
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134663708
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134663708
https://plusone.google.com/share?url=http://www.informit.com/title/9780134663708
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134663708
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134663708/Free-Sample-Chapter

Learning Node.js

Second Edition

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi

Mexico City • São Paulo • Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Learning Node.js

Second Edition

Marc Wandschneider

Learning Node.js, Second Edition

Copyright © 2017 Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has been taken
in the preparation of this book, the publisher and author assume no responsibility for
errors or omissions. Nor is any liability assumed for damages resulting from the use of the
 information contained herein.

ISBN-13: 978-0-134-66370-8

ISBN-10: 0-134-66370-5

Library of Congress Control Number: 2016956520

Printed in the United States of America

First printing: December 2016

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Pearson cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark
or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
 corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Editor

Mark Taber

Project Manager

Dhayanidhi

Copy Editor

Warren Hapke

Indexer

Cheryl Lenser

Technical Reviewer

Gustavo Moreira

Cover Designer

Chuti Prasertsith

❖

Much love to Tina, for simply being there.

❖

Contents at a Glance

Introduction 1

I: Learning to Walk 7

 1 Getting Started 9

 2 A Closer Look at JavaScript 23

 3 Asynchronous Programming 49

II: Learning to Run 63

 4 Writing Simple Applications 65

 5 Modules 89

 6 Expanding Your Web Server 115

III: Writing Web Applications 135

 7 Building Web Applications with Express 137

 8 Databases I: NoSQL (MongoDB) 165

 9 Databases II: SQL (MySQL) 193

IV: Getting the Most Out of Node.js 213

 10 Deployment and Development I: Rolling Your Own 215

 11 Deployment and Development II: Heroku and Azure 235

 12 Command-Line Programming 259

 13 Testing 277

 Index 287

Contents

Introduction 1

I: Learning to Walk 7

 1 Getting Started 9

Installing Node.js 9

Installation on Windows 9

Installation on the Mac 12

Installation on Linux 14

Running Node.js and “Hello World!” 15

The Node Shell 15

Editing and Running JavaScript Files 16

Your First Web Server 16

Debugging Your Node.js Programs 18

Staying Up-to-Date and Finding Help 21

Summary 22

 2 A Closer Look at JavaScript 23

Types 23

Type Basics 24

Constants 24

Numbers 25

Booleans 26

Strings 27

Objects 30

Arrays 32

Type Comparisons and Conversions 36

Functions 37

Basics 37

Function Scope 40

Arrow Functions 41

Language Constructs 41

Classes, Prototypes, and Inheritance 43

Prototypes and Inheritance 43

viii Contents

Errors and Exceptions 45

Some Important Node.js Globals 46

global 46

console 47

process 47

Summary 47

 3 Asynchronous Programming 49

The Old Way of Doing Things 49

The Node.js Way of Doing Things 51

Error Handling and Asynchronous Functions 53

The callback Function and Error Handling 54

Who Am I? Maintaining a Sense of Identity 56

Being Polite—Learning to Give Up Control 59

Synchronous Function Calls 61

Summary 62

II: Learning to Run 63

 4 Writing Simple Applications 65

Your First JSON Server 65

Returning Some Data 67

Node Pattern: Asynchronous Loops 69

Learning to Juggle: Handling More Requests 71

More on the Request and Response Objects 77

Increased Flexibility: GET Params 79

Modifying Things: POST Data 82

Receiving JSON POST Data 83

Receiving Form POST Data 86

Summary 87

 5 Modules 89

Writing Simple Modules 89

Modules and Objects 91

npm: The Node Package Manager 92

Consuming Modules 93

ixContents

Searching for Modules 93

Module Caching 94

Cycles 94

Writing Modules 95

Creating Your Module 95

Developing with Your Module 101

Publishing Your Modules 102

Managing Asynchronous Code 103

The Problem 103

Our Preferred Solution—async 104

Making Promises and Keeping Them 111

Summary 113

 6 Expanding Your Web Server 115

Serving Static Content with Streams 115

Reading a File 116

Serving Static Files in a Web Server with Buffers 117

Serving Up More Than Just HTML 120

Assembling Content on the Client: Templates 122

The HTML Skeleton Page 124

Serving Static Content 125

Modifying Your URL Scheme 126

The JavaScript Loader/Bootstrapper 128

Templating with Mustache 129

Your Home Page Mustache Template 131

Putting It All Together 131

Summary 134

III: Writing Web Applications 135

 7 Building Web Applications with Express 137

Installing Express 137

Hello World in Express 138

Routing and Layers in Express 139

Routing Basics 140

Updating Your Photo Album App for Routing 141

x Contents

REST API Design and Modules 144

API Design 144

Modules 146

Additional Middleware Functionality 148

Usage 148

Configurations 149

Ordering of Middleware 150

Static File Handling 151

POST Data, Cookies, and Sessions 153

Better Browser Support for PUT and DELETE 156

Compressing Output 156

Adding Authentication to our Application 157

Getting Started 158

Laying Down the Plumbing 159

Creating a Login Form 160

Logging the User In 161

Restricting Access to a Page 162

Flash Messages 162

Running the Sample 163

Error Handling 163

Summary 164

 8 Databases I: NoSQL (MongoDB) 165

Setting Up MongoDB 165

Installing MongoDB 165

Using Mongo DB in Node.js 166

Structuring Your Data for MongoDB 167

It’s All JavaScript 167

Data Types 168

Understanding the Basic Operations 168

Connecting and Creating a Database 169

Creating Collections 169

Inserting Documents into Collections 170

Updating Document Values 171

Deleting Documents from Collections 172

Querying Collections 172

Seeing it all in Action 175

xiContents

Updating Your Photo Albums App 175

Writing the Low-Level Operations 175

Modifying the API for the JSON Server 181

Updating Your Handlers 182

Adding Some New Pages to the Application 188

Recapping the App Structure 192

Summary 192

 9 Databases II: SQL (MySQL) 193

Getting Ready 193

Installing MySQL 193

Adding the mysql Module from npm 194

Creating a Schema for the Database 194

Basic Database Operations 195

Connecting 195

Adding Queries 196

Updating the Photo Sharing Application 197

Authenticating via the Database 198

Updating the API to Support Users 198

Examining the Core User Data Operations 198

Updating the Express Application for Authentication 202

Implementing User Authentication 203

Creating the User Handler 205

Hooking up Passport and Routes 207

Creating the Login and Register Pages 208

Summary 211

IV: Getting the Most Out of Node.js 213

 10 Deployment and Development I: Rolling Your Own 215

Deployment 215

Level: Basic 216

Level: Ninja 218

Multiprocessor Deployment: Using a Proxy 220

Multiple Servers and Sessions 223

Virtual Hosting 227

Express Support 227

xii Contents

Securing Your Projects with HTTPS/SSL 229

Generating Test Certificates 229

Built-in Support 230

Proxy Server Support 231

Multiplatform Development 232

Locations and Configuration Files 232

Handling Path Differences 233

Summary 233

 11 Deployment and Development II: Heroku and Azure 235

Deploying to Heroku 235

Before We Begin 236

Preparing Your Deployment 236

Create and Deploy the Application on Heroku 238

We Have a Problem 241

And That’s It! 244

Deploying to Microsoft Azure 244

Before We Begin 244

Preparing Your Deployment 245

Create and Deploy the Application on Azure 247

We Have a Problem (and Déja Vu!) 252

And That’s It! 256

Summary 257

 12 Command-Line Programming 259

Running Command-Line Scripts 259

UNIX and Mac 259

Windows 260

Scripts and Parameters 261

Working with Files Synchronously 262

Basic File APIs 263

Files and Stats 264

Listing Contents of Directories 265

Interacting with the User: stdin/stdout 266

Basic Buffered Input and Output 266

Unbuffered Input 267

The readline Module 268

xiiiContents

Working with Processes 273

Simple Process Creation 273

Advanced Process Creation with Spawn 274

Summary 276

 13 Testing 277

Choosing a Framework 277

Installing Nodeunit 278

Writing Tests 278

Simple Functional Tests 279

Groups of Tests 281

Testing Asynchronous Functionality 282

API Testing 283

Summary 286

 Index 287

Acknowledgments

I’d like to thank all the Marks at Pearson (it’s a common name, it seems) who have helped me
make this book and other projects a reality. The copy editors have been brilliant and helpful.

