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Introduction

It’s no secret that the family of Unix and Unix-like operating systems has emerged over the last 
few decades as the most pervasive, most widely used group of operating systems in computing 
today. For programmers who have been using Unix for many years, this came as no surprise: 
The Unix system provides an elegant and efficient environment for program development. 
That’s exactly what Dennis Ritchie and Ken Thompson sought to create when they developed 
Unix at Bell Laboratories way back in the late 1960s.

Note

Throughout this book we’ll use the term Unix to refer generically to the broad family of 
Unix-based operating systems, including true Unix operating systems such as Solaris 
as well as Unix-like operating systems such as Linux and Mac OS X. 

One of the strongest features of the Unix system is its wide collection of programs. More than 
200 basic commands are distributed with the standard operating system and Linux adds to it, 
often shipping with 700–1000 standard commands! These commands (also known as tools) 
do everything from counting the number of lines in a file, to sending electronic mail, to 
 displaying a calendar for any desired year.

But the real strength of the Unix system comes not from its large collection of commands but 
from the elegance and ease with which these commands can be combined to perform far more 
sophisticated tasks.

The standard user interface to Unix is the command line, which actually turns out to be a 
shell, a program that acts as a buffer between the user and the lowest levels of the system itself 
(the kernel ). The shell is simply a program that reads in the commands you type and converts 
them into a form more readily understood by the system. It also includes core programming 
constructs that let you make decisions, loop, and store values in variables.

The standard shell distributed with Unix systems derives from AT&T’s distribution, which 
evolved from a version originally written by Stephen Bourne at Bell Labs. Since then, 
the IEEE has created standards based on the Bourne shell and the other more recent shells. 
The current version of this standard, as of this writing, is the Shell and Utilities volume 
of IEEE Std 1003.1-2001, also known as the POSIX standard. This shell is what we use as the 
basis for the rest of this book.

The examples in this book were tested on a Mac running Mac OS X 10.11, Ubuntu Linux 14.0, 
and an old version of SunOS 5.7 running on a Sparcstation Ultra-30. All examples, with the 
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exception of some Bash examples in Chapter 14, were run using the Korn shell, although all of 
them also work fine with Bash.

Because the shell offers an interpreted programming language, programs can be written,  modified, 
and debugged quickly and easily. We turn to the shell as our first choice of  programming 
language and after you become adept at shell programming, you will too.

How This Book Is Organized

This book assumes that you are familiar with the fundamentals of the system and command 
line; that is, that you know how to log in; how to create files, edit them, and remove them; 
and how to work with directories. In case you haven’t used the Linux or Unix system for a 
while, we’ll examine the basics in Chapter 1, “A Quick Review of the Basics.” In addition, 
filename substitution, I/O redirection, and pipes are also reviewed in the first chapter.

Chapter 2, “What Is the Shell?,” reveals what the shell really is, how it works, and how it ends 
up being your primary method of interacting with the operating system itself. You’ll learn 
about what happens every time you log in to the system, how the shell program gets started, 
how it parses the command line, and how it executes other programs for you. A key point 
made in Chapter 2 is that the shell is just another program; nothing more, nothing less.

Chapter 3, “Tools of the Trade,” provides tutorials on tools useful in writing shell programs. 
Covered in this chapter are cut, paste, sed, grep, sort, tr, and uniq. Admittedly, the 
 selection is subjective, but it does set the stage for programs that we’ll develop throughout the 
remainder of the book. Also in Chapter 3 is a detailed discussion of regular expressions, which 
are used by many Unix commands, such as sed, grep, and ed.

Chapters 4 through 9 teach you how to put the shell to work for writing programs. You’ll 
learn how to write your own commands; use variables; write programs that accept arguments; 
make decisions; use the shell’s for, while, and until looping commands; and use the read 
command to read data from the terminal or from a file. Chapter 5, “Can I Quote you on 
That?”, is devoted entirely to a discussion of one of the most intriguing (and often confusing) 
aspects of the shell: the way it interprets quotes.

By that point in the book, all the basic programming constructs in the shell will have been 
covered, and you will be able to write shell programs to solve your particular problems.

Chapter 10, “Your Environment,” covers a topic of great importance for a real understanding 
of the way the shell operates: the environment. You’ll learn about local and exported variables; 
subshells; special shell variables, such as HOME, PATH, and CDPATH; and how to set up 
your .profile file.

Chapter 11, “More on Parameters,” and Chapter 12, “Loose Ends,” tie up some loose ends, and 
Chapter 13, “Rolo Revisited,” presents a final version of a phone directory program called 
rolo that is developed throughout the book.
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Chapter 14, “Interactive and Nonstandard Shell Features,” discusses features of the shell that 
either are not formally part of the IEEE POSIX standard shell (but are available in most 
Unix and Linux shells) or are mainly used interactively instead of in programs.

Appendix A, “Shell Summary,” summarizes the features of the IEEE POSIX standard shell.

Appendix B, “For More Information,” lists references and resources, including the Web sites 
where different shells can be downloaded.

The philosophy this book uses is to teach by example. We believe that properly chosen 
examples do a far better job of illustrating how a particular feature is used than ten times as 
many words. The old “A picture is worth …” adage seems to apply just as well to coding. 

We encourage you to type in each example and test it on your own system, for only by doing 
can you become adept at shell programming. Don’t be afraid to experiment. Try changing 
commands in the program examples to see the effect, or add different options or features to 
make the programs more useful or robust.

Accessing the Free Web Edition

Your purchase of this book in any format includes access to the corresponding Web Edition, 
which provides several special features to help you learn:

 ■ The complete text of the book online

 ■ Interactive quizzes and exercises to test your understanding of the material

 ■ Updates and corrections as they become available

The Web Edition can be viewed on all types of computers and mobile devices with any modern 
web browser that supports HTML5. 

To get access to the Web Edition of Shell Programming with Unix, Linux, and OS X all you need to 
do is register this book: 

1. Go to www.informit.com/register.

2. Sign in or create a new account.

3. Enter ISBN: 9780134496009.

4. Answer the questions as proof of purchase.

The Web Edition will appear under the Digital Purchases tab on your Account page. Click the 
Launch link to access the product.

http://www.informit.com/register
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3
Tools of the Trade

This chapter provides detailed descriptions of some commonly used shell programming tools. 
Covered are cut, paste, sed, tr, grep, uniq, and sort. The more proficient you become 
at using these tools, the easier it will be to write efficient shell scripts.

Regular Expressions

Before getting into the tools, you need to learn about regular expressions. Regular expressions are 
used by many different Unix commands, including ed, sed, awk, grep, and, to a more limited 
extent, the vi editor. They provide a convenient and consistent way of specifying patterns to 
be matched.

Where this gets confusing is that the shell recognizes a limited form of regular expressions with 
filename substitution. Recall that the asterisk (*) specifies zero or more characters to match, the 
question mark (?) specifies any single character, and the construct [...] specifies any character 
enclosed between the brackets. But that’s not the same thing as the more formal regular expres-
sions we’ll explore. For example, the shell sees ? as a match for any single character, while a 
regular expression—commonly abbreviated regex—uses a period (.) for the same purpose. 

True regular expressions are far more sophisticated than those recognized by the shell and there 
are entire books written about how to assemble really complex regex statements. Don’t worry, 
though, you won’t need to become an expert to find great value in regular expressions!

Throughout this section, we assume familiarity with a line-based editor such as ex or ed. 
See Appendix B for more information on these editors if you’re not familiar with them, or 
check the appropriate man page.

Matching Any Character: The Period (.)

A period in a regular expression matches any single character, no matter what it is. So the 
regular expression

r.

matches an r followed by any single character.



52 Chapter 3  Tools of the Trade

The regular expression

.x.

matches an x that is surrounded by any two characters, not necessarily the same.

We can demonstrate a lot of regular expressions by using the simple ed editor, an old-school 
line-oriented editor that has been around as long as Linux have been around.

For example, the ed command

/ ... /

searches forward in the file you are editing for the first line that contains any three characters 
surrounded by blanks. But before we demonstrate that, notice in the very beginning of this 
example that ed shows the number of characters in the file (248) and that commands like print 
(p) can be prefixed with a range specifier, with the most basic being 1,$, which is the first 
through last line of the file:

$ ed intro 
248 
1,$p                              Print all the lines
The Unix operating system was pioneered by Ken
Thompson and Dennis Ritchie at Bell Laboratories
in the late 1960s.  One of the primary goals in
the design of the Unix system was to create an
environment that promoted efficient program
development.

That’s our working file. Now let’s try some regular expressions:

/ ... /                           Look for three chars surrounded by blanks
The Unix operating system was pioneered by Ken
/                                 Repeat last search
Thompson and Dennis Ritchie at Bell Laboratories
1,$s/p.o/XXX/g                    Change all p.os to XXX
1,$p                              Let’s see what happened
The Unix operating system was XXXneered by Ken
ThomXXXn and Dennis Ritchie at Bell Laboratories
in the late 1960s.  One of the primary goals in
the design of the Unix system was to create an
environment that XXXmoted efficient XXXgram
development.

In the first search, ed started searching from the beginning of the file and found that the 
sequence “was” in the first line matched the indicated pattern and printed it. 

Repeating the search (the ed command /) resulted in the display of the second line of the file 
because “and” matched the pattern. The substitute command s that followed specified that all 
occurrences of the character p, followed by any single character, followed by the character o 
were to be replaced by the characters XXX. The prefix 1,$ indicates that it should be applied 
to all lines in the file, and the substitution is specified with the structure s/old/new/g, where s 
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indicates it’s a substitution, the slashes delimit the old and new values, and g indicates it should 
be applied as many times as needed for each line, not just once per line.

Matching the Beginning of the Line: The Caret (^)

When the caret character ^ is used as the first character in a regular expression, it matches the 
beginning of the line. So the regular expression

^George

matches the characters George only if they occur at the beginning of the line. This is actually 
known as “left-rooting” in the regex world, for obvious reasons.

Let’s have a look:

$ ed intro 
248 
/the/
>>in the late 1960s.  One of the primary goals in 
>>the design of the Unix system was to create an 
/^the/                            Find the line that starts with the
the design of the Unix system was to create an
1,$s/^/>>/                        Insert >> at the beginning of each line
1,$p
>>The Unix operating system was pioneered by Ken 
>>Thompson and Dennis Ritchie at Bell Laboratories 
>>in the late 1960s.  One of the primary goals in 
>>the design of the Unix system was to create an 
>>environment that promoted efficient program 
>>development.

The preceding example also shows how the regular expression ^ can be used to match the 
beginning of the line. Here it is used to insert the characters >> at the start of each line. 
A command like

1,$s/^/    /

is also commonly used to insert spaces at the start of each line (in this case four spaces would 
be inserted).

