spaces, the
next statement must be indented four spaces as well—no more, no less.

Note that the PEP-8 specification states that four-space indentation is
the preferred standard.

A pitfall awaits you in the form of invisible tab characters. You can use
tabs, but the danger is that a tab may look like four blank spaces when in
fact it is only one character. And if you indent with a tab on one line and use
spaces to indent on the next, Python gets confused and issues a syntax error.

continued on next page

Interlude

Overland_Book.indb 33Overland_Book.indb 33 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 3 Your First Programs34

continued

If possible, then, always use either one technique or the other: a single
tab or multiple blank spaces. The safest policy is to have your text editor
follow the rule of replacing a tab with blank spaces.

Indentation is an area in which C++ programmers are bound to feel
superior. Take the following Python function:

def convert_temp(x):
 cels = x * 1.8 + 32.0
 return cels

In Python, you must indent this way or Python gets horribly confused.
In C and C++, you are freed from spacing issues for the most part, because
statement blocks and function definitions are controlled by curly braces.
Here’s how you might write this function in C++:

float convert_temp(float x) {
 float cels = x * 1.8 + 32.0;
 return cels;
}

There are similarities between these two versions—the Python and
the C/C++ version—but the latter gives you a lot more freedom to space
things as you choose.

float convert_temp(float x)
{cels = x * 1.8 + 32.0; return cels; }

With a little optimization, you can even put all the code on a single line.

float convert_temp(float x){return x * 1.8 + 32.0;}

What C and C++ programmers tend to like about this is that the com-
piler is largely indifferent to spacing issues—as long as some whitespace
appears where needed to separate variable names and keywords. C++
will never complain because you intended three spaces rather than four,
which to a C++ programmer seems fussy, if not petty.

But the Python way has its own advantages. To beginning and interme-
diate programmers especially, Python indentation allows you to see how
“deep” you are in the program. It makes relationships between different
statements more obvious. And it closely echoes the indentation of pseudocode
I use throughout this book.

Once you get used to Python’s reliance on indented statements, you’ll
love it. Just be careful that your text editor doesn’t let you confuse tab
characters with blank spaces.

Interlude

Overland_Book.indb 34Overland_Book.indb 34 8/31/17 12:56 PM8/31/17 12:56 PM

Putting in a Print Message 35
3

Putting in a Print Message
What if I want the function to not just return a number but to instead print
out a user-friendly message such as the following:

7.5 inches are equal to 19.05 centimeters.

I can easily do that in Python. All I need to do is add a call to the built-in
print function. Because print is a built-in function of Python, it’s one that
you do not define yourself; it’s already defined for you. Here’s a sample of this
function in action:

>>>print('My name is Brian O.')
My name is Brian O.

Version Ë Python version 2.0 features a version of print that does not expect
parentheses around the argument list, because it is not a function. Starting
with Python version 3.0, print becomes a function and therefore requires the
parentheses.

print 'My name is Brian O.' # Python 2.0 version
 Ç Version

Why did I place single-quotation marks around the message to be printed?
I did that because this information is text, not numeric data or Python code; it
indicates that the words are to be printed out exactly as shown. Here are some
more examples:

>>>print('To be or not to be.')
To be or not to be.
>>>print('When we are born, we cry,')
When we are born, we cry,
>>>print('That we are come'
 ' to this great stage of fools.')
That we are come to this great stage of fools.

The ability to use print pays off in a number of ways: I can intermix text—
words placed in quotation marks—with variables.

>>>x = 5
>>>y = 25
>>>print('The value of', x, 'squared is', y)
The value of 5 squared is 25

By default, the print function inserts an extra blank space between one
item and the next. Also, after a call to the print function is finished, then by

Overland_Book.indb 35Overland_Book.indb 35 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 3 Your First Programs36

default it prints a newline character, which causes the terminal to advance to
the next line.

Now let’s combine the printing ability with the power to define functions.

>>>def convert(x):
 c = x * 2.54
 print(x, 'inches equal', c, 'centimeters.')

>>>convert(5)
5 inches equal 12.2 centimeters.
>>>convert(10)
10 inches equal 25.4 centimeters.

Do you now see why the print function is useful? I can call this built-in
function from within a definition of one of my functions; that enables
my functions to print nice output messages rather than just producing a
number.

Syntax Summaries
Throughout this book I use summaries to summarize parts of Python syntax.
These are the grammatical rules of the language, and—although they are gen-
erally easier and more natural than syntax rules for human language—they
must be followed precisely. If you’re required to use a colon at the end of the
line, you must not forget it.

Here is the syntax summary for function definitions:

def function_name(argument) :
 indented_statements

There actually is more to function syntax than this, as you’ll see in Chap-
ters 9 and 10. As I’ll show later in this chapter, you can have more than one
argument; if you do, use commas to separate them.

In a syntax display—such as the one shown previously—items in bold must
be typed in as shown; the items in italics are items you supply, such as names.

Here’s another example you can compare to the syntax summary:

>>>def print_age(n):
 print('Happy birthday.')
 print('I see that you are', n)
 print('years old.')

>>>

Ke
yw

ord

Overland_Book.indb 36Overland_Book.indb 36 8/31/17 12:56 PM8/31/17 12:56 PM

Syntax Summaries 37
3

Remember, as always, that to end the statement block from within the
interactive environment, type an extra blank line at the end.

Remember, also, that certain errors are not detected until the function is
executed. Suppose a function does not contain syntax errors, but it tries to
refer to a variable that is not yet recognized. Executing the function will gen-
erate an error unless the variable is created before the function is executed.

For a variable to be recognized, one of several things must happen.

 The function creates a variable by assigning it a value during an assignment (=).

 The variable must already exist because of an earlier assignment.

 Or, the variable exists because it represents a value passed to the function (for
example, n in the previous function-definition example).

Here’s a sample session that executes the print_age function. It assumes
that this function has already been defined through the use of a def state-
ment, as shown earlier.

>>>print_age(29)
Happy birthday.
I see that you are 29
years old.

Here is the same function, this time called with the value 45 rather than 29:

>>>print_age(45)
Happy birthday.
I see that you are 45
years old.

The built-in print function has a simple syntax—although there are some
special features I’ll introduce later.

print(items)

When print is executed, it displays the items on the console, with an extra
blank space used to separate one item from the next.

During the call to print, you use commas to separate arguments if there is
more than one.

>>>i = 10
>>>j = 5
>>>print(i, 'is greater than', j)
10 is greater than 5

K
ey

 S
yn

tax

Overland_Book.indb 37Overland_Book.indb 37 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 3 Your First Programs38

Example 3.1. Quadratic Equation as a Function
Now let’s do something a little more interesting: take the quadratic formula exam-
ple from Chapter 2 and place it in a function definition, by using the def keyword.

The quadratic formula computes the value of x, given the following rela-
tionship to arguments a, b, and c.

0 = ax2 + bx + c

The following interactive session defines quad as a function taking three
arguments and returning a value, which is the solution for x.

>>>def quad(a, b, c):
 determ = (b * b - 4 * a * c) ** 0.5
 x = (-b + determ) / (2 * a)
 return x

>>>

With this definition entered into the environment, you can then call the
quad function with any values you like. For example, a simple quadratic equa-
tion is as follows:

0 = x2 + 2x + 1

In this statement, a, b, and c correspond to the values 1, 2, and 1, respec-
tively. Therefore, by giving the values 1, 2, and 1 as arguments to the quad
function, we will get the value of x that satisfies the equation.

>>>quad(1, 2, 1)
-1.0

This means that we should be able to plug the value –1.0 in for x and get the
quadratic equation to come out right. Let’s try it.

0 = (-1)2 + 2(-1) + 1
 = 1 - 2 + 1

It works! Everything checks out nicely, because plugging –1.0 in for x does
indeed produce 0. But a more interesting equation involves the numbers 1, –1,
and –1, which give us the golden ratio. That ratio has the following property:

x/1 = (x + 1)/x,

That equation, in turn, implies the following:

x2 = x + 1

This in turn yields a quadratic equation, as shown here:

 0 = x2 - x - 1

Overland_Book.indb 38Overland_Book.indb 38 8/31/17 12:56 PM8/31/17 12:56 PM

Syntax Summaries 39
3

Finally, that gives us values for a, b, and c of 1, –1, and –1, which we can
evaluate with the quad function. Let’s try it!

>>>quad(1, -1, -1)
1.618033988749895

And this turns out to be correct to the 15th decimal place. This is the spe-
cial number “phi.” One of its many special properties is phi squared minus 1
produces phi itself. This is the golden ratio.

You can verify it this way:

>>>phi = quad(1, -1, -1)
>>>phi
1.618033988749895
>>>phi * phi - 1
1.618033988749895

A-ha! Phi squared, minus 1, gives us phi again! This is indeed the golden
ratio or, rather, a close approximation of it.

H
ow

 It

 Works

 How It Works
Although the quad function may look more complicated than the other, more
elementary examples in this chapter, at the bottom it’s doing the same thing:
taking in some input, doing some number crunching, and returning a result.
The one true innovation in this example is that here I’ve introduced the use of
three arguments rather than just one.

The order of arguments is significant. Because the quad definition takes
three arguments, a, b, and c, each call to quad must specify three values, and
these are passed to those variable names: a, b, and c, in that order.

The following illustration shows how this works for the function call
quad(1, 2, 1), assigning 1, 2, and 1 to the values a, b, and c:

def quad(a, b, c):

 Number crunching

 return x

quad(1, 2, 1)

Return value
to caller

Overland_Book.indb 39Overland_Book.indb 39 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 3 Your First Programs40

Now it’s simply a matter of doing the correct number crunching to get an
answer, and that means applying the quadratic formula.

x ==

b b2 4–±– ac
2a

We can use pseudocode to express what this function does. A pseudocode
description of a program or function uses sentences that are very close to
human language but lists the steps explicitly.