A huge debt of gratitude is due to Gustavo Moreira for his excellent technical and style reviews.

And finally, much love to Tina, for making it all worthwhile.

About the Author

Marc Wandschneider is a software developer who has spent much time working on scalable
web applications and responsive mobile apps. A graduate of McGill University’s School of
Computer Science, he spent five years at Microsoft, developing and managing developers on
the Visual Basic, Visual J++, and .NET Windows Forms teams. As a Software Developer/Architect
at SourceLabs, he built the SWiK open source Wiki platform and then co-founded Adylitica in
Beijing. He currently works for Google in London. He authored PHP and MySQL LiveLessons and
Core Web Application Development with PHP and MySQL.

Introduction

Welcome to Learning Node.js. Node.js is an exciting platform for writing applications of all sorts,
ranging from powerful web applications to simple scripts you can run on your local computer.
The project has grown from a reasonably small software package managed by one company
into a production-quality system governed by a Technical Steering Committee (TSC) and has
a sizeable following in the developer community. In this book, I teach you more about it and
why it is special, then get you up and writing Node.js programs in short order. You’ll soon find
that people are rather flexible with the name of Node.js and will refer to it frequently as just
Node or even node. I certainly do a lot of that in this book as well.

Why Node.js?

Node.js has arisen for a couple of primary reasons, which I explain next.

The Web

In the past, writing web applications was a pretty standard process. You have one or more servers
on your machine that listen on a port (for example, 80 for HTTP), and when a request is received,
it forks a new process or a thread to begin processing and responding to the query. This work
frequently involves communicating with external services, such as a database, memory cache, exter-
nal computing server, or even just the file system. When all this work is finally finished, the thread
or process is returned to the pool of available servers, and more requests can be handled.

It is a reasonably linear process, easy to understand and straightforward to code. There are,
however, a couple of disadvantages that continue to plague the model:

1. Each of these threads or processes carries some overhead with it. On some machines,
PHP and Apache can take up as much as 10–15MB per process. Even in environments
where a large server runs constantly and forks threads to process the requests, each of
these carries some overhead to create a new stack and execution environment, and you
frequently run into the limits of the server’s available memory.

2. In most common usage scenarios where a web server communicates with a database,
caching server, external server, or file system, it spends most of its time sitting around
doing nothing and waits for these services to finish and return their responses. While it
is sitting there doing nothing, this thread is effectively blocked from doing anything else.
The resources it consumes and the process or thread in which it runs are entirely frozen
waiting for those responses to come back.

2 Introduction

Only after the external component has fi nally sent back its response will that process or thread
be free to fi nish processing, send a response to the client, and then reset to prepare for another
incoming request.
So, although it’s pretty easy to understand and work with, you do have a model that can be
quite inefficient if your scripts spend most of their time waiting for database servers to finish
running a query—an extremely common scenario for many modern web applications.

Many solutions to this problem have been developed and are in common use. You can buy
ever bigger and more powerful web servers with more memory. You can replace more powerful
and feature-rich HTTP servers such as Apache with smaller, lightweight ones such as lighttpd
or nginx. You can build stripped-down or reduced versions of your favorite web programing
language such as PHP or Python (indeed, for a time, Facebook took this one step further
and built a system that converts PHP to native C++ code for maximal speed and optimal
size). Or you can throw more servers at the problem to increase the number of simultaneous
 connections you can accommodate.

New Technologies

Although the web developers of the world have continued their eternal struggle against server
resources and the limits on the number of requests they can process, a few other interesting
things have happened in the world.

JavaScript, that old (meaning 1995 or so) language that came to be known mostly
(and frequently reviled) for writing client-side scripts in the web browser, has become hugely
popular. Modern versions of web browsers are cleaning up their implementations of it and
adding new features to make it more powerful and less quirky. With the advent of client
 libraries for these browsers, such as jQuery, script.aculo.us, or Prototype, programming in
JavaScript has become fun and productive. Unwieldy APIs have been cleaned up, and fun,
dynamic effects have been added.

At the same time, a new generation of browser competition has erupted, with Google’s
Chrome, Mozilla's Firefox, Apple’s Safari, and Microsoft’s Edge all vying for the crown of
browser king. As part of this, all these companies are investing heavily in the JavaScript
portion of these systems as modern web applications continue to grow ever-more dynamic and
 script-based. In particular, Google Chrome’s V8 JavaScript runtime is particularly fast and also
open sourced for use by anybody.

With all these things in place, the opportunity arose for somebody to come along with a new
approach to network (web) application development. Thus, the birth of Node.js.

What Exactly Is Node.js?

In 2009, a fellow named Ryan Dahl was working for Joyent, a cloud and virtualization
services company in California. He was looking to develop push capabilities for web
 applications, similar to how Gmail does it, and found most of what he looked at not quite
appropriate. He eventually settled on JavaScript because it lacked a robust input/output (I/O)

3What Exactly Is Node.js?

model (meaning he could write his own new one), and had the fast and fully programmable
V8 runtime readily available.

Inspired by some similar projects in the Ruby and Python communities, he eventually took
the Chrome V8 runtime and an event-processing library called libev and came up with the first
versions of a new system called Node.js. The primary methodology or innovation in Node.js is
that it is built entirely around an event-driven, nonblocking model of programming. In short,
you never (well, rarely) write code that blocks.

If your web application—in order to process a request and generate a response—needs to run
a database query, it runs the request and then tells Node.js what to do when the response
returns. In the meantime, your code is free to start processing other incoming requests or,
indeed, do any other task it might need, such as cleaning up data or running analyses.

Through this simple change in the way the application handles requests and work, you are
able to easily write web servers that can handle hundreds, if not thousands, of requests simul-
taneously on machines without much processing or memory resources. Node runs in a single
process, and your code executes largely in a single thread, so the resource requirements are
much lower than for many other platforms.

This speed and capacity come with a few caveats, however, and you need to be fully aware of
them so you can start working with Node with your eyes wide open.

First and foremost, the new model is different from what you may have seen before and can
 sometimes be a bit confusing. Until you’ve wrapped your brain fully around some of the core
concepts, some code you see written in Node.js can seem a bit strange. Much of this book is
devoted to discussing the core patterns many programmers use to manage the challenges of the
asynchronous, nonblocking way of programming that Node uses and how to develop your own.

Another limitation with this model of programming is that it really is centered around
 applications that are doing lots of different things with lots of different processes, servers, or
services. Node.js truly shines when your web application is juggling connections to databases,
caching servers, file systems, application servers, and more. The flip side of this, however, is
that it’s actually not necessarily an optimal environment for writing compute servers that
are doing serious, long-running computations. For these, Node’s model of a single thread in
a single process can create problems if a given request is taking a ton of time to generate a
 complicated password digest or processing an image. In situations in which you’re doing more
 computationally intensive work, you need to be careful how your applications use resources
or perhaps even consider farming those tasks out to other platforms and run them as a service
for your Node.js programs to call.

Node.js’s path to adulthood has been a somewhat rocky one—the 0.x series of Node.js lingered
for quite a while, releasing often but seemingly not making much progress, and some grew
impatient with the governance of the project. This caused a schism in late 2014, with a
group of people forking the open sourced code and creating io.js, a new version of node with
the goals of being more open and transparent and responsive to the developer community.
Fortunately, this break did not last long, and within nine months, Joyent agreed to hand over
guidance of Node.js to the Technical Steering Committee (TSC) in autumn 2015.