Matching the End of the Line: The Dollar Sign $
Just as the ^ is used to match the beginning of the line, so the dollar sign $ is used to match 
the end of the line. So the regular expression

contents$

matches the characters contents only if they are the last characters on the line. What do you 
think would be matched by the regular expression

.$
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Would this match a period character that ends a line? No. Recall that the period matches any 
character, so this would match any single character at the end of the line (including a period).

So how do you match a period? In general, if you want to match any of the characters that 
have a special meaning in regular expressions, precede the character by a backslash (\) to 
 override its special meaning. For example, the regular expression

\.$

matches any line that ends in a period, and the regular expression

^\.

matches any line that starts with a period.

Want to specify a backslash as an actual character? Use two backslashes in a row: \\.

$ ed intro 
248 
/\.$/                              Search for a line that ends with a period
development. 
1,$s/$/>>/                         Add >> to the end of each line
1,$p 
The Unix operating system was pioneered by Ken>>
Thompson and Dennis Ritchie at Bell Laboratories>>
in the late 1960s.  One of the primary goals in>> 
the design of the Unix system was to create an>>
environment that promoted efficient program>> 
development.>>
1,$s/..$//                         Delete the last two characters from each line
1,$p 
The Unix operating system was pioneered by Ken 
Thompson and Dennis Ritchie at Bell Laboratories 
in the late 1960s.  One of the primary goals in 
the design of the Unix system was to create an 
environment that promoted efficient program 
development.

A common use of ^ and $ is the regular expression

^$

which matches any line that contains no characters at all. Note that this regular expression is 
different from

^ $

which matches any line that consists of a single space character.
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Matching a Character Set: The [...] Construct

Suppose that you are editing a file and want to search for the first occurrence of the characters 
the. In ed, this is easy: You simply type the command

/the/

This causes ed to search forward in its buffer until it finds a line containing the indicated 
sequence. The first line that matches will be displayed by ed:

$ ed intro 
248 
/the/                                    Find line containing the
in the late 1960s.  One of the primary goals in

Notice that the first line of the file also contains the word the, except it begins with a capital 
T. A regular expression that searches for either the or The can be built using a character set: 
the characters [ and ] can be used to specify that one of the enclosed character set is to be 
matched. The regular expression

[tT]he

would match a lower- or uppercase t followed immediately by the characters he:

$ ed intro 
248 
/[tT]he/                         Look for the or The
The Unix operating system was pioneered by Ken
/                                Continue the search
in the late 1960s.  One of the primary goals in 
/                                Once again
the design of the Unix system was to create an
1,$s/[aeiouAEIOU]//g             Delete all vowels
1,$p 
Th nx prtng systm ws pnrd by Kn
Thmpsn nd Dnns Rtch t Bll Lbrtrs
n th lt 1960s. n f th prmry gls n
th dsgn f th nx systm ws t crt n
nvrnmnt tht prmtd ffcnt prgrm
dvlpmnt.

Notice the example in the above of [aeiouAEIOU] which will match a single vowel, either 
uppercase or lowercase. That notation can get rather clunky, however, so a range of characters 
can be specified inside the brackets instead. This can be done by separating the starting and 
ending characters of the range by a dash (-). So, to match any digit character 0 through 9, you 
could use the regular expression

[0123456789]

or, more succinctly, you could write

[0-9]
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To match an uppercase letter, use

[A-Z]

To match an upper- or lowercase letter, you write

[A-Za-z]

Here are some examples with ed:

$ ed intro
248
/[0-9]/                         Find a line containing a digit
in the late 1960s. One of the primary goals in
/^[A-Z]/                        Find a line that starts with an uppercase letter
The Unix operating system was pioneered by Ken
/                               Again
Thompson and Dennis Ritchie at Bell Laboratories
1,$s/[A-Z]/*/g                  Change all uppercase letters to *s
1,$p
*he *nix operating system was pioneered by *en
*hompson and *ennis *itchie at *ell *aboratories
in the late 1960s. *ne of the primary goals in
the design of the *nix system was to create an
environment that promoted efficient program
development.

As you’ll learn below, the asterisk is a special character in regular expressions. However, you 
don’t need to put a backslash before it in the replacement string of the substitute command 
because the substitution’s replacement string has a different expression language (we did 
mention that this can be a bit tricky at times, right?). 

In the ed editor, regular expression sequences such as *, ., [...], $, and ^ are only meaningful 
in the search string and have no special meaning when they appear in the replacement string.

If a caret (^) appears as the first character after the left bracket, the sense of the match is 
inverted. (By comparison, the shell uses the ! for this purpose with character sets.) For example, 
the regular expression

[^A-Z]

matches any character except an uppercase letter. Similarly,

[^A-Za-z]

matches any non-alphabetic character. To demonstrate, let’s remove all non-alphabetic charac-
ters from the lines in our test file:

$ ed intro
248
1,$s/[^a-zA-Z]//g                Delete all non-alphabetic characters
1,$p
TheUnixoperatingsystemwaspioneeredbyKen
ThompsonandDennisRitchieatBellLaboratories
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InthelatesOneoftheprimarygoalsin
ThedesignoftheUnixsystemwastocreatean
Environmentthatpromotedefficientprogram
development

Matching Zero or More Characters: The Asterisk (*)

The asterisk is used by the shell in filename substitution to match zero or more characters. 
In forming regular expressions, the asterisk is used to match zero or more occurrences of the 
preceding element of the regular expression (which may itself be another regular expression).

So, for example, the regular expression

X*

matches zero, one, two, three, … capital X’s while the expression

XX*

matches one or more capital X’s, because the expression specifies a single X followed by zero 
or more X’s. You can accomplish the same effect with a + instead: it matches one or more of the 
preceding expression, so XX* and X+ are identical in function.

A similar type of pattern is frequently used to match one or more blank spaces in a line:

$ ed lotsaspaces
85
1,$p
This        is   an example   of a 
file   that  contains        a  lot
of   blank spaces                 Change multiple blanks to single blanks
1,$s/  */ /g
1,$p
This is an example of a
file that contains a lot
of blank spaces

The ed command

1,$s/  */ /g

told the program to substitute all occurrences of a space followed by zero or more spaces with a 
single space—in other words, to collapse all whitespace into single spaces. If it matches a single 
space, there’s no change. But if it matches three spaces, say, they’ll all be replaced by a single 
space.

The regular expression

.*

is often used to specify zero or more occurrences of any characters. Bear in mind that a regular 
expression matches the longest string of characters that match the pattern. Therefore, used by 
itself, this regular expression always matches the entire line of text.
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As another example of the combination of . and *, the regular expression

e.*e

matches all the characters from the first e on a line to the last one.

Note that it doesn’t necessarily match only lines that start and end with an e, however, because it’s not 
left- or right-rooted (that is, it doesn’t use ^ or $ in the pattern).

$ ed intro
248
1,$s/e.*e/+++/
1,$p
Th+++n
Thompson and D+++S
in th+++ primary goals in
th+++ an
+++nt program
d+++nt.

Here’s an interesting regular expression. What do you think it matches?

[A-Za-z][A-Za-z]*

This matches any alphabetic character followed by zero or more alphabetic characters. This 
is pretty close to a regular expression that matches words and can be used as shown below to 
replace all words with the letter X while retaining all spaces and punctuation.

$ ed intro
248
1,$s/[A-Za-z][A-Za-z]*/X/g
1,$p
X X X X X X X X
X X X X X X X
X X X 1960X.  X X X X X X
X X X X X X X X X X
X X X X X
X.

The only thing it didn’t match in this example was the numeric sequence 1960. You can 
change the regular expression to also consider a sequence of digits as a word too, of course:

$ ed intro
248
1,$s/[A-Za-z0-9][A-Za-z0-9]*/X/g
l,$p
X X X X X X X X
X X X X X X X
X X X X.  X X X X X X
X X X X X X X X X X
X X X X X
X.
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We could expand on this to consider hyphenated and contracted words (for example, don’t), 
but we’ll leave that as an exercise for you. As a point to note, if you want to match a dash 
 character inside a bracketed choice of characters, you must put the dash immediately after 
the left bracket (but after the inversion character ^ if present) or immediately before the right 
bracket for it to be properly understood. That is, either of these expressions

[-0-9]
[0-9-]

matches a single dash or digit character.

In a similar fashion, if you want to match a right bracket character, it must appear after the 
opening left bracket (and after the ^ if present). So

[]a-z]

matches a right bracket or a lowercase letter.

Matching a Precise Number of Subpatterns: \{...\}
In the preceding examples, you saw how to use the asterisk to specify that one or more 
occurrences of the preceding regular expression are to be matched. For instance, the regular 
expression

XX*

means match an X followed by zero or more subsequent occurrences of the letter X. Similarly,

XXX*

means match at least two consecutive X’s. 

Once you get to this point, however, it ends up rather clunky, so there is a more general way to 
specify a precise number of characters to be matched: by using the construct

\{min,max\}

where min specifies the minimum number of occurrences of the preceding regular expression to 
be matched, and max specifies the maximum. Notice that you need to escape the curly brackets 
by preceding each with a backslash. 

The regular expression

X\{1,10\}

matches from one to 10 consecutive X’s. Whenever there’s a choice, the largest pattern is 
matched, so if the input text contains eight consecutive X’s, that is how many will be matched 
by the preceding regular expression. 

As another example, the regular expression

[A-Za-z]\{4,7\}

matches a sequence of alphabetic letters from four to seven characters long.
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Let’s try a substitution using this notation:

$ ed intro
248
1,$s/[A-Za-z]\{4,7\}/X/g
1,$p
The X Xng X was Xed by Ken
Xn and X X at X XX
in the X 1960s.  One of the X X in
the X of the X X was to X an
XX X Xd Xnt X
XX.

This invocation is a specific instance of a global search and replace in ed (and, therefore, also in 
vi): s/old/new/. In this case, we add a range of 1,$ beforehand and the g flag is appended to 
ensure that multiple substitutions will occur on each line, as appropriate.

A few special cases of this special construct are worth noting. If only one number is enclosed by 
braces, as in

\{10\}

that number specifies that the preceding regular expression must be matched exactly that many 
times. So

[a-zA-Z]\{7\}

matches exactly seven alphabetic characters; and

.\{10\}

matches exactly 10 characters no matter what they are:

$ ed intro
248
1,$s/^.\{10\}//                  Delete the first 10 chars from each line
1,$p
perating system was pioneered by Ken
nd Dennis Ritchie at Bell Laboratories
e 1960s. One of the primary goals in
 of the Unix system was to create an
t that promoted efficient program
t.
1,$s/.\{5\}$//                Delete the last 5 chars from each line
1,$p
perating system was pioneered b
nd Dennis Ritchie at Bell Laborat
e 1960s. One of the primary goa
 of the Unix system was to crea
t that promoted efficient pr
t.
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Note that the last line of the file didn’t have five characters when the last substitute command 
was executed; therefore, the match failed on that line and thus was left alone because we 
specified that exactly five characters were to be deleted.

