
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134658254
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134658254
https://plusone.google.com/share?url=http://www.informit.com/title/9780134658254
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134658254
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134658254/Free-Sample-Chapter

The Language
of SQL

Second Edition

Larry Rockoff

Hoboken, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

The Language of SQL, Second Edition
Copyright © 2017 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of the informa-
tion contained herein.

ISBN-13: 978-0-13-465825-4

ISBN-10: 0-13-465825-6

Library of Congress Control Number: 2016945436

Printed in the United States of America

First Printing: August 2016

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. The publisher cannot attest to the accuracy of this informa-
tion. Use of a term in this book should not be regarded as affecting the validity of any trade-
mark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
author and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book.

Special Sales
For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corpo-
rate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Editor
Mark Taber

Project and
Copy Editor
Dan Foster,
Scribe Tribe

Technical Editor
Siddhartha Singh

Designer
Chuti Prasertsith

Compositor
Danielle Foster,
Scribe Tribe

Indexer
Valerie Haynes
Perry

Proofreader
Scout Festa

Contents at a Glance

Introduction xiii

1 Relational Databases and SQL 1

2 Basic Data Retrieval 11

 3 Calculated Fields and Aliases 19

 4 Using Functions 27

 5 Sorting Data 41

 6 Selection Criteria 49

 7 Boolean Logic 61

 8 Conditional Logic 73

 9 Summarizing Data 81

 10 Subtotals and Crosstabs 101

11 Inner Joins 115

12 Outer Joins 123

13 Self Joins and Views 135

 14 Subqueries 143

 15 Set Logic 155

 16 Stored Procedures and Parameters 163

 17 Modifying Data 171

 18 Maintaining Tables 181

 19 Principles of Database Design 189

20 Strategies for Displaying Data 199

A Getting Started with Microsoft SQL Server 209

B Getting Started with MySQL 211

C Getting Started with Oracle 215

Index 217

Table of Contents

Introduction xiii

 1 Relational Databases and SQL 1

What Is SQL? 2

Microsoft SQL Server, MySQL, and Oracle 3

Relational Databases 4

Primary and Foreign Keys 6

Datatypes 6

NULL Values 8

The Significance of SQL 8

Looking Ahead 9

2 Basic Data Retrieval 11

A Simple SELECT 11

Syntax Notes 12

Comments 13

Specifying Columns 14

Column Names with Embedded Spaces 15

Preview of the Full SELECT 16

Looking Ahead 17

3 Calculated Fields and Aliases 19

Literal Values 20

Arithmetic Calculations 21

Concatenating Fields 22

Column Aliases 23

Table Aliases 24

Looking Ahead 25

4 Using Functions 27

What Is a Function? 27

Character Functions 28

Composite Functions 32

Date/Time Functions 33

vTable of Contents

Numeric Functions 35

Conversion Functions 36

Looking Ahead 39

5 Sorting Data 41

Sorting in Ascending Order 41

Sorting in Descending Order 43

Sorting by Multiple Columns 43

Sorting by a Calculated Field 44

Sort Sequences 45

Looking Ahead 47

6 Selection Criteria 49

Applying Selection Criteria 49

WHERE Clause Operators 50

Limiting Rows 51

Limiting Rows with a Sort 53

Pattern Matching 54

Wildcards 56

Looking Ahead 58

7 Boolean Logic 61

Complex Logical Conditions 61

The AND Operator 62

The OR Operator 62

Using Parentheses 63

Multiple Sets of Parentheses 65

The NOT Operator 66

The BETWEEN Operator 68

The IN Operator 69

Boolean Logic and NULL Values 70

Looking Ahead 72

8 Conditional Logic 73

The CASE Expression 73

The Simple CASE Format 74

The Searched CASE Format 76

vi Table of Contents

Conditional Logic in ORDER BY Clauses 78

Conditional Logic in WHERE Clauses 79

Looking Ahead 80

9 Summarizing Data 81

Eliminating Duplicates 81

Aggregate Functions 83

The COUNT Function 84

Grouping Data 86

Multiple Columns and Sorting 87

Selection Criteria on Aggregates 89

Conditional Logic in GROUP BY Clauses 91

Conditional Logic in HAVING Clauses 92

Ranking Functions 93

Partitions 97

Looking Ahead 100

10 Subtotals and Crosstabs 101

Adding Subtotals with ROLLUP 102

Adding Subtotals with CUBE 106

Creating Crosstab Layouts 110

Looking Ahead 114

11 Inner Joins 115

Joining Two Tables 116

The Inner Join 118

Table Order in Inner Joins 119

An Alternate Specification of Inner Joins 119

Table Aliases Revisited 120

Looking Ahead 121

12 Outer Joins 123

The Outer Join 123

Left Joins 125

Testing for NULL Values 127

Right Joins 128

viiTable of Contents

Table Order in Outer Joins 129

Full Joins 129

Cross Joins 131

Looking Ahead 134

13 Self Joins and Views 135

Self Joins 135

Creating Views 137

Referencing Views 139

Benefits of Views 140

Modifying and Deleting Views 141

Looking Ahead 142

14 Subqueries 143

Types of Subqueries 143

Using a Subquery as a Data Source 144

Using a Subquery in Selection Criteria 147

Correlated Subqueries 148

The EXISTS Operator 150

Using a Subquery as a Calculated Column 151

Common Table Expressions 152

Looking Ahead 153

15 Set Logic 155

Using the UNION Operator 156

Distinct and Non-Distinct Unions 158

Intersecting Queries 159

Looking Ahead 161

16 Stored Procedures and Parameters 163

Creating Stored Procedures 164

Parameters in Stored Procedures 165

Executing Stored Procedures 167

Modifying and Deleting Stored Procedures 167

Functions Revisited 168

Looking Ahead 169

viii Table of Contents

17 Modifying Data 171

Modification Strategies 171

Inserting Data 172

Deleting Data 175

Updating Data 176

Correlated Subquery Updates 177

Looking Ahead 179

18 Maintaining Tables 181

Data Definition Language 181

Table Attributes 182

Table Columns 183

Primary Keys and Indexes 183

Foreign Keys 184

Creating Tables 185

Creating Indexes 187

Looking Ahead 187

19 Principles of Database Design 189

Goals of Normalization 190

How to Normalize Data 191

The Art of Database Design 195

Alternatives to Normalization 196

Looking Ahead 197

20 Strategies for Displaying Data 199

Crosstab Layouts Revisited 199

Excel and External Data 200

Excel Pivot Tables 203

Looking Ahead 207

A Getting Started with Microsoft SQL Server 209

Installing SQL Server 2016 Express 209

Installing SQL Server 2016 Management Studio Express 210

Using SQL Server 2016 Management Studio Express 210

ixTable of Contents

B Getting Started with MySQL 211

Installing MySQL on Windows 211

Installing MySQL on a Mac 212

Using MySQL Workbench 213

C Getting Started with Oracle 215

Installing Oracle Database Express Edition 215

Using Oracle Database Express Edition 216

Index 217

About the Author
Larry Rockoff has been involved with SQL and business intelligence development for many
years. His main area of interest is in using reporting tools to explore and analyze data in
complex databases. He holds an MBA from the University of Chicago, with a specialization
in management science. He currently works with data warehouse and reporting applications
for a major retail pharmacy.