Here is the pseudocode description of the quad function:

For inputs a, b, and c:
 Set determ equal to the square root of (b * b) – (4 * a * c).
 Set x equal to (–b + determ) divided by (2 * a).
 Return the value x.

The quadratic formula actually produces two answers, not one. The plus or
minus sign indicates that –b plus the determinant (the quantity under the rad-
ical sign) divided by 2a is one answer; but –b minus the determinant divided
by 2a is the other answer. In Example 3.1, the function returns only the first
answer.

Ex
er

cis
es

 EXERCISES

Exercise 3.1.1. Revise the quad function by replacing the name determ with the
name dt and by replacing the name x with the name x1; then verify that the
function still works.

Exercise 3.1.2. Revise the quad function so that instead of returning a value, it
prints two values using the Python print statement in a user-friendly manner:
“The x1 value is…” and “The x2 value is…” (Hint: The use of the plus/minus
sign in the quadratic formula indicates what these two—not one—values
should be. Review this formula closely if you need to do so.) Print each answer
out on a separate line.

Exercise 3.1.3. The mathematical number “phi” represents the golden ratio, more
specifically, the ratio of the long side of a golden rectangle to the short side.
Try to predict what the reciprocal (1/phi) is; then use the Python interactive
environment to see whether you’re right. How would you express the relation-
ship between phi and 1/phi?

Ps
eu

do

code

Overland_Book.indb 40Overland_Book.indb 40 8/31/17 12:56 PM8/31/17 12:56 PM

Getting String Input 41
3

Getting String Input
Before you can finally write “real programs,” you’ll need to be able to write
scripts that can query the user for more information. Fortunately, Python
includes a powerful built-in function, the input function, which makes this
easy.

I’ll give you the syntax first and then show examples.

string_var = input(prompt_string)

Version Ë If you’re using Python 2.0, use the function name raw_input instead
of input. In 2.0, the input function works, but it does something different:
it evaluates the string input as a Python statement rather than just passing it
back as a string.

 Ç Version

The essence of this syntax is that the built-in input statement both takes
and produces a text string. In one way, the concept of text string is easy to
understand; it’s just “words” for the most part—or more accurately, letters
and other characters.

For example, we might write a function, main, which we’re going to use as
a script.

>>>def main():
 name1_str = input('Enter your name: ')
 name2_str = input('Enter another: ')
 name3_str = input('And another: ')
 print('Here are all the candidates: ')
 print(name1_str, name2_str, name3_str)

>>>main()
Enter your name: Brian
Enter another: Hillary
And another: Donald
Here are all the candidates:
Brian Hillary Donald

This by itself is not a very exciting program. It takes some text and displays
it on the console. But this little program demonstrates an important ability of
Python: the ability to prompt the user for a text string and then assign it to a
variable.

K
ey

 S
yn

tax

Overland_Book.indb 41Overland_Book.indb 41 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 3 Your First Programs42

While other variables up until now have referred to numeric values, these
variables—name1, name2, and name3—all refer to text strings in this case.

What exactly can go into a text string? Basically, anything you can type can
go in a text string. Here’s an example:

>>>in_str = input('Enter input line: ')
Enter input line: When I'm 64...
>>>in_str
'When I'm 64...'

As you can see, text strings can contain numerals (digit characters). But
until they’re converted, they’re just numerals. They are text-string representa-
tions of numbers, not numbers you can perform arithmetic on.

If this isn’t obvious, just remember that the numeral 5 is just a character on
a keyboard or on the screen. But the number 5 can be doubled or tripled to
produce 10 or 15 and has little to do with characters on a keyboard.

Here’s an example:

in_str = '55'

But assigning 55 with no quote marks around it does something different.

n = 55

The difference is that 55 is an actual number, meaning that you can add,
subtract, multiply, and divide it. But when enclosed in quotation marks, '55'
is a text string. That means it is a string consisting of two numerals, each a 5,
strung together.

A simple program should help illustrate the difference.

>>>def main():
 in_str = input('Enter your age: ')
 print ('Next year you'll be', in_str + 1)

>>>main()
Enter your age: 29
Error! Incompatible types.

Oops! What happened? The characters 29 were entered at the prompt and
stored as a text string, that is, a numeral 2 followed by a numeral 9—a string
two characters long. But that’s not the same as a number, even though it looks
like one.

Python complains as soon as you try to add a text string to a number.

in_str + 1

Overland_Book.indb 42Overland_Book.indb 42 8/31/17 12:56 PM8/31/17 12:56 PM

Getting Numeric Input 43
3

No error is reported until you execute the function. Python variables don’t have
types; only data objects do. Consequently, Python syntax seems lax at first. But
the types of data objects—which are not checked for syntax errors, as there are no
“declarations”—are checked whenever a Python statement is actually executed.

This means, among other things, that you cannot perform arithmetic on a
string of numerals such as 100, until that string is first converted to numeric
format. If this doesn’t make sense now, don’t worry; it will make sense when
you read the next section.

The next section shows how to get input and store it as a number rather
than text string.

Getting Numeric Input
As the previous section demonstrated, if you write a program that takes
numeric input and does number crunching on it, you need to first convert to a
numeric format.

To do that, use one of the following statements, depending on whether you
are dealing with integer (int) or floating-point data (float):

var_name = int(input(prompt_message))
var_name = float(input(prompt_message))

These statements combine the input and conversion operations. You can,
if you prefer, do them separately, but this is less efficient. For example, you
could use this approach:

in_str = input('Enter a number: ')
n = int(in_str)

These two statements work fine together, but there’s no reason not to com-
bine the operations.

n = int(input('Enter a number: '))

Here’s an interactive session that uses a number entered at the keyboard
and then multiplies it by 2:

>>>def main():
 n = int(input('Enter a number: '))
 print('Twice of that is:', n * 2)

>>>main()
Enter a number: 10
Twice of that is: 20

K
ey

 S
yn

tax

Overland_Book.indb 43Overland_Book.indb 43 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 3 Your First Programs44

So, to get actual numeric input, as opposed to storing input in a text string,
use the int and float conversions.

But what are int and float, exactly? Here I’m using them like functions,
but they’re actually the names of built-in data types, integer and floating
point, respectively. In Python, there’s a general rule that type names can be
used in this fashion, to perform conversions (assuming the appropriate con-
version exists).

type_name(data)

Example 3.2. Quadratic Formula with I/O
This next example takes the quadratic-formula example another step further,
by placing all the statements in a main function and then relying on Python
input and output statements to communicate with the end user.

>>>def main():
 a = float(input('Enter value for a: '))
 b = float(input('Enter value for b: '))
 c = float(input('Enter value for c: '))
 determ = (b * b - 4 * a * c) ** 0.5
 x1 = (-b + determ) / (2 * a)
 x2 = (-b - determ) / (2 * a)
 print('Answers are', x1, 'and', x2)

>>>main()

Here is a sample session that might follow after you type main():

Enter value for a: 1
Enter value for b: -1
Enter value for c: -1
Answers are 1.618033988749895 and -0.6180339887498948

There are two different answers in this case, not equal to each other, because
the golden ratio is either phi (the ratio of the large side to the small) or 1/phi (the
ratio of the small side to the large), depending on how you look at it. The nega-
tive sign in the second answer is necessary for the math to come out right.

Nearly all the digits are identical in this case, except for a small differ-
ence due to rounding errors. The actual values of phi and 1/phi are irrational
(which means you would need an infinite number of digits to represent them
precisely).

K
ey

 S
yn

tax

Overland_Book.indb 44Overland_Book.indb 44 8/31/17 12:56 PM8/31/17 12:56 PM

Getting Numeric Input 45
3

Note Ë Remember that the interactive environment supports cut-and-paste
operations, as well as a “magic” technique for revising blocks of code.

So, if you enter a long function definition and realize you’ve made a mis-
take, you can save a great deal of time by doing the following:

1 Scroll up to the block of code.

2 Place your cursor on any line of code in this block.

3 Press Enter.

4 The block of code will appear in the window—at the new cursor position—ready
for you to edit it.

Then go ahead and make your changes, scrolling up and down if you need.
When done, type an extra blank line after the new block of code.

 Ç Note

H
ow

 It

 Works

 How It Works
In this chapter, we’re still dealing with programs that are relatively short and
translate into simple pseudocode.

Prompt the user for the values of a, b, and c.
Apply the quadratic formula to get x1 and x2.
Print the values of x1 and x2.

Because a, b, and c all need to refer to numeric data, the program applies a
float conversion combined with the built-in input function. If these numbers
are not converted to float format, you won’t be able to do math with them.

 a = float(input('Enter value for a: '))
 b = float(input('Enter value for b: '))
 c = float(input('Enter value for c: '))

Next, the quadratic formula is applied to get the two solutions for x. Remem-
ber that the operation ** 0.5 has the same effect as taking the square root.

 determ = (b * b – 4 * a * c) ** 0.5
 x1 = (-b + determ) / (2 * a)
 x2 = (-b - determ) / (2 * a)

Finally, the program displays the output, featuring x1 and x2.

 print('The answers are', x1, 'and', x2)

Ps
eu

do

code

Overland_Book.indb 45Overland_Book.indb 45 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 3 Your First Programs46
Ex

er
cis

es

 EXERCISES

Exercise 3.2.1. In Example 3.2, instead of using the prompt messages “Enter the
value of a,” etc., prompt the user with the following messages:

“Enter the value of the x-square coefficient.”

“Enter the value of the x coefficient.”

“Enter the value of the constant.”

Do you have to change the variable names as a result? Note that the user
never sees the names of variables inside the code, unless you deliberately print
those names.