If a single number is enclosed in the braces, followed immediately by a comma, then at least 
that many occurrences of the previous regular expression must be matched, but no upper limit 
is set. So

+\{5,\}

matches at least five consecutive plus signs. If more than five occur sequentially in the input 
data, the largest number is matched.

$ ed intro
248
1,$s/[a-zA-Z]\{6,\}/X/g         Change words at least 6 letters long to X
1,$p
The Unix X X was X by Ken
X and X X at Bell X
in the late 1960s. One of the X goals in
the X of the Unix X was to X an
X that X X X
X.

Saving Matched Characters: \(...\)
It is possible to reference the characters matched against a regular expression by enclosing those 
characters inside backslashed parentheses. These captured characters are stored in  pre-defined 
variables in the regular expression parser called registers, which are numbered 1 through 9.

This gets a bit confusing, so take this section slowly!

As a first example, the regular expression

^\(.\)

matches the first character on the line, whatever it is, and stores it into register 1. 

To retrieve the characters stored in a particular register, the construct \n is used, where n is a 
digit from 1 to 9. So the regular expression

^\(.\)\1

initially matches the first character on the line and stores it in register 1, then matches what-
ever is stored in register 1, as specified by the \1. The net effect of this regular expression is to 
match the first two characters on a line if they are both the same character. Tricky, eh?

The regular expression

^\(.\).*\1$

matches all lines in which the first character on the line (^.) is the same as the last character 
on the line (\1$). The .* matches all the characters in-between.
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Let’s break this one down. Remember ^ is the beginning of line and $ the end of line. The 
simplified pattern is then ..* which is the first character of the line (the first .) followed by 
the .* for the rest of the line. Add the \( \) notation to push that first character into register 
1 and \1 to then reference the character, and it should make sense to you.

Successive occurrences of the \(...\) construct get assigned to successive registers. So when 
the following regular expression is used to match some text

^\(...\)\(...\)

the first three characters on the line will be stored into register 1, and the next three characters 
into register 2. If you appended \2\1 to the pattern, you would match a 12-character string 
in which characters 1–3 matched characters 10–12, and in which characters 4–6 matched 
 characters 7–9.

When using the substitute command in ed, a register can also be referenced as part of the 
replacement string, which is where this can be really powerful:

$ ed phonebook
114
1,$p
Alice Chebba    973-555-2015
Barbara Swingle 201-555-9257
Liz Stachiw     212-555-2298
Susan Goldberg  201-555-7776
Tony Iannino    973-555-1295
1,$s/\(.*\)    \(.*\)/\2 \1/         Switch the two fields
1,$p
973-555-2015 Alice Chebba
201-555-9257 Barbara Swingle
212-555-2298 Liz Stachiw
201-555-7776 Susan Goldberg
973-555-1295 Tony Iannino

The names and the phone numbers are separated from each other in the phonebook file by a 
single tab character. The regular expression

\(.*\)    \(.*\)

says to match all the characters up to the first tab (that’s the character sequence .* between the 
\( and the \) and assign them to register 1, and to match all the characters that follow the 
tab character and assign them to register 2. The replacement string

\2 \1

specifies the contents of register 2, followed by a space, followed by the contents of register 1.

When ed applies the substitute command to the first line of the file:

Alice Chebba       973-555-2015
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it matches everything up to the tab (Alice Chebba) and stores it into register 1, and every-
thing after the tab (973-555-2015) and stores it into register 2. The tab itself is lost because 
it’s not surrounded by parentheses in the regex. Then ed substitutes the characters that were 
matched (the entire line) with the contents of register 2 (973-555-2015), followed by a space, 
followed by the contents of register 1 (Alice Chebba):

973-555-2015 Alice Chebba

As you can see, regular expressions are powerful tools that enable you to match and manipu-
late complex patterns, albeit with a slight tendency to look like a cat ran over your keyboard at 
times!

Table 3.1 summarizes the special characters recognized in regular expressions to help you 
understand any you encounter and so you can build your own as needed.

Table 3.1 Regular Expression Characters

Notation Meaning Example Matches

. Any character a.. a followed by any two characters

^ Beginning of line ^wood wood only if it appears at the 
 beginning of the line

$ End of line x$ x only if it is the last character on 
the line

^INSERT$ A line containing just the characters 
INSERT

^$ A line that contains no characters

* Zero or more 
 occurrences of 
 previous regular 
expression

x*

xx*

.*

w.*s

Zero or more consecutive x’s 
One or more consecutive x’s 
Zero or more characters w followed 
by zero or more characters followed 
by an s

+ One or more 
 occurrences of 
 previous regular 
expression

x+

xx+

.+

w.+s

One or more consecutive x’s 
Two or more consecutive x’s 
One or more characters w followed 
by one or more characters followed 
by an s

[chars] Any character in 
chars

[tT]

[a-z]

[a-zA-Z]

Lower- or uppercase t 
Lowercase  letter Lower- or uppercase 
letter

[^chars] Any character not 
in chars

[^0-9]

[^a-zA-Z]

Any non-numeric character Any 
 non-alphabetic character

(Continued)
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Notation Meaning Example Matches

\{min,max\} At least min and 
at most max 
 occurrences of previ-
ous regular expres-
sion

x\{1,5\}

[0-9]\{3,9\}

[0-9]\{3\}

[0-9]\{3,\}

At least 1 and at most 5 x’s 
Anywhere from 3 to 9 successive 
 digits Exactly 3 digits At least 3 digits

\(...\) Save characters 
matched between 
parentheses in next 
register (1-9)

^\(.\)

^\(.\)\1

^\(.\)\(.\)

First character on the line; stores it 
in register 1 

First and second  characters on the 
line if they’re the same 

First and second characters on the 
line; stores first character in register 
1 and second character in register 2

cut
This section teaches you about a useful command known as cut. This command comes in 
handy when you need to extract (that is, “cut out”) various fields of data from a data file or the 
output of a command. The general format of the cut command is

cut -cchars file

where chars specifies which characters (by position) you want to extract from each line of 
file. This can consist of a single number, as in -c5 to extract the fifth character from each line 
of input; a comma-separated list of numbers, as in -c1,13,50 to extract characters 1, 13, and 
50; or a dash-separated range of numbers, as in -c20-50 to extract characters 20 through 50, 
inclusive. To extract characters to the end of the line, you can omit the second number of the 
range so

cut -c5- data

extracts characters 5 through the end of the line from each line of data and writes the results 
to standard output.

If file is not specified, cut reads its input from standard input, meaning that you can use cut 
as a filter in a pipeline.

Let’s take another look at the output from the who command:

$ who
root     console Feb 24 08:54
steve    tty02   Feb 24 12:55
george   tty08   Feb 24 09:15
dawn     tty10   Feb 24 15:55
$
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As shown, four people are logged in. Suppose that you just want to know the names of the 
logged-in users and don’t care about what terminals they are on or when they logged in. You 
can use the cut command to cut out just the usernames from the who command’s output:

$ who | cut –c1-8                     Extract the first 8 characters
root
steve
george
dawn
$

The –c1-8 option to cut specifies that characters 1 through 8 are to be extracted from each 
line of input and written to standard output.

The following shows how you can tack a sort to the end of the preceding pipeline to get a 
sorted list of the logged-in users:

$ who | cut –c1-8 | sort
dawn
george
root
steve
$

Note, this is our first three-command pipe. Once you get the concept of output connected to 
subsequent input, pipes of three, four or more commands are logical and easy to assemble.

If you wanted to see which terminals were currently being used or which pseudo or virtual 
terminals were in use, you could cut out just the tty field from the who command output:

$ who | cut –c10-16
console
tty02
tty08
tty10
$

How did you know that who displays the terminal identification in character positions 10 
through 16? Simple! You executed the who command at your terminal and counted out the 
appropriate character positions.

You can use cut to extract as many different characters from a line as you want. Here, cut is 
used to display just the username and login time of all logged-in users:

$ who | cut –c1-8,18-
root     Feb 24 08:54
steve    Feb 24 12:55
george   Feb 24 09:15
dawn     Feb 24 15:55
$
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The option -c1-8,18- specifies “extract characters 1 through 8 (the username) and also 
 characters 18 through the end of the line (the login time).”

The -d and -f Options

The cut command with its -c flag is useful when you need to extract data from a file or 
command, provided that file or command has a fixed format.

For example, you could use cut with the who command because you know that the usernames 
are always displayed in character positions 1–8, the terminal in 10–16, and the login time in 
18–29. Unfortunately, not all your data will be so well organized! 

For instance, take a look at the /etc/passwd file:

$ cat /etc/passwd
root:*:O:O:The Super User:/:/usr/bin/ksh
cron:*:1:1:Cron Daemon for periodic tasks:/:
bin:*:3:3:The owner of system files:/:
uucp:*:5:5::/usr/spool/uucp:/usr/lib/uucp/uucico
asg:*:6:6:The Owner of Assignable Devices:/:
steve:*.:203:100::/users/steve:/usr/bin/ksh
other:*:4:4:Needed by secure program:/:
$

/etc/passwd is the master file that contains the usernames of all users on your computer 
system. It also contains other information such as user ID, home directory, and the name of the 
program to start up when that particular user logs in. 

Quite clearly, the data in this file does not line up anywhere near as neatly as the who’s output 
does. Therefore extracting a list of all the users of your system from this file cannot be done 
using the -c option to cut.

Upon closer inspection of the file, however, it’s clear that fields are separated by a colon charac-
ter. Although each field may not be the same length from one line to the next, you can “count 
colons” to get the same field from each line.

The -d and -f options are used with cut when you have data that is delimited by a particular 
character, with -d specifying the field seperator delimiter and -f the field or fields you want 
extracted. The invocation of the cut command becomes

cut -ddchar –ffields file

where dchar is the character that delimits each field of the data, and fields specifies the 
fields to be extracted from file. Field numbers start at 1, and the same type of formats can be 
used to specify field numbers as was used to specify character positions before (for example, 
-fl,2,8, -fl-3, -f4-).

To extract the names of all users from /etc/passwd, you could type the following:

$ cut -d: -f1 /etc/passwd                Extract field 1
root
cron
bin
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uucp
asg
steve
other
$

Given that the home directory of each user is in field 6, you can match up each user of the 
system with their home directory:

$ cut -d: -f1,6 /etc/passwd            Extract fields 1 and 6
root:/
cron:/
bin:/
uucp:/usr/spool/uucp
asg:/
steve:/users/steve
other:/
$

If the cut command is used to extract fields from a file and the -d option is not supplied, cut 
uses the tab character as the default field delimiter.

