
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134496009
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134496009
https://plusone.google.com/share?url=http://www.informit.com/title/9780134496009
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134496009
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134496009/Free-Sample-Chapter


Shell Programming 
in Unix, Linux 

and OS X

Fourth Edition



Shell Programming 
in Unix, Linux 

and OS X

Fourth Edition

Stephen G. Kochan 
Patrick Wood

800 East 96th Street, Indianapolis, Indiana 46240



Editor

Mark Taber

Copy Editor

Larry Sulky

Technical Editor

Brian Tiemann

Designer

Chuti Prasertsith

Page Layout

codeMantra

Shell Programming in Unix, Linux and OS X, Fourth Edition

Copyright © 2017 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, 
or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, 
without written permission from the publisher. No patent liability is assumed with respect to 
the use of the information  contained herein. Although every precaution has been taken in 
the preparation of this book, the publisher and author assume no responsibility for errors or 
omissions. Nor is any liability assumed for damages  resulting from the use of the informa-
tion contained herein.

ISBN-13: 978-0-13-4449600-9

ISBN-10: 0-13-449600-0

Printed in the United States of America

First Printing: August 2016

The Library of Congress Control Number is on file.

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks 
have been  appropriately capitalized. The publisher cannot attest to the accuracy of this 
information. Use of a term in this book should not be regarded as affecting the validity of 
any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, 
but no warranty or fitness is implied. The information provided is on an “as is” basis. The 
author and the publisher shall have neither liability nor responsibility to any person or entity 
with respect to any loss or damages arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities 
(which may include electronic versions; custom cover designs; and content particular to 
your business, training goals, marketing focus, or branding interests), please contact our 
corporate sales department at  corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact 

governmentsales@pearsoned.com

For questions about sales outside the U.S., please contact 

international@pearsoned.com



Contents at a Glance

Introduction 1

 1 A Quick Review of the Basics 5

 2 What Is the Shell? 39

 3 Tools of the Trade 51

 4 And Away We Go 93

 5 Can I Quote You on That? 105

 6 Passing Arguments 121

 7 Decisions, Decisions 131

 8 'Round and 'Round She Goes 163

 9 Reading and Printing Data 185

 10 Your Environment 209

 11 More on Parameters 239

 12 Loose Ends 255

 13 Rolo Revisited 273

 14 Interactive and Nonstandard Shell Features 289

 A Shell Summary 321

 B For More Information 359

  Index 363



Table of Contents

Introduction 1

How This Book Is Organized 2

Accessing the Free Web Edition 3

 1 A Quick Review of the Basics 5

Some Basic Commands 5

Displaying the Date and Time: The date Command 5

Finding Out Who’s Logged In: The who Command 5

Echoing Characters: The echo Command 6

Working with Files 6

Listing Files: The ls Command 7

Displaying the Contents of a File: The cat Command 7

Counting the Number of Words in a File: The wc Command 7

Command Options 8

Making a Copy of a File: The cp Command 8

Renaming a File: The mv Command 8

Removing a File: The rm Command 9

Working with Directories 9

The Home Directory and Pathnames 10

Displaying Your Working Directory: The pwd Command 12

Changing Directories: The cd Command 12

More on the ls Command 15

Creating a Directory: The mkdir Command 17

Copying a File from One Directory to Another 18

Moving Files Between Directories 19

Linking Files: The ln Command 20

Removing a Directory: The rmdir Command 23

Filename Substitution 24

The Asterisk 24

Matching Single Characters 25

Filename Nuances 27

Spaces in Filenames 27

Other Weird Characters 28

Standard Input/Output, and I/O Redirection 28

Standard Input and Standard Output 28



viiContents

Output Redirection 30

Input Redirection 32

Pipes 33

Filters 35

Standard Error 35

More on Commands 36

Typing More Than One Command on a Line 36

Sending a Command to the Background 36

The ps Command 37

Command Summary 37

 2 What Is the Shell? 39

The Kernel and the Utilities 39

The Login Shell 40

Typing Commands to the Shell 43

The Shell’s Responsibilities 44

Program Execution 45

Variable and Filename Substitution 47

I/O Redirection 48

Hooking up a Pipeline 49

Environment Control 49

Interpreted Programming Language 50

 3 Tools of the Trade 51

Regular Expressions 51

Matching Any Character: The Period (.) 51

Matching the Beginning of the Line: The Caret (^) 53

Matching the End of the Line: The Dollar Sign $ 53

Matching a Character Set: The [...] Construct 55

Matching Zero or More Characters: The Asterisk (*) 57

Matching a Precise Number of Subpatterns: \{...\} 59

Saving Matched Characters: \(...\) 61

cut 64

The -d and -f Options 66

paste 68

The -d Option 69

The -s Option 70



viii Contents

sed 70

The -n Option 72

Deleting Lines 73

tr 74

The -s Option 76

The -d Option 77

grep 78

Regular Expressions and grep 81

The -v Option 82

The -l Option 82

The -n Option 83

sort 84

The -u Option 84

The -r Option 85

The -o Option 85

The -n Option 86

Skipping Fields 87

The -t Option 87

Other Options 88

uniq 88

The -d Option 89

Other Options 90

 4 And Away We Go 93

Command Files 93

Comments 96

Variables 97

Displaying the Values of Variables 98

Undefined Variables Have the Null Value 100

Filename Substitution and Variables 101

The ${variable} Construct 102

Built-in Integer Arithmetic 103

 5 Can I Quote You on That? 105

The Single Quote 105

The Double Quote 109

The Backslash 111



ixContents

Using the Backslash for Continuing Lines 112

The Backslash Inside Double Quotes 112

Command Substitution 114

The Back Quote 114

The $(...) Construct 115

The expr Command 119

 6 Passing Arguments 121

The $# Variable 122

The $* Variable 123

A Program to Look Up Someone in the Phone Book 124

A Program to Add Someone to the Phone Book 125

A Program to Remove Someone from the Phone Book 127

${n} 128

The shift Command 128

 7 Decisions, Decisions 131

Exit Status 131

The $? Variable 132

The test Command 135

String Operators 135

An Alternative Format for test 139

Integer Operators 140

File Operators 142

The Logical Negation Operator ! 143

The Logical AND Operator -a 143

Parentheses 144

The Logical OR Operator -o 144

The else Construct 145

The exit Command 147

A Second Look at the rem Program 147

The elif Construct 148

Yet Another Version of rem 151

The case Command 153

Special Pattern-Matching Characters 155

The -x Option for Debugging Programs 157

Back to the case 159



x Contents

The Null Command : 160

The && and || Constructs 161

 8 'Round and 'Round She Goes 163

The for Command 163

The $@ Variable 166

The for Without the List 167

The while Command 168

The until Command 170

More on Loops 174

Breaking Out of a Loop 174

Skipping the Remaining Commands in a Loop 176

Executing a Loop in the Background 177

I/O Redirection on a Loop 177

Piping Data into and out of a Loop 178

Typing a Loop on One Line 179

The getopts Command 180

 9 Reading and Printing Data 185

The read Command 185

A Program to Copy Files 185

Special echo Escape Characters 187

An Improved Version of mycp 188

A Final Version of mycp 190

A Menu-Driven Phone Program 193

The $$ Variable and Temporary Files 198

The Exit Status from read 199

The printf Command 202

 10 Your Environment 209

Local Variables 209

Subshells 210

Exported Variables 211

export -p 215

PS1 and PS2 216

HOME 217

PATH 217



xiContents

Your Current Directory 225

CDPATH 226

More on Subshells 227

The .Command 227

The exec Command 230

The (...) and { ...; } Constructs 231

Another Way to Pass Variables to a Subshell 234

Your .profile File 235

The TERM Variable 236

The TZ Variable 237

 11 More on Parameters 239

Parameter Substitution 239

${parameter} 239

${parameter:-value} 240

${parameter:=value} 241

${parameter:?value} 241

${parameter:+value} 242

Pattern Matching Constructs 242

${#variable} 244

The $0 Variable 245

The set Command 246

The -x Option 246

set with No Arguments 247

Using set to Reassign Positional Parameters 247

The -- Option 248

Other Options to set 251

The IFS Variable 251

The readonly Command 254

The unset Command 254

 12 Loose Ends 255

The eval Command 255

The wait Command 257

The $! Variable 257

The trap Command 258

trap with No Arguments 259



xii Contents

Ignoring Signals 260

Resetting Traps 261

More on I/O 261

<&- and >&- 262

In-line Input Redirection 262

Shell Archives 264

Functions 268

Removing a Function Definition 271

The return Command 271

The type Command 271

 13 Rolo Revisited 273

Data Formatting Considerations 273

rolo 274

add 277

lu 278

display 278

rem 280

change 281

listall 283

Sample Output 284

 14 Interactive and Nonstandard Shell Features 289

Getting the Right Shell 289

The ENV File 290

Command-Line Editing 291

Command History 292

The vi Line Edit Mode 292

Accessing Commands from Your History 294

The emacs Line Edit Mode 296

Accessing Commands from Your History 298

Other Ways to Access Your History 300

The history Command 300

The fc Command 301

The r Command 301

Functions 303

Local Variables 303

Automatically Loaded Functions 303



xiiiContents

Integer Arithmetic 303

Integer Types 304

Numbers in Different Bases 305

The alias Command 307

Removing Aliases 309

Arrays 309

Job Control 315

Stopped Jobs and the fg and bg Commands 316

Miscellaneous Features 317

Other Features of the cd Command 317

Tilde Substitution 318

Order of Search 319

Compatibility Summary 319

 A Shell Summary 321

Startup 321

Commands 321

Comments 322

Parameters and Variables 322

Shell Variables 322

Positional Parameters 322

Special Parameters 323

Parameter Substitution 324

Command Re-entry 326

The fc Command 326

vi Line Edit Mode 326

Quoting 329

Tilde Substitution 329

Arithmetic Expressions 330

Filename Substitution 331

I/O Redirection 331

Exported Variables and Subshell Execution 332

The (...) Construct 332

The { ...; } Construct 332

More on Shell Variables 333

Functions 333

Job Control 333



xiv Contents

Shell Jobs 333

Stopping Jobs 334

Command Summary 334

The : Command 334

The . Command 334

The alias Command 335

The bg Command 335

The break Command 336

The case Command 336

The cd Command 337

The continue Command 338

The echo Command 338

The eval Command 339

The exec Command 339

The exit Command 340

The export Command 340

The false Command 341

The fc Command 341

The fg Command 342

The for Command 342

The getopts Command 343

The hash Command 344

The if Command 344

The jobs Command 347

The kill Command 347

The newgrp Command 347

The pwd Command 348

The read Command 348

The readonly Command 349

The return Command 349

The set Command 350

The shift Command 352

The test Command 352

The times Command 354

The trap Command 355

The true Command 356

The type Command 356



xvContents

The umask Command 356

The unalias Command 356

The unset Command 357

The until Command 357

The wait Command 358

The while Command 358

 B For More Information 359

Online Documentation 359

Documentation on the Web 360

Books 360

O’Reilly & Associates 360

Pearson 361

  Index 363



About the Authors

Stephen Kochan is the author or co-author of several best-selling titles on Unix and the 
C language, including Programming in C, Programming in Objective-C, Topics in C Programming, 
and Exploring the Unix System. He is a former software consultant for AT&T Bell Laboratories, 
where he developed and taught classes on Unix and C programming.

Patrick Wood is the CTO of the New Jersey location of Electronics for Imaging. He was a 
member of the technical staff at Bell Laboratories when he met Mr. Kochan in 1985. Together 
they founded Pipeline Associates, Inc., a Unix consulting firm, where he was vice president. 
They co-authored Exploring the Unix System, Unix System Security, Topics in C Programming, 
and Unix Shell Programming.



We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your 
opinion and want to know what we’re doing right, what we could do better, what areas you’d 
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

We welcome your comments. You can email or write directly to let us know what you did or 
didn’t like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this book, and that 
due to the high volume of mail we receive, we might not be able to reply to every message.

When you write, please be sure to include this book’s title and author, as well as your name and phone 
or email address.

Email: feedback@developers-library.info

Mail: Reader Feedback
 Addison-Wesley Developer’s Library
 800 East 96th Street
 Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at www.informit.com/register for convenient access 
to any updates, downloads, or errata that might be available for this book.

http://www.informit.com/register


This page intentionally left blank 



Introduction

It’s no secret that the family of Unix and Unix-like operating systems has emerged over the last 
few decades as the most pervasive, most widely used group of operating systems in computing 
today. For programmers who have been using Unix for many years, this came as no surprise: 
The Unix system provides an elegant and efficient environment for program development. 
That’s exactly what Dennis Ritchie and Ken Thompson sought to create when they developed 
Unix at Bell Laboratories way back in the late 1960s.

Note

Throughout this book we’ll use the term Unix to refer generically to the broad family of 
Unix-based operating systems, including true Unix operating systems such as Solaris 
as well as Unix-like operating systems such as Linux and Mac OS X. 

One of the strongest features of the Unix system is its wide collection of programs. More than 
200 basic commands are distributed with the standard operating system and Linux adds to it, 
often shipping with 700–1000 standard commands! These commands (also known as tools) 
do everything from counting the number of lines in a file, to sending electronic mail, to 
 displaying a calendar for any desired year.

But the real strength of the Unix system comes not from its large collection of commands but 
from the elegance and ease with which these commands can be combined to perform far more 
sophisticated tasks.

The standard user interface to Unix is the command line, which actually turns out to be a 
shell, a program that acts as a buffer between the user and the lowest levels of the system itself 
(the kernel ). The shell is simply a program that reads in the commands you type and converts 
them into a form more readily understood by the system. It also includes core programming 
constructs that let you make decisions, loop, and store values in variables.

The standard shell distributed with Unix systems derives from AT&T’s distribution, which 
evolved from a version originally written by Stephen Bourne at Bell Labs. Since then, 
the IEEE has created standards based on the Bourne shell and the other more recent shells. 
The current version of this standard, as of this writing, is the Shell and Utilities volume 
of IEEE Std 1003.1-2001, also known as the POSIX standard. This shell is what we use as the 
basis for the rest of this book.

The examples in this book were tested on a Mac running Mac OS X 10.11, Ubuntu Linux 14.0, 
and an old version of SunOS 5.7 running on a Sparcstation Ultra-30. All examples, with the 



2 Introduction

exception of some Bash examples in Chapter 14, were run using the Korn shell, although all of 
them also work fine with Bash.

Because the shell offers an interpreted programming language, programs can be written,  modified, 
and debugged quickly and easily. We turn to the shell as our first choice of  programming 
language and after you become adept at shell programming, you will too.

How This Book Is Organized

This book assumes that you are familiar with the fundamentals of the system and command 
line; that is, that you know how to log in; how to create files, edit them, and remove them; 
and how to work with directories. In case you haven’t used the Linux or Unix system for a 
while, we’ll examine the basics in Chapter 1, “A Quick Review of the Basics.” In addition, 
filename substitution, I/O redirection, and pipes are also reviewed in the first chapter.

Chapter 2, “What Is the Shell?,” reveals what the shell really is, how it works, and how it ends 
up being your primary method of interacting with the operating system itself. You’ll learn 
about what happens every time you log in to the system, how the shell program gets started, 
how it parses the command line, and how it executes other programs for you. A key point 
made in Chapter 2 is that the shell is just another program; nothing more, nothing less.

Chapter 3, “Tools of the Trade,” provides tutorials on tools useful in writing shell programs. 
Covered in this chapter are cut, paste, sed, grep, sort, tr, and uniq. Admittedly, the 
 selection is subjective, but it does set the stage for programs that we’ll develop throughout the 
remainder of the book. Also in Chapter 3 is a detailed discussion of regular expressions, which 
are used by many Unix commands, such as sed, grep, and ed.

Chapters 4 through 9 teach you how to put the shell to work for writing programs. You’ll 
learn how to write your own commands; use variables; write programs that accept arguments; 
make decisions; use the shell’s for, while, and until looping commands; and use the read 
command to read data from the terminal or from a file. Chapter 5, “Can I Quote you on 
That?”, is devoted entirely to a discussion of one of the most intriguing (and often confusing) 
aspects of the shell: the way it interprets quotes.

By that point in the book, all the basic programming constructs in the shell will have been 
covered, and you will be able to write shell programs to solve your particular problems.

Chapter 10, “Your Environment,” covers a topic of great importance for a real understanding 
of the way the shell operates: the environment. You’ll learn about local and exported variables; 
subshells; special shell variables, such as HOME, PATH, and CDPATH; and how to set up 
your .profile file.

Chapter 11, “More on Parameters,” and Chapter 12, “Loose Ends,” tie up some loose ends, and 
Chapter 13, “Rolo Revisited,” presents a final version of a phone directory program called 
rolo that is developed throughout the book.



3Accessing the Free Web Edition

Chapter 14, “Interactive and Nonstandard Shell Features,” discusses features of the shell that 
either are not formally part of the IEEE POSIX standard shell (but are available in most 
Unix and Linux shells) or are mainly used interactively instead of in programs.

Appendix A, “Shell Summary,” summarizes the features of the IEEE POSIX standard shell.

Appendix B, “For More Information,” lists references and resources, including the Web sites 
where different shells can be downloaded.

The philosophy this book uses is to teach by example. We believe that properly chosen 
examples do a far better job of illustrating how a particular feature is used than ten times as 
many words. The old “A picture is worth …” adage seems to apply just as well to coding. 

We encourage you to type in each example and test it on your own system, for only by doing 
can you become adept at shell programming. Don’t be afraid to experiment. Try changing 
commands in the program examples to see the effect, or add different options or features to 
make the programs more useful or robust.

Accessing the Free Web Edition

Your purchase of this book in any format includes access to the corresponding Web Edition, 
which provides several special features to help you learn:

 ■ The complete text of the book online

 ■ Interactive quizzes and exercises to test your understanding of the material

 ■ Updates and corrections as they become available

The Web Edition can be viewed on all types of computers and mobile devices with any modern 
web browser that supports HTML5. 

To get access to the Web Edition of Shell Programming with Unix, Linux, and OS X all you need to 
do is register this book: 

1. Go to www.informit.com/register.

2. Sign in or create a new account.

3. Enter ISBN: 9780134496009.

4. Answer the questions as proof of purchase.

The Web Edition will appear under the Digital Purchases tab on your Account page. Click the 
Launch link to access the product.

http://www.informit.com/register


This page intentionally left blank 



3
Tools of the Trade

This chapter provides detailed descriptions of some commonly used shell programming tools. 
Covered are cut, paste, sed, tr, grep, uniq, and sort. The more proficient you become 
at using these tools, the easier it will be to write efficient shell scripts.

Regular Expressions

Before getting into the tools, you need to learn about regular expressions. Regular expressions are 
used by many different Unix commands, including ed, sed, awk, grep, and, to a more limited 
extent, the vi editor. They provide a convenient and consistent way of specifying patterns to 
be matched.

Where this gets confusing is that the shell recognizes a limited form of regular expressions with 
filename substitution. Recall that the asterisk (*) specifies zero or more characters to match, the 
question mark (?) specifies any single character, and the construct [...] specifies any character 
enclosed between the brackets. But that’s not the same thing as the more formal regular expres-
sions we’ll explore. For example, the shell sees ? as a match for any single character, while a 
regular expression—commonly abbreviated regex—uses a period (.) for the same purpose. 

True regular expressions are far more sophisticated than those recognized by the shell and there 
are entire books written about how to assemble really complex regex statements. Don’t worry, 
though, you won’t need to become an expert to find great value in regular expressions!

Throughout this section, we assume familiarity with a line-based editor such as ex or ed. 
See Appendix B for more information on these editors if you’re not familiar with them, or 
check the appropriate man page.

Matching Any Character: The Period (.)

A period in a regular expression matches any single character, no matter what it is. So the 
regular expression

r.

matches an r followed by any single character.



52 Chapter 3  Tools of the Trade

The regular expression

.x.

matches an x that is surrounded by any two characters, not necessarily the same.

We can demonstrate a lot of regular expressions by using the simple ed editor, an old-school 
line-oriented editor that has been around as long as Linux have been around.

For example, the ed command

/ ... /

searches forward in the file you are editing for the first line that contains any three characters 
surrounded by blanks. But before we demonstrate that, notice in the very beginning of this 
example that ed shows the number of characters in the file (248) and that commands like print 
(p) can be prefixed with a range specifier, with the most basic being 1,$, which is the first 
through last line of the file:

$ ed intro 
248 
1,$p                              Print all the lines
The Unix operating system was pioneered by Ken
Thompson and Dennis Ritchie at Bell Laboratories
in the late 1960s.  One of the primary goals in
the design of the Unix system was to create an
environment that promoted efficient program
development.

That’s our working file. Now let’s try some regular expressions:

/ ... /                           Look for three chars surrounded by blanks
The Unix operating system was pioneered by Ken
/                                 Repeat last search
Thompson and Dennis Ritchie at Bell Laboratories
1,$s/p.o/XXX/g                    Change all p.os to XXX
1,$p                              Let’s see what happened
The Unix operating system was XXXneered by Ken
ThomXXXn and Dennis Ritchie at Bell Laboratories
in the late 1960s.  One of the primary goals in
the design of the Unix system was to create an
environment that XXXmoted efficient XXXgram
development.

In the first search, ed started searching from the beginning of the file and found that the 
sequence “was” in the first line matched the indicated pattern and printed it. 

Repeating the search (the ed command /) resulted in the display of the second line of the file 
because “and” matched the pattern. The substitute command s that followed specified that all 
occurrences of the character p, followed by any single character, followed by the character o 
were to be replaced by the characters XXX. The prefix 1,$ indicates that it should be applied 
to all lines in the file, and the substitution is specified with the structure s/old/new/g, where s 



53Regular Expressions

indicates it’s a substitution, the slashes delimit the old and new values, and g indicates it should 
be applied as many times as needed for each line, not just once per line.

Matching the Beginning of the Line: The Caret (^)

When the caret character ^ is used as the first character in a regular expression, it matches the 
beginning of the line. So the regular expression

^George

matches the characters George only if they occur at the beginning of the line. This is actually 
known as “left-rooting” in the regex world, for obvious reasons.

Let’s have a look:

$ ed intro 
248 
/the/
>>in the late 1960s.  One of the primary goals in 
>>the design of the Unix system was to create an 
/^the/                            Find the line that starts with the
the design of the Unix system was to create an
1,$s/^/>>/                        Insert >> at the beginning of each line
1,$p
>>The Unix operating system was pioneered by Ken 
>>Thompson and Dennis Ritchie at Bell Laboratories 
>>in the late 1960s.  One of the primary goals in 
>>the design of the Unix system was to create an 
>>environment that promoted efficient program 
>>development.

The preceding example also shows how the regular expression ^ can be used to match the 
beginning of the line. Here it is used to insert the characters >> at the start of each line. 
A command like

1,$s/^/    /

is also commonly used to insert spaces at the start of each line (in this case four spaces would 
be inserted).

Matching the End of the Line: The Dollar Sign $
Just as the ^ is used to match the beginning of the line, so the dollar sign $ is used to match 
the end of the line. So the regular expression

contents$

matches the characters contents only if they are the last characters on the line. What do you 
think would be matched by the regular expression

.$



54 Chapter 3  Tools of the Trade

Would this match a period character that ends a line? No. Recall that the period matches any 
character, so this would match any single character at the end of the line (including a period).

So how do you match a period? In general, if you want to match any of the characters that 
have a special meaning in regular expressions, precede the character by a backslash (\) to 
 override its special meaning. For example, the regular expression

\.$

matches any line that ends in a period, and the regular expression

^\.

matches any line that starts with a period.

Want to specify a backslash as an actual character? Use two backslashes in a row: \\.

$ ed intro 
248 
/\.$/                              Search for a line that ends with a period
development. 
1,$s/$/>>/                         Add >> to the end of each line
1,$p 
The Unix operating system was pioneered by Ken>>
Thompson and Dennis Ritchie at Bell Laboratories>>
in the late 1960s.  One of the primary goals in>> 
the design of the Unix system was to create an>>
environment that promoted efficient program>> 
development.>>
1,$s/..$//                         Delete the last two characters from each line
1,$p 
The Unix operating system was pioneered by Ken 
Thompson and Dennis Ritchie at Bell Laboratories 
in the late 1960s.  One of the primary goals in 
the design of the Unix system was to create an 
environment that promoted efficient program 
development.

A common use of ^ and $ is the regular expression

^$

which matches any line that contains no characters at all. Note that this regular expression is 
different from

^ $

which matches any line that consists of a single space character.



55Regular Expressions

Matching a Character Set: The [...] Construct

Suppose that you are editing a file and want to search for the first occurrence of the characters 
the. In ed, this is easy: You simply type the command

/the/

This causes ed to search forward in its buffer until it finds a line containing the indicated 
sequence. The first line that matches will be displayed by ed:

$ ed intro 
248 
/the/                                    Find line containing the
in the late 1960s.  One of the primary goals in

Notice that the first line of the file also contains the word the, except it begins with a capital 
T. A regular expression that searches for either the or The can be built using a character set: 
the characters [ and ] can be used to specify that one of the enclosed character set is to be 
matched. The regular expression

[tT]he

would match a lower- or uppercase t followed immediately by the characters he:

$ ed intro 
248 
/[tT]he/                         Look for the or The
The Unix operating system was pioneered by Ken
/                                Continue the search
in the late 1960s.  One of the primary goals in 
/                                Once again
the design of the Unix system was to create an
1,$s/[aeiouAEIOU]//g             Delete all vowels
1,$p 
Th nx prtng systm ws pnrd by Kn
Thmpsn nd Dnns Rtch t Bll Lbrtrs
n th lt 1960s. n f th prmry gls n
th dsgn f th nx systm ws t crt n
nvrnmnt tht prmtd ffcnt prgrm
dvlpmnt.

Notice the example in the above of [aeiouAEIOU] which will match a single vowel, either 
uppercase or lowercase. That notation can get rather clunky, however, so a range of characters 
can be specified inside the brackets instead. This can be done by separating the starting and 
ending characters of the range by a dash (-). So, to match any digit character 0 through 9, you 
could use the regular expression

[0123456789]

or, more succinctly, you could write

[0-9]



56 Chapter 3  Tools of the Trade

To match an uppercase letter, use

[A-Z]

To match an upper- or lowercase letter, you write

[A-Za-z]

Here are some examples with ed:

$ ed intro
248
/[0-9]/                         Find a line containing a digit
in the late 1960s. One of the primary goals in
/^[A-Z]/                        Find a line that starts with an uppercase letter
The Unix operating system was pioneered by Ken
/                               Again
Thompson and Dennis Ritchie at Bell Laboratories
1,$s/[A-Z]/*/g                  Change all uppercase letters to *s
1,$p
*he *nix operating system was pioneered by *en
*hompson and *ennis *itchie at *ell *aboratories
in the late 1960s. *ne of the primary goals in
the design of the *nix system was to create an
environment that promoted efficient program
development.

As you’ll learn below, the asterisk is a special character in regular expressions. However, you 
don’t need to put a backslash before it in the replacement string of the substitute command 
because the substitution’s replacement string has a different expression language (we did 
mention that this can be a bit tricky at times, right?). 

In the ed editor, regular expression sequences such as *, ., [...], $, and ^ are only meaningful 
in the search string and have no special meaning when they appear in the replacement string.

If a caret (^) appears as the first character after the left bracket, the sense of the match is 
inverted. (By comparison, the shell uses the ! for this purpose with character sets.) For example, 
the regular expression

[^A-Z]

matches any character except an uppercase letter. Similarly,

[^A-Za-z]

matches any non-alphabetic character. To demonstrate, let’s remove all non-alphabetic charac-
ters from the lines in our test file:

$ ed intro
248
1,$s/[^a-zA-Z]//g                Delete all non-alphabetic characters
1,$p
TheUnixoperatingsystemwaspioneeredbyKen
ThompsonandDennisRitchieatBellLaboratories



57Regular Expressions

InthelatesOneoftheprimarygoalsin
ThedesignoftheUnixsystemwastocreatean
Environmentthatpromotedefficientprogram
development

Matching Zero or More Characters: The Asterisk (*)

The asterisk is used by the shell in filename substitution to match zero or more characters. 
In forming regular expressions, the asterisk is used to match zero or more occurrences of the 
preceding element of the regular expression (which may itself be another regular expression).

So, for example, the regular expression

X*

matches zero, one, two, three, … capital X’s while the expression

XX*

matches one or more capital X’s, because the expression specifies a single X followed by zero 
or more X’s. You can accomplish the same effect with a + instead: it matches one or more of the 
preceding expression, so XX* and X+ are identical in function.

A similar type of pattern is frequently used to match one or more blank spaces in a line:

$ ed lotsaspaces
85
1,$p
This        is   an example   of a 
file   that  contains        a  lot
of   blank spaces                 Change multiple blanks to single blanks
1,$s/  */ /g
1,$p
This is an example of a
file that contains a lot
of blank spaces

The ed command

1,$s/  */ /g

told the program to substitute all occurrences of a space followed by zero or more spaces with a 
single space—in other words, to collapse all whitespace into single spaces. If it matches a single 
space, there’s no change. But if it matches three spaces, say, they’ll all be replaced by a single 
space.

The regular expression

.*

is often used to specify zero or more occurrences of any characters. Bear in mind that a regular 
expression matches the longest string of characters that match the pattern. Therefore, used by 
itself, this regular expression always matches the entire line of text.



58 Chapter 3  Tools of the Trade

As another example of the combination of . and *, the regular expression

e.*e

matches all the characters from the first e on a line to the last one.

Note that it doesn’t necessarily match only lines that start and end with an e, however, because it’s not 
left- or right-rooted (that is, it doesn’t use ^ or $ in the pattern).

$ ed intro
248
1,$s/e.*e/+++/
1,$p
Th+++n
Thompson and D+++S
in th+++ primary goals in
th+++ an
+++nt program
d+++nt.

Here’s an interesting regular expression. What do you think it matches?

[A-Za-z][A-Za-z]*

This matches any alphabetic character followed by zero or more alphabetic characters. This 
is pretty close to a regular expression that matches words and can be used as shown below to 
replace all words with the letter X while retaining all spaces and punctuation.

$ ed intro
248
1,$s/[A-Za-z][A-Za-z]*/X/g
1,$p
X X X X X X X X
X X X X X X X
X X X 1960X.  X X X X X X
X X X X X X X X X X
X X X X X
X.

The only thing it didn’t match in this example was the numeric sequence 1960. You can 
change the regular expression to also consider a sequence of digits as a word too, of course:

$ ed intro
248
1,$s/[A-Za-z0-9][A-Za-z0-9]*/X/g
l,$p
X X X X X X X X
X X X X X X X
X X X X.  X X X X X X
X X X X X X X X X X
X X X X X
X.



59Regular Expressions

We could expand on this to consider hyphenated and contracted words (for example, don’t), 
but we’ll leave that as an exercise for you. As a point to note, if you want to match a dash 
 character inside a bracketed choice of characters, you must put the dash immediately after 
the left bracket (but after the inversion character ^ if present) or immediately before the right 
bracket for it to be properly understood. That is, either of these expressions

[-0-9]
[0-9-]

matches a single dash or digit character.

In a similar fashion, if you want to match a right bracket character, it must appear after the 
opening left bracket (and after the ^ if present). So

[]a-z]

matches a right bracket or a lowercase letter.

Matching a Precise Number of Subpatterns: \{...\}
In the preceding examples, you saw how to use the asterisk to specify that one or more 
occurrences of the preceding regular expression are to be matched. For instance, the regular 
expression

XX*

means match an X followed by zero or more subsequent occurrences of the letter X. Similarly,

XXX*

means match at least two consecutive X’s. 

Once you get to this point, however, it ends up rather clunky, so there is a more general way to 
specify a precise number of characters to be matched: by using the construct

\{min,max\}

where min specifies the minimum number of occurrences of the preceding regular expression to 
be matched, and max specifies the maximum. Notice that you need to escape the curly brackets 
by preceding each with a backslash. 

The regular expression

X\{1,10\}

matches from one to 10 consecutive X’s. Whenever there’s a choice, the largest pattern is 
matched, so if the input text contains eight consecutive X’s, that is how many will be matched 
by the preceding regular expression. 

As another example, the regular expression

[A-Za-z]\{4,7\}

matches a sequence of alphabetic letters from four to seven characters long.



60 Chapter 3  Tools of the Trade

Let’s try a substitution using this notation:

$ ed intro
248
1,$s/[A-Za-z]\{4,7\}/X/g
1,$p
The X Xng X was Xed by Ken
Xn and X X at X XX
in the X 1960s.  One of the X X in
the X of the X X was to X an
XX X Xd Xnt X
XX.

This invocation is a specific instance of a global search and replace in ed (and, therefore, also in 
vi): s/old/new/. In this case, we add a range of 1,$ beforehand and the g flag is appended to 
ensure that multiple substitutions will occur on each line, as appropriate.

A few special cases of this special construct are worth noting. If only one number is enclosed by 
braces, as in

\{10\}

that number specifies that the preceding regular expression must be matched exactly that many 
times. So

[a-zA-Z]\{7\}

matches exactly seven alphabetic characters; and

.\{10\}

matches exactly 10 characters no matter what they are:

$ ed intro
248
1,$s/^.\{10\}//                  Delete the first 10 chars from each line
1,$p
perating system was pioneered by Ken
nd Dennis Ritchie at Bell Laboratories
e 1960s. One of the primary goals in
 of the Unix system was to create an
t that promoted efficient program
t.
1,$s/.\{5\}$//                Delete the last 5 chars from each line
1,$p
perating system was pioneered b
nd Dennis Ritchie at Bell Laborat
e 1960s. One of the primary goa
 of the Unix system was to crea
t that promoted efficient pr
t.



61Regular Expressions

Note that the last line of the file didn’t have five characters when the last substitute command 
was executed; therefore, the match failed on that line and thus was left alone because we 
specified that exactly five characters were to be deleted.

If a single number is enclosed in the braces, followed immediately by a comma, then at least 
that many occurrences of the previous regular expression must be matched, but no upper limit 
is set. So

+\{5,\}

matches at least five consecutive plus signs. If more than five occur sequentially in the input 
data, the largest number is matched.

$ ed intro
248
1,$s/[a-zA-Z]\{6,\}/X/g         Change words at least 6 letters long to X
1,$p
The Unix X X was X by Ken
X and X X at Bell X
in the late 1960s. One of the X goals in
the X of the Unix X was to X an
X that X X X
X.

Saving Matched Characters: \(...\)
It is possible to reference the characters matched against a regular expression by enclosing those 
characters inside backslashed parentheses. These captured characters are stored in  pre-defined 
variables in the regular expression parser called registers, which are numbered 1 through 9.

This gets a bit confusing, so take this section slowly!

As a first example, the regular expression

^\(.\)

matches the first character on the line, whatever it is, and stores it into register 1. 

To retrieve the characters stored in a particular register, the construct \n is used, where n is a 
digit from 1 to 9. So the regular expression

^\(.\)\1

initially matches the first character on the line and stores it in register 1, then matches what-
ever is stored in register 1, as specified by the \1. The net effect of this regular expression is to 
match the first two characters on a line if they are both the same character. Tricky, eh?

The regular expression

^\(.\).*\1$

matches all lines in which the first character on the line (^.) is the same as the last character 
on the line (\1$). The .* matches all the characters in-between.



62 Chapter 3  Tools of the Trade

Let’s break this one down. Remember ^ is the beginning of line and $ the end of line. The 
simplified pattern is then ..* which is the first character of the line (the first .) followed by 
the .* for the rest of the line. Add the \( \) notation to push that first character into register 
1 and \1 to then reference the character, and it should make sense to you.

Successive occurrences of the \(...\) construct get assigned to successive registers. So when 
the following regular expression is used to match some text

^\(...\)\(...\)

the first three characters on the line will be stored into register 1, and the next three characters 
into register 2. If you appended \2\1 to the pattern, you would match a 12-character string 
in which characters 1–3 matched characters 10–12, and in which characters 4–6 matched 
 characters 7–9.

When using the substitute command in ed, a register can also be referenced as part of the 
replacement string, which is where this can be really powerful:

$ ed phonebook
114
1,$p
Alice Chebba    973-555-2015
Barbara Swingle 201-555-9257
Liz Stachiw     212-555-2298
Susan Goldberg  201-555-7776
Tony Iannino    973-555-1295
1,$s/\(.*\)    \(.*\)/\2 \1/         Switch the two fields
1,$p
973-555-2015 Alice Chebba
201-555-9257 Barbara Swingle
212-555-2298 Liz Stachiw
201-555-7776 Susan Goldberg
973-555-1295 Tony Iannino

The names and the phone numbers are separated from each other in the phonebook file by a 
single tab character. The regular expression

\(.*\)    \(.*\)

says to match all the characters up to the first tab (that’s the character sequence .* between the 
\( and the \) and assign them to register 1, and to match all the characters that follow the 
tab character and assign them to register 2. The replacement string

\2 \1

specifies the contents of register 2, followed by a space, followed by the contents of register 1.

When ed applies the substitute command to the first line of the file:

Alice Chebba       973-555-2015



63Regular Expressions

it matches everything up to the tab (Alice Chebba) and stores it into register 1, and every-
thing after the tab (973-555-2015) and stores it into register 2. The tab itself is lost because 
it’s not surrounded by parentheses in the regex. Then ed substitutes the characters that were 
matched (the entire line) with the contents of register 2 (973-555-2015), followed by a space, 
followed by the contents of register 1 (Alice Chebba):

973-555-2015 Alice Chebba

As you can see, regular expressions are powerful tools that enable you to match and manipu-
late complex patterns, albeit with a slight tendency to look like a cat ran over your keyboard at 
times!

Table 3.1 summarizes the special characters recognized in regular expressions to help you 
understand any you encounter and so you can build your own as needed.

Table 3.1 Regular Expression Characters

Notation Meaning Example Matches

. Any character a.. a followed by any two characters

^ Beginning of line ^wood wood only if it appears at the 
 beginning of the line

$ End of line x$ x only if it is the last character on 
the line

^INSERT$ A line containing just the characters 
INSERT

^$ A line that contains no characters

* Zero or more 
 occurrences of 
 previous regular 
expression

x*

xx*

.*

w.*s

Zero or more consecutive x’s 
One or more consecutive x’s 
Zero or more characters w followed 
by zero or more characters followed 
by an s

+ One or more 
 occurrences of 
 previous regular 
expression

x+

xx+

.+

w.+s

One or more consecutive x’s 
Two or more consecutive x’s 
One or more characters w followed 
by one or more characters followed 
by an s

[chars] Any character in 
chars

[tT]

[a-z]

[a-zA-Z]

Lower- or uppercase t 
Lowercase  letter Lower- or uppercase 
letter

[^chars] Any character not 
in chars

[^0-9]

[^a-zA-Z]

Any non-numeric character Any 
 non-alphabetic character

(Continued)



64 Chapter 3  Tools of the Trade

Notation Meaning Example Matches

\{min,max\} At least min and 
at most max 
 occurrences of previ-
ous regular expres-
sion

x\{1,5\}

[0-9]\{3,9\}

[0-9]\{3\}

[0-9]\{3,\}

At least 1 and at most 5 x’s 
Anywhere from 3 to 9 successive 
 digits Exactly 3 digits At least 3 digits

\(...\) Save characters 
matched between 
parentheses in next 
register (1-9)

^\(.\)

^\(.\)\1

^\(.\)\(.\)

First character on the line; stores it 
in register 1 

First and second  characters on the 
line if they’re the same 

First and second characters on the 
line; stores first character in register 
1 and second character in register 2

cut
This section teaches you about a useful command known as cut. This command comes in 
handy when you need to extract (that is, “cut out”) various fields of data from a data file or the 
output of a command. The general format of the cut command is

cut -cchars file

where chars specifies which characters (by position) you want to extract from each line of 
file. This can consist of a single number, as in -c5 to extract the fifth character from each line 
of input; a comma-separated list of numbers, as in -c1,13,50 to extract characters 1, 13, and 
50; or a dash-separated range of numbers, as in -c20-50 to extract characters 20 through 50, 
inclusive. To extract characters to the end of the line, you can omit the second number of the 
range so

cut -c5- data

extracts characters 5 through the end of the line from each line of data and writes the results 
to standard output.

If file is not specified, cut reads its input from standard input, meaning that you can use cut 
as a filter in a pipeline.

Let’s take another look at the output from the who command:

$ who
root     console Feb 24 08:54
steve    tty02   Feb 24 12:55
george   tty08   Feb 24 09:15
dawn     tty10   Feb 24 15:55
$



65cut

As shown, four people are logged in. Suppose that you just want to know the names of the 
logged-in users and don’t care about what terminals they are on or when they logged in. You 
can use the cut command to cut out just the usernames from the who command’s output:

$ who | cut –c1-8                     Extract the first 8 characters
root
steve
george
dawn
$

The –c1-8 option to cut specifies that characters 1 through 8 are to be extracted from each 
line of input and written to standard output.

The following shows how you can tack a sort to the end of the preceding pipeline to get a 
sorted list of the logged-in users:

$ who | cut –c1-8 | sort
dawn
george
root
steve
$

Note, this is our first three-command pipe. Once you get the concept of output connected to 
subsequent input, pipes of three, four or more commands are logical and easy to assemble.

If you wanted to see which terminals were currently being used or which pseudo or virtual 
terminals were in use, you could cut out just the tty field from the who command output:

$ who | cut –c10-16
console
tty02
tty08
tty10
$

How did you know that who displays the terminal identification in character positions 10 
through 16? Simple! You executed the who command at your terminal and counted out the 
appropriate character positions.

You can use cut to extract as many different characters from a line as you want. Here, cut is 
used to display just the username and login time of all logged-in users:

$ who | cut –c1-8,18-
root     Feb 24 08:54
steve    Feb 24 12:55
george   Feb 24 09:15
dawn     Feb 24 15:55
$



66 Chapter 3  Tools of the Trade

The option -c1-8,18- specifies “extract characters 1 through 8 (the username) and also 
 characters 18 through the end of the line (the login time).”

The -d and -f Options

The cut command with its -c flag is useful when you need to extract data from a file or 
command, provided that file or command has a fixed format.

For example, you could use cut with the who command because you know that the usernames 
are always displayed in character positions 1–8, the terminal in 10–16, and the login time in 
18–29. Unfortunately, not all your data will be so well organized! 

For instance, take a look at the /etc/passwd file:

$ cat /etc/passwd
root:*:O:O:The Super User:/:/usr/bin/ksh
cron:*:1:1:Cron Daemon for periodic tasks:/:
bin:*:3:3:The owner of system files:/:
uucp:*:5:5::/usr/spool/uucp:/usr/lib/uucp/uucico
asg:*:6:6:The Owner of Assignable Devices:/:
steve:*.:203:100::/users/steve:/usr/bin/ksh
other:*:4:4:Needed by secure program:/:
$

/etc/passwd is the master file that contains the usernames of all users on your computer 
system. It also contains other information such as user ID, home directory, and the name of the 
program to start up when that particular user logs in. 

Quite clearly, the data in this file does not line up anywhere near as neatly as the who’s output 
does. Therefore extracting a list of all the users of your system from this file cannot be done 
using the -c option to cut.

Upon closer inspection of the file, however, it’s clear that fields are separated by a colon charac-
ter. Although each field may not be the same length from one line to the next, you can “count 
colons” to get the same field from each line.

The -d and -f options are used with cut when you have data that is delimited by a particular 
character, with -d specifying the field seperator delimiter and -f the field or fields you want 
extracted. The invocation of the cut command becomes

cut -ddchar –ffields file

where dchar is the character that delimits each field of the data, and fields specifies the 
fields to be extracted from file. Field numbers start at 1, and the same type of formats can be 
used to specify field numbers as was used to specify character positions before (for example, 
-fl,2,8, -fl-3, -f4-).

To extract the names of all users from /etc/passwd, you could type the following:

$ cut -d: -f1 /etc/passwd                Extract field 1
root
cron
bin



67cut

uucp
asg
steve
other
$

Given that the home directory of each user is in field 6, you can match up each user of the 
system with their home directory:

$ cut -d: -f1,6 /etc/passwd            Extract fields 1 and 6
root:/
cron:/
bin:/
uucp:/usr/spool/uucp
asg:/
steve:/users/steve
other:/
$

If the cut command is used to extract fields from a file and the -d option is not supplied, cut 
uses the tab character as the default field delimiter.

The following depicts a common pitfall when using the cut command. Suppose that you have 
a file called phonebook that has the following contents:

$ cat phonebook
Alice Chebba    973-555-2015
Barbara Swingle 201-555-9257
Jeff Goldberg   201-555-3378
Liz Stachiw     212-555-2298
Susan Goldberg  201-555-7776
Tony Iannino    973-555-1295
$

If you just want to get the names of the people in your phone book, your first impulse would 
be to use cut as shown:

$ cut -c1-15 phonebook
Alice Chebba    97
Barbara Swingle
Jeff Goldberg   2
Liz Stachiw     212
Susan Goldberg
Tony Iannino    97
$

Not quite what you want! This happened because the name is separated from the phone 
number by a tab character, not a set of spaces. As far as cut is concerned, tabs count as a single 
character when using the -c option. Therefore cut extracts the first 15 characters from each 
line, producing the results shown.



68 Chapter 3  Tools of the Trade

In a situation where the fields are separated by tabs, you should use the -f option to 
cut instead:

$ cut -f1 phonebook
Alice Chebba
Barbara Swingle
Jeff Goldberg
Liz Stachiw
Susan Goldberg
Tony Iannino
$

Recall that you don’t have to specify the delimiter character with the -d option because 
cut defaults to a tab character delimiter.

How do you know in advance whether fields are delimited by blanks or tabs? One way to find 
out is by trial and error, as shown previously. Another way is to type the command

sed -n l file

at your terminal. If a tab character separates the fields, \t will be displayed instead of the tab:

$ sed -n l phonebook
Alice Chebba\t973-555-2015
Barbara Swingle\t201-555-9257
Jeff Goldberg\t201-555-3378
Liz Stachiw\t212-555-2298
Susan Goldber\t201-555-7776
Tony Iannino\t973-555-1295
$

The output verifies that each name is separated from each phone number by a tab character. 
The stream editor sed is covered in more detail a bit later in this chapter.

paste
The paste command is the inverse of cut: Instead of breaking lines apart, it puts them 
together. The general format of the paste command is

paste files

where corresponding lines from each of the specified files are “pasted” or merged together 
to form single lines that are then written to standard output. The dash character - can also be 
used in the files sequence to specify that input is from standard input.

Suppose that you have a list of names in a file called names:

$ cat names
Tony
Emanuel
Lucy



69paste

Ralph
Fred
$

Suppose that you also have a second file called numbers that contains corresponding phone 
numbers for each name in names:

$ cat numbers
(307) 555-5356
(212) 555-3456
(212) 555-9959
(212) 555-7741
(212) 555-0040
$

You can use paste to print the names and numbers side-by-side as shown:

$ paste names numbers                    Paste them together
Tony    (307) 555-5356
Emanuel (212) 555-3456
Lucy    (212) 555-9959
Ralph   (212) 555-7741
Fred    (212) 555-0040
$

Each line from names is displayed with the corresponding line from numbers, separated by 
a tab.

The next example illustrates what happens when more than two files are specified:

$ cat addresses
55-23 Vine Street, Miami
39 University Place, New York
17 E. 25th Street, New York
38 Chauncey St., Bensonhurst
17 E. 25th Street, New York
$ paste names addresses numbers
Tony    55-23 Vine Street, Miami       (307) 555-5356
Emanuel 39 University Place, New York  (212) 555-3456
Lucy    17 E. 25th Street, New York    (212) 555-9959
Ralph   38 Chauncey St., Bensonhurst   (212) 555-7741
Fred    17 E. 25th Street, New York    (212) 555-0040
$

The -d Option

If you don’t want the output fields separated by tab characters, you can specify the -d option 
to specify the output delimiter:

-dchars



70 Chapter 3  Tools of the Trade

where chars is one or more characters that will be used to separate the lines pasted together. 
That is, the first character listed in chars will be used to separate lines from the first file that 
are pasted with lines from the second file; the second character listed in chars will be used to 
separate lines from the second file from lines from the third, and so on.

