
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134578897
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134578897
https://plusone.google.com/share?url=http://www.informit.com/title/9780134578897
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134578897
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134578897/Free-Sample-Chapter

Praise for Effective SQL

“Given the reputation of the authors, I expected to be impressed. Impressed
doesn’t cover it, though. I was blown away! Most SQL books tell you ‘how.’ This
one tells you ‘why.’ Most SQL books separate database design from implementa-
tion. This one integrates design considerations into every facet of SQL use. Most
SQL books sit on my shelf. This one will live on my desk.”

—Roger Carlson, Microsoft Access MVP (2006–2015)

“It can be easy to learn the basics of SQL, but it is very difficult to build accurate
and efficient SQL, especially for critical systems with complex requirements. But
now, with this great new book, you can get up to speed and write effective SQL
much more quickly, no matter which DBMS you use.”

— Craig S. Mullins, Mullins Consulting, Inc., DB2 Gold Consultant and IBM Cham-
pion for Analytics

“This is a great book. It is written in language that can be understood by a rela-
tive beginner and yet contains tips and tricks that will benefit the most hardened
workhorse. It will therefore appeal to readers across the whole range of expertise
and should be in the library of anybody who is seriously concerned with design-
ing, managing, or programming databases.”

—Graham Mandeno, database consultant and Microsoft MVP (1996–2015)

“This book is an excellent resource for database designers and developers working
with relational and SQL-based databases—it’s an easy read with great examples
that combine theory with practical examples seamlessly. Examples for top rela-
tional databases Oracle, DB2, SQL Server, MySQL, and PostgreSQL are included
throughout. The book walks the reader through sophisticated techniques to deal
with things such as hierarchical data and tally tables, along with explanations of
the inner workings and performance implications of SQL using GROUP BY, EXISTS,
IN, correlated and non-correlated subqueries, window functions, and joins. The
tips you won’t find anywhere else, and the fun examples help to make this book
stand out from the crowd.”

—Tim Quinlan, database architect and Oracle Certified DBA

“This book is good for those who need to support multiple dialects of SQL. It’s
divided up into stand-alone items that you just grab and go. I have been doing
SQL in various flavors since 1992 and even I picked up a few things.”

—Tom Moreau, Ph.D., SQL Server MVP (2001–2012)

“This book is a powerful, compact, and easily understandable presentation of
how to use SQL—it shows the application of SQL to real-world questions in order
to teach the construction of queries, and it explains the relationship of ‘how data
is stored’ to ‘how data is queried’ so that you obtain results successfully and
effectively.”

—Kenneth D. Snell, Ph.D., database consultant and former Microsoft Access MVP

“It has been problematic for many that there is no book on going from a nov-
ice database administrator to a much more advanced status until now. Effective
SQL is a road map, a guide, a Rosetta Stone, and a coach on moving from basic
Structured Query Language (SQL) to much more advanced uses to solve real-
world problems. Rather than stumble around reinventing the wheel or catching
glimpses of the proper ways to use a database, do yourself a favor and buy a copy
of this book. Not only will you see many different approaches it would take years
to see as a database consultant, but you will get a detailed understanding of why
the databases of many vendors do what they do. Save time, effort, and wear and
tear on your walls from banging your head against them and get this book.”

—Dave Stokes, MySQL Community Manager, Oracle Corporation

“Effective SQL is a ‘must have’ for any serious database developer. It shows how
powerful SQL can be in solving real-world problems in a step-by-step manner.
The authors use easy-to-understand language in pointing out every advantage
and disadvantage of each solution presented in the book. As we all know, there
are multiple ways of accomplishing the same thing in SQL, but the authors
explain why a particular query is more efficient than others. The part I liked best
about the book is the summary at the end of each section, which reemphasizes
the take-away points and reminds the reader which pitfalls to avoid. I highly rec-
ommend this book to all my fellow database developers.”

—Leo (theDBguy™), UtterAccess Moderator and Microsoft Access MVP

“I think this is the book that is relevant not only for developers, but also for
DBAs, as it talks about writing efficient SQL and various ways of achieving a
desired result. In my opinion, this is a must-have book. Another reason to have
this book is that it covers most of the commonly used RDBMSs, and so if some-
one is looking to transition from one RDBMS to another, this is the book to pick
up. The authors have done a fantastic job. My heartiest congratulations to them.”

— Vivek Sharma, technologist, Hybrid Cloud Solutions, Core Technology and Cloud,
Oracle Asia Pacific

Effective SQL

Effective SQL

61 Specific Ways to Write Better SQL

John L. Viescas

Douglas J. Steele

Ben G. Clothier

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear in
this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book,
but make no expressed or implied warranty of any kind and assume no
responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at corp-
sales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016955468

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication
is protected by copyright, and permission must be obtained from the publisher
prior to any prohibited reproduction, storage in a retrieval system, or trans-
mission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. For information regarding permissions, request forms
and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearsoned.com/permissions/.

Some of the examples used in this book originally appeared in SQL Queries
for Mere Mortals®: A Hands-On Guide to Data Manipulation in SQL, Third Edition
(Addison-Wesley, 2014). These examples appear with permission from the
authors and Pearson Education Inc.

ISBN-13: 978-0-13-457889-7
ISBN-10: 0-13-457889-9

1 16

Editor-in-Chief

Greg Wiegand

Senior Acquisitions Editor

Trina MacDonald

Development Editor

Songlin Qiu

Technical Reviewers

Richard Anthony Broersma Jr.
Craig S. Mullins
Vivek Sharma
Dave Stokes
Morgan Tocker

Managing Editor

Sandra Schroeder

Full-Service Production

Manager

Julie B. Nahil

Project Editor

Anna Popick

Copy Editor

Barbara Wood

Indexer

Richard Evans

Proofreader

Anna Popick

Editorial Assistant

Olivia Basegio

Cover Designer

Chuti Prasertsith

Compositor

The CIP Group

http://www.pearsoned.com/permissions/

For Suzanne, forever and always . . .

—John Viescas

To my gorgeous and intelligent wife, Louise.
Thanks once again for putting up with me while

I wrote this (and all the other times, too!).

—Doug Steele

Couldn’t have done it without support from you both,
Suzanne and Harold!

—Ben Clothier

This page intentionally left blank

Contents

Foreword xiii

Acknowledgments xv

About the Authors xvii

About the Technical Editors xix

Introduction 1
A Brief History of SQL 1

Database Systems We Considered 5

Sample Databases 6

Where to Find the Samples on GitHub 7

Summary of the Chapters 8

Chapter 1: Data Model Design 11
Item 1: Verify That All Tables Have a Primary Key 11

Item 2: Eliminate Redundant Storage of Data Items 15

Item 3: Get Rid of Repeating Groups 19

Item 4: Store Only One Property per Column 21

Item 5: Understand Why Storing Calculated Data Is
Usually a Bad Idea 25

Item 6: Define Foreign Keys to Protect Referential Integrity 30

Item 7: Be Sure Your Table Relationships Make Sense 33

Item 8: When 3NF Is Not Enough, Normalize More 37

Item 9: Use Denormalization for Information Warehouses 43

x Contents

Chapter 2: Programmability and Index Design 47
Item 10: Factor in Nulls When Creating Indexes 47

Item 11: Carefully Consider Creation of Indexes to Minimize
Index and Data Scanning 52

Item 12: Use Indexes for More than Just Filtering 56

Item 13: Don’t Go Overboard with Triggers 61

Item 14: Consider Using a Filtered Index to Include or
Exclude a Subset of Data 65

Item 15: Use Declarative Constraints Instead of
Programming Checks 68

Item 16: Know Which SQL Dialect Your Product Uses and
Write Accordingly 70

Item 17: Know When to Use Calculated Results in Indexes 74

Chapter 3: When You Can’t Change the Design 79
Item 18: Use Views to Simplify What Cannot Be Changed 79

Item 19: Use ETL to Turn Nonrelational Data into Information 85

Item 20: Create Summary Tables and Maintain Them 90

Item 21: Use UNION Statements to “Unpivot”
Non-normalized Data 94

Chapter 4: Filtering and Finding Data 101
Item 22: Understand Relational Algebra and How It Is

Implemented in SQL 101

Item 23: Find Non-matches or Missing Records 108

Item 24: Know When to Use CASE to Solve a Problem 110

Item 25: Know Techniques to Solve Multiple-Criteria
Problems 115

Item 26: Divide Your Data If You Need a Perfect Match 120

Item 27: Know How to Correctly Filter a Range of Dates on
a Column Containing Both Date and Time 124

Item 28: Write Sargable Queries to Ensure That the Engine
Will Use Indexes 127

Item 29: Correctly Filter the “Right” Side of a “Left” Join 132

Chapter 5: Aggregation 135
Item 30: Understand How GROUP BY Works 135

Item 31: Keep the GROUP BY Clause Small 142

 Contents xi

Item 32: Leverage GROUP BY/HAVING to Solve Complex
Problems 145

Item 33: Find Maximum or Minimum Values Without
Using GROUP BY 150

Item 34: Avoid Getting an Erroneous COUNT() When
Using OUTER JOIN 156

Item 35: Include Zero-Value Rows When Testing for
HAVING COUNT(x) < Some Number 159

Item 36: Use DISTINCT to Get Distinct Counts 163

Item 37: Know How to Use Window Functions 166

Item 38: Create Row Numbers and Rank a Row over
Other Rows 169

Item 39: Create a Moving Aggregate 172

Chapter 6: Subqueries 179
Item 40: Know Where You Can Use Subqueries 179

Item 41: Know the Difference between Correlated and
Non-correlated Subqueries 184

Item 42: If Possible, Use Common Table Expressions
Instead of Subqueries 190

Item 43: Create More Efficient Queries Using Joins
Rather than Subqueries 197

Chapter 7: Getting and Analyzing Metadata 201
Item 44: Learn to Use Your System’s Query Analyzer 201

Item 45: Learn to Get Metadata about Your Database 212

Item 46: Understand How the Execution Plan Works 217

Chapter 8: Cartesian Products 227
Item 47: Produce Combinations of Rows between Two

Tables and Flag Rows in the Second That
Indirectly Relate to the First 227

Item 48: Understand How to Rank Rows by Equal
Quantiles 231

Item 49: Know How to Pair Rows in a Table with All
Other Rows 235

Item 50: Understand How to List Categories and the
Count of First, Second, or Third Preferences 240

xii Contents

Chapter 9: Tally Tables 247
Item 51: Use a Tally Table to Generate Null Rows Based

on a Parameter 247

Item 52: Use a Tally Table and Window Functions for
Sequencing 252

Item 53: Generate Multiple Rows Based on Range
Values in a Tally Table 257

Item 54: Convert a Value in One Table Based on a
Range of Values in a Tally Table 261

Item 55: Use a Date Table to Simplify Date Calculation 268

Item 56: Create an Appointment Calendar Table with
All Dates Enumerated in a Range 275

Item 57: Pivot Data Using a Tally Table 278

Chapter 10: Modeling Hierarchical Data 285
Item 58: Use an Adjacency List Model as the Starting

Point 286

Item 59: Use Nested Sets for Fast Querying Performance
with Infrequent Updates 288

Item 60: Use a Materialized Path for Simple Setup and
Limited Searching 291

Item 61: Use Ancestry Traversal Closure for Complex
Searching 294

Appendix: Date and Time Types, Operations,
and Functions 299

IBM DB2 299

Microsoft Access 303

Microsoft SQL Server 305

MySQL 308

Oracle 313

PostgreSQL 315

Index 317

Foreword

In the 30 years since the database language SQL was initially adopted
as an international standard, the SQL language has been imple-
mented in a multitude of database products. Today, SQL is every-
where. It is in high-performance transaction-processing systems, in
smartphone applications, and behind Web interfaces. There is even a
whole category of databases called NoSQL whose common feature is
(or was) that they don’t use SQL. As the NoSQL databases have added
SQL interfaces, “No” is now interpreted as “Not Only” SQL.

Because of SQL’s prevalence, you are likely to encounter SQL in mul-
tiple products and environments. One of the (perhaps valid) criticisms
of SQL is that while it is similar across products, there are subtle dif-
ferences. These differences result from different interpretations of the
standard, different development styles, or different underlying archi-
tectures. To understand these differences, it is helpful to have exam-
ples that compare and contrast the subtle differences in SQL dialects.
Effective SQL provides a Rosetta Stone for SQL queries, showing
how queries can be written in different dialects and explaining the
differences.

I often claim that the best way to learn something is by making mis-
takes. The corollary to this claim is that the people who know the
most have made the most mistakes and have learned from others’
mistakes. This book includes examples of incomplete and incorrect
SQL queries with explanations of why they are incomplete and incor-
rect. This allows you to learn from mistakes others have made.

SQL is a powerful and complex database language. As a database
consultant and a participant in both the U.S. and international SQL
Standards committees, I’ve seen a lot of queries that did not take
advantage of SQL’s capabilities. Application developers who fully
learn SQL’s power and complexities can take full advantage of SQL’s

xiv Foreword

capabilities not only to build applications that perform well, but also
to build those applications efficiently. The 61 specific examples in
Effective SQL assist in this learning.

