

“Meticulously pragmatic and exquisitely articulate, Practical Object Oriented Design
in Ruby makes otherwise elusive knowledge available to an audience which desper-
ately needs it. The prescriptions are appropriate both as rules for novices and as guide-
lines for experienced professionals.”

—Katrina Owen, Creator, Exercism

“I do believe this will be the most important Ruby book of 2012. Not only is the book
100% on-point, Sandi has an easy writing style with lots of great analogies that drive
every point home.”

—Avdi Grimm, author of Exceptional Ruby and Objects on Rails

“While Ruby is an object-oriented language, little time is spent in the documentation
on what OO truly means or how it should direct the way we build programs. Here Metz
brings it to the fore, covering most of the key principles of OO development and design
in an engaging, easy-to-understand manner. This is a must for any respectable Ruby
bookshelf.”

—Peter Cooper, editor, Ruby Weekly

“So good, I couldn’t put it down! This is a must-read for anyone wanting to do object-
oriented programming in any language, not to mention it has completely changed the
way I approach testing.”

—Charles Max Wood, Ruby Rogues Podcast co-host and CEO of Devchat.tv

“Distilling scary OO design practices with clear-cut examples and explanations makes
this a book for novices and experts alike. It is well worth the study by anyone interested
in OO design being done right and ‘light.’ I thoroughly enjoyed this book.”

—Manuel Pais, DevOps and Continuous Delivery Consultant, Independent

“If you call yourself a Ruby programmer, you should read this book. It’s jam-packed
with great nuggets of practical advice and coding techniques that you can start
 applying immediately in your projects.”

—Ylan Segal, San Diego Ruby User Group

Praise for the first edition of
Practical Object-Oriented Design in Ruby

http://Devchat.tv

“This is the best OO book I’ve ever read. It’s short, sweet, but potent. It slowly moves
from simple techniques to more advanced, each example improving on the last. The
ideas it presents are useful not just in Ruby but in static languages like C# too. Highly
recommended!”

—Kevin Berridge, software engineering manager,
Pointe Blank Solutions, and organizer, Burning River Developers Meetup

“This is the best programming book I’ve read in ages. Sandi talks about basic principles,
but these are things we’re probably still doing wrong and she shows us why and how. The
book has the perfect mix of code, diagrams, and words. I can’t recommend it enough and
if you’re serious about being a better programmer, you’ll read it and agree.

—Derick Hitchcock, software engineer, Cisco

“Metz’s take on the subject is rooted strongly in theory, but the explanation always
stays grounded in real world concerns, which helped me to internalize it. The book is
clear and concise, yet achieves a tone that is more friendly than terse.”

—Alex Strasheim, network administrator, Ensemble Travel Group

“Whether you’re just getting started in your software development career, or you’ve been
coding for years (like I have), it’s likely that you’ll learn a lot from Ms. Metz’s book. She
does a fantastic job of explaining the whys of well-designed software along with the hows.”

—Gabe Hollombe, software craftsman, avantbard.com

http://avantbard.com

Practical Object-Oriented
Design

Second Edition

This page intentionally left blank

Practical Object-Oriented
Design
An Agile Primer Using Ruby

Second Edition

Sandi Metz

Boston • Columbus • New York • San Francisco • Amsterdam • Cape Town • Dubai
London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed
or implied warranty of any kind and assume no responsibility for errors or omissions. No liability
is assumed for incidental or consequential damages in connection with or arising out of the use
of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales
department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2018939833

Copyright © 2019 Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission must be obtained
from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
 information regarding permissions, request forms and the appropriate contacts within the Pearson
Education Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-445647-8
ISBN-10: 0-13-445647-5

ScoutAutomatedPrintCode

mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com
http://informit.com/aw
http://www.pearsoned.com/permissions/

For Amy, who read everything first

This page intentionally left blank

ix

Contents

 Introduction xv

 Acknowledgments xix

 About the Author xxi

1 Object-Oriented Design 1
1.1 In Praise of Design 2

1.1.1 The Problem Design Solves 2

1.1.2 Why Change Is Hard 3

1.1.3 A Practical Definition of Design 3

1.2 The Tools of Design 4
1.2.1 Design Principles 4

1.2.2 Design Patterns 6

1.3 The Act of Design 6
1.3.1 How Design Fails 6

1.3.2 When to Design 7

1.3.3 Judging Design 9

1.4 A Brief Introduction to Object-Oriented Programming 10
1.4.1 Procedural Languages 11

1.4.2 Object-Oriented Languages 11

1.5 Summary 13

2 Designing Classes with a Single Responsibility 15
2.1 Deciding What Belongs in a Class 16

2.1.1 Grouping Methods into Classes 16

2.1.2 Organizing Code to Allow for Easy Changes 16

2.2 Creating Classes That Have a Single Responsibility 17
2.2.1 An Example Application: Bicycles and Gears 17

2.2.2 Why Single Responsibility Matters 21

x Contents

2.2.3 Determining If a Class Has a Single Responsibility 22

2.2.4 Determining When to Make Design Decisions 22

2.3 Writing Code That Embraces Change 24
2.3.1 Depend on Behavior, Not Data 24

2.3.2 Enforce Single Responsibility Everywhere 29

2.4 Finally, the Real Wheel 33
2.5 Summary 35

3 Managing Dependencies 37
3.1 Understanding Dependencies 38

3.1.1 Recognizing Dependencies 39

3.1.2 Coupling Between Objects (CBO) 39

3.1.3 Other Dependencies 40

3.2 Writing Loosely Coupled Code 41
3.2.1 Inject Dependencies 41

3.2.2 Isolate Dependencies 44

3.2.3 Remove Argument-Order Dependencies 48

3.3 Managing Dependency Direction 53
3.3.1 Reversing Dependencies 53

3.3.2 Choosing Dependency Direction 55

3.4 Summary 59

4 Creating Flexible Interfaces 61
4.1 Understanding Interfaces 61
4.2 Defining Interfaces 63

4.2.1 Public Interfaces 64

4.2.2 Private Interfaces 64

4.2.3 Responsibilities, Dependencies, and Interfaces 64

4.3 Finding the Public Interface 65
4.3.1 An Example Application: Bicycle Touring Company 65

4.3.2 Constructing an Intention 65

4.3.3 Using Sequence Diagrams 66

4.3.4 Asking for “What” Instead of Telling “How” 70

4.3.5 Seeking Context Independence 72

4.3.6 Trusting Other Objects 74

4.3.7 Using Messages to Discover Objects 75

4.3.8 Creating a Message-Based Application 77

4.4 Writing Code That Puts Its Best (Inter)Face Forward 77
4.4.1 Create Explicit Interfaces 77

4.4.2 Honor the Public Interfaces of Others 79

xiContents

4.4.3 Exercise Caution When Depending on Private Interfaces 80

4.4.4 Minimize Context 80

4.5 The Law of Demeter 80
4.5.1 Defining Demeter 81

4.5.2 Consequences of Violations 81

4.5.3 Avoiding Violations 82

4.5.4 Listening to Demeter 83

4.6 Summary 84

5 Reducing Costs with Duck Typing 85
5.1 Understanding Duck Typing 85

5.1.1 Overlooking the Duck 86

5.1.2 Compounding the Problem 88

5.1.3 Finding the Duck 90

5.1.4 Consequences of Duck Typing 94

5.2 Writing Code That Relies on Ducks 95
5.2.1 Recognizing Hidden Ducks 95

5.2.2 Placing Trust in Your Ducks 97

5.2.3 Documenting Duck Types 98

5.2.4 Sharing Code between Ducks 98

5.2.5 Choosing Your Ducks Wisely 98

5.3 Conquering a Fear of Duck Typing 100
5.3.1 Subverting Duck Types with Static Typing 100

5.3.2 Static versus Dynamic Typing 101

5.3.3 Embracing Dynamic Typing 102

5.4 Summary 103

6 Acquiring Behavior through Inheritance 105
6.1 Understanding Classical Inheritance 105
6.2 Recognizing Where to Use Inheritance 106

6.2.1 Starting with a Concrete Class 107

6.2.2 Embedding Multiple Types 109

6.2.3 Finding the Embedded Types 111

6.2.4 Choosing Inheritance 112

6.2.5 Drawing Inheritance Relationships 114

6.3 Misapplying Inheritance 114
6.4 Finding the Abstraction 116

6.4.1 Creating an Abstract Superclass 117

6.4.2 Promoting Abstract Behavior 120

6.4.3 Separating Abstract from Concrete 123

xii Contents

6.4.4 Using the Template Method Pattern 125

6.4.5 Implementing Every Template Method 127

6.5 Managing Coupling between Superclasses and Subclasses 129
6.5.1 Understanding Coupling 129

6.5.2 Decoupling Subclasses Using Hook Messages 134

6.6 Summary 139

7 Sharing Role Behavior with Modules 141
7.1 Understanding Roles 142

7.1.1 Finding Roles 142

7.1.2 Organizing Responsibilities 143

7.1.3 Removing Unnecessary Dependencies 146

7.1.4 Writing the Concrete Code 147

7.1.5 Extracting the Abstraction 150

7.1.6 Looking Up Methods 153

7.1.7 Inheriting Role Behavior 157

7.2 Writing Inheritable Code 158
7.2.1 Recognize the Antipatterns 158

7.2.2 Insist on the Abstraction 158

7.2.3 Honor the Contract 159

7.2.4 Use the Template Method Pattern 160

7.2.5 Preemptively Decouple Classes 160

7.2.6 Create Shallow Hierarchies 160

7.3 Summary 161

8 Combining Objects with Composition 163
8.1 Composing a Bicycle of Parts 163

8.1.1 Updating the Bicycle Class 164

8.1.2 Creating a Parts Hierarchy 165

8.2 Composing the Parts Object 168
8.2.1 Creating a Part 168

8.2.2 Making the Parts Object More Like an Array 172

8.3 Manufacturing Parts 176
8.3.1 Creating the PartsFactory 177

8.3.2 Leveraging the PartsFactory 179

8.4 The Composed Bicycle 181
8.5 Deciding between Inheritance and Composition 185

8.5.1 Accepting the Consequences of Inheritance 186

8.5.2 Accepting the Consequences of Composition 188

8.5.3 Choosing Relationships 189

8.6 Summary 191

xiiiContents

9 Designing Cost-Effective Tests 193
9.1 Intentional Testing 194

9.1.1 Knowing Your Intentions 194

9.1.2 Knowing What to Test 196

9.1.3 Knowing When to Test 199

9.1.4 Knowing How to Test 200

9.2 Testing Incoming Messages 202
9.2.1 Deleting Unused Interfaces 204

9.2.2 Proving the Public Interface 204

9.2.3 Isolating the Object under Test 206

9.2.4 Injecting Dependencies Using Classes 208

9.2.5 Injecting Dependencies as Roles 210

9.3 Testing Private Methods 215
9.3.1 Ignoring Private Methods during Tests 216

9.3.2 Removing Private Methods from the Class under Test 216

9.3.3 Choosing to Test a Private Method 216

9.4 Testing Outgoing Messages 217
9.4.1 Ignoring Query Messages 217

9.4.2 Proving Command Messages 218

9.5 Testing Duck Types 221
9.5.1 Testing Roles 221

9.5.2 Using Role Tests to Validate Doubles 227

9.6 Testing Inherited Code 233
9.6.1 Specifying the Inherited Interface 233

9.6.2 Specifying Subclass Responsibilities 236

9.6.3 Testing Unique Behavior 240

9.7 Summary 244

 Afterword 245

 Index 247

This page intentionally left blank

xv

Introduction

We want to do our best work, and we want the work we do to have meaning. And, all
else being equal, we prefer to enjoy ourselves along the way.

Those of us whose work is to write software are incredibly lucky. Building soft-
ware is a guiltless pleasure because we get to use our creative energy to get things
done. We have arranged our lives to have it both ways; we can enjoy the pure act of
writing code in sure knowledge that the code we write has use. We produce things
that matter. We are modern craftspeople, building structures that make up present-
day reality, and no less than bricklayers or bridge builders, we take justifiable pride in
our accomplishments.

This all programmers share, from the most enthusiastic newbie to the apparently
jaded elder, whether working at the lightest weight Internet startup or the most staid,
long-entrenched enterprise. We want to do our best work. We want our work to have
meaning. We want to have fun along the way.

And so it’s especially troubling when software goes awry. Bad software impedes
our purpose and interferes with our happiness. Where once we felt productive, now
we feel thwarted. Where once fast, now slow. Where once peaceful, now frustrated.

This frustration occurs when it costs too much to get things done. Our internal
calculators are always running, comparing total amount accomplished to overall effort
expended. When the cost of doing work exceeds its value, our efforts feel wasted. If
programming gives joy it is because it allows us to be useful, when it becomes pain-
ful it is a sign that we believe we could, and should, be doing more. Our pleasure
follows in the footsteps of work.

This book is about designing object-oriented software. It is not an academic
tome, it is a programmer’s story about how to write code. It teaches how to arrange
software so as to be productive today and to remain so next month and next year.
It shows how to write applications that can succeed in the present and still adapt
to the future. It allows you to raise your productivity and reduce your costs for the
entire lifetime of your applications.

xvi Introduction

This book believes in your desire to do good work and gives you the tools you
need to best be of use. It is completely practical and as such is, at its core, a book
about how to write code that brings you joy.

Who Might Find This Book Useful?
This book assumes that you have at least tried to write object-oriented software. It
is not necessary that you feel you succeeded, just that you made the attempt in any
object-oriented (OO) language. Chapter 1, “Object-Oriented Design,” contains a brief
overview of object-oriented programming (OOP), but its goal is to define common
terms, not to teach programming.

If you want to learn OO design (OOD) but have not yet done any object-oriented
programming, at least take a tutorial before reading this book. OOD solves problems;
suffering from those problems is very nearly a prerequisite for comprehending these
solutions. Experienced programmers may be able to skip this step, but most readers
will be happier if they write some OO code before starting this book.

This book uses Ruby to teach OOD but you do not need to know Ruby to under-
stand the concepts herein. There are many code examples but all are quite straight-
forward. If you have programmed in any OO language you will find Ruby easy to
understand.

If you come from a statically typed OO language like Java or C++ you have
the background necessary to benefit from reading this book. The fact that Ruby is
dynamically typed simplifies the syntax of the examples and distills the design ideas
to their essence, but every concept in this book can be directly translated to a stati-
cally typed OO language.

How to Read This Book
Chapter 1 contains a general overview of the whys, whens, and wherefores of OO
design, followed by a brief overview of object-oriented programming. This chapter
stands alone. You can read it first, last, or, frankly, skip it entirely, although if you are
currently stuck with an application that suffers from lack of design, you may find it
a comforting tale.

If you have experience writing object-oriented applications and want to jump
right in, you can safely start with Chapter 2. If you do so and then stumble upon an
unfamiliar term, come back and browse the “Introduction to Object-Oriented Pro-
gramming” section of Chapter 1, which introduces and defines common OO terms
used throughout the book.

xviiIntroduction

Chapters 2 through 9 progressively explain object-oriented design. Chapter 2,
“Designing Classes with a Single Responsibility,” covers how to decide what belongs
in a single class. Chapter 3, “Managing Dependencies,” illustrates how objects get
entangled with one another and shows how to keep them apart. These two chapters
are focused on objects rather than messages.

In Chapter 4, “Creating Flexible Interfaces,” the emphasis begins to shift away
from object-centric toward message-centric design. Chapter 4 is about defining inter-
faces and is concerned with how objects talk to one another. Chapter 5, “Reducing
Costs with Duck Typing,” is about duck typing and introduces the idea that objects
of different classes may play common roles. Chapter 6, “Acquiring Behavior through
Inheritance,” teaches the techniques of classical inheritance, which are then used in
Chapter 7, “Sharing Role Behavior with Modules,” to create duck typed roles. Chapter 8,
“Combining Objects with Composition,” explains the technique of building objects via
composition and provides guidelines for choosing among composition, inheritance,
and duck-typed role sharing. Chapter 9, “Designing Cost-Effective Tests,” concentrates
on the design of tests, which it illustrates using code from earlier chapters of the book.

Each of these chapters builds on the concepts of the last. They are full of code
and best read in order.

How to Use This Book
This book will mean different things to readers of different backgrounds. Those
already familiar with OOD will find things to think about, possibly encounter some
new points of view, and probably disagree with a few of the suggestions. Because
there is no final authority on OOD, challenges to the principles (and to this author)
will improve the understanding of all. In the end, you must be the arbiter of your own
designs; it is up to you to question, to experiment, and to choose.

While this book should be of interest to many levels of reader, it is written with
the particular goal of being accessible to novices. If you are one of those novices, this
part of the introduction is especially for you. Know this: Object-oriented design is not
black magic. It is simply things you don’t yet know. The fact that you’ve read this far
indicates you care about design; this desire to learn is the only prerequisite for benefit-
ing from this book.

Chapters 2 through 9 explain OOD principles and provide very explicit program-
ming rules; these rules will mean different things to novices than they mean to experts.
If you are a novice, start out by following these rules in blind faith if necessary. This
early obedience will stave off disaster until you can gain enough experience to make

xviii Introduction

your own decisions. By the time the rules start to chafe, you’ll have enough experi-
ence to make up rules of your own, and your career as a designer will have begun.

Software Versions Used in This Book
The examples in this book were written using Ruby 2.4 and tested with Minitest
5.10.3. Source code for the examples can be found at https://github.com/skmetz/
poodr2.

Register your copy of Practical Object-Oriented Design, Second Edition, on
the InformIT site for convenient access to updates and/or corrections as they
become available. To start the registration process, go to informit.com/register
and log in or create an account. Enter the product ISBN (9780134456478) and
click Submit. Look on the Registered Products tab for an Access Bonus Content
link next to this product, and follow that link to access any available bonus
materials. If you would like to be notified of exclusive offers on new editions
and updates, please check the box to receive email from us.

https://github.com/skmetz/poodr2
https://github.com/skmetz/poodr2
http://informit.com/register

xix

Acknowledgments

It is a wonder this book exists; the fact that it does is due to the efforts and encour-
agement of many people.

Throughout the long process of writing, Lori Evans and TJ Stankus provided
early feedback on every chapter. They live in Durham, NC, and thus could not escape
me, but this fact does nothing to lessen my appreciation for their help.

Midway through the book, after it became impossible to deny that its writing
would take approximately twice as long as originally estimated, Mike Dalessio and
Gregory Brown read drafts and gave invaluable feedback and support. Their encour-
agement and enthusiasm kept the project alive during dark days.

A number of reviewers cast their keen eyes on the entire book, acting as gracious
stand-ins for you, the gentle reader. As the first edition neared completion, Steve
Klabnik, Desi McAdam, and Seth Wax gave it careful readings. The second edition
was meticulously scoured by Will Sommers and Tory Peterschild. Their impressions
and suggestions caused changes that will benefit all who follow.

Late drafts were given careful, thorough readings by Katrina Owen, Avdi Grimm,
and Rebecca Wirfs-Brock, and the book is much improved by their kind and thought-
ful feedback. Before they pitched in, Katrina, Avdi, and Rebecca were strangers to me;
I am grateful for their involvement and humbled by their generosity. If you find this
book useful, thank them when you next see them.

I am also grateful for the Gotham Ruby Group and for everyone who expressed
their appreciation for the design talks I gave at GoRuCo 2009 and 2011. The folks at
GoRuCo took a chance on an unknown and gave me a forum in which to express
these ideas; this book started there. Ian McFarland and Brian Ford watched those
talks and their immediate and ongoing enthusiasm for this project was both infec-
tious and convincing.

The process of writing was greatly aided by Michael Thurston of Pearson, who
was like an ocean liner of calmness and organization chugging through the chaotic
sea of my opposing rogue writing waves. You can, I expect, see the problem he faced.
He insisted, with endless patience and grace, that the writing be arranged in a read-
able structure. I believe his efforts have paid off and hope you will agree.

xx Acknowledgments

My thanks also to Debra Williams Cauley, my editor at Pearson/Addison-Wesley,
who overheard an ill-timed hallway rant in 2006 at the first Ruby on Rails conference
in Chicago and launched the campaign that eventually resulted in this book. Despite
my best efforts, she would not take no for an answer. She cleverly moved from one
argument to the next until she finally found the one that convinced; this accurately
reflects her persistence and dedication.

I owe a debt to the entire object-oriented design community. I did not make
up the ideas in this book, I am merely a translator, and I stand on the shoulders of
giants. It goes without saying that while all credit for these ideas belongs to others—
failures of translation are mine alone.

And finally, this book owes its existence to my partner Amy Germuth. Before this
project started I could not imagine writing a book; her view of the world as a place
where people did such things made doing so seem possible. The book in your hands
is a tribute to her boundless patience and endless support.

Thank you, each and every one.

xxi

About the Author

Sandi Metz, author of Practical Object-Oriented Design in Ruby and 99 Bottles of
OOP, believes in simple code and straightforward explanations. She prefers working
software, practical solutions, and lengthy bicycle trips (not necessarily in that order),
and writes, consults, speaks, and teaches about object-oriented design.

This page intentionally left blank

37

Chapter 3
Managing Dependencies

Object-oriented programming languages contend that they are efficient and effective
because of the way they model reality. Objects reflect qualities of a real-world prob-
lem and the interactions between those objects provide solutions. These interactions
are inescapable. A single object cannot know everything, so inevitably it will have to
talk to another object.

If you could peer into a busy application and watch the messages as they pass,
the traffic might seem overwhelming. There’s a lot going on. However, if you stand
back and take a global view, a pattern becomes obvious. Each message is initiated
by an object to invoke some bit of behavior. All of the behavior is dispersed among
the objects. Therefore, for any desired behavior, an object either knows it personally,
inherits it, or knows another object who knows it.

The previous chapter concerned itself with the first of these, that is, behaviors
that a class should personally implement. The second, inheriting behavior, will be
covered in Chapter 6, “Acquiring Behavior through Inheritance.” This chapter is about
the third, getting access to behavior when that behavior is implemented in other
objects.

Because well-designed objects have a single responsibility, their very nature
requires that they collaborate to accomplish complex tasks. This collaboration is
powerful and perilous. To collaborate, an object must know something about others.
Knowing creates a dependency. If not managed carefully, these dependencies will
strangle your application.

38 Chapter 3. Managing Dependencies

3.1 Understanding Dependencies
An object depends on another object if, when one object changes, the other might be
forced to change in turn.

Here’s a modified version of the Gear class, where Gear is initialized with four
familiar arguments. The gear_inches method uses two of them, rim and tire,
to create a new instance of Wheel. Wheel has not changed since you last saw it in
Chapter 2, “Designing Classes with a Single Responsibility.”

Listing 3.1

 1 class Gear
 2 attr_reader :chainring, :cog, :rim, :tire
 3 def initialize(chainring, cog, rim, tire)
 4 @chainring = chainring
 5 @cog = cog
 6 @rim = rim
 7 @tire = tire
 8 end
 9
10 def gear_inches
11 ratio * Wheel.new(rim, tire).diameter
12 end
13
14 def ratio
15 chainring / cog.to_f
16 end
17 # ...
18 end
19
20 class Wheel
21 attr_reader :rim, :tire
22 def initialize(rim, tire)
23 @rim = rim
24 @tire = tire
25 end
26
27 def diameter
28 rim + (tire * 2)
29 end
30 # ...
31 end
32
33 puts Gear.new(52, 11, 26, 1.5).gear_inches
34 # => 137.0909090909091

1
2

 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

393.1 Understanding Dependencies

Examine the preceding code and make a list of the situations in which Gear
would be forced to change because of a change to Wheel. This code seems innocent,
but it’s sneakily complex. Gear has at least four dependencies on Wheel, enumerated
as follows. Most of the dependencies are unnecessary; they are a side effect of the
coding style. Gear does not need them to do its job. Their very existence weakens
Gear and makes it harder to change.

3.1.1 Recognizing Dependencies
An object has a dependency when it knows:

• The name of another class. Gear expects a class named Wheel to exist.

• The name of a message that it intends to send to someone other than self. Gear
expects a Wheel instance to respond to diameter.

• The arguments that a message requires. Gear knows that Wheel.new requires a
rim and a tire.

• The order of those arguments. Gear knows that Wheel takes positional
arguments and that the first should be rim, the second, tire.

Each of these dependencies creates a chance that Gear will be forced to change
because of a change to Wheel. Some degree of dependency between these two
classes is inevitable; after all, they must collaborate, but most of the dependencies
listed above are unnecessary. These unnecessary dependencies make the code less
reasonable. Because they increase the chance that Gear will be forced to change,
these dependencies turn minor code tweaks into major undertakings where small
changes cascade through the application, forcing many changes.

Your design challenge is to manage dependencies so that each class has the few-
est possible; a class should know just enough to do its job and not one thing more.

3.1.2 Coupling Between Objects (CBO)
These dependencies couple Gear to Wheel. Alternatively, you could say that each
coupling creates a dependency. The more Gear knows about Wheel, the more tightly
coupled they are. The more tightly coupled two objects are, the more they behave
like a single entity.

If you make a change to Wheel, you may find it necessary to make a change
to Gear. If you want to reuse Gear, Wheel comes along for the ride. When you test
Gear, you’ll be testing Wheel too.

Figure 3.1 illustrates the problem. In this case, Gear depends on Wheel and four
other objects, coupling Gear to five different things. When the underlying code was

40 Chapter 3. Managing Dependencies

first written, everything worked fine. The problem lies dormant until you attempt
to use Gear in another context or to change one of the classes upon which Gear
depends. When that day comes, the cold hard truth is revealed; despite appearances,
Gear is not an independent entity. Each of its dependencies is a place where another
object is stuck to it. The dependencies cause these objects to act like a single thing.
They move in lockstep; they change together.

When two (or three or more) objects are so tightly coupled that they behave as
a unit, it’s impossible to reuse just one. Changes to one object force changes to all.
Left unchecked, unmanaged dependencies cause an entire application to become an
entangled mess. A day will come when it’s easier to rewrite everything than to change
anything.

3.1.3 Other Dependencies
The remainder of this chapter examines the four kinds of dependencies listed previ-
ously and suggests techniques for avoiding the problems they create. However, before
going forward, it’s worth mentioning a few other common dependency-related issues
that will be covered in other chapters.

One especially destructive kind of dependency occurs where an object knows
another who knows another who knows something; that is, where many messages
are chained together to reach behavior that lives in a distant object. This is the “know-
ing the name of a message you plan to send to someone other than self ” dependency,
only magnified. Message chaining creates a dependency between the original object
and every object and message along the way to its ultimate target. These additional
couplings greatly increase the chance that the first object will be forced to change
because a change to any of the intermediate objects might affect it.

Gear depends on wheel, A, B, C and D Gear and its dependencies act like one thing

Gear Gear

Wheel

W
he

el

B

B

A A

C
C

D
D

Figure 3.1 Dependencies entangle objects with one another

413.2 Writing Loosely Coupled Code

This case, a Law of Demeter violation, gets its own special treatment in Chapter 4,
“Creating Flexible Interfaces.”

Another entire class of dependencies is that of tests on code. In the world out-
side of this book, tests come first. They drive design. However, they refer to code and
thus depend on code. The natural tendency of “new-to-testing” programmers is to
write tests that are too tightly coupled to code. This tight coupling leads to incredible
frustration; the tests break every time the code is refactored, even when the funda-
mental behavior of the code does not change. Tests begin to seem costly relative to
their value. Test-to-code over-coupling has the same consequence as code-to-code
over-coupling. These couplings are dependencies that cause changes to the code to
cascade into the tests, forcing them to change in turn.

The design of tests is examined in Chapter 9, “Designing Cost-Effective Tests.”
Despite these cautionary words, your application is not doomed to drown in

unnecessary dependencies. As long as you recognize them, avoidance is quite simple.
The first step to this brighter future is to understand dependencies in more detail;
therefore, it’s time to look at some code.

3.2 Writing Loosely Coupled Code
Every dependency is like a little dot of glue that causes your class to stick to the
things it touches. A few dots are necessary, but apply too much glue, and your appli-
cation will harden into a solid block. Reducing dependencies means recognizing and
removing the ones you don’t need.

The following examples illustrate coding techniques that reduce dependencies
by decoupling code.

3.2.1 Inject Dependencies
Referring to another class by its name creates a major sticky spot. In the version of
Gear we’ve been discussing (repeated in Listing 3.2), the gear_inches method con-
tains an explicit reference to class Wheel.

Listing 3.2

 1 class Gear
 2 attr_reader :chainring, :cog, :rim, :tire
 3 def initialize(chainring, cog, rim, tire)
 4 @chainring = chainring
 5 @cog = cog
 6 @rim = rim
 7 @tire = tire
 8 end

1
2
3
4
5
6
7
8

42 Chapter 3. Managing Dependencies

 9
10 def gear_inches
11 ratio * Wheel.new(rim, tire).diameter
12 end
13 # ...
14 end
15
16 puts Gear.new(52, 11, 26, 1.5).gear_inches
17 # => 137.0909090909091

The immediate, obvious consequence of this reference is that if the name of the
Wheel class changes, Gear’s gear_inches method must also change.

On the face of it, this dependency seems innocuous. After all, if a Gear needs
to talk to a Wheel, something, somewhere, must create a new instance of the Wheel
class. If Gear itself knows the name of the Wheel class, the code in Gear must be
altered if Wheel’s name changes.

In truth, dealing with the name change is a relatively minor issue. You likely have
a tool that allows you to do a global find/replace within a project. If Wheel’s name
changes to Wheely, finding and fixing all of the references isn’t that hard. However,
the fact that line 11 above must change if the name of the Wheel class changes is the
least of the problems with this code. A deeper problem exists that is far less visible
but significantly more destructive.

When Gear hard-codes a reference to Wheel deep inside its gear_inches
method, it is explicitly declaring that it is only willing to calculate gear inches for
instances of Wheel. Gear refuses to collaborate with any other kind of object, even if
that object has a diameter and uses gears.

If your application expands to include objects such as disks or cylinders and you
need to know the gear inches of gears which use them, you cannot. Despite the fact
that disks and cylinders naturally have a diameter, you can never calculate their gear
inches because Gear is stuck to Wheel.

The code above exposes an unjustified attachment to type. It is not the class of
the object that’s important, it’s the message you plan to send to it. Gear needs access
to an object that can respond to diameter; a duck type, if you will (see Chapter 5,
“Reducing Costs with Duck Typing”). Gear does not care and should not know about
the class of that object. It is not necessary for Gear to know about the existence of
the Wheel class in order to calculate gear_inches. It doesn’t need to know that
Wheel expects to be initialized with a rim and then a tire; it just needs an object
that knows diameter.

Hanging these unnecessary dependencies on Gear simultaneously reduces
Gear’s reusability and increases its susceptibility to being forced to change unneces-
sarily. Gear becomes less useful when it knows too much about other objects; if it
knew less, it could do more.

 9
10
11
12
13
14
15
16
17

433.2 Writing Loosely Coupled Code

Instead of being glued to Wheel, this next version of Gear expects to be initial-
ized with an object that can respond to diameter:

Listing 3.3

 1 class Gear
 2 attr_reader :chainring, :cog, :wheel
 3 def initialize(chainring, cog, wheel)
 4 @chainring = chainring
 5 @cog = cog
 6 @wheel = wheel
 7 end
 8
 9 def gear_inches
10 ratio * wheel.diameter
11 end
12 # ...
13 end
14
15 # Gear expects a ‘Duck’ that knows ‘diameter’
16 puts Gear.new(52, 11, Wheel.new(26, 1.5)).gear_inches
17 # => 137.0909090909091

Gear now uses the @wheel variable to hold, and the wheel method to access,
this object, but don’t be fooled: Gear doesn’t know or care that the object might be
an instance of class Wheel. Gear only knows that it holds an object that responds to
diameter.

This change is so small it is almost invisible, but coding in this style has huge
benefits. Moving the creation of the new Wheel instance outside of Gear decouples
the two classes. Gear can now collaborate with any object that implements diameter.
As an extra bonus, this benefit was free. Not only is the resulting Gear class smaller
than the original, but the decoupling was achieved by simply rearranging existing
code.

This technique is known as dependency injection. Despite its daunting reputa-
tion, dependency injection truly is this simple. Gear previously had explicit depend-
encies on the Wheel class and on the type and order of its initialization arguments,
but through injection these dependencies have been reduced to a single dependency
on the diameter method. Gear is now smarter because it knows less.

Using dependency injection to shape code relies on your ability to recognize that
the responsibility for knowing the name of a class and the responsibility for know-
ing the name of a message to send to that class may belong in different objects. Just
because Gear needs to send diameter somewhere does not mean that Gear should
know about Wheel.

1
 2
 3
 4
 5
 6
7
 8
 9
10
11
12
13
14
15
16
17

44 Chapter 3. Managing Dependencies

This leaves the question of where the responsibility for knowing about the actual
Wheel class lies; the example above conveniently sidesteps this issue, but it is exam-
ined in more detail later in this chapter. For now, it’s enough to understand that this
knowledge does not belong in Gear.

3.2.2 Isolate Dependencies
It’s best to break all unnecessary dependencies but, unfortunately, while this is always
technically possible, it may not be actually possible. When working on an existing
application, you may find yourself under severe constraints about how much you can
actually change. If prevented from achieving perfection, your goals should switch to
improving the overall situation by leaving the code better than you found it.

Therefore, if you cannot remove unnecessary dependencies, you should isolate
them within your class. In Chapter 2, you isolated extraneous responsibilities so that
they would be easy to recognize and remove when the right impetus came; here you
should isolate unnecessary dependencies so that they are easy to spot and reduce
when circumstances permit.

Think of every dependency as an alien bacterium that’s trying to infect your class.
Give your class a vigorous immune system; quarantine each dependency. Dependen-
cies are foreign invaders that represent vulnerabilities, and they should be concise,
explicit, and isolated.

Isolate Instance Creation
If you are so constrained that you cannot change the code to inject a Wheel into
a Gear, you should isolate the creation of a new Wheel inside the Gear class. The
intent is to explicitly expose the dependency while reducing its reach into your class.

The next two examples illustrate this idea.
In the first, creation of the new instance of Wheel has been moved from Gear’s

gear_inches method to Gear’s initialization method. This cleans up the gear_
inches method and publicly exposes the dependency in the initialize method.
Notice that this technique unconditionally creates a new Wheel each time a new
Gear is created.

Listing 3.4

 1 class Gear
 2 attr_reader :chainring, :cog, :wheel
 3 def initialize(chainring, cog, rim, tire)
 4 @chainring = chainring
 5 @cog = cog
 6 @wheel = Wheel.new(rim, tire)

1
2
 3
 4
 5
 6

453.2 Writing Loosely Coupled Code

 7 end
 8
 9 def gear_inches
10 ratio * wheel.diameter
11 end
12 # ...
13 end
14 end
15
16 puts Gear.new(52, 11, 26, 1.5).gear_inches
17 # => 137.0909090909091

The next alternative isolates creation of a new Wheel in its own explicitly defined
wheel method. This new method lazily creates a new instance of Wheel, using Ruby’s
||= operator. In this case, creation of a new instance of Wheel is deferred until
gear_inches invokes the new wheel method.

Listing 3.5

 1 class Gear
 2 attr_reader :chainring, :cog, :rim, :tire
 3 def initialize(chainring, cog, rim, tire)
 4 @chainring = chainring
 5 @cog = cog
 6 @rim = rim
 7 @tire = tire
 8 end
 9
10 def gear_inches
11 ratio * wheel.diameter
12 end
13
14 def wheel
15 @wheel ||= Wheel.new(rim, tire)
16 end
17 # ...
18 end
19
20 puts Gear.new(52, 11, 26, 1.5).gear_inches
21 # => 137.0909090909091

7
 8
 9
10
11
12
13
14
15
16
17

1
 2
 3
4

 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

46 Chapter 3. Managing Dependencies

In both of these examples, Gear still knows far too much; it still takes rim and
tire as initialization arguments, and it still creates its own new instance of Wheel.
Gear is still stuck to Wheel; it can calculate the gear inches of no other kind of object.

However, an improvement has been made. These coding styles reduce the num-
ber of dependencies in gear_inches while publicly exposing Gear’s dependency
on Wheel. They reveal dependencies instead of concealing them, lowering the barri-
ers to reuse and making the code easier to refactor when circumstances allow. This
change makes the code more agile; it can more easily adapt to the unknown future.

The way you manage dependencies on external class names has profound effects
on your application. If you are mindful of dependencies and develop a habit of rou-
tinely injecting them, your classes will naturally be loosely coupled. If you ignore
this issue and let the class references fall where they may, your application will be
more like a big woven mat than a set of independent objects. An application whose
classes are sprinkled with entangled and obscure class name references is unwieldy
and inflexible, while one whose class name dependencies are concise, explicit, and
isolated can easily adapt to new requirements.

Isolate Vulnerable External Messages
Now that you’ve isolated references to external class names, it’s time to turn your
attention to external messages, that is, messages that are “sent to someone other than
self.” For example, the gear_inches method below sends ratio and wheel to
self but sends diameter to wheel:

Listing 3.6

1 def gear_inches
2 ratio * wheel.diameter
3 end

This is a simple method and it contains Gear’s only reference to wheel.diameter.
In this case, the code is fine, but the situation could be more complex. Imagine that cal-
culating gear_inches required far more math and that the method looked something
like this:

Listing 3.7

1 def gear_inches
2 #... a few lines of scary math
 3 foo = some_intermediate_result * wheel.diameter
4 #... more lines of scary math
5 end

1
2
3

1
2
3
4
5

473.2 Writing Loosely Coupled Code

Now wheel.diameter is embedded deeply inside a complex method. This com-
plex method depends on Gear responding to wheel and on wheel responding to
diameter. Embedding this external dependency inside the gear_inches method is
unnecessary and increases its vulnerability.

Any time you change anything, you stand the chance of breaking it; gear_inches
is now a complex method, and that makes it both more likely to need changing and
more susceptible to being damaged when it does. You can reduce your chance of
being forced to make a change to gear_inches by removing the external depend-
ency and encapsulating it in a method of its own, as in this next example:

Listing 3.8

 1 def gear_inches
 2 #... a few lines of scary math
 3 foo = some_intermediate_result * diameter
 4 #... more lines of scary math
 5 end
 6
 7 def diameter
 8 wheel.diameter
 9 end

The new diameter method is exactly the method that you would have written
if you had many references to wheel.diameter sprinkled throughout Gear and you
wanted to DRY them out. The difference here is one of timing; it would normally be
defensible to defer creation of the diameter method until you had a need to DRY
out code; however, in this case, the method is created preemptively to remove the
dependency from gear_inches.

In the original code, gear_inches knew that wheel had a diameter. This
knowledge is a dangerous dependency that couples gear_inches to an external
object and one of its methods. After this change, gear_inches is more abstract.
Gear now isolates wheel.diameter in a separate method, and gear_inches can
depend on a message sent to self.

If Wheel changes the name or signature of its implementation of diameter, the
side effects to Gear will be confined to this one simple wrapping method.

This technique becomes necessary when a class contains embedded references
to a message that is likely to change. Isolating the reference provides some insurance
against being affected by that change. Although not every external method is a can-
didate for this preemptive isolation, it’s worth examining your code, looking for and
wrapping the most vulnerable dependencies.

1
2
3
4
5
6
7
8
9

48 Chapter 3. Managing Dependencies

An alternative way to eliminate these side effects is to avoid the problem from
the very beginning by reversing the direction of the dependency. This idea will be
addressed soon, but first there’s one more coding technique to cover.

3.2.3 Remove Argument-Order Dependencies
When you send a message that requires arguments, you, as the sender, cannot avoid
having knowledge of those arguments. This dependency is unavoidable. However,
passing arguments often involves a second, more subtle dependency. Many method
signatures not only require arguments, but they also require that those arguments be
passed in a specific, fixed order.

In the following example, Gear’s initialize method takes three arguments:
chainring, cog, and wheel. It provides no defaults; each of these arguments is
required. In lines 11–14, when a new instance of Gear is created, the three arguments
must be passed and they must be passed in the correct order.

Listing 3.9

 1 class Gear
 2 attr_reader :chainring, :cog, :wheel
 3 def initialize(chainring, cog, wheel)
 4 @chainring = chainring
 5 @cog = cog
 6 @wheel = wheel
 7 end
 8 # ...
 9 end
10
11 puts Gear.new(
12 52,
13 11,
14 Wheel.new(26, 1.5)).gear_inches
15 # => 137.0909090909091

Senders of new depend on the order of the arguments as they are specified
in Gear’s initialize method. If that order changes, all the senders will be forced
to change.

Unfortunately, it’s quite common to tinker with initialization arguments. Espe-
cially early on, when the design is not quite nailed down, you may go through several
cycles of adding and removing arguments and defaults. If you use positional argu-
ments, each of these cycles may force changes to many dependents. Even worse, you
may find yourself avoiding making changes to the arguments, even when your design
calls for them, because you can’t bear to change all the dependents yet again.

 1
 2
 3
4
 5
 6
7
 8
 9
10
11
12
13
14
15

493.2 Writing Loosely Coupled Code

Use Keyword Arguments
There’s a simple way to avoid depending on positional arguments. If you have control
over Gear’s initialize method, change the code to take keyword arguments.

The following example illustrates this technique:

Listing 3.10

 1 class Gear
 2 attr_reader :chainring, :cog, :wheel
 3 def initialize(chainring:, cog:, wheel:)
4 @chainring = chainring
5 @cog = cog
6 @wheel = wheel
7 end
8 # ...
9 end

The arguments on line 3 now end in :, which denotes that they are keyword
arguments. Keyword arguments are referenced just like positional arguments, so lines
4–6 have not changed.

You can pass keyword arguments as a hash, as shown in the following example:

Listing 3.11

 1 puts Gear.new(
 2 :cog => 11,
 3 :chainring => 52,
 4 :wheel => Wheel.new(26, 1.5)).gear_inches
 5 # => 137.0909090909091

You can also use the explicit keyword syntax:

Listing 3.12

 1 puts Gear.new(
 2 wheel: Wheel.new(26, 1.5),
 3 chainring: 52,
 4 cog: 11).gear_inches
 5 # => 137.0909090909091

Keyword arguments offer several advantages. As you likely noticed in two exam-
ples above, keyword arguments may be passed in any order. Additionally, Gear is
now free to add or remove initialization arguments and defaults, secure in the knowl-
edge that no change will have side effects in other code.

1
2
3
4
5
6
7
8
9

1
2
3
4
5

1
2
3
4
5

50 Chapter 3. Managing Dependencies

This technique adds verbosity. In many situations verbosity is a detriment, but
in this case, it has value. The verbosity exists at the intersection between the needs
of the present and the uncertainty of the future. Using positional arguments requires
less code today, but you pay for this decrease in volume of code with an increase in
the risk that changes will cascade into dependents later.

When Gear switched to keyword arguments, it lost its dependency on argument
order but it gained a dependency on the names of the keywords. This change is
healthy. The new dependency is more stable than the old, and thus this code faces
less risk of being forced to change.

Using keyword arguments requires the sender and the receiver of a message to
state the keyword names. This results in explicit documentation at both ends of the
message. Future maintainers will be grateful for this information.

Keyword arguments are so flexible that the general rule is that you should prefer
them. While it’s certainly true that some argument lists are so stable, and so obvious,
that keywords are overkill (for example, what would Point take but an x and a y?),
your bias should be toward declaring arguments using keywords. You can always fall
back to positional arguments if that technique better suits your specific problem.

Also, it is perfectly acceptable for some classes in your application to take posi-
tional arguments and others to take keyword arguments. This is especially true in
long-lived applications, where much of the code predates the introduction of key-
words. In these cases, as you change or add code, consider using keyword arguments.
However, there’s no need to proactively retrofit the entire application. Over time, as
you touch code, introduce keyword arguments if doing so will add clarity and enable
subsequent refactorings.

The remainder of this book uses both types, to supply a flavor of the
consequences.

Explicitly Define Defaults
So far, keyword arguments look very similar to hashes. One advantage they have over
hashes, however, is that they allow you to set defaults right in the argument list, just
like positional arguments. Line 3 below supplies defaults for chainring and cog.

Listing 3.13

 1 class Gear
 2 attr_reader :chainring, :cog, :wheel
 3 def initialize(chainring: 40, cog: 18, wheel:)
 4 @chainring = chainring
 5 @cog = cog
 6 @wheel = wheel
 7 end

 1
 2
 3
4
 5
 6
 7

513.2 Writing Loosely Coupled Code

 8 # ...
 9 end
10
11 puts Gear.new(wheel: Wheel.new(26, 1.5)).chainring
12 # => 40

Notice that the syntax for adding defaults to keyword arguments is a bit different
than that of positional arguments. Keywords omit the = operator and state the default
directly after the trailing :. Adding a default renders the keyword argument optional.

The above syntax is great for supplying simple defaults to optional arguments,
but some situations may benefit from a bit more sophistication. For example, line 3
below sets a more complex default by sending a message.

Listing 3.14

 1 class Gear
 2 attr_reader :chainring, :cog, :wheel
 3 def initialize(chainring: default_chainring, cog: 18,

wheel:)
 4 @chainring = chainring
 5 @cog = cog
 6 @wheel = wheel
 7 end
 8
 9 def default_chainring
10 (100/2) - 10 # silly code, useful example
11 end
12 # ...
13 end
14
15 puts Gear.new(wheel: Wheel.new(26, 1.5)).chainring
16 # => 40
17
18 puts Gear.new(chainring: 52, wheel: Wheel.new(26, 1.5)).

chainring
19 # => 52

The key to understanding the above code is to recognize that initialize
executes in the new instance of Gear. It is therefore entirely appropriate for
initialize to send messages to self. It’s best to embed simple defaults right in
the parameter list, but if getting the default requires running a bit of code, don’t
hesitate to send a message.

8
9

10
11
12

1
2
3

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

19

52 Chapter 3. Managing Dependencies

Isolate Multiparameter Initialization
So far, all of the examples of removing argument-order dependencies have been
for situations where you control the signature of the method that needs to change.
You will not always have this luxury; sometimes you will be forced to depend on a
method that requires positional arguments where you do not own and thus cannot
change the method itself.

Imagine that Gear is part of a framework and that its initialization method
requires positional arguments. Imagine also that your code has many places where
you must create a new instance of Gear. Gear’s initialize method is external to
your application; it is part of an interface over which you have no control.

As dire as this situation appears, you are not doomed to accept the dependen-
cies. Just as you would DRY out repetitive code inside of a class, DRY out the creation
of new Gear instances by creating a single method to wrap the external interface.
The classes in your application should depend on code that you own; use a wrapping
method to isolate external dependencies.

In this example, the SomeFramework::Gear class is not owned by your applica-
tion; it is part of an external framework. Its initialization method requires positional
arguments. The GearWrapper module was created to avoid having multiple depend-
encies on the order of those arguments. GearWrapper isolates all knowledge of the
external interface in one place and, equally important, it provides an improved inter-
face for your application.

As you can see in line 22, GearWrapper allows your application to create a new
instance of Gear using keyword arguments.

Listing 3.15

 1 # When Gear is part of an external interface
 2 module SomeFramework
 3 class Gear
 4 attr_reader :chainring, :cog, :wheel
 5 def initialize(chainring, cog, wheel)
 6 @chainring = chainring
 7 @cog = cog
 8 @wheel = wheel
 9 end
10 # ...
11 end
12 end
13
14 # wrap the interface to protect yourself from changes
15 module GearWrapper
16 def self.gear(chainring:, cog:, wheel:)

1
 2
 3
 4
 5
 6
7

 8
 9
10
11
12
13
14
15
16

533.3 Managing Dependency Direction

17 SomeFramework::Gear.new(chainring, cog, wheel)
18 end
19 end
20
21 # Now you can create a new Gear using keyword arguments
22 puts GearWrapper.gear(
23 chainring: 52,
24 cog: 11,
25 wheel: Wheel.new(26, 1.5)).gear_inches
26 # => 137.0909090909091

There are two things to note about GearWrapper. First, it is a Ruby module
instead of a class (line 15). GearWrapper is responsible for creating new instances
of SomeFramework::Gear. Using a module here lets you define a separate and dis-
tinct object to which you can send the gear message (line 22) while simultaneously
conveying the idea that you don’t expect to have instances of GearWrapper. You may
already have experience with including modules into classes; in the example above,
GearWrapper is not meant to be included in another class, it’s meant to directly
respond to the gear message.

The other interesting thing about GearWrapper is that its sole purpose is to cre-
ate instances of some other class. Object-oriented designers have a word for objects
like this; they call them factories. In some circles, the term factory has acquired a neg-
ative connotation, but the term as used here is devoid of baggage. An object whose
purpose is to create other objects is a factory; the word factory implies nothing more,
and use of it is the most expedient way to communicate this idea.

The above technique for replacing positional arguments with keywords is per-
fect for cases where you are forced to depend on external interfaces that you can-
not change. Do not allow these kinds of external dependencies to permeate your
code; protect yourself by wrapping each in a method that is owned by your own
application.

3.3 Managing Dependency Direction
Dependencies always have a direction; earlier in this chapter it was suggested that
one way to manage them is to reverse that direction. This section delves more deeply
into how to decide on the direction of dependencies.

3.3.1 Reversing Dependencies
Every example used thus far shows Gear depending on Wheel or diameter, but the
code could easily have been written with the direction of the dependencies reversed.

17
18
19
20
21
22
23
24
25
26

54 Chapter 3. Managing Dependencies

Wheel could instead depend on Gear or ratio. The following example illustrates
one possible form of the reversal. Here Wheel has been changed to depend on Gear
and gear_inches. Gear is still responsible for the actual calculation, but it expects a
diameter argument to be passed in by the caller (line 8).

Listing 3.16

 1 class Gear
 2 attr_reader :chainring, :cog
 3 def initialize(chainring:, cog:)
 4 @chainring = chainring
 5 @cog = cog
 6 end
 7
 8 def gear_inches(diameter)
 9 ratio * diameter
10 end
11
12 def ratio
13 chainring / cog.to_f
14 end
15 # ...
16 end
17
18 class Wheel
19 attr_reader :rim, :tire, :gear
20 def initialize(rim:, tire:, chainring:, cog:)
21 @rim = rim
22 @tire = tire
23 @gear = Gear.new(chainring: chainring, cog: cog)
24 end
25
26 def diameter
27 rim + (tire * 2)
28 end
29
30 def gear_inches
31 gear.gear_inches(diameter)
32 end
33 # ...
34 end
35
36 puts Wheel.new(

1
 2
 3
4

 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

553.3 Managing Dependency Direction

37 rim: 26,
38 tire: 1.5,
39 chainring: 52,
40 cog: 11).gear_inches
41 # => 137.0909090909091

This reversal of dependencies does no apparent harm. Calculating gear_inches
still requires collaboration between Gear and Wheel and the result of the calculation
is unaffected by the reversal. One could infer that the direction of the dependency
does not matter, that it makes no difference whether Gear depends on Wheel or vice
versa.

Indeed, in an application that never changed, your choice would not matter.
However, your application will change, and it’s in that dynamic future where this
present decision has repercussions. The choices you make about the direction of
dependencies have far-reaching consequences that manifest themselves for the life of
your application. If you get this right, your application will be pleasant to work on
and easy to maintain. If you get it wrong, then the dependencies will gradually take
over and the application will become harder and harder to change.

3.3.2 Choosing Dependency Direction
Pretend for a moment that your classes are people. If you were to give them advice
about how to behave, you would tell them to depend on things that change less often
than you do.

This short statement belies the sophistication of the idea, which is based on three
simple truths about code:

• Some classes are more likely than others to have changes in requirements.

• Concrete classes are more likely to change than abstract classes.

• Changing a class that has many dependents will result in widespread
consequences.

There are ways in which these truths intersect, but each is a separate and distinct
notion.

Understanding Likelihood of Change
The idea that some classes are more likely to change than others applies not only to
the code that you write for your own application but also to the code that you use but
did not write. The Ruby base classes and the other framework code that you rely on
both have their own inherent likelihood of change.