The following depicts a common pitfall when using the cut command. Suppose that you have 
a file called phonebook that has the following contents:

$ cat phonebook
Alice Chebba    973-555-2015
Barbara Swingle 201-555-9257
Jeff Goldberg   201-555-3378
Liz Stachiw     212-555-2298
Susan Goldberg  201-555-7776
Tony Iannino    973-555-1295
$

If you just want to get the names of the people in your phone book, your first impulse would 
be to use cut as shown:

$ cut -c1-15 phonebook
Alice Chebba    97
Barbara Swingle
Jeff Goldberg   2
Liz Stachiw     212
Susan Goldberg
Tony Iannino    97
$

Not quite what you want! This happened because the name is separated from the phone 
number by a tab character, not a set of spaces. As far as cut is concerned, tabs count as a single 
character when using the -c option. Therefore cut extracts the first 15 characters from each 
line, producing the results shown.
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In a situation where the fields are separated by tabs, you should use the -f option to 
cut instead:

$ cut -f1 phonebook
Alice Chebba
Barbara Swingle
Jeff Goldberg
Liz Stachiw
Susan Goldberg
Tony Iannino
$

Recall that you don’t have to specify the delimiter character with the -d option because 
cut defaults to a tab character delimiter.

How do you know in advance whether fields are delimited by blanks or tabs? One way to find 
out is by trial and error, as shown previously. Another way is to type the command

sed -n l file

at your terminal. If a tab character separates the fields, \t will be displayed instead of the tab:

$ sed -n l phonebook
Alice Chebba\t973-555-2015
Barbara Swingle\t201-555-9257
Jeff Goldberg\t201-555-3378
Liz Stachiw\t212-555-2298
Susan Goldber\t201-555-7776
Tony Iannino\t973-555-1295
$

The output verifies that each name is separated from each phone number by a tab character. 
The stream editor sed is covered in more detail a bit later in this chapter.

paste
The paste command is the inverse of cut: Instead of breaking lines apart, it puts them 
together. The general format of the paste command is

paste files

where corresponding lines from each of the specified files are “pasted” or merged together 
to form single lines that are then written to standard output. The dash character - can also be 
used in the files sequence to specify that input is from standard input.

Suppose that you have a list of names in a file called names:

$ cat names
Tony
Emanuel
Lucy
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Ralph
Fred
$

Suppose that you also have a second file called numbers that contains corresponding phone 
numbers for each name in names:

$ cat numbers
(307) 555-5356
(212) 555-3456
(212) 555-9959
(212) 555-7741
(212) 555-0040
$

You can use paste to print the names and numbers side-by-side as shown:

$ paste names numbers                    Paste them together
Tony    (307) 555-5356
Emanuel (212) 555-3456
Lucy    (212) 555-9959
Ralph   (212) 555-7741
Fred    (212) 555-0040
$

Each line from names is displayed with the corresponding line from numbers, separated by 
a tab.

The next example illustrates what happens when more than two files are specified:

$ cat addresses
55-23 Vine Street, Miami
39 University Place, New York
17 E. 25th Street, New York
38 Chauncey St., Bensonhurst
17 E. 25th Street, New York
$ paste names addresses numbers
Tony    55-23 Vine Street, Miami       (307) 555-5356
Emanuel 39 University Place, New York  (212) 555-3456
Lucy    17 E. 25th Street, New York    (212) 555-9959
Ralph   38 Chauncey St., Bensonhurst   (212) 555-7741
Fred    17 E. 25th Street, New York    (212) 555-0040
$

The -d Option

If you don’t want the output fields separated by tab characters, you can specify the -d option 
to specify the output delimiter:

-dchars
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where chars is one or more characters that will be used to separate the lines pasted together. 
That is, the first character listed in chars will be used to separate lines from the first file that 
are pasted with lines from the second file; the second character listed in chars will be used to 
separate lines from the second file from lines from the third, and so on.

If there are more files than there are characters listed in chars, paste “wraps around” the list 
of characters and starts again at the beginning.

In the simplest form of the -d option, specifying just a single delimiter character causes that 
character to be used to separate all pasted fields:

$ paste -d'+' names addresses numbers
Tony+55-23 Vine Street, Miami+(307) 555-5356
Emanuel+39 University Place, New York+(212) 555-3456
Lucy+17 E. 25th Street, New York+(212) 555-9959
Ralph+38 Chauncey St., Bensonhurst+(212) 555-7741
Fred+17 E. 25th Street, New York+(212) 555-0040

Notice that it’s always safest to enclose the delimiter characters in single quotes. The reason 
why will be explained shortly.

The -s Option

The -s option tells paste to paste together lines from the same file, not from alternate files. If 
just one file is specified, the effect is to merge all the lines from the file together, separated by 
tabs, or by the delimiter characters specified with the -d option.

$ paste -s names          Paste all lines from names
Tony    Emanuel Lucy    Ralph   Fred
$ ls | paste -d' ' -s -   Paste ls’s output, use space as delimiter
addresses intro lotsaspaces names numbers phonebook
$

In the former example, the output from ls is piped to paste which merges the lines 
(-s option) from standard input (-), separating each field with a space (-d' ' option). You’ll 
recall from Chapter 1 that the command

echo *

would have also listed all the files in the current directory, perhaps slightly less complicated 
than ls | paste.

sed
sed is a program used for editing data in a pipe or command sequence. It stands for stream 
editor. Unlike ed, sed cannot be used interactively, though its commands are similar. The 
general form of the sed command is

sed command file
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where command is an ed-style command applied to each line of the specified file. If no file is 
specified, standard input is assumed. 

As sed applies the indicated command or commands to each line of the input, it writes the 
results to standard output.

Let’s have a look. First, the intro file again:

$ cat intro
The Unix operating system was pioneered by Ken
Thompson and Dennis Ritchie at Bell Laboratories
in the late 1960s. One of the primary goals in
the design of the Unix system was to create an
environment that promoted efficient program
development.
$

Suppose that you want to change all occurrences of “Unix” in the text to “UNIX.” This can be 
easily done in sed as follows:

$ sed 's/Unix/UNIX/' intro       Substitute Unix with UNIX
The UNIX operating system was pioneered by Ken
Thompson and Dennis Ritchie at Bell Laboratories
in the late 1960s. One of the primary goals in
the design of the UNIX system was to create an
environment that promoted efficient program
development.
$

Get into the habit of enclosing your sed command in single quotes. Later, you’ll know when 
the quotes are necessary and when it’s better to use double quotes instead.

The sed command s/Unix/UNIX/ is applied to every line of intro. Whether or not the line 
is modified, it gets written to standard output. Since it’s in the data stream also note that 
sed makes no changes to the original input file. 

To make the changes permanent, you must redirect the output from sed into a temporary file 
and then replace the original file with the newly created one:

$ sed 's/Unix/UNIX/' intro > temp   Make the changes
$ mv temp intro                     And now make them permanent
$

Always make sure that the correct changes were made to the file before you overwrite the 
original; a cat of temp would have been smart before the mv command overwrote the original 
data file.

If your text included more than one occurrence of “Unix” on a line, the above sed would have 
changed just the first occurrence to “UNIX.” By appending the global option g to the end of the 
substitute command s, you can ensure that multiple occurrences on a line will be changed. 
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In this case, the sed command would read

$ sed 's/Unix/UNIX/g' intro > temp

Now suppose that you wanted to extract just the usernames from the output of who. You 
already know how to do that with the cut command:

$ who | cut -cl-8
root
ruth
steve
pat
$

Alternatively, you can use sed to delete all the characters from the first space (which marks the 
end of the username) through the end of the line by using a regular expression:

$ who | sed 's/ .*$//'
root
ruth
steve
pat
$

The sed command substitutes a blank space followed by any characters up through the end of 
the line ( .*$) with nothing (//); that is, it deletes the characters from the first blank to the end 
of the line for each input line.

The -n Option

By default, sed writes each line of input to standard output, whether or not it gets changed. 
Sometimes, however, you’ll want to use sed just to extract specific lines from a file. That’s what 
the -n flag is for: it tells sed that you don’t want it to print any lines by default. Paired with 
that, use the p command to print whichever lines match your specified range or pattern. For 
example, to print just the first two lines from a file:

$ sed -n '1,2p' intro          Just print the first 2 lines
The UNIX operating system was pioneered by Ken
Thompson and Dennis Ritchie at Bell Laboratories
$

If, instead of line numbers, you precede the p command with a sequence of characters enclosed 
in slashes, sed prints just the lines from standard input that match that pattern. The following 
example shows how sed can be used to display just the lines that contain a particular string:

$ sed -n '/UNIX/p' intro        Just print lines containing UNIX
The UNIX operating system was pioneered by Ken
the design of the UNIX system was to create an
$
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Deleting Lines

To delete lines of text, use the d command. By specifying a line number or range of numbers, 
you can delete specific lines from the input. In the following example, sed is used to delete the 
first two lines of text from intro:

$ sed '1,2d' intro             Delete lines 1 and 2
in the late 1960s. One of the primary goals in
the design of the UNIX system was to create an
environment that promoted efficient program
development.
$

Remembering that by default sed writes all lines of the input to standard output, the remain-
ing lines in text—that is, lines 3 through the end—simply get written to standard output.

By preceding the d command with a pattern, you can used sed to delete all lines that contain 
that text. In the following example, sed is used to delete all lines of text containing the 
word UNIX:

$ sed '/UNIX/d' intro            Delete all lines containing UNIX
Thompson and Dennis Ritchie at Bell Laboratories
in the late 1960s. One of the primary goals in
environment that promoted efficient program
development.
$

The power and flexibility of sed goes far beyond what we’ve shown here. sed has facilities that 
enable you to loop, build text in a buffer, and combine many commands into a single editing 
script. Table 3.2 shows some more examples of sed commands.

Table 3.2 sed Examples

sed Command Description

sed '5d' Delete line 5

sed '/[Tt]est/d' Delete all lines containing Test or test

sed -n '20,25p' text Print only lines 20 through 25 from text

sed '1,10s/unix/UNIX/g' intro Change unix to UNIX wherever it appears in the 
first 10 lines of intro

sed '/jan/s/-1/-5/' Change the first -1 to -5 in all lines containing jan

sed 's/...//' data Delete the first three characters from each line of 
data

sed 's/...$//' data Delete the last 3 characters from each line of data

sed -n 'l' text Print all lines from text, showing non-printing 
 characters as \nn (where nn is the octal value of 
the character), and tab characters as \t
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tr
The tr filter is used to translate characters from standard input. The general form of the 
command is

tr from-chars to-chars

where from-chars and to-chars are one or more characters or a set of characters. Any 
 character in from-chars encountered on the input will be translated into the corresponding 
character in to-chars. The result of the translation is written to standard output.

