
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134431604
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134431604
https://plusone.google.com/share?url=http://www.informit.com/title/9780134431604
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134431604
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134431604/Free-Sample-Chapter

Praise for the First Edition of Scalability Rules

“Once again, Abbott and Fisher provide a book that I’ll be giving to our engineers. It’s
an essential read for anyone dealing with scaling an online business.”

—Chris Lalonde, GM of Data Stores, Rackspace

“Abbott and Fisher again tackle the difficult problem of scalability in their unique and
practical manner. Distilling the challenges of operating a fast-growing presence on the
Internet into 50 easy-to-understand rules, the authors provide a modern cookbook of
scalability recipes that guide the reader through the difficulties of fast growth.”

—Geoffrey Weber, VP, Internet Operations, Shutterf ly

“Abbott and Fisher have distilled years of wisdom into a set of cogent principles to avoid
many nonobvious mistakes.”

—Jonathan Heiliger, VP, Technical Operations, Facebook

“In The Art of Scalability, the AKF team taught us that scale is not just a technology
challenge. Scale is obtained only through a combination of people, process, and tech-
nology. With Scalability Rules, Martin Abbott and Michael Fisher fill our scalability
toolbox with easily implemented and time-tested rules that once applied will enable
massive scale.”

—Jerome Labat, VP, Product Development IT, Intuit

“When I joined Etsy, I partnered with Mike and Marty to hit the ground running in
my new role, and it was one of the best investments of time I have made in my career.
The indispensable advice from my experience working with Mike and Marty is fully
captured here in this book. Whether you’re taking on a role as a technology leader in a
new company or you simply want to make great technology decisions, Scalability Rules
will be the go-to resource on your bookshelf.”

—Chad Dickerson, CTO, Etsy

“Scalability Rules provides an essential set of practical tools and concepts anyone can use
when designing, upgrading, or inheriting a technology platform. