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Introduction

SQL, or Structured Query Language, is the primary language used to communicate with 
relational databases. The goal of this book is to serve as a useful introductory guide to this 
essential language.

In an alternate universe, the title of this book might have been The Logic of SQL. This is 
because, like all computer languages, the language of SQL has much more to do with cold hard 
logic than with English vocabulary. Nevertheless, the word language has been retained in the 
title for a number of reasons. First, a certain language-based syntax in SQL distinguishes it from 
other computer languages. Unlike other languages, SQL employs many ordinary words, such as 
WHERE and FROM, as keywords in its syntax.

In the spirit of the language embedded in SQL, we’ve adopted an emphasis on language in our 
sequence of topics. With this book, you’ll learn SQL as you would learn English. SQL keywords 
are presented in a logical progression, from simple to more complex. In essence, this is an 
attempt to deal with language and logic simultaneously.

To learn any language, one must begin by hearing and remembering the actual words that 
form the basis of its utterance. At the same time, those words have a certain meaning that must 
be understood. In the case of SQL, the meaning has a great deal to do with logic.

One final reason for persisting with the title The Language of SQL rather than The Logic of SQL 
is that it simply sounds better. While there can be few literary pretensions in a computer-
language book, the hope is that the presence of the word language will generate some 
additional enthusiasm for a subject that is, after all, quite interesting.

Topics and Features
Even if you’re not yet familiar with SQL, suffice it to say that it is a complex language with 
many components and features. In this book, we’ll focus on one main topic:

• How to use SQL to retrieve data from a database
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To a lesser extent, we will also cover:

• How to update data in a database

• How to build and maintain databases

• How to design relational databases

• Strategies for displaying data after it has been retrieved

A number of features make this book unique among introductory SQL books:

• You will not be required to download software or sit with a computer as you read 
the text.

Our intent is to provide examples of SQL usage that can be understood simply by reading 
the book. The text includes small data samples that allow you to clearly see how SQL 
statements work.

• A language-based approach is employed to enable you to learn SQL as you would 
learn English.

Topics are organized in an intuitive and logical sequence. SQL keywords are introduced 
one at a time, allowing you to build on your prior understanding as you encounter new 
words and concepts.

• This book covers the syntax of three widely used databases: Microsoft SQL Server, 
MySQL, and Oracle.

If there are any differences between these databases, the Microsoft SQL Server syntax is 
shown in the main text. Special “Database Differences” sidebars show and explain any 
variations in the syntax for MySQL or Oracle.

• An emphasis is given to relevant aspects of SQL for retrieving data. 

This approach is useful for those who need only to use SQL in conjunction with a 
reporting tool. In our final chapter, we’ll move beyond pure SQL to cover strategies for 
displaying data after it has been retrieved, including ideas on how to use crosstab reports 
and pivot tables. In the real world, these types of tools can substantially lessen the 
burden on the SQL developer and provide greater flexibility for the end user.

Note
Visit our website and register this book at informit.com/register for convenient access to 
downloads, updates, or errata that may be available for this book.

What’s New in the Second Edition
Here are some of the new features of this second edition:

• Coverage of the latest database versions

All syntax and examples have been taken from the latest versions of the three main 
databases covered in this book: Microsoft SQL Server 2016, MySQL 5.7, and Oracle 12c.
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• Coverage of subtotals and crosstabs

We added a new chapter on subtotals and crosstabs to provide additional possibilities for 
summarizing data. This material allows users to add subtotals and running totals to their 
queries. Additionally, exposure to SQL crosstab queries allows for a greater appreciation 
of the value of pivot tables, which are covered toward the end of the book.

• Coverage of ranking functions

We added new material on ranking functions. This important class of functions permits 
users to produce row numbers and calculate percentiles. A related capability is the ability 
to divide data into partitions prior to the application of ranking functions. 

• Expanded coverage of conditional logic

Our first edition included some basic material on the CASE expression and conditional 
logic. This topic is often excluded from introductory SQL books but nevertheless has 
tremendous practical value for any SQL developer. This second edition adds a number of 
new examples in Chapters 8 and 9 of how the CASE expression can be employed.

• New and more consistent datasets

As in the first edition, each chapter has its own small set of data for examples. However, 
unlike before, this second edition now uses a consistent set of datasets for all chapters. A 
Customers table referenced in one chapter will be the same as a Customers table in any 
other chapter. If you wish to load sample data for testing, you can now run a single script 
to load all data at once. The previous edition required separate scripts for each chapter. 

• Other improvements

A few other noteworthy topics have been added, including common table expressions and 
comments. Terminology throughout the book has been modified for greater consistency 
and conformity with standard usage. Finally, an overview of the SELECT statement has 
been added early in Chapter 2, to give you a better idea of the topics to come.

Plan of the Book
This book presents its topics in a unique sequence. The majority of SQL books run through 
their topics as if you were a database administrator who needs to create and design a database 
from scratch, then load the database with data, and then finally start to retrieve that data. In 
this book, we start right off with data retrieval, and then come around to database design in the 
final chapters. This is done as a motivational tactic, allowing you to quickly get into interesting 
topics related to data retrieval before having to deal with the more arcane subjects of indexes 
and foreign keys.