In its simplest form, tr can be used to translate one character into another. Recall the file 
intro from earlier in this chapter:

$ cat intro
The UNIX operating system was pioneered by Ken
Thompson and Dennis Ritchie at Bell Laboratories
in the late 1960s. One of the primary goals in
the design of the UNIX system was to create an
environment that promoted efficient program
development.
$

The following shows how tr can be used to translate all letter e’s to x’s:

$ tr e x < intro
Thx UNIX opxrating systxm was pionxxrxd by Kxn
Thompson and Dxnnis Ritchix at Bxll Laboratorixs
in thx latx 1960s. Onx of thx primary goals in
thx dxsign of thx UNIX systxm was to crxatx an
xnvironmxnt that promotxd xfficixnt program
dxvxlopmxnt.
$

The input to tr must be redirected from the file intro because tr always expects its input to 
come from standard input. The results of the translation are written to standard output, leaving 
the original file untouched. Showing a more practical example, recall the pipeline that you 
used to extract the usernames and home directories of everyone on the system:

$ cut -d: -f1,6 /etc/passwd
root:/
cron:/
bin:/
uucp:/usr/spool/uucp
asg:/
steve:/users/steve
other:/
$

You can translate the colons into tab characters to produce a more readable output simply by 
tacking an appropriate tr command to the end of the pipeline:
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$ cut -d: -f1,6 /etc/passwd | tr : '    '
root    /
cron    /
bin    /
uucp   /usr/spool/uucp
asg    /
steve  /users/steve
other  /
$

Enclosed between the single quotes is a tab character (even though you can’t see it—just take 
our word for it). It must be enclosed in quotes to keep it from being parsed and discarded by 
the shell as extraneous whitespace.

Working with characters that aren’t printable? The octal representation of a character can be 
given to tr in the format

\nnn

where nnn is the octal value of the character. This isn’t used too often, but can be handy to 
remember.

For example, the octal value of the tab character is 11, so another way to accomplish the 
 colon-to-tab transformation is to use the tr command

tr : '\11'

Table 3.3 lists characters that you’ll often want to specify in octal format.

Table 3.3 Octal Values of Some ASCII Characters

Character Octal value

Bell   7

Backspace 10

Tab 11

Newline 12

Linefeed 12

Formfeed 14

Carriage Return 15

Escape 33

In the following example, tr takes the output from date and translates all spaces into newline 
characters. The net result is that each field of output appears on a different line:

$ date | tr ' ' '\12'         Translate spaces to newlines
Sun
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Jul

28
19:13:46
EDT
2002
$

tr can also translate ranges of characters. For example, the following shows how to translate all 
lowercase letters in intro to their uppercase equivalents:

$ tr '[a-z]' '[A-Z]' < intro
THE UNIX OPERATING SYSTEM WAS PIONEERED BY KEN
THOMPSON AND DENNIS RITCHIE AT BELL LABORATORIES
IN THE LATE 1960S. ONE OF THE PRIMARY GOALS IN
THE DESIGN OF THE UNIX SYSTEM WAS TO CREATE AN
ENVIRONMENT THAT PROMOTED EFFICIENT PROGRAM
DEVELOPMENT.
$

The character ranges [a-z] and [A-Z] are enclosed in quotes to keep the shell from 
 interpreting the pattern. Try the command without the quotes and you’ll quickly see that the 
result isn’t quite what you seek.

By reversing the two arguments to tr, you can use the command to translate all uppercase 
letters to lowercase:

$ tr '[A-Z]' '[a-z]' < intro
the unix operating system was pioneered by ken
thompson and dennis ritchie at bell laboratories
in the late 1960s. one of the primary goals in
the design of the unix system was to create an
environment that promoted efficient program
development.
$

For a more interesting example, try to guess what this tr invocation accomplishes:

tr '[a-zA-Z]' '[A-Za-z]'

Figured it out? This turns uppercase letters into lowercase, and lowercase letters into uppercase.

The -s Option

You can use the -s option to “squeeze” out multiple consecutive occurrences of characters in 
to-chars. In other words, if more than one consecutive occurrence of a character specified 
in to-chars occurs after the translation is made, the characters will be replaced by a single 
character.

For example, the following command translates all colons into tab characters, replacing 
 multiple tabs with single tabs:

tr -s ':' '\11'



77tr

So one colon or several consecutive colons on the input will be replaced by a single tab 
 character on the output.

Note that '\t' can work in many instances instead of '\11', so be sure to try that if you want 
things to be a bit more readable! 

Suppose that you have a file called lotsaspaces that has contents as shown:

$ cat lotsaspaces
This       is   an example  of a
file   that contains       a  lot
of   blank spaces.
$

You can use tr to squeeze out the multiple spaces by using the -s option and by specifying a 
single space character as the first and second argument:

$ tr –s ' ' ' ' < lotsaspaces
This is an example of a
file that contains a lot
of blank spaces.
$

This tr command in effect says, “translate occurrences of space with another space, replacing 
multiple spaces in the output with a single space.”

The –d Option

tr can also be used to delete individual characters from the input stream. The format of tr in 
this case is

tr -d from-chars

where any character listed in from-chars will be deleted from standard input. In the following 
example, tr is used to delete all spaces from the file intro:

$ tr -d ' ' < intro
TheUNIXoperatingSystemwaspioneeredbyKen
ThompsonandDennisRitchieatBellLaboratories
inthelate1960s.0neoftheprimarygoalsin
thedesignoftheUNIXSystemwastocreatean
environmentthatpromotedefficientprogram
development.
$

You probably realize that you could have also used sed to achieve the same results:

$ sed 's/ //g' intro
TheUNIXoperatingsystemwaspioneeredbyKen
ThompsonandDennisRitchieatBellLaboratories
inthelate1960s.0neoftheprimarygoalsin
thedesignoftheUNIXsystemwastocreatean
environmentthatpromotedefficientprogram
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development.
$

This is not atypical for the Unix system; there’s almost always more than one approach to 
solving a particular problem. In the case we just saw, either approach is satisfactory (that is, tr 
or sed), but tr is probably a better choice because it is a much smaller program and likely to 
execute faster.

Table 3.4 summarizes how to use tr for translating and deleting characters. Bear in mind that 
tr works only on single characters. So if you need to translate anything longer than a single 
character (say all occurrences of unix to UNIX), you have to use a different program, such as 
sed, instead.

Table 3.4 tr Examples

tr Command Description

tr 'X' 'x' Translate all capital X’s to small x’s.

tr '()' '{}' Translate all open parentheses to open braces, all closed 
parentheses to closed braces

tr '[a-z]' '[A-Z]' Translate all lowercase letters to uppercase

tr '[A-Z]' '[N-ZA-M]' Translate uppercase letters A–M to N–Z, and N–Z to A–M, 
respectively

tr '    ' ' ' Translate all tabs (character in first pair of quotes) to spaces

tr -s ' ' ' ' Translate multiple spaces to single spaces

tr -d '\14' Delete all formfeed (octal 14) characters

tr -d '[0-9]' Delete all digits

grep
grep allows you to search one or more files for a pattern you specify. The general format of this 
command is

grep pattern files

Every line of each file that contains pattern is displayed at the terminal. If more than one file 
is specified to grep, each line is also preceded by the name of the file, thus enabling you to 
identify the particular file that the pattern was found in.

Let’s say that you want to find every occurrence of the word shell in the file ed.cmd:

$ grep shell ed.cmd
files, and is independent of the shell.
to the shell, just type in a q.
$

This output indicates that two lines in the file ed.cmd contain the word shell.
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If the pattern does not exist in the specified file(s), the grep command simply displays nothing:

$ grep cracker ed.cmd
$

You saw in the section on sed how you could print all lines containing the string UNIX from 
the file intro with the command

sed -n '/UNIX/p' intro

But you could also use the following grep command to achieve the same result:

grep UNIX intro

Recall the phonebook file from before:

$ cat phonebook
Alice Chebba    973-555-2015
Barbara Swingle 201-555-9257
Jeff Goldberg   201-555-3378
Liz Stachiw     212-555-2298
Susan Goldberg  201-555-7776
Tony Iannino    973-555-1295
$

When you need to look up a particular phone number, the grep command comes in handy:

$ grep Susan phonebook
Susan Goldberg  201-555-7776
$

The grep command is particularly useful when you have a lot of files and you want to find 
out which ones contain certain words or phrases. The following example shows how the grep 
command can be used to search for the word shell in all files in the current directory:

$ grep shell *
cmdfiles:shell that enables sophisticated
ed.cmd:files, and is independent of the shell.
ed.cmd:to the shell, just type in a q.
grep.cmd:occurrence of the word shell:
grep.cmd:$ grep shell *
grep.cmd:every use of the word shell.
$

As noted, when more than one file is specified to grep, each output line is preceded by the 
name of the file containing that line.

As with expressions for sed and patterns for tr, it’s a good idea to enclose your grep pattern 
inside a pair of single quotes to “protect” it from the shell. Here’s an example of what can 
happen if you don’t: say you want to find all the lines containing asterisks inside the file 
stars; typing

grep * stars
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doesn’t work as you’d hope because the shell sees the asterisk and automatically substitutes the 
names of all the files in your current directory!

$ ls
circles
polka.dots
squares
stars
stripes
$ grep * stars
$

In this case, the shell took the asterisk and substituted the list of files in your current directory. 
Then it started execution of grep, which took the first argument (circles) and tried to find it 
in the files specified by the remaining arguments, as shown in Figure 3.1.

grep

circles

polka.dots

squares

stars

stripes

stars

arguments

Figure 3.1 grep * stars

Enclosing the asterisk in quotes, however, blocks it from being parsed and interpreted by 
the shell:

$ grep '*' stars
The asterisk (*) is a special character that
***********
5 * 4 = 20
$

The quotes told the shell to leave the enclosed characters alone. It then started execution of 
grep, passing it the two arguments * (without the surrounding quotes; the shell removes them 
in the process) and stars (see Figure 3.2).

grep
*

stars

arguments

Figure 3.2 grep '*' stars
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There are characters other than * that have a special meaning to the shell and must be quoted 
when used in a pattern. The whole topic of how quotes are handled by the shell is admittedly 
tricky; an entire chapter—Chapter 5—is devoted to it.

grep takes its input from standard input if no filename is specified. So you can use grep as 
part of a pipe to scan through the output of a command for lines that match a specific pattern. 
Suppose that you want to find out whether the user jim is logged in. You can use grep to 
search through who’s output:

$ who | grep jim
jim        tty16             Feb 20 10:25
$

Note that by not specifying a file to search, grep automatically scans standard input. Naturally, 
if the user jim were not logged in, you would get a new command prompt without any 
 preceding output:

$ who | grep jim
$

Regular Expressions and grep
Let’s take another look at the intro file:

$ cat intro
The UNIX operating system was pioneered by Ken
Thompson and Dennis Ritchie at Bell Laboratories
in the late 1960s. One of the primary goals in
the design of the UNIX system was to create an
environment that promoted efficient program
development.
$

grep allows you to specify your pattern using regular expressions as in ed. Given this 
 information, it means that you can specify the pattern

[tT]he

to have grep search for either a lower- or uppercase T followed by the characters he.

Here’s how to use grep to list all the lines containing the characters the or The:

$ grep '[tT]he' intro
The UNIX operating system was pioneered by Ken
in the late 1960s.  One of the primary goals in
the design of the UNIX system was to create an
$

A smarter alternative might be to utilize the -i option to grep which makes patterns case 
insensitive. That is, the command

grep –i 'the' intro
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tells grep to ignore the difference between upper and lowercase when matching the pattern 
against the lines in intro. Therefore, lines containing the or The will be printed, as will lines 
containing THE, THe, tHE, and so on.