If there are more files than there are characters listed in chars, paste “wraps around” the list 
of characters and starts again at the beginning.

In the simplest form of the -d option, specifying just a single delimiter character causes that 
character to be used to separate all pasted fields:

$ paste -d'+' names addresses numbers
Tony+55-23 Vine Street, Miami+(307) 555-5356
Emanuel+39 University Place, New York+(212) 555-3456
Lucy+17 E. 25th Street, New York+(212) 555-9959
Ralph+38 Chauncey St., Bensonhurst+(212) 555-7741
Fred+17 E. 25th Street, New York+(212) 555-0040

Notice that it’s always safest to enclose the delimiter characters in single quotes. The reason 
why will be explained shortly.

The -s Option

The -s option tells paste to paste together lines from the same file, not from alternate files. If 
just one file is specified, the effect is to merge all the lines from the file together, separated by 
tabs, or by the delimiter characters specified with the -d option.

$ paste -s names          Paste all lines from names
Tony    Emanuel Lucy    Ralph   Fred
$ ls | paste -d' ' -s -   Paste ls’s output, use space as delimiter
addresses intro lotsaspaces names numbers phonebook
$

In the former example, the output from ls is piped to paste which merges the lines 
(-s option) from standard input (-), separating each field with a space (-d' ' option). You’ll 
recall from Chapter 1 that the command

echo *

would have also listed all the files in the current directory, perhaps slightly less complicated 
than ls | paste.

sed
sed is a program used for editing data in a pipe or command sequence. It stands for stream 
editor. Unlike ed, sed cannot be used interactively, though its commands are similar. The 
general form of the sed command is

sed command file



71sed

where command is an ed-style command applied to each line of the specified file. If no file is 
specified, standard input is assumed. 

As sed applies the indicated command or commands to each line of the input, it writes the 
results to standard output.

Let’s have a look. First, the intro file again:

$ cat intro
The Unix operating system was pioneered by Ken
Thompson and Dennis Ritchie at Bell Laboratories
in the late 1960s. One of the primary goals in
the design of the Unix system was to create an
environment that promoted efficient program
development.
$

Suppose that you want to change all occurrences of “Unix” in the text to “UNIX.” This can be 
easily done in sed as follows:

$ sed 's/Unix/UNIX/' intro       Substitute Unix with UNIX
The UNIX operating system was pioneered by Ken
Thompson and Dennis Ritchie at Bell Laboratories
in the late 1960s. One of the primary goals in
the design of the UNIX system was to create an
environment that promoted efficient program
development.
$

Get into the habit of enclosing your sed command in single quotes. Later, you’ll know when 
the quotes are necessary and when it’s better to use double quotes instead.

The sed command s/Unix/UNIX/ is applied to every line of intro. Whether or not the line 
is modified, it gets written to standard output. Since it’s in the data stream also note that 
sed makes no changes to the original input file. 

To make the changes permanent, you must redirect the output from sed into a temporary file 
and then replace the original file with the newly created one:

$ sed 's/Unix/UNIX/' intro > temp   Make the changes
$ mv temp intro                     And now make them permanent
$

Always make sure that the correct changes were made to the file before you overwrite the 
original; a cat of temp would have been smart before the mv command overwrote the original 
data file.

If your text included more than one occurrence of “Unix” on a line, the above sed would have 
changed just the first occurrence to “UNIX.” By appending the global option g to the end of the 
substitute command s, you can ensure that multiple occurrences on a line will be changed. 



72 Chapter 3  Tools of the Trade

In this case, the sed command would read

$ sed 's/Unix/UNIX/g' intro > temp

Now suppose that you wanted to extract just the usernames from the output of who. You 
already know how to do that with the cut command:

$ who | cut -cl-8
root
ruth
steve
pat
$

Alternatively, you can use sed to delete all the characters from the first space (which marks the 
end of the username) through the end of the line by using a regular expression:

$ who | sed 's/ .*$//'
root
ruth
steve
pat
$

The sed command substitutes a blank space followed by any characters up through the end of 
the line ( .*$) with nothing (//); that is, it deletes the characters from the first blank to the end 
of the line for each input line.

The -n Option

By default, sed writes each line of input to standard output, whether or not it gets changed. 
Sometimes, however, you’ll want to use sed just to extract specific lines from a file. That’s what 
the -n flag is for: it tells sed that you don’t want it to print any lines by default. Paired with 
that, use the p command to print whichever lines match your specified range or pattern. For 
example, to print just the first two lines from a file:

$ sed -n '1,2p' intro          Just print the first 2 lines
The UNIX operating system was pioneered by Ken
Thompson and Dennis Ritchie at Bell Laboratories
$

If, instead of line numbers, you precede the p command with a sequence of characters enclosed 
in slashes, sed prints just the lines from standard input that match that pattern. The following 
example shows how sed can be used to display just the lines that contain a particular string:

$ sed -n '/UNIX/p' intro        Just print lines containing UNIX
The UNIX operating system was pioneered by Ken
the design of the UNIX system was to create an
$



73sed

Deleting Lines

To delete lines of text, use the d command. By specifying a line number or range of numbers, 
you can delete specific lines from the input. In the following example, sed is used to delete the 
first two lines of text from intro:

$ sed '1,2d' intro             Delete lines 1 and 2
in the late 1960s. One of the primary goals in
the design of the UNIX system was to create an
environment that promoted efficient program
development.
$

Remembering that by default sed writes all lines of the input to standard output, the remain-
ing lines in text—that is, lines 3 through the end—simply get written to standard output.

By preceding the d command with a pattern, you can used sed to delete all lines that contain 
that text. In the following example, sed is used to delete all lines of text containing the 
word UNIX:

$ sed '/UNIX/d' intro            Delete all lines containing UNIX
Thompson and Dennis Ritchie at Bell Laboratories
in the late 1960s. One of the primary goals in
environment that promoted efficient program
development.
$

The power and flexibility of sed goes far beyond what we’ve shown here. sed has facilities that 
enable you to loop, build text in a buffer, and combine many commands into a single editing 
script. Table 3.2 shows some more examples of sed commands.

Table 3.2 sed Examples

sed Command Description

sed '5d' Delete line 5

sed '/[Tt]est/d' Delete all lines containing Test or test

sed -n '20,25p' text Print only lines 20 through 25 from text

sed '1,10s/unix/UNIX/g' intro Change unix to UNIX wherever it appears in the 
first 10 lines of intro

sed '/jan/s/-1/-5/' Change the first -1 to -5 in all lines containing jan

sed 's/...//' data Delete the first three characters from each line of 
data

sed 's/...$//' data Delete the last 3 characters from each line of data

sed -n 'l' text Print all lines from text, showing non-printing 
 characters as \nn (where nn is the octal value of 
the character), and tab characters as \t



74 Chapter 3  Tools of the Trade

tr
The tr filter is used to translate characters from standard input. The general form of the 
command is

tr from-chars to-chars

where from-chars and to-chars are one or more characters or a set of characters. Any 
 character in from-chars encountered on the input will be translated into the corresponding 
character in to-chars. The result of the translation is written to standard output.

In its simplest form, tr can be used to translate one character into another. Recall the file 
intro from earlier in this chapter:

$ cat intro
The UNIX operating system was pioneered by Ken
Thompson and Dennis Ritchie at Bell Laboratories
in the late 1960s. One of the primary goals in
the design of the UNIX system was to create an
environment that promoted efficient program
development.
$

The following shows how tr can be used to translate all letter e’s to x’s:

$ tr e x < intro
Thx UNIX opxrating systxm was pionxxrxd by Kxn
Thompson and Dxnnis Ritchix at Bxll Laboratorixs
in thx latx 1960s. Onx of thx primary goals in
thx dxsign of thx UNIX systxm was to crxatx an
xnvironmxnt that promotxd xfficixnt program
dxvxlopmxnt.
$

The input to tr must be redirected from the file intro because tr always expects its input to 
come from standard input. The results of the translation are written to standard output, leaving 
the original file untouched. Showing a more practical example, recall the pipeline that you 
used to extract the usernames and home directories of everyone on the system:

$ cut -d: -f1,6 /etc/passwd
root:/
cron:/
bin:/
uucp:/usr/spool/uucp
asg:/
steve:/users/steve
other:/
$

You can translate the colons into tab characters to produce a more readable output simply by 
tacking an appropriate tr command to the end of the pipeline:



75tr

$ cut -d: -f1,6 /etc/passwd | tr : '    '
root    /
cron    /
bin    /
uucp   /usr/spool/uucp
asg    /
steve  /users/steve
other  /
$

Enclosed between the single quotes is a tab character (even though you can’t see it—just take 
our word for it). It must be enclosed in quotes to keep it from being parsed and discarded by 
the shell as extraneous whitespace.

Working with characters that aren’t printable? The octal representation of a character can be 
given to tr in the format

\nnn

where nnn is the octal value of the character. This isn’t used too often, but can be handy to 
remember.

For example, the octal value of the tab character is 11, so another way to accomplish the 
 colon-to-tab transformation is to use the tr command

tr : '\11'

Table 3.3 lists characters that you’ll often want to specify in octal format.

Table 3.3 Octal Values of Some ASCII Characters

Character Octal value

Bell   7

Backspace 10

Tab 11

Newline 12

Linefeed 12

Formfeed 14

Carriage Return 15

Escape 33

In the following example, tr takes the output from date and translates all spaces into newline 
characters. The net result is that each field of output appears on a different line:

$ date | tr ' ' '\12'         Translate spaces to newlines
Sun



76 Chapter 3  Tools of the Trade

Jul

28
19:13:46
EDT
2002
$

tr can also translate ranges of characters. For example, the following shows how to translate all 
lowercase letters in intro to their uppercase equivalents:

$ tr '[a-z]' '[A-Z]' < intro
THE UNIX OPERATING SYSTEM WAS PIONEERED BY KEN
THOMPSON AND DENNIS RITCHIE AT BELL LABORATORIES
IN THE LATE 1960S. ONE OF THE PRIMARY GOALS IN
THE DESIGN OF THE UNIX SYSTEM WAS TO CREATE AN
ENVIRONMENT THAT PROMOTED EFFICIENT PROGRAM
DEVELOPMENT.
$

The character ranges [a-z] and [A-Z] are enclosed in quotes to keep the shell from 
 interpreting the pattern. Try the command without the quotes and you’ll quickly see that the 
result isn’t quite what you seek.

By reversing the two arguments to tr, you can use the command to translate all uppercase 
letters to lowercase:

$ tr '[A-Z]' '[a-z]' < intro
the unix operating system was pioneered by ken
thompson and dennis ritchie at bell laboratories
in the late 1960s. one of the primary goals in
the design of the unix system was to create an
environment that promoted efficient program
development.
$

For a more interesting example, try to guess what this tr invocation accomplishes:

tr '[a-zA-Z]' '[A-Za-z]'

Figured it out? This turns uppercase letters into lowercase, and lowercase letters into uppercase.

The -s Option

You can use the -s option to “squeeze” out multiple consecutive occurrences of characters in 
to-chars. In other words, if more than one consecutive occurrence of a character specified 
in to-chars occurs after the translation is made, the characters will be replaced by a single 
character.

For example, the following command translates all colons into tab characters, replacing 
 multiple tabs with single tabs:

tr -s ':' '\11'



77tr

So one colon or several consecutive colons on the input will be replaced by a single tab 
 character on the output.

Note that '\t' can work in many instances instead of '\11', so be sure to try that if you want 
things to be a bit more readable! 

Suppose that you have a file called lotsaspaces that has contents as shown:

$ cat lotsaspaces
This       is   an example  of a
file   that contains       a  lot
of   blank spaces.
$

You can use tr to squeeze out the multiple spaces by using the -s option and by specifying a 
single space character as the first and second argument:

$ tr –s ' ' ' ' < lotsaspaces
This is an example of a
file that contains a lot
of blank spaces.
$

This tr command in effect says, “translate occurrences of space with another space, replacing 
multiple spaces in the output with a single space.”

The –d Option

tr can also be used to delete individual characters from the input stream. The format of tr in 
this case is

tr -d from-chars

where any character listed in from-chars will be deleted from standard input. In the following 
example, tr is used to delete all spaces from the file intro:

$ tr -d ' ' < intro
TheUNIXoperatingSystemwaspioneeredbyKen
ThompsonandDennisRitchieatBellLaboratories
inthelate1960s.0neoftheprimarygoalsin
thedesignoftheUNIXSystemwastocreatean
environmentthatpromotedefficientprogram
development.
$

You probably realize that you could have also used sed to achieve the same results:

$ sed 's/ //g' intro
TheUNIXoperatingsystemwaspioneeredbyKen
ThompsonandDennisRitchieatBellLaboratories
inthelate1960s.0neoftheprimarygoalsin
thedesignoftheUNIXsystemwastocreatean
environmentthatpromotedefficientprogram



78 Chapter 3  Tools of the Trade

development.
$

This is not atypical for the Unix system; there’s almost always more than one approach to 
solving a particular problem. In the case we just saw, either approach is satisfactory (that is, tr 
or sed), but tr is probably a better choice because it is a much smaller program and likely to 
execute faster.

Table 3.4 summarizes how to use tr for translating and deleting characters. Bear in mind that 
tr works only on single characters. So if you need to translate anything longer than a single 
character (say all occurrences of unix to UNIX), you have to use a different program, such as 
sed, instead.

Table 3.4 tr Examples

tr Command Description

tr 'X' 'x' Translate all capital X’s to small x’s.

tr '()' '{}' Translate all open parentheses to open braces, all closed 
parentheses to closed braces

tr '[a-z]' '[A-Z]' Translate all lowercase letters to uppercase

tr '[A-Z]' '[N-ZA-M]' Translate uppercase letters A–M to N–Z, and N–Z to A–M, 
respectively

tr '    ' ' ' Translate all tabs (character in first pair of quotes) to spaces

tr -s ' ' ' ' Translate multiple spaces to single spaces

tr -d '\14' Delete all formfeed (octal 14) characters

tr -d '[0-9]' Delete all digits

grep
grep allows you to search one or more files for a pattern you specify. The general format of this 
command is

grep pattern files

Every line of each file that contains pattern is displayed at the terminal. If more than one file 
is specified to grep, each line is also preceded by the name of the file, thus enabling you to 
identify the particular file that the pattern was found in.

Let’s say that you want to find every occurrence of the word shell in the file ed.cmd:

$ grep shell ed.cmd
files, and is independent of the shell.
to the shell, just type in a q.
$

This output indicates that two lines in the file ed.cmd contain the word shell.



79grep

If the pattern does not exist in the specified file(s), the grep command simply displays nothing:

$ grep cracker ed.cmd
$

You saw in the section on sed how you could print all lines containing the string UNIX from 
the file intro with the command

sed -n '/UNIX/p' intro

But you could also use the following grep command to achieve the same result:

grep UNIX intro

Recall the phonebook file from before:

$ cat phonebook
Alice Chebba    973-555-2015
Barbara Swingle 201-555-9257
Jeff Goldberg   201-555-3378
Liz Stachiw     212-555-2298
Susan Goldberg  201-555-7776
Tony Iannino    973-555-1295
$

When you need to look up a particular phone number, the grep command comes in handy:

$ grep Susan phonebook
Susan Goldberg  201-555-7776
$

The grep command is particularly useful when you have a lot of files and you want to find 
out which ones contain certain words or phrases. The following example shows how the grep 
command can be used to search for the word shell in all files in the current directory:

$ grep shell *
cmdfiles:shell that enables sophisticated
ed.cmd:files, and is independent of the shell.
ed.cmd:to the shell, just type in a q.
grep.cmd:occurrence of the word shell:
grep.cmd:$ grep shell *
grep.cmd:every use of the word shell.
$

As noted, when more than one file is specified to grep, each output line is preceded by the 
name of the file containing that line.

As with expressions for sed and patterns for tr, it’s a good idea to enclose your grep pattern 
inside a pair of single quotes to “protect” it from the shell. Here’s an example of what can 
happen if you don’t: say you want to find all the lines containing asterisks inside the file 
stars; typing

grep * stars



80 Chapter 3  Tools of the Trade

doesn’t work as you’d hope because the shell sees the asterisk and automatically substitutes the 
names of all the files in your current directory!

$ ls
circles
polka.dots
squares
stars
stripes
$ grep * stars
$

In this case, the shell took the asterisk and substituted the list of files in your current directory. 
Then it started execution of grep, which took the first argument (circles) and tried to find it 
in the files specified by the remaining arguments, as shown in Figure 3.1.

grep

circles

polka.dots

squares

stars

stripes

stars

arguments

Figure 3.1 grep * stars

Enclosing the asterisk in quotes, however, blocks it from being parsed and interpreted by 
the shell:

$ grep '*' stars
The asterisk (*) is a special character that
***********
5 * 4 = 20
$

The quotes told the shell to leave the enclosed characters alone. It then started execution of 
grep, passing it the two arguments * (without the surrounding quotes; the shell removes them 
in the process) and stars (see Figure 3.2).

grep
*

stars

arguments

Figure 3.2 grep '*' stars



81grep

There are characters other than * that have a special meaning to the shell and must be quoted 
when used in a pattern. The whole topic of how quotes are handled by the shell is admittedly 
tricky; an entire chapter—Chapter 5—is devoted to it.

grep takes its input from standard input if no filename is specified. So you can use grep as 
part of a pipe to scan through the output of a command for lines that match a specific pattern. 
Suppose that you want to find out whether the user jim is logged in. You can use grep to 
search through who’s output:

$ who | grep jim
jim        tty16             Feb 20 10:25
$

Note that by not specifying a file to search, grep automatically scans standard input. Naturally, 
if the user jim were not logged in, you would get a new command prompt without any 
 preceding output:

$ who | grep jim
$

Regular Expressions and grep
Let’s take another look at the intro file:

$ cat intro
The UNIX operating system was pioneered by Ken
Thompson and Dennis Ritchie at Bell Laboratories
in the late 1960s. One of the primary goals in
the design of the UNIX system was to create an
environment that promoted efficient program
development.
$

grep allows you to specify your pattern using regular expressions as in ed. Given this 
 information, it means that you can specify the pattern

[tT]he

to have grep search for either a lower- or uppercase T followed by the characters he.

Here’s how to use grep to list all the lines containing the characters the or The:

$ grep '[tT]he' intro
The UNIX operating system was pioneered by Ken
in the late 1960s.  One of the primary goals in
the design of the UNIX system was to create an
$

A smarter alternative might be to utilize the -i option to grep which makes patterns case 
insensitive. That is, the command

grep –i 'the' intro



82 Chapter 3  Tools of the Trade

tells grep to ignore the difference between upper and lowercase when matching the pattern 
against the lines in intro. Therefore, lines containing the or The will be printed, as will lines 
containing THE, THe, tHE, and so on.

Table 3.5 shows other types of regular expressions that you can specify to grep and the types of 
patterns they’ll match.

Table 3.5 Some qrep Examples

Command Prints

grep '[A-Z]' list Lines from list containing a capital letter

grep '[0-9]' data Lines from data containing a digit

grep '[A-Z]...[0-9]' list Lines from list containing five-character patterns 
that start with a capital letter and end with a digit

grep '\.pic$' filelist Lines from filelist that end with .pic

The -v Option

Sometimes you’re interested not in finding the lines that contain a specified pattern, but those 
that don’t. That’s what the -v option is for with grep: to reverse the logic of the matching task. 
In the next example, grep is used to find all the lines in intro that don’t contain the 
pattern UNIX.

$ grep -v 'UNIX' intro          Print all lines that don't contain UNIX 
Thompson and Dennis Ritchie at Bell Laboratories 
in the late 19605.  One of the primary goals in 
environment that promoted efficient program 
development. 
$

The -l Option

At times, you may not want to see the actual lines that match a pattern but just seek the names 
of the files that contain the pattern. For example, suppose that you have a set of C programs 
in your current directory (by convention, these filenames end with the filename suffix .c), and 
you want to know which use a variable called Move_history. Here’s one way of finding 
the answer:

$ grep 'Move_history' *.c               Find Move_history in all C source files
exec.c:MOVE    Move_history[200] = {0}; 
exec.c:     cpymove(&Move_history[Number_half_moves -1], 
exec.c: undo_move(&Move_history[Number_half_moves-1],; 
exec.c: cpymove(&last_move,&Move_history[Number_half_moves-1]); 
exec.c: convert_move(&Move_history[Number_half_moves-1]), 
exec.c:     convert_move(&Move_history[i-1]), 



83grep

exec.c: convert_move(&Move_history[Number_half_moves-1]), 
makemove.c:IMPORT MOVE Move_history[]; 
makemove.c:     if ( Move_history[j].from != BOOK (i,j,from) OR 
makemove.c:          Move_history[j] .to != BOOK (i,j,to) ) 
testch.c:GLOBAL MOVE Move_history[100] = {0}; 
testch.c:    Move_history[Number_half_moves-1].from = move.from; 
testch.c:    Move_history[Number_half_moves-1].to = move.to; 
$

Sifting through the preceding output, you discover that three files—exec.c, makemove.c, and 
testch.c—use the variable.

Add the -l option to grep and you instead get a list of files that contain the specified pattern, 
not the matching lines from the files:

$ grep -l 'Move_history' *.c          List the files that contain Move_history
exec.c 
makemove.c 
testch.c 
$

Because grep conveniently lists the files one per line, you can pipe the output from grep -l 
into wc to count the number of files that contain a particular pattern:

$ grep -l 'Move_history' *.c | wc -l 
      3
$

The preceding command shows that precisely three C program files reference the variable 
Move_history. Now, just to make sure you’re paying attention, what are you counting if you 
use grep without the -l option and pipe the output to wc -l?

The -n Option

If the -n option is used with grep, each line from the file that matches the specified pattern 
is preceded by its corresponding line number. From previous examples, you saw that the file 
testch.c was one of the three files that referenced the variable Move_history; the following 
shows how you can pinpoint the precise lines in the file that reference the variable:

$ grep -n 'Move_history' testch.c         Precede matches with line numbers 
13:GLOBAL MOVE Move_history[100] = {0}; 
197:    Move_history[Number_half_moves-1].from = move.from; 
198:    Move_history[Number_half_moves-1].to = move.to; 
$

As you can see, Move_history is used on lines 13, 197, and 198 in testch.c.

For Unix experts, grep is one of the most commonly used programs because of its flexibility 
and sophistication with pattern matching. It’s one well worth studying.



84 Chapter 3  Tools of the Trade

sort
At its most basic, the sort command is really easy to understand: give it lines of input and it’ll 
sort them alphabetically, with the result appearing as its output:

$ sort names 
Charlie 
Emanuel 
Fred 
Lucy 
Ralph 
Tony 
Tony 
$

By default, sort takes each line of the specified input file and sorts it into ascending order. 

Special characters are sorted according to the internal encoding of the characters. For example, 
the space character is represented internally as the number 32, and the double quote as the 
number 34. This means that the former would be sorted before the latter. Particularly for 
other languages and locales the sorting order can vary, so although you are generally assured 
that sort will perform as expected on alphanumeric input, the ordering of foreign language 
 characters, punctuation, and other special characters is not always what you might expect.

sort has many options that provide more flexibility in performing your sort. We’ll just 
describe a few of the options here.

The -u Option

The -u option tells sort to eliminate duplicate lines from the output.

$ sort -u names
Charlie 
Emanuel 
Fred 
Lucy 
Ralph 
Tony 
$

Here you see that the duplicate line that contained Tony was eliminated from the output. 
A lot of old-school Unix people accomplish the same thing by using the separate program 
uniq, so if you read system shell scripts you’ll often see sequences like sort | uniq. Those 
can be replaced with sort -u!



85sort

The -r Option

Use the -r option to reverse the order of the sort:

$ sort -r names         Reverse sort
Tony 
Tony 
Ralph 
Lucy 
Fred 
Emanuel 
Charlie 
$

The -o Option

By default, sort writes the sorted data to standard output. To have it go into a file, you can use 
output redirection:

$ sort names > sorted_names 
$

Alternatively, you can use the -o option to specify the output file. Simply list the name of the 
output file right after the -o:

$ sort names -o sorted_names 
$

This sorts names and writes the results to sorted_names.

What’s the value of the –o option? Frequently, you want to sort the lines in a file and have the 
sorted data replace the original. But typing

$ sort names > names 
$

won’t work—it ends up wiping out the names file! However, with the -o option, it is okay to 
specify the same name for the output file as the input file:

$ sort names -o names
$ cat names 
Charlie 
Emanuel 
Fred 
Lucy 
Ralph 
Tony 
Tony 
$



86 Chapter 3  Tools of the Trade

Tip

Be careful if your filter or process is going to replace your original input file and make sure that 
it’s all working as you expect prior to having the data overwritten. Unix is good at a lot of things, 
but there’s no unremove command to recover lost data or lost files.

The -n Option

Suppose that you have a file containing pairs of (x, y) data points as shown:

$ cat data
5      27 
2      12
3      33 
23     2
-5     11
15     6
14     -9
$

And suppose that you want to feed this data into a plotting program called plotdata, but that 
the program requires that the incoming data pairs be sorted in increasing value of x (the first 
value on each line).

The -n option to sort specifies that the first field on the line is to be considered a number, 
and the data is to be sorted arithmetically. Compare the output of sort used without 
the -n option and then with it:

$ sort data
-5     11
14     -9
15     6
2      12
23     2
3      33
5      27
$ sort -n data          Sort arithmetically
-5     11
2      12
3      33
5      27
14     -9
15     6
23     2
$



87sort

Skipping Fields

If you had to sort your data file by the y value—that is, the second number in each line—you 
could tell sort to start with the second field by using the option

-k2n

instead of -n. The -k2 says to skip the first field and start the sort analysis with the second field 
of each line. Similarly, -k5n would mean to start with the fifth field on each line and then sort 
the data numerically. 

$ sort -k2n data           Start with the second field in the sort 
14     -9
23     2
15     6 
-5     11
2      12
5      27
3      33
$

Fields are delimited by space or tab characters by default. If a different delimiter is to be used, 
the -t option must be used.

The -t Option

As mentioned, if you skip over fields, sort assumes that the fields are delimited by space or tab 
characters. The -t option can indicate otherwise. In this case, the character that follows the -t 
is taken as the delimiter character.

Consider the sample password file again:

$ cat /etc/passwd 
root:*:0:0:The super User:/:/usr/bin/ksh 
steve:*:203:100::/users/steve:/usr/bin/ksh 
bin:*:3:3:The owner of system files:/: 
cron:*:l:l:Cron Daemon for periodic tasks:/: 
george:*:75:75::/users/george:/usr/lib/rsh 
pat:*:300:300::/users/pat:/usr/bin/ksh 
uucp:nc823ciSiLiZM:5:5::/usr/spool/uucppublic:/usr/lib/uucp/uucico 
asg:*:6:6:The Owner of Assignable Devices:/: 
sysinfo:*:10:10:Access to System Information:/:/usr/bin/sh 
mail:*:301:301::/usr/mail: 
$

If you wanted to sort this file by username (the first field on each line), you could just issue the 
command

sort /etc/passwd



88 Chapter 3  Tools of the Trade

To sort the file instead by the third colon-delimited field (which contains what is known 
as your user ID), you would want an arithmetic sort, starting with the third field (-k3), and 
 specifying the colon character as the field delimiter (-t:):

$ sort -k3n -t: /etc/passwd              Sort by user id 
root:*:0:0:The Super User:/:/usr/bin/ksh 
cron:*:l:l:Cron Daemon for periodic tasks:/:
bin:*:3:3:The owner of system files:/: 
uucp:*:5:5::/usr/spool/uucppublic:/usr/lib/uucp/uucico 
asg:*:6:6:The Owner of Assignable Devices:/: 
sysinfo:*:10:10:Access to System Information:/:/usr/bin/sh 
george:*:75:75::/users/george:/usr/lib/rsh 
steve:*:203:100::/users/steve:/usr/bin/ksh 
pat:*:300:300::/users/pat:/usr/bin/ksh 
mail:*:301:301::/usr/mail: .
$

Here we’ve bolded the third field of each line so that you can easily verify that the file was 
sorted correctly by user ID.

Other Options

Other options to sort enable you to skip characters within a field, specify the field to end the 
sort on, merge sorted input files, and sort in “dictionary order” (only letters, numbers, and 
spaces are used for the comparison). For more details on these options, look under sort in your 
Unix User’s Manual.

uniq
The uniq command is useful when you need to find or remove duplicate lines in a file. 
The basic format of the command is

uniq in_file out_file

In this format, uniq copies in_file to out_file, removing any duplicate lines in the process. 
uniq’s definition of duplicated lines is consecutive lines that match exactly.

If out_file is not specified, the results will be written to standard output. If in_file is also 
not specified, uniq acts as a filter and reads its input from standard input.

Here are some examples to see how uniq works. Suppose that you have a file called names with 
contents as shown:

$ cat names 
Charlie 
Tony 
Emanuel 
Lucy 



89uniq

Ralph 
Fred 
Tony 
$

You can see that the name Tony appears twice in the file. You can use uniq to remove such 
duplicate entries:

$ uniq names           Print unique lines
Charlie 
Tony 
Emanuel 
Lucy 
Ralph 
Fred 
Tony 
$

Oops! Tony still appears twice in the preceding output because the multiple occurrences are not 
consecutive in the file, and thus uniq’s definition of duplicate is not satisfied. To remedy this 
situation, sort is often used to get the duplicate lines adjacent to each other, as mentioned 
earlier in the chapter. The result of the sort is then run through uniq:

$ sort names | uniq 
Charlie 
Emanuel 
Fred 
Lucy 
Ralph 
Tony 
$

The sort moves the two Tony lines together, and then uniq filters out the duplicate line (but 
recall that sort with the -u option performs precisely this function).

The -d Option

Frequently, you’ll be interested in finding just the duplicate entries in a file. The -d option 
to uniq can be used for such purposes: It tells uniq to write only the duplicated lines to 
out_file (or standard output). Such lines are written just once, no matter how many 
 consecutive  occurrences there are.

$ sort names | uniq -d          List duplicate lines
Tony 
$

As a more practical example, let’s return to our /etc/passwd file. This file contains 
 information about each user on the system. It’s conceivable that over the course of adding and 
removing users from this file that perhaps the same username has been inadvertently entered 



90 Chapter 3  Tools of the Trade

more than once. You can easily find such duplicate entries by first sorting /etc/passwd and 
piping the results into uniq -d as done previously:

$ sort /etc/passwd | uniq -d        Find duplicate entries in /etc/passwd
$

There are no duplicate full line /etc/passwd entries. But you really want to find duplicate 
entries for the username field, so  you only want to look at the first field from each line (recall 
that the leading characters of each line of /etc/passwd up to the colon are the username). 
This can’t be done directly through an option to uniq, but can be accomplished by using cut 
to extract the username from each line of the password file before sending it to uniq.

$ sort /etc/passwd | cut -f1 -d: | uniq -d   Find duplicates
cem 
harry 
$

It turns out that there are multiple entries in /etc/passwd for cem and harry. If you wanted 
more information on the particular entries, you could now grep them from /etc/passwd:

$ grep -n 'cem' /etc/passwd 
20:cem:*:91:91::/users/cem: 
166:cem:*:91:91::/users/cem: 
$ grep -n 'harry' /etc/passwd 
29:harry:*:103:103:Harry Johnson:/users/harry: 
79:harry:*:90:90:Harry Johnson:/users/harry: 
$

The -n option was used to find out where the duplicate entries occur. In the case of cem, there 
are two entries on lines 20 and 166; in harry’s case, the two entries are on lines 29 and 79.

Other Options

The -c option to uniq adds an occurrence count, which can be tremendously useful in scripts:

$ sort names | uniq –c         Count line occurrences
   1 Charlie 
   1 Emanuel 
   1 Fred 
   1 Lucy 
   1 Ralph 
   2 Tony
$

One common use of uniq -c is to figure out the most common words in a data file, easily 
done with a command like:

tr '[A-Z]' '[a-z]' datafile | sort | uniq -c | head



91uniq

Two other options that we don’t have space to describe more fully let you tell uniq to ignore 
leading characters/fields on a line. For more information, consult the man page for your 
 particular implementation of uniq with the command man uniq.

We would be remiss if we neglected to mention the programs awk and perl, which can 
be useful when writing shell programs too. They are both big, complicated programming 
 environments unto themselves, however, so we’re going to encourage you to check out 
Awk—A Pattern Scanning and Processing Language, by Aho, et al., in the Unix Programmer’s 
Manual, Volume II for a description of awk, and Learning Perl and Programming Perl, both from 
O’Reilly and Associates, offering a good tutorial and reference on the language, respectively.



This page intentionally left blank 



Index

Symbols
& (ampersand)

&& construct, 161–162

background execution of loops, 177

command sequences and, 322

* (asterisk)

with case statement, 155

filename substitution, 24–25, 47, 331

pattern matching, 57–59, 63, 242, 336

` (back quote), 114–115

\ (backslash)

escaping characters with, 111–112

inside double quotes, 112–114

line continuation, 112

overview, 322

[ ] (brackets), 139–140

^ (caret), 53, 63

: (colon)

: (null) command, 160–161, 334

in directories, 218

((.)) construct, 311

(.) construct, 47, 231–234, 332

\(.\) construct, 61–63, 64

\{.\} construct, 59–61, 64

#! construct, 289–290

|| construct, 161–162

$(.) construct, 115–118

[!] construct, 242



364 [.] construct

[.] construct, 55–57, 242, 336

{ .; } construct, 231–234, 332

>& construct, 261–262

>&- construct, 262

<&- construct, 262

$ (dollar sign)

command prompt, 43

parameter substitution

${parameter}, 239–240

${parameter:+ value}, 242

${parameter:= value}, 241

${parameter:-value}, 240

${parameter:?value}, 241–242

pattern matching, 53–54, 63

variable substitution, 98–100

" (double quotes)

backslash (\) in, 112–114

grouping character sequences with, 
109–111

- (hyphen)

command options, 8

job control, 315

printf format specification modifier, 
206

< (left arrow), 48–49, 331–332

! (logical negation) operator, 

143, 322

$(( )) operator, 103

% (percent sign)

%% format specification character, 203

%b format specification character, 203

%c format specification character, 203

%d format specification character, 203

%o format specification character, 203

%s format specification character, 203

%u format specification character, 203

%X format specification character, 203

%x format specification character, 203

job control, 315

pattern matching, 242–243

with printf command, 202

. (period)

dot (.) command, 227–230, 334–335

pattern matching, 51–53, 63

| (pipe) symbol

|| construct, 161–162

case command, 159–160

loops, 178–179

pipeline process, 33–34, 49, 321, 322

+ (plus sign)

job control, 315

pattern matching, 63

printf format specification modifier, 
206

# (pound sign)

comments, 96

pattern matching, 243

printf format specification modifier, 
206

? (question mark)

filename substitution, 25–27, 47, 331

pattern matching, 242, 336

>> (redirection append) characters, 

31–32, 48–49

<< (redirection append) characters

shell archive creation, 264–267

syntax, 262–264

> (right arrow), 30–32, 48–49, 331–332

; (semicolon), 36, 179–180, 321

' (single quotes), 105–108

~ (tilde) substitution, 318–319, 329

_ (underscore), 322

$? $! variable, 323

$! variable, 257–258, 323



365bases, numbers in different bases

$- variable, 323

$# variable, 122–123, 323

$$ variable, 198–199, 323

$* variable, 123–124, 166, 323

$@ variable, 166–167, 323

$0 variable, 245, 323

${n} variable, 128

${variable} construct, 98–100, 102–103

A
-a (logical AND) operator, 143–144

access modes, 16–17

accessing command history. 

See command history

add program, 125–127, 277

addi program, 200

alias command, 307–309, 335

aliases

defining, 307–309

removing, 309

allexport shell mode, 350

alternative format for test command, 

139–140

ampersand (&)

&& construct, 161–162

background execution of loops, 177

command sequences and, 322

archives, creating, 264–267

args program, 122–123

arguments

definition of, 321

passing

$# variable, 122–123

$* variable, 123–124

${n} special variable, 128

phonebook file example, 
124–128

positional parameters, 121–122

shift command, 128–129

processing, 343–344

arithmetic

arithmetic expansion, 103–104

arithmetic expressions, 330

expr command, 119–120

integer arithmetic

integer types, 304–305

numbers in different bases, 305–306

overview, 303–304

line sorting, 86

arrays, 309–314

ASCII characters, octal values of, 75

asterisk (*)

with case statement, 155

filename substitution, 24–25, 47, 331

pattern matching, 57–59, 63, 242, 336

asynchronous jobs, 257

automatically loaded functions, 303

awk command, 91

B
%b format specification character, 203

back quote (`), 114–115

background execution

commands, 36–37

jobs, 316–317

loops, 177

backslash (\)

escaping characters with, 
111–112

inside double quotes, 112–114

line continuation, 112

overview, 322

bases, numbers in different bases, 

305–306



366 Bash shell

characters. See also text

ASCII characters, octal values of, 75

character sequences

double quotes ("), 109–111

single quotes ('), 105–108

cutting, 64–68

deleting from input stream, 77–78

echoing, 6

escaping, 111–112

in filenames

allowed characters, 6

special characters, 28

format specification characters (printf), 
202–205

pattern matching

any character, 51–53

beginning of line, 53

character sets, 55–57

end of line, 53–54

filename substitution, 25–27

matched characters, saving, 61–63

overview, 155–156

parameter substitution, 242–244

precise number of characters, 59–61

zero or more characters, 57–59

quote characters

backslash ( ), 111–114

double quotes ("), 109–111

single quotes ('), 105–108

translating from standard input, 
74–77

child processes, 257

clauses, else, 145–147, 345–346

closing standard output, 262

colon (:)

: (null) command, 334

in directories, 218

Bash shell. See also nonstandard shell 

features

compatibility summary, 319–320

history of, 289

Web documentation, 360

beginning of line, matching, 53

Bell Laboratories, 1

bg command, 316–317, 335

blocks of storage, 16

body of loops, 164

books, recommended, 360–361

Bourne, Stephen, 1

brackets ([ ]), 139–140

break command, 174–176, 336

breaking out of loops, 174–176

C
C compiler, 360

%c format specification character, 203

caret (^), 53, 63

case command

debugging, 157–159

overview, 336–337

pattern-matching characters, 155–156

pipe symbol (|), 159–160

syntax, 153–154

cat command, 7

cd command, 12–15, 317–318, 337

cdh function, 312–314

CDPATH variable, 323, 337

cdtest program, 225

change program, 281–283

changing

directories, 12–15, 337

group id (GID), 347–348

phonebook file entries, 281–283

character sets, matching, 55–57



367commands

for command

$* variable, 166

$@ variable, 166–167

overview, 163–166, 342–343

without in element, 167–168

command cycle, 43

command files, 93–96

command history

accessing

emacs line edit mode, 294–296

fc command, 301, 326

history command, 294–296, 
300–301

quoting, 329

r command, 301–303

vi line edit mode, 294–296, 
326–329

controlling size of, 292

editing commands in, 341

command line. See commands

Command not found error, 94

command prompt, 43

command substitution

$(.) construct, 115–118

back quote (`), 114–115

definition of, 112

expr command, 119–120

command-line editing

command history

accessing with vi, 
294–296

controlling size of, 292

emacs line edit mode

command history, accessing, 
296–298

overview, 296–298

overview, 291

vi line edit mode

command history, accessing, 
294–296

overview, 292–294

commands

(.) construct, 332

{ .; } construct, 332

alias, 307–309, 335

arguments, passing

$# variable, 122–123

$* variable, 123–124

${n} special variable, 128

overview, 343–344

phonebook file example, 
124–128

positional parameters, 121–122

shift command, 128–129

awk, 91

bg, 316–317, 335

break, 174–176, 336

case

debugging, 157–159

overview, 336–337

pattern-matching characters, 
155–156

pipe symbol (|), 159–160

syntax, 153–154

cat, 7

cd, 12–15, 317–318, 337

command cycle, 43

command history

accessing, 326–329

editing commands in, 341

command re-entry, 326

command summary, 37–38

continue, 176–177, 338

cp, 8, 18–19



368 commands

jobs, 315, 347

kill, 315, 347

ln, 20–23

ls, 7, 15–17

man, 359

mkdir, 17–18

multiple commands on same line, 36

mv, 8–9, 19

newgrp, 347–348

null (:), 160–161, 334

od, 251

options, 8

paste

-d option, 69–70

overview, 68–69

-s option, 70

perl, 91

printf

example, 206–207

format specification characters, 
202–205

format specification modifiers, 
205–206

syntax, 202

printing information about, 356

ps, 37

pwd, 12, 95–96, 348

quoting, 329

r, 301–303

read

exit status, 199–202

menu-driven phone program (rolo), 
193–199

mycp program, 185–193

overview, 348–349

syntax, 185

readonly, 349

cut

-d option, 66–68

-f option, 66–68

overview, 64–66

date, 5, 95–96, 237

dot (.), 334–335

echo

escape characters, 187–188

overview, 6, 338–339

emacs line edit commands, 299–300

entering, 43–44

eval, 255–257, 339

exec, 230–231, 262, 339

exit, 147–148, 340

export, 340–341

expr, 119–120

false, 341

fc, 301, 326–Z01.2304, 341

fg, 316–317, 342

for

$* variable, 166

$@ variable, 166–167

overview, 163–166, 342–343

without in element, 167–168

format of, 321–322

getopts, 180–184, 343–344

grep

-l option, 82–83

-n option, 83

overview, 78–81

regular expressions, 81–82

-v option, 82

grouping, 231–234

hash, 344

history, 294–296, 300–301

if. See if statement

info, 359



369compatibility of shells

readyonly, 254

return, 271, 349

returning information about, 271

rm, 9

rmdir, 22–23

scanning twice before executing, 
255–257

sed

d command, 73

examples, 73

-n option, 72

syntax, 70–72

sending to background, 36–37

set

-- option, 248–250

IFS variable, 251–254

monitor option, 331–332

with no arguments, 247

overview, 239, 321, 350–351

positional parameters, reassigning, 
247–248

-x option, 246

shift, 128–129, 352

skipping in loops, 176–177

sort

-k2n option, 87

-n option, 86

-o option, 85

other options, 88

overview, 84

-r option, 85

-t option, 87–88

-u option, 84

substitution

$(.) construct, 115–118

back quote (`), 114–115

definition of, 112

expr command, 119–120

test, 135, 352–354

tilde substitution, 318–319, 329

times, 354, 355–356

tr

-d option, 77–78

examples, 78

octal values of ASCII characters, 
75

overview, 74–76

-s option, 76–77

trap

execution with no arguments, 
259–260

ignored signals, 260

overview, 258–259

signal numbers, 258

trap reset, 261

true, 356

type, 271

typing on one line, 
179–180

umask, 356

unalias, 309, 356

uniq

-c option, 90

-d option, 89–90

overview, 88–89

unset, 254, 271, 357

until, 170–174, 357

vi line edit commands, 296, 
326–329

wait, 257, 358

wc, 7, 95–96

while, 168–170

who, 5–6

comments, 96, 322

compatibility of shells, 

319–320



370 conditional statements

creating

aliases, 307–309

directories, 17–18

functions, 268

pointers to variables, 257

shell archives, 264–267

ctype program, 155–156, 158–159

current directory, 225–226

cut command

-d option, 66–68

-f option, 66–68

overview, 64–66

Cygwin, 360

D
d command, 73

-d file operator, 142–143

%d format specification character, 203

dangling symbolic links, 23

data. See also I/O (input/output) redirection

extracting

cut command syntax, 64–66

delimiter characters, 66–68

fields, 66–68

printing

command information, 356

date/time, 5, 95–96

formatted output, 202–207

list of active jobs, 347

to working directory, 348

reading

exit status, 199–202

menu-driven phone program (rolo) 
example, 193–199

mycp program, 185–193

read command syntax, 185

data formatting (rolo program), 273–274

conditional statements. See also loops

&& construct, 161–162

|| construct, 161–162

if

case command, 153–160

elif construct, 148–151

else construct, 145–147

exit command, 147–148

exit status, 131–135

null command (:), 160–161

pipe symbol (|), 159–160

syntax, 131

testing conditions in, 131–144

nesting, 148–149

testing conditions in

alternative format for test, 139–140

file operators, 142–143

integer operators, 140–142

logical AND operator (-a), 143–144

logical negation operator (!), 143

logical OR operator (-o), 144

overview, 135

string operators, 135–139

contents of files, displaying, 7

continuation of lines, 112

continue command, 176–177, 338

Coordinated Universal Time, 237

copying files

to another directory, 18–19

mycp program

echo escape characters, 187–188

final code listing, 190–193

initial code listing, 185–187

revised code listing, 188–190

into new file, 8

counting words in files, 7

cp command, 8, 18–19



371duplicate entries, finding

date command, 5, 95–96, 237

date/time, printing, 5, 95–96

db program, 227–229

debugging with -x, 157–159

defining. See creating

definitions (function)

creating, 268

removing, 271

deleting

aliases, 309

characters from input stream, 77–78

directories, 22–23

duplicate lines

sort command, 84

uniq command, 88–89

files, 9

function definitions, 271

lines, 73

phonebook file entries, 127–128, 
280–281

delimiter characters

cut command, 66–68

paste command, 69–70

sort command, 87–88

development of Unix, 1

/dev/tty, 178

directories

changing, 12–15, 337

copying files to, 18–19

creating, 17–18

current directory, 225–226

directory files, 6

home, 10–12, 217

moving files between, 19

pathnames, 10–12

removing, 22–23

structure of, 9–10

working directory

definition of, 10

displaying, 12

printing to, 348

disabling trace mode, 246

display program, 278–279

displaying

error messages, 245

file contents, 7

phonebook file entries, 278–279

variable values, 98–100

working directory, 12

documentation

books, 360–361

comments, 96

here documents

shell archive creation, 
264–267

syntax, 262–264

online documentation, 359

Web documentation, 360

dollar sign ($)

command prompt, 43

parameter substitution

${parameter}, 239–240

${parameter:+ value}, 242

${parameter:= value}, 241

${parameter:-value}, 240

${parameter:?value}, 241–242

pattern matching, 53–54, 63

variable substitution, 98–100

dot (.) command, 227–230

double quotes (")

backslash (\) in, 112–114

grouping character sequences with, 
109–111

duplicate entries, finding, 89–90



372 duplicate lines, eliminating

entries (phonebook file)

adding, 125–127, 277

displaying, 278–279

editing, 281–283

listing, 283–284

looking up, 124–125, 278

removing, 127–128, 280–281

ENV file, 290–291

ENV variable, 290–291, 323

environment

current directory, 225–226

exported variables, 211–216

HOME variable, 217

local variables, 209–210

PATH variable, 217–224

.profile file, 235–236

PS1 variable, 216

PS2 variable, 216

subshells

(.) construct, 231–234

{ .; } construct, 231–234

dot (.) command, 227–230

exec command, 227–230

overview, 210–211, 227

passing variables to, 234–235

TERM variable, 236–237

TZ variable, 236–237

environment control, 49

-eq operator, 140–142

errexit shell mode, 350

errors

Command not found, 94

error messages, displaying, 245

standard error, 35

escape characters (echo command), 

187–188, 338

escaping characters, 111–112

duplicate lines, eliminating

sort command, 84

uniq command, 88–89

E
-e file operator, 142–143

echo command

escape characters, 187–188

overview, 6, 338–339

editing

command-line editing

command history, 292

emacs line edit mode, 296–300

overview, 291

vi line edit mode, 292–296

phonebook file entries, 281–283

editors

stream editor (sed)