—Keith W. Hare
Senior Consultant, JCC Consulting, Inc.;

Vice Chair, INCITS DM32.2—the U.S. SQL Standards Committee;
Convenor, ISO/IEC JTC1 SC32 WG3—the International SQL

 Standards Committee

Acknowledgments

A famous politician once said that “it takes a village” to raise a child.
If you’ve ever written a book—technical or otherwise—you know it
takes a great team to turn your “child” into a successful book.

First, many thanks to our acquisitions editor and project manager,
Trina MacDonald, who not only badgered John to follow up his suc-
cessful SQL Queries for Mere Mortals® book with one for the Effec-
tive Software Development Series, but also shepherded the project
through its many phases. John assembled a truly international team
to help put the book together, and he personally thanks them for their
diligent work. Special thanks to Tom Wickerath for his assistance
both early in the project and later during technical review.

Trina handed us off to Songlin Qiu, our development editor, who ably
helped us understand the ins and outs of writing an Effective Series
book. Many thanks, Songlin, for your guidance.

Next, Trina rounded up a great set of technical editors who arduously
went through and debugged our hundreds of examples and gave
us great feedback. Thanks go to Morgan Tocker and Dave Stokes,
MySQL; Richard Broersma Jr., PostgreSQL; Craig Mullins, IBM DB2;
and Vivek Sharma, Oracle.

Along the way, series editor and author of the bestselling title Effec-
tive C++, Third Edition, Scott Meyers, stepped in and gave us invalu-
able advice about how to turn our items into truly effective advice. We
hope we’ve made the father of the series proud.

Then the production team of Julie Nahil, Anna Popick, and Barbara
Wood helped us whip the book into final shape for publication. We
couldn’t have done it without you!

xvi Acknowledgments

And finally, many thanks to our families who put up with many
long nights while we worked on the manuscript and examples. Their
enduring patience is greatly appreciated!

— John Viescas
Paris, France

— Doug Steele
St. Catharines, Ontario, Canada

— Ben Clothier
Converse, Texas, United States

About the Authors

John L. Viescas is an independent database consul-
tant with more than 45 years of experience. He began
his career as a systems analyst, designing large
database applications for IBM mainframe systems.
He spent six years at Applied Data Research in Dallas,
Texas, where he directed a staff of more than 30 peo-
ple and was responsible for research, product devel-

opment, and customer support of database products for IBM mainframe
computers. While working at Applied Data Research, John completed
a degree in business finance at the University of Texas at Dallas,
graduating cum laude.

John joined Tandem Computers, Inc., in 1988, where he was respon-
sible for the development and implementation of database marketing
programs in Tandem’s U.S. Western Sales region. He developed and
delivered technical seminars on Tandem’s relational database man-
agement system, NonStop SQL. John wrote his first book, A Quick
Reference Guide to SQL (Microsoft Press, 1989), as a research proj-
ect to document the similarities in the syntax among the ANSI-86
SQL Standard, IBM’s DB2, Microsoft’s SQL Server, Oracle Corpora-
tion’s Oracle, and Tandem’s NonStop SQL. He wrote the first edition of
Running Microsoft® Access (Microsoft Press, 1992) while on sabbatical
from Tandem. He has since written four editions of Running, three
editions of Microsoft® Office Access Inside Out (Microsoft Press, 2003,
2007, and 2010)—the successor to the Running series, and Building
Microsoft® Access Applications (Microsoft Press, 2005). He is also the
best-selling author of SQL Queries for Mere Mortals®, Third Edition
(Addison-Wesley, 2014). John currently holds the record for the most
consecutive years being awarded MVP (Most Valuable Professional)
for Microsoft Access from Microsoft, having received the award from
1993 to 2015. John makes his home with his wife of more than 30
years in Paris, France.

xviii About the Authors

Douglas J. Steele has been working with computers,
both mainframe and PC, for more than 45 years. (Yes,
he did use punch cards in the beginning!) He worked
for a large international oil company for more than 31
years before retiring in 2012. Databases and data
modeling were a focus for most of that time, although
he finished his career by developing the SCCM task

sequence to roll Windows 7 out to over 100,000 computers worldwide.

Recognized by Microsoft as an MVP for more than 17 years, Doug
has authored numerous articles on Access, was coauthor of Microsoft®
Access® Solutions: Tips, Tricks, and Secrets from Microsoft Access MVPs
(Wiley, 2010), and has been technical editor for a number of books.

Doug holds a master’s degree in Systems Design Engineering from the
University of Waterloo (Ontario, Canada), where his research centered
on designing user interfaces for nontraditional computer users. (Of
course, this was in the late seventies, so few people were traditional com-
puter users at the time!) This research stemmed from his background in
music (he holds an associateship in piano performance from the Royal
Conservatory of Music, Toronto). He is also obsessed with beer and is a
graduate of the Brewmaster and Brewery Operations Management pro-
gram at Niagara College (Niagara-on-the-Lake, Ontario).

Doug lives with his lovely wife of more than 34 years in St. Catharines,
Ontario. Doug can be reached at AccessMVPHelp@gmail.com.

Ben G. Clothier is a solution architect with IT Impact,
Inc., a premier Access and SQL Server development shop
based in Chicago, Illinois. He has worked as a freelance
consultant with notable companies including J Street
Technology and Advisicon and has worked on Access
projects from small, one-person solutions to compa-
ny-wide line-of-business applications. Notable projects

include job tracking and inventory for a cement company, a Medicare insur-
ance plan generator for an insurance provider, and order management for
an international shipping company. Ben is an administrator at UtterAccess
and was a coauthor, with Teresa Hennig, George Hepworth, and Doug
Yudovich, of Professional Access® 2013 Programming (Wiley, 2013); a coau-
thor, with Tim Runcie and George Hepworth, of Microsoft® Access in a Share-
Point World (Advisicon, 2011); and a contributing author of Microsoft® Access®
2010 Programmer’s Reference (Wiley, 2010). He holds certifications for Micro-
soft SQL Server 2012 Solution Associate and MySQL 5.0 Certified Devel-
oper among others. He has been a Microsoft MVP since 2009.

Ben lives in San Antonio, Texas, with his wife, Suzanne, and his son, Harry.

About the
Technical Editors

Richard Anthony Broersma Jr. is a systems engineer at Mangan,
Inc., in Long Beach, California. He has 11 years of experience devel-
oping applications with PostgreSQL.

Craig S. Mullins is a data management strategist, researcher, and
consultant. He is president and principal consultant of Mullins Con-
sulting, Inc. Craig has been named by IBM as a Gold Consultant
and an IBM Champion for Analytics. Craig has over three decades
of experience in all facets of database systems development and has
worked with DB2 since version 1. You may know Craig from his popu-
lar books: DB2 Developer’s Guide, Sixth Edition (IBM Press, 2012) and
Database Administration: The Complete Guide to DBA Practices and
Procedures, Second Edition (Addison-Wesley, 2012).

Vivek Sharma is currently the designated “technologist” for the Oracle
Core Technology and Hybrid Cloud Solutions Division at Oracle Asia
Pacific. He has more than 15 years of experience working with Oracle
technologies and started his career at Oracle as a developer work-
ing extensively on Oracle Forms and Reports before becoming a full-
time Oracle DB performance architect. As an Oracle database expert,
Vivek spends most of his time helping customers get the best out of
their Oracle systems and database investments, and he is a mem-
ber of the prestigious Oracle Elite Engineering Exchange and Server
Technologies Partnership program. Sharma was declared “Speaker of
the Year” in 2012 and 2015 by the Oracle India User Group Commu-
nity. He writes articles on Oracle database technology on his blog,
viveklsharma.wordpress.com, and for the Oracle Technology Network
at www.oracle.com/technetwork/index.html.

Dave Stokes is a MySQL community manager for Oracle. Previ-
ously he was the MySQL certification manager for MySQL AB and
Sun. He has worked for companies ranging alphabetically from the

http://www.oracle.com/technetwork/index.html

xx About the Technical Editors

American Heart Association to Xerox and done work ranging from
anti- submarine warfare to Web developer.

Morgan Tocker is the product manager for MySQL Server at Oracle.
He has previously worked in a variety of roles including support,
training, and community. Morgan is based out of Toronto, Canada.

Introduction

Structured Query Language, or SQL, is the standard language for
communicating with most database systems. We assume that because
you are looking at this book, you have a need to get information from
a database system that uses SQL.

This book is targeted at the application developers and junior data-
base administrators (DBAs) who regularly work with SQL as part of
their jobs. We assume that you are already familiar with the basic
SQL syntax and focus on providing useful tips to get the most out of
the SQL language. We have found that the mindset required is quite
different from what works for computer programming as we move
away from a procedural-based approach to solving problems toward a
set-based approach.

A relational database management system (RDBMS) is a software
application program you use to create, maintain, modify, and manip-
ulate a relational database. Many RDBMS programs also provide
the tools you need to create end-user applications that interact with
the data stored in the database. RDBMS programs have continually
evolved since their first appearance, and they are becoming more
full-featured and powerful as advances occur in hardware technology
and operating environments.

A Brief History of SQL

Dr. Edgar F. Codd (1923–2003), an IBM research scientist, first con-
ceived the relational database model in 1969. He was looking into new
ways to handle large amounts of data in the late 1960s and began
thinking of how to apply mathematical principles to solve the myriad
problems he had been encountering.

After Dr. Codd presented the relational database model to the world
in 1970, organizations such as universities and research laboratories

2 Introduction

began efforts to develop a language that could be used as the foun-
dation of a database system that supported the relational model. Ini-
tial work led to the development of several different languages in the
early to mid-1970s. One such effort occurred at IBM’s Santa Teresa
Research Laboratory in San Jose, California.

IBM began a major research project in the early 1970s called System/R,
intending to prove the viability of the relational model and to gain
some experience in designing and implementing a relational data-
base. Their initial endeavors between 1974 and 1975 proved success-
ful, and they managed to produce a minimal prototype of a relational
database.

At the same time they were working on developing a relational data-
base, researchers were also working to define a database language. In
1974, Dr. Donald Chamberlin and his colleagues developed Structured
English Query Language (SEQUEL), which allowed users to query a
relational database using clearly defined English-style sentences. The
initial success of their prototype database, SEQUEL-XRM, encour-
aged Dr. Chamberlin and his staff to continue their research. They
revised SEQUEL into SEQUEL/2 between 1976 and 1977, but they
had to change the name SEQUEL to SQL (Structured Query Language
or SQL Query Language) for legal reasons—someone else had already
used the acronym SEQUEL. To this day, many people still pronounce
SQL as “sequel,” although the widely accepted “official” pronunciation
is “ess-cue-el.”

Although IBM’s System/R and SQL proved that relational databases
were feasible, hardware technology at the time was not sufficiently
powerful to make the product appealing to businesses.

In 1977 a group of engineers in Menlo Park, California, formed Rela-
tional Software, Inc., for the purpose of building a new relational
database product based on SQL that they called Oracle. Relational
Software shipped its product in 1979, providing the first commer-
cially available RDBMS. One of Oracle’s advantages was that it ran
on Digital’s VAX minicomputers instead of the more expensive IBM
mainframes. Relational Software has since been renamed Oracle Cor-
poration and is one of the leading vendors of RDBMS software.

At roughly the same time, Michael Stonebraker, Eugene Wong, and
several other professors at the University of California’s Berkeley com-
puter laboratories were also researching relational database technol-
ogy. They developed a prototype relational database that they named
Ingres. Ingres included a database language called Query Language
(QUEL), which was much more structured than SQL but made less
use of English-like statements. However, it became clear that SQL was

 A Brief History of SQL 3

emerging as the standard database language, so Ingres was eventually
converted to an SQL-based RDBMS. Several professors left Berkeley in
1980 to form Relational Technology, Inc., and in 1981 they announced
the first commercial version of Ingres. Relational Technology has gone
through several transformations. Formerly owned by Computer Associ-
ates International, Inc., and now part of Actian, Ingres is still one of the
leading database products in the industry today.

Meanwhile, IBM announced its own RDBMS called SQL/Data Sys-
tem (SQL/DS) in 1981 and began shipping it in 1982. In 1983, the
company introduced a new RDBMS product called Database 2 (DB2),
which could be used on IBM mainframes using IBM’s mainstream
MVS operating system. First shipped in 1985, DB2 has become IBM’s
premier RDBMS, and its technology has been incorporated into the
entire IBM product line.

With the flurry of activity surrounding the development of database
languages, the idea of standardization was tossed about within the
database community. However, no consensus or agreement as to who
should set the standard or which dialect it should be based upon was
ever reached, so each vendor continued to develop and improve its
own database product in the hope that it—and, by extension, its dia-
lect of SQL—would become the industry standard.