Besides writing about SQL, he has also published books on Microsoft Access and Excel.

He also maintains a website that features book reviews on technology topics, focusing on
analytics and business intelligence as well as broader societal issues, at

larryrockoff.com

Please feel free to visit that site to contact the author with any comments or questions.
You are also encouraged to follow his Facebook author page or Twitter site at

facebook.com/larryrockoff
twitter.com/larryrockoff

Acknowledgments
A huge thanks goes out to all at Pearson who assisted with this book. I’d like to specifically thank
Mark Taber, who was instrumental in bringing this book to Pearson from my previous publisher.
I’d also like to thank project editor and copy editor Dan Foster, as well as Danielle Foster,
who was responsible for the page layout. Siddhartha Singh did a superb job on the technical
review. Chuti Prasertsith provided a wonderfully vibrant cover design. Finally, I must mention
the generally thankless but essential tasks of the book’s indexer, Valerie Haynes Perry, and
proofreader, Scout Festa.

As this is a second edition, I’d also like to thank all readers of the first edition, and especially
those individuals who have contacted me at larryrockoff.com and offered gracious comments
as to the usefulness of the book in their personal lives. It’s both humbling and thrilling to
realize that your thoughts on a relatively mundane topic can assist someone halfway around
the world.

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write directly to let us know what you did or
didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book, and that
due to the high volume of mail we receive, we might not be able to reply to every message.

When you write, please be sure to include this book’s title and author, as well as your name and phone
number or email address.

Email: feedback@developers-library.info

Mail: Reader Feedback
Addison-Wesley Developer’s Library
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at www.informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

http://www.informit.com/register

Introduction

SQL, or Structured Query Language, is the primary language used to communicate with
relational databases. The goal of this book is to serve as a useful introductory guide to this
essential language.

In an alternate universe, the title of this book might have been The Logic of SQL. This is
because, like all computer languages, the language of SQL has much more to do with cold hard
logic than with English vocabulary. Nevertheless, the word language has been retained in the
title for a number of reasons. First, a certain language-based syntax in SQL distinguishes it from
other computer languages. Unlike other languages, SQL employs many ordinary words, such as
WHERE and FROM, as keywords in its syntax.

In the spirit of the language embedded in SQL, we’ve adopted an emphasis on language in our
sequence of topics. With this book, you’ll learn SQL as you would learn English. SQL keywords
are presented in a logical progression, from simple to more complex. In essence, this is an
attempt to deal with language and logic simultaneously.

To learn any language, one must begin by hearing and remembering the actual words that
form the basis of its utterance. At the same time, those words have a certain meaning that must
be understood. In the case of SQL, the meaning has a great deal to do with logic.

One final reason for persisting with the title The Language of SQL rather than The Logic of SQL
is that it simply sounds better. While there can be few literary pretensions in a computer-
language book, the hope is that the presence of the word language will generate some
additional enthusiasm for a subject that is, after all, quite interesting.

Topics and Features
Even if you’re not yet familiar with SQL, suffice it to say that it is a complex language with
many components and features. In this book, we’ll focus on one main topic:

• How to use SQL to retrieve data from a database

xiv Introduction

To a lesser extent, we will also cover:

• How to update data in a database

• How to build and maintain databases

• How to design relational databases

• Strategies for displaying data after it has been retrieved

A number of features make this book unique among introductory SQL books:

• You will not be required to download software or sit with a computer as you read
the text.

Our intent is to provide examples of SQL usage that can be understood simply by reading
the book. The text includes small data samples that allow you to clearly see how SQL
statements work.

• A language-based approach is employed to enable you to learn SQL as you would
learn English.

Topics are organized in an intuitive and logical sequence. SQL keywords are introduced
one at a time, allowing you to build on your prior understanding as you encounter new
words and concepts.

• This book covers the syntax of three widely used databases: Microsoft SQL Server,
MySQL, and Oracle.

If there are any differences between these databases, the Microsoft SQL Server syntax is
shown in the main text. Special “Database Differences” sidebars show and explain any
variations in the syntax for MySQL or Oracle.

• An emphasis is given to relevant aspects of SQL for retrieving data.

This approach is useful for those who need only to use SQL in conjunction with a
reporting tool. In our final chapter, we’ll move beyond pure SQL to cover strategies for
displaying data after it has been retrieved, including ideas on how to use crosstab reports
and pivot tables. In the real world, these types of tools can substantially lessen the
burden on the SQL developer and provide greater flexibility for the end user.

Note
Visit our website and register this book at informit.com/register for convenient access to
downloads, updates, or errata that may be available for this book.

What’s New in the Second Edition
Here are some of the new features of this second edition:

• Coverage of the latest database versions

All syntax and examples have been taken from the latest versions of the three main
databases covered in this book: Microsoft SQL Server 2016, MySQL 5.7, and Oracle 12c.

xvIntroduction

• Coverage of subtotals and crosstabs

We added a new chapter on subtotals and crosstabs to provide additional possibilities for
summarizing data. This material allows users to add subtotals and running totals to their
queries. Additionally, exposure to SQL crosstab queries allows for a greater appreciation
of the value of pivot tables, which are covered toward the end of the book.

• Coverage of ranking functions

We added new material on ranking functions. This important class of functions permits
users to produce row numbers and calculate percentiles. A related capability is the ability
to divide data into partitions prior to the application of ranking functions.

• Expanded coverage of conditional logic

Our first edition included some basic material on the CASE expression and conditional
logic. This topic is often excluded from introductory SQL books but nevertheless has
tremendous practical value for any SQL developer. This second edition adds a number of
new examples in Chapters 8 and 9 of how the CASE expression can be employed.

• New and more consistent datasets

As in the first edition, each chapter has its own small set of data for examples. However,
unlike before, this second edition now uses a consistent set of datasets for all chapters. A
Customers table referenced in one chapter will be the same as a Customers table in any
other chapter. If you wish to load sample data for testing, you can now run a single script
to load all data at once. The previous edition required separate scripts for each chapter.

• Other improvements

A few other noteworthy topics have been added, including common table expressions and
comments. Terminology throughout the book has been modified for greater consistency
and conformity with standard usage. Finally, an overview of the SELECT statement has
been added early in Chapter 2, to give you a better idea of the topics to come.

Plan of the Book
This book presents its topics in a unique sequence. The majority of SQL books run through
their topics as if you were a database administrator who needs to create and design a database
from scratch, then load the database with data, and then finally start to retrieve that data. In
this book, we start right off with data retrieval, and then come around to database design in the
final chapters. This is done as a motivational tactic, allowing you to quickly get into interesting
topics related to data retrieval before having to deal with the more arcane subjects of indexes
and foreign keys.

The 20 chapters in the book can be broken down into a number of broad sections:

• Chapter 1 presents introductory material about relational databases that is necessary to
understand before encountering the SELECT statement.

• Chapters 2 through 5 begin an exploration of the SELECT statement, covering the basics
of calculations, functions, and sorting.

xvi Introduction

• Chapters 6 through 8 deal with selection criteria, from simple Boolean logic to
conditional logic.