Exercise 3.2.2. Modify Example 3.2 so that it restricts input to integer values.

Exercise 3.2.3. Write a program to calculate the area of a right triangle, based
on height and width inputs. Apply the triangle area formula: A = w * h * 0.5.
Prompt for width and height separately and print a nice message on the dis-
play saying, “The area of the triangle is….”

Exercise 3.2.4. Do the same for producing the volume of a sphere based on the
radius of the sphere. I’ll invite you to look up the formula for volume of a sphere.
For the value pi, you can insert the following statement into your program:

pi = 3.14159265

Formatted Output String
In Example 3.2, typical output looked like this:

The answers are 3.0 and 4.0

(This is produced, incidentally, when the inputs to the quadratic formula
are 1, –7, and 12.)

But we might like to place a period at the end, making the output read as a
nice sentence. We’d like to get the following:

The answers are 3.0 and 4.0.

But the print function puts a space between each print field so that you end up
getting the following, which has an unnecessary space before the last character.

The answers are 3.0 and 4.0 .

Overland_Book.indb 46Overland_Book.indb 46 8/31/17 12:56 PM8/31/17 12:56 PM

Formatted Output String 47
3

There are at least two solutions. One is to include the special sep (separa-
tor) argument to the print function. By default, print uses a single space as a
separator. But we can use sep='' (this consists of two single quotes in a row)
to indicate that print shouldn’t put in any separator at all.

This is fine, because we just take on responsibility for putting in space sepa-
rators ourselves. The output statement then becomes the following:

print('The answers are ', x1, ' and ', x2, '.', sep='')

And this works, although it’s a fair amount of extra work. Not only do we
have to add sep='', but we have to add all those extra spaces.

But there’s a better way. Python provides a way to create a formatted-output
string. To use this approach, follow these steps:

1 Create a format specification string that includes print fields denoted with the
characters {}. A print field is an indication of where output characters, produced
by arguments, are to be inserted into the resulting string.

2 Apply the format method to this format-specification string, specifying the values
to be printed as arguments.

3 Print the resulting output string.

For example, you can set up a format specification string (fss) as follows:

fss = 'The numbers are {} and {}.'

Then you apply the format method to this string. The result produces an
output string.

output_str = fss.format(10, 20)
print(output_str)

And here’s what the result looks like:

The numbers are 10 and 20.

Example 3.3. Distance Formula in a Script
Sooner or later, you’ll want to write and permanently save your Python pro-
grams. The steps are as follows:

1 From within IDLE, choose the New File command from the File menu.

2 Enter a program (or copy text) into the window that appears, which serves as a
text editor for your programs.

Overland_Book.indb 47Overland_Book.indb 47 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 3 Your First Programs48

3 To save the program, choose Save or Save As from the File menu. The first time
you save a program this way, the environment will prompt you to enter a name
with a .py extension. (It will add this extension for you automatically.)

4 To run the program, make sure the program window has the focus. Then either
press F5 or select Run Module from the Run menu.

5 After the program begins running, you may need to shift focus back to IDLE’s
main window (the shell). [An exception is that with tkinter (graphical) programs,
you’ll need to shift focus to the window generated by the program.]

Alternatively, you can write a program with any text editor you want, but be
sure you save the file in plain-text format and give it a .py extension. Then you
can load it into Python by using the Open command from IDLE’s File menu.

Although the Python environment is still extremely useful for experi-
menting with, and getting help with, individual commands and features, the
text-editor approach is usually better for writing and executing long programs.

This next example shows how to use the Pythagorean distance formula to
calculate the distance between any two points on a Cartesian plane. Here’s
the formula:

distance = square_root(horizontal_dist2 + vertical_dist2)

Here’s the program listing:

dist.py

x1 = float(input('Enter x1: '))
y1 = float(input('Enter y1: '))
x2 = float(input('Enter x2: '))
y2 = float(input('Enter y2: '))
h_dist = x2 - x1
v_dist = y2 - y1
dist = (h_dist ** 2 + v_dist ** 2) ** 0.5
print('The distance is ', dist)

H
ow

 It

 Works

 How It Works
The Pythagorean distance formula is derived from the Pythagorean theorem,
which I’ll have more to say about in Chapter 6. By applying this theorem, you
can see that the distance between two points is equivalent to the hypotenuse
of a right triangle, in which the vertical distance (v_dist) and horizontal dis-
tance (h_dist) are the two other sides.

Overland_Book.indb 48Overland_Book.indb 48 8/31/17 12:56 PM8/31/17 12:56 PM

Formatted Output String 49
3

sqrt(v_dist2 + h_dist2)

v_dist

h_distx1, y1

x2, y2

The square of the hypotenuse is equal to the sums of the squares of the
other sides. Therefore, the hypotenuse itself is equal to the square root of this
sum. (See the figure.)

Remember that the exponentiation operator in Python is **. Therefore, the
following

amount ** 2

means to produce the square of amount (multiply itself by itself), whereas this
next expression

b ** 0.5

is equivalent to taking the square root of b. Therefore, the distance formula is

dist = (h_dist ** 2 + v_dist ** 2) ** 0.5

Ex
er

cis
es

 EXERCISES

Exercise 3.3.1. As I just mentioned, the syntax x ** 2 translates as x to the second
power, in other words, x squared. There is another, slightly more verbose,
way of expressing the same operation. Revise Example 3.3 so that it uses this
other means of calculating a square. Also, replace h_dist, v_dist, and dist
in the program with h, v, and d. Then rerun and make sure everything works.
For example, if you input the points 0, 0 and 3, 4, the program should say that
the distance between the points is 5.0.

Exercise 3.3.2. Revise Example 3.3 so that it outputs the result and puts a period (.) at
the end of the sentence, without any superfluous blank spaces. Use the format-
specification-string technique I outlined in the previous section.

Exercise 3.3.3. Write a program that calculates the area of a triangle after prompt-
ing for the values of the triangle’s height and width. Use the formula height *
width * 0.5. Use the format-specification-string technique to print a period at
the end of the output.

Overland_Book.indb 49Overland_Book.indb 49 8/31/17 12:56 PM8/31/17 12:56 PM

Chapter 3 Your First Programs50

Exercise 3.3.4. Write a program that calculates the area of a circle after prompt-
ing for the value of the radius. (I’ll leave it to you to look up the formula for
area of a circle if you don’t remember it.) Use the format-specification-string
technique to print a period at the end of the output. Also, to get the value of pi,
place the following statement at the beginning of your program:

from math import pi

With this statement at the beginning of your program, you can use pi to
refer to a good approximation of pi.

Chapter 3 Summary
Here are the main points of Chapter 3:

 A function definition lets you perform a series of calculations over and over,
without having to reenter all the steps in number crunching. At least this is a
simple way to understand the concept.

 The syntax of a function definition has this form:

def function_name(arguments):
 indented_statements

 The arguments may be blank, may have one argument name, or may be a
series of argument names separated by commas.

 If you enter the function-definition heading correctly, the Python interactive
environment automatically creates indentation. Remember that a correct
function-definition heading ends with a colon (:).

 From within the Python interactive environment, you complete a function
definition by typing an extra blank line after you’ve entered all the indented
statements.

 To call a function, enter the name of the function followed by parentheses
and argument values. These values are then passed to the function-definition
code. Here’s an example:

>>>convert(10)

 You can prompt the user for string input by using the input statement. The
prompt message is a string printed on the console to prompt the user for input.

string_var = input(prompt_message)

Overland_Book.indb 50Overland_Book.indb 50 8/31/17 12:56 PM8/31/17 12:56 PM

51
3

Summary

 To get numeric input, use an int or float conversion, as appropriate.

var = int(input(prompt_message))
var = float(input(prompt_message))

 The built-in print function prints all its arguments in order. By default, argu-
ments are printed with a single blank space separating them. You can use the
optional sep argument to specify another separator character. sep='' specifies
that no separator character should be used.

 You can use a format-specification string, in which {} indicates a print field.
Here’s an example:

fss = 'The square root of {} is {}.'

 You can then apply the format method to a format specification string to pro-
duce an output string.

format_spec_string.format(arguments)

 Here’s an example:

fss.format(25, 5)

Overland_Book.indb 51Overland_Book.indb 51 8/31/17 12:56 PM8/31/17 12:56 PM

Overland_Book.indb 52Overland_Book.indb 52 8/31/17 12:56 PM8/31/17 12:56 PM

This page intentionally left blank

407

Index

Numbers
0(log n) notation, binary searches, 74–75
1/phi number, as golden ratio, 44–46
2D list comprehension, 112–114
2D lists. See Matrixes (2D lists)
3D Tic-Tac-Toe game

calculating ways of winning,
315–318

looking for win, 313–315
overview of, 312–313

A
ABC language, Python derived from, 1
_ _add_ _ method

extending Fraction class, 335–336
as magic method, 402
PointN class, 328–330

add method, sets, 243, 247
add_entries, personal phone book,

233, 235
Addition operator (+), shortcut with

assignment and, 24–25
Advanced features

decorators, 382–389
generators, 367–375
properties, 375–382
summary, 389–390

Aliases, Python variables as, 79
amt variable, 197–201

and operator
Boolean, 55
counting trailing zeros, 133

append method
modifying elements, 83–84
optimizing code, 96–97
preparing for join, 154
sorting information with lists, 77–78

*args
customized Matrix class for Game of

Life, 353–354
decorators, 386–387, 389
defined, 326
random-number generator, 371–372
randomization via system time, 374
variable-length argument lists,

326–327
Arguments

calling by name, 173–174, 175
calling functions with incompatible,

171
customized Matrix class for Game of

Life, 353–354
default, 174–178
defining functions with, 31, 50, 185
method, 309–310
ordering in functions, 39–40, 393
passing and modifying lists, 170–171
passing multiple, 36, 37–40, 167–168

Overland_Book.indb 407Overland_Book.indb 407 8/31/17 12:57 PM8/31/17 12:57 PM

Index408

Arguments (continued)
rules for formatting, 393
slicing, 157
variable-length argument lists, 326–327

ASCII code
converting to, 159–160
converting to characters, 160–163
defined, 159
translating individual characters into,

148
ask_q function, global variables, 194, 196
Assignment operator (=)

creates variable if one does not exist,
189, 191, 204

passing/modifying lists and direct,
171

rule for Python variables, 17–18
shortcut using addition with, 24–25
strict syntax for, 19

Assignment-concatenation operator (+=),
24–26, 27, 140

Attributes
in class inheritance, 331–333
definition of, 397
displaying name of function, 389, 390
getter and setter methods, 376

B
Backslash (\)

continue physical lines, 7–8
embedded quotation marks, 127

Base class
creating Polygon “automated” class,

340–342
definition of, 397
extending Fraction class, 336–337
realizing inheritance via subclassing,

331, 344, 345
Basic interactive mode, Python in IDLE

vs., 4–6
Beatles personality profile, 192–196

Behavior, methods and, 300
Big Bang, 14
Big Blue, IBM super-chess playing program,

293
Big-O notation, 74
Binary files, text files vs., 207–208, 224
Binary numbers, 74–75, 159
Birth events, Game of Life, 349–350,

360–361
Bitwise operations, 391, 397
Blinker pattern, Game of Life, 349–350
Blocking, computer player heuristics, 285,

287
Boolean

adding machine application, 176–178
definition of, 397
list, sieve of Eratosthenes, 93–97
operators, 55
testing character case, 149–150

break keyword
breaking from loop, 70–71
breaking out of infinite loop, 72, 75
counting trailing zeros, 134

Brute force (look-ahead), heuristics, 293
b_str variable, processing lists with for,

80–82
Bucket, dictionary key-value access, 232

C
C programming language

Python characters/strings vs., 135
Python indentation vs., 33–34
Python local/global variables syntax

vs., 190
C++ programming language

non-support for infinite integers, 11–12
Python characters/strings vs., 135
Python indentation vs., 33–34
Python local/global variables syntax

vs., 190
C++ Without Fear (Overland), 12

Overland_Book.indb 408Overland_Book.indb 408 8/31/17 12:57 PM8/31/17 12:57 PM

Index 409

calc_pts function, difference/sum of two
points, 172–173

Calculator, Python as one-line, 10
Callable, 31–32, 397–398
Cartesian plane, Pythagorean distance for-

mula, 48–50
Case

converting letters, 150–151
testing upper and lower, 149–150

Case-sensitivity
keywords, 27
names, 18–19, 27

Casino odds making, 179–184
Cellular automata, defined, 348, 364
Celsius, 29–33, 82, 379–381
Characters

accessing individual, 148
format for padding, 395
join to form single string, 143–144
as one-length strings, 148
Python strings vs., 135
single. See Single-character ops

chars string, defined, 136
chdir function, os module, 209
chr function, convert ASCII to character,

160–161, 166
Circle subclass, 339–343
Class definition

creating objects with classes, 297
methods as functions defined inside,

300
moving into separate modules,

354–358
optimizing code with, 317–318
realizing inheritance via subclassing,

331, 345
references to instance variables within,

319
writing for database class, 303, 307
writing for Point 3D class, 311

Class hierarchy, inheritance, 332–333

class keyword, 297
Class variables

define default values for instance vari-
ables via, 339–343

definition of, 398
inheritance of, 331
methods and, 337–338
summary, 345

Classes
attaching data to objects, 298–300
C++ vs. Python, 304
creating objects with, 297–298
defining simple, 297
definition of, 398
designing database, 303–308
getting help from your own, 322–323
overview of, 296
writing methods at level of, 300–301

Classes and objects. See also Classes
_ _init_ _ method, 301–302
3D Tic-Tac-Toe, 312–318
benefits of OOP, 343–344
class variables and methods, 337–338
database class design, 303–308
defining other methods, 309–310
definition of object, 295–296
duck typing, 325
Fraction class, 334–337
function typing/overloading, 323–324
help from doc strings, 321–323
inheritance, 331–333
instance variables as default values,

339–343
obsession with self, 302–303
overview of, 295
Point3D class/default arguments, 312
Point3D class design, 310–311
summary, 318–319, 344–345
variable-length argument lists,

326–327
writing PointN class, 327–331

Overland_Book.indb 409Overland_Book.indb 409 8/31/17 12:57 PM8/31/17 12:57 PM

Index410

close method
after opening file, 212
after reading text file, 217
loading and saving to file, 240
writing file with prompt, 215

Collections, 101, 398
Colon (:)

at end of first line of if, 54
at end of first line of while, 61
function definition syntax, 50
rules for functions, 31

Colons (::), omitted second arguments, 128
Commas (,)

joining group of characters into single
string, 143–144

returning multiple function values,
168–173

separating multiple function argu-
ments, 36–40, 167–168

Comments (#), 61–62, 398
Comparison operators, vs. Boolean, 55
Comparisons

palindrome test, 154–158
testing character case, 149–150
testing for palindromes, 151–154

Composite numbers
all multiples of prime as, 96
defined, 93
optimizing sieve of Eratosthenes code,

97, 115–117
prime numbers vs., 93

Computer player, Tic-Tac-Toe, 287–292
Concatenation (+) operator, building up

strings, 140–141
Condition, defined, 54
Conditional

list comprehension with, 114–116
operators, 55

conditional_expr, list comprehension,
115

Consciousness, computer, 56–58

Control structure
automatic indentation inside, 33
conditional and Boolean operators as,

55
as decision-making, 53
decisions inside computer program, 53
definition of, 398
if, elif, and else keywords as, 56,

59–60
processing lists with for, 80–82
programs/robots in Westworld and,

56–58
while keyword as, 60–63
writing exception handling, 218–219

convert function
ASCII code to characters, 30–33
in print message, 36
Python indentation and, 33–34

Converting
to 0-based indexes, 278, 281, 294
ASCII code to characters, 160–163
Celsius to Fahrenheit, 29–33, 82
characters to ASCII code, 159–160
encoding strings, 162
factorial to string, 132–133, 137
numbers into Roman numerals,

196–199
to numeric format, 43, 131
Roman numerals into numbers,

201–203
string input to integer, 324
strings to all caps, 152–154
between uppercase/lowercase letters,

150–151
Conway, John Horton, 347–348
Conway’s Game of Life

customizing Matrix class, 352–354
design of program, 352
full program for, 358–362
generating neighbor counts, 350–351
impact of, 347–348

Overland_Book.indb 410Overland_Book.indb 410 8/31/17 12:57 PM8/31/17 12:57 PM

Index 411

moving Matrix class to module,
354–358

overview of, 347
printing Life matrix, 355–358
rules of, 348–350
simulating our reality with, 363–364
slider pattern, 358
summary, 364–365

Copying data to slices, 88–89
count method, for lists, 275–278
Count trailing zeros, 131–134, 136–137
Craps (dice game), 179–184
cry function, 301
Cryptography

art of, 164
converting ASCII to characters,

160–163
converting characters to ASCII code,

159–160
decoding strings, 164–166

ctmp property, multilevel temperature object,
379–381

Curly braces { }
dealing with ends of lines, 7
format string method, 103
print fields, 47, 51
specifying sets, 241–242

Custom random-number generator, 370–373

D
Data

attaching to objects, 298–300
function objects vs., 382

Data types
choosing for dictionary keys, 232
and dictionary magic, 232
as objects in Python, 295–296
testing before using, 323–324

Database class design, 303–308
Death events, Game of Life, 349–350,

360–361
Debugging tools, decorators as, 387–389

Decimal number system, computers, 159
Decimal point (.), 15–16, 27
Decision-making and looping

binary searches and “0” complexity,
74–75

breaking from loop, 70–71
conditional and Boolean operators, 55
decisions inside computer programs,

53–55
factorials, 63–67
if, elif, and else, 56, 59–60
looping with while, 60–63
number-guessing game, 71–74
overview of, 53
printing Fibonacci numbers, 67–70
programs and robots in Westworld,

56–58
using factorials, 63–65

Decoding
Roman numerals, 201–204
strings, 164–166

Decorators
as debugging tools, 387–389
definition of, 398
exercises, 389
as functions enclosing other functions,

382–385
in Python, 385–387
summary, 390
what they do, 387

Decryption
art of cryptography, 164
converting ASCII to character, 160–163
converting to ASCII code, 159–160
of strings, 164–166

def keyword
adding call to print function, 35–36
defining functions with, 30–31, 32–33,

400
quadratic equation as function, 38–40
syntax summaries for function defini-

tions, 35–36

Overland_Book.indb 411Overland_Book.indb 411 8/31/17 12:57 PM8/31/17 12:57 PM

Index412

Default arguments, 174–178, 185
Delimiters, split method for strings, 138–139
Descendant classes, inheritance in, 333
Design

program, 352
program for Game of Life, 352–354
Tic-Tac-Toe board, 271–273

diagnostics decorator, as debugging tool,
387–389

Dice game (craps), 179–184
dict type, defined, 235–236
Dictionaries

accessing values, 230
adding/changing key-value pairs, 229
converting to lists, 235–236
creating personal phone book, 232–235
definition of, 399
design Employee database as empty, 307
loading and saving to file, 238–241
magic of, 232
overview of, 227
reading items by prefix, 236–238
searching for keys, 231–232
and sets. See Sets
why we need, 227–228

dict.items, 235–238
Difference between squares, 109–112, 124
difference method, sets, 244
Directories, os module, 209–211
Disk files. See Files
Distance formula, scripts, 47–48
Division

operators, 26
remainder operator. See Remainder

operator (%)
storing fractional result as floating-

point number, 14–16
Doc strings

customized Matrix class for Game of
Life, 352–354

getting help from, 321–322
syntactic rules, 322–323

Documentation, drawback of OOP in
Python, 344

do_generation function, Game of Life,
358–360

Dot notation (.)
accessing instance variables/methods,

295, 299, 319
call another class’s version of a func-

tion, 333
Double backslash (\\), quoted strings, 7–8
Double forward slash (//), integer division,