Customer feedback and demand drove many vendors to include cer-
tain elements in their SQL dialects, and in time an unofficial stan-
dard emerged. It was a small specification by today’s standards, as it
encompassed only those elements that were similar across the vari-
ous SQL dialects. However, this specification (such as it was) did pro-
vide database customers with a core set of criteria by which to judge
the various database programs on the market, and it also gave users
knowledge that they could leverage from one database program to
another.

In 1982, the American National Standards Institute (ANSI) responded
to the growing need for an official relational database language stan-
dard by commissioning its X3 organization’s database technical com-
mittee, X3H2, to develop a proposal for such a standard. After much
effort (which included many improvements to SQL), the committee
realized that its new standard had become incompatible with exist-
ing major SQL dialects, and the changes made to SQL did not improve
it significantly enough to warrant the incompatibilities. As a result,
they reverted to what was really just a minimal set of “least common
denominator” requirements to which database vendors could conform.

ANSI ratified this standard, “ANSI X3.135-1986 Database Language
SQL,” which became commonly known as SQL/86, in 1986. In essence,

4 Introduction

it conferred official status on the elements that were similar among
the various SQL dialects and that many database vendors had already
implemented. Although the committee was aware of its shortcomings,
at least the new standard provided a specific foundation from which
the language and its implementations could be developed further.

The International Organization for Standardization (ISO) approved its
own document (which corresponded exactly with ANSI SQL/86) as an
international standard in 1987 and published it as “ISO 9075:1987
Database Language SQL.” (Both standards are still often referred to
as just SQL/86.) The international database vendor community could
now work from the same standards as vendors in the United States.
Despite the fact that SQL gained the status of an official standard,
the language was far from being complete.

SQL/86 was soon criticized in public reviews, by the government, and
by industry pundits such as C. J. Date for problems such as redun-
dancy within the SQL syntax (there were several ways to define the
same query), lack of support for certain relational operators, and lack
of referential integrity.

Both ISO and ANSI adopted refined versions of their standards in
an attempt to address the criticisms, especially with respect to refer-
ential integrity. ISO published “ISO 9075: 1989 Database Language
SQL with Integrity Enhancement” in mid-1989, and ANSI adopted its
“X3.135-1989 Database Language SQL with Integrity Enhancement,”
also often referred to as SQL/89, late that same year.

It was generally recognized that SQL/86 and SQL/89 lacked some of
the most fundamental features needed for a successful database sys-
tem. For example, neither standard specified how to make changes
to the database structure once it was defined. It was not possible to
modify or delete any structural component, or to make changes to the
security of the database, despite the fact that all vendors provided
ways to do this in their commercial products. (For example, you could
CREATE a database object, but no ALTER or DROP syntax was defined.)

Not wanting to provide yet another “least common denominator” stan-
dard, both ANSI and ISO continued working on major revisions to
SQL that would make it a complete and robust language. The new
version (SQL/92) would include features that most major database
vendors had already widely implemented, but it also included features
that had not yet gained wide acceptance, as well as new features that
were substantially beyond those currently implemented.

ANSI and ISO published their new SQL Standards—“X3.135-1992
Database Language SQL” and “ISO/IEC 9075:1992 Database Language

 Database Systems We Considered 5

SQL,” respectively—in October 1992. The SQL/92 document is con-
siderably larger than the one for SQL/89, but it is also much broader
in scope. For example, it provides the means to modify the database
structure after it has been defined, supports additional operations for
manipulating character strings as well as dates and times, and defines
additional security features. SQL/92 was a major step forward from
any of its predecessors.

While database vendors worked on implementing the features in
SQL/92, they also developed and implemented features of their own,
making additions to the SQL Standard known as “extensions.” While
the extensions (such as providing more data types than the six spec-
ified in SQL/92) provided more functionality within a given product
and allowed vendors to differentiate themselves from one another,
there were drawbacks. The main problem with adding extensions is
that it causes each vendor’s dialect of SQL to diverge further from the
original standard, which prevents database developers from creating
portable applications that can be run from any SQL database.

In 1997, ANSI’s X3 organization was renamed the National Commit-
tee for Information Technology Standards (NCITS), and the tech-
nical committee in charge of the SQL Standard is now called ANSI
NCITS-H2. Because of the rapidly growing complexity of the SQL
Standard, the ANSI and ISO standards committees agreed to break
the standard into 12 separate numbered parts and one addendum as
they began to work on SQL3 (so named because it is the third major
revision of the standard) so that work on each part could proceed in
parallel. Since 1997, two additional parts have been defined.

Everything you read in this book is based on the current ISO Stan-
dard for the SQL database language—SQL/Foundation (document
ISO/IEC 9075-2:2011)—as currently implemented in most of the pop-
ular commercial database systems. ANSI also adopted the ISO doc-
ument, so this is truly an international standard. We also used the
documentation from the latest versions of IBM DB2, Microsoft Access,
Microsoft SQL Server, MySQL, Oracle, and PostgreSQL to provide,
where necessary, syntax specific to each product. Although most of
the SQL you will learn here is not specific to any particular software
product, we do show you product-specific examples where appropriate.

Database Systems We Considered

Although you saw in the previous section that there are standards
for SQL, that is not to say that all DBMSs are the same. The Web
site DB-Engines collects and presents information on DBMSs and

6 Introduction

provides a monthly listing of them, ranked by their current popular-
ity, at http://db-engines.com/en/ranking/relational+dbms.

For many months now, their rankings have presented six DBMSs as
consistently the most popular, listed in alphabetical order here (the
versions that we used for our testing are in parentheses):

1. IBM DB2 (DB2 for Linux, UNIX, and Windows v10.5.700.368)

2. Microsoft Access (Microsoft Access 2007—also compatible with
versions 2010, 2013, 2016, and later)

3. Microsoft SQL Server (Microsoft SQL Server 2012—11.0.5343.0)

4. MySQL (MySQL Community Server 5.7.11)

5. Oracle Database (Oracle Database 11g Express Edition Release
11.2.0.2.0)

6. PostgreSQL (PostgreSQL 9.5.2)

That does not mean that the material presented in this book will not
work on a DBMS not in that list of six. It simply means that we have
not tested the material on other DBMSs or for different versions of
the DBMSs listed. As you read this book, you will see that we have
included advice (as Notes) when it is necessary to make changes.
Those Notes apply only to the six DBMSs listed here. If you are using
a different DBMS, check your documentation for compliance if you
run into issues with any of our samples.

Sample Databases

To illustrate the concepts presented in this book, we use a number of
sample databases, including the following:

1. Beer Styles: This is a fun attempt to catalog the details of 89
different styles of beer, based on the information presented by
Michael Larson in his book Beer: What to Drink Next (Sterling Epi-
cure, 2014).

2. Entertainment Agency: This database is designed to manage
entertainers, agents, customers, and bookings. You would use a
similar design to handle event bookings or hotel reservations.

3. Recipes: You can use this database to save and manage all your
favorite recipes, as well as some of our favorites.

4. Sales Orders: This is a typical order-entry database for a store
that sells bicycles, skateboards, and accessories.

5. Student Grades: This database lists students, the courses in
which they are enrolled, and their performance in those courses.

http://db-engines.com/en/ranking/relational+dbms

 Where to Find the Samples on GitHub 7

We also provide a number of sample databases specific to a particular
item, some of which are built by a code listing within the item. The
schemas and sample data are available in the GitHub site associated
with the book.

Where to Find the Samples on GitHub

Many technical books come with a CD-ROM containing the examples in
electronic form. That can be limiting, so we decided to provide our exam-
ples in GitHub, at https://github.com/TexanInParis/Effective-SQL.

There, you will find high-level folders for each of the six DBMSs we
considered. Within each of those high-level folders are ten folders cor-
responding to the ten chapters in the book, plus a folder for the sam-
ple databases.

Within each of the ten chapter folders, there are individual files,
named to correspond to the listing numbers within each chapter.
Note that not all listings are applicable to every DBMS. When that is
the case, we highlight differences in the README files for each chap-
ter. For Microsoft Access, the README file indicates which sample
database contains the listings for the chapter.

The root folder on GitHub also contains the Listings.xlsx file that
shows you which database contains each listing. That file also doc-
uments SQL samples that are applicable to each of the six database
systems.

Each of the sample database folders, with the exception of the Microsoft
Access folder that contains .accdb files in 2007 format, contains a number
of SQL files. We used the 2007 format for Microsoft Access because it
is compatible over all versions of the product since version 12 (2007).
One set of these files creates the structure for each sample database,
and the other set of files contains the data to populate the sample
databases. (Note that some of the items in this book rely on specific
data cases. The structures and data for those items are sometimes
contained within the chapter listings.)

Note
In preparing the listings in this book for publication, we sometimes had
issues fitting within the 63-character-per-line limit imposed by the phys-
ical page. It is possible that a listing could have been edited incorrectly.
When in doubt, all the listings on GitHub were tested, so we are confi-
dent that they are correct.

https://github.com/TexanInParis/Effective-SQL

8 Introduction

Summary of the Chapters

As the title of the book suggests, 61 specific items are presented in
this book. Each item is intended to stand by itself; you should not
need to read other items in order to use the material presented in
a specific item. There are, of course, times when the material in a
specific item does build on material in other items. When that is the
case, we have tried to present as much background material as we felt
was necessary, but we do provide cross-references to other relevant
items so that you can review the material yourself.

Although each item is, as already stated, intended to stand alone, we
felt there were natural groupings of topics. The groupings we used are
these ten:

1. Data Model Design: Because you cannot write effective SQL
when you are working with a bad data model design, the items in
this chapter cover some basics of good relational model design. If
your database design violates any of the rules discussed in this
chapter, you need to figure out what is wrong and fix it.

2. Programmability and Index Design: Simply having a good
logical data model design is not sufficient to allow you to write
effective SQL. You must ensure that you have implemented the
design in an appropriate manner, or you may find that your abil-
ity to extract meaningful information from the data in an efficient
manner using SQL will be compromised. The items in this chap-
ter help you understand the importance of indexes, and how to
ensure that they have been properly implemented.

3. When You Can’t Change the Design: Sometimes, despite your
best efforts, you are forced to deal with external data outside of
your control. The items in this chapter are intended to help you
deal with such situations.

4. Filtering and Finding Data: The ability to look for or filter out
the data of interest is one of the most important tasks you can do
in SQL. The items in this chapter explore different techniques you
can use to extract the exact information you want.

5. Aggregation: The SQL Standard has always provided the abil-
ity to aggregate data. However, typically you are asked to provide
“totals per customer,” “count of orders by day,” or “average sales of
each category by month.” It is the part after the “per,” “by,” and “of
each” that requires additional attention. The items in this chapter
present techniques to get the best performance out of your aggre-
gation. Some of them also show how to use window functions to
provide even more complex aggregations.

 Summary of the Chapters 9

6. Subqueries: There are many different ways in which you can use
subqueries. The items in this chapter are intended to show a vari-
ety of ways to get additional flexibility in your SQL through the
use of subqueries.

7. Getting and Analyzing Metadata: Sometimes just data is not
enough. You need data about data. You might even need data
about how you are getting the data. In some cases, it might even
be convenient to get the metadata using SQL. The items in this
chapter tend to be quite product specific, but our hope is that we
provide sufficient information so that you can apply the principles
to your specific DBMS.

8. Cartesian Products: Cartesian Products are the result of com-
bining all rows in one table with all rows in a second table. While
perhaps not as common as other join types, the items in this
chapter show real-world situations where it would not be possible
to answer the underlying question without the use of a Cartesian
Product.

9. Tally Tables: Another useful tool is the tally table, usually a table
with a single column of sequential numbers, or a single column of
sequential dates, or something more complex to aid in “pivoting”
a set of summaries. While Cartesian Products are dependent on
actual values in the underlying tables, tally tables allow you to
cover all possibilities. The items in this chapter show examples
of various problems that can be solved only through the use of a
tally table.

10. Modeling Hierarchical Data: It is not uncommon to have to
model hierarchical data in your relational database. Unfortu-
nately, it happens to be one of SQL’s weaker areas. The items in
this chapter are intended to help you make the trade-off between
data normalization, and ease of querying and maintenance of
metadata.

Each database system has a variety of functions that you can use to
calculate or manipulate date and time values. Each database sys-
tem also has its own rules regarding data types and date and time
arithmetic. Because of the differences, we also included an Appen-
dix, “Date and Time Types, Operations, and Functions,” to help you
work with date and time values in your database system. We believe
it accurately summarizes the data types and arithmetic operations
supported, but we do recommend that you consult your database doc-
umentation for the specific syntax to use with each function.

This page intentionally left blank

3 When You Can’t
Change the Design

You have spent considerable time ensuring that you have a proper
logical data model for your situation. You have worked hard to ensure
that it has been implemented as an appropriate physical model.
Unfortunately, you find that some of your data must come from a
source outside your control.

This does not mean that you are doomed to have SQL queries that
will not perform well. The items in this chapter are intended to help
you understand some options you have to be able to work with that
inappropriately designed data from other sources. We will consider
both the case when you can create objects to hold the transforma-
tions and the case when you must perform the transformation as part
of the query itself.