command syntax, 70–72

d command, 73

examples, 73

-n option, 72

vi line edit mode, 326–329

elements of arrays, retrieving, 

309–310

elif construct, 148–151

else clause, 145–147, 345–346

emacs line edit mode

command history, accessing, 
296–298

overview, 296–298

enabling trace mode, 246

end of line, matching, 53–54

end-of-line character, 45

entering

commands, 43–44

passwords at login, 41



373files

/etc/passwd, 41

/etc/profile, 235–236

/etc/shadow, 41

eval command, 255–257, 339

exclamation mark (!), 322

exec command, 230–231, 262, 339

executable files, 94

execution

background execution of loops, 177

command execution

command files, 93–96

scanning command line twice 
before executing, 255–257

in current shell, 227–230

function execution, 268–269

program execution, 45–47

subshell execution, 332

exit command, 147–148, 340

EXIT signal, 258

exit status

$? variable, 132–135

definition of, 321

non-zero values, 131

overview, 131–132

read command, 199–202

zero values, 131

export command, 340–341

exported variables, 211–216, 332, 

340–341

expr command, 119–120

expressions

arithmetic expressions, 330

regular expressions

[.] construct, 55–57

\(.\) construct, 61–63

\{.\} construct, 59–61

asterisk (*), 57–59

caret (^), 53

dollar sign ($), 53–54

grep command, 81–82

overview, 51

period (.), 51–53

summary table, 61–63

extracting data

cut command

delimiter characters, 66–68

fields, 66–68

overview, 64–66

F
-f file operator, 142–143

false command, 341

fc command, 301, 326-Z01.2304, 341

FCEDIT variable, 323

fg command, 316–317, 342

fields

cutting, 66–68

skipping during sort, 87

file descriptors, 261

file operators, 142–143

filename substitution

asterisk (*), 24–25

overview, 47, 331

POSIX shell, 331

question mark (?), 25–27

variables, 101–103

files

command files, 93–96

copying

to another directory, 18–19

mycp program, 185–193

into new file, 8

counting words in, 7

directory files, 6



374 files

searching with grep

-l option, 82–83

-n option, 83

overview, 78–81

regular expressions, 81–82

-v option, 82

sorting lines into, 85

special files, 6

temporary files, 198–199

filters, 35

finding. See pattern matching

foreground jobs

bringing jobs to, 342

stopping, 316–317

format specification (printf)

characters, 202–205

modifiers, 205–206

formatted output, printing

example, 206–207

format specification characters, 
202–205

format specification modifiers, 
205–206

printf command syntax, 202

Fox, Brian, 289

Free Software Foundation, 289, 360

fsf.org website, 360

functions

automatically loaded functions, 303

cdh, 312–314

definitions

creating, 268–271

removing, 271

execution, 268–269

local variables, 303

overview, 333

terminating, 271

displaying contents of, 7

duplicate entries, finding, 89–90

ENV, 290–291

executable files, 94

executing in current shell, 227–230

file descriptors, 261

file operators, 142–143

filename substitution

* (asterisk), 24–25

? (question mark), 25–27

asterisk (*), 24–25

overview, 47, 331

POSIX shell, 331

question mark (?), 25–27

variables, 101–103

filenames

allowed characters, 6

changing, 8–9

spaces in, 27

special characters, 28

linking, 20–23

listing, 7, 15–17

moving between directories, 19

ordinary files, 6

overview, 6–7

phonebook

adding entries to, 125–127, 277

displaying entries from, 278–279

editing entries in, 281–283

listing entries in, 283–284

looking up entries in, 124–125, 278

removing entries from, 127–128, 
280–281

.profile, 235–236

removing, 9

renaming, 8–9

rolosubs file, 264–266



375if statement

G
-ge operator, 140–142

getopts command, 180–184, 343–344

getty program. See shells

GID (group id), changing, 347–348

greetings program, 149–151, 159–160

grep command

-l option, 82–83

-n option, 83

overview, 78–81

regular expressions, 81–82

-v option, 82

group id (GID), changing, 347–348

grouping commands, 231–234

groups, 16–17

-gt operator, 140–142

H
handing signals with trap command

execution with no arguments, 
259–260

ignored signals, 260

overview, 258–259

signal numbers, 258

trap reset, 261

hash command, 344

hash sign (#)

comments, 96

pattern matching, 243

printf format specification modifier, 206

here documents

shell archive creation, 264–267

syntax, 262–264

HISTFILE variable, 323

history command, 294–296, 300–301. 

See also command history

history of Unix, 1

HISTSIZE variable, 326

home directory, 10–12, 217

HOME variable, 217, 323

HUP signal, 258

hyphen (-)

command options, 8

job control, 315

printf format specification modifier, 206

I
if statement

case command

debugging, 157–159

pattern-matching characters, 
155–156

pipe symbol (|), 159–160

syntax, 153–154

elif construct, 148–151

else construct, 145–147

exit command, 147–148

exit status

$? variable, 132–135

non-zero values, 131

overview, 131–132

zero values, 131

nesting, 148–149

null command (:), 160–161

overview, 344–346

syntax, 131

testing conditions in

alternative format for test, 
139–140

file operators, 142–143

integer operators, 140–142

logical AND operator (-a), 143–144

logical negation operator (!), 143



376 if statement

r command, 301–303

vi line edit mode, 294–296

command-line editing

command history, 292

emacs line edit mode, 296–300

overview, 291

vi line edit mode, 292–296

ENV file, 290–291

functions

automatically loaded functions, 303

local variables, 303

integer arithmetic

integer types, 304–305

numbers in different bases, 305–306

overview, 303–304

job control, 315–317

order of search, 319

shell, specifying, 290

tilde substitution, 318–319

internal field separators, 251–254

interpreted programming language, 50

I/O (input/output) redirection

<&- construct, 262

>&- construct, 262

input redirection

< (left arrow), 331

exec command, 230–231, 262

in-line input redirection, 262–267

overview, 331

POSIX shell, 331

shell archive creation, 264–267

standard I/O (input/output), 28–30

loops, 177–178

output redirection

exec command, 230–231, 262

overview, 30–32

standard output, closing, 262

logical OR operator (-o), 144

overview, 135

parentheses, 144

string operators, 135–139

test command syntax, 135

IFS variable, 251–254, 323

ignoreeof shell mode, 351

ignoring signals, 260

infinite loops, breaking out of, 174–176

info command, 359

init program, 40–43

input redirection

< (left arrow), 331

exec command, 230–231, 262

in-line input redirection

shell archive creation, 264–267

syntax, 262–264

POSIX shell, 331

standard I/O (input/output), 28–30

INT signal, 258

integer arithmetic

expr command, 119–120

integer types, 304–305

numbers in different bases, 305–306

overview, 303–304

integer operators, 140–142

integer types, 304–305

interactive shell features

aliases

defining, 307–309

removing, 309

arrays, 309–314

cd command, 317–318

command history, accessing

emacs line edit mode, 296–298

fc command, 301

history command, 300–301



377lines

overview, 48–49, 331–332

in programs, 94

standard error, writing to, 
261–262

standard I/O (input/output), 28–30

ison program, 122

J
jobs

asynchronous jobs, 257

bringing to foreground, 342

job control, 315–317

job numbers, 37

killing, 347

printing list of, 347

referencing, 333–334

sending to background, 316–317

stopped jobs, 316–317

stopping, 334

waiting for, 358

waiting for completion

$! variable, 257–258

wait command, 257

jobs command, 315, 347

K
kernel, 1, 39

keyword parameters. See variables (shell)

kill command, 315, 347

killing jobs, 347

Korn, David, 289, 360

Korn shell. See also nonstandard shell 

features

compatibility summary, 319–320

history of, 289

Web documentation, 360

kornshell.com website, 360

L
-L file operator, 142–143

-le operator, 140–142

left-shifting positional parameters, 

128–129

line edit modes

emacs

command history, accessing, 
296–298

overview, 296–298

overview, 291

vi

command history, accessing, 
294–296

overview, 292–294

in-line input redirection

shell archive creation, 264–267

syntax, 262–264

LINENO variable, 324

lines

cutting, 64–66

deleting, 73

duplicate lines, eliminating

sort command, 84

uniq command, 88–89

line continuation, 112

pasting

from different files, 68–69

output delimiters, 69–70

from same file, 70

pattern matching

beginning of line, 53

end of line, 53–54

sorting

arithmetically, 86

delimiter characters, 87–88

duplicate lines, eliminating, 84



378 lines

skipping remaining commands in, 
176–177

terminating, 336

typing on one line, 179–180

until, 170–174

while, 168–170, 358

ls command, 7, 15–17

-lt operator, 140–142

lu program, 124–125, 278

M
MAIL variable, 324

MAILCHECK variable, 324

MAILPATH variable, 324

man command, 359

matched characters, saving, 61–63

matching patterns

any character, 51–53

beginning of line, 53

case command, 155–156, 336–337

character sets, 55–57

duplicate entries, 89–90

end of line, 53–54

filename substitution, 25–27

grep command

-l option, 82–83

-n option, 83

overview, 78–81

regular expressions, 81–82

-v option, 82

matched characters, saving, 61–63

overview, 51

parameter substitution, 242–244

precise number of subpatterns, 59–61

summary of regular expression 
 characters, 63–64

zero or more characters, 57–59

to output file, 85

overview, 84

reverse order, 85

skipped fields, 87

linking files, 20–23

Linux resources

books, 360–361

online documentation, 359

overview, 359

Web documentation, 360

listall program, 283–284

listing

files, 7, 15–17

phonebook file entries, 283–284

variables, 247

ln command, 20–23

local variables, 209–210, 303

logical AND operator (-a), 143–144

logical negation operator (!), 143, 322

logical OR operator (-o), 144

login cycle, 44

login shell, 40–43

looking up phonebook entries, 124–125, 

278

for loops, 342–343

loops

body of, 164

breaking out of, 174–176

executing in background, 177

for

$* variable, 166

$@ variable, 166–167

overview, 163–166, 342–343

without in element, 167–168

getopts command, 180–184

I/O redirection, 177–178

piping data into and out of, 178–179



379nonstandard shell features

mathematical equation solver (expr), 

119–120

menu-driven phone program (rolo)

$$ variable, 198–199

add program, 277

change program, 281–283

data formatting, 273–274

display program, 278–279

final code listing, 274–277

initial code listing, 193–194

listall program, 283–284

lu program, 278

rem program, 280–281

revised code listing, 196–198

sample output, 284–287

sample runs, 195–196

temporary files, 198–199

messages (error), displaying, 245

minus sign (-). See hyphen (-)

mkdir command, 17–18

monitor option (set command), 331–332

monitor shell mode, 351

moving files between directories, 19

multiple commands on same line, 36

mv command, 8–9, 19

mybasename program, 244

mycp program

echo escape characters, 187–188

final code listing, 190–193

initial code listing, 185–187

revised code listing, 188–190

N
-n string operator, 137, 138

names

filename substitution

asterisk (*), 24–25

overview, 27, 47, 331

POSIX shell, 331

question mark (?), 25–27

variables, 101–103

filenames

allowed characters, 6

changing, 8–9

spaces in, 27

special characters, 28

pathnames, 10–12

-ne operator, 140–142

nesting if statements, 148–149

newgrp command, 347–348

newline character, 45

noclobber shell mode, 351

noexec shell mode, 351

noglob shell mode, 351

nolog shell mode, 351

nonstandard shell features

aliases

defining, 307–309

removing, 309

arrays, 309–314

cd command, 317–318

command history, accessing

emacs line edit mode, 296–298

fc command, 301

history command, 300–301

r command, 301–303

vi line edit mode, 294–296

command-line editing

command history, 292

emacs line edit mode, 296–300

overview, 291

vi line edit mode, 292–296

ENV file, 290–291

functions



380 nonstandard shell features

integer operators, 140–142

logical AND operator (-a), 143–144

logical negation operator (!), 143

logical OR operator (-o), 144

string operators, 135–139

test operators, 353–354

options (command), 8

ordinary files, 6

O’Reilly & Associates, 360–361

output

output redirection

> (right arrow), 30–32

exec command, 230–231, 262

POSIX shell, 331–332

standard output, closing, 262

standard I/O (input/output), 28–30

output delimiters

paste command, 69–70

sort command, 88

P
packages, Cygwin, 360

parameters. See also variables (shell)

overview, 239

parameter substitution

${parameter}, 239–240

${parameter:+ value}, 242

${parameter:= value}, 241

${parameter:-value}, 240

${parameter:?value}, 241–242

overview, 324–325

pattern matching, 242–244

positional parameters

definition of, 239

left-shifting, 128–129

overview, 322

automatically loaded functions, 303

local variables, 303

integer arithmetic

integer types, 304–305

numbers in different bases, 305–306

overview, 303–304

job control, 315–317

numbers, 304–305

order of search, 319

shell, specifying, 290

tilde substitution, 318–319

non-zero exit status, 131

nounset shell mode, 351

null command (:), 160–161

null values, 100–101

number program, 154–155, 201–202

number 2 program, 253

numbers

in different bases, 305–306

job numbers, 37

signal numbers, 258, 355

O
%o format specification character, 203

-o (logical OR) operator, 144

octal dump command, 251

octal values of ASCII characters, 75

od command, 251

online documentation, 359

The Open Group, 360

AND operator, 143–144

OR operator, 144

operators

$(( )), 103

arithmetic operators, 330

file operators, 142–143



381pipe symbol (|)

reassigning values to, 239, 247–248

setting, 350

shifting left, 352

substitution, 121–122

special parameters, 323–324

parent processes, 257

parentheses in test command, 144

parsing phase, 44

passing

arguments

$# variable, 122–123

$* variable, 123–124

${n} special variable, 128

phonebook file example, 124–128

positional parameters, 121–122

shift command, 128–129

variables to subshells, 234–235

passwords, entering at login, 40

paste command

-d option, 69–70

overview, 68–69

-s option, 70

pasting lines

from different files, 68–69

output delimiters, 69–70

from same file, 70

PATH variable, 217–224, 324

pathnames, 10–12

pattern matching

any character, 51–53

beginning of line, 53

case command, 155–156, 336–337

character sets, 55–57

duplicate entries, 89–90

end of line, 53–54

filename substitution, 25–27

grep command

-l option, 82–83

-n option, 83

overview, 78–81

regular expressions, 81–82

-v option, 82

matched characters, saving, 61–63

overview, 51

parameter substitution, 242–244

precise number of subpatterns, 
59–61

summary of regular expression 
 characters, 63–64

zero or more characters, 57–59

Pearson books, 361

percent sign (%)

job control, 315

pattern matching, 242–243

with printf command, 202

period (.)

dot (.) command, 227–230, 334–335

pattern matching, 51–53, 63

perl command, 91

phonebook file. See also rolo (Rolodex) 

program

adding entries to, 125–127, 277

displaying entries from, 278–279

editing entries in, 281–283

listing entries in, 283–284

looking up entries in, 124–125, 278

removing entries from, 127–128, 
280–281

PIDs (process IDs), 37, 199

pipe symbol (|)

|| construct, 161–162

case command, 159–160

loops, 178–179

pipeline process, 33–34, 49, 321, 
322



382 plus sign (+)

date/time, 5, 95–96

formatted output

example, 206–207

format specification characters, 
202–205

format specification modifiers, 
205–206

printf command syntax, 202

list of active jobs, 347

to working directory, 348

process IDs (PIDs), 37, 199

processes

definition of, 43

parent/child, 257

returning information about, 37

waiting for completion

$! variable, 257–258

wait command, 257

.profile file, 235–236

on program, 132–135, 145–147, 

170–171

programs

add, 125–127, 277

addi, 200

args, 122–123

arguments, passing

$# variable, 122–123

$* variable, 123–124

${n} special variable, 128

phonebook file example, 124–128

positional parameters, 121–122

shift command, 128–129

cdtest, 225

change, 281–283

command files, 93–96

comments, 96

ctype, 155–156, 158–159

plus sign (+)

job control, 315

pattern matching, 63

printf format specification modifier, 206

pointers to variables, 257

positional parameters

definition of, 239

left-shifting, 128–129

overview, 322

reassigning values to, 239, 247–248

setting, 350

shifting left, 352

substitution, 121–122

POSIX shell

compatibility summary, 319–320

overview, 1

startup, 321

subshell execution, 332

vi line edit mode, 326–329

Web documentation, 360

pound sign (#)

comments, 96

pattern matching, 243

printf format specification modifier, 206

PPID variable, 324

prargs program, 169–170

precedence of operators, 330

precise number of subpatterns, matching, 

59–61

precision modifier (printf), 205–206

printf command

example, 206–207

format specification characters, 202–205

format specification modifiers, 205–206

syntax, 202

printing

command information, 356



383PWD variable

db, 227–229

debugging, 157–159

display, 278–279

execution, 45–47

getty. See shells

greetings, 149–151, 159–160

init, 40–43

ison, 122

listall, 283–284

lu, 124–125, 278

mybasename, 244

mycp

echo escape characters, 
187–188

final code listing, 190–193

initial code listing, 185–187

revised code listing, 
188–190

number, 154–155

number2, 253

on, 132–135, 145–147, 170–171

prargs, 169–170

rem, 147–148, 151–153, 280–281

reverse, 311

rolo (Rolodex)

$$ variable, 198–199

add program, 277

change program, 281–283

data formatting, 273–274

display program, 278–279

final code listing, 274–277

fun, 270–271

initial code listing, 193–194

listall program, 283–284

lu program, 278

PATH variable, 221–224

rem program, 280–281

revised code listing, 196–198

rolosubs file, 264–266

sample output, 284–287

sample runs, 195–196

temporary files, 198–199

run, 95, 121, 164

shar, 267

shell variables

arithmetic expansion, 103–104

assigning values to, 97, 322, 
333

definition of, 97

displaying values of, 98–100

exported variables, 332, 340–341

filename substitution, 101–103

HISTSIZE, 326

null values, 100–101

readonly variables, 349

table of, 323–324

undefined variables, 100–101

stats, 95–96

trace mode, turning on/off, 246

twhile, 169

vartest, 209

vartest2, 210

vartest3, 212

vartest4, 213–214

waitfor, 171–174, 180–184

words, 249–250

ps command, 37

PS1 variable, 216, 324

PS2 variable, 216, 324

PS4 variable, 324

pseudo-terminals, 40

pseudo-tty, 40

pwd command, 12, 95–96, 348

PWD variable, 324



384 question mark (?)