37
38
39
40
41

56 Chapter 3. Managing Dependencies

You are fortunate in that Ruby base classes change a great deal less often than
your own code. This makes it perfectly reasonable to depend on the * method, as
gear_inches quietly does, or to expect that Ruby classes String and Array will
continue to work as they always have. Ruby base classes always change less often than
your own classes, and you can continue to depend on them without another thought.

Framework classes are another story; only you can assess how mature your
frameworks are. In general, any framework you use will be more stable than the code
you write, but it’s certainly possible to choose a framework that is undergoing such
rapid development that its code changes more often than yours.

Regardless of its origin, every class used in your application can be ranked
along a scale of how likely it is to undergo a change relative to all other classes. This
ranking is one key piece of information to consider when choosing the direction of
dependencies.

Recognizing Concretions and Abstractions
The second idea concerns itself with the concreteness and abstractness of code. The
term abstract is used here just as Merriam-Webster defines it, as “disassociated from
any specific instance,” and, as so many things in Ruby, represents an idea about code
as opposed to a specific technical restriction.

This concept was illustrated earlier in the chapter during the section on inject-
ing dependencies. There, when Gear depended on Wheel and on Wheel.new and
on Wheel.new(rim, tire), it depended on extremely concrete code. After the
code was altered to inject a Wheel into Gear, Gear suddenly began to depend on
something far more abstract, that is, the fact that it had access to an object that could
respond to the diameter message.

Your familiarity with Ruby may lead you to take this transition for granted, but
consider for a moment what would have been required to accomplish this same trick
in a statically typed language. Because statically typed languages have compilers that
act like unit tests for types, you would not be able to inject just any random object
into Gear. Instead you would have to declare an interface, define diameter as part
of that interface, include the interface in the Wheel class, and tell Gear that the class
you are injecting is a kind of that interface.

Rubists are justifiably grateful to avoid these gyrations, but languages that force
you to be explicit about this transition do offer a benefit. They make it inescapably
and explicitly clear that you are defining an abstract interface. It is impossible to cre-
ate an abstraction unknowingly or by accident; in statically typed languages, defining
an interface is always intentional.

In Ruby, when you inject Wheel into Gear such that Gear then depends on a
Duck who responds to diameter, you are, however casually, defining an interface.
This interface is an abstraction of the idea that a certain category of things will have a
diameter. The abstraction was harvested from a concrete class; the idea is now “disas-
sociated from any specific instance.”

573.3 Managing Dependency Direction

The wonderful thing about abstractions is that they represent common, stable
qualities. They are less likely to change than are the concrete classes from which
they were extracted. Depending on an abstraction is always safer than depending
on a concretion because by its very nature, the abstraction is more stable. Ruby does
not make you explicitly declare the abstraction in order to define the interface, but
for design purposes, you can behave as if your virtual interface is as real as a class.
Indeed, in the rest of this discussion, the term class stands for both class and this
kind of interface. These interfaces can have dependents and so must be taken into
account during design.

Avoiding Dependent-Laden Classes
The final idea, the notion that having dependent-laden objects has many conse-
quences, also bears deeper examination. The consequences of changing a dependent-
laden class are quite obvious—not so apparent are the consequences of even having
a dependent-laden class. A class that, if changed, will cause changes to ripple through
the application will be under enormous pressure to never change. Ever. Under any
circumstances whatsoever. Your application may be permanently handicapped by
your reluctance to pay the price required to make a change to this class.

Finding the Dependencies That Matter
Imagine each of these truths as a continuum along which all application code falls.
Classes vary in their likelihood of change, their level of abstraction, and their number
of dependents. Each quality matters, but the interesting design decisions occur at the
place where likelihood of change intersects with number of dependents. Some of the
possible combinations are healthy for your application; others are deadly.

Figure 3.2 summarizes the possibilities.

C
A
B

D
Neutral Zone:

Less

ManyD

e

p

e

n

d

e

n

t

s Few

Likelihood of Requirements Change

More

Changes are unlikely
and have few side
effects.

Neutral Zone:

Changes are likely but
they have few side
effects.

Danger Zone:

These classes WILL
change and the
changes will cascade
into dependents.

Abstract Zone:

Changes are unlikely
but, if they occur, will
have broad effects.

Figure 3.2 Likelihood of change versus number of dependents

58 Chapter 3. Managing Dependencies

The likelihood of requirements change is represented on the horizontal axis. The
number of dependents is on the vertical. The grid is divided into four zones, labeled
A through D. If you evaluate all of the classes in a well-designed application and
place them on this grid, they will cluster in Zones A, B, and C.

Classes that have little likelihood of change but contain many dependents fall
into Zone A. This zone usually contains abstract classes or interfaces. In a thought-
fully designed application, this arrangement is inevitable; dependencies cluster
around abstractions because abstractions are less likely to change.

Notice that classes do not become abstract because they are in Zone A; instead
they wind up here precisely because they are already abstract. Their abstract nature
makes them more stable and allows them to safely acquire many dependents. While
residence in Zone A does not guarantee that a class is abstract, it certainly suggests
that it ought to be.

Skipping Zone B for a moment, Zone C is the opposite of Zone A. Zone C con-
tains code that is quite likely to change but has few dependents. These classes tend to
be more concrete, which makes them more likely to change, but this doesn’t matter
because few other classes depend on them.

Zone B classes are of the least concern during design because they are almost
neutral in their potential future effects. They rarely change and have few dependents.

Zones A, B, and C are legitimate places for code; Zone D, however, is aptly named
the Danger Zone. A class ends up in Zone D when it is guaranteed to change and
has many dependents. Changes to Zone D classes are costly; simple requests become
coding nightmares as the effects of every change cascade through each dependent.
If you have a very specific concrete class that has many dependents and you believe
it resides in Zone A, that is, you believe it is unlikely to change, think again. When a
concrete class has many dependents, your alarm bells should be ringing. That class
might actually be an occupant of Zone D.

Zone D classes represent a danger to the future health of the application. These
are the classes that make an application painful to change. When a simple change has
cascading effects that force many other changes, a Zone D class is at the root of the
problem. When a change breaks some far away and seemingly unrelated bit of code,
the design flaw originated here.

As depressing as this is, there is actually a way to make things worse. You can
guarantee that any application will gradually become unmaintainable by making its
Zone D classes more likely to change than their dependents. This maximizes the con-
sequences of every change.

Fortunately, understanding this fundamental issue allows you to take preemptive
action to avoid the problem.

Depend on things that change less often than you do is a heuristic that stands in
for all the ideas in this section. The zones are a useful way to organize your thoughts,
but in the fog of development, it may not be obvious which classes go where. Very

593.4 Summary

often you are exploring your way to a design, and at any given moment the future
is unclear. Following this simple rule of thumb at every opportunity will cause your
application to evolve a healthy design.

3.4 Summary
Dependency management is core to creating future-proof applications. Injecting
dependencies creates loosely coupled objects that can be reused in novel ways. Iso-
lating dependencies allows objects to quickly adapt to unexpected changes. Depend-
ing on abstractions decreases the likelihood of facing these changes.

The key to managing dependencies is to control their direction. The road to
maintenance nirvana is paved with classes that depend on things that change less
often than they do.

This page intentionally left blank

247

Index

Unspecified
||= operator, 45

A
Abstract

classes, 118, 123–125,
242–244

definition of, 56
documentation, supplying,

195
superclass, creating, 117–120

Abstractions
extracting, 150–153
insisting on, writing inherit-

able code, 158–159
recognizing, 56–57
supporting, in intentional

testing, 195–196
Abstractions, finding

abstract superclass, creating,
117–120

overview of, 116–117
promoting abstract behavior,

120–123
separating from concretions,

123–125
template method pattern,

125–129
Across-class types, 86
Ad hoc methods, 156
Ad infinitum, 86
Aggregation, composition vs.,

184–185

Agile, 7–9
Antipatterns

recognizing, 158
understanding, 110–111

Argument-order dependencies,
removing

keyword arguments, using,
49–50

multiparameter initialization,
isolation, 52–53

overview of, 48, 50–51
Attributes, OO language

and, 12
Automatic message delegation,

105–106

B
behaves-like-a relationships,

duck types for, 190
Behavior

acquiring via inheritance.
See Inheritance

data structures, hiding,
27–29

depending on, instead of
data, 24–29

duck types and. See Duck
types

instance variables, hiding,
24–27

mock tests of, 219–221
promoting abstract, 120–123
sharing role. See Modules

single responsibility and, 21
subclass, 237–239
testing inherited code for

unique, 240–244
Behavior-Driven Development

(BDD), 200–201
Big Up Front Design

(BUFD), 8
Booch, Grady, 189
Break-even point, for

design, 10
Brittleness, test

solving problem of,
227–233

stubbing and mocking,
 creating, 213

Bugs, finding, 195

C
Case statements that switch

on class
hidden ducks, recognizing,

95–96
is_a? 96–97
kind_of? 96–97
overview of, 95–96
responds_to? 97

Categories, testing with object,
201

category variable
antipatterns, recognizing, 158
embedded types, finding,

111–112

248 Index

CBO (coupling between
objects), 39–40

Change
Agile, guaranteeing, 9
code, organizing to allow

for, 16–17
designing to reduce cost of,

3–4
managing dependencies.

See Dependencies
in OO languages, 3
as unavoidable and

 inevitable, 2
writing code to embrace,

24–33
Class-based OO languages,

12–13
Class class, 12
Classes. See also Single

responsibility,
classes with

abstract, 118, 123–125
avoiding dependency-laden,

57
case statements that switch

on, 95–97
code, organizing to allow for

changes, 16–17
concrete, 107–109, 123–125,

241–242
deciding what belongs in,

16–17
decoupling, writing

 inheritable code, 21
dependency injection using,

208–210
dependent-laden, avoiding,

57
grouping methods into, 16
predefined, 12
references to. See Loosely

coupled code,
writing

reusable, 21
Ruby-based vs. framework,

55–56
type and category used in,

111–112
virtual, 63

Classical inheritance, 105–106,
185

Code
concrete, writing, 147–150
dependence on behavior,

not data, 24–29
dependency injection to

shape, 41–44
embracing change, writing,

16–17, 24–33, 193
error messages for failed,

129
inheritable, writing, 158–161
initialization, 120–121
interface, writing, 77–80
Law of Demeter (LoD) rules

for, 80–84
loosely coupled, writing,

41–48
open-closed, 186
putting into modules, 143
single responsibility,

 enforcing, 29–33
that relies on ducks, writing,

95–100
truths about, 55

Code arrangement technique,
classical inheritance
as, 185

Code, testing inherited
inherited interface,

 specifying, 233–236
subclass responsibilities,

specifying, 236–240
unique behavior, testing,

240–244
Code-to-code over- coupling, 41
Cohesion, 22
Command messages, 197,

218–221
Comments, 31
Communication patterns,

61–63
Compile-time type checking,

102–103
Composition

aggregation as special form
of, 184–185

benefits of, 188
of bicycle, 181–184
of bicycle of parts,

163–168
combining objects with, 163

consequences of, accepting,
186–189

costs of, 188–189
deciding between inheri-

tance and, 185–191
defined, 163
for has-a relationships, 163,

190–191
manufacturing parts,

176–181
of parts object, 168–176

Concrete classes
inheritance and, 107–109
likelihood of change in,

55, 58
separating abstract from,

123–125
testing concrete subclass

behavior, 241–242
Concretions

abstractions separated from,
123–125

duck typing and, 91,
94–95

inheritance and, 107–109
recognizing, 56–57
writing, 147–150

config array, 176–179
Context

independence, seeking,
72–74

minimizing in public
 interfaces, 80

Contract, honoring, 159, 161
Costs

of composition, 188–189
of inheritance, 187–188
reducing with duck typing.