The 20 chapters in the book can be broken down into a number of broad sections:

• Chapter 1 presents introductory material about relational databases that is necessary to 
understand before encountering the SELECT statement.

• Chapters 2 through 5 begin an exploration of the SELECT statement, covering the basics 
of calculations, functions, and sorting.
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• Chapters 6 through 8 deal with selection criteria, from simple Boolean logic to 
conditional logic.

• Chapters 9 and 10 explore ways to summarize data, from simple counts to more complex 
aggregations and subtotals.

• Chapters 11 through 15 discuss ways to retrieve data from multiple tables via joins, 
subqueries, views, and set logic.

• Chapters 16 through 18 move beyond the SELECT statement to focus on broader 
topics associated with relational databases, such as stored procedures, updates, and 
table maintenance.

• Finally, Chapters 19 and 20 bring us back to the basics of database design and then 
to strategies for displaying data.

Appendixes A, B, and C provide information on how to get started with each of the three 
databases covered in the book: Microsoft SQL Server, Oracle, and MySQL.

Companion Website
A listing of all SQL statements in this book can be found at this site: 

• www.informit.com/store/language-of-sql-9780134658254

These three files are provided:

• SQL Statements for Microsoft SQL Server

• SQL Statements for MySQL

• SQL Statements for Oracle

These three files list all SQL statements in the book for each of these databases. Additionally, 
these files contain a SQL script that allows you to create all the data used in the book. After 
running the setup script, you can execute statements in the book and see the same output.

Instructions on how to execute the setup script are provided within each of the files.

http://www.informit.com/store/language-of-sql-9780134658254


4
Using Functions

Keywords Introduced
LEFT • RIGHT • SUBSTRING • LTRIM • RTRIM • UPPER • LOWER • GETDATE •  
DATEPART • DATEDIFF • ROUND • PI • POWER • ISNULL

Anyone familiar with Microsoft Excel is probably aware that functions provide a huge 
amount of functionality for the typical spreadsheet user. Without the ability to use functions, 
most of the data available in spreadsheets would be of limited value. The same is true in the 
world of SQL. Familiarity with SQL functions will greatly enhance your ability to generate 
dynamic results for anyone viewing data or reports generated from SQL.

This chapter covers a wide variety of some of the most commonly used functions in four 
different categories: character functions, date/time functions, numeric functions, and 
conversion functions. Additionally, we’ll talk about composite functions—a way of combining 
multiple functions into a single expression.

What Is a Function?
Similar to the calculations covered in the previous chapter, functions provide another way to 
manipulate data. As was seen, calculations can involve multiple fields, either with arithmetic 
operators such as multiplication, or by concatenation. Similarly, functions can involve data 
from multiple values, but the end result of a function is always a single value.

What is a function? A function is merely a rule for transforming any number of input values 
into one output value. The rule is defined within the function and can’t be altered. However, 
the user of a function is allowed to specify any desired value for the inputs to the function. 
Some functions may allow some of the inputs to be optional. That means that the specification 
of that particular input isn’t required. Functions can also be designed to have no inputs. 
However, regardless of the type or number of input values, functions always return precisely 
one output value when the function is invoked.
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There are two types of functions: scalar and aggregate. The term scalar comes from mathematics 
and refers to an operation that is done on a single number. In computer usage, it means that 
the function is performed on data in a single row. For example, the LTRIM function removes 
spaces from one specified value in one row of data.

In contrast, aggregate functions are meant to be performed on a larger set of data. For example, 
the SUM function can be used to calculate the sum of all the values of a specified column. 
Because aggregate functions apply to larger sets or groups of data, we will leave discussion 
of this type of function to Chapter 9, “Summarizing Data.”

Every SQL database offers dozens of scalar functions. The actual functions vary widely between 
databases, in terms of both their names and how they work. As a result, we will cover only a 
few representative examples of some of the more useful functions.

The most common types of scalar functions can be classified under three categories: character, 
date/time, and numeric. These are functions that allow you to manipulate character, date/time, 
or numeric datatypes. In addition, we will talk about some useful conversion functions that can 
be used to convert data from one datatype to another.

Character Functions
Character functions are those that enable you to manipulate character data. Just as character 
datatypes are sometimes called string datatypes, character functions are sometimes called string 
functions. We’ll cover these seven examples of character functions: LEFT, RIGHT, SUBSTRING, 
LTRIM, RTRIM, UPPER, and LOWER.

In this chapter, rather than retrieving data from specific tables, we’ll simply use SELECT 
statements with literal values in the columnlist. There will be no FROM clause to indicate a 
table. Let’s start with an example for the LEFT function. When this SQL command is issued:

SELECT
LEFT('sunlight',3) AS 'The Answer'

this data is returned:

The Answer

sun

The inclusion of a column alias in this SQL statement allows the output to display “The 
Answer” as a column header. Note that there is no FROM clause in the SELECT statement. 
Instead of retrieving data from a table, we’re selecting data from a single literal value, namely 
‘sunlight’. In many SQL implementations, including SQL Server and MySQL, a FROM clause 
isn’t strictly necessary in a SELECT statement, although in practice one would seldom write 
a SELECT statement like this. We’re using this format, without a FROM clause, only to more 
easily illustrate how functions work.
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Let’s now look at the format of this function in greater detail. The general format of the LEFT 
function is:

LEFT(CharacterValue, NumberOfCharacters)

All functions have any number of arguments within the parentheses. For example, the LEFT 
function has two arguments: CharacterValue and NumberOfCharacters. The term argument is a 
commonly used mathematical term that describes a component of functions, and has nothing 
to do with anything being disagreeable or unpleasant. The various arguments that are defined 
for each function are what truly define the meaning of the function. In the case of the LEFT 
function, the CharacterValue and NumberOfCharacters arguments are both needed to define what 
will happen when the LEFT function is invoked.

The LEFT function has two arguments, and both are required. As mentioned, other functions 
may have more or fewer arguments. Functions are even permitted to have no arguments. But 
regardless of the number of arguments, even if zero, all functions have a set of parentheses 
following the function name. The presence of the parentheses tells you that the expression is 
a function and not something else.

The formula for the LEFT function says: Take the specified CharacterValue, look at the specified 
NumberOfCharacters on the left, and bring back the result. In the previous example, it looks at 
the CharacterValue ‘sunlight’ and brings back the left three characters. The result is “sun”.

The main point to remember is that for any function you want to use, you’ll need to look up 
the function in the database’s reference guide and determine how many arguments are required 
and what they mean.

The second character function we’ll cover is the RIGHT function. This is the same as the LEFT 
function, except that characters are now specified for the right side of the input value. The 
general format of the RIGHT function is:

RIGHT(CharacterValue, NumberOfCharacters)

As an example:

SELECT
RIGHT('sunlight',5) AS 'The Answer'

returns:

The Answer

light

In this case, the NumberOfCharacters argument needed to have a value of 5 in order to return 
the value “light”. A value of 3 would have only returned “ght”. 
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One problem that often arises with the use of the RIGHT function is that character data often 
contains spaces on the right-hand side. Let’s look at an example in which a table with only 
one row of data contains a column named President, where the column is defined as being 
20 characters long. The table looks like:

President

George Washington

If we issue this SELECT statement against the table:

SELECT
RIGHT(President,10) AS 'Last Name'
FROM table1

we get back this data:

Last Name

hington

We expected to get back “Washington” but only got “hington.” The problem is that the 
entire column is 20 characters long. In this example, there are three spaces to the right of the 
value “George Washington”. Therefore, when we ask for the rightmost 10 characters, SQL 
will take the three spaces, plus another seven characters from the original expression. As will 
soon be seen, the function RTRIM must be used to remove the ending spaces before using the 
RIGHT function.

You might be wondering how to select data from the middle of an expression. This is 
accomplished by using the SUBSTRING function. The general format of that function is:

SUBSTRING(CharacterValue, StartingPosition, NumberOfCharacters)

For example:

SELECT
SUBSTRING('thewhitegoat',4,5) AS 'The Answer'

returns this data:

The Answer

white

This function is saying to take five characters, starting with position 4. This results in the 
display of the word “white”.
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Database Differences: MySQL and Oracle
MySQL sometimes requires that there be no space between the function name and the left 
parenthesis. It depends on the specific function used. For example, the previous statement in 
MySQL must be written exactly as shown. Unlike in Microsoft SQL Server, you can’t type in an 
extra space after SUBSTRING.

In Oracle, the equivalent of the SUBSTRING function is SUBSTR. One difference in the Oracle 
version of SUBSTR is that the second argument (StartingPosition) can have a negative value. 
A negative value for this argument means that you need to count that number of positions 
backward from the right side of the column.

As mentioned, Oracle doesn’t permit you to write a SELECT statement without a FROM clause. 
However, Oracle does provide a dummy table called DUAL for this type of situation. The Oracle 
equivalent of the SELECT with a SUBSTRING function is:
SELECT
SUBSTR('thewhitegoat',4,5) AS "The Answer"
FROM DUAL;

Our next two character functions enable us to remove all spaces, either on the left or the right 
side of an expression. The LTRIM function trims characters from the left side of a character 
expression. For example:

SELECT
LTRIM('     the apple') AS 'The Answer'

returns this data:

The Answer

the apple

Note that LTRIM is smart enough not to eliminate spaces in the middle of a phrase. It only 
removes the spaces to the very left of a character value.

Similar to LTRIM, the RTRIM function removes any spaces to the right of a character value. 
An example of RTRIM will be given in the next section, on composite functions.