Table 3.5 shows other types of regular expressions that you can specify to grep and the types of 
patterns they’ll match.

Table 3.5 Some qrep Examples

Command Prints

grep '[A-Z]' list Lines from list containing a capital letter

grep '[0-9]' data Lines from data containing a digit

grep '[A-Z]...[0-9]' list Lines from list containing five-character patterns 
that start with a capital letter and end with a digit

grep '\.pic$' filelist Lines from filelist that end with .pic

The -v Option

Sometimes you’re interested not in finding the lines that contain a specified pattern, but those 
that don’t. That’s what the -v option is for with grep: to reverse the logic of the matching task. 
In the next example, grep is used to find all the lines in intro that don’t contain the 
pattern UNIX.

$ grep -v 'UNIX' intro          Print all lines that don't contain UNIX 
Thompson and Dennis Ritchie at Bell Laboratories 
in the late 19605.  One of the primary goals in 
environment that promoted efficient program 
development. 
$

The -l Option

At times, you may not want to see the actual lines that match a pattern but just seek the names 
of the files that contain the pattern. For example, suppose that you have a set of C programs 
in your current directory (by convention, these filenames end with the filename suffix .c), and 
you want to know which use a variable called Move_history. Here’s one way of finding 
the answer:

$ grep 'Move_history' *.c               Find Move_history in all C source files
exec.c:MOVE    Move_history[200] = {0}; 
exec.c:     cpymove(&Move_history[Number_half_moves -1], 
exec.c: undo_move(&Move_history[Number_half_moves-1],; 
exec.c: cpymove(&last_move,&Move_history[Number_half_moves-1]); 
exec.c: convert_move(&Move_history[Number_half_moves-1]), 
exec.c:     convert_move(&Move_history[i-1]), 
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exec.c: convert_move(&Move_history[Number_half_moves-1]), 
makemove.c:IMPORT MOVE Move_history[]; 
makemove.c:     if ( Move_history[j].from != BOOK (i,j,from) OR 
makemove.c:          Move_history[j] .to != BOOK (i,j,to) ) 
testch.c:GLOBAL MOVE Move_history[100] = {0}; 
testch.c:    Move_history[Number_half_moves-1].from = move.from; 
testch.c:    Move_history[Number_half_moves-1].to = move.to; 
$

Sifting through the preceding output, you discover that three files—exec.c, makemove.c, and 
testch.c—use the variable.

Add the -l option to grep and you instead get a list of files that contain the specified pattern, 
not the matching lines from the files:

$ grep -l 'Move_history' *.c          List the files that contain Move_history
exec.c 
makemove.c 
testch.c 
$

Because grep conveniently lists the files one per line, you can pipe the output from grep -l 
into wc to count the number of files that contain a particular pattern:

$ grep -l 'Move_history' *.c | wc -l 
      3
$

The preceding command shows that precisely three C program files reference the variable 
Move_history. Now, just to make sure you’re paying attention, what are you counting if you 
use grep without the -l option and pipe the output to wc -l?

The -n Option

If the -n option is used with grep, each line from the file that matches the specified pattern 
is preceded by its corresponding line number. From previous examples, you saw that the file 
testch.c was one of the three files that referenced the variable Move_history; the following 
shows how you can pinpoint the precise lines in the file that reference the variable:

$ grep -n 'Move_history' testch.c         Precede matches with line numbers 
13:GLOBAL MOVE Move_history[100] = {0}; 
197:    Move_history[Number_half_moves-1].from = move.from; 
198:    Move_history[Number_half_moves-1].to = move.to; 
$

As you can see, Move_history is used on lines 13, 197, and 198 in testch.c.

For Unix experts, grep is one of the most commonly used programs because of its flexibility 
and sophistication with pattern matching. It’s one well worth studying.
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sort
At its most basic, the sort command is really easy to understand: give it lines of input and it’ll 
sort them alphabetically, with the result appearing as its output:

$ sort names 
Charlie 
Emanuel 
Fred 
Lucy 
Ralph 
Tony 
Tony 
$

By default, sort takes each line of the specified input file and sorts it into ascending order. 

Special characters are sorted according to the internal encoding of the characters. For example, 
the space character is represented internally as the number 32, and the double quote as the 
number 34. This means that the former would be sorted before the latter. Particularly for 
other languages and locales the sorting order can vary, so although you are generally assured 
that sort will perform as expected on alphanumeric input, the ordering of foreign language 
 characters, punctuation, and other special characters is not always what you might expect.

sort has many options that provide more flexibility in performing your sort. We’ll just 
describe a few of the options here.

The -u Option

The -u option tells sort to eliminate duplicate lines from the output.

$ sort -u names
Charlie 
Emanuel 
Fred 
Lucy 
Ralph 
Tony 
$

Here you see that the duplicate line that contained Tony was eliminated from the output. 
A lot of old-school Unix people accomplish the same thing by using the separate program 
uniq, so if you read system shell scripts you’ll often see sequences like sort | uniq. Those 
can be replaced with sort -u!
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The -r Option

Use the -r option to reverse the order of the sort:

$ sort -r names         Reverse sort
Tony 
Tony 
Ralph 
Lucy 
Fred 
Emanuel 
Charlie 
$

The -o Option

By default, sort writes the sorted data to standard output. To have it go into a file, you can use 
output redirection:

$ sort names > sorted_names 
$

Alternatively, you can use the -o option to specify the output file. Simply list the name of the 
output file right after the -o:

$ sort names -o sorted_names 
$

This sorts names and writes the results to sorted_names.

What’s the value of the –o option? Frequently, you want to sort the lines in a file and have the 
sorted data replace the original. But typing

$ sort names > names 
$

won’t work—it ends up wiping out the names file! However, with the -o option, it is okay to 
specify the same name for the output file as the input file:

$ sort names -o names
$ cat names 
Charlie 
Emanuel 
Fred 
Lucy 
Ralph 
Tony 
Tony 
$
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Tip

Be careful if your filter or process is going to replace your original input file and make sure that 
it’s all working as you expect prior to having the data overwritten. Unix is good at a lot of things, 
but there’s no unremove command to recover lost data or lost files.

The -n Option

Suppose that you have a file containing pairs of (x, y) data points as shown:

$ cat data
5      27 
2      12
3      33 
23     2
-5     11
15     6
14     -9
$

And suppose that you want to feed this data into a plotting program called plotdata, but that 
the program requires that the incoming data pairs be sorted in increasing value of x (the first 
value on each line).

The -n option to sort specifies that the first field on the line is to be considered a number, 
and the data is to be sorted arithmetically. Compare the output of sort used without 
the -n option and then with it:

$ sort data
-5     11
14     -9
15     6
2      12
23     2
3      33
5      27
$ sort -n data          Sort arithmetically
-5     11
2      12
3      33
5      27
14     -9
15     6
23     2
$
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Skipping Fields

If you had to sort your data file by the y value—that is, the second number in each line—you 
could tell sort to start with the second field by using the option

-k2n

instead of -n. The -k2 says to skip the first field and start the sort analysis with the second field 
of each line. Similarly, -k5n would mean to start with the fifth field on each line and then sort 
the data numerically. 

$ sort -k2n data           Start with the second field in the sort 
14     -9
23     2
15     6 
-5     11
2      12
5      27
3      33
$

Fields are delimited by space or tab characters by default. If a different delimiter is to be used, 
the -t option must be used.

The -t Option

As mentioned, if you skip over fields, sort assumes that the fields are delimited by space or tab 
characters. The -t option can indicate otherwise. In this case, the character that follows the -t 
is taken as the delimiter character.

Consider the sample password file again:

$ cat /etc/passwd 
root:*:0:0:The super User:/:/usr/bin/ksh 
steve:*:203:100::/users/steve:/usr/bin/ksh 
bin:*:3:3:The owner of system files:/: 
cron:*:l:l:Cron Daemon for periodic tasks:/: 
george:*:75:75::/users/george:/usr/lib/rsh 
pat:*:300:300::/users/pat:/usr/bin/ksh 
uucp:nc823ciSiLiZM:5:5::/usr/spool/uucppublic:/usr/lib/uucp/uucico 
asg:*:6:6:The Owner of Assignable Devices:/: 
sysinfo:*:10:10:Access to System Information:/:/usr/bin/sh 
mail:*:301:301::/usr/mail: 
$

If you wanted to sort this file by username (the first field on each line), you could just issue the 
command

sort /etc/passwd
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To sort the file instead by the third colon-delimited field (which contains what is known 
as your user ID), you would want an arithmetic sort, starting with the third field (-k3), and 
 specifying the colon character as the field delimiter (-t:):

$ sort -k3n -t: /etc/passwd              Sort by user id 
root:*:0:0:The Super User:/:/usr/bin/ksh 
cron:*:l:l:Cron Daemon for periodic tasks:/:
bin:*:3:3:The owner of system files:/: 
uucp:*:5:5::/usr/spool/uucppublic:/usr/lib/uucp/uucico 
asg:*:6:6:The Owner of Assignable Devices:/: 
sysinfo:*:10:10:Access to System Information:/:/usr/bin/sh 
george:*:75:75::/users/george:/usr/lib/rsh 
steve:*:203:100::/users/steve:/usr/bin/ksh 
pat:*:300:300::/users/pat:/usr/bin/ksh 
mail:*:301:301::/usr/mail: .
$

Here we’ve bolded the third field of each line so that you can easily verify that the file was 
sorted correctly by user ID.

Other Options

Other options to sort enable you to skip characters within a field, specify the field to end the 
sort on, merge sorted input files, and sort in “dictionary order” (only letters, numbers, and 
spaces are used for the comparison). For more details on these options, look under sort in your 
Unix User’s Manual.

uniq
The uniq command is useful when you need to find or remove duplicate lines in a file. 
The basic format of the command is

uniq in_file out_file

In this format, uniq copies in_file to out_file, removing any duplicate lines in the process. 
uniq’s definition of duplicated lines is consecutive lines that match exactly.

If out_file is not specified, the results will be written to standard output. If in_file is also 
not specified, uniq acts as a filter and reads its input from standard input.

Here are some examples to see how uniq works. Suppose that you have a file called names with 
contents as shown:

$ cat names 
Charlie 
Tony 
Emanuel 
Lucy 
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Ralph 
Fred 
Tony 
$

You can see that the name Tony appears twice in the file. You can use uniq to remove such 
duplicate entries:

$ uniq names           Print unique lines
Charlie 
Tony 
Emanuel 
Lucy 
Ralph 
Fred 
Tony 
$

Oops! Tony still appears twice in the preceding output because the multiple occurrences are not 
consecutive in the file, and thus uniq’s definition of duplicate is not satisfied. To remedy this 
situation, sort is often used to get the duplicate lines adjacent to each other, as mentioned 
earlier in the chapter. The result of the sort is then run through uniq:

$ sort names | uniq 
Charlie 
Emanuel 
Fred 
Lucy 
Ralph 
Tony 
$

The sort moves the two Tony lines together, and then uniq filters out the duplicate line (but 
recall that sort with the -u option performs precisely this function).