4 Introduction

Today, however, the platform is quite stable and predictable, and has adopted semantic
 versioning, where your versionsversion numbers have the format major.minor.patchlevel. In this
model you only make breaking API changes with major version number changes, add features
in minor version number changes, and can update and fix anything necessary in patch-level
changes. Each major version is developed for 18 months and then supported for another
12 months after that, meaning you have 2.5 years of use for each version. After that, you’ll
need (and definitely want) to migrate to the latest version to be sure you’re getting the latest
features and most secure version of the software).

To help you keep track of and manage all of these updates, the developers have taken to labeling
portions of the system with different degrees of stability, ranging from Unstable to Stable to Locked.
Changes to Stable or Locked portions of the runtime are rare and involve much community
discussion to determine whether the changes will generate too much pain. As you work your
way through this book, we point out which areas are less stable than others and suggest ways you
can mitigate the dangers of changing APIs. Newer versions of Node.js have introduced the concept
of Deprecated APIs. If part of Node.js is becoming too difficult to maintain and is not heavily used,
or otherwise doesn’t make sense to continue supporting, it will (again, after much community
discussion) be marked as Deprecated and not included in the next major version update. This gives
developers plenty of time to move to alternatives (of which there are always going to be dozens).

The good news is that Node.js already has a large and active user community and a bunch of
mailing lists, forums, and user groups devoted to promoting the platform and providing help
where needed. A simple Internet search will get you answers to 99 percent of your questions in
a matter of seconds, so never be afraid to look!

Who Is This Book For?

I wrote this book under the assumption that you are comfortable programming computers and
are familiar with the functionality and syntax of at least one major programming language
such as Java, C/C++, PHP, or C#. Although you don’t have to be an expert, you’ve probably
moved beyond “Learn X in Y days” level tasks.

If you’re like me, you have probably written some HTML/CSS/JavaScript and thus have “worked
with” JavaScript, but you might not be intimately familiar with it and have just largely
templated heavily off code found on blog posts or mailing lists. Indeed, because of its clunky
UI and frustrating browser mismatches, you might even frown slightly at the mere mention of
JavaScript. Fear not—by the end of the first section of this book, distasteful memories of the
language will be a thing of the past and, I hope, you’ll be happily writing your first Node.js
programs with ease and a smile on your face!

I also assume that you have a basic understanding of how web applications work: browsers
send HTTP requests to a remote server; the server processes each request and sends a response
with a code indicating success or failure, and then optionally some data along with that
response (such as the HTML for the page to render or perhaps JavaScript Object Notation,
or JSON, containing data for that request). You’ve probably connected to database servers in
the past, run queries, and waited for the resulting rows, and so on. When I start to describe

5Download the Source Code

concepts beyond these in the samples and programs, I explain and refresh everybody’s memory
on anything new or uncommon.

How to Use this Book

This book is largely tutorial in nature. I try to balance out explanations with code to demonstrate
it as much as possible and avoid long, tedious explanations of everything. For those situations in
which I think a better explanation is interesting, I might point you at some resources or other docu-
mentation to learn more if you are so inclined (but it is never a necessity).

The book is divided into four major sections:

Part 1. Learning to Walk—You start installing and running Node, take another look at the
JavaScript language and the extensions used in V8 and Node.js, and then write your
first application.

Part 2. Learning to Run—You start developing more powerful and interesting application
servers in this part of the book, and I start teaching you some of the core concepts
and practices used in writing Node.js programs.

Part 3. Breaking Out the Big Guns—In this section, you look at some of the powerful tools
and modules available to you for writing your web applications, such as help with
web servers and communication with database servers.

Part 4. Getting the Most Out of Node.js—Finally, I close out the book by looking at a
few other advanced topics such as ways in which you can run your applications on
production servers, how you can test your code, and how you can use Node.js to
write command-line utilities as well!

As you work your way through the book, take the time to fire up your text editor and enter the
code, see how it works in your version of Node.js, and otherwise start writing and developing
your own code as you go along. You develop your own little photo sharing application as you
work through this book, which I hope provides you with some inspiration or ideas for things
you can write.

Download the Source Code

Source code for most of the examples and sample projects in this book can be found at
github.com/marcwan/LearningNodeJS. You are highly encouraged to download it and play along,
but don’t deny yourself the opportunity to type in some of the code as well and try things out.

The GitHub code has some fully functioning samples and has been tested to work on Mac, Linux,
and Windows with the latest versions of Node.js. If new updates of Node require updates to the
source code, I will put changes and notes there, so please be sure to pull down new versions every
few months. Sadly, my code is not perfect, and I always welcome bug reports and pull requests!

If you have any questions or problems with the code in this book, feel free to go to github.com/
marcwan/LearningNodeJS and add an issue; they’ll be monitored and answered reasonably quickly.

This page intentionally left blank

Part I
Learning to Walk

1 Getting Started 9

2 A Closer Look at JavaScript 23

3 Asynchronous Programming 49

This page intentionally left blank

3
Asynchronous Programming

Now that you have a refreshed and updated idea of what JavaScript programming is really like,
it’s time to get into the core concept that makes Node.js what it is: nonblocking IO and asynchro-
nous programming. It carries with it some huge advantages and benefits, which you shall soon
see, but it also brings some complications and challenges with it.

The Old Way of Doing Things

In the olden days (2008 or so), when you sat down to write an application and needed to load
in a file, you would write something like the following (let’s assume you’re using something
vaguely PHP-ish for the purposes of this example):

$file = fopen('info.txt', 'r');
// wait until file is open

$contents = fread($file, 100000);
// wait until contents are read

// do something with those contents

If you were to analyze the execution of this script, you would find that it spends a vast major-
ity of its time doing nothing at all. Indeed, most of the clock time taken by this script is spent
waiting for the computer’s file system to do its job and return the file contents you requested.
Let me generalize things a step further and state that for most IO-based applications—those
that frequently connect to databases, communicate with external servers, or read and write
files—your scripts will spend a majority of their time sitting around waiting (see Figure 3.1).

50 Chapter 3 Asynchronous Programming

Figure 3.1 Traditional blocking IO web servers

The way your servers process multiple requests at the same time by running many of
these scripts in parallel. Modern computer operating systems are great at multitasking, so you
can easily switch out processes that are blocked and let other processes have access to the CPU.
Some environments take things a step further and use threads instead of processes.

The problem is that for each of these processes or threads, there is some amount of overhead.
For heavier implementations using Apache and PHP, I have seen up to 10–15MB of memory
overhead per process—never mind the resources and time consumed by the operating system
switching that context in and out constantly. That’s not even 100 simultaneously executing
servers per gigabyte of RAM! Threaded solutions and those using more lightweight HTTP servers
do, of course, have better results, but you still end up in a situation in which the computer
spends most of its time waiting around for blocked processes to get their results, and you risk
running out of capacity to handle incoming requests.

It would be nice if there were some way to make better use of all the available CPU power and
available memory so as not to waste so much. This is where Node.js shines.

51The Node.js Way of Doing Things

The Node.js Way of Doing Things

To understand how Node.js changes the method demonstrated in the preceding section into
a nonblocking, asynchronous model, first look at the setTimeout function in JavaScript. This
function takes a function to call and a timeout after which it should be called:

setTimeout(() => {
 console.log("I've done my work!");
}, 2000);

console.log("I'm waiting for all my work to finish.");

If you run the preceding code, you see the following output:

I'm waiting for all my work to finish.
I've done my work!

I hope this is not a surprise to you: The program sets the timeout for 2000 ms (2 seconds),
giving it the function to call when it fires, and then continues with execution, which prints
out the “I’m waiting…” text. Two seconds later, you see the “I’ve done…” message, and the
program then exits.

Now, look at a world where any time you call a function that needs to wait for some
 external resource (database server, network request, or file system read/write operation), it has
a similar signature. That is, instead of calling fopen(path, mode) and waiting, you would
instead call fopen(path, mode, (file_handle) => { ... }).

Now rewrite the preceding synchronous script using the new asynchronous functions. You can
actually enter and run this program with node from the command line. Just make sure you also
create a file called info.txt that can be read.

var fs = require('fs'); // We'll explain this below

var file;
var buf = new Buffer(100000);

fs.open('info.txt', 'r', (err, handle) => {
 file = handle;
});

// fs.read needs the file handle returned by fs.open. But this is broken.
fs.read(file, buf, 0, 100000, null, (err, length) => {
 console.log(buf.toString());
 fs.close(file, () => { /* don't care */ });
});

The first line of this code is something you haven’t seen just yet: the require function is a way
to include additional functionality in your Node.js programs. Node comes with a pretty impres-
sive set of modules, each of which you can include separately as you need functionality. You

52 Chapter 3 Asynchronous Programming

will work further with modules frequently from now on; you learn about consuming them and
writing your own in Chapter 5, “Modules.”

If you run this program as it is, it throws an error and terminates. How come? Because the
fs.open function runs asynchronously; it returns immediately, before the file has been
opened and the callback function invoked. The file variable is not set until the file has been
opened and the handle to it has been passed to the callback specified as the third parameter
to the fs.open function. Thus, you are trying to access an undefined variable when you try to
call the fs.read function with it immediately afterward.

Fixing this program is easy:

var fs = require('fs');

fs.open('info.txt', 'r', (err, handle) => {
 var buf = new Buffer(100000);
 fs.read(handle, buf, 0, 100000, null, (err, length) => {
 console.log(buf.toString('utf8', 0, length));
 fs.close(handle, () => { /* Don't care */ });
 });
});

The key way to think of how these asynchronous functions work internally in Node is some-
thing along the following lines:

 ■ Check and validate parameters.

 ■ Tell the Node.js core to queue the call to the appropriate function for you (in the
preceding example, the operating system open or read function) and to notify (call)
the provided callback function when there is a result.

 ■ Return to the caller.

You might be asking: if the open function returns right away, why doesn’t the node process exit
immediately after that function has returned? The answer is that Node operates with an event
queue; if there are pending events for which you are awaiting a response, it does not exit until
your code has finished executing and there are no events left on that queue. If you are waiting
for a response (either to the open or the read function calls), it waits. See Figure 3.2 for an idea
of how this scenario looks conceptually.

53Error Handling and Asynchronous Functions

Figure 3.2 As long as there is code executing or somebody is waiting for something, Node runs

Error Handling and Asynchronous Functions

In the preceding chapter, I discussed error handling and events as well as the
try / catch block in JavaScript. The addition of nonblocking IO and asynchronous

54 Chapter 3 Asynchronous Programming

function callbacks in this chapter, however, creates a new problem. Consider the
following code:

try {
 setTimeout(() => {
 throw new Error("Uh oh!");
 }, 2000);
} catch (e) {
 console.log("I caught the error: " + e.message);
}

If you run this code, you might very well expect to see the output "I caught the error:
Uh oh!". But you do not. You actually see the following:

timers.js:103
 if (!process.listeners('uncaughtException').length) throw e;
 ^
Error: Uh oh, something bad!
 at Object._onTimeout errors_async.js:5:15)
 at Timer.list.ontimeout (timers.js:101:19)

What happened? Did I not say that try / catch blocks were supposed to catch errors for you?
I did, but asynchronous callbacks throw a new little wrench into this situation.

In reality, the call to setTimeout does execute within the try / catch block. If that function
were to throw an error, the catch block would catch it, and you would see the message that
you had hoped to see. However, the setTimeout function just adds an event to the Node event
queue (instructing it to call the provided function after the specified time interval—2000 ms
in this example) and then returns. The provided callback function actually operates within its
own entirely new context and scope!

As a result, when you call asynchronous functions for nonblocking IO, very few of them throw
errors, but instead use a separate way of telling you that something has gone wrong.

In Node, you use a number of core patterns to help you standardize how you write code and
avoid errors. These patterns are not enforced syntactically by the language or runtime, but you
will see them used frequently and should absolutely use them yourself.

The callback Function and Error Handling

One of the first patterns you will see is the format of the callback function you pass to most
asynchronous functions. It always has at least one parameter, the success or failure status of the
last operation, and very commonly a second parameter with some sort of additional results or
information from the last operation (such as a file handle, database connection, rows from a
query, and so on); some callbacks are given even more than two:

do_something(param1, param2, ..., paramN, function (err, results) { ... });

55Error Handling and Asynchronous Functions

The err parameter is either

 ■ null, indicating the operation was a success, and (if there should be one) there will be
a result.

 ■ An instance of the Error object class. You will occasionally notice some inconsistency
here, with some people always adding a code field to the Error object and then using
the message field to hold a description of what happened, whereas others have chosen
other patterns. For all the code you write in this book, you will follow the pattern
of always including a code field and using the message field to provide as much
information as you can. For all the modules you write, you will use a string value for
the code because strings tend to be a bit easier to read. Some libraries provide extra data
in the Error object with additional information, but at least the two members should
always be there.

This standard prototype methodology enables you to always write predictable code when you
are working with nonblocking functions. Throughout this book, I demonstrate two common
coding styles for handling errors in callbacks. Here’s the first:

fs.open('info.txt', 'r', (err, handle) => {
 if (err) {
 console.log("ERROR: " + err.code + " (" + err.message ")");
 return;
 }
 // success!! continue working here
});

In this style, you check for errors and return if you see one; otherwise, you continue to process
the result. And now here’s the other way:

fs.open('info.txt', 'r', (err, handle) => {
 if (err) {
 console.log("ERROR: " + err.code + " (" + err.message ")");
 } else {
 // success! continue working here
 }
});

In this method, you use an if ... then ... else statement to handle the error.

The difference between these two may seem like splitting hairs, but the former method is a
little more prone to bugs and errors for those cases when you forget to use the return state-
ment inside the if statement, whereas the latter results in code that indents itself much more
quickly and you end up with lines of code that are quite long and less readable. We’ll look at a
solution to this second problem in the section titled “Managing Asynchronous Code”
in Chapter 5.

56 Chapter 3 Asynchronous Programming

A fully updated version of the file loading code with error handling is shown in Listing 3.1.

Listing 3.1 File Loading with Full Error Handling

var fs = require('fs');

fs.open('info.txt', 'r', (err, handle) => {
 if (err) {
 console.log("ERROR: " + err.code + " (" + err.message + ")");
 return;
 }
 var buf = new Buffer(100000);
 fs.read(handle, buf, 0, 100000, null, (err, length) => {
 if (err) {
 console.log("ERROR: " + err.code
 + " (" + err.message + ")");
 return;
 }
 console.log(buf.toString('utf8', 0, length));
 fs.close(handle, () => { /* don't care */ });
 });
});

Who Am I? Maintaining a Sense of Identity

Now you’re ready to write a little class to help you with some common file operations:

var fs = require('fs');

function FileObject () {
 this.filename = '';

 this.file_exists = function (callback) {
 console.log("About to open: " + this.filename);
 fs.open(this.filename, 'r', function (err, handle) {
 if (err) {
 console.log("Can't open: " + this.filename);
 callback(err);
 return;
 }
 fs.close(handle, function () { });
 callback(null, true);
 });
 };
}

57Who Am I? Maintaining a Sense of Identity

You have currently added one property, filename, and a single method, file_exists. This
method does the following:

 ■ It tries to open the file specified in the filename property read-only.

 ■ If the file doesn’t exist, it prints a message and calls the callback function with the error
info.

 ■ If the file does exist, it calls the callback function indicating success.

Now, run this class with the following code:

var fo = new FileObject();
fo.filename = "file_that_does_not_exist";

fo.file_exists((err, results) => {
 if (err) {
 console.log("\nError opening file: " + JSON.stringify(err));
 return;
 }

 console.log("file exists!!!");
});

You might expect the following output:

About to open: file_that_does_not_exist
Can't open: file_that_does_not_exist

But, in fact, you see this:

About to open: file_that_does_not_exist
Can't open: undefined

What happened? Most of the time, when you have a function nested within another, it inherits
the scope of its parent/host function and should have access to all the same variables. So why
does the nested callback function not get the correct value for the filename property?