Because you do not have control over the external data, there is noth-
ing you can do to change the design. However, you can use the infor-
mation in the items in this chapter to work with the DBAs and still
end up with effective SQL.

Item 18: Use Views to Simplify What Cannot Be
Changed

Views are simply a composition of a table in the form of a predefined
SQL query on one or many tables or other views. Although they are
simple, there is much merit to their use.

Note
Microsoft Access does not actually have an object called a view, but
saved queries in Access can be thought of as views.

You can use views to ameliorate some denormalization issues. You
have already seen the denormalized CustomerSales table in Item 2,

80 Chapter 3 When You Can’t Change the Design

“Eliminate redundant storage of data items,” and how it should have
been modeled as four separate tables (Customers, AutomobileModels,
SalesTransactions, and Employees). You've also seen the Assignments
table with repeating groups in Item 3, “Get rid of repeating groups,”
that should have been modeled as two separate tables (Drawings and
Predecessors). While working to fix such problems, you could use
views to represent how the data should appear.

You can create different views of CustomerSales as shown in Listing 3.1.

Listing 3.1 Views to normalize a denormalized table

CREATE VIEW vCustomers AS
SELECT DISTINCT cs.CustFirstName, cs.CustLastName, cs.Address,
 cs.City, cs.Phone
FROM CustomerSales AS cs;

CREATE VIEW vAutomobileModels AS
SELECT DISTINCT cs.ModelYear, cs.Model
FROM CustomerSales AS cs;

CREATE VIEW vEmployees AS
SELECT DISTINCT cs.SalesPerson
FROM CustomerSales AS cs;

As Figure 3.1 shows, vCustomers would still include two entries for Tom
Frank because two different addresses were listed in the original table.
However, you have a smaller set of data to work with. By sorting the
data on CustFirstName and CustLastName, you should be able to see
the duplicate entry, and you can correct the data in the CustomerSales
table.

Figure 3.1 Data for view vCustomers

You saw in Item 3 how to use a UNION query to “normalize” a table that
contains repeating groups. You can use views to do the same thing,
as shown in Listing 3.2.

 Item 18: Use Views to Simplify What Cannot Be Changed 81

Listing 3.2 Views to normalize a table with repeating groups

CREATE VIEW vDrawings AS
SELECT a.ID AS DrawingID, a.DrawingNumber
FROM Assignments AS a;

CREATE VIEW vPredecessors AS
SELECT 1 AS PredecessorID, a.ID AS DrawingID,
 a.Predecessor_1 AS Predecessor
FROM Assignments AS a
WHERE a.Predecessor_1 IS NOT NULL
UNION
SELECT 2, a.ID, a.Predecessor_2
FROM Assignments AS a
WHERE a.Predecessor_2 IS NOT NULL
UNION
SELECT 3, a.ID, a.Predecessor_3
FROM Assignments AS a
WHERE a.Predecessor_3 IS NOT NULL
UNION
SELECT 4, a.ID, a.Predecessor_4
FROM Assignments AS a
WHERE a.Predecessor_4 IS NOT NULL
UNION
SELECT 5, a.ID, a.Predecessor_5
FROM Assignments AS a
WHERE a.Predecessor_5 IS NOT NULL;

One point that needs to be mentioned is that although all the views
shown previously mimic what the proper table design should be,
they can be used only for reporting purposes. Because of the use of
SELECT DISTINCT in the views in Listing 3.1, and the use of UNION in
Listing 3.2, the views are not updatable. Some vendors allow you to
work around this limitation by defining triggers on views (also known
as INSTEAD OF triggers) so that you can write the logic for applying
modifications made via the view to the underlying base table yourself.

Note
DB2, Oracle, PostgreSQL, and SQL Server allow triggers on views. MySQL
does not.

Some other reasons to use views include the following:

 ■ To focus on specific data: You can use views to focus on spe-
cific data and on specific tasks. The view can return all rows of a
table or tables, or a WHERE clause can be included to limit the rows

82 Chapter 3 When You Can’t Change the Design

returned. The view can also return only a subset of the columns
in one or more tables.

 ■ To simplify or clarify column names: You can use views to pro-
vide aliases on column names so that they are more meaningful.

 ■ To bring data together from different tables: You can use views
to combine multiple tables into a single logical record.

 ■ To simplify data manipulation: Views can simplify how users
work with data. For example, assume you have a complex query
that is used for reporting purposes. Rather than make each user
define the subqueries, outer joins, and aggregation to retrieve data
from a group of tables, create a view. Not only does the view simplify
access to the data (because the underlying query does not have to
be written each time a report is being produced), but it ensures
consistency by not forcing each user to create the query. You can
also create inline user-defined functions that logically operate as
parameterized views, or views that have parameters in WHERE clause
search conditions or other parts of the query. Note that inline
table-valued functions are not the same as scalar functions!

 ■ To protect sensitive data: When the table contains sensitive
data, that data can be left out of the view. For instance, rather
than reveal customer credit card information, you can create a
view that uses a function to “munge” the credit card numbers so
that users are not aware of the actual numbers. Depending on
the DBMS, only the view would be made accessible to users, and
the underlying tables need not be directly accessible. Views can
be used to provide both column-level and row-level security. Note
that a WITH CHECK OPTION clause is necessary to protect the data
integrity by preventing users from performing updates or deletes
that go beyond the constraints imposed by the view.

 ■ To provide backward compatibility: Should changes be required
to the schemas for one or more of the tables, you can create views
that are the same as the old table schemas. Applications that
used to query the old tables can now use the views, so that the
application does not have to be changed, especially if it is only
reading data. Even applications that update data can sometimes
still use a view if INSTEAD OF triggers are added to the new view
to map INSERT, DELETE, and UPDATE operations on the view to the
underlying tables.

 ■ To customize data: You can create views so that different users
can see the same data in different ways, even when they are using
the same data at the same time. For example, you can create a

 Item 18: Use Views to Simplify What Cannot Be Changed 83

view that retrieves only the data for those customers of interest to
a specific user based on that user’s login ID.

 ■ To provide summarizations: Views can use aggregate functions
(SUM(), AVERAGE(), etc.) and present the calculated results as part
of the data.

 ■ To export and import data: You can use views to export data to
other applications. You can create a view that gives you only the
desired data, and then use an appropriate data utility to export
just that data. You can also use views for import purposes when
the source data does not contain all columns in the underlying
table.

Do Not Create Views on Views
It is permissible to create a view that references another view(s). Those
coming from a programming background might be tempted to treat
a view the way they would treat a procedure in an imperative pro-
gramming language. That is actually a big mistake and will cause more
performance and maintenance problems, likely offsetting any savings
gained from having a generic view that is then used as a base for other
views. Listing 3.3 demonstrates an example of creating views on other
views.

Listing 3.3 Three view definitions

CREATE VIEW vActiveCustomers AS
SELECT c.CustomerID, c.CustFirstName, c.CustLastName,
 c.CustFirstName + ' ' + c.CustLastName AS CustFullName
FROM Customers AS c
WHERE EXISTS
 (SELECT NULL
 FROM Orders AS o
 WHERE o.CustomerID = c.CustomerID
 AND o.OrderDate > DATEADD(MONTH, -6, GETDATE()));

CREATE VIEW vCustomerStatistics AS
SELECT o.CustomerID, COUNT(o.OrderNumber) AS OrderCount,
 SUM(o.OrderTotal) AS GrandOrderTotal,
 MAX(o.OrderDate) AS LastOrderDate
FROM Orders AS o
GROUP BY o.CustomerID;

continues

84 Chapter 3 When You Can’t Change the Design

CREATE VIEW vActiveCustomerStatistics AS
SELECT a.CustomerID, a.CustFirstName, a.CustLastName,
 s.LastOrderDate, s.GrandOrderTotal
FROM vActiveCustomers AS a
 INNER JOIN vCustomerStatistics AS s
 ON a.CustomerID = s.CustomerID;

There are several potential issues, not all of which might be manifested
the same way on different vendors’ products. However, generally
speaking, giving the optimizer the view as the source means that the
optimizer has to first decompose the view. If there are other view ref-
erences, those must also be decomposed. In an ideal implementation,
the optimizer would efficiently “inline” the three view definitions into
the equivalent statement in Listing 3.4.

Listing 3.4 Equivalent statement of combined views

SELECT c.CustomerID, c.CustFirstName, c.CustLastName,
 s.LastOrderDate, s.GrandOrderTotal
FROM Customers AS c
 INNER JOIN
 (SELECT o.CustomerID,
 SUM(o.OrderTotal) AS GrandOrderTotal,
 MAX(o.OrderDate) AS LastOrderDate
 FROM Orders AS o
 GROUP BY o.CustomerID) AS s
 ON c.CustomerID = s.CustomerID
WHERE EXISTS
 (SELECT NULL
 FROM Orders AS o
 WHERE o.CustomerID = c.CustomerID
 AND o.OrderDate > DATEADD(MONTH, -6, GETDATE()));

Note that certain columns or expressions are already pruned from List-
ing 3.4 where they are actually not used. In particular, OrderCount and
CustFullName were not present anywhere within the main query and
subquery. However, in practice the optimizer might be forced to pre-
process the views completely, including evaluating all expressions in
order to create intermediate results for joining to other intermediate
results. Because the final view did not use them all, some expressions
were discarded in spite of all the hard work put into calculating them.

The same concerns apply to the rows that could be filtered. For
example, inactive customers were included in vCustomerStatistics
but ultimately were not in the final view because vActiveCustomers

 Item 19: Use ETL to Turn Nonrelational Data into Information 85

Things to Remember

✦ Use views to structure data in a way that users will find natural or
intuitive.

✦ Use views to restrict access to the data such that users can see (and
sometimes modify) exactly what they need and no more. Remember
to use WITH CHECK OPTION when necessary.

✦ Use views to hide and reuse complex queries.

✦ Use views to summarize data from various tables that can be used
to generate reports.

✦ Use views to implement and enforce naming and coding standards,
especially when working with legacy database designs that need to
be updated.

Item 19: Use ETL to Turn Nonrelational Data into
Information

Extract, Transform, Load (ETL) is a set of procedures or tools you
can use to Extract data from an external source, Transform it to con-
form to relational design rules or to conform to other requirements,
then Load it into your database for further use or analysis. Nearly

excluded those customers. This can potentially result in far more I/Os
than you anticipated. You can learn more about those considerations
in Item 46, “Understand how the execution plan works.” Although this
is a somewhat oversimplified example, it is fairly easy to create a view
that the optimizer simply cannot inline when it is referenced in other
views. Worse, there would be more than one way to create such views
that would prevent inlining. Finally, the optimizer generally does a bet-
ter job when it is given a simpler query expression that asks for exactly
the data it actually needs.

For those reasons, it is best to avoid creating views on views. If you
need a different presentation of the view, create a new view that
directly references the base tables with the appropriate filters or
groupings applied. You can also embed subqueries in a view, which
can be useful in making the aggregated calculations “private” to the
view. This approach helps to prevent proliferation of several views
that are not directly usable, making the database solution much more
maintainable. Refer to Item 42, “If possible, use common table expres-
sions instead of subqueries,” for additional techniques.

86 Chapter 3 When You Can’t Change the Design

all database systems provide various utilities to aid in this process.
These utilities are, quite simply, a means to convert raw data into
information.

To get an idea of what these utilities can do, let’s take a look at some
of the tools in Microsoft Access—one of the first Windows-era data-
base systems to provide built-in ways to load and transform data into
something useful. Assume you work as the marketing manager for a
company that produces breakfast cereals. You need not only to ana-
lyze competitive sales from another manufacturer but also to break
down this analysis by individual brands.

You can certainly glean total sales information from publicly avail-
able documents, but you really want to try to break down compet-
itive sales by individual brand. To do this, you might strike up an
agreement with a major grocery store chain to get them to provide
their sales information by brand in return for a small discount on
your products. The grocery chain promises to send you a spreadsheet
containing sales data from all its stores broken down by competi-
tive brand for the previous year. The data you receive might look like
Table 3.1.

Table 3.1 Sample competitive sales data

Product Jan Feb Mar

Alpha-Bits 57775.87 40649.37 . . .

Golden Crisp 33985.68 17469.97 . . .

Good Morenings 40375.07 36010.81 . . .

Grape-Nuts 55859.51 38189.64 . . .

Great Grains 37198.23 41444.41 . . .

Honey Bunches of Oats 63283.28 35261.46 . . .

. . . additional rows . . .

It is clear that some blank columns that you do not need were added
for readability. You also need to transform the data to end up with
one row per product per month, and you have a separate table listing
competitive products that has its own primary key, so you need to
match on product name to get the key value to use as a foreign key.

Let’s start by extracting the data from the spreadsheet into a more
usable form. Microsoft Access can import data in many different for-
mats, so let’s fire up the Import tool to import a spreadsheet. In the

 Item 19: Use ETL to Turn Nonrelational Data into Information 87

first step, you identify the file and tell Access what you want to do
with the output (import into a new table, append the data to an exist-
ing table, or link as a read-only table).