155
Double threat, computer player heuristics,

286–287
Double underscores (__), 303–304, 377,

379
Downloads menu, installing Python, 4
Duck typing, 325
Duplicate values, lists, 78

E
Edge problem, Game of Life, 360–361
Editing of functions, 31
Einstein, using Pythagorean theory, 122
Elements

accessing matrix, 250–251
adding/removing, 241
creating matrixes, 249–250
in sets, 241

elif keyword
in control structures, 56
encoding strings, 161–162
summary, 75

else keyword
in control structures, 56
if/else operator, 274–278
simple program using if, 59–60
summary, 75

Embedded quotation marks, text strings,
126–127, 144

Employee class, creating, 307
Employee database, designing, 305–308

Overland_Book.indb 412Overland_Book.indb 412 8/31/17 12:57 PM8/31/17 12:57 PM

Index 413

Empty sets, creating, 242
Empty strings, 151–153
Encryption

art of cryptography, 164
converting ASCII to character, 160–163
converting to ASCII code, 159–160
decoding strings, 164–166

end argument
adding to print function, 62
changing list elements from inside loop,

90, 92
named arguments, 174
slicing strings, 145

ENIGMA code, 58, 164
enter_mat_vals function, rotating matrix,

264–267
enumerate function

indexes, 101–103
printing tables, 104–106
reading text file with line numbers, 222
for statement used with, 103, 106, 123
summary, 123
two-dimensional list comprehension,

114
user-initialized matrix, 259–260

Enumeration
format string method, 103–104
indexes and, 101–103
overview of, 101
printing tables, 104–106

_ _eq_ _ method, Point3D class, 310–311, 313,
316

Equivalency, testing in data dictionaries, 228
Eratosthenes

history of, 98–99
sieve of. See Sieve of Eratosthenes

Error correction, within IDLE, 6–7
Exception handling

calling function with incompatible
argument types, 171

files and, 217–220
try/except block advantages, 219–220

Exercises, in this book, 4
Exponent operator (**)

applied before addition, 11
exercises, 13
handling super-large numbers, 10–11
Pythagorean distance formula, 49
summary, 26

Expressions
building complex, 19–20
how Python resolves, 340

F
Factorials

changing list elements from inside loop,
91–93

count trailing zeros, 131–134
optimizing code, 65–67
writing loops with while, 63–65

Fahrenheit, 29–33, 82, 379–381
False value

adding machine, 176–178
computer program decisions and,

54–55
dice game (craps), 181
in keyword, 196
palindrome test, 154–158
reading text file with line numbers,

222
searching dictionary keys, 231
sieve of Eratosthenes, 93–97
sorting lists, 84–85
test-for-equality (==) and, 11
testing character case, 149–150

Fibonacci numbers
exploiting power of generators,

369–370
Hindu-Arabic numbering system and,

200
printing, 67–70
working with generators, 368

File pointers, resetting, 217, 225
FileNotFoundError, 217–220, 225

Overland_Book.indb 413Overland_Book.indb 413 8/31/17 12:57 PM8/31/17 12:57 PM

Index414

Files
exception handling, 217–220
loading and saving to, 238–241
opening and closing, 211–212
os module, 208–210
other modes of, 223
overview of, 207
reading text, 216–217
reading text, with line numbers,

220–223
running on other systems, 211
summary, 224
text vs. binary, 207–208
writing text, 213–216

First-class objects, 399
float numeric type

convert strings to numeric, 131
forcing division to be precise, 15
getting numeric input, 43–44
as object in Python, 295–296
in quadratic formula with I/O, 45
summary, 51

Floating-point numbers
definition of, 399
getting numeric input, 43–44
Python and, 10, 14–16
rule for length/precision, 395
variable naming conventions, 23

for loop
casino odds making, 184
combine generator with, 369
definition of, 399
load_file function, 240
Pythagorean triples, 119–120

for statement
accessing dictionary values, 230
end specification in, 92
enumerate function with, 103, 106, 123
list comprehension, 106–111, 112–116,

123–124
printing out entire dictionary contents,

230

processing lists, 81–84
reading text file, 216–217
replace calls to make_roman function

with, 199
sieve of Eratosthenes example, 94–96

format string method
creating matrix for multiplication table,

256–257
difference between squares, 110
format fields of output, 47, 51
printing table, 104–106
revisited, 103–104
summary, 123

format_spec_str.format(args), 103–104
Formatting rules, important

arguments, 393
left justification for non-numeric values,

394
ordinary text, 393–395
right justification for numeric values,

394
specify order of arguments, 393
truncation (limit size of print field), 394

Fraction class, 333–337
ftmp property, multilevel temperature object,

379–381
func function, decorators, 383–387
Functions

adding call to built-in, 35–36
creating with def, 30–33
decorator. See Decorators
definition of, 400
editing, 31
executing new, 31
generator. See Generators
getting string input, 41–43
global vs. local variable rules for, 189–190
list, 97–98
methods vs., 295
naming conventions, 23
order of arguments, 39–40
passing back multiple values, 176–177

Overland_Book.indb 414Overland_Book.indb 414 8/31/17 12:57 PM8/31/17 12:57 PM

Index 415

passing back None, 177–178
pseudocode descriptions of, 40
quadratic equations as, 38–40
summary, 50–51
syntax summaries for, 36–37
typing and overloading, 323–324
wrapper, 406
writing first Python, 30–31

Functions, advanced
arguments by name, 173–174
casino odds making, 182–184
default arguments, 174–178
importing functions from modules,

178–182
multiple arguments, 167–168
overview of, 167
passing and modifying lists, 170–171
returning more than one value,

168–173
summary, 185–186

G
Game of Life. See Conway’s Game of Life
Garbage collection, 262–264, 269
Gardner, Martin, 347–348
Generators

about randomness, 372–375
custom random-number, 370–372
definition of, 400
exercises, 372
exploiting power of, 369–370
overview of, 367–368
summary, 389–390

gen_fibo function, 368, 369–370
gen_odd_num iterable, 369
get method

converting dictionaries to lists, 236
personal phone book, 234–235
searching for dictionary keys, 231

get_area() method, instance variables,
339–343

get_cell method, Game of Life, 352–353
get_comp_move function, 288, 290–291
getcwd function, os module, 210
get_mat_str function, Game of Life,

355–356
get_move function, Tic-Tac-Toe, 275–277
get_next_prime function, random-number

generator, 372
get_num function, adding machine,

176–178
get_point function

3D Tic-Tac-Toe, 314
difference/sum of two points, 172–173

getter methods
defined, 376
multilevel temperature object,

379–381
using with setter methods, 378–379
writing for property, 376–377

global keyword, 190
Global variables

Beatles personality profile, 192–196
C++ syntax for, 191–192
decoding Roman numerals, 201–204
definition of, 400
global keyword, 190
local variables vs., 188–190
preventing local variable trap,

190–191
printing Life matrix for Game of Life,

355–356
reading text file with line numbers,

221–222
Roman numerals, 196–201
summary, 204–205
using global statements, 266–267

Glossary, 397–406
Google, as unimaginably large number,

11–14
Google-plex, 12, 14
Grounded division. See Integer division (//)

Overland_Book.indb 415Overland_Book.indb 415 8/31/17 12:57 PM8/31/17 12:57 PM

Index416

Group theory, eclipsing set theory, 244
GUI (graphical user interface) package.

See Tkinter (GUI package)

H
Hash table, dictionaries, 232
h_dist (horizontal distance), Pythagorean

distance formula, 48–49
Help

begin using Python with IDLE, 6
dictionary, 235
from doc strings, 321–323
online resources for, 8
os module, 209
sets, 243
string methods, 148–149

Heuristics
art of, 292–293
computer player strategy, 285–287
of get_comp_move function, 288,

290–291
History, of Python, 1–2
Horizontal distance (h_dist), Pythagorean

distance formula, 48–49
Hyphens (-), joining group of characters,

143–144

I
i expression, list comprehension, 106–109, 116
IBM’s Big Blue, super-chess playing program,

293
IDLE (interactive development environment)

basic interactive mode vs., 4–6
begin Python with, 6
correcting mistakes from within, 6–7
definition of, 400
how this books works, 3
printing values for variable names, 19

if/else operator, 274–278
if keyword

computer program decisions, 53–55
control structures, 56

encoding strings, 161–162
list comprehension, 114–115, 124
simple program using, 59–60
summary, 75

Immutable
definition of, 400–401
Python strings as, 139–141

Importing
in Fraction class inheritance, 334
functions from modules, 178–182
in number-guessing game, 72
os module, 209–210

inc_cells method, Game of Life, 352–353
Indentation

computer program decisions, 54
of doc strings, 323
processing lists with for, 80–82
in Python, 2, 33–34
rules for functions, 31–32

Index numbers. See Zero-based indexing
Indexes

definition of, 401
enumerate function and, 101–103
for lists, 89–93
one-based, 294, 403
out-of-range, 171
and slicing, 85–88, 127–130
for strings, 145
zero-based, 406