The problem lies with the this keyword and asynchronous callback functions. Don’t forget
that when you call a function like fs.open, it initializes itself, calls the underlying operating
system function (in this case to open a file), and places the provided callback function on the
event queue. Execution immediately returns to the FileObject#file_exists function, and
then you exit. When the fs.open function completes its work and Node runs the callback,
you no longer have the context of the FileObject class any more, and the callback function is
given a new this pointer representing some other execution context!

The bad news is that you have, indeed, lost your this pointer referring to the FileObject
class. The good news is that the callback function for fs.open does still have its function
scope. A common solution to this problem is to “save” the disappearing this pointer in a vari-
able called self or me or something similar. Now rewrite the file_exists function to take
advantage of this:

 this.file_exists = function (callback) {
 var self = this;

58 Chapter 3 Asynchronous Programming

 console.log("About to open: " + self.filename);
 fs.open(this.filename, 'r', function (err, handle) {
 if (err) {
 console.log("Can't open: " + self.filename);
 callback(err);
 return;
 }

 fs.close(handle, function () { });
 callback(null, true);
 });
 };

Because local function scope is preserved via closures, the new self variable is maintained for
you even when your callback is executed asynchronously later by Node.js. You will make exten-
sive use of this in all your applications. Some people like to use me instead of self because it is
shorter; others still use completely different words. Pick whatever kind you like and stick with
it for consistency.

The above scenario is another reason to use arrow functions, introduced in the previous chapter.
Arrow functions capture the this value of the enclosing scope, so your code actually works
as expected! Thus, as long as you are using =>, you can continue to use the this keyword, as
follows:

var fs = require('fs');

function FileObject () {
 this.filename = '';

 // Always use "function" for member fns, not =>, see below for why
 this.file_exists = function (callback) {
 console.log("About to open: " + this.filename);
 fs.open(this.filename, 'r', (err, handle) => {
 if (err) {
 console.log("Can't open: " + this.filename);
 callback(err);
 return;
 }
 fs.close(handle, () => { });
 callback(null, true);
 });
 };
}

One other thing to note is that we do not use arrow functions for declaring member
 functions on objects or prototypes. This is because in those cases, we actually do want the this
variable to update with the context of the currently executing object. Thus, you’ll see us using
=> only when we’re using anonymous functions in other contexts.

59Being Polite—Learning to Give Up Control

The key takeaway for this section should be: If you’re using an anonymous function that’s
not a class or prototype method, you should stop and think before using this. There’s a good
chance it won’t work the way you want. Use arrow functions as much as possible.

Being Polite—Learning to Give Up Control

Node runs in a single thread with a single event loop that makes calls to external functions and
services. It places callback functions on the event queue to wait for the responses and otherwise
tries to execute code as quickly as possible. So what happens if you have a function that tries to
compute the intersection between two arrays:

function compute_intersection(arr1, arr2, callback) {
 var results = [];
 for (var i = 0 ; i < arr1.length; i++) {
 for (var j = 0; j < arr2.length; j++) {
 if (arr2[j] == arr1[i]) {
 results[results.length] = arr2[j];
 break;
 }
 }
 }
 callback(null, results); // no error, pass in results!
}

For arrays of a few thousand elements, this function starts to consume significant amounts of
time to do its work, on the order of a second or more. In a single-threaded model, where Node.
js can do only one thing at a time, this amount of time can be a problem. Similar functions
that compute hashes, digests, or otherwise perform expensive operations are going to cause
your applications to temporarily “freeze” while they do their work? What can you do?

In the introduction to this book, I mentioned that there are certain things for which Node.js is
not particularly well suited, and one of them is definitely acting as a compute server. Node is far
better suited to more common network application tasks, such as those with heavy amounts
of IO and requests to other services. If you want to write a server that does a lot of expensive
computations and calculations, you might want to consider moving these operations to other
services that your Node applications can then call remotely.

I am not saying, however, that you should completely shy away from computationally inten-
sive tasks. If you’re doing these only some of the time, you can still include them in Node.js
and take advantage of a method on the process global object called nextTick. This method
basically says “Give up control of execution, and then when you have a free moment, call the
provided function.” It tends to be significantly faster than just using the setTimeout function.

Listing 3.2 contains an updated version of the compute_intersection function that yields
every once in a while to let Node process other tasks.

60 Chapter 3 Asynchronous Programming

Listing 3.2 Using Process#nextTick to be Polite

function compute_intersection(arr1, arr2, callback) {
 // let's break up the bigger of the two arrays
 var bigger = arr1.length > arr2.length ? arr1 : arr2;
 var smaller = bigger == arr1 ? arr2 : arr1;
 var biglen = bigger.length;
 var smlen = smaller.length;

 var sidx = 0; // starting index of any chunk
 var size = 10; // chunk size, can adjust!
 var results = []; // intermediate results

 // for each chunk of "size" elements in bigger, search through smaller
 function sub_compute_intersection() {
 for (var i = sidx; i < (sidx + size) && i < biglen; i++) {
 for (var j = 0; j < smlen; j++) {
 if (bigger[i] == smaller[j]) {
 results.push(smaller[j]);
 break;
 }
 }
 }

 if (i >= biglen) {
 callback(null, results); // no error, send back results
 } else {
 sidx += size;
 process.nextTick(sub_compute_intersection);
 }
 }

 sub_compute_intersection();
}

In this new version of the function, you basically divide the bigger of the input arrays into
chunks of 10 (you can choose whatever number you want), compute the intersection of that
many items, and then call process#nextTick to allow other events or requests a chance to
do their work. Only when there are no events in front of you any longer, will you continue
to do the work. Don’t forget that passing the callback function sub_compute_intersection to
process#nextTick ensures that the current scope is preserved as a closure, so you can store
the intermediate results in the variables in compute_intersection.

Listing 3.3 shows the code you use to test this new compute_intersection function.

61Synchronous Function Calls

Listing 3.3 Testing the compute_intersection Function

var a1 = [3476, 2457, 7547, 34523, 3, 6, 7,2, 77, 8, 2345,
 7623457, 2347, 23572457, 237457, 234869, 237,
 24572457524] ;
var a2 = [3476, 75347547, 2457634563, 56763472, 34574, 2347,
 7, 34652364 , 13461346, 572346, 23723457234, 237,
 234, 24352345, 537, 2345235, 2345675, 34534,
 7582768, 284835, 8553577, 2577257,545634, 457247247,
 2345];

compute_intersection(a1, a2, function (err, results) {
 if (err) {
 console.log(err);
 } else {
 console.log(results);
 }
});

Although this has made things a bit more complicated than the original version of the function
to compute the intersections, the new version plays much better in the single-threaded world
of Node event processing and callbacks, and you can use process.nextTick in any situation
in which you are worried that a complex or slow computation is necessary.

Synchronous Function Calls

Now that I have spent nearly an entire chapter telling you how Node.js is very much asynchro-
nous and about all the tricks and traps of programming nonblocking IO, I must mention that
Node actually does have synchronous versions of some key APIs, most notably file APIs. You use
them for writing command-line tools in Chapter 12, “Command-Line Programming.”

To demonstrate briefly here, you can rewrite the first script of this chapter as follows:

var fs = require('fs');

var handle = fs.openSync('info.txt', 'r');
var buf = new Buffer(100000);
var read = fs.readSync(handle, buf, 0, 10000, null);
console.log(buf.toString('utf8', 0, read));
fs.closeSync(handle);

As you work your way through this book, I hope you are able to see quite quickly that Node.
js isn’t just for network or web applications. You can use it for everything from command-line
utilities to prototyping to server management and more!

62 Chapter 3 Asynchronous Programming

Summary

Switching from a model of programming where you execute a sequence of synchronous or
blocking IO function calls and wait for each of them to complete before moving on to the
next call, to a model where you do everything asynchronously and wait for Node to tell you
when a given task is done requires a bit of mental gymnastics and experimentation. But I am
convinced that when you get the hang of this, you’ll never be able imagine going back to the
other way of writing your web apps.

Next, you write your first simple JSON application server.