• Chapters 9 and 10 explore ways to summarize data, from simple counts to more complex
aggregations and subtotals.

• Chapters 11 through 15 discuss ways to retrieve data from multiple tables via joins,
subqueries, views, and set logic.

• Chapters 16 through 18 move beyond the SELECT statement to focus on broader
topics associated with relational databases, such as stored procedures, updates, and
table maintenance.

• Finally, Chapters 19 and 20 bring us back to the basics of database design and then
to strategies for displaying data.

Appendixes A, B, and C provide information on how to get started with each of the three
databases covered in the book: Microsoft SQL Server, Oracle, and MySQL.

Companion Website
A listing of all SQL statements in this book can be found at this site:

• www.informit.com/store/language-of-sql-9780134658254

These three files are provided:

• SQL Statements for Microsoft SQL Server

• SQL Statements for MySQL

• SQL Statements for Oracle

These three files list all SQL statements in the book for each of these databases. Additionally,
these files contain a SQL script that allows you to create all the data used in the book. After
running the setup script, you can execute statements in the book and see the same output.

Instructions on how to execute the setup script are provided within each of the files.

http://www.informit.com/store/language-of-sql-9780134658254

4
Using Functions

Keywords Introduced
LEFT • RIGHT • SUBSTRING • LTRIM • RTRIM • UPPER • LOWER • GETDATE •
DATEPART • DATEDIFF • ROUND • PI • POWER • ISNULL

Anyone familiar with Microsoft Excel is probably aware that functions provide a huge
amount of functionality for the typical spreadsheet user. Without the ability to use functions,
most of the data available in spreadsheets would be of limited value. The same is true in the
world of SQL. Familiarity with SQL functions will greatly enhance your ability to generate
dynamic results for anyone viewing data or reports generated from SQL.

This chapter covers a wide variety of some of the most commonly used functions in four
different categories: character functions, date/time functions, numeric functions, and
conversion functions. Additionally, we’ll talk about composite functions—a way of combining
multiple functions into a single expression.

What Is a Function?
Similar to the calculations covered in the previous chapter, functions provide another way to
manipulate data. As was seen, calculations can involve multiple fields, either with arithmetic
operators such as multiplication, or by concatenation. Similarly, functions can involve data
from multiple values, but the end result of a function is always a single value.

What is a function? A function is merely a rule for transforming any number of input values
into one output value. The rule is defined within the function and can’t be altered. However,
the user of a function is allowed to specify any desired value for the inputs to the function.
Some functions may allow some of the inputs to be optional. That means that the specification
of that particular input isn’t required. Functions can also be designed to have no inputs.
However, regardless of the type or number of input values, functions always return precisely
one output value when the function is invoked.

28 Chapter 4 Using Functions

There are two types of functions: scalar and aggregate. The term scalar comes from mathematics
and refers to an operation that is done on a single number. In computer usage, it means that
the function is performed on data in a single row. For example, the LTRIM function removes
spaces from one specified value in one row of data.

In contrast, aggregate functions are meant to be performed on a larger set of data. For example,
the SUM function can be used to calculate the sum of all the values of a specified column.
Because aggregate functions apply to larger sets or groups of data, we will leave discussion
of this type of function to Chapter 9, “Summarizing Data.”

Every SQL database offers dozens of scalar functions. The actual functions vary widely between
databases, in terms of both their names and how they work. As a result, we will cover only a
few representative examples of some of the more useful functions.

The most common types of scalar functions can be classified under three categories: character,
date/time, and numeric. These are functions that allow you to manipulate character, date/time,
or numeric datatypes. In addition, we will talk about some useful conversion functions that can
be used to convert data from one datatype to another.

Character Functions
Character functions are those that enable you to manipulate character data. Just as character
datatypes are sometimes called string datatypes, character functions are sometimes called string
functions. We’ll cover these seven examples of character functions: LEFT, RIGHT, SUBSTRING,
LTRIM, RTRIM, UPPER, and LOWER.

In this chapter, rather than retrieving data from specific tables, we’ll simply use SELECT
statements with literal values in the columnlist. There will be no FROM clause to indicate a
table. Let’s start with an example for the LEFT function. When this SQL command is issued:

SELECT
LEFT('sunlight',3) AS 'The Answer'

this data is returned:

The Answer

sun

The inclusion of a column alias in this SQL statement allows the output to display “The
Answer” as a column header. Note that there is no FROM clause in the SELECT statement.
Instead of retrieving data from a table, we’re selecting data from a single literal value, namely
‘sunlight’. In many SQL implementations, including SQL Server and MySQL, a FROM clause
isn’t strictly necessary in a SELECT statement, although in practice one would seldom write
a SELECT statement like this. We’re using this format, without a FROM clause, only to more
easily illustrate how functions work.

29Character Functions

Let’s now look at the format of this function in greater detail. The general format of the LEFT
function is:

LEFT(CharacterValue, NumberOfCharacters)

All functions have any number of arguments within the parentheses. For example, the LEFT
function has two arguments: CharacterValue and NumberOfCharacters. The term argument is a
commonly used mathematical term that describes a component of functions, and has nothing
to do with anything being disagreeable or unpleasant. The various arguments that are defined
for each function are what truly define the meaning of the function. In the case of the LEFT
function, the CharacterValue and NumberOfCharacters arguments are both needed to define what
will happen when the LEFT function is invoked.

The LEFT function has two arguments, and both are required. As mentioned, other functions
may have more or fewer arguments. Functions are even permitted to have no arguments. But
regardless of the number of arguments, even if zero, all functions have a set of parentheses
following the function name. The presence of the parentheses tells you that the expression is
a function and not something else.

The formula for the LEFT function says: Take the specified CharacterValue, look at the specified
NumberOfCharacters on the left, and bring back the result. In the previous example, it looks at
the CharacterValue ‘sunlight’ and brings back the left three characters. The result is “sun”.

The main point to remember is that for any function you want to use, you’ll need to look up
the function in the database’s reference guide and determine how many arguments are required
and what they mean.

The second character function we’ll cover is the RIGHT function. This is the same as the LEFT
function, except that characters are now specified for the right side of the input value. The
general format of the RIGHT function is:

RIGHT(CharacterValue, NumberOfCharacters)

As an example:

SELECT
RIGHT('sunlight',5) AS 'The Answer'

returns:

The Answer

light

In this case, the NumberOfCharacters argument needed to have a value of 5 in order to return
the value “light”. A value of 3 would have only returned “ght”.

30 Chapter 4 Using Functions

One problem that often arises with the use of the RIGHT function is that character data often
contains spaces on the right-hand side. Let’s look at an example in which a table with only
one row of data contains a column named President, where the column is defined as being
20 characters long. The table looks like:

President

George Washington

If we issue this SELECT statement against the table:

SELECT
RIGHT(President,10) AS 'Last Name'
FROM table1

we get back this data:

Last Name

hington

We expected to get back “Washington” but only got “hington.” The problem is that the
entire column is 20 characters long. In this example, there are three spaces to the right of the
value “George Washington”. Therefore, when we ask for the rightmost 10 characters, SQL
will take the three spaces, plus another seven characters from the original expression. As will
soon be seen, the function RTRIM must be used to remove the ending spaces before using the
RIGHT function.