When you go to the next step, Access shows you a grid with a sample
of the data it found, as shown in Figure 3.2. Because it determined
that the first row might very well be usable as column names, it has
used the names it found and has assigned generated names to the
blank columns.

Figure 3.2 The Import Spreadsheet utility performing an initial analysis
of the data

In the following step, Access shows you a display where you can select
columns one at a time, tell Access to skip unimportant columns, and
fix the data type that the utility has assumed. Figure 3.3 on the next
page shows one of the data columns selected. The utility has assumed
that the numbers, because they contain decimal points, should be
imported as the very flexible Double data type. We know that these
are all dollar sales figures, so it makes sense to change the data type
to Currency to make it easier to work with the data. You can also see
the “Do not import” check box (behind the drop-down) that you can
select for columns that you want to ignore.

88 Chapter 3 When You Can’t Change the Design

The next step in the utility lets you pick a column to act as the pri-
mary key, ask the utility to generate an ID column with incrementing
integers, or assign no primary key to the table. The final step allows
you to name the table (the default is the name of the worksheet) and
to invoke another utility after importing the table to perform further
analysis and potentially reload the data into a more normalized table
design. If you choose to run the Table Analyzer, Access presents you
with a design tableau as shown in Figure 3.4. In the figure, we have
already dragged and dropped the Product column into a separate
table and named both tables. As you can see, the utility automat-
ically generates a primary key in the product table and provides a
matching foreign key in the sales data table.

Even after using the Table Analyzer, you can see that there is still
plenty of work to do to further normalize the sales data into one row
per month. You can “unpivot” the sales data by using a UNION query
to turn the columns into rows, as shown in Listing 3.5. (See also
Item 21, “Use UNION statements to ‘unpivot’ non-normalized data.”)

Figure 3.3 Selecting columns to skip and choosing a data type

 Item 19: Use ETL to Turn Nonrelational Data into Information 89

Listing 3.5 Using a UNION query to “unpivot” a repeating group

SELECT '2015-01-01' AS SalesMonth, Product, Jan AS SalesAmt
FROM tblPostSales
UNION ALL
SELECT '2015-02-01' AS SalesMonth, Product, Feb AS SalesAmt
FROM tblPostSales
UNION ALL
 ... etc. for all 12 months.

The tools in Microsoft Access are fairly simple (for example, they can-
not handle totals rows), but they give you an idea of the amount of
work that can be saved when trying to perform ETL to load exter-
nal data into your database. As noted earlier, most database systems
provide similar—and in some cases more powerful—tools that you
can use. Examples include Microsoft SQL Server Integration Services
(SSIS), Oracle Data Integrator (ODI), and IBM InfoSphere DataStage.
Commercial tools are available from vendors such as Informatica,
SAP, and SAS, and you can also find a number of open-source tools
available on the Web.

The main point here is that you should use those tools so that your
data conforms to the data model that your business needs, not the

Figure 3.4 Using the Table Analyzer to break out products into a
separate table

90 Chapter 3 When You Can’t Change the Design

other way around. A common mistake is to build tables that fit the
incoming data as is and then use it directly in applications. The invest-
ment made to transform data will result in a database that is easy to
understand and maintain in spite of the divergent data sources from
which it may collect the raw input.

Things to Remember

✦ ETL tools allow you to import nonrelational data into your database
with less effort.

✦ ETL tools help you reformat and rearrange imported data so that
you can turn it into information.

✦ Most database systems offer some level of ETL tools, and there are
also commercial tools available.

Item 20: Create Summary Tables and Maintain Them

We mentioned previously (in Item 18, “Use views to simplify what can-
not be changed”) that views can be used to simplify complex queries,
and we even suggested that views can be used to provide summariza-
tions. Depending on the volume of data, there are times when it may
be more appropriate to create summary tables.

When you have a summary table, you can be sure that everything is
in one place, making it easier to understand the data structure and
quicker to return information.

One approach is to create a table that summarizes your data in your
details table, and write triggers to update the summary table every
time something changes in the details table. However, if your details
table is frequently modified, this can be processor intensive.

Another approach is to use a stored procedure to refresh the sum-
mary table on a regular basis: delete all existing data rows and rein-
sert the summarized information.

DB2 has the concept of summary tables built into it. DB2 summary
tables can maintain a summary of data in one or multiple tables. You
have the option to have the summary refreshed every time the data
in underlying table(s) changes, or you can refresh it manually. DB2
summary tables not only allow users to obtain results faster, but the
optimizer can use the summary tables when user queries indirectly
request information already summarized in the summary tables if
ENABLE QUERY OPTIMIZATION is specified when you create the summary
table. Although there may still be “costs” associated with all that

 Item 20: Create Summary Tables and Maintain Them 91

activity, at least you did not have to write triggers or stored proce-
dures to maintain the data for you.

Listing 3.6 shows how to create a summary table named SalesSummary
that summarizes data from six different tables in DB2. Note that the
SQL is not much different from that for creating a view. In fact, a
summary table is a specific type of materialized query table, identi-
fied by the inclusion of a GROUP BY clause in the CREATE SQL. Note that
we had to use Cartesian joins with filters, because of the restriction
against using INNER JOIN in a materialized query table, and addition-
ally provide COUNT(*) in the SELECT list to enable the use of the REFRESH
IMMEDIATE clause. Those are necessary to permit the optimizer to use it.

Listing 3.6 Creating a summary table based on six tables (DB2)

CREATE SUMMARY TABLE SalesSummary AS (
SELECT
 t5.RegionName AS RegionName,
 t5.CountryCode AS CountryCode,
 t6.ProductTypeCode AS ProductTypeCode,
 t4.CurrentYear AS CurrentYear,
 t4.CurrentQuarter AS CurrentQuarter,
 t4.CurrentMonth AS CurrentMonth,
 COUNT(*) AS RowCount,
 SUM(t1.Sales) AS Sales,
 SUM(t1.Cost * t1.Quantity) AS Cost,
 SUM(t1.Quantity) AS Quantity,
 SUM(t1.GrossProfit) AS GrossProfit
FROM Sales AS t1, Retailer AS t2, Product AS t3,
 datTime AS t4, Region AS t5, ProductType AS t6
WHERE t1.RetailerId = t2.RetailerId
 AND t1.ProductId = t3.ProductId
 AND t1.OrderDay = t4.DayKey
 AND t2.RetailerCountryCode = t5.CountryCode
 AND t3.ProductTypeId = t6.ProductTypeId
GROUP BY t5.RegionName, t5.CountryCode, t6.ProductTypeCode,
 t4.CurrentYear, t4.CurrentQuarter, t4.CurrentMonth
)
DATA INITIALLY DEFERRED
REFRESH IMMEDIATE
ENABLE QUERY OPTIMIZATION
MAINTAINED BY SYSTEM
NOT LOGGED INITIALLY;

Listing 3.7 on the next page shows how to provide a similar capability
in Oracle through the use of a materialized view.

92 Chapter 3 When You Can’t Change the Design

Listing 3.7 Creating a materialized view based on six tables (Oracle)

CREATE MATERIALIZED VIEW SalesSummary
 TABLESPACE TABLESPACE1
 BUILD IMMEDIATE
 REFRESH FAST ON DEMAND
AS
SELECT SUM(t1.Sales) AS Sales,
 SUM(t1.Cost * t1.Quantity) AS Cost,
 SUM(t1.Quantity) AS Quantity,
 SUM(t1.GrossProfit) AS GrossProfit,
 t5.RegionName AS RegionName,
 t5.CountryCode AS CountryCode,
 t6.ProductTypeCode AS ProductTypeCode,
 t4.CurrentYear AS CurrentYear,
 t4.CurrentQuarter AS CurrentQuarter,
 t4.CurrentMonth AS CurrentMonth
FROM Sales AS t1
 INNER JOIN Retailer AS t2
 ON t1.RetailerId = t2.RetailerId
 INNER JOIN Product AS t3
 ON t1.ProductId = t3.ProductId
 INNER JOIN datTime AS t4
 ON t1.OrderDay = t4.DayKey
 INNER JOIN Region AS t5
 ON t2.RetailerCountryCode = t5.CountryCode
 INNER JOIN ProductType AS t6
 ON t3.ProductTypeId = t6.ProductTypeId
GROUP BY t5.RegionName, t5.CountryCode, t6.ProductTypeCode,
 t4.CurrentYear, t4.CurrentQuarter, t4.CurrentMonth;

Although SQL Server does not directly support materialized views,
the fact that you can create indexes on views has a similar effect, and
thus you can use indexed views in a similar manner.

Note
Various vendors implement additional restrictions. We advise first con-
sulting your documentation to determine what is actually supported
before creating a summary table/materialized view/indexed view.

Note that there can be some negative aspects to summary tables as
well, such as the following:

 ■ Each summary table occupies storage.

 ■ The administrative work (triggers, constraints, stored procedures)
may need to exist on both the original table and any summary tables.

 Item 20: Create Summary Tables and Maintain Them 93

 ■ You need to know in advance what users want to query in order
to precompute the required aggregations and include them in the
summary tables.

 ■ You may need multiple summary tables if you need different
groupings or filters applied.

 ■ You may need to set up a schedule to manage the refresh of the
summary tables.

 ■ You may need to manage the periodicity of the summary tables
via SQL. For example, if the summary table is supposed to show
the past 12 months, you need a way to remove data that is more
than a year old from the table.

One possible suggestion to avoid some of the increased administrative
costs of having redundant triggers, constraints, and stored proce-
dures is to use what Ken Henderson referred to as inline summari-
zation in his book The Guru’s Guide to Transact-SQL (Addison-Wesley,
2000). This involves adding aggregation columns to the existing table.
You would use an INSERT INTO SQL statement to aggregate data and
store those aggregations in the same table. Columns that are not
part of the aggregated data would be set to a known value (such as
NULL or some fixed date). An advantage of doing inline summariza-
tion is that the summary and the detail data can be easily queried
together or separately. The summarized records are easily identified
by the known values in certain columns, but other than that, they
are indistinguishable from the detail records. However, this approach
necessitates that all queries on the table containing both detail and
summary data be written appropriately.

Things to Remember

✦ Storing summarized data can help minimize the processing
required for aggregation.

✦ Using tables to store the summarized data allows you to index
fields containing the aggregated data for more efficient queries on
aggregates.

✦ Summarization works best on tables that are more or less static. If
the source tables change too often, the overhead of summarization
may be too great.

✦ Triggers can be used to perform summarization, but a stored proce-
dure to rebuild the summary table is usually better.

94 Chapter 3 When You Can’t Change the Design

Item 21: Use UNION Statements to “Unpivot”
Non-normalized Data

You saw in Item 3, “Get rid of repeating groups,” how UNION queries
can be used to deal with repeating groups. We explore UNION queries a
little bit more in this item. As you will learn in Item 22, “Understand
relational algebra and how it is implemented in SQL,” the Union oper-
ation is one of the eight relational algebra operations that can be per-
formed within the relational model defined by Dr. Edgar F. Codd. It is
used to merge data sets created by two (or more) SELECT statements.

Assume that the only way you are able to get some data for analysis is
in the form of the Excel spreadsheet pictured in Figure 3.5, which is
obviously not normalized.

Figure 3.5 Non-normalized data from Excel

Assuming you can import that data into your DBMS, at best you will
end up with a table (SalesSummary) that has five pairs of repeating
groups, which we will call OctQuantity, OctSales, NovQuantity, NovSales,
and so on to FebQuantity and FebSales.

Listing 3.8 shows a query that would let you look at the October data.

Listing 3.8 SQL to extract October data

SELECT Category, OctQuantity, OctSales
FROM SalesSummary;

Of course, to look at the data for a different month, you need a dif-
ferent query. And let’s not forget that data that is not normalized can
be more difficult to use for analysis purposes. This is where a UNION
query can help.

 Item 21: Use UNION Statements to “Unpivot” Non-normalized Data 95

There are three basic rules that apply when using UNION queries:

1. There must be the same number of columns in each of the queries
making up the UNION query.

2. The order of the columns in each of the queries making up the
UNION query must be the same.

3. The data types of the columns in each of the queries must be
compatible.

Note that there is nothing in those rules about the names of the col-
umns in the queries that make up the UNION query.

Listing 3.9 shows how to combine all of the data into a normalized
view.

Listing 3.9 Using UNION to normalize the data

SELECT Category, OctQuantity, OctSales
FROM SalesSummary
UNION
SELECT Category, NovQuantity, NovSales
FROM SalesSummary
UNION
SELECT Category, DecQuantity, DecSales
FROM SalesSummary
UNION
SELECT Category, JanQuantity, JanSales
FROM SalesSummary
UNION
SELECT Category, FebQuantity, FebSales
FROM SalesSummary;

Table 3.2 shows a partial extract of the data returned.