Index

Symbols
__proto__ property, 44–45

+ (plus sign) operator, 28

A
accessing parameters, 262

account signup

Azure, 244

Heroku, 236

adding

pages to applications, 188–191

photos to albums, 180–181, 186–188,
190–191

albums

creating, 177–179, 183, 188–190

finding, 179, 184

listing, 179, 184–185

photos

adding, 180–181, 186–188, 190–191

finding, 180, 185–186

anonymous functions, 39–40

writing with arrow functions, 41

API design, 144–145

modifying

for authentication, 198

for database usage, 181

testing, 283–286

applications. See web applications

288 arguments

arguments, 37

array literal syntax, 32

arrays, 32–35

functions, 34–35

arrow functions, 41

this keyword, 58–59

assert function, 47

assert module, 280

async module, 104–110

asynchronous functions

changing synchronous programming
to, 51–53

error handling and, 53–54

managing

with async module, 104–110

problems with, 103–104

with promises pattern, 111–113

this keyword, 56–59

asynchronous looping, 69–71, 110

asynchronous tests, 282

authentication, 157–160

creating login forms, 160–161

flash messages, 162–163

logging in, 161

with MySQL, 198

creating login and registration
pages, 208–211

creating user handlers, 205–207

creating users, 199–201

fetching users, 201–202

implementing, 203–204

modifying API, 198

routing in, 207–208

updating express application,
202–203

restricting page access, 162

auto function, 108–110

autogenerated _id fields, searching for, 174

Azure, 244

account signup, 244

applications

cloud storage in, 252–256

creating, 247–248

deploying, 248

configuring ClearDB add-on, 248–252

downloading CLI tools, 244–245

logging in, 245–246

preparing for deployment, 245–247

B
bcrypt module, 200

BDD (behavior-driven development), 277

bitwise operators, 41

blocking IO, 49–50

changing to nonblocking IO, 51–53

bluebird module, 111–113

booleans, 26

bootstrapper (JavaScript), 128–129

for login and registration pages,
208–211

buffered I/O, 266–267

buffers

serving static content, 117–120

strings versus, 117

C
caching modules, 94

callback functions

error handling and, 54–56

loops and, 70–71

this keyword, 56–59

Chai, 283

child_process module

exec function, 273–274

spawn function, 274–276

289databases

choosing testing frameworks, 277–278

classes, 43

constructors, 91

creating event classes, 121–122

prototypes and inheritance, 43–45

ClearDB add-on, configuring

in Azure applications, 248–252

in Heroku applications, 239–241

client-side templates, 122–124

adding pages, 188–191

with Mustache, 129–131

in sample application, 131–134

cloning objects, 179

cloud storage

in Azure applications, 252–256

in Heroku applications, 241–244

Cloudinary

for Azure applications, 252–256

for Heroku applications, 241–244

collections

creating, 169–170

deleting documents, 172

inserting documents, 170–171

querying, 172–175

updating documents, 171–172

command-line scripts. See scripts

comparisons of types, 36–37

compressing output, 156–157

compute servers, 59

configuration files

creating, 175–176

in multiplatform development,
232–233

configurations, middleware, 149

configuring ClearDB add-on

in Azure applications, 248–252

in Heroku applications, 239–241

connecting

to memcached, 226–227

to MongoDB databases, 169

in sample application, 176–177

to MySQL databases, 195–196, 198–199

connection pooling, 196

console object, 47

console.error function, 266

console.log function, 266

constants, 24

constructors, 91

control, yielding, 59–61

conversions of types, 36–37

cookies with express middleware, 153–155

cURL, 17

sending POST data, 82–83

cwd function, 47

cycles in modules, 94–95

D
data structure

in MongoDB, 167

in sample application, 192

data types in MongoDB, 168

databases

MongoDB

connecting to, 169, 176–177

creating collections, 169–170

creating databases, 169, 176–177

data structure, 167

data types, 168

deleting documents from
 collections, 172

inserting documents into
 collections, 170–171

installing, 165–166

low-level operations in sample

290 databases

documents in collections

deleting, 172

inserting, 170–171

updating, 171–172

downloading

Azure CLI tools, 244–245

Heroku CLI tools, 236

source code, 5

URL contents on Windows, 17

dynos, 235

E
end event, 115

env function, 47

equality operator, 36

error event, 115

error handling, 45–46

asynchronous functions and, 53–54

callback functions and, 54–56

with express, 163–164

in web applications, 66

event queues, 52

events

creating event classes, 121–122

listeners, 115

exceptions, 45–46

exec function, 273–274

exit function, 47

express

connecting memcached, 226–227

error handling, 163–164

HTTPS/SSL support, 230–231

installing, 137–138

layers in, 139–140

middleware, 148

compressing output, 156–157

configurations, 149

application, 175–181

Node.js usage, 166–167

querying collections, 172–175

updating documents in collections,
171–172

MySQL

authentication, 198–211

configuring ClearDB add-on,
239–241, 248–252

connecting to, 195–196, 198–199

creating schema, 194–195

installing, 193–194

Node.js usage, 194

querying, 196–197

debugging Node.js, 18–21

DELETE method, 156

deleting documents from

collections, 172

deploying web applications, 215

to Azure, 244–256

basic deployment, 216–217

to Heroku, 235–244

on Linux/Mac, 218–219

multiprocessor deployment,
220–223

problems with basic deployment, 218

sessions on multiple servers,
223–227

virtual hosting, 227–229

on Windows, 219–220

development, multiplatform, 232

locations and configuration files,
232–233

paths, 233

directories

creating, 264–265

listing contents, 265

documentation for modules, 96

291functions

ordering, 150–151

POST data, cookies, sessions,
153–155

PUT and DELETE support, 156

static file handling, 151–152

usage, 148–149

routing in, 140–141

for authentication, 207–208

updating sample application,
141–144

updating for authentication, 202–203

virtual hosting support, 227–229

web servers, creating, 138–139

F
factory functions, 91

fetching users, 201–202

file operations in scripts, 263–264

files

configuration files, creating, 175–176

reading with streams, 116

uploading, 154–155

finding

albums, 179, 184

photos, 180, 185–186

flash messages, 162–163

forEach function, 35, 110

forEachSeries function, 110

for.in loops, 42

forms, receiving POST data, 86–87

for.of loops, 42

frameworks for testing

installing Mocha, 283

installing nodeunit, 278

selecting, 277–278

fs.open function, 52

fs.read function, 52

fs.readdir function, 67–69

fs.readFile function, 128

fs.stat function, 69–71

functional tests, 279–281

functions

array functions, 34–35

arrow functions, 41

this keyword, 58–59

asynchronous functions

changing synchronous
 programming to, 51–53

error handling and, 53–54

managing with async module,
104–110

managing with promises pattern,
111–113

problems managing, 103–104

this keyword, 56–59

callback functions

error handling and, 54–56

this keyword, 56–59

classes, 43

prototypes and inheritance,
43–45

explained, 37–40

factory functions, 91

I/O functions

buffered I/O, 266–267

readline module, 268–273

stdin, stdout, stderr, 266

unbuffered input, 267–268

scope, 40

string functions, 28–29

synchronous functions, 61, 262

creating directories, 264–265

file operations, 263–264

listing directory contents, 265

yielding control, 59–61

292 GET params

I
including modules, 93

indexOf function, 28

–Infinity value, 25–26

Infinity value, 25–26

inheritance, 43–45

input. See also I/O functions

readline module, 268–273

unbuffered, 267–268

inserting documents into collections,

170–171

installing

express, 137–138

memcached

on Linux/Mac, 225–226

on Windows, 225

Mocha, 283

modules via NPM, 92–93

MongoDB, 165–166

MySQL, 193–194

Node.js

on Linux, 14–15

on Mac, 12–14

on Windows, 9–12

nodeunit, 278