The final two character functions to be covered are UPPER and LOWER. These functions 
convert any word or phrase to upper- or lowercase. The syntax is simple and straightforward. 
Here’s an example that covers both functions:

SELECT
UPPER('Abraham Lincoln') AS 'Convert to Uppercase',
LOWER('ABRAHAM LINCOLN') AS 'Convert to Lowercase'

The output is:

Convert to Uppercase Convert to Lowercase

ABRAHAM LINCOLN abraham lincoln
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Composite Functions
An important characteristic of functions, whether they are character, mathematical, or 
date/time, is that two or more functions can be combined to create composite functions. 
A composite function with two functions can be said to be a function of a function. Let’s go 
back to the George Washington query to illustrate. Again, we’re working from this data:

President

George Washington

Remember that the President column is 20 characters long. In other words, there are three 
spaces to the right of the value “George Washington”. In addition to illustrating composite 
functions, this next example will also cover the RTRIM function mentioned in the previous 
section. The statement:

SELECT
RIGHT(RTRIM (President),10) AS 'Last Name'
FROM table1

returns this data:

Last Name

Washington

Why does this now produce the correct value? Let’s examine how this composite function 
works. There are two functions involved: RIGHT and RTRIM. When evaluating composite 
functions, you always start from the inside and work your way out. In this example, the 
innermost function is:

RTRIM(President)

This function takes the value in the President column and eliminates all spaces on the right. After 
this is done, the RIGHT function is applied to the result to bring back the desired value. Because

RTRIM(President)

equals “George Washington”, we can say that:

SELECT
RIGHT(RTRIM (President), 10)

is the same as saying:

SELECT
RIGHT('George Washington', 10)

In other words, we can obtain the desired result by first applying the RTRIM function to the 
input data and then adding the RIGHT function to the expression to produce the final results.



33Date/Time Functions

Date/Time Functions
Date/Time functions allow for the manipulation of date and time values. The names of these 
functions differ, depending on the database used. In Microsoft SQL Server, the functions we’ll 
cover are called GETDATE, DATEPART, and DATEDIFF.

The simplest of the date/time functions is one that returns the current date and time. 
In Microsoft SQL Server, the function is named GETDATE. This function has no arguments. 
It merely returns the current date and time. For example:

SELECT GETDATE()

brings back an expression with the current date and time. Since the GETDATE function has no 
arguments, there is nothing specified between the parentheses. Remember that a date/time field 
is a special datatype that contains both a date and a time in a single field. An example of such 
a value is:

2017-05-15 08:48:30

This value refers to the 15th of May 2017, at 48 minutes and 30 seconds past 8 am.

Database Differences: MySQL and Oracle
In MySQL, the equivalent of GETDATE is NOW. The above statement would be written as:
SELECT NOW()

The equivalent of GETDATE in Oracle is CURRENT_DATE. The statement is written as:
SELECT CURRENT_DATE

The next date/time function enables us to analyze any specified date and return a value to 
represent such elements as the day or week of the date. Again, the name of this function 
differs, depending on the database. In Microsoft SQL Server, this function is called DATEPART. 
The general format is:

DATEPART(DatePart, DateValue)

The DateValue argument is any date. The DatePart argument can have many different values, 
including year, quarter, month, dayofyear, day, week, weekday, hour, minute, and second.

The following chart shows how the DATEPART function evaluates the date '5/6/2017', with 
different values for the DatePart argument:

DATEPART Function Expression Resulting Value

DATEPART(month, '5/6/2017') 5
DATEPART(day, '5/6/2017') 6
DATEPART(week, '5/6/2017') 18
DATEPART(weekday, '5/6/2017') 7
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Looking at the values in the previous chart, you can see that the month of 5/6/2017 is 5 (May). 
The day is 2 (Monday). The week is 18, because 5/6/2017 is in the 18th week of the year. The 
weekday is 7 because 5/6/2017 falls on a Saturday, which is the seventh day of the week.

Database Differences: MySQL and Oracle
In MySQL, the equivalent of the DATEPART function is named DATE_FORMAT, and it utilizes 
different values for the DateValue argument. For example, to return the day of the date 
‘5/6/2017’, you would issue this SELECT in MySQL:
SELECT DATE_FORMAT('2017-05-06', '%d');

Oracle doesn’t have a function comparable to DATEPART.

The final date/time function we’ll cover, DATEDIFF, enables you to determine quantities such 
as the number of days between any two dates. The general format is:

DATEDIFF (DatePart, StartDate, EndDate)

Valid values for the DatePart argument for this function include year, quarter, month, 
dayofyear, day, month, hour, minute, and second. Here’s a chart that shows how the 
DATEDIFF function evaluates the difference between the dates 7/8/2017 and 8/14/2017, 
with different values for the DatePart argument:

DATEPART Function Expression Resulting Value

DATEDIFF(day, '7/8/2017', '8/14/2017’) 37
DATEDIFF(week, '7/8/2017', '8/14/2017’) 6
DATEDIFF(month, '7/8/2017', '8/14/2017’) 1
DATEDIFF(year, '7/8/2017', '8/14/2017’) 0

The above chart indicates that there are 37 days, or 6 weeks, or 1 month, or 0 years between 
the two dates.

Database Differences: MySQL and Oracle
In MySQL, the DATEDIFF function only allows you to calculate the number of days between the 
two dates, and the end date must be listed first to return a positive value. The general format is:
DATEDIFF(EndDate, StartDate)

Oracle doesn’t have a function comparable to DATEDIFF.
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Numeric Functions
Numeric functions allow for manipulation of numeric values. Numeric functions are sometimes 
called mathematical functions. The functions we’ll cover are ROUND, RAND, PI, and POWER.