The -d Option

Frequently, you’ll be interested in finding just the duplicate entries in a file. The -d option 
to uniq can be used for such purposes: It tells uniq to write only the duplicated lines to 
out_file (or standard output). Such lines are written just once, no matter how many 
 consecutive  occurrences there are.

$ sort names | uniq -d          List duplicate lines
Tony 
$

As a more practical example, let’s return to our /etc/passwd file. This file contains 
 information about each user on the system. It’s conceivable that over the course of adding and 
removing users from this file that perhaps the same username has been inadvertently entered 
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more than once. You can easily find such duplicate entries by first sorting /etc/passwd and 
piping the results into uniq -d as done previously:

$ sort /etc/passwd | uniq -d        Find duplicate entries in /etc/passwd
$

There are no duplicate full line /etc/passwd entries. But you really want to find duplicate 
entries for the username field, so  you only want to look at the first field from each line (recall 
that the leading characters of each line of /etc/passwd up to the colon are the username). 
This can’t be done directly through an option to uniq, but can be accomplished by using cut 
to extract the username from each line of the password file before sending it to uniq.

$ sort /etc/passwd | cut -f1 -d: | uniq -d   Find duplicates
cem 
harry 
$

It turns out that there are multiple entries in /etc/passwd for cem and harry. If you wanted 
more information on the particular entries, you could now grep them from /etc/passwd:

$ grep -n 'cem' /etc/passwd 
20:cem:*:91:91::/users/cem: 
166:cem:*:91:91::/users/cem: 
$ grep -n 'harry' /etc/passwd 
29:harry:*:103:103:Harry Johnson:/users/harry: 
79:harry:*:90:90:Harry Johnson:/users/harry: 
$

The -n option was used to find out where the duplicate entries occur. In the case of cem, there 
are two entries on lines 20 and 166; in harry’s case, the two entries are on lines 29 and 79.

Other Options

The -c option to uniq adds an occurrence count, which can be tremendously useful in scripts:

$ sort names | uniq –c         Count line occurrences
   1 Charlie 
   1 Emanuel 
   1 Fred 
   1 Lucy 
   1 Ralph 
   2 Tony
$

One common use of uniq -c is to figure out the most common words in a data file, easily 
done with a command like:

tr '[A-Z]' '[a-z]' datafile | sort | uniq -c | head
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Two other options that we don’t have space to describe more fully let you tell uniq to ignore 
leading characters/fields on a line. For more information, consult the man page for your 
 particular implementation of uniq with the command man uniq.

We would be remiss if we neglected to mention the programs awk and perl, which can 
be useful when writing shell programs too. They are both big, complicated programming 
 environments unto themselves, however, so we’re going to encourage you to check out 
Awk—A Pattern Scanning and Processing Language, by Aho, et al., in the Unix Programmer’s 
Manual, Volume II for a description of awk, and Learning Perl and Programming Perl, both from 
O’Reilly and Associates, offering a good tutorial and reference on the language, respectively.
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-gt operator, 140–142

H
handing signals with trap command

execution with no arguments, 
259–260

ignored signals, 260

overview, 258–259

signal numbers, 258

trap reset, 261

hash command, 344

hash sign (#)

comments, 96

pattern matching, 243

printf format specification modifier, 206

here documents

shell archive creation, 264–267

syntax, 262–264

HISTFILE variable, 323

history command, 294–296, 300–301. 

See also command history

history of Unix, 1

HISTSIZE variable, 326

home directory, 10–12, 217

HOME variable, 217, 323

HUP signal, 258

hyphen (-)

command options, 8

job control, 315

printf format specification modifier, 206

I
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debugging, 157–159
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155–156

pipe symbol (|), 159–160

syntax, 153–154

elif construct, 148–151

else construct, 145–147

exit command, 147–148

exit status
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non-zero values, 131

overview, 131–132

zero values, 131

nesting, 148–149

null command (:), 160–161

overview, 344–346

syntax, 131

testing conditions in

alternative format for test, 
139–140

file operators, 142–143

integer operators, 140–142

logical AND operator (-a), 143–144

logical negation operator (!), 143
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r command, 301–303

vi line edit mode, 294–296

command-line editing

command history, 292

emacs line edit mode, 296–300
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vi line edit mode, 292–296

ENV file, 290–291
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automatically loaded functions, 303

local variables, 303

integer arithmetic

integer types, 304–305

numbers in different bases, 305–306
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job control, 315–317

order of search, 319

shell, specifying, 290

tilde substitution, 318–319

internal field separators, 251–254

interpreted programming language, 50

I/O (input/output) redirection
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>&- construct, 262

input redirection

< (left arrow), 331

exec command, 230–231, 262

in-line input redirection, 262–267

overview, 331

POSIX shell, 331

shell archive creation, 264–267

standard I/O (input/output), 28–30

loops, 177–178

output redirection

exec command, 230–231, 262

overview, 30–32

standard output, closing, 262

logical OR operator (-o), 144

overview, 135

parentheses, 144

string operators, 135–139

test command syntax, 135

IFS variable, 251–254, 323

ignoreeof shell mode, 351

ignoring signals, 260

infinite loops, breaking out of, 174–176

info command, 359

init program, 40–43

input redirection
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exec command, 230–231, 262

in-line input redirection

shell archive creation, 264–267

syntax, 262–264

POSIX shell, 331

standard I/O (input/output), 28–30

INT signal, 258

integer arithmetic
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integer types, 304–305

numbers in different bases, 305–306

overview, 303–304

integer operators, 140–142

integer types, 304–305

interactive shell features

aliases

defining, 307–309

removing, 309

arrays, 309–314

cd command, 317–318

command history, accessing

emacs line edit mode, 296–298

fc command, 301

history command, 300–301
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standard I/O (input/output), 28–30

ison program, 122
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jobs

asynchronous jobs, 257

bringing to foreground, 342

job control, 315–317

job numbers, 37

killing, 347
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referencing, 333–334

sending to background, 316–317

stopped jobs, 316–317

stopping, 334

waiting for, 358

waiting for completion

$! variable, 257–258

wait command, 257

jobs command, 315, 347

K
kernel, 1, 39
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kill command, 315, 347

killing jobs, 347
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Korn shell. See also nonstandard shell 

features

compatibility summary, 319–320
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kornshell.com website, 360
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-L file operator, 142–143
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in-line input redirection
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cutting, 64–66
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sort command, 84

uniq command, 88–89
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from different files, 68–69

output delimiters, 69–70
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pattern matching
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arithmetically, 86
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skipping remaining commands in, 
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until, 170–174
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ls command, 7, 15–17

-lt operator, 140–142

lu program, 124–125, 278
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MAIL variable, 324
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MAILPATH variable, 324

man command, 359

matched characters, saving, 61–63
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any character, 51–53
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case command, 155–156, 336–337
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duplicate entries, 89–90
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grep command
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-n option, 83
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precise number of subpatterns, 59–61
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Web documentation, 360
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phonebook file entries, 283–284
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ln command, 20–23
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logical negation operator (!), 143, 322

logical OR operator (-o), 144
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mathematical equation solver (expr), 

119–120

menu-driven phone program (rolo)

$$ variable, 198–199

add program, 277

change program, 281–283

data formatting, 273–274

display program, 278–279

final code listing, 274–277

initial code listing, 193–194

listall program, 283–284

lu program, 278

rem program, 280–281

revised code listing, 196–198

sample output, 284–287

sample runs, 195–196
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mkdir command, 17–18
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mycp program

echo escape characters, 187–188

final code listing, 190–193

initial code listing, 185–187

revised code listing, 188–190
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filename substitution
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-ne operator, 140–142
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newgrp command, 347–348

newline character, 45

noclobber shell mode, 351
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defining, 307–309

removing, 309

arrays, 309–314

cd command, 317–318
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emacs line edit mode, 296–298

fc command, 301

history command, 300–301

r command, 301–303

vi line edit mode, 294–296

command-line editing

command history, 292

emacs line edit mode, 296–300
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vi line edit mode, 292–296

ENV file, 290–291

functions



380 nonstandard shell features

integer operators, 140–142

logical AND operator (-a), 143–144

logical negation operator (!), 143

logical OR operator (-o), 144

string operators, 135–139

test operators, 353–354

options (command), 8

ordinary files, 6

O’Reilly & Associates, 360–361

output

output redirection
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exec command, 230–231, 262

POSIX shell, 331–332

standard output, closing, 262

standard I/O (input/output), 28–30

output delimiters

paste command, 69–70

sort command, 88
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packages, Cygwin, 360

parameters. See also variables (shell)

overview, 239

parameter substitution

${parameter}, 239–240
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${parameter:= value}, 241

${parameter:-value}, 240

${parameter:?value}, 241–242

overview, 324–325

pattern matching, 242–244

positional parameters
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left-shifting, 128–129
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local variables, 303

integer arithmetic
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numbers in different bases, 305–306
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job control, 315–317

numbers, 304–305

order of search, 319

shell, specifying, 290

tilde substitution, 318–319

non-zero exit status, 131
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null command (:), 160–161

null values, 100–101

number program, 154–155, 201–202
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job numbers, 37

signal numbers, 258, 355
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od command, 251
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reassigning values to, 239, 247–248

setting, 350

shifting left, 352

substitution, 121–122

special parameters, 323–324

parent processes, 257

parentheses in test command, 144

parsing phase, 44

passing

arguments

$# variable, 122–123

$* variable, 123–124

${n} special variable, 128

phonebook file example, 124–128

positional parameters, 121–122

shift command, 128–129

variables to subshells, 234–235

passwords, entering at login, 40

paste command

-d option, 69–70

overview, 68–69

-s option, 70

pasting lines

from different files, 68–69

output delimiters, 69–70

from same file, 70

PATH variable, 217–224, 324

pathnames, 10–12

pattern matching

any character, 51–53

beginning of line, 53

case command, 155–156, 336–337

character sets, 55–57

duplicate entries, 89–90

end of line, 53–54

filename substitution, 25–27

grep command

-l option, 82–83

-n option, 83
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regular expressions, 81–82

-v option, 82

matched characters, saving, 61–63
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parameter substitution, 242–244

precise number of subpatterns, 
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summary of regular expression 
 characters, 63–64

zero or more characters, 57–59

Pearson books, 361
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job control, 315

pattern matching, 242–243
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dot (.) command, 227–230, 334–335

pattern matching, 51–53, 63

perl command, 91

phonebook file. See also rolo (Rolodex) 

program
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editing entries in, 281–283

listing entries in, 283–284
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case command, 159–160

loops, 178–179
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322
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date/time, 5, 95–96
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example, 206–207
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format specification modifiers, 
205–206

printf command syntax, 202
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to working directory, 348

process IDs (PIDs), 37, 199
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parent/child, 257
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waiting for completion