See Duck typing
of testing. See Testing

Coupling
decoupling classes, writing

inheritable code,
160

decoupling subclasses with
hook messages,
134–139

knowing what to test, 197
loosely coupled code. See

Loosely coupled code,
writing

249Index

overview of, 129
sharing code via modules

and, 151
between superclasses and

subclasses, 129–134
tests on code, and tight, 41

Coupling between objects
(CBO), 39–40

D
Data

depending on behavior
instead of, 24–29

instance variables, hiding,
24–27

in object-oriented languages,
11–13

in procedural languages, 11
structures, hiding, 27–29
types, 11–12

Decoupling
classes, writing inheritable

code, 159
subclasses, with hook

messages, 134–139
Defaults, explicitly defining,

50–51
Delegation

automatic message, in
inheritance, 105–106

automatic message, in
modules, 143

composition and, 184
Demeter. See Law of Demeter

(LoD)
Dependencies

coupling between objects,
39–40

delegation creating, 184
deleting unused interfaces,

204
direction of. See Dependency

direction
injecting. See Dependency

injection
interfaces and, 64
isolating, 44–48
loosely coupled code.

See Loosely coupled
code, writing

objects speaking for them-
selves, 147

other, 40–41
overview of, 37
recognizing, 39
removing argument-order,

48–53
removing unnecessary,

146–147
reversing, 53–55
scheduling duck type,

 discovering, 146–147
summary, 59
tolerating change by, 3
understanding, 38–39

Dependency direction
abstractions, recognizing,

56–57
change in, likelihood of,

55–56
concretions, recognizing,

56–57
dependent-laden classes,

avoiding, 57
finding dependencies that

matter, 57–59
overview of, 55
reversing, 53–55

Dependency injection
failure of, 62
in loosely coupled code,

41–44
as roles, 210–211
to shape code, 43–44
using classes, 208–210

Dependency Inversion
 principle, 4

Dependent-laden classes,
avoiding, 57

Design
act of, 6–10
definition of, 3–4
failure in, 6–7
judging, 9–10
patterns, 4–5
principles, 4–5
problems solved by, 2–3
when to, 7–9
why change is hard, 3

Design decisions
deferring, 195
when to make, 22–23

Design flaws, exposing, 196
Design patterns, 6

Design Patterns: Elements
of Reusable Object-
Oriented Software
(Gamma, Helm,
 Johnson and Vlissides),
6, 189

Design principles, 4–5, 197
Design tools, 4–6
Documentation

of duck types, 98
of error messages, in

 template method, 129
of roles, testing used in,

214–215
supplying, in testing, 195

Domain objects, 66, 95, 201
Doubles

creating test, 211–214
role tests to validate,

227–233
DRY (Don’t Repeat Yourself),

4–5, 24, 28–29, 47,
52, 198

Duck types
choosing wisely, 98–100
defined, 85
documenting, 98
finding, 90–94
hidden, recognizing, 95–97
overlooking, 86–88
sharing code between, 98
testing roles, 221–227
testing roles to validate

doubles, 227–233
trust in, placing, 97–98

Duck typing
for behaves-like-a

 relationships, 190
code that relies on, writing,

95–100
consequences of, 94–95
dynamic typing and,

100–103
fear of, conquering, 100–103
finding roles, 142–143
inheritable code, writing for,

158
overview of, 85
problem, compounding,

88–90
scheduling, discovering,

146–147

250 Index

sharing code via Ruby
modules, 112

static typing and,
100–101

summary, 103
understanding, 85–94

Duplication, removing test,
196

Dynamic typing, 100–103

E
Embedded types of

inheritance
finding, 111–112
multiple, 109–111

Error messages, code that fails
with reasonable, 129

Explicit interfaces, creating,
77–78

F
Factories, 53, 176–179
Failures, design, 6–7
Family tree image, inheritance,

112
Feathers, Michael, 4
Fixed order arguments,

48–53
Fowler, Martin, 193
Framework, choosing testing,

200
Framework class, 56

G
Gamma, Erich, 6, 189
Gang of Four (GoF), 6
Gear inches, 20–21

H
has-a relationships

using composition for, 163,
184–185, 190–191

vs. is-a relationships, 191
Hashes, for initialization

 arguments, 49–50
Helm, Richard, 6, 189
Highly cohesive class, 22
Hook messages, 134–140
How to test, knowing,

200–202
“How” vs. “what,” 70–72
Hunt, Andy, 4

I
Incoming messages, testing

documenting roles via,
214–215

injecting dependencies as
roles, 210–211

injecting dependencies using
classes, 208–210

interfaces, deleting unused,
204

isolating object under test,
206–208

knowing what to test,
197–198

overview of, 202–203
proving public interface,

204–206
Inheritable code, writing

abstraction, insisting on,
158–159

antipatterns, recognizing,
158

contract, honoring, 159
decouple classes,

 preemptively, 160
shallow hierarchies, creating,

160–161
template method pattern,

using, 160
Inheritance

behavior acquired through,
105

benefits of, 186
choosing, 112–114
classical, 105–106
composition and, deciding

between, 185–191
concretions and, 107–109
costs of, 187–188
coupling and, 129–134
decoupling subclasses with

hook messages,
134–139

drawing inheritance
 relationships, 114

embedded types of,
109–112

family tree image of, 112
implying, 117
inherited code, testing,

233–244

for is-a relationships, 186,
189–190

misapplying, 114–116
multiple, 112
overview of, 106–107
polymorphism, achieving

via, 95
problem solved by, 112
recognizing where to use,

107–114
of role behavior, 157–158
single, 112
subclasses/superclasses,

coupling between,
129–139

summary, 139–140
using for is-a relationships,

186, 189–190
Inheritance, finding

abstraction
creating abstract from

 concrete, 123–125
creating abstract superclass,

117–120
implementing every template

method, 127–129
overview of, 116–117
promoting abstract behavior,

120–123
using the template method

pattern, 125–127
Inherited code, testing

inherited interface,
 specifying, 233–236

subclass responsibilities,
specifying, 236–240

unique behavior, 240–244
Inherited interface, specifying,

233–236
Initialization arguments

dependency injection and,
51

isolating instance creation, 46
keyword arguments

using, 49
manufacturing parts,

179–180
removing argument-order

dependencies, 48
Injection. See Dependency

injection

251Index

Instance creation, isolating,
44–45

Instance variables, hiding,
24–27

Intention, constructing, 65–66
Intentional testing

knowing how to test,
200–202

knowing what to test,
196–199

knowing when to test,
199–200

knowing your intentions,
194–196

overview of, 194
Interface Segregation

 principle, 4
Interfaces. See also Private

interfaces; Public
interfaces

code, writing for, 77–80
deleting unused, 204
dependencies and, 64–65
inherited interface,

 specifying,
233–236

Law of Demeter and, 80–84
overview of, 61
responsibilities and, 64–65
summary, 84
understanding, 61–63
wrapping dependencies in

external, 52–53
is-a relationships

using inheritance for, 186,
189–190

vs. has-a relationships, 191
is_a? 96–97
Isolation

of dependencies, 44–48
of external messages,

46–48
of instance creation, 44–46
of multiparameter

 initialization, 52–53
of object under test,

206–208
of responsibilities in classes,

32–33
Iterations, Agile development,

7–8

J
Java, 102, 118
JavaScript, 106
Johnson, Ralph, 6, 189
Judging design, 9–10

K
Keyword arguments

adding defaults to, 50–51
argument-order

 dependencies,
 removing, 49–50

multiparameter initialization,
 isolating, 52–53

Keywords, in Ruby, 78–79
kind_of? 96–97

L
Languages

object-oriented, 11–13
OO design failure and, 7
procedural, 11

Law of Demeter (LoD)
design principle, 4–5
listening to, 83–84
overview of, 80
violations, 40–41, 81–83

Likelihood of change
dependencies that matter

and, 57–59
in embedded references to

message, 47–48
understanding, 55–56

Liskov, Barbara, 159
Liskov Substitution Principle

(LSP), 4, 159, 161,
234–235

Lookups, method, 153–157
Loosely coupled code, writing

inject dependencies, 41–44
isolate dependencies, 44–48
overview of, 41
remove argument-order

dependencies, 48–53

M
Managing dependencies. See

Dependencies
Martin, Robert, 4
Message chaining, 40–41,

81–83

Messages. See also Incoming
messages, testing

applications, creating based
on, 77

asking “what” vs. telling
“how” and, 70–72

automatic message
 delegation, 105–106

command, proving, 218–221
defining, 63
designing based on, 69–70
external, isolating

 vulnerable, 46
forwarding, via classical

inheritance, 112
as foundation of OO system,

15
interface defined by, 63
isolating vulnerable external,

46–48
Law of Demeter (LoD) and,

80–84
likely to change, embedded

 references to, 47–48
method lookup for, 154–157
objects discovered by, 75–77
outgoing, testing, 217–221
polymorphism and, 94–95
query, ignoring, 217–218
sequence diagrams, using

for, 66–70
Methods

defining in module, 143
extracting extra responsibili-

ties from, 29–32
grouping into classes, 16
looking up, 153–157, 161
private, testing, 216–217
wrapper, 24–27

Metrics, 9–10, 110
Meyer, Bertrand, 189
Minitest framework, 200,

201–202
Mock tests

brittleness and, 213
proving command messages,

219–221
proving outgoing messages,

226–227
solving brittleness problem,

227–233

252 Index

Modules
defined, 143
inheritable code, writing,

158–161
method lookup for, 155–157
polymorphism and, 94–95
sharing code via, 141
summary, 161
understanding roles. See

Roles
Monkey patching, 99
Multiparameter initialization,

isolating, 52–53
Multiple inheritance, 112

N
Names, class

dependency injection and,
41–44

isolating references to
 external, 46

rules of inheritance,
116–117

NASA Goddard Space Flight
Center applications, 5

nil, 99, 103, 113
NilClass, 99, 113

O
Object-Oriented Analysis and

Design (Booch), 189
Object-oriented design (OOD)

brief introduction to, 10
how it fails, 6–7
judging, 9–10
object-oriented languages,

11–12
overview of, 1–2
patterns, 4–5
praise of, 2–4
principles, 4–5
procedural languages, 11
summary, 13

Object-oriented languages,
11–13

Objects
combined with composition.