The ROUND function allows you to round any numeric value. The general format is:

ROUND(NumericValue, DecimalPlaces)

The NumericValue argument can be any positive or negative number, with or without decimal 
places, such as 712.863 or –42. The DecimalPlaces argument is trickier. It can contain a positive 
or negative integer, or zero. If DecimalPlaces is a positive integer, it means to round to that 
many decimal places. If DecimalPlaces is a negative integer, it means to round to that number 
of positions to the left of the decimal place. The following chart shows how the number 
712.863 is rounded, with different values for the DecimalPlaces argument.

ROUND Function Expression Resulting Value

ROUND(712.863, 3) 712.863
ROUND(712.863, 2) 712.860
ROUND(712.863, 1) 712.900
ROUND(712.863, 0) 713.000
ROUND(712.863, –1) 710.000
ROUND(712.863, –2) 700.000

The PI function merely returns the value of the mathematical number pi. As you may 
remember from high school geometry, the number pi is an irrational number approximated 
by the value 3.14. This function is seldom used, but nicely illustrates the point that numeric 
functions need not have any arguments. For example, the statement:

SELECT PI()

returns the value 3.14159265358979. To take this example a little further, let’s say that we 
want the value of pi rounded to two decimal places. This can be accomplished by creating a 
composite function with the PI and ROUND functions. The PI function is used to get the initial 
value, and the ROUND function is added to round it to two decimal places. The following 
statement returns a value of 3.14:

SELECT ROUND(PI(),2)

Database Differences: Oracle
Unlike Microsoft SQL Server and MySQL, Oracle doesn’t have a PI function.

The final numeric function we’ll cover, which is much more commonly used than PI, is 
POWER. The POWER function is used to specify a numeric value that includes exponents. 
The general format of the function is:

POWER(NumericValue, Exponent)
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Let’s start with an example that illustrates how to display the number 5 raised to the second 
power. This is commonly referred to as “5 squared.” The SELECT statement:

SELECT POWER(5,2) AS '5 Squared'

returns this data:

5 Squared

25

In this example, 5 is the numeric value to be evaluated, and 2 is the value of the exponent. 
Remembering that the square root of a number can be expressed as an exponent with a decimal 
value less than 1, we can calculate the square root of 25 as follows. The statement:

SELECT POWER(25,.5) AS 'Square Root of 25'

returns this data:

Square Root of 25

5

In algebraic terms, the calculation takes 25 to the 1/2 (or .5) power. This is the same as taking 
the square root of 25.

Conversion Functions
All of the aforementioned functions pertain to specific ways to manipulate character, date/time, 
or numeric datatypes. We now want to address the need to convert data from one datatype to 
another, or to convert NULL values to something meaningful. The remainder of this chapter 
will cover two special functions that can be used in these situations.

The CAST function converts data from one datatype to another. The general format of the 
function is:

CAST(Expression AS DataType)

The format of this function is slightly different from other functions previously seen, as it uses 
the word AS to separate the two arguments, rather than a comma. Looking at the usage of the 
function, it turns out that the CAST function is unnecessary in most situations. Let’s take the 
situation where we want to execute this statement, where the Quantity column is defined as a 
character datatype:

SELECT
2 * Quantity
FROM table
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Your first impression might be that the statement would fail, due to the fact that Quantity is not 
defined as a numeric column. However, most SQL databases are smart enough to automatically 
convert the Quantity column to a numeric value so that it can be multiplied by 2. 

Here’s an example where the CAST function becomes necessary. Let’s say we have dates stored 
in a column with a character datatype. We’d like to convert those dates to a true date/time 
column. This statement illustrates how the CAST function can handle that conversion:

SELECT
'2017-04-11' AS 'Original Date',
CAST('2017-04-11' AS DATETIME) AS 'Converted Date'

The output is:

Original Date Converted Date

2017-04-11 2017-04-11 00:00:00

The Original Date column looks like a date, but it is really just character data. In contrast, 
the Converted Date column is a true date/time column, as evidenced by the time value 
now shown.

A second useful conversion function is one that converts NULL values to a meaningful value. 
In Microsoft SQL Server, the function is called ISNULL. As mentioned in Chapter 1, “Relational 
Databases and SQL,” NULL values are those for which there is an absence of data. A NULL 
value is not the same as a space or zero. Let’s say we have this table of products:

ProductID Description Weight

1 Printer A NULL
2 Printer B 0
3 Monitor C 2
4 Laptop D 4

Notice that Printer A has a value of NULL in the Weight column. This indicates that a weight 
for this printer has not yet been provided. Let’s say we want to produce a list of all products. 
When this SELECT is issued:

SELECT
Description,
Weight
FROM Products
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It will show:

Description Weight

Printer A NULL
Printer B 0
Monitor C 2
Laptop D 4

There’s nothing inaccurate about this display. However, users may prefer to see something such 
as “Unknown” rather than NULL for missing values. Here’s the solution:

SELECT
Description,
ISNULL(CAST(Weight AS VARCHAR),'Unknown') AS Weight
FROM Products

The following data is displayed:

Description Weight

Printer A Unknown
Printer B 0
Monitor C 2
Laptop D 4

Notice that the solution requires the use of both the ISNULL and CAST functions. The ISNULL 
function handles the display of the weight as “Unknown” when NULL values are encountered. 
Assuming the Weight column is defined as an integer, the CAST function is needed to convert 
the weight to a Varchar datatype, so both integer and character values can be displayed in a 
single column.