You might be wondering how to select data from the middle of an expression. This is
accomplished by using the SUBSTRING function. The general format of that function is:

SUBSTRING(CharacterValue, StartingPosition, NumberOfCharacters)

For example:

SELECT
SUBSTRING('thewhitegoat',4,5) AS 'The Answer'

returns this data:

The Answer

white

This function is saying to take five characters, starting with position 4. This results in the
display of the word “white”.

31Character Functions

Database Differences: MySQL and Oracle
MySQL sometimes requires that there be no space between the function name and the left
parenthesis. It depends on the specific function used. For example, the previous statement in
MySQL must be written exactly as shown. Unlike in Microsoft SQL Server, you can’t type in an
extra space after SUBSTRING.

In Oracle, the equivalent of the SUBSTRING function is SUBSTR. One difference in the Oracle
version of SUBSTR is that the second argument (StartingPosition) can have a negative value.
A negative value for this argument means that you need to count that number of positions
backward from the right side of the column.

As mentioned, Oracle doesn’t permit you to write a SELECT statement without a FROM clause.
However, Oracle does provide a dummy table called DUAL for this type of situation. The Oracle
equivalent of the SELECT with a SUBSTRING function is:
SELECT
SUBSTR('thewhitegoat',4,5) AS "The Answer"
FROM DUAL;

Our next two character functions enable us to remove all spaces, either on the left or the right
side of an expression. The LTRIM function trims characters from the left side of a character
expression. For example:

SELECT
LTRIM(' the apple') AS 'The Answer'

returns this data:

The Answer

the apple

Note that LTRIM is smart enough not to eliminate spaces in the middle of a phrase. It only
removes the spaces to the very left of a character value.

Similar to LTRIM, the RTRIM function removes any spaces to the right of a character value.
An example of RTRIM will be given in the next section, on composite functions.

The final two character functions to be covered are UPPER and LOWER. These functions
convert any word or phrase to upper- or lowercase. The syntax is simple and straightforward.
Here’s an example that covers both functions:

SELECT
UPPER('Abraham Lincoln') AS 'Convert to Uppercase',
LOWER('ABRAHAM LINCOLN') AS 'Convert to Lowercase'

The output is:

Convert to Uppercase Convert to Lowercase

ABRAHAM LINCOLN abraham lincoln

32 Chapter 4 Using Functions

Composite Functions
An important characteristic of functions, whether they are character, mathematical, or
date/time, is that two or more functions can be combined to create composite functions.
A composite function with two functions can be said to be a function of a function. Let’s go
back to the George Washington query to illustrate. Again, we’re working from this data:

President

George Washington

Remember that the President column is 20 characters long. In other words, there are three
spaces to the right of the value “George Washington”. In addition to illustrating composite
functions, this next example will also cover the RTRIM function mentioned in the previous
section. The statement:

SELECT
RIGHT(RTRIM (President),10) AS 'Last Name'
FROM table1

returns this data:

Last Name

Washington

Why does this now produce the correct value? Let’s examine how this composite function
works. There are two functions involved: RIGHT and RTRIM. When evaluating composite
functions, you always start from the inside and work your way out. In this example, the
innermost function is:

RTRIM(President)

This function takes the value in the President column and eliminates all spaces on the right. After
this is done, the RIGHT function is applied to the result to bring back the desired value. Because

RTRIM(President)

equals “George Washington”, we can say that:

SELECT
RIGHT(RTRIM (President), 10)

is the same as saying:

SELECT
RIGHT('George Washington', 10)

In other words, we can obtain the desired result by first applying the RTRIM function to the
input data and then adding the RIGHT function to the expression to produce the final results.

33Date/Time Functions

Date/Time Functions
Date/Time functions allow for the manipulation of date and time values. The names of these
functions differ, depending on the database used. In Microsoft SQL Server, the functions we’ll
cover are called GETDATE, DATEPART, and DATEDIFF.

The simplest of the date/time functions is one that returns the current date and time.
In Microsoft SQL Server, the function is named GETDATE. This function has no arguments.
It merely returns the current date and time. For example:

SELECT GETDATE()

brings back an expression with the current date and time. Since the GETDATE function has no
arguments, there is nothing specified between the parentheses. Remember that a date/time field
is a special datatype that contains both a date and a time in a single field. An example of such
a value is:

2017-05-15 08:48:30

This value refers to the 15th of May 2017, at 48 minutes and 30 seconds past 8 am.

Database Differences: MySQL and Oracle
In MySQL, the equivalent of GETDATE is NOW. The above statement would be written as:
SELECT NOW()

The equivalent of GETDATE in Oracle is CURRENT_DATE. The statement is written as:
SELECT CURRENT_DATE

The next date/time function enables us to analyze any specified date and return a value to
represent such elements as the day or week of the date. Again, the name of this function
differs, depending on the database. In Microsoft SQL Server, this function is called DATEPART.
The general format is:

DATEPART(DatePart, DateValue)

The DateValue argument is any date. The DatePart argument can have many different values,
including year, quarter, month, dayofyear, day, week, weekday, hour, minute, and second.

The following chart shows how the DATEPART function evaluates the date '5/6/2017', with
different values for the DatePart argument:

DATEPART Function Expression Resulting Value

DATEPART(month, '5/6/2017') 5
DATEPART(day, '5/6/2017') 6
DATEPART(week, '5/6/2017') 18
DATEPART(weekday, '5/6/2017') 7

34 Chapter 4 Using Functions

Looking at the values in the previous chart, you can see that the month of 5/6/2017 is 5 (May).
The day is 2 (Monday). The week is 18, because 5/6/2017 is in the 18th week of the year. The
weekday is 7 because 5/6/2017 falls on a Saturday, which is the seventh day of the week.

Database Differences: MySQL and Oracle
In MySQL, the equivalent of the DATEPART function is named DATE_FORMAT, and it utilizes
different values for the DateValue argument. For example, to return the day of the date
‘5/6/2017’, you would issue this SELECT in MySQL:
SELECT DATE_FORMAT('2017-05-06', '%d');

Oracle doesn’t have a function comparable to DATEPART.

The final date/time function we’ll cover, DATEDIFF, enables you to determine quantities such
as the number of days between any two dates. The general format is:

DATEDIFF (DatePart, StartDate, EndDate)

Valid values for the DatePart argument for this function include year, quarter, month,
dayofyear, day, month, hour, minute, and second. Here’s a chart that shows how the
DATEDIFF function evaluates the difference between the dates 7/8/2017 and 8/14/2017,
with different values for the DatePart argument:

DATEPART Function Expression Resulting Value

DATEDIFF(day, '7/8/2017', '8/14/2017’) 37
DATEDIFF(week, '7/8/2017', '8/14/2017’) 6
DATEDIFF(month, '7/8/2017', '8/14/2017’) 1
DATEDIFF(year, '7/8/2017', '8/14/2017’) 0

The above chart indicates that there are 37 days, or 6 weeks, or 1 month, or 0 years between
the two dates.