Table 3.2 Partial extract of data returned by
the UNION query in Listing 3.9

Category OctQuantity OctSales

Accessories 923 60883.03

Accessories 930 61165.40

.

Bikes 450 585130.50

Bikes 542 705733.50

continues

96 Chapter 3 When You Can’t Change the Design

Two things should stand out. First, there is no way to distinguish
to which month the data applies. The first two rows, for instance,
represent the quantity and sales amount for Accessories for October
and November, but there is no way to tell that from the data. As well,
despite the fact that the data represents five months of sales, the col-
umns are named OctQuantity and OctSales. That is because UNION
queries get their column names from the names of the columns in the
first SELECT statement.

Listing 3.10 shows a query that remedies both of those issues.

Listing 3.10 Tidying up the UNION query used to normalize the data

SELECT Category, 'Oct' AS SalesMonth, OctQuantity AS Quantity,
 OctSales AS SalesAmt
FROM SalesSummary
UNION
SELECT Category, 'Nov', NovQuantity, NovSales
FROM SalesSummary
UNION
SELECT Category, 'Dec', DecQuantity, DecSales
FROM SalesSummary

Category OctQuantity OctSales

Car racks 96 16772.05

Car racks 115 20137.05

Car racks 124 21763.30

.

Skateboards 203 89040.58

Skateboards 204 79461.30

Tires 110 3081.24

Tires 137 3937.70

Tires 150 4388.55

Tires 151 4356.91

Tires 186 5377.60

Table 3.2 Partial extract of data returned by
the UNION query in Listing 3.9 (continued)

 Item 21: Use UNION Statements to “Unpivot” Non-normalized Data 97

UNION
SELECT Category, 'Jan', JanQuantity, JanSales
FROM SalesSummary
UNION
SELECT Category, 'Feb', FebQuantity, FebSales
FROM SalesSummary;

Table 3.3 shows the same partial extract returned by the query in
Listing 3.10.

Table 3.3 Partial extract of data returned by the UNION
query in Listing 3.10

Category SalesMonth Quantity SalesAmount

Accessories Dec 987 62758.14

Accessories Feb 979 60242.47

.

Bikes Nov 412 546657.00

Bikes Oct 413 536590.50

Car racks Dec 115 20137.05

Car racks Feb 124 21763.30

Car racks Jan 142 24794.75

.

Skateboards Nov 203 89040.58

Skateboards Oct 164 60530.06

Tires Dec 150 4388.55

Tires Feb 137 3937.70

Tires Jan 186 5377.60

Tires Nov 110 3081.24

Tires Oct 151 4356.91

Should you want the data presented in a different sequence, the ORDER
BY clause must appear after the last SELECT in the UNION query, as
shown in Listing 3.11 on the next page.

98 Chapter 3 When You Can’t Change the Design

Listing 3.11 Specifying the sort order of the UNION query

SELECT Category, 'Oct' AS SalesMonth, OctQuantity AS Quantity,
 OctSales AS SalesAmt
FROM SalesSummary
UNION
SELECT Category, 'Nov', NovQuantity, NovSales
FROM SalesSummary
UNION
SELECT Category, 'Dec', DecQuantity, DecSales
FROM SalesSummary
UNION
SELECT Category, 'Jan', JanQuantity, JanSales
FROM SalesSummary
UNION
SELECT Category, 'Feb', FebQuantity, FebSales
FROM SalesSummary
ORDER BY SalesMonth, Category;

Table 3.4 shows a partial extract returned by the query in Listing 3.11.

Table 3.4 Partial extract of data returned by the UNION
query in Listing 3.11

Category SalesMonth Quantity SalesAmount

Accessories Dec 987 62758.14

Bikes Dec 332 439831.50

Car racks Dec 115 20137.05

Clothing Dec 139 4937.74

Components Dec 265 27480.22

Skateboards Dec 129 59377.20

Tires Dec 150 4388.55

Accessories Feb 979 60242.47

Bikes Feb 450 585130.50

Car racks Feb 124 21763.30

.

 Item 21: Use UNION Statements to “Unpivot” Non-normalized Data 99

Note
Some DBMSs (such as Microsoft Access) allow you to put ORDER BY
clauses other than at the end, but they do not actually cause the order
to change.

When specifying the columns in the ORDER BY clause, usually you have the
option of referring to them by name (remembering that the column names
are specified in the first SELECT) or by position number. In other words, List-
ing 3.11 could use ORDER BY 2, 1 instead of ORDER BY SalesMonth, Category.
Oracle, however, insists on using ordinal references.

Another consideration is that UNION queries eliminate any dupli-
cate rows. Should this not be what you want, you can specify UNION
ALL instead of UNION, and duplicates will not be eliminated. On the
other hand, UNION ALL can provide performance improvements as it
skips the step of deduplicating the result set, so if you know that the
sources will not overlap, it can be advantageous to specify UNION ALL
for those queries.

Things to Remember

✦ Each of the SELECT statements in the UNION query must have the
same number of columns.

✦ Although the names of the columns in the various SELECT statements
do not matter, the data types of each column must be compatible.

✦ To control the order in which the data appears, you can use an
ORDER BY clause after the last SELECT statement.

✦ Use UNION ALL rather than UNION if you do not wish to eliminate
duplicate rows or pay the performance penalty of deduplicating rows.

This page intentionally left blank

Index

Symbols
& (ampersand) operator, concatenation

symbol, 24, 249
+ (plus sign) operator, concatenation

symbol, 24, 249
|| (vertical bars) operator, concatenation

symbol, 24, 248–249

A
Absent data. See Null values.
Access

choosing a primary key, 88
Edit Relationships dialog box, 64
execution plans, 204–205, 212
ignoring columns, 87–88
importing data, 86–87
naming tables, 88
support for CTEs, 249
tools, 86–89
unpivoting sales data, 88–89
upsizing from, 63–64

Access, date and time
arithmetic operations, 303–304
data types, 303
functions, 304–305

Accumulating snapshot fact tables, 46
Adjacency list model, hierarchical data,

286–288
Age calculation, SQL code example, 113
Aggregation

counting items in a group, 156–159
distinct counts, 163–166
finding maximum/minimum values,

150–155
moving aggregates, 172–177
partitioning data into groups. See

GROUP BY clause.
running sums, calculating, CTEs,

166–169

setting bounds for window frames,
CTEs, 172–177

sizing window frames, CTEs, 172–177
solving complex problems, 145–150

Aggregation, rows
Adjacent, CTEs, 166–169
contiguous ranking, CTEs, 169–172
counting, 137
gaps in rankings, CTEs, 171–172
numbering, CTEs, 169–172
physical grouping. See RANGE

keyword.
physical offsets. See ROWS keyword.
ranking, CTEs, 169–172

Ampersand (&) operator, concatenation
symbol, 24, 249

ANALYZE option, 210
Ancestry traversal, hierarchical data,

294–298
ANSI (American National Standards

Institute), 3
ANSI NCITS-H2 organization, 5
ANSI X3.135-1986 Database Language

SQL standard, 3–4
Appointment calendar, creating, 275–277
Arvin, Troels, 70, 72
AS clause, 26
AS keyword, 26
Atomic data, 21
Attributes, 21, 101. See also Columns.
Averaging values, 137
AVG() function, 137

B
Bidirectional indexes, 60
Books and publications. See also Online

resources.
Database Design for Mere Mortals,

11, 19

318 Index

Books and publications (continued)
Handbook of Relational Database

Design, 19
The Relational Model for Database

Management, 120
SQL Queries for Mere Mortals, Third

Edition, 113
BOOLEAN data type, null values, 71–72
Boyce-Codd normal form, 38
B-tree structure, 54–55, 60, 218
Buffer usage, displaying, 210
BUFFERS option, 210

C
Calculated columns

attaching a trigger, 26
for DB2, listing, 28
defining columns, 26
drawbacks, 29
indexing, 29
for Oracle, listing, 28
overview, 25–29
sample table definition, 25, 27, 28

Calculated data
calculating combinations for N items,

237
calculating values across entire sets,

145–150
example of SQL code, 25
indexing results, 74–77
storing, 45

Calendar, creating, 275–277
Cartesian Products

calculating the combinations for N
items, 237

combining rows between two tables,
227–230

creating combinations of things, 239
description, 105–106
finding partial matches, 240–245
pairing rows in a table with all other

rows, 235–240
ranking importance of qualifications,

240–245
ranking rows by equal quantiles,

231–235
Cascading updates, primary keys, 13
CASE statements

overview, 110–114
predicates, 111
search conditions, 111
searched, 111
simple, 111

SQL code example, 111–113
value expressions, 111

Celko, Joe, 123
Chamberlin, Donald, 2
CHECK constraint, 69
Clustered indexes, 55
Codd, Edgar F., 1, 101, 120
Columns. See also Calculated columns.

adding/removing, 19–20
getting, 102
grouping, 136
ignoring in Access, 87–88
names, simplifying or clarifying with

views, 82
one property per column, 21–25
selecting, 102

Combinations for N items, calculating,
237

Combining rows, 105–106, 227–230. See
also Cartesian Products.

Combining things, uses for, 239
Common table expressions (CTEs). See

CTEs (common table expressions).
Compound primary keys, 14
CONCAT() function

databases supporting, 24
listing, 24
nesting, 24
support for, 248–249

Constraints on table data
CHECK constraint, 69
DEFAULT clause, 69
default values for fields, 69
FOREIGN KEY constraint, 68
foreign keys for referential integrity,

68
limiting fields to specified values, 69
NOT NULL, 68
PRIMARY KEY constraint, 68
UNIQUE constraint, 68, 73
unique record identity, 68, 73

Converting values, based on values in a
tally table, 261–268

Correlated subqueries, 184–189
Cost estimates, displaying, 210
COSTS option, 210
COUNT() function

Access restrictions, 166
counting items in a group, 163–166
dealing with zero values, 159–163
description, 137
distinct counts, 163–166
erroneous messages, 156–159

 Index 319

Counting
distinct counts, 163–166
items in a group, 156–159, 163–166

CROSS JOIN keywords, 106
CROSSTAB, 280
CTEs (common table expressions)

in Access, 249
in MySQL, 249
recursive, 194–196
SQL code example, 148–150
in subqueries, SQL code example,

191–193
traversing a hierarchy, SQL code

example, 194–195
CTEs (common table expressions),

aggregation
running sums, calculating, 166-169
setting bounds for window frames,

172-177
sizing window frames, 172-177

CTEs (common table expressions),
aggregation, rows

Adjacent, 166-169
contiguous ranking, 169-172
gaps in rankings, 171-172
numbering, 169-172
ranking, 169-172

CUBE clause, 138–139
CURRENT_DATE() function, 299
CURRENT_TIME() function, 299
CURRENT_TIMESTAMP() function, 299

D
\d command, DB2, 217
Data about data. See Metadata.
Data clustering, indexes, 58
Data manipulation, with views, 82
Data sets, linking, 102–103
Database 2 (DB2). See DB2 (Database

2).
Database Design for Mere Mortals, 11, 19
Database information, online resources,

5–6
Database rankings, online resources, 6
Databases. See also specific databases.

adding/removing data, 19–20
normalization. See Normalization.
samples used in examples, 6–7
used in this book, summary of, 6–7

Date, Chris, 4, 122
Date and time

CURRENT_DATE() function, 299, 299
CURRENT_TIME() function, 299, 299

CURRENT_TIMESTAMP() function, 299, 299
DATEADD() function, 27, 27
in filtered or partial indexes, 67
SQL standard functions, 299, 299
time, handling in denormalization, 45

Date and time, Access
arithmetic operations, 303–304
data types, 303
functions, 304–305

Date and time, DB2
arithmetic operations, 299–300
data types, 299
functions, 300–303

Date and time, MySQL
arithmetic operations, 308–309
data types, 308
functions, 310–312

Date and time, Oracle
arithmetic operations, 313
data types, 313
functions, 313–314

Date and time, PostgreSQL
arithmetic operations, 315
data types, 315
functions, 315–316

Date and time, SQL Server
arithmetic operations, 306
data types, 305
functions, 306–308

Date calculations with tally tables,
268–274

Date tables
appointment calendar, creating,

275–277
optimizing queries, 273–274
simplifying date calculation, 268–274

DATEADD() function, 27–28
DB2 (Database 2)

execution plans, 202–203, 212
getting metadata, 217
history of SQL, 3

DB2 (Database 2), date and time
arithmetic operations, 299–300
data types, 299
functions, 300–303

db2look command, DB2, 217
DB-Engines, online resources, 5–6
Declarative Referential Integrity (DRI),

31
DECODE, 279–280
DEFAULT clause, 69
Default values for fields, 69
Delete anomalies, 16

320 Index

Denormalization, for information
warehouses. See also
Normalization.

accumulating snapshot fact tables, 46
adding indicative fields to tables, 45
avoiding a join, 44
documenting, 46
drilling across, 45
drilling down, 45
fact tables, 45–46
handling time, 45
overview, 43–46
periodic snapshot fact tables, 45
repeating groups, 45
replicating identity fields in tables,