Infinite integers
computer hardware limits on, 12
definition of, 401
in Python, 11
why C++ does not support, 11–12

Inheritance
definition of, 331, 401
Fraction class and, 333–336
OOP and, 344
overview of, 330–333

_ _init_ _ function
3D Tic-Tac-Toe, 313, 316
database class design, 303–307

Overland_Book.indb 416Overland_Book.indb 416 8/31/17 12:57 PM8/31/17 12:57 PM

Index 417

Fraction class and, 335–336
function typing/overloading, 324
Game of Life, 352–353
importance of, 301–302
as magic method, 402
Point3D class design, 310–312
PointN class and, 328–329
summary, 345

Initialization
creating N*M matrixes, 254–255
creating user-initialized matrix, 258–261
database class design, 303–307
elements in small matrixes, 249–250
_ _init_ _. See _ _init_ _ function
Point3D class design, 310–312

in operator
generator used with, 369
global variables, 194, 196
lists, 98

In/out parameters, lists, 170–171
I/O

opening text file, 211–212
quadratic equation with, 44–46

input function
getting numeric, 43–44
getting string input, 41–43
quadratic formula with I/O, 45–46
returns string, 131

Installation, Python, 4–6
Instance, definition of, 401
Instance variables

as default values, 339–343
definition of, 337, 401
in getter methods, 376
not necessarily inherited, 331
in setter methods, 377

int numeric type
convert strings to numeric, 131
getting numeric input, 43–44
in number-guessing game, 72
as object in Python, 295–296
summary, 51

Integer division (//)
automatically rounds down, 155
definition of, 401
extending Fraction class, 335
floating point and, 15

Integers
changing list elements, 89–93
definition of, 401
getting numeric input, 43–44
variable naming conventions, 23

intersection method, sets, 243
Irregular-shaped matrixes, length of row,

251–252
isalpha() method, 149–150, 166
is_even function, computer program deci-

sions, 54
isinstance function, 323–324
islower() method, character case, 149–150,

166
is prime function, random-number genera-

tor, 372
istitle() method, character case, 149–150
isupper() method, character case, 149–150,

166
is_win function, 3D Tic-Tac-Toe, 314–315
Iterable

creating own, 368
definition of, 101, 401–402
exploiting power of generators,

369–370
reading text file as, 216–217, 225
understanding, 367–368

Iteration, in Python, 2

J
join method

Game of Life, 357
for one-character strings, 364
optimizing code, 97–98
returns one long string, 136, 141,

143–145
for series of strings, 154, 166

Overland_Book.indb 417Overland_Book.indb 417 8/31/17 12:57 PM8/31/17 12:57 PM

Index418

Justification
left, for non-numeric values, 394
modifying fields in format string

method, 103–104
right, for numeric values, 394
rule for truncation and, 395

K
KeyError exception, dictionaries, 230, 231
Keys, dictionary

accessing existing values, 230
definition of, 402
explaining dictionary magic, 232
personal phone book, 233–235
restrictions, 232
searching, 231–232

Key-value pairs
creating dictionary as group of, 228
explaining dictionary magic, 232
storing in file, 240
syntax for adding/changing, 229

Keywords
defined, 11
definition of, 402
how this book works, 3

L
Left justification, format strings, 103–104
len function

converting dictionaries to lists, 236
counting trailing zeros, 137
decoding Roman numerals, 202–203
for dictionaries/sets/lists, 247
range combined with, 90–91
returns length of collection, 100
returns length of string, 131, 136
returns number of files in current direc-

tory, 209
Letters, variable naming conventions, 19, 27
Life matrix

design of program, 352
Game of Life rules, 350

generating neighbor counts, 350–351
printing, 355–358

life_mat, Game of Life, 355–356, 358–360
Linear vs. binary searches, 74–75
Lines

dealing with ends of, 7–8
reading text file with numbers of,

220–223
sort words on, 141–142

List assignment, 23, 27
list-by-prefix command, saving to file, 239
List comprehension

with conditional, 114–115
creating large matrixes, 254–255, 256
definition of, 402
in difference between squares, 109–112
optimizing rotating matrix code,

267–268
printing Life matrix for Game of Life,

356–357
Pythagorean triples, 118–120
Sieve of Eratosthenes 2, 115–118
simple, 106–109
summary, 123–124
two-dimensional, 112–114

listdir function, os module, 210
Lists

converting dictionaries to, 235–236
converting numbers to Roman numerals,

199–201
copying data to slices, 88–89
definition of, 402
generating with split method, 138–139
indexing and slicing, 85–88
as iterables in Python, 101
in keyword and, 98
matrixes as list of. See Matrixes (2D

lists)
modifying elements with for, 82–85
naming conventions, 148
overview of, 77
passing and modifying, 170–171

Overland_Book.indb 418Overland_Book.indb 418 8/31/17 12:57 PM8/31/17 12:57 PM

Index 419

processing with for, 80–82
ranges and, 89–93
sets vs., 242
sieve of Eratosthenes example, 93–97
sorting information, 77–80
summary, 99–100
Tic-Tac-Toe, count method, 279–285
tuples vs., 120
variable-length arguments, 326–327
variable naming conventions, 23

Literal quotations, creating, 126–127
Living cells, 348–350, 351
load_file function, 238–241
Local variables

C++ syntax, 191–192
definition of, 402
favoring, 187–188
global variables vs., 188–190
preventing trap of, 190–191
summary, 204–205

log n (0) notation, binary searches, 74–75
Look-ahead (brute force), heuristics, 293
Loops

breaking from, 70–71
changing list elements from inside, 89–93
creating with while, 61–63
defined, 60
definition of, 402
number-guessing game, 71–74
optimizing code, 65–67
printing Fibonacci numbers, 67–70
using factorials, 63–65

Lowercase letters
character code for, 160
converting case of, 150–151
testing character case, 149–150

M
Mac systems, opening IDLE in, 6
Magic method

definition of, 402
explaining dictionary, 232

garbage collection, 262
list comprehension, 107
revising blocks of code, 45
special meaning in Python, 402

main function
dice game (craps), 181
difference/sum of two points, 172–173
factorials, 64
reading text file with line numbers,

220–223
rotating matrix, 264–266
Tic-Tac-Toe 3D, 313–314
Tic-Tac-Toe with one-line if/else,

275–277
Maintenance Rule, Conway’s Game of Life,

349
make_roman function, converting numbers,

197–201
mat variable

creates unusable lists of lists, 253
irregular-shaped matrixes, 251–252

Matrix class, 352–358
Matrix, definition of, 402
Matrixes (2D lists)

accessing elements, 250–251
creating multiplication table, 256–258
creating N*M matrixes, 254–255
creating user-initialized, 258–261
customized for Game of Life,

352–354
irregular-shaped, and length of row,

251–252
multiplication (*) and lists, 252–253
overview of, 249
Python problem with, 253
rotating, 261–268
simple, 249–250
summary, 268–269
Tic-Tac-Toe. See Tic-Tac-Toe game
why it is not easier to create large,

255–256
max function, lists, 98

Overland_Book.indb 419Overland_Book.indb 419 8/31/17 12:57 PM8/31/17 12:57 PM

Index420

Methods
_ _init_ _. See _ _init_ _ function
all are inherited, 331
class variables and, 337–338
for customized Matrix class in Game of

Life, 352–354
defining other, 309–310
definition of, 403
getting from doc strings, 322–323
getting help for string, 148–149
properties driven by, 376
reserved names for, 301–302
strings as objects that support, 295
write, 300–301

min function
lists, 98
PointN class, 328, 330

Modula-3 language, and Python, 1
Modular division

definition of, 403
extending Fraction class, 334–336
in randomization, 374–375

Modules
moving Matrix class to, 354–358
syntax for importing, 178–182, 186

Modulus operator (%). See Remainder oper-
ator (%)

Monty Python’s Flying Circus, Python
named after, 2

Multidimensional lists, 254–255
Multiple arguments, passing, 36–40, 167–168
Multiple-assignments, as shortcut, 23–24
Multiplication assignment (*=) operator

factorial code, 64–65
factorial code optimization, 92
not used in larger expressions, 26

Multiplication operator (*)
affect on lists, 252–253
generating characters repeatedly, 365
printing Life matrix for Game of Life,

355–356

in sieve of Eratosthenes, 93
string/number conversions, 130–131

Multiplication table, matrix for, 256–258
Mutable

copying data to slices, 88–89
definition of, 78, 403

N
Named arguments, passing, 174–175, 185
Naming conventions

case-sensitivity, 18–19
lists, 148
modules, 354
for special methods, 300–301
strings, 147–148
variables, 19, 23, 27

nc_mat cells, Game of Life, 358–361
Negative indexes, 86
Negative numbers

counting trailing zeros, 134
indexing lists, 86
indexing strings, 145
strings, 129

Neighbor Count, Conway’s Game of Life,
348–351, 358, 360–361

Nested functions, writing decorators,
382–385

Nested loops
building two-dimensional arrays, 364
list comprehension for, 113
optimizing code for factorial program,

66
print/reset all values of matrix, 257, 269

New File command, writing programs, 47
Newline character (\n)

matrix for multiplication tables,
257–258

save_file function, 240
writing separate lines, 216, 224

next function, generators, 369–370
N*M matrixes, 254–255

Overland_Book.indb 420Overland_Book.indb 420 8/31/17 12:57 PM8/31/17 12:57 PM

Index 421

None value
of empty lists, 278
functions, 177–178
personal phone book application, 235
reading text file with line numbers, 221
searching for dictionary keys, 231

not in operator
generators, 369
lists, 98

not operator, Boolean, 55
Number-guessing game, 71–75
Numbers

adding machine, 176–178
assigning to variables, 17–22
built-in support for, 2
changing list elements from inside loop,