$! variable, 257–258

wait command, 257
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170–171
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args, 122–123
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$# variable, 122–123

$* variable, 123–124

${n} special variable, 128
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positional parameters, 121–122

shift command, 128–129

cdtest, 225

change, 281–283

command files, 93–96
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ctype, 155–156, 158–159
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job control, 315

pattern matching, 63

printf format specification modifier, 206

pointers to variables, 257

positional parameters

definition of, 239

left-shifting, 128–129
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reassigning values to, 239, 247–248

setting, 350

shifting left, 352

substitution, 121–122

POSIX shell

compatibility summary, 319–320
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startup, 321

subshell execution, 332

vi line edit mode, 326–329

Web documentation, 360
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pattern matching, 243

printf format specification modifier, 206

PPID variable, 324

prargs program, 169–170

precedence of operators, 330

precise number of subpatterns, matching, 
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precision modifier (printf), 205–206

printf command

example, 206–207

format specification characters, 202–205

format specification modifiers, 205–206

syntax, 202
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command information, 356
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db, 227–229

debugging, 157–159

display, 278–279

execution, 45–47

getty. See shells

greetings, 149–151, 159–160

init, 40–43

ison, 122

listall, 283–284

lu, 124–125, 278

mybasename, 244

mycp
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187–188

final code listing, 190–193

initial code listing, 185–187

revised code listing, 
188–190

number, 154–155

number2, 253

on, 132–135, 145–147, 170–171

prargs, 169–170

rem, 147–148, 151–153, 280–281

reverse, 311

rolo (Rolodex)

$$ variable, 198–199

add program, 277

change program, 281–283

data formatting, 273–274

display program, 278–279

final code listing, 274–277

fun, 270–271

initial code listing, 193–194

listall program, 283–284

lu program, 278

PATH variable, 221–224

rem program, 280–281

revised code listing, 196–198

rolosubs file, 264–266

sample output, 284–287

sample runs, 195–196

temporary files, 198–199

run, 95, 121, 164

shar, 267

shell variables

arithmetic expansion, 103–104

assigning values to, 97, 322, 
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displaying values of, 98–100

exported variables, 332, 340–341

filename substitution, 101–103

HISTSIZE, 326

null values, 100–101

readonly variables, 349

table of, 323–324
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vartest2, 210
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waitfor, 171–174, 180–184
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ps command, 37
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PWD variable, 324
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reading data

exit status, 199–202

menu-driven phone program (rolo)

$$ variable, 198–199

initial code listing, 193–194

revised code listing, 196–198

sample runs, 195–196

temporary files, 198–199

mycp program

echo escape characters, 187–188

final code listing, 190–193

initial code listing, 185–187

revised code listing, 188–190

read command syntax, 185

readonly command, 254, 349

read-only variables, 254, 349

reassigning values to positional parameters, 

239, 247–248

redirection (I/O)

<&- construct, 262

>&- construct, 262

input redirection

< (left arrow), 331

exec command, 230–231, 262

in-line input redirection, 262–267

overview, 331

POSIX shell, 331

shell archive creation, 264–267

standard I/O (input/output), 28–30

loops, 177–178

output redirection

exec command, 230–231, 262

overview, 30–32

standard output, closing, 262

overview, 48–49, 331–332

POSIX shell, 331–332

in programs, 94
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filename substitution, 25–27, 47, 331

pattern matching, 242, 336

quote characters
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backslash (\)
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111–114
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line continuation, 112

overview, 111–112
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overview, 329

single quotes ('), 105–108

smart quotes, 119
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r command, 301–303

-r file operator, 142–143

race conditions, 199

read command

exit status, 199–202

menu-driven phone program (rolo)

$$ variable, 198–199

initial code listing, 193–194

revised code listing, 196–198

sample runs, 195–196

temporary files, 198–199

mycp program

echo escape characters, 187–188

final code listing, 190–193

initial code listing, 185–187

revised code listing, 188–190

overview, 348–349

syntax, 185
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overview, 51
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summary table, 61–63

rem program, 147–148, 151–153, 

280–281
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characters from input stream, 77–78

directories, 22–23

duplicate lines

sort command, 84

uniq command, 88–89

files, 9
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280–281
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resetting traps, 261

resources
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overview, 359

Web documentation, 360

return command, 271, 349

reverse program, 311
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rm command, 9

rmdir command, 22–23

rolo (Rolodex) program

$$ variable, 198–199

add program, 277

change program, 281–283

data formatting, 273–274

display program, 278–279

final code listing, 274–277

functions, 270–271

initial code listing, 193–194

listall program, 283–284

lu program, 278

PATH variable, 221–224

rem program, 280–281

revised code listing, 
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rolosubs file, 264–266

sample output, 284–287

sample runs, 195–196

temporary files, 198–199

Rolodex program. See rolo (Rolodex) 
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shell variables. See also parameters

arithmetic expansion, 103–104

assigning values to, 97, 322, 333

definition of, 97

displaying values of, 98–100

ENV, 290–291

exported variables, 211–216, 332, 
340–341

filename substitution and, 
101–103

finding number of characters stored in, 
244

HISTSIZE, 326

HOME, 217

IFS, 251–254

listing, 247

local variables, 209–210, 303

null values, 100–101

passing to subshells, 
234–235

PATH, 217–224

pointers, creating, 257

PS1, 216

PS2, 216

read-only variables, 254, 349
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$? variable, 132–135

$! variable, 257–258

$# variable, 122–123

$* variable, 123–124, 166

$@ variable, 166–167

${n} variable, 128

$0 variable, 245

table of, 323–324

TERM, 236–237

TZ, 236–237

undefined variables, 100–101

unsetting, 254
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-n option, 83
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-v option, 82
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-n option, 72
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set command
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overview, 239, 321, 350–351
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247–248
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shar program, 267

shell archives, creating, 264–267
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shells

Bash. See also nonstandard shell features

compatibility summary, 319–320
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compatibility summary, 319–320
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Korn shell. See also nonstandard shell 
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duplicate lines, eliminating, 84
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overview, 84
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skipped fields, 87
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exec command, 227–230

execution, 332
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passing variables to, 234–235

substitution
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back quote (`), 114–115
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POSIX shell, 331
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specifying shell, 289–290

standard error

overview, 35
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standard I/O (input/output)
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redirection, 261–262
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standard shell. See POSIX shell

starting up POSIX shell, 321
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else construct, 145–147
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exit status, 131–135
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logical negation operator (!), 143
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shell program, 340

test command

alternative format, 139–140

file operators, 142–143

integer operators, 140–142

logical AND operator (-a), 143–144

logical negation operator (!), 143

logical OR operator (-o), 144

overview, 135, 352–354

parentheses, 144

string operators, 135–139

syntax, 135

testing conditions in if statements

alternative format, 139–140

file operators, 142–143

integer operators, 140–142

logical AND operator (-a), 143–144

logical negation operator (!), 143

logical OR operator (-o), 144

overview, 135

parentheses, 144

string operators, 135–139

test command syntax, 135

text

ASCII characters, octal values of, 75

character sequences

double quotes ("), 109–111

single quotes ('), 105–108

cutting, 64–66

deleting

with sed, 73

with tr command, 77–78

echoing, 6

escaping, 111–112

filenames

allowed characters, 6

special characters, 28

line continuation, 112

pasting, 68–70

pattern matching

any character, 51–53

beginning of line, 53

character sets, 55–57

end of line, 53–54

filename substitution, 25–27

matched characters, saving, 
61–63

parameter substitution, 
242–244
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U
%u format specification character, 203

umask command, 356

unalias command, 309, 356

unary file operators, 142–143

unary logical negation operator (!), 143

undefined variables, 100–101

underscore (_), 322

uniq command

-c option, 90

-d option, 89–90

overview, 88–89

Unix

development of, 1

resources

books, 360–361

online documentation, 359

overview, 359

Web documentation, 360

strengths of, 1

unix.org website, 360

unset command, 254, 271, 357

until command, 170–174, 357

users, returning information about, 5–6

utilities, 39. See also commands

V
values

assigning to variables, 97

reassigning to positional parameters, 
239, 247–248

variables (shell). See also parameters

arithmetic expansion, 103–104

assigning values to, 97, 322, 333

definition of, 97

displaying values of, 98–100

precise number of characters, 
59–61

zero or more characters, 57–59

sorting, 84–88

translating from standard input, 
74–77

Thompson, Ken, 1

tilde substitution, 318–319, 329

time

printing, 5

time zone, determining, 237

times command, 354, 355–356

tools. See commands

tr command

-d option, 77–78

examples, 78

octal values of ASCII characters, 75

overview, 74–76

-s option, 76–77

trace mode, turning on/off, 246

translating characters from standard input, 

74–77

trap command

execution with no arguments, 
259–260

ignored signals, 260

overview, 258–259

signal numbers, 258

trap reset, 261

Trojan horse, 218–219

true command, 356

turning on/off trace mode, 246

twhile program, 169

type command, 271

types, integer, 304–305

typing loops on one line, 179–180

TZ variable, 236–237
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ENV, 290–291

exported variables, 211–216, 332, 
340–341

filename substitution, 101–103

finding number of characters stored in, 
244

HISTSIZE, 326

HOME, 217

IFS, 251–254

listing, 247

local variables, 209–210, 303

null values, 100–101

passing to subshells, 234–235

PATH, 217–224

pointers, creating, 257

PS1, 216

PS2, 216

read-only variables, 254

readonly variables, 349

special variables

$? variable, 132–135

$! variable, 257–258

$# variable, 122–123

$* variable, 123–124, 166

$@ variable, 166–167

${n} variable, 128

$0 variable, 245

substitution, 47, 98–100

table of, 323–324

TERM, 236–237

TZ, 236–237

undefined variables, 
100–101

unsetting, 254

vartest program, 209

vartest2 program, 210

vartest3 program, 212

vartest4 program, 213–214

verbose shell mode, 351

vi line edit mode

command history, accessing, 
294–296

overview, 292–294, 326–329, 
351

W
-w file operator, 142–143

wait command, 257, 358

waitfor program, 171–174, 180–184, 

232–234

waiting for job completion

$! variable, 257–258

overview, 358

wait command, 257

wc command, 7, 95–96

Web documentation, 360

Web Edition of book, 3

websites

Cygwin, 360

cygwin.com, 360

Free Software Foundation, 360

Korn shell, 360

The Open Group, 360

while loops, 168–170, 358

whitespace, 45, 321

who command, 5–6

width modifier (printf), 205–206

words, counting, 7

words program, 249–250

working directory

definition of, 10

displaying, 12

printing to, 348

writing to standard error, 261–262
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Y-Z
-z string operator, 137, 138

zero exit status, 131

zero or more characters, matching, 57–59

X
-x file operator, 142–143

%X format specification character, 203

%x format specification character, 203

-x option, debugging with, 157–159

xtrace mode, 351
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