44
slowly changing dimensions, 46
storing calculated values, 45
transaction fact tables, 45

DENSE_RANK() function, CTEs, 170–171
Depth vs. distance, 296
DESCRIBE command, Oracle, 217
Deterministic functions, vs.

nondeterministic, 26–28
Difference operation, 106–108
Distance vs. depth, 296
Distinct counts, 163–166
DISTINCT keyword, 163–166
Divide operation

description, 106
SQL code example, 122–123

Dividing sets, 106
Documenting, denormalization, 46
DRI (Declarative Referential Integrity), 31
Drilling across, 45
Drilling down, 45
Duplicate rows, eliminating, 99
Duplicate values, preventing with

primary keys, 14

E
“Elephant and mouse” problem,

223–224
Empty grouping sets, 138
Enforced RI, 13, 30–33
Error messages, COUNT() function,

156–158
ETL (Extract, Transform, Load), 85–90
Examples of SQL code

age calculation, 76, 113
appointment calendar, creating,

275–277
CASE statements, 110–114

case-insensitive queries, 75
complex GROUP BY clause, 144
concatenation, 24
converting values based on values in

a tally table, 261–267
correlated subqueries, 188–189
CUBE clause, sample query, 139
date calculations, 268–271
date tables, 268–271, 273–274
defining columns, 28
Difference operation, 107
Divide operation, 122–123
DRI for self-referencing relationship, 65
EXCLUDE NULL KEYS option, 48, 49
existence check, 109
EXISTS clause, 198–199
EXISTS operator, 109
filtered indexes, 66–67
filtering date ranges, 124–127
filtering the right side of a left join,

132–134
finding missing data, 114
frustrated join, 109
function definition for SQL Server, 27
generating a list of numbers, 194
generating multiple rows, 259–260
GROUPING SETS clause, sample query, 140
IGNORE NULL option, 50
index creation, 59
indexes on a table, 53
inline expressions for Oracle, 28
INNER JOIN, emulating an Intersect

operation, 105
Intersect operation, 104–105
joining a table to itself, 153
LEFT JOIN clause, 153, 199
mailing labels, skipping blank rows,

248–250
maximum/minimum values, finding,

152–155
non-correlated subqueries, 185–187
nondeterministic function, 76
non-sargable queries, 129–131
normalizing data, 20
NOT IN operator, 108
null values in Access, 50
null values in Oracle, 51–52
one property per column, 22, 23
optimizing queries with date tables,

273–274
pivoting data, 279–282
querying metadata, 213–216
RANK() function, 170

 Index 321

returning original data, 18, 24
ROLLUP clause, sample query, 139
ROW_NUMBER() function, 170
rows, numbering and ranking, 170
running sums, calculating, 166–169
sample databases used in, 6–7
sargable queries, 129–131
scalar subqueries, 183–184
separating attributes, 23
sequencing data, 254–256
solving multiple-criteria problems,

115–120
sort operations, 67
splitting into tables by subject, 17
summarizing data with tally tables,

262–266
summary tables, 91–92
syntax for SQL SELECT statements,

136
table creation, 59
table subqueries, 180–181
table with only one column

subqueries, 182–183
totals query, 59
triggers, 61–65
using LIKE in the WHERE clause, 58
views, 80–81, 121–122
WHERE clause, 60

Examples of SQL code, Cartesian
Products

combining rows between two tables,
228–229

finding partial matches, 242–244
pairing rows in a table with all other

rows, 235–240
ranking rows by equal quantiles,

232–233
Examples of SQL code, COUNT() function

counting items in a group, 163–166
dealing with zero values, 159–163
description, 137
erroneous messages, 156–159

Examples of SQL code, creating
execution plans

Access, 204–205
DB2, 202
MySQL, 207
Oracle, 208
PostgreSQL, 210

Examples of SQL code, creating tables
for calculated data, 25
for Customers, 31
for Orders, 32

with relationships, 36
with separate attributes, 23
for SQL Server, 27

Examples of SQL code, CTEs
solving complex problems, 148–150
in subqueries, 191–193
traversing a hierarchy, 194–195

Examples of SQL code, excluding null
values in

PostgreSQL, 52
SQL Server, 50
UNIQUE indexes, 48, 49

Examples of SQL code, GROUP BY clause
instead of GROUPING SETS clause, 140
solving complex problems, 145–150
SQL standards compliance, 143–144
valid vs. invalid, 137–138

Examples of SQL code, HAVING clause
counting zero-value rows, 160–163
finding items by category, 148–150
solving complex problems, 145–150

Examples of SQL code, modeling
hierarchical data

adjacency list model, 286–288
ancestry tables, 294–297
getting all ancestors, 290, 293, 297
getting all children, 290, 292,

296–297
improving query performance,

290–291
materialized path, 291–293
nested lists, 290–291

Examples of SQL code, UNION queries
normalizing data, 20, 95–96
specifying sort order, 98

Examples of SQL code, window
functions

moving aggregates, 172–177
running sums, 167–168, 172–173

EXCLUDE NULL KEYS option, 48–49
Execution plans

Access, 204–205, 212
DB2, 202–203, 212
“elephant and mouse” problem,

223–224
functional description, 217–224
MySQL, 207
Oracle, 208–209, 212
Showplan Capturer tool, 205
SQL Server, 205–206, 212

Execution plans, PostgreSQL
buffer usage, displaying, 210
cost estimates, displaying, 210

322 Index

Execution plans (continued)
description, 209–212
output format, specifying, 210
performance statistics, displaying, 210
timing information, displaying, 210

Existence check, 109
EXISTS operator, 109, 198–199
EXPLAIN option, 209–210
Exporting/importing data

Access, 86–87
with views, 83

Extensions, SQL, 5
Extract, Transform, Load (ETL), 85–90

F
Fact tables, 45–46
Fields, limiting to specified values, 69
5NF (fifth normal form), 37–43
Filtered indexes, including/excluding

subsets of data, 65–68
Filtering data. See also Finding data.

aggregate data, 138, 141, 145
date ranges, 124–127
right side of a left join, 132–134
the right side of a left join, SQL code

example, 132–134
rows, 102

Finding data. See also Filtering data.
Divide operation, 120–123
items by category, 148–150
maximum/minimum values, 137,

150–155
missing data, SQL code example, 114
missing records, 108–110
multiple-criteria problems, 115–120
non-matches, 108–110
partial matches, 240–245. See also

Cartesian Products.
perfect matches, 120–123

Fleming, Candace C., 19
FOREIGN KEY constraints, 17–18, 32–33, 68
Foreign keys

defining FOREIGN KEY constraints,
32–33

enforcing RI, 30–33
for referential integrity, 68

FORMAT option, 210
Frustrated join, SQL code example, 109
Functional dependency, 143
Function-based indexes, 75–77
Functions

for aggregation, 136–137
inlining, 251

as parameterized views, 251
returning entire tables, 251
table-valued, 251

Functions, date and time
Access, 304–305
DB2, 300–303
MySQL, 310–312
Oracle, 313–314
PostgreSQL, 315–316
SQL Server, 306–308

G
GENERATED keyword, 27–28
Generating

lists of numbers, SQL code example,
194

rows with tally tables, 257–261
running sums, 167–169

GitHub, online resources, 7
Gosson, Stephen, 11
GROUP BY clause. See also Aggregation.

aggregate functions, 136–137. See
also specific functions.

averaging values, 137
calculating values across entire sets,

145–150
complex, SQL code example, 144
counting rows, 137
empty grouping sets, 138
filtering aggregate data, 138, 141, 145
finding largest/smallest value, 137
functional dependency, 143
grouping columns, 136
keeping it small, 142–145
ordering result sets, 138
overview, 135–142
population standard deviation,

calculating, 137
population variance, calculating, 137

GROUP BY clause (conutinued)
sample standard deviation,

calculating, 137
sample variance, calculating, 137
solving complex problems, 145–150
summing values, 137

Grouping columns, 136
GROUPING SETS clause, 138–140
The Guru’s Guide to Transact-SQL, 93

H
Handbook of Relational Database Design,

19
Handling time, 45

 Index 323

Hash joins, indexes, 57
HAVING clause

comparing aggregate values,
145–150

counting zero-value rows, 159–163
filtering aggregate data, 138
finding items by category, 148–150
generated in Access queries, 141
solving complex problems, 145–150

Help. See Books and publications;
Online resources.

Henderson, Ken, 93
Hernandez, Michael J., 11, 19, 113
Hierarchical data, modeling. See

Modeling hierarchical data.
History of SQL

ANSI NCITS-H2 organization, 5
Chamberlin, Donald, 2
Codd, Edgar F., 1
Date, Chris, 4
DB2, 3
extensions, 5
IBM, 1–3
Ingres, 2–3
NCITS (National Committee for

Information Technology
Standards), 5

Oracle, 2
QUEL (Query Language), 2–3
relational database model, 1–2
Relational Software, Inc., 2
Relational Technology, Inc., 3
SEQUEL (Structured English Query

Language), 2
SEQUEL/2, 2
SEQUEL-XRM, 2
SQL (structured query language), 2
SQL/DS (SQL/Data System), 3
standards, 3–5. See also specific

standards.
Stonebraker, Michael, 2
Wong, Eugene, 2
X3H2 database technical committee,

3, 5

I
IBM, in the history of SQL, 1–3
IBM DB2. See DB2.
IBM products. See specific products.
IF ... THEN ... ELSE statements. See CASE

statements.
Importing data. See Exporting/

importing data.

Inconsistent data, eliminating
redundant storage, 15–19

Index scans, 52–56
Indexes

bidirectional, 60
B-tree structure, 54–55, 60
on calculated results, 74–77
clustered, 55
combination of columns, 56
data clustering, 58
effects of table size, 55–56
filtered, 65–68. See also Partitioned

tables.
function-based, 75–77
hash joins, 57
index scans, 52–56
join efficiency, 57–58
most common type, 54–55
nested loops, 57
nonclustered, 55
non-sargable queries, 128
null values, 47–52
ORDER BY clause, efficiency, 60
partial, 65–68
performance issues, 54
pipelining, 60
sargable queries, 127–131
sort-merge joins, 57
table scans, 52–56
tuning queries, 52–56
WHERE clause, efficiency, 56

Indexing calculated columns, 29
INFORMATION_SCHEMA, 212–217

getting database metadata, 212–217
getting object schemas, 217

InfoSphere DataStage, tools, 89
Ingres, in the history of SQL, 2–3
Inlining functions, 251
INNER JOIN, 103, 105
Insert anomalies, 15–16
Intersect operation, SQL code example,

104–105
IS NULL predicate, 47
ISO 9075:1989 Database Language

SQL with Integrity Enhancement
standard, 4

ISO 9075:1987 Database Language SQL
standard, 4

ISO/IEC 9075-11:2011 Part 11:
Information and Definition
Schemas, 212

ISO/IEC 9075:1992 Database Language
SQL standard, 4–5

324 Index

J
Join efficiency, indexes, 57–58
JOIN keyword

description, 102–103
instead of subqueries, 197–199
vs. subqueries, 197–199

Join operations
avoiding, 44
filtering the right side of a left join,

132–134
frustrated, 109
INNER JOIN, 103
JOIN keyword, 102–103
joining a table to itself, SQL code

example, 153
NATURAL JOIN, 103
OUTER JOIN, 103
overview, 102–103
sort-merge, 57

K
Kimball, Ralph, 45–46

L
LEFT JOIN clause, SQL code example,

153, 199
Listings of SQL code. See Examples of

SQL code.
Lossless decomposition, 42

M
Mailing labels

generating blank rows, 248–250
printing, 247–250

Materialized path, 291–294
MAX() function, 137
Maximum/minimum values, finding

MAX() function, 137
MIN() function, 137
SQL code example, 152–155
without using GROUP BY, 150–155

Merging sets, 106
Metadata, getting

\d command, DB2, 217
DB2, 217
db2look command, DB2, 217
DESCRIBE command, Oracle, 217
INFORMATION_SCHEMA, 212–217
MySQL, 217
Oracle, 217
PostgreSQL, 217
SHOW command, MySQL, 217

Microsoft Access. See Access.

Microsoft products. See specific
products.

Microsoft SQL Server. See SQL Server.
MIN() function, 137
Minimum values, finding. See

Maximum/minimum values,
finding.