instanceof, 45

I/O functions

buffered I/O, 266–267

readline module, 268–273

stdin, stdout, stderr, 266

unbuffered input, 267–268

isArray function, 33

isFinite function, 26

isNaN function, 26

iterable objects, 42

G
GET params, 79–82

global object, 46

global variables

console, 47

global, 46

process, 47

groups of tests, 281–282

H
handlers

updating in sample application,
182–188

user handlers, creating, 205–207

help resources, 21–22

Heroku, 235–236

account signup, 236

applications

cloud storage in, 241–244

creating, 238–239

testing, 239

configuring ClearDB add-on, 239–241

downloading CLI tools, 236

logging in, 236

preparing for deployment,
236–238

history of Node.js, 2–4

HTML skeleton pages, 124–125

http module, 17

HTTP POST data. See POST data

HTTP response codes, 79

HTTPS, 229

built-in support for, 230–231

generating test certificates, 229–230

proxy server support, 231–232

293listings

J
JavaScript, 2. See also scripts

bootstrapper, 128–129

for login and registration pages,
208–211

errors and exceptions, 45–46

functions

arrow functions, 41

classes, 43

explained, 37–40

prototypes and inheritance, 43–45

scope, 40

global variables

console, 47

global, 46

process, 47

MongoDB data structure, 167

operators and constructs, 41–42

running Node.js, 16

types

arrays, 32–35

booleans, 26

comparisons and conversions,
36–37

constants, 24

explained, 23–24

numbers, 25–26

objects, 30–32

strings, 27–30

join function, 35

JSON (JavaScript Object Notation), 30–31

JSON servers. See also web applications;

web servers

API design, 144–145

modifying, 181, 198

creating, 65–66

L
layers in express, 139–140

length property, 27

line-by-line prompting, 269–271

Linux

configuration files, 232–233

deploying on, 218–219

installing memcached, 225–226

installing Mocha, 283

installing Node.js, 14–15

passing parameters, 262

running scripts, 259–260

listeners, 115

listing

albums, 179, 184–185

directory contents, 265

listings

adding photos using API, 187–188

admin_add_album.html, 189–190

admin_add_album.js, 188–189

admin_add_photo.js, 190–191

album-listing server (load_albums.js), 68

all-node node runner (node_runner.js),
275

another Mustache template page
(album.html), 132–133

building pages (pages.js), 147

db.js, 198–199

express/https module SSL support
(https_express_server.js), 230

file loading with full error handling, 56

getting all photos in album, 185–186

handling multiple request types, 73–76

helper functions (helpers.js), 146–147

home page template file (home.html),
131

https_express_server.js

294 listings

installing memcached, 225–226

installing Mocha, 283

installing Node.js, 12–14

passing parameters, 262

running scripts, 259–260

managing asynchronous functions

with async module, 104–110

problems with, 103–104

with promises pattern,
111–113

memcached, 224–225

connecting to, 226–227

installing

on Linux/Mac, 225–226

on Windows, 225

messages, flash, 162–163

Microsoft Azure. See Azure

middleware, 139, 148

compressing output, 156–157

configurations, 149

ordering, 150–151

POST data, cookies, sessions,
153–155

PUT and DELETE support, 156

static file handling, 151–152

usage, 148–149

mkdir function, 264

mkdirSync function, 264–265

Mocha, 277

installing, 283

testing API design, 283–286

modifying API design. See also updating

for authentication, 198

for database usage, 181

modules, 51, 89

assert, 280

async, 104–110

bcrypt, 200

http-proxy SSL support
(https_proxy_server.js), 231

JavaScript page loader (home.js), 128

login page Mustache template (login.
html), 211

raw mode on stdin (raw_mode.js),
267–268

registration page Mustache template
(register.html), 209–210

round-robin proxy load balancer
(roundrobin.js), 223

rpn.js file, 279–280

simple app page bootstrapper
(basic.html), 125

simple postfix calculator using readline
(readline.js), 269–271

static middleware usage (server.js), 152

survey program (questions.js), 272

testing the compute_intersection
function, 61

trivial HTTP server, 222

using process#nextTick to be polite, 60

virtual hosts in express
(vhost_server.js), 228

load balancers, 221

loading modules, cycles in, 94–95

log files, writing to, 216–217

logging in, 161

to Azure, 245–246

to Heroku, 236

login forms, creating, 160–161, 208–211

loops, 42

asynchronous looping, 69–71, 110

low-level operations, writing in sample

application, 175–181

M
Macintosh

configuration files, 232–233

deploying on, 218–219

https_proxy_server.js

295MySQL

bluebird, 111–113

caching, 94

child_process

exec function, 273–274

spawn function, 274–276

documentation, 96

including, 93

installing via NPM, 92–93

loading, cycles in, 94–95

node-uuid, 200

passport, 157–160

authentication with MySQL,
202–203

creating login forms, 160–161

flash messages, 162–163

implementing authentication,
203–204

logging in, 161

restricting page access, 162

private package management, 101–102

publishing, 102

readline, 268–273

returning objects from

constructor model, 91

factory model, 91

in sample application, 146–148

searching for, 93

versioning, 94, 97

writing, 89–90, 95–100

MongoDB

collections

creating, 169–170

deleting documents, 172

inserting documents, 170–171

querying, 172–175

updating documents, 171–172

connecting to, 169

in sample application, 176–177

data structure, 167

data types, 168

databases, creating, 169, 176–177

installing, 165–166

Node.js usage, 166–167

writing low-level operations in sample
application, 175–181

multiplatform development, 232

locations and configuration files,
232–233

paths, 233

multiple file types, serving in streams,

120–121

multiple request types in web applications,

71–79

multiprocessor deployment, 220–223

sessions and, 223–227

Mustache, 124, 129–131

MySQL

authentication, 198

creating login and registration
pages, 208–211

creating user handlers, 205–207

creating users, 199–201

fetching users, 201–202

implementing, 203–204

modifying API, 198

routing in, 207–208

updating express application,
202–203

configuring ClearDB add-on

in Azure applications, 248–252

in Heroku applications, 239–241

connecting to, 195–196, 198–199

creating schema, 194–195

installing, 193–194

Node.js usage, 194

querying, 196–197

296 Nan value

npm search command, 92

npm unpublish command, 102

npm update command, 93

null, 24

numbers, 25–26

O
object literal syntax, 30

objects, 30–32

cloning, 179

returning from modules

constructor model, 91

factory model, 91

openSync function, 263

operators, 41–42

ordering middleware, 150–151

output, compressing, 156–157. See also

I/O functions

P
packages

NPM. See NPM (Node Package Manager)

updating, 93

page access, restricting, 162

pages

adding to applications, 188–191

creating login and registration pages,
208–211

paging functionality, 79–82

parallel code execution, 107–108

parallel function, 107–108

parameters, scripts and, 261–262

parseFloat function, 26

parseInt function, 26

passing parameters, 261–262

passport module, 157–160

N
Nan value, 26

nextTick function, 59–61

Node shell, 15–16

Node.js

debugging, 18–21

history of, 2–4

HTTPS/SSL support, 230–231

installing

on Linux, 14–15

on Mac, 12–14

on Windows, 9–12

limitations of, 3

resources for information, 21–22

running

from JavaScript files, 16

with Node shell, 15–16

updating, 21–22

nodeunit, 277

installing, 278

writing tests, 278

asynchronous tests, 282

functional tests, 279–281

groups of tests, 281–282

node-uuid module, 200

nonblocking IO, changing blocking IO to,

51–53. See also asynchronous functions

NoSQL. See MongoDB

NPM (Node Package Manager)

installing modules, 92–93

private package management, 101–102

npm help command, 92

npm install command, 92

npm link command, 101

npm ls command, 93

npm publish command, 102

297REPL (Read-Eval-Print-Loop)