Database Differences: MySQL and Oracle
In MySQL, the DATEDIFF function only allows you to calculate the number of days between the
two dates, and the end date must be listed first to return a positive value. The general format is:
DATEDIFF(EndDate, StartDate)

Oracle doesn’t have a function comparable to DATEDIFF.

35Numeric Functions

Numeric Functions
Numeric functions allow for manipulation of numeric values. Numeric functions are sometimes
called mathematical functions. The functions we’ll cover are ROUND, RAND, PI, and POWER.

The ROUND function allows you to round any numeric value. The general format is:

ROUND(NumericValue, DecimalPlaces)

The NumericValue argument can be any positive or negative number, with or without decimal
places, such as 712.863 or –42. The DecimalPlaces argument is trickier. It can contain a positive
or negative integer, or zero. If DecimalPlaces is a positive integer, it means to round to that
many decimal places. If DecimalPlaces is a negative integer, it means to round to that number
of positions to the left of the decimal place. The following chart shows how the number
712.863 is rounded, with different values for the DecimalPlaces argument.

ROUND Function Expression Resulting Value

ROUND(712.863, 3) 712.863
ROUND(712.863, 2) 712.860
ROUND(712.863, 1) 712.900
ROUND(712.863, 0) 713.000
ROUND(712.863, –1) 710.000
ROUND(712.863, –2) 700.000

The PI function merely returns the value of the mathematical number pi. As you may
remember from high school geometry, the number pi is an irrational number approximated
by the value 3.14. This function is seldom used, but nicely illustrates the point that numeric
functions need not have any arguments. For example, the statement:

SELECT PI()

returns the value 3.14159265358979. To take this example a little further, let’s say that we
want the value of pi rounded to two decimal places. This can be accomplished by creating a
composite function with the PI and ROUND functions. The PI function is used to get the initial
value, and the ROUND function is added to round it to two decimal places. The following
statement returns a value of 3.14:

SELECT ROUND(PI(),2)

Database Differences: Oracle
Unlike Microsoft SQL Server and MySQL, Oracle doesn’t have a PI function.

The final numeric function we’ll cover, which is much more commonly used than PI, is
POWER. The POWER function is used to specify a numeric value that includes exponents.
The general format of the function is:

POWER(NumericValue, Exponent)

36 Chapter 4 Using Functions

Let’s start with an example that illustrates how to display the number 5 raised to the second
power. This is commonly referred to as “5 squared.” The SELECT statement:

SELECT POWER(5,2) AS '5 Squared'

returns this data:

5 Squared

25

In this example, 5 is the numeric value to be evaluated, and 2 is the value of the exponent.
Remembering that the square root of a number can be expressed as an exponent with a decimal
value less than 1, we can calculate the square root of 25 as follows. The statement:

SELECT POWER(25,.5) AS 'Square Root of 25'

returns this data:

Square Root of 25

5

In algebraic terms, the calculation takes 25 to the 1/2 (or .5) power. This is the same as taking
the square root of 25.

Conversion Functions
All of the aforementioned functions pertain to specific ways to manipulate character, date/time,
or numeric datatypes. We now want to address the need to convert data from one datatype to
another, or to convert NULL values to something meaningful. The remainder of this chapter
will cover two special functions that can be used in these situations.

The CAST function converts data from one datatype to another. The general format of the
function is:

CAST(Expression AS DataType)

The format of this function is slightly different from other functions previously seen, as it uses
the word AS to separate the two arguments, rather than a comma. Looking at the usage of the
function, it turns out that the CAST function is unnecessary in most situations. Let’s take the
situation where we want to execute this statement, where the Quantity column is defined as a
character datatype:

SELECT
2 * Quantity
FROM table

37Conversion Functions

Your first impression might be that the statement would fail, due to the fact that Quantity is not
defined as a numeric column. However, most SQL databases are smart enough to automatically
convert the Quantity column to a numeric value so that it can be multiplied by 2.

Here’s an example where the CAST function becomes necessary. Let’s say we have dates stored
in a column with a character datatype. We’d like to convert those dates to a true date/time
column. This statement illustrates how the CAST function can handle that conversion:

SELECT
'2017-04-11' AS 'Original Date',
CAST('2017-04-11' AS DATETIME) AS 'Converted Date'

The output is:

Original Date Converted Date

2017-04-11 2017-04-11 00:00:00

The Original Date column looks like a date, but it is really just character data. In contrast,
the Converted Date column is a true date/time column, as evidenced by the time value
now shown.

A second useful conversion function is one that converts NULL values to a meaningful value.
In Microsoft SQL Server, the function is called ISNULL. As mentioned in Chapter 1, “Relational
Databases and SQL,” NULL values are those for which there is an absence of data. A NULL
value is not the same as a space or zero. Let’s say we have this table of products:

ProductID Description Weight

1 Printer A NULL
2 Printer B 0
3 Monitor C 2
4 Laptop D 4

Notice that Printer A has a value of NULL in the Weight column. This indicates that a weight
for this printer has not yet been provided. Let’s say we want to produce a list of all products.
When this SELECT is issued:

SELECT
Description,
Weight
FROM Products

38 Chapter 4 Using Functions

It will show:

Description Weight

Printer A NULL
Printer B 0
Monitor C 2
Laptop D 4

There’s nothing inaccurate about this display. However, users may prefer to see something such
as “Unknown” rather than NULL for missing values. Here’s the solution:

SELECT
Description,
ISNULL(CAST(Weight AS VARCHAR),'Unknown') AS Weight
FROM Products

The following data is displayed:

Description Weight

Printer A Unknown
Printer B 0
Monitor C 2
Laptop D 4

Notice that the solution requires the use of both the ISNULL and CAST functions. The ISNULL
function handles the display of the weight as “Unknown” when NULL values are encountered.
Assuming the Weight column is defined as an integer, the CAST function is needed to convert
the weight to a Varchar datatype, so both integer and character values can be displayed in a
single column.

Database Differences: MySQL and Oracle
The ISNULL function is called IFNULL in MySQL. Furthermore, MySQL doesn’t require the use
of the CAST function in this example. The equivalent of the above statement in MySQL is:
SELECT
Description,
IFNULL(Weight,'Unknown') AS Weight
FROM Products;

The ISNULL function is called NVL (Null Value) in Oracle. The equivalent Oracle statement is:
SELECT
Description,
NVL(CAST(Weight AS CHAR),'Unknown') AS Weight
FROM Products;

Additionally, unlike Microsoft SQL Server and MySQL, Oracle displays a dash rather than the
word NULL when it encounters NULL values.

39Looking Ahead

Looking Ahead
This chapter described a wide variety of functions. Functions are basically predefined rules for
transforming a set of values into another value. Just as spreadsheets provide built-in functions
for manipulating data, SQL provides similar capabilities. In addition to covering basic character,
date/time, numeric, and conversion functions, we also explained how to create composite
functions from two or more of these functions.

Because there are simply so many available functions with widely varying possibilities, it’s
impossible to discuss every nuance of every available function. The thing to remember is that
functions can be easily looked up in a database’s help system or reference guide when they
need to be used. Online reference material will provide details on exactly how each function
works and the proper syntax.