See Composition
discovering using messages,

75–77
duck typing and, 85–86

messages used to discover,
75–77

sequence diagrams for,
66–70

speaking for themselves, 147
trusting other, 70–72

Open-closed code, 186
Open-Closed principle, 4, 186
OpenStruct class, 179–181,

182–184
Outgoing messages, testing

ignoring query messages,
217–218

knowing what to test,
197–198

overview of, 217
proving command messages,

218–221

P
Parts object

composed bicycle, 181–185
composing bicycle of parts

and, 163–164
creating, 168–173
creating PartsFactory,

176–179
hierarchy, creating, 165–168
leveraging PartsFactory,

179–181
making more like array,

172–176
manufacturing, 176–181
updating Bicycle class,

164–165
Patterns, interface message,

61–63
Point-of-view, in testing, 201
Polymorphism, 94–95
Positional arguments, 49–50,

52–53
Private interfaces

creating explicit, 78
defined, 64
depending on, caution,

79–80
public vs., 64–65

private keyword, 78–79
Private methods, testing

choosing, 216–217
ignoring, 216

removing from class under
test, 216

Procedural languages, 11
Promotion failure, 120–123
Public interfaces

code, writing for, 77–80
context independence,

 seeking, 72–74
context, minimizing in, 80
defining, 64, 65
Demeter violations in, 83–84
duck types as. See Duck

types
example application, bicycle

touring company, 65
intention, constructing,

65–66
knowing what to test and,

197–199
message-based application,

creating, 77
messages used to discover

other objects, 75–77
of others, honoring, 79–80
proving, 204–206
sequence diagrams, using,

66–70
testing incoming messages,

203
trusting other objects, 74–75
understanding, 62
“what” vs “how,” importance

of, 70–72

Q
Query messages, 198,

217–218

R
RDD (Responsibility-Driven

Design), 22
Refactoring

barriers, reducing to, 217
in extracting extra

 responsibilities from
methods, 30–32

intentional testing, and, 197
keyword arguments and, 50
rule for, 123
strategies, deciding between,

122–123

253Index

testing roles and,
223–224, 229

in writing changeable code,
193–194

Refactoring: Improving the
Design of Existing Code
(Fowler), 193

Relationships
aggregation and,

184–185
choosing, 189
drawing inheritance, 114
inheritance and, 105–106,

112–114
use composition for has-a,

190–191
use duck types for

 behaves-like-a, 190
use inheritance for is-a,

189–190
responds_to? 97
Responsibilities

designing interfaces, 64
organizing, 143–145

Responsibility-Driven Design
(RDD), 22

Reusability
single responsibility classes

for, 21
single responsibility methods

for, 32
test-first and,

199–200
Reversal of dependencies,

53–55
Roles

concrete code, writing,
147–150

dependencies, removing
unnecessary, 146–147

extracting abstraction and,
150–152

finding, 142–143
inheritable code, writing,

158–161
inheriting behavior of,

157–158
injecting dependencies as,

210–211
test doubles, creating to

play, 211–214

testing, in duck typing,
219–221

testing to document,
214–215

tests to validate doubles,
227–233

understanding, 142
using duck types for

behaves-like-a
relationships, 190

RSpec framework, 200
Ruby, 7, 9–13
Ruby-based class vs.

 framework,
55–56

S
Sequence diagrams

duck typing and, 90–92,
146–147

message-based applications,
creating, 77

using, 66–70
Shallow hierarchies,

inheritable code, 95
Single inheritance, 112
Single responsibility, classes

with
code embracing change,

writing, 24–29
creating, 17–23
deciding what belongs in

class, 16–17
design decisions, when to

make, 22–23
determining, 22
discovering objects using

messages, 75–77
enforcing everywhere,

29–32
example application,

bicycles and gears,
17–21

extra responsibilities,
isolating, 32–33

overview of, 15–16
real wheel, 33–35
summary, 35
why it matters, 21

Single Responsibility Principle
(SRP), 22, 186

SLOC (source lines of code),
9–10

SOLID (Single Responsibility,
Open-Closed, Liskov
Substitution, Interface
 Segregation, and
Dependency Inversion)
design principles, 4–5,
159

Source code repository, 61
Source lines of code (SLOC),

9–10
Specializations of their

 superclasses, subclasses
as, 113, 116, 118

Spike a problem, 200
Static typing

duck types, subverting with,
100–101

vs. dynamic typing, 102–103
String class, 12
String data type, 11–12
String objects, 11–12
Struct class

adding new methods, 32–35
OpenStruct class vs.,

179–181
wrapping data structures,

28–29
Stubbing

brittleness caused by, 213
solving brittleness problem,

227–233
Styles, testing, 200–201
Subclasses

concrete behavior of, testing,
241–242

coupling between super-
classes and, 129–134

decoupling using hook
messages, 134–139

inheritable code, writing,
158–159

inheritance relationships
and, 106

responsibilities of,
specifying, 236–240

rules of inheritance, 117
shared behavior across set

of, 118
in single inheritance, 112

254 Index

as specializations of their
superclasses, 113, 117

template method pattern
and, 125–127

Superclasses
abstract behavior, promoting

to, 120–123
abstract, creating, 117–120
automatic delegation of mes-

sages to, 106, 113
confirming enforcement of,

239–240
coupling between subclasses

and, 129–134
inheritable code, writing,

158–159
looking up methods,

154–157
misapplying inheritance,

114–116
rules of inheritance, 117
single inheritance and, 112
subclasses as specializations

of, 113, 117
template method pattern

and, 125–127

T
Technical debt, 10, 80
Template method pattern

coupling between subclasses/
superclasses, 131–134

decoupling subclasses with
hook messages,
138–139

defined, 125
error messages for failed

code, 127–129
inheritable code, writing,

159

sharing code via modules
and, 151–153

summary, 140
using, 125–127

Test-Driven Development
(TDD), 200–201

Test-to-code over-coupling, 41
Testing

abstractions, supporting,
195–196

bugs, finding, 195
cost-effective, designing,

193–244
design decisions, deferring,

195
design flaws, exposing, 196
duck types, 221–233
incoming messages, 202–215
inherited code, 233–244
intentional testing, 194–202
knowing how to test,

200–202
knowing what to test,

196–199
knowing when to test,

199–200
knowing your intentions,

194–196
outgoing messages, 217–221
over-coupling, 41
overview of, 193–194
summary, 244
test doubles, creating,

211–214
Thomas, Dave, 4
Time interval that matters, 10
Touch of Class: Learning to

Program Well with
Objects and Contracts
(Meyer), 189

TRUE (Transparent, Reason-
able, Usable, and Exem-
plary) code, 16–17, 23

Trust
of other objects, 70–72
of your ducks, 97–98

Type declarations, dynamic
typing and, 102

Type variable, 111–112, 158
Types. See also Duck typing

embedding multiple,
109–111

finding embedded, 111–112

U
Unified Modeling Language

(UML) class diagrams,
66–70, 114

Updating class, for
 composition, 164–165

V
Variables, defining, 11
Violations, Law of Demeter

(LoD), 40–41, 81–83
Virtual class, 63
Vlissides, John, 6, 189

W
What to test, knowing,

196–199
“What” vs. “how,” importance

of, 70–72
When to test, knowing,

199–200
Wilkerson, Brian, 22
Wirfs-Brock, Rebecca, 22
Within-class types, 86
Wrapper method, 25, 82

Credits

Chapter 1, “a way to produce cheaper and higher quality software”: Laing, Victor & Coleman,
Charles. (2001). Principal Components of Orthogonal Object- Oriented Metrics (323-08-14).

Chapter 1, “simple and elegant solutions to specific problems in object-oriented software
design”, “make your own designs more flexible, modular, reusable and understandable”:
Gamma, E., et al. (1995). Design Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley.

Chapter 2, “A class has responsibilities that fulfill its purpose”: Rebecca Wirfs-Brock; Brian
 Wilkerson’s idea, Responsibility-Driven Design (RDD).

Chapter 2, “a convenient way to bundle a number of attributes together, using accessor meth-
ods, without having to write an explicit class.”: http://ruby-doc.org/core/classes/Struct.html

Chapter 3, abstract: “disassociated from any specific instance”: Merriam-Webster.
Chapter 8, “Inheritance is specialization”: Bertrand Meyer, Touch of Class: Learning to Program

Well with Objects and Contracts.
Chapter 8, “Use composition when . . . sum of its parts” Booch, G., et al. (2007). Object-

Oriented Analysis and Design with Applications. Upper Saddle River: Addison-Wesley.
Chapter 8, “Inheritance is best . . . small amounts of new code”: Gamma, E., et al. (1995). Design

 Patterns: Elements of Reusable Object-Oriented Software. Reading, MA: Addison-Wesley.
Chapter 9, “Refactoring is the process . . . improves the internal structure”: Fowler, M., et al.

(1999). Refactoring: Improving the Design of Existing Code. Reading, MA: Addison-Wesley.
Cover: Wheels of Progress series. Backdrop of gears and fractal radial elements on the subject

of science, technology and education. Agsandrew/Shutterstock.

http://ruby-doc.org/core/classes/Struct.html

	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Contents
	Introduction
	Acknowledgments
	About the Author
	3 Managing Dependencies
	3.1 Understanding Dependencies
	3.1.1 Recognizing Dependencies
	3.1.2 Coupling Between Objects (CBO)
	3.1.3 Other Dependencies

	3.2 Writing Loosely Coupled Code
	3.2.1 Inject Dependencies
	3.2.2 Isolate Dependencies
	3.2.3 Remove Argument-Order Dependencies

	3.3 Managing Dependency Direction
	3.3.1 Reversing Dependencies
	3.3.2 Choosing Dependency Direction

	3.4 Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