89–93
as common data in lists, 78
converting ASCII to characters from,

160–161
converting into Roman numerals, 196–201
converting strings to, 130–134
converting to ASCII code, 159–160
difference between square, 109–112
floating-point. See Floating-point

numbers
getting numeric input, 43–44
indexing and slicing lists, 85–88
personal phone book, 232–235
printing Fibonacci, 67–70
Python and, 9–14
shortcuts for, 23–26
sieve of Eratosthenes generating prime,

93–97
summary, 26–27
writing factorials, 63–67

O
O player. See Tic-Tac-Toe game
Object orientation

advantages of, 343–344
definition of, 403

overview of, 295
polymorphic methods in Python and,

301
write methods at class level, 300–301

Object-oriented programming (OOP),
343–344

Objects
attaching data to, 298–300
definition of, 295–296, 403
as instances of classes, 296–301
using classes to create, 297–298

One-based indexing, 294, 403
one_char_string argument, ord function,

159
One-line version of if/else, Tic-Tac-Toe,

274–278
One-to-many relationship, classes,

296–301
Online resources, help, 8
OOP (object-oriented programming),

343–344
Op System (os) module, 208–211, 224
open method, text files, 211–212, 224
Open parenthesis, ends of lines, 7
Operations, on sets, 242–244
Operators

conditional and Boolean, 55
exponent (**), 10
precedence, 11
precedence table for Python, 391–392
remainder (%), 12–13
test-for-equality (==), 10–11

Optimized approach, in this book, 4
or operator, Boolean, 55
ord function, converts one-length string to

ASCII, 159, 166
Order

meaningful in lists, 78–80
no significance in dictionaries, 228
no significance in sets, 117–118,

242–243
os (Op System) module, 208–211, 224

Overland_Book.indb 421Overland_Book.indb 421 8/31/17 12:57 PM8/31/17 12:57 PM

Index422

Output string, formatted, 46–47
Overloading, function typing and, 323–324

P
Packages, Python, 2
Padding characters, 395
Parentheses ()

completing test for, 154–158
enclosing arguments in functions, 31
executing functions, 31
famous, 158
testing for, 151–154
using classes to create objects, 297–298

Parenthesis, open, 7
Pascal, Blaise, 183
pass keyword, as placeholder, 297
Path name, reading/writing text, 210
Patterns, Game of Life, 358
PEP-8 standard, 32–34
phi number, as golden ratio, 39, 40, 44–46
Phone book, personal

converting dictionaries to lists, 235–236
exercises, 241
loading and saving to file, 238–241
personal phone book, 232–235
reading items by prefix, 236–238

phone_dict. See Phone book, personal
Playing for position, heuristics, 293
play_the_game function, dice (craps),

179–182
Point3D class, 310–312
PointN class, 327–331
Polygon “automated” class, 340–343
Polymorphism, 301, 403–404
Positional arguments, advanced functions,

174
Precedence

Boolean vs. comparison operators, 55
Python operator, 11, 13
table for Python operator, 391–392

Precision, limited in floating-point numbers, 16

Prefix, reading phone book items by,
236–238

Prime numbers
creating random-number generator, 372
defined, 93
in randomization, 375
sieve of Eratosthenes generating, 93–97,

115–118
Print field, formatting rules, 394
print function

adding call to, 35–36
adding end keyword on, 62
arguments, 175
computer program decisions for, 53
Fibonacci numbers, 69–70
formatted output strings, 46–47
full program for Game of Life, 358–360
indexing and slicing strings, 127–130
Life matrix for Game of Life, 355–356
making into generator, 368
multiplication table matrix, 256–258
optimizing code, 96–97
performance time and number of calls

to, 258, 269
reading text file, 216
summary, 51
syntax, 38–40
using quotation marks, 126–127

print_mat function, 265–266, 275–278
print_nums function, decorators, 387–389
Printouts, string method, 148–149
Privacy

data access in C++ vs. Python, 304
getter methods, 377
setter methods, 378

Probability calculation, casino odds, 183–184
Program, in Westworld, 56–58
Programs, your first

adding print message, 35–36
distance formula in scripts, 47–48
formatted output string, 46–50

Overland_Book.indb 422Overland_Book.indb 422 8/31/17 12:57 PM8/31/17 12:57 PM

Index 423

getting numeric input, 43
getting string input, 41–43
indentation, 33–34
quadratic equation as a function,

38–40
quadratic formula with I/O, 44–46
summary, 50–51
syntax summaries, 36–37
temperatures rising, 29–33
writing Python functions, 29

promote method, 309
Prompt, writing text file with, 214–216
Properties

definition of, 404
exercises, 381
getter methods, 376–377
multilevel temperature object, 379–381
overview of, 375–376
putting getters and setters together,

378–379
setter methods, 377–378
summary, 390

Prototyping language, Python as, 3
Pseudocode

changing list elements from inside loop, 92
computer play, 290, 292
decode_roman function, 202–203
dice game (craps), 180–181
of programs or functions, 40
in this book, 3
user-initialized matrix, 259–260
writing loops, 62–65
writing Sieve of Eratosthenes, 95, 116
writing text file with prompt, 215

Pseudorandom numbers, 372–373, 374
Punctuation, in this book, 3
Pythagorean distance formula, 48–50
Pythagorean theorem, 120–122
Pythagorean triples, 118–120
Python, introduction

begin with IDLE, 6
brief history of, 1–2

correct mistakes from within IDLE,
6–7

dealing with ends of lines, 7–8
how it is different, 2–3
how this book works, 3–4
installing, 4–6
online sources of help, 8
overview of, 1

Python lists. See Lists
Python Package Index, 2
Python txt subdirectory, 209

Q
quad function, 38–40
Quadratic equation

assigning numbers to variables, 19–21
as function, 38–40
with I/O, 44–46

Quotation marks
adding call to print function, 35–36
delineating text string with matching,

125–127, 144–145
getting from doc strings, 322–323
typing literal backslash (\\) in strings, 8

R
randint function, dice game (craps), 181
random module, 370–373
Randomness, how to introduce, 373–375
Random-number generator, customizing,

370–373
range function

combining with for loop, 399
combining with len function, 90–91
counting trailing zeros, 132–133
difference between squares, 110
generating list of integers from 0 to N-1,

89–90
iterating through lists without, 101–102
revised sieve of Eratosthenes, 244
sieve of Eratosthenes example, 96
simple list comprehension, 106–109

Overland_Book.indb 423Overland_Book.indb 423 8/31/17 12:57 PM8/31/17 12:57 PM

Index424

Rapid application development language,
Python, 3

raw_input function, Python 2.0, 41–43
Reading

items by prefix, 236–238
text files, 216–217
text files vs. binary, 207–208
text files with line numbers, 220–223,

225
readlines method

load_file function, 240
reading text files, 217
reading text files with line numbers, 222

References, variables in Python as, 21–22
Remainder division operator (%). See

Remainder operator (%)
Remainder operator (%)

computer program decisions, 54
creating random-number generator, 373
defined, 12–13
floating-point numbers and, 15
full program for Game of Life, 361

remove method, set operations, 243, 247
_ _repr_ _ method, 310
return statement

creating own generator, 368
returning multiple values to functions,

169–170, 176–177, 185
rules for functions, 31

Revised sieve of Eratosthenes, 401
Right justification, format string method,

103–104
Right triangles, Pythagorean triples, 118–120
Robots, in Westworld, 56–58
r mode, opening file for reading, 224
roll function, dice game (craps), 181, 182
Roman numerals

decoding, 201–204
global variables, 196–199
marking highly important figures in,

201
superior Hindu-Arabic system vs., 200

rom_list, Roman numerals, 199–203
rotate_mat function, rotating matrix,

264–268
Rotating matrix

example, 264–268
and garbage collection, 263–264
overview of, 261–263

Rows. See Matrixes (2D lists)
Rule(s)

assigning numbers to variables, 17–20
computer player heuristics, 285–287
Conway’s Game of Life, 348–350
functions, 31
global variables, 191
important formatting, 393–395
local vs. global variables, 189–190
Python syntax, 3–4
variables, 27

Run Module (F5), Python programs, 48

S
Save File button, installing Python, 4
Save (or Save As) command, Python pro-

grams, 48
save_file function, 238–241
Scripts

distance formula, 47–48
string input, 41–43

seek function, file pointer, 217, 225
self argument

_ _init_ _ method, 301–302
defined, 318
defining other methods, 309–310
design database class, 306–307,

309–310
design Point3D class, 310–311, 312
in Python, 302–303

sep'' (separator) argument, 47, 51
sep (separator) argument

named arguments, 174
print function, 47, 51

Separator characters, 143–144

Overland_Book.indb 424Overland_Book.indb 424 8/31/17 12:57 PM8/31/17 12:57 PM

Index 425

Set braces notation, mathematics, 241
set_cells method, Game of Life, 352–353
Set comprehension, 244–245, 404
set keyword, sieve of Eratosthenes, 244
Sets

definition of, 404
importance of, 244
mathematical theory, 244
operations on, 242–244
overview of, 241–242
sieve of Eratosthenes, 117–118,

244–246
summary, 246–247

setter methods
defined, 376
multilevel temperature object example,

379–381
using with getter methods, 378–379
writing for property, 377–378

Set-theory (Venn) diagram, 243
Shortcuts, Python, 23–27
Side space, computer player heuristics, 287
Sieve of Eratosthenes

list functions and in keyword, 97–98
overview of, 93–97
revised, 244–246
using list comprehension to write,