In our next chapter, we’ll take a break from columnlist issues and talk about something a
little more interesting: how to sort data. Sorts can serve lots of useful purposes and satisfy the
basic desire of users to view data in some type of order. With the sort, we will begin to think
of the entire way in which information is presented, rather than with just bits and pieces of
individual data items.

This page intentionally left blank

Symbols
-- comments, using, 13

"
in Oracle, 24
using with column names, 16, 140

', using with literal values, 20–21
' ,' meaning of, 22
− operator, 22
/ operator, 22
/* */ comment format, 14
;, using with statements, 13
_ wildcard, effect of, 56–57
`, using with column names, 16, 140
|| in Oracle, 23
+ operator, 22
=, using with WHERE clause, 50
comment format, 14
% wildcard, effect of, 55–56
() used in Boolean logic, 63–65

*
meaning of, 11, 21–22
using with COUNT function, 84–85

** operator in Oracle, 22
[], using with wildcards, 56, 58
^ symbol, effect of, 56
< operator, using AND expression with, 68
< operator, using with WHERE clause, 50
<= operator, using with WHERE clause, 50
<>, using with WHERE clause, 50
> operator, using AND expression with, 68
> operator, using with WHERE clause, 50–51
>= operator, using with WHERE clause, 50

A
accent grave, using with column names, 16, 140
Access, 4
Actors table, wildcards examples, 57
adding subtotals

with CUBE keyword, 106–109
with ROLLUP keyword, 102–106

addition operator, 22

aggregate functions
explained, 28
selection criteria on, 89–90
using, 83–84

aliases, 23–25
alphabetic order, sorting data in, 42, 47
ALTER FUNCTION keyword, 168
ALTER PROCEDURE keyword, 167–168
ALTER TABLE statement, 186–187
ALTER VIEW statement, 141–142
AND expression and operator, 62, 68, 159
angle brackets, using with WHERE clause, 50
arguments

for functions, 29
separating, 36

arithmetic calculations, 21–22. See also
calculated fields

AS keyword
and column aliases, 121
for columns, 23–25
and crosstab layouts, 111
and table aliases, 120
for tables, 24–25
using to separate arguments, 36

ASC keyword, 43
ascending order, sorting in, 41–43, 45
asterisk

meaning of, 11, 21–22
using with COUNT function, 84–85

auto-increment, 6, 183
AVG function, 84

B
BEGIN keyword and stored procedures, 164
BETWEEN operator, 68–69
Boolean logic

explained, 61
NOT operator, 66–67
and NULL values, 70–72
AND operator, 62
OR operator, 62–63
BETWEEN operator, 68–69
IN operator, 69–70
parentheses, 63–65

Index

218 C++, comparing to SQL

C
C++, comparing to SQL, 2
calculated columns

creating with views, 141
subqueries as, 151–152

calculated fields. See also arithmetic calculations
explained, 19
and literal values, 20
sorting by, 44–45

CALL keyword, 167
caret symbol, effect of, 56
Cascade foreign key, 185
CASE expression

effect of, 74
format of, 74–75
keywords, 74
placement of, 74
searched format, 76–77

CASE statement
and CUBE keyword, 109
and GROUPING function, 104–106
using with GROUP BY clause, 91

CAST function, effect of, 36–38
character data, joining, 22
character datatypes, 7
character functions

explained, 28
LEFT, 28–29
LOWER, 31
LTRIM, 31
RIGHT, 29–30
RTRIM, 31
sort sequence, 45
SUBSTRING, 30
UPPER, 31

[characterlist] wildcards, effects of, 56
collation settings, customizing, 45
ColorInventory table and CROSS JOINs, 132
column aliases, 23–24, 28
column names, lack of case sensitivity, 15
columns. See also rows; tables

adding indexes to, 183–184
designating as foreign keys, 184–185
explained, 5, 183
names with embedded spaces, 15–16
and PIVOT operator, 114
renaming, 141
sorting, 87–88
sorting by, 43–44
specifying, 14–15, 52
specifying values for, 184

comments, using with statements, 13–14
common table expressions, 152–153
Compact Form pivot tables, 206
composite functions, 32
computer languages, procedural, 2
concatenating fields, 22
concatenation, using with calculated fields, 44
conditional logic

CASE expression, 73–77
explained, 73
in GROUP BY clauses, 91
in HAVING clauses, 92
in ORDER BY clauses, 78
in WHERE clauses, 79

conversion functions, 36–38
correlated subqueries, 148–149

EXISTS operator, 150–151
updating, 177–179

COUNT function, 84–85, 151
CREATE FUNCTION keyword, 168
CREATE INDEX statement, 187
CREATE PROCEDURE keyword, 164, 167–168,

181
CREATE TABLE statement, 185–187
CREATE VIEW keyword, 138–139, 142, 181
cross joins, 131–133. See also joining
crosstab layouts, 110–114, 199–200
CUBE keyword, 106–109
CURRENT_DATE function, 33
Customers table

columns in, 5
in outer join examples, 124
SELECT statement, 12
values, 124

D
data. See also displaying data; sorting

creating subsets of, 141
deleting, 175–176
eliminating redundancies, 191–192
exporting to Excel, 201
formatting with views, 141
grouping, 86–88
inserting, 172–175
modification strategies, 171–172
normalizing, 191–195
obtaining from relational databases, 201
partitioning, 97–99
selecting from expressions, 30
summarizing, 17
updating, 176–177

data sources, subqueries as, 144–147

219Grades table

database design
alternatives to normalization, 196–197
art of, 195
normalization, 190–195

datatypes
of columns, 6–8
converting, 36

DATE_FORMAT function, 34
DATEDIFF function, effect of, 34
DATEPART function, effect of, 33
date/time functions and datatypes, 7–8, 33–34
DBMS (database management systems), 3
DCL (Data Control Language), 2, 181
DDL (Data Definition Language), 2, 181–182
declarative language, explained, 2
delete anomalies, eliminating, 191
deleting

data, 175–176
rows, 171, 175–176
stored procedures, 167–168
views, 141–142

denominator value, testing, 77
DENSE_RANK function, 93, 95
dependencies, eliminating, 192
descending order, sorting in, 43
displaying data. See also data

crosstab layouts, 199–200
Excel and external data, 200–203
Excel pivot tables, 203–207

DISTINCT keyword, 85
division operator, 22
DML (Data Manipulation Language), 2, 181
does not equal operator, using with WHERE

clause, 50
double dash comments, using, 13
double quote, using with column names, 16, 140
drillthrough in pivot tables, explained, 207
DROP FUNCTION keyword, 168
DROP INDEX statement, 187
DROP PROCEDURE statement, 168
DROP VIEW statement, 142
duplicates, eliminating, 81–82, 190

E
ELSE keyword, using with CASE expression, 74–75
END keyword

and stored procedures, 164
using with CASE expression, 74–75

English sentences, comparing SQL syntax to, 1–2
entity-relationship diagram, explained, 117
equals sign, using with WHERE clause, 50

Excel
drillthrough in pivot tables, 207
DSN (Data Source Name) files, 202
exporting data to, 201
and external data, 200–203
From Data Connection Wizard, 201
Import Data options, 201
Microsoft Query window, 202–203
pivot tables, 203–207