authentication with MySQL, 202–203

creating login forms, 160–161

flash messages, 162–163

implementing authentication, 203–204

logging in, 161

restricting page access, 162

paths in multiplatform development, 233

patterns, 54

asynchronous looping, 69–71

callback functions, error handling and,
54–56

promises, 111–113

photos

adding to albums, 180–181, 186–188,
190–191

finding, 180, 185–186

PKG installer, installing Node.js on Mac,

12–14

placeholders, 141, 197

pop function, 34

port numbers, 216

POST data

converting to PUT and DELETE, 156

with express middleware, 153–155

receiving

via forms, 86–87

via streams, 83–86

sending, 82–83

postfix calculations, 269

precise equality operator, 36

private package management, 101–102

process object, 47

processes

blocking IO and, 49–50

creating

with exec function, 273–274

with spawn function, 274–276

process.exit function, 263–264

process.nextTick function, 59–61

promises pattern, 111–113

prompting line-by-line, 269–271

prototypes, 43–45, 98

proxies

HTTPS/SSL support, 231–232

for multiprocessor deployment,
220–223

publishing modules, 102

push function, 34

PUT method, 156

Q
query strings, 79–82

querying. See also searching

collections, 172–175

MySQL databases, 196–197

questions/answers with readline module,

271–273

quotation marks in strings, 27

R
raw mode, 267

readable event, 115

readdirSync function, 265

reading files with streams, 116

readline module, 268–273

Readme.md, 96

readSync function, 263

receiving POST data

via forms, 86–87

via streams, 83–86

registration pages, creating, 208–211

regular expressions, 29–30

REPL (Read-Eval-Print-Loop), 15–16

298 replace function

parameters and, 261–262

processes

creating with exec function,
273–274

creating with spawn function,
274–276

running

on Linux/Mac, 259–260

on Windows, 260–261

synchronous functions, 262

creating directories, 264–265

file operations, 263–264

listing directory contents, 265

search function, 30

searching. See also querying

for autogenerated _id fields, 174

for modules, 93

securing web applications, 229

built-in support for HTTPS/SSL, 230–231

generating test certificates, 229–230

proxy server support for HTTPS/SSL,
231–232

selecting testing frameworks, 277–278

semantic versioning, 4

sending POST data, 82–83

serial code execution, 104–107

series function, 106–107

ServerRequest object, 78

servers

JSON servers

API design, 144–145

creating, 65–66

modifying API, 181, 198

web application deployment. See web
applications, deploying

web servers

creating, 16–18

creating in express, 138–139

replace function, 29

request types, handling multiple, 71–79

require function, 51, 93

response codes (HTTP), 79

REST (Representational State Transfer), API

design, 144–145

restricting page access, 162

returning

data in web applications, 67–69

objects from modules

constructor model, 91

factory model, 91

reverse Polish notation, 269

routing

for authentication, 207–208

in express, 140–141

updating sample application,
141–144

running

Node.js

from JavaScript files, 16

with Node shell, 15–16

scripts

on Linux/Mac, 259–260

on Windows, 260–261

S
schemas, creating, 194–195

scope of functions, 40

this keyword, 56–59

screen utility, 217

scripts

I/O functions

buffered I/O, 266–267

readline module, 268–273

stdin, stdout, stderr, 266

unbuffered input, 267–268

299testing

HTML skeleton pages, 124–125

JavaScript bootstrapper, 128–129

modifying URL scheme, 126–128

sessions

with express middleware, 153–155

on multiple servers, 223–227

setRawMode function, 267

setTimeout function, 51

shebang, 260

shell. See Node shell; REPL (Read-Eval-

Print-Loop)

shift function, 34

sort function, 35

source code, downloading, 5

spawn function, 274–276

splice function, 28, 34

split function, 29

SQL. See MySQL

SSL, 229

built-in support for, 230–231

generating test certificates, 229–230

proxy server support, 231–232

stability levels, 4

static content

serving with express, 151–152

serving with streams, 115

buffers, 117–120

modifying URL scheme, 126–128

multiple file types, 120–121

reading files, 116

in sample application, 125–126

stderr, 266. See also error handling

stdin, 266. See also input

stdout, 266

streams

moving data between, 121

receiving POST data, 83–86

serving static content, 115

with buffers, 117–120

modifying URL scheme, 126–128

multiple file types, 120–121

reading files, 116

in sample application, 125–126

strings, 27–30

buffers versus, 117

functions, 28–29

regular expressions, 29–30

substr function, 28

synchronous functions, 61, 262

creating directories, 264–265

file operations, 263–264

listing directory contents, 265

synchronous programming, changing to

asynchronous programming, 51–53

T
TDD (test-driven development), 277

tee utility, 216–217

templates, client-side, 122–124

adding pages, 188–191

with Mustache, 129–131

in sample application, 131–134

ternary operator, 41

test certificates, generating, 229–230

test-driven development (TDD), 277

testing

API design, 283–286

frameworks

installing Mocha, 283

installing nodeunit, 278

selecting, 277–278

Heroku applications, 239

virtual hosts, 228–229

writing tests, 278

300 testing

url.parse function, 80

user handlers, creating, 205–207

users

authenticating, 206–207

creating, 199–201, 205–206

fetching, 201–202

V
variable scope. See scope of functions

verifying Windows installation of Node.js,

10–12

versioning of modules, 94, 97

virtual hosting, 227–229

W
warn function, 47

waterfall function, 104–106

web applications

asynchronous looping, 69–71

authentication, 157–160

creating login forms, 160–161

flash messages, 162–163

logging in, 161

restricting page access, 162

client-side templates, 122–124

adding pages, 188–191

with Mustache, 129–131

in sample application, 131–134

data structure in sample application,
192

deploying, 215

to Azure, 244–256

basic deployment, 216–217

to Heroku, 235–244

on Linux/Mac, 218–219

multiprocessor deployment,
220–223

asynchronous tests, 282

functional tests, 279–281

groups of tests, 281–282

this keyword, 56–59

threads, blocking IO and, 49–50

time function, 47

trim function, 29

try/catch blocks, 46

asynchronous functions and, 53–54

typeof, 24, 32

types

arrays, 32–35

booleans, 26

comparisons and conversions, 36–37

constants, 24

explained, 23–24

numbers, 25–26

objects, 30–32

strings, 27–30

U
unbuffered input, 267–268

undefined, 24, 33

UNIX. See Linux; Macintosh

unlinkSync function, 264

unshift function, 34

updating. See also modifying API design

documents in collections, 171–172

express for authentication, 202–203

handlers in sample application,
182–188

Node.js, 21–22

packages, 93

uploading files, 154–155

URL contents

downloading on Windows, 17

modifying URL scheme, 126–128

301yielding control

problems with basic deployment,
218

sessions on multiple servers, 223–
227

virtual hosting, 227–229

on Windows, 219–220

error handling, 163–164

error handling in, 66

limitations of, 1–2

multiplatform development, 232

locations and configuration files,
232–233

paths, 233

multiple request types, 71–79

paging functionality, 79–82

POST data

receiving via forms, 86–87

receiving via streams, 83–86

sending, 82–83

returning data, 67–69

securing with HTTPS/SSL, 229

built-in support for, 230–231

generating test certificates, 229–230

proxy server support, 231–232

updating routing, 141–144

web servers. See also JSON servers

creating, 16–18

in express, 138–139

HTML skeleton pages, 124–125

JavaScript bootstrapper, 128–129

modifying URL scheme, 126–128

static content. See static content

wget, 17

Windows

configuration files, 232–233

deploying on, 219–220

downloading URL contents, 17

installing memcached, 225

installing Mocha, 283

installing Node.js, 9–12

passing parameters, 262

running scripts, 260–261

writeSync function, 263

writing

to log files, 216–217

low-level operations in sample applica-
tion, 175–181

modules, 89–90, 95–100

tests, 278

asynchronous tests, 282

functional tests, 279–281

groups of tests, 281–282

Y
yielding control, 59–61

	Cover
	Title Page
	Copyright Page
	Contents
	Introduction
	I: Learning to Walk
	3 Asynchronous Programming
	The Old Way of Doing Things
	The Node.js Way of Doing Things
	Error Handling and Asynchronous Functions
	The callback Function and Error Handling

	Who Am I? Maintaining a Sense of Identity
	Being Polite—Learning to Give Up Control
	Synchronous Function Calls
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