115–118
who Eratosthenes was, 98–99

Simulation, Conway’s Game of Life, 360–361
Single-character ops

accessing individual characters, 148
art of cryptography, 164
completing palindrome test, 154–158
converting ASCII to character, 160–163
converting case of letters, 150–151
converting to ASCII code, 159–160
decoding strings, 164–166
encoding strings, 161–164
famous palindromes, 158
help with string methods, 148–149
overview of, 147

Python string/list naming conventions,
147–148

summary, 166
testing for palindromes, 151–154
testing uppercase vs. lowercase, 149–150

Slicing
changing any/all values in lists, 171
definition of, 404
producing parts of strings, 128–130, 145
strings, 166
testing for palindromes, 157–158
user-initialized matrix, 260

Slicing lists
copying data to slices, 88–89
creating separate lists, 79
and indexing, 85–87
indexing vs., 88

Slider pattern, Conway’s Game of Life, 358
sort method

sieve of Eratosthenes, 117–118
sorting lists, 83–85, 98
sorting words on line, 141–142

Spaces
in default print function, 35–36
formatted output strings, 46–47
Python indentation and, 33–34
replacing tab with multiple blank, 34
strip method used on, 136

Special method names
_ _init_ _. See _ _init_ _ function
_ _repr_ _, 310
_ _str_ _, 309
defined, 301–302
Point3D class, 310–311

Sphere subclass, Polygon “automated” class,
341–342

split method
difference/sum of two points, 172–173
returns list of smaller strings, 136,

138–139, 145
sorting words on line, 141–142
Tic-Tac-Toe, 275, 277

Overland_Book.indb 425Overland_Book.indb 425 8/31/17 12:57 PM8/31/17 12:57 PM

Index426

Square root
assigning numbers to variables, 19–21
Pythagorean distance formula, 48–50

Square subclass, Polygon “automated” class,
341–342

Squares, difference between, 109–112, 124
start argument

changing list elements from inside loop,
90

counting trailing zeros, 132–134
slicing strings, 145

startswith method, read phone book by
prefix, 237–238

Starvation Rule, Conway’s Game of Life, 349
step argument

indexing and slicing lists, 87–88
slicing strings, 145, 157, 166

StopIteration exception, generators, 369
Strings

alphabetical order for lists of, 79
building with concatenation (+),

139–141
characters as one-length, 148
as common data in lists, 78
creating with quote marks, 125–127
definition of, 405
encrypting/decoding. See Cryptography
formatted output, 46–47
getting help from doc, 321–323
getting help with methods for, 148–149
indexing and slicing, 127–130
input for, 41–43
as iterables in Python, 101
join method, 143–144
naming conventions, 147–148
as objects in Python, 295–296
as objects that support methods, 295
overview of, 125
Python characters vs., 135
single-character. See Single-character ops
sorting words on line, 141–142
splitting, 138–139

string/number conversions, 130–134
stripping, 135–138
summary, 144–146

strip method
counting trailing zeros, 131–132
difference and sum of two points, 173
producing stripped strings, 135–136,

145
of string object, 295

_ _str_ _ method
converting object to string format, 309
extending Fraction class, 334–336
writing PointN class, 328–329

str type, 131, 324
Subclasses

advantage of, 332
inheriting methods from superclasses,

333
in Polygon “automated” class, 342
summary, 345
syntax, 331

_ _sub_ _ method
3D Tic-Tac-Toe, 313, 316
Point3D class, 310–311

Super-chess playing programs, 293
Superclasses

definition of, 405
subclasses inherit methods of their, 333

Symbol, definition of, 405
Syntax errors

functions, 31
indentation, 33–34

System time
creating random-number generator,

370–372
randomization via, 374

T
Tab characters, indentation and, 33–34
Temperature class, multilevel temperature

object, 379–381
temp_list, sorting information, 77–80

Overland_Book.indb 426Overland_Book.indb 426 8/31/17 12:57 PM8/31/17 12:57 PM

Index 427

Test-for-equality (==) operator
in case-insensitive comparisons,

150–151
as comparison operator, 55
dice game (craps), 182
if statement, 54
sorting information with lists, 79
vs. assignment (=), 19
working with, 10–11

Testing
for character case, 149–150
complete palindrome, 154–158
palindrome, 151–154

test_way function, Tic-Tac-Toe, 282, 284
test_win function, Tic-Tac-Toe, 280–283
Text-editor, writing/executing long pro-

grams, 48
Text files

vs. binary files, 207–208, 224
closing, 212
opening, 211–212
reading, 216–217
treating as iterables, 216
writing, 213–216

Text, rules for formatting ordinary, 393
Text strings

getting input, 41–43
variable naming conventions, 23

This book
how it works, 3–4
Python 3.0 used in, 2

Three-dimensional (3D) Tic-Tac-Toe. See 3D
Tic-Tac-Toe game

Tic-Tac-Toe game
3D. See 3D Tic-Tac-Toe game
art of heuristics, 292–293
computer play, computer plays first,

287–291
computer play, computer plays second,

291–292
computer player, 285–287

count method for lists, 279–285
create variations on, 279
designing board, 271–273
implementing strategy, 271
phases of play, 273
Python one-line if/else, 274–278
summary, 294

time module
creating random-number generator,

371–372
decorators as debugging tool, 387–389
randomization via system time, 374

Tkinter (GUI package)
definition of, 405
Python installed with, 4
shifting focus to window generated by, 48

Tracking employees, 305–308
Transformations, generators and, 374–375
Triple quotation marks, 126–127
True value

adding machine application, 176–178
completing palindrome test, 154–158
decisions inside computer program, 54–55
dice game (craps), 181–182
get_move function, 277
in keyword producing, 196
reading text file with line numbers, 222
searching for dictionary keys, 231
sieve of Eratosthenes, 93–97
sorting lists, 85
test-for-equality (==) operator, 11
testing character case, 149–150

Truncation (limit size of print field) rules,
394, 395

Try/except block
advantages of, 219–220
duck typing, 325
FileNotFoundError, 218–219, 225
searching for dictionary keys, 231
StopIteration exception, 370

ttt_list, two-player Tic-Tac-Toe, 280–283

Overland_Book.indb 427Overland_Book.indb 427 8/31/17 12:57 PM8/31/17 12:57 PM

Index428

Tuples
converting numbers to Roman numerals,

199–201
customizing Matrix class for Game of

Life, 354
definition of, 405
enumerate function generating, 103
lists vs., 120
loading and saving to file, 239
printing table, 106
Pythagorean triples and, 119
as Python shortcut, 23–24

Turing, Alan, 58, 164
Two-dimensional (2D) list comprehension,

112–114
Two-dimensional (2D) lists. See Matrixes

(2D lists)
Types, definition of, 405

U
Underscore (_), variable names, 19, 27
Unicode, numeric display on computer, 159
union method, sets, 243
upper() method, converts string to upper-

case, 151, 166
Uppercase letters

character code for, 160
converting case of, 150–151
converting strings to, 151–153
testing characters for case, 149–150

User-initialized matrix
creating, 258–261
rotating. See Rotating matrix

V
Values

accessing existing dictionary, 230
creating default argument, 174–175, 185
defining default instance variables,

339–343
difference and sum of two points, 173

duplicating/ordering in Python lists, 78
explaining dictionary magic, 232
passed to function arguments based on

position, 185
personal phone book, 233–235
properties can encapsulate virtual,

379
Python elements have no associated,

241
returning multiple function, 168–173
sets maintaining unique, 242

Van Rossum, Guido, 1–2
Variable-length argument lists, 326–327
Variables

as aliases, 79
assigning numbers to, 17–22
definition of, 405
general rule of Python, 17, 27
getting numeric input, 41–43
getting string input, 41–43
global. See Global variables
how Python is different, 2
local. See Local variables
naming conventions, 19, 27
as references in Python, 21–22

v_dist (vertical distance), Pythagorean
distance formula, 48–49

Venn (set-theory) diagram, 243
Versions, integer division differences, 15
Vertical distance (v_dist), Pythagorean

distance formula, 48–49
Virtual sequences, generators, 368
Virtual values, properties, 379–380
Von Newman, John, 347

W
Westworld, programs and robots in, 56–58
while loop

breaking from, 70–71
counting trailing zeros, 133
creating, 61–63

Overland_Book.indb 428Overland_Book.indb 428 8/31/17 12:57 PM8/31/17 12:57 PM

Index 429

files and exception handling,
218–219

optimizing code, 65–67
printing Fibonacci numbers, 67–70
summary, 74–75
using factorials, 63–65

while True, infinite loops, 72, 75
Widget, definition of, 405
Win detection, two-player Tic-Tac-Toe,

279–285
Words, sorting on line, 141–142
Wrapper

decoration in Python, 385–387
definition of, 406
implementing in Game of Life,

351
writing decorators, 383–384

write method
save_file function, 240
text file, 213–216

X
X player. See Tic-Tac-Toe game

Y
yield statement, generators, 368

Z
Zero-based indexing

accessing matrix elements, 250, 269
definition of, 406
vs. one-based, 294

Zeros, count trailing, 131–134, 136–137
zip function, 330

Overland_Book.indb 429Overland_Book.indb 429 8/31/17 12:57 PM8/31/17 12:57 PM

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Steering Around the “Gotchas”
	How to Think “Pythonically”
	Intermediate and Advanced Features
	Learning in Many Different Styles
	What’s Going on “Under the Hood”
	Why Python?
	Acknowledgments
	Author Bio
	Chapter 3 Your First Programs
	Temperatures Rising?
	Interlude: Python’s Use of Indentation

	Putting in a Print Message
	Syntax Summaries
	Example 3.1. Quadratic Equation as a Function
	How It Works

	Getting String Input
	Getting Numeric Input
	Example 3.2. Quadratic Formula with I/O
	How It Works

	Formatted Output String
	Example 3.3. Distance Formula in a Script
	How It Works

	Chapter 3 Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