EXCEPT operator, format of, 160–161
EXEC keyword and stored procedures, 167
EXISTS operator

and subqueries, 150–151
and updating data, 178

exponentiation operator, 22
exporting data to Excel, 201
expressions

selecting data from, 30
using italics with, 13

F
false condition, evaluating, 61
fields, concatenating, 22
first normal form, 191
FirstName, sorting by, 42–43
foreign keys

designating columns as, 184–185
and joining tables, 117
and primary keys, 6

Formats table, normalizing, 193–194
FROM clause

explained, 17
and ORDER BY clause, 41–42
specifying inner joins with, 119–120
and subqueries, 144
and table aliases, 120

full joins, 129–131. See also joining
functions

arguments for, 29
creating, 168–169
explained, 27–28
versus procedures, 169
saving, 168
scalar and aggregate, 28

G
GETDATE function, effect of, 33
Grades table

normalizing, 193–195
star schema, 196–197

220 greater than operators

greater than operators
using AND expression with, 68
using with WHERE clause, 50–51

GROUP BY clause
and calculated columns, 151
and CASE statement, 91
conditional logic in, 91
and crosstab layouts, 112
explained, 17
versus ORDER BY, 88
versus partitions, 98
ROLLUP keyword in, 102–103
and subqueries, 149
using, 86–87

grouping data, 86–90
GROUPING function

and CUBE keyword, 109
effect of, 104, 108

H
HAVING clause

conditional logic in, 92
explained, 17
and subqueries, 149
using, 89–90
versus WHERE clause, 90

header row and literal values, 20

I
IFNULL function, 38
importing data into Excel, 201–202
IN operator, 69–70, 147, 150
indexes

adding and modifying, 187
creating, 187
and primary keys, 183–184

inner joins. See also joining
and ON, 120
alternate specification, 119–120
effect of, 118–119
versus LEFT JOIN, 126
and subqueries, 150–151
and table aliases, 120
table order, 119

insert anomalies, eliminating, 191
inserting data, 172–175
installing

MySQL on Macs, 212–213
MySQL on Windows, 211–212
Oracle Database Express Edition, 215–216
SQL Server 2016 Express, 209

SQL Server 2016 Management Studio
Express, 210

INTERSECT operator, 159–161
IS NOT NULL keyword, 71
IS NULL keyword, 71–72
ISNULL function, effect of, 37–38, 46, 71–72,

86, 105
italics, using with expressions, 13

J
JOIN keyword, effect of, 17, 116, 123
joining. See also cross joins; full joins; inner joins;

left joins; outer joins; right joins; self joins
character data, 22
tables, 116–117

K
keys. See foreign keys; primary keys
keywords

explained, 11
lack of case sensitivity, 15
treatment of, 15

L
languages

versus logic, 1
procedural versus declarative, 2

LastName, sorting by, 42–43
LEFT function

arguments, 29
effect of, 28
format of, 29
formula for, 29

left joins. See also joining
and calculated columns, 151
effect of, 125–127
versus INNER JOIN keyword, 126
versus RIGHT JOIN, 128
and subqueries, 146
switching with right joins, 129
testing for NULL values, 127

less than operators
using AND expression with, 68
using with WHERE clause, 50

LIKE operator
and percent wildcard, 56
using in WHERE clause, 54

LIMIT keyword, 52
literal space, indicating, 22

221Oracle databases

literal values
and calculated fields, 20–21
header row, 20

logical conditions
explained, 61
NOT operator, 66–67
and NULL values, 70–72
AND operator, 62
OR operator, 62–63
BETWEEN operator, 68–69
IN operator, 69–70
parentheses, 63–65

LOWER function, effect of, 31
LTRIM function, effect of, 28, 31

M
Macs, installing MySQL on, 212–213
math calculations, 21–22. See also

calculated fields
MAX function, 84
Microsoft Access, 4
Microsoft Query window, 202–203
Microsoft SQL Server

concatenating fields, 22
datatypes, 7–8
downloading free versions, 4
versions and editions, 3

MIN function, 84
MINUS operator, 161
Movies table

and FULL JOINs, 130–131
pattern matching example, 54–56

multiplication operator, 22
MySQL open-source database

; used with statements, 13
` and column names, 16
ALTER PROCEDURE command, 168
CALL keyword, 167
comments, 14
CONCAT function, 23
CREATE statements, 182
CREATE TABLE statement, 186
datatypes, 7–8
DATE_FORMAT function, 34
DATEDIFF function, 34
downloading free versions, 4
IFNULL function, 38
installing, 211–213
LIMIT keyword, 52
literal values, 20
NOW function, 33
parameters in stored procedures, 166
platforms and editions, 3

ROLLUP keyword, 106
spaces and functions, 31
stored procedures, 164–165

MySQL Workbench, using, 213

N
No Action foreign key, 185
normalization

alternatives, 196–197
of data, 191–195
goals of, 190–191
grades example, 195

NOT NULL keyword, 183
NOT operator, 66–67
NOW function, 33
NTILE ranking function, 93, 96
NULL values

allowing, 183
and Boolean logic, 70–72
converting, 37–38
and crosstab layouts, 113
and CUBE keyword, 108
explained, 8
in Grade column, 85
for Homework GradeType, 86
in Homework row, 87
and ROLLUP keyword, 103–104
sort sequence, 45–47
testing in LEFT JOIN, 127

NULL word, suppressing printing of, 105
numeric datatypes, 7
numeric functions, 35–36
numeric values, sort sequence of, 47
NVL function, 38

O
ON clause, in self joins, 137
ON keyword and INNER JOIN, 120
OR expression and operator, 62–64, 68
Oracle databases

; used with statements, 13
" and column names, 16
case sensitivity, 55
column aliases, 24
columns as sequences, 183
concatenation, 23
CREATE commands, 182
CURRENT_DATE function, 33
datatypes, 7–8
date display format, 126
downloading free versions, 4
DROP INDEX statement, 187

222 Oracle databases

Oracle databases (continued)
DROP VIEW, 142
editions, 3
exponentiation operator, 22
literal values, 20
MINUS operator, 161
NVL function, 38
PIVOT keyword, 114
ROWNUM keyword, 52
stored procedures, 164
SUBSTR function, 31
table aliases, 25, 121

Oracle Database Express Edition, installing and
using, 215–216

ORDER BY clause
conditional logic in, 78
and crosstab layouts, 112–113
and CUBE keyword, 109
effect of, 41, 43–44, 47
explained, 17
versus GROUP BY, 88
and ROLLUP keyword, 103–104
switching, 88
and TOP keyword, 53–54
and UNION operator, 157
and views, 139

Orders table
columns in, 5
INTERSECT operator, 160
joining, 116–117
in outer join examples, 124
UNION operator, 156
values, 125

outer joins, table order in, 129. See also joining
Outline Form pivot tables, 206–207
OVER keyword, using with ranking functions, 94–95

P
parameters in stored procedures, 165–166
parent table, explained, 184
parentheses used in Boolean logic, 63–65
partitions, 97–99
pattern matching, 54–56
PE Ratio column, 94–95
percent wildcard, effect of, 55–56
Personnel table and self joins, 136
PI function, effect of, 35
PIVOT operator, using with crosstab layouts,