Modeling hierarchical data
adjacency list model, 286–288
ancestry traversal, 294–298
complex searching, 294–298
improving query performance,

288–291
materialized path, 291–294
nested lists, 288–291
nodes, depth vs. distance, 296
overview, 286
traversing a hierarchy with CTEs,

194–195
Moving aggregates, CTEs, 172–177
MySQL

execution plans, 207
getting metadata, 217
support for CTEs, 249

MySQL, date and time
arithmetic operations, 308–309
data types, 308
functions, 310–312

N
Naming tables, Access, 88
NATURAL JOIN, 103
NCITS (National Committee for

Information Technology
Standards), 5

Nested lists, 288–291
Nested loops, indexes, 57
Nesting, CONCAT() functions, 24
Nodes, depth vs. distance, 296
Nonclustered indexes, 55
Non-correlated subqueries, 184–189
Non-sargable queries, SQL code

example, 129–131
Normal forms, 37–43
Normalization. See also

Denormalization.
3NF, 37–43
5NF, 37–43
6NF, 37–43
Boyce-Codd normal form, 38
columns, adding/removing, 19–20
database samples, for scheduling, 41
definition, 15

 Index 325

delete anomalies, 16
foreign key constraints, 17–18
goal of, 15
insert anomalies, 15–16
lossless decomposition, 42
normal forms, 37–43
recreating original data, 17–18
redundant storage, 15–19
repeating groups, eliminating, 19–21
rows, adding/removing, 20
splitting into tables by subject, 17
UNION queries, 20–21
update anomalies, 16

NOT IN operator, 108
NOT NULL constraint, 68
Null values

in Access, 49–50
BOOLEAN data type, 71–72
in DB2, 48–49
detecting, 47
eliminating in UNIQUE indexes,

48–49
in indexes, 47–52
in MySQL, 51
in Oracle, 51–52
ordering, 70–71
in PostgreSQL, 52
in primary keys, 48
SQL dialects, 70–71
in SQL Server, 50
testing for, 111

Numbers, generating a list of, 194
Numeric primary keys, 14

O
ODI (Oracle Data Integrator), tools, 89
Online resources. See also Books and

publications.
for database information, 5–6
database rankings, 6
DB-Engines, 5–6
GitHub, 7
sample databases, 7
SQL dialects, 70

Oracle
execution plans, 208–209, 212
getting metadata, 217
in the history of SQL, 2

Oracle, date and time
arithmetic operations, 313
data types, 313
functions, 313–314

Oracle Data Integrator (ODI), tools, 89

ORDER BY clause
generating a running sum, 167–169
index efficiency, 60
ordering result sets, 138

Ordering result sets, 138
Orphan records, preventing, 61
OUTER JOIN

counting items in a group, 156–159
description, 103
erroneous COUNT() messages, 156–159

Output format, specifying, 210
OVER clause, generating a running sum,

167–169

P
Pairing rows in a table with all other

rows, 235–240. See also Cartesian
Products.

Papers. See Books and publications.
Partial indexes, 65–68
PARTITION BY predicate

generating a running sum, 167–169
grouping ranking functions, 170

Partitioned tables, 66
Partitioning data into groups. See GROUP

BY clause.
Performance

improving in modeling hierarchical
data, 288–291

indexes, 54
queries. See Execution plan.
statistics, displaying, 210

Periodic snapshot fact tables, 45
PERSISTED keyword, 29
Pipelining, indexes, 60
PIVOT, 280
Pivoting data

definition, 278
with tally tables, 278–283

Plus sign (+) operator, concatenation
symbol, 24, 249

Population standard deviation,
calculating, 137

Population variance, calculating, 137
PostgreSQL, date and time

arithmetic operations, 315
data types, 315
functions, 315–316

PostgreSQL, execution plans
buffer usage, displaying, 210
cost estimates, displaying, 210
description, 209–212
output format, specifying, 210

326 Index

PostgreSQL (continued)
performance statistics, displaying, 210
timing information, displaying, 210

PostgreSQL, getting metadata, 217
Predicates, 111
Presentations. See Books and

publications.
PRIMARY KEY constraint, 68
Primary keys

cascading updates, 13
choosing, 12–13
choosing in Access, 88
compound, 14
containing multiple columns, 14
generating automatically, 13–14
null values, 48
numeric, 14
preventing duplicate values, 14
text based, 14
unique, 14
verifying, 11–15

Procedural referential integrity, 69–70
Project operation, 102
Properties

one per column, 21–25
recombining, 23–24
recreating original data, 23–25
SQL for creating a table, 23

Publications. See Books and
publications.

Q
QUEL (Query Language), 2–3
Queries, description, 136
Query analyzer identifying performance

issues. See Execution plan.
Query performance, improving in

modeling hierarchical data,
288–291

R
RANGE keyword, CTEs, 173–177
RANK() function, CTEs

ranking rows, 169–172
ranking rows by equal quantiles,

232–235
SQL code example, 170

Ranking rows. See also RANK() function.
importance of qualifications,

240–245
rows by equal quantiles, 231–235.

See also Cartesian Products.
Recreating original data, 17–18

Redundant storage
eliminating, 15–19
example, 15–16

Referential integrity (RI). See RI
(referential integrity).

Relational algebra, summary of
operations, 101. See also specific
operations.

Relational database model, creation of,
1–2

The Relational Model for Database
Management, 120

Relational Software, Inc., 2
Relational Technology, Inc., 3
Relations, 101. See also Tables; Views.
Repeating groups

denormalization, 45
eliminating, 19–21

Restrict operation. See Select operation.
RI (referential integrity)

constraints on table data, 68–70
DRI (Declarative Referential

Integrity), 31
enforced, 13
enforcing with foreign keys, 30–33
FOREIGN KEY constraints (listing), 32
procedural, 69–70

RI (referential integrity), creating
Customer’s table (listing), 31
Orders table (listing), 32

ROLLUP clause, 138–140
ROUND() function, 233–235
ROW_NUMBER() function, CTEs, 169–172
Rows

adding/removing, 20
combining, 105–106
combining between two tables,

227–230. See also Cartesian
Products.

eliminating duplicate, 99
filtering, 102
generating with tally tables, 257–261
ranking by equal quantiles, 231–235.

See also Cartesian Products.
selecting a subset, 102

Rows, aggregation
adjacent, CTEs, 166–169
contiguous ranking, CTEs, 169–172
counting, 137
gaps in rankings, CTEs, 171–172
numbering, CTEs, 169–172
physical grouping. See RANGE

keyword.

 Index 327

physical offsets. See ROWS keyword.
ranking, CTEs, 169–172

ROWS keyword, CTEs, 175–177
Rules for table data. See Constraints on

table data.
Running sums, CTEs, 166–169

S
Samples

databases, online resources for, 7
SQL code. See Examples of SQL

code.
standard deviation, calculating, 137
variance, calculating, 137

Samples variance, calculating, 137
Sargable queries, SQL code example,

129–131
Scalar subqueries, SQL code example,

183–184
Search conditions, 111
Searched CASE statements, 111
Searching, modeling hierarchical data,

294–298
SELECT operation, 102
SELECT statement syntax, SQL code

example, 136
Sensitive data, protecting with views, 82
SEQUEL (Structured English Query

Language), 2
SEQUEL/2, 2
SEQUEL-XRM, 2
Sequencing data with tally tables,

252–257
SHOW command, MySQL, 217
Showplan Capturer tool, Access, 205
Simple CASE statements, 111
6NF (sixth normal form), 37–43
Sort-merge joins, 57
Spolsky, Joel, 201
SQL (structured query language)

code examples. See Examples of SQL
code.

history of. See History of SQL.
pronouncing, 2

SQL dialects
across DBMSs, 71
BOOLEAN data type, 71–72
limiting result sets, 71–72
ordering nulls, 70–71
ordering result sets, 70–71
overview, 70

SQL Queries for Mere Mortals, Third
Edition, 113

SQL Server, date and time
arithmetic operations, 306
data types, 305
functions, 306–308

SQL Server, execution plans, 205–206,
212

creating a plan, 205–206
enabling/disabling execution

profiling, 206
tabular output, 206

SQL Server Integration Services (SSIS),
tools, 89

SQL standards. See also specific
standards.

ANSI X3.135-1986 Database
Language SQL, 3–4

current, 5
for date and time functions, 299
ISO 9075: 1989 Database

Language SQL with Integrity
Enhancement, 4

ISO 9075:1987 Database Language
SQL, 4

ISO/IEC 9075:1992 Database
Language SQL, 4–5

SQL/86, 3–4
SQL/89, 4
SQL/92, 5
SQL/Foundation (document ISO/IEC

9075-2:2011), 5
X3.135-1989 Database Language

SQL with Integrity
Enhancement, 4

SQL standards compliance, SQL code
example, 143–144

SQL/86 standard, 3–4
SQL/89 standard, 4
SQL/92 standard

description, 5
GROUP BY clause size, 142–145

SQL/DS (SQL/Data System), 3
SQL/Foundation (document ISO/IEC

9075-2:2011) standard, 5
SSIS (SQL Server Integration Services),

tools, 89
Standards. See SQL standards.
STDDEV_POP() function, 137
STDDEV_SAMP() function, 137
Stonebraker, Michael, 2
Storage

calculated data. See Calculated data,
storing.

redundant. See Redundant storage.

328 Index

Stored procedures. See Triggers.
Structured English Query Language

(SEQUEL), 2
Structured query language (SQL). See

SQL (structured query language).
Subqueries

correlated vs. non-correlated, 184–189
with CTEs, 190–196
definition, 179
JOIN instead of, 197–199
recursive CTEs, 194–196

Subqueries, scalar
definition, 179
description, 183–184

Subqueries, table
definition, 179
description, 180–182

Subqueries, table with only one column
definition, 179
description, 182–183

Subtracting sets, 106–108
SUM() function, 137
Summarizing data

with tally tables, 261–268
with views, 83

Summary tables, 90–93. See also Views.
Summing values, 137

T
Table relationships

creating (listing), 36
design guidelines, 33–37
EAV (entity-attribute-value) model,

36
Table scans, indexes, 52–56
Table size, effects on indexes, 55–56
Table subqueries, SQL code example,

180–181
Table with only one column subqueries,

SQL code example, 182–183
tablefunc extension, 280
Tables. See also Constraints on table

data; Tally tables.
adding indicative fields to, 45
linking, 102–103
naming in Access, 88
splitting by subject, 17
summary. See Summary tables.

Table-valued functions, 251
Tally tables. See also Tables.

appointment calendar, creating,
275–277

converting values based on values in
a tally table, 261–268

date calculations, 268–274
date tables, 268–274
generating blank rows, 248–252
generating multiple rows, 257–261
pivoting data, 278–283
printing mailing labels, 248–252
sequencing data, 252–257
summarizing data, 261–268

Text-based primary keys, 14
3NF (third normal form), 37–43
Time, handling in denormalization, 45
Timing information, displaying, 210
TIMING option, 210
Tools

Access, 86–89
for creating Access execution plans,

205
InfoSphere DataStage, DB2, 89
ODI (Oracle Data Integrator), 89
Showplan Capturer tool, Access, 205
SSIS (SQL Server Integration

Services), 89
Transaction fact tables, 45
TRANSFORM, 280
Traversing a hierarchy with CTEs, SQL

code example, 194–195
Triggers

attaching to calculated columns, 26
overview, 61–65
portability, 65

Trowitzsch, Sasha, 205
Tuning queries, 52–56
Tuples, 101. See also Rows.

U
Union operation, 106
UNION queries

eliminating duplicate rows, 99
normalizing data, 20–21
rules for using, 95
unpivoting non-normalized data,

94–99
UNION queries, SQL code examples

normalizing data, 95–96
specifying sort order, 98

UNIQUE constraint, 68, 73
Unique primary keys, 14
Unique record identity, 68, 73
Unknown data. See Null values.
Update anomalies, 16

V
Value expressions, 111
VAR_POP() function, 137

 Index 329

VAR_SAMP() function, 137
VERBOSE option, 210
Verifying, primary keys, 11–15
Vertical bars (||) operator, concatenation

symbol, 24, 248–249
Viescas, John, 113
Views. See also Summary tables.

backward compatibility, 82
customizing data, 82–83
definition, 79
exporting/importing data, 83
focusing on specific data, 82
parameterized, with table-valued

functions, 251
protecting sensitive data, 82
simplifying data manipulation, 82
simplifying or clarifying column

names, 82
SQL code example, 121–122
summarizing data, 83
uses for, 79–85
on views, 83–85

von Halle, Barbara, 19

W
WHERE clause

filtering aggregate data, 145
indexes and efficiency, 56

Window frames, setting bounds for,
CTEs, 172–177

Window functions, CTEs
with aggregate functions, 166–169
moving aggregates, 172–177
sequencing data, 252–257

Wong, Eugene, 2

X
X3.135-1989 Database Language SQL

with Integrity Enhancement
standard, 4

X3.135-1992 Database Language SQL
standard, 4–5

X3H2 database technical committee,
3, 5

Z
Zero values, SQL code example, 159–163

	Cover
	Title Page
	Copyright Page
	Contents
	Foreword
	Acknowledgments
	About the Authors
	About the Technical Editors
	Introduction
	A Brief History of SQL
	Database Systems We Considered
	Sample Databases
	Where to Find the Samples on GitHub
	Summary of the Chapters

	Chapter 3: When You Can’t Change the Design
	Item 18: Use Views to Simplify What Cannot Be Changed
	Item 19: Use ETL to Turn Nonrelational Data into Information
	Item 20: Create Summary Tables and Maintain Them
	Item 21: Use UNION Statements to “Unpivot” Non-normalized Data

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