reading data

exit status, 199–202

menu-driven phone program (rolo)

$$ variable, 198–199

initial code listing, 193–194

revised code listing, 196–198

sample runs, 195–196

temporary files, 198–199

mycp program

echo escape characters, 187–188

final code listing, 190–193

initial code listing, 185–187

revised code listing, 188–190

read command syntax, 185

readonly command, 254, 349

read-only variables, 254, 349

reassigning values to positional parameters, 

239, 247–248

redirection (I/O)

<&- construct, 262

>&- construct, 262

input redirection

< (left arrow), 331

exec command, 230–231, 262

in-line input redirection, 262–267

overview, 331

POSIX shell, 331

shell archive creation, 264–267

standard I/O (input/output), 28–30

loops, 177–178

output redirection

exec command, 230–231, 262

overview, 30–32

standard output, closing, 262

overview, 48–49, 331–332

POSIX shell, 331–332

in programs, 94

Q
question mark (?)

filename substitution, 25–27, 47, 331

pattern matching, 242, 336

quote characters

back quote (`), 114–115

backslash (\)

escaping characters with, 
111–114

inside double quotes, 112–114

line continuation, 112

overview, 111–112

double quotes ("), 109–111

overview, 329

single quotes ('), 105–108

smart quotes, 119

R
r command, 301–303

-r file operator, 142–143

race conditions, 199

read command

exit status, 199–202

menu-driven phone program (rolo)

$$ variable, 198–199

initial code listing, 193–194

revised code listing, 196–198

sample runs, 195–196

temporary files, 198–199

mycp program

echo escape characters, 187–188

final code listing, 190–193

initial code listing, 185–187

revised code listing, 188–190

overview, 348–349

syntax, 185



385running rolo program

standard error, writing to, 261–262

standard I/O (input/output), 28–30

redirection append (>>) characters, 31–32

re-entry of commands, 326

references

books, 360–361

online documentation, 359

overview, 359

Web documentation, 360

referencing jobs, 333–334

regex. See regular expressions

registering your book, 3

regular expressions

[.] construct, 55–57

\(.\) construct, 61–63

\{.\} construct, 59–61

asterisk (*), 57–59

caret (^), 53

dollar sign ($), 53–54

grep command, 81–82

overview, 51

period (.), 51–53

summary table, 61–63

rem program, 147–148, 151–153, 

280–281

removing

aliases, 309

characters from input stream, 77–78

directories, 22–23

duplicate lines

sort command, 84

uniq command, 88–89

files, 9

function definitions, 271

lines, 73

phonebook file entries, 127–128, 
280–281

renaming files, 8–9

resetting traps, 261

resources

books, 360–361

online documentation, 359

overview, 359

Web documentation, 360

return command, 271, 349

reverse program, 311

reversing sort order, 85

Ritchie, Dennis, 1

rm command, 9

rmdir command, 22–23

rolo (Rolodex) program

$$ variable, 198–199

add program, 277

change program, 281–283

data formatting, 273–274

display program, 278–279

final code listing, 274–277

functions, 270–271

initial code listing, 193–194

listall program, 283–284

lu program, 278

PATH variable, 221–224

rem program, 280–281

revised code listing, 
196–198

rolosubs file, 264–266

sample output, 284–287

sample runs, 195–196

temporary files, 198–199

Rolodex program. See rolo (Rolodex) 

program

rolosubs file, 264–266

run program, 95, 121, 164

running rolo program, 195–196



386 -s file operator

shell variables. See also parameters

arithmetic expansion, 103–104

assigning values to, 97, 322, 333

definition of, 97

displaying values of, 98–100

ENV, 290–291

exported variables, 211–216, 332, 
340–341

filename substitution and, 
101–103

finding number of characters stored in, 
244

HISTSIZE, 326

HOME, 217

IFS, 251–254

listing, 247

local variables, 209–210, 303

null values, 100–101

passing to subshells, 
234–235

PATH, 217–224

pointers, creating, 257

PS1, 216

PS2, 216

read-only variables, 254, 349

special variables

$? variable, 132–135

$! variable, 257–258

$# variable, 122–123

$* variable, 123–124, 166

$@ variable, 166–167

${n} variable, 128

$0 variable, 245

table of, 323–324

TERM, 236–237

TZ, 236–237

undefined variables, 100–101

unsetting, 254

S
-s file operator, 142–143

%s format specification character, 

203

saving matched characters, 61–63

scanning command line twice before 

executing, 255–257

search order, 319

searching. See pattern matching

searching files with grep

-l option, 82–83

-n option, 83

overview, 78–81

regular expressions, 81–82

-v option, 82

sed command

d command, 73

examples, 73

-n option, 72

overview, 70–72

semicolon (;), 36, 179–180, 321

sending commands to background, 

36–37

sequences of characters

double quotes ("), 109–111

single quotes ('), 105–108

set command

-- option, 248–250

IFS variable, 251–254

monitor option, 331

with no arguments, 247

overview, 239, 321, 350–351

positional parameters, reassigning, 
247–248

-x option, 246

shar program, 267

shell archives, creating, 264–267



387special variables

shells

Bash. See also nonstandard shell features

compatibility summary, 319–320

history of, 289

Web documentation, 360

compatibility summary, 319–320

current shell, executing files in, 
227–230

definition of, 1

Korn shell. See also nonstandard shell 
features

compatibility summary, 319–320

history of, 289

Web documentation, 360

login shell, 40–43

POSIX shell. See POSIX shell

responsibilities of

environment control, 49

filename substitution, 47

interpreted programming 
 language, 50

I/O redirection, 48–49

overview, 44–45

pipelines, 49

program execution, 45–47

variable substitution, 47

specifying, 289–290

subshells

definition of, 43

environment, 210–211

overview, 227

terminating, 340

typing commands to, 43–44

shift command, 128–129, 352

signals

handling with trap command

execution with no arguments, 
259–260

ignored signals, 260

overview, 258–259

signal numbers, 258

trap reset, 261

ignoring, 260

numbers, 355

single quotes ('), 105–108

skipping

commands in loops, 176–177

fields during sort, 87

smart quotes, 119

sort command

-k2n option, 87

-n option, 86

-o option, 85

other options, 88

overview, 84

-r option, 85

-t option, 87–88

-u option, 84

sorting lines

arithmetically, 86

delimiter characters, 87–88

duplicate lines, eliminating, 84

to output file, 85

overview, 84

reverse order, 85

skipped fields, 87

spaces in filenames, 27

sparse arrays, 310

special files, 6

special variables

$? variable, 132–135

$! variable, 257–258

$# variable, 122–123

$* variable, 123–124, 166

$@ variable, 166–167



388 special variables

stats program, 95–96

status, exit

$? variable, 132–135

definition of, 321

non-zero values, 131

overview, 131–132

zero values, 131

stopped jobs, 316–317, 334

storing values in variables, 97

stream editor (sed)

command overview, 70–72

d command, 73

examples, 73

-n option, 72

string operators, 135–139

subpatterns, matching, 59–61

subscripts, 309

subshells

(.) construct, 231–234

{ .; } construct, 231–234

definition of, 43

dot (.) command, 227–230

environment, 210–211

exec command, 227–230

execution, 332

overview, 227

passing variables to, 234–235

substitution

command substitution

$(.) construct, 115–118

back quote (`), 114–115

definition of, 112

expr command, 119–120

filename substitution

asterisk (*), 24–25

overview, 47

POSIX shell, 331

${n} variable, 128

$0 variable, 245

table of, 323–324

specifying shell, 289–290

standard error

overview, 35

writing to, 261–262

standard I/O (input/output)

closing, 262

deleting from input stream, 77–78

overview, 28–30

redirecting, 230–231

redirection, 261–262

translating characters from, 74–77

standard shell. See POSIX shell

starting up POSIX shell, 321

statements

&& construct, 161–162

|| construct, 161–162

comments, 96

if

elif construct, 148–151

else construct, 145–147

exit command, 147–148

exit status, 131–135

nesting, 148–149

syntax, 131

testing conditions in, 131–144

testing conditions in

alternative format for test, 139–140

file operators, 142–143

integer operators, 140–142

logical AND operator (-a), 143–144

logical negation operator (!), 143

logical OR operator (-o), 144

overview, 135

string operators, 135–139



389text

question mark (?), 25–27

shell variables, 101–103

parameter substitution

${parameter}, 239–240

${parameter:+ value}, 242

${parameter:= value}, 241

${parameter:-value}, 240

${parameter:?value}, 241–242

overview, 324–325

pattern matching, 242–244

positional parameters, 121–122

tilde substitution, 318–319, 329

variable substitution, 47, 98–100

suspending jobs, 316

symbolic links, 21–23

T
temporary files, 198–199

TERM, 236–237, 258

terminal, 28

terminating

functions, 271

jobs, 315

loops, 336

shell program, 340

test command

alternative format, 139–140

file operators, 142–143

integer operators, 140–142

logical AND operator (-a), 143–144

logical negation operator (!), 143

logical OR operator (-o), 144

overview, 135, 352–354

parentheses, 144

string operators, 135–139

syntax, 135

testing conditions in if statements

alternative format, 139–140

file operators, 142–143

integer operators, 140–142

logical AND operator (-a), 143–144

logical negation operator (!), 143

logical OR operator (-o), 144

overview, 135

parentheses, 144

string operators, 135–139

test command syntax, 135

text

ASCII characters, octal values of, 75

character sequences

double quotes ("), 109–111

single quotes ('), 105–108

cutting, 64–66

deleting

with sed, 73

with tr command, 77–78

echoing, 6

escaping, 111–112

filenames

allowed characters, 6

special characters, 28

line continuation, 112

pasting, 68–70

pattern matching

any character, 51–53

beginning of line, 53

character sets, 55–57

end of line, 53–54

filename substitution, 25–27

matched characters, saving, 
61–63

parameter substitution, 
242–244



390 text

U
%u format specification character, 203

umask command, 356

unalias command, 309, 356

unary file operators, 142–143

unary logical negation operator (!), 143

undefined variables, 100–101

underscore (_), 322

uniq command

-c option, 90

-d option, 89–90

overview, 88–89

Unix

development of, 1

resources

books, 360–361

online documentation, 359

overview, 359

Web documentation, 360

strengths of, 1

unix.org website, 360

unset command, 254, 271, 357

until command, 170–174, 357

users, returning information about, 5–6

utilities, 39. See also commands

V
values

assigning to variables, 97

reassigning to positional parameters, 
239, 247–248

variables (shell). See also parameters

arithmetic expansion, 103–104

assigning values to, 97, 322, 333

definition of, 97

displaying values of, 98–100

precise number of characters, 
59–61

zero or more characters, 57–59

sorting, 84–88

translating from standard input, 
74–77

Thompson, Ken, 1

tilde substitution, 318–319, 329

time

printing, 5

time zone, determining, 237

times command, 354, 355–356

tools. See commands

tr command

-d option, 77–78

examples, 78

octal values of ASCII characters, 75

overview, 74–76

-s option, 76–77

trace mode, turning on/off, 246

translating characters from standard input, 

74–77

trap command

execution with no arguments, 
259–260

ignored signals, 260

overview, 258–259

signal numbers, 258

trap reset, 261

Trojan horse, 218–219

true command, 356

turning on/off trace mode, 246

twhile program, 169

type command, 271

types, integer, 304–305

typing loops on one line, 179–180

TZ variable, 236–237



391writing to standard error

ENV, 290–291

exported variables, 211–216, 332, 
340–341

filename substitution, 101–103

finding number of characters stored in, 
244

HISTSIZE, 326

HOME, 217

IFS, 251–254

listing, 247

local variables, 209–210, 303

null values, 100–101

passing to subshells, 234–235

PATH, 217–224

pointers, creating, 257

PS1, 216

PS2, 216

read-only variables, 254

readonly variables, 349

special variables

$? variable, 132–135

$! variable, 257–258

$# variable, 122–123

$* variable, 123–124, 166

$@ variable, 166–167

${n} variable, 128

$0 variable, 245

substitution, 47, 98–100

table of, 323–324

TERM, 236–237

TZ, 236–237

undefined variables, 
100–101

unsetting, 254

vartest program, 209

vartest2 program, 210

vartest3 program, 212

vartest4 program, 213–214

verbose shell mode, 351

vi line edit mode

command history, accessing, 
294–296

overview, 292–294, 326–329, 
351

W
-w file operator, 142–143

wait command, 257, 358

waitfor program, 171–174, 180–184, 

232–234

waiting for job completion

$! variable, 257–258

overview, 358

wait command, 257

wc command, 7, 95–96

Web documentation, 360

Web Edition of book, 3

websites

Cygwin, 360

cygwin.com, 360

Free Software Foundation, 360

Korn shell, 360

The Open Group, 360

while loops, 168–170, 358

whitespace, 45, 321

who command, 5–6

width modifier (printf), 205–206

words, counting, 7

words program, 249–250

working directory

definition of, 10

displaying, 12

printing to, 348

writing to standard error, 261–262



392 -x file operator

Y-Z
-z string operator, 137, 138

zero exit status, 131

zero or more characters, matching, 57–59

X
-x file operator, 142–143

%X format specification character, 203

%x format specification character, 203

-x option, debugging with, 157–159

xtrace mode, 351


	Cover
	Title Page
	Copyright Page
	About the Authors
	Table of Contents
	Introduction
	How This Book Is Organized
	Accessing the Free Web Edition

	3 Tools of the Trade
	Regular Expressions
	Matching Any Character: The Period (.)
	Matching the Beginning of the Line: The Caret (^)
	Matching the End of the Line: The Dollar Sign $
	Matching a Character Set: The [...] Construct
	Matching Zero or More Characters: The Asterisk (*)
	Matching a Precise Number of Subpatterns: \{...\}
	Saving Matched Characters: \(...\)

	cut
	The -d and -f Options

	paste
	The -d Option
	The -s Option

	sed
	The -n Option
	Deleting Lines

	tr
	The -s Option
	The -d Option

	grep
	Regular Expressions and grep
	The -v Option
	The -l Option
	The -n Option

	sort
	The -u Option
	The -r Option
	The -o Option
	The -n Option
	Skipping Fields
	The -t Option
	Other Options

	uniq
	The -d Option
	Other Options


	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y-Z



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 0
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /None
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
  >>
  /ExportLayers /ExportVisiblePrintableLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks true
      /BleedOffset [
        13.500000
        13.500000
        13.500000
        13.500000
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
      /DestinationProfileSelector /WorkingCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 30
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