111–112, 114, 200
pivot tables, using in Excel, 203–207
POWER function, effect of, 35–36

primary keys
contents, 8
and foreign keys, 6
and indexes, 183–184
and normalization, 190
specifying, 12

procedural language, explained, 2
procedures versus functions, 169
Products table, NULL and Boolean logic, 70–71
Purchases table

AND operator example, 62
OR operator example, 63

Q
Quartile column, 96
queries. See also subqueries

combining, 155
intersecting, 159–161

quotation mark ('), using with literal values, 20–21

R
RANK function, 93, 95
ranking functions, 93–99
records. See rows
Refunds table

in outer join examples, 124
values, 125

relating tables, 6
relational databases

availability, 4
features, 4–5
obtaining data from, 201

Returns table
INTERSECT operator, 160
UNION operator, 156

RIGHT function, 32
effect of, 29, 32
problem with spaces, 30

right joins, 128–129. See also joining
ROLLUP keyword, 102–108
ROUND function, effect of, 35
ROW_NUMBER ranking function, 93–94, 98
ROWNUM keyword, 52
rows. See also columns; tables

counting, 84–85
deleting, 175–176
deleting from tables, 171
explained, 5
identifying by primary keys, 6
inserting, 172
limiting with selection criteria, 51–52
limiting with sort, 53–54

223stored procedures

selecting using parentheses, 65
using NOT operator with, 66

RTRIM function, 30–32

S
Sales table

calculated fields, 19
joining, 116–117

Salespeople table, sorting examples in, 42
saving stored procedures and functions, 168
scalar function, explained, 28
second normal form, 191
security restrictions, enforcing with views, 141
SELECT clause, explained, 16
SELECT mainquery, order of fields in, 113
SELECT queries and set logic, 155
SELECT statements

and ALTER VIEW, 141–142
with ASC keyword, 43
and Boolean logic, 63
and CASE expression, 75
format of, 73–74
and INNER JOIN, 118
introducing, 11
for joining tables, 117
with LEFT function, 28
and LEFT JOIN, 126
with LOWER function, 31
with ORDER BY clause, 41
parameters in stored procedures, 165–166
and parentheses, 65
with RIGHT function, 30, 32
with RTRIM function, 32
and self joins, 137
separating with UNION operator, 157
specifying clauses in, 17
specifying columns, 14–15
and stored procedures, 165
and subqueries, 144, 146
with SUBSTRING function, 30
FROM TableForSort, 46
with UPPER function, 31
using with Customers table, 12
as views, 139
views as, 137
with WHERE clause, 49

selection criteria
on aggregate functions, 89–90
applying, 49–50
limiting rows, 51–52
limiting rows with sort, 53–54
pattern matching, 54–56

subqueries in, 147–148
TOP keyword, 52

selection logic, indicating, 17
self joins, effect of, 135–137. See also

joining; views
semicolon (;), using with statements, 13
SET A and B, selecting data in, 156
SET keyword, using to update data, 176–178
set logic

distinct unions, 158–159
explained, 155
intersecting queries, 159–161
non-distinct unions, 158–159
UNION operator, 156–158

Set Null foreign key, 185
Shakespeare example, 53–54
soft delete technique, 171
sorting. See also data

in ascending order, 41–43
by calculated field, 44–45
by columns, 43–44
columns, 87–88
in descending order, 43
sequences, 45–47

spaces
including in columns, 15–16
problem in RIGHT function, 30

SQL (Structured Query Language)
components, 2
explained, 2
pronunciation, 2
significance, 8–9
versus Visual Basic and C++, 2

SQL database, explained, 3
SQL Server

concatenating fields, 22
datatypes, 7–8
downloading free versions, 4
versions and editions, 3

SQL Server 2016
Express installation, 209
Management Studio Express installation, 210

SQL statements, 13–14
SQL syntax

relating to English sentences, 1–3
for writing statements, 12–13

square brackets, using with wildcards, 56, 58
square root, determining, 36
star schema, 196–197
statements, 13–14
stored procedures

creating, 164–165, 167
deleting, 167–168

224 stored procedures

stored procedures (continued)
executing, 167, 169
explained, 163–164
parameters, 169
parameters in, 165–166
saving, 168

string datatypes, 7
string functions. See character functions
Students table, normalizing, 193
subqueries. See also queries

analyzing, 146
as calculated columns, 151–152
correlated and uncorrelated, 148–151
as data sources, 144–147
EXISTS operator, 150–151
explained, 70, 143
in selection criteria, 147–148
specifying, 144
types of, 143–144

SUBSTR function, 31
SUBSTRING function, effect of, 30
subtotals

adding with CUBE keyword, 106–109
adding with ROLLUP, 102–106

subtraction operator, 22
SUM function

and CUBE keyword, 109
effect of, 28, 84

summarizing data, 17
summing values in pivot tables, 206
syntax

relating to English sentences, 1–3
for writing statements, 12–13

T
table aliases, 24–25
table expressions, 152–153
table names, lack of case sensitivity, 15
tables. See also columns; rows

attributes, 182
creating, 185–187
DDL (Data Definition Language), 181–182
displaying, 5
joining, 116–117, 125–127
order in INNER JOINs, 119
relating, 6

Tabular Form pivot tables, 206
Teachers table, normalizing, 193–194
Tests table, normalizing, 193–194
THEN keyword, using with CASE expression, 74
third normal form, 191
time. See date/time functions and datatypes
TOP keyword, effect of, 52–54

Transactions table, subqueries, 145, 147–149
true condition, evaluating, 61
TRUNCATE TABLE statement, 176

U
uncorrelated subqueries, 148–149
underscore wildcard, effect of, 56–57
UNION and UNION ALL, 156–159
uniqueness, ensuring with primary keys, 6
update anomalies, eliminating, 191
updating data, 176–179
UPPER function, effect of, 31
Users table, subqueries, 144–145, 147–149

V
values, summation in pivot tables, 206
VALUES keyword, 173–174
VARCHAR, effect of, 46
Vendors table, updating, 178
views. See also self joins

benefits, 140–141
creating, 137–139
modifying and deleting, 141–142
referencing, 139–140
as SELECT statements, 137, 139
storing, 138

Visual Basic, comparing to SQL, 2

W
WHEN keyword, using with CASE expression, 74–75
WHERE clause

AND operator, 62
applying selection criteria, 49–50
conditional logic in, 79
and correlated subqueries, 179
effect of, 17, 50
example, 58
versus HAVING clause, 90
interpreting in Boolean logic, 64
LEFT JOIN with NULL values, 127
LIKE operator, 54
operators, 50–51
parameters in stored procedures, 166
placement of, 49
sample output, 50
specifying inner joins with, 119–120
subqueries, 146
TOP keyword, 54

wildcards, arranging, 56–58
Windows, installing MySQL on, 211–212
WITH keyword, effect of, 152–153

	Cover
	Title Page
	Copyright Page
	Table of Contents
	Introduction
	4 Using Functions
	What Is a Function?
	Character Functions
	Composite Functions
	Date/Time Functions
	Numeric Functions
	Conversion Functions
	Looking Ahead

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