Database Differences: MySQL and Oracle
The ISNULL function is called IFNULL in MySQL. Furthermore, MySQL doesn’t require the use 
of the CAST function in this example. The equivalent of the above statement in MySQL is:
SELECT
Description,
IFNULL(Weight,'Unknown') AS Weight
FROM Products;

The ISNULL function is called NVL (Null Value) in Oracle. The equivalent Oracle statement is:
SELECT
Description,
NVL(CAST(Weight AS CHAR),'Unknown') AS Weight
FROM Products;

Additionally, unlike Microsoft SQL Server and MySQL, Oracle displays a dash rather than the 
word NULL when it encounters NULL values.
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Looking Ahead
This chapter described a wide variety of functions. Functions are basically predefined rules for 
transforming a set of values into another value. Just as spreadsheets provide built-in functions 
for manipulating data, SQL provides similar capabilities. In addition to covering basic character, 
date/time, numeric, and conversion functions, we also explained how to create composite 
functions from two or more of these functions. 

Because there are simply so many available functions with widely varying possibilities, it’s 
impossible to discuss every nuance of every available function. The thing to remember is that 
functions can be easily looked up in a database’s help system or reference guide when they 
need to be used. Online reference material will provide details on exactly how each function 
works and the proper syntax.

In our next chapter, we’ll take a break from columnlist issues and talk about something a 
little more interesting: how to sort data. Sorts can serve lots of useful purposes and satisfy the 
basic desire of users to view data in some type of order. With the sort, we will begin to think 
of the entire way in which information is presented, rather than with just bits and pieces of 
individual data items.
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% wildcard, effect of, 55–56
() used in Boolean logic, 63–65

*
meaning of, 11, 21–22
using with COUNT function, 84–85

** operator in Oracle, 22
[], using with wildcards, 56, 58
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Access, 4
Actors table, wildcards examples, 57
adding subtotals

with CUBE keyword, 106–109
with ROLLUP keyword, 102–106

addition operator, 22

aggregate functions
explained, 28
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ascending order, sorting in, 41–43, 45
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OR operator, 62–63
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parentheses, 63–65
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C++, comparing to SQL, 2
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effect of, 74
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and CUBE keyword, 109
and GROUPING function, 104–106
using with GROUP BY clause, 91

CAST function, effect of, 36–38
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RIGHT, 29–30
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sort sequence, 45
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common table expressions, 152–153
Compact Form pivot tables, 206
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CASE expression, 73–77
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in GROUP BY clauses, 91
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conversion functions, 36–38
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CREATE INDEX statement, 187
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CREATE VIEW keyword, 138–139, 142, 181
cross joins, 131–133. See also joining
crosstab layouts, 110–114, 199–200
CUBE keyword, 106–109
CURRENT_DATE function, 33
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in outer join examples, 124
SELECT statement, 12
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D
data. See also displaying data; sorting

creating subsets of, 141
deleting, 175–176
eliminating redundancies, 191–192
exporting to Excel, 201
formatting with views, 141
grouping, 86–88
inserting, 172–175
modification strategies, 171–172
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obtaining from relational databases, 201
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selecting from expressions, 30
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updating, 176–177

data sources, subqueries as, 144–147
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converting, 36

DATE_FORMAT function, 34
DATEDIFF function, effect of, 34
DATEPART function, effect of, 33
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DENSE_RANK function, 93, 95
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Import Data options, 201
Microsoft Query window, 202–203
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F
false condition, evaluating, 61
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first normal form, 191
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and primary keys, 6
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FROM clause

explained, 17
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GETDATE function, effect of, 33
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greater than operators
using AND expression with, 68
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I
IFNULL function, 38
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versus LEFT JOIN, 126
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table order, 119
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Oracle Database Express Edition, 215–216
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IS NOT NULL keyword, 71
IS NULL keyword, 71–72
ISNULL function, effect of, 37–38, 46, 71–72, 
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J
JOIN keyword, effect of, 17, 116, 123
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tables, 116–117 
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keywords

explained, 11
lack of case sensitivity, 15
treatment of, 15

L
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versus logic, 1
procedural versus declarative, 2

LastName, sorting by, 42–43
LEFT function

arguments, 29
effect of, 28
format of, 29
formula for, 29

left joins. See also joining
and calculated columns, 151
effect of, 125–127
versus INNER JOIN keyword, 126
versus RIGHT JOIN, 128
and subqueries, 146
switching with right joins, 129
testing for NULL values, 127

less than operators
using AND expression with, 68
using with WHERE clause, 50

LIKE operator
and percent wildcard, 56
using in WHERE clause, 54

LIMIT keyword, 52
literal space, indicating, 22
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literal values
and calculated fields, 20–21
header row, 20

logical conditions
explained, 61
NOT operator, 66–67
and NULL values, 70–72
AND operator, 62
OR operator, 62–63
BETWEEN operator, 68–69
IN operator, 69–70
parentheses, 63–65

LOWER function, effect of, 31
LTRIM function, effect of, 28, 31

M
Macs, installing MySQL on, 212–213
math calculations, 21–22. See also 

calculated fields
MAX function, 84
Microsoft Access, 4
Microsoft Query window, 202–203
Microsoft SQL Server
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datatypes, 7–8
downloading free versions, 4
versions and editions, 3

MIN function, 84
MINUS operator, 161
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and FULL JOINs, 130–131
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multiplication operator, 22
MySQL open-source database
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` and column names, 16
ALTER PROCEDURE command, 168
CALL keyword, 167
comments, 14
CONCAT function, 23
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CREATE TABLE statement, 186
datatypes, 7–8
DATE_FORMAT function, 34
DATEDIFF function, 34
downloading free versions, 4
IFNULL function, 38
installing, 211–213
LIMIT keyword, 52
literal values, 20
NOW function, 33
parameters in stored procedures, 166
platforms and editions, 3

ROLLUP keyword, 106
spaces and functions, 31
stored procedures, 164–165

MySQL Workbench, using, 213

N
No Action foreign key, 185
normalization

alternatives, 196–197
of data, 191–195
goals of, 190–191
grades example, 195

NOT NULL keyword, 183
NOT operator, 66–67
NOW function, 33
NTILE ranking function, 93, 96
NULL values

allowing, 183
and Boolean logic, 70–72
converting, 37–38
and crosstab layouts, 113
and CUBE keyword, 108
explained, 8
in Grade column, 85
for Homework GradeType, 86
in Homework row, 87
and ROLLUP keyword, 103–104
sort sequence, 45–47
testing in LEFT JOIN, 127

NULL word, suppressing printing of, 105
numeric datatypes, 7
numeric functions, 35–36
numeric values, sort sequence of, 47
NVL function, 38

O
ON clause, in self joins, 137
ON keyword and INNER JOIN, 120
OR expression and operator, 62–64, 68
Oracle databases

; used with statements, 13
" and column names, 16
case sensitivity, 55
column aliases, 24
columns as sequences, 183
concatenation, 23
CREATE commands, 182
CURRENT_DATE function, 33
datatypes, 7–8
date display format, 126
downloading free versions, 4
DROP INDEX statement, 187
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Oracle databases (continued)
DROP VIEW, 142
editions, 3
exponentiation operator, 22
literal values, 20
MINUS operator, 161
NVL function, 38
PIVOT keyword, 114
ROWNUM keyword, 52
stored procedures, 164
SUBSTR function, 31
table aliases, 25, 121

Oracle Database Express Edition, installing and 
using, 215–216

ORDER BY clause
conditional logic in, 78
and crosstab layouts, 112–113
and CUBE keyword, 109
effect of, 41, 43–44, 47
explained, 17
versus GROUP BY, 88
and ROLLUP keyword, 103–104
switching, 88
and TOP keyword, 53–54
and UNION operator, 157
and views, 139

Orders table
columns in, 5
INTERSECT operator, 160
joining, 116–117
in outer join examples, 124
UNION operator, 156
values, 125

outer joins, table order in, 129. See also joining
Outline Form pivot tables, 206–207
OVER keyword, using with ranking functions, 94–95

P
parameters in stored procedures, 165–166
parent table, explained, 184
parentheses used in Boolean logic, 63–65
partitions, 97–99
pattern matching, 54–56
PE Ratio column, 94–95
percent wildcard, effect of, 55–56
Personnel table and self joins, 136
PI function, effect of, 35
PIVOT operator, using with crosstab layouts,  

111–112, 114, 200
pivot tables, using in Excel, 203–207
POWER function, effect of, 35–36

primary keys
contents, 8
and foreign keys, 6
and indexes, 183–184
and normalization, 190
specifying, 12

procedural language, explained, 2
procedures versus functions, 169
Products table, NULL and Boolean logic, 70–71
Purchases table

AND operator example, 62
OR operator example, 63

Q
Quartile column, 96
queries. See also subqueries

combining, 155
intersecting, 159–161

quotation mark ('), using with literal values, 20–21

R
RANK function, 93, 95
ranking functions, 93–99
records. See rows
Refunds table

in outer join examples, 124
values, 125

relating tables, 6
relational databases

availability, 4
features, 4–5
obtaining data from, 201

Returns table
INTERSECT operator, 160
UNION operator, 156

RIGHT function, 32
effect of, 29, 32
problem with spaces, 30

right joins, 128–129. See also joining
ROLLUP keyword, 102–108
ROUND function, effect of, 35
ROW_NUMBER ranking function, 93–94, 98
ROWNUM keyword, 52
rows. See also columns; tables

counting, 84–85
deleting, 175–176
deleting from tables, 171
explained, 5
identifying by primary keys, 6
inserting, 172
limiting with selection criteria, 51–52
limiting with sort, 53–54
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selecting using parentheses, 65
using NOT operator with, 66

RTRIM function, 30–32

S
Sales table

calculated fields, 19
joining, 116–117

Salespeople table, sorting examples in, 42
saving stored procedures and functions, 168
scalar function, explained, 28
second normal form, 191
security restrictions, enforcing with views, 141
SELECT clause, explained, 16
SELECT mainquery, order of fields in, 113
SELECT queries and set logic, 155
SELECT statements

and ALTER VIEW, 141–142
with ASC keyword, 43
and Boolean logic, 63
and CASE expression, 75
format of, 73–74
and INNER JOIN, 118
introducing, 11
for joining tables, 117
with LEFT function, 28
and LEFT JOIN, 126
with LOWER function, 31
with ORDER BY clause, 41
parameters in stored procedures, 165–166
and parentheses, 65
with RIGHT function, 30, 32
with RTRIM function, 32
and self joins, 137
separating with UNION operator, 157
specifying clauses in, 17
specifying columns, 14–15
and stored procedures, 165
and subqueries, 144, 146
with SUBSTRING function, 30
FROM TableForSort, 46
with UPPER function, 31
using with Customers table, 12
as views, 139
views as, 137
with WHERE clause, 49

selection criteria
on aggregate functions, 89–90
applying, 49–50
limiting rows, 51–52
limiting rows with sort, 53–54
pattern matching, 54–56

subqueries in, 147–148
TOP keyword, 52

selection logic, indicating, 17
self joins, effect of, 135–137. See also 

joining; views
semicolon (;), using with statements, 13
SET A and B, selecting data in, 156
SET keyword, using to update data, 176–178
set logic

distinct unions, 158–159
explained, 155
intersecting queries, 159–161
non-distinct unions, 158–159
UNION operator, 156–158

Set Null foreign key, 185
Shakespeare example, 53–54
soft delete technique, 171
sorting. See also data

in ascending order, 41–43
by calculated field, 44–45
by columns, 43–44
columns, 87–88
in descending order, 43
sequences, 45–47

spaces
including in columns, 15–16
problem in RIGHT function, 30

SQL (Structured Query Language)
components, 2
explained, 2
pronunciation, 2
significance, 8–9
versus Visual Basic and C++, 2

SQL database, explained, 3
SQL Server

concatenating fields, 22
datatypes, 7–8
downloading free versions, 4
versions and editions, 3

SQL Server 2016 
Express installation, 209
Management Studio Express installation, 210

SQL statements, 13–14
SQL syntax

relating to English sentences, 1–3
for writing statements, 12–13

square brackets, using with wildcards, 56, 58
square root, determining, 36
star schema, 196–197
statements, 13–14
stored procedures

creating, 164–165, 167
deleting, 167–168
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stored procedures (continued)
executing, 167, 169
explained, 163–164
parameters, 169
parameters in, 165–166
saving, 168

string datatypes, 7
string functions. See character functions
Students table, normalizing, 193
subqueries. See also queries

analyzing, 146
as calculated columns, 151–152
correlated and uncorrelated, 148–151
as data sources, 144–147
EXISTS operator, 150–151
explained, 70, 143
in selection criteria, 147–148
specifying, 144
types of, 143–144

SUBSTR function, 31
SUBSTRING function, effect of, 30
subtotals

adding with CUBE keyword, 106–109
adding with ROLLUP, 102–106

subtraction operator, 22
SUM function

and CUBE keyword, 109
effect of, 28, 84

summarizing data, 17
summing values in pivot tables, 206
syntax

relating to English sentences, 1–3
for writing statements, 12–13

T
table aliases, 24–25
table expressions, 152–153
table names, lack of case sensitivity, 15
tables. See also columns; rows

attributes, 182
creating, 185–187
DDL (Data Definition Language), 181–182
displaying, 5
joining, 116–117, 125–127
order in INNER JOINs, 119
relating, 6

Tabular Form pivot tables, 206
Teachers table, normalizing, 193–194
Tests table, normalizing, 193–194
THEN keyword, using with CASE expression, 74
third normal form, 191
time. See date/time functions and datatypes
TOP keyword, effect of, 52–54

Transactions table, subqueries, 145, 147–149
true condition, evaluating, 61
TRUNCATE TABLE statement, 176

U
uncorrelated subqueries, 148–149
underscore wildcard, effect of, 56–57
UNION and UNION ALL, 156–159
uniqueness, ensuring with primary keys, 6
update anomalies, eliminating, 191
updating data, 176–179
UPPER function, effect of, 31
Users table, subqueries, 144–145, 147–149

V
values, summation in pivot tables, 206
VALUES keyword, 173–174
VARCHAR, effect of, 46
Vendors table, updating, 178
views. See also self joins

benefits, 140–141
creating, 137–139
modifying and deleting, 141–142
referencing, 139–140
as SELECT statements, 137, 139
storing, 138

Visual Basic, comparing to SQL, 2

W
WHEN keyword, using with CASE expression, 74–75
WHERE clause

AND operator, 62
applying selection criteria, 49–50
conditional logic in, 79
and correlated subqueries, 179
effect of, 17, 50
example, 58
versus HAVING clause, 90
interpreting in Boolean logic, 64
LEFT JOIN with NULL values, 127
LIKE operator, 54
operators, 50–51
parameters in stored procedures, 166
placement of, 49
sample output, 50
specifying inner joins with, 119–120
subqueries, 146
TOP keyword, 54

wildcards, arranging, 56–58
Windows, installing MySQL on, 211–212
WITH keyword, effect of, 152–153
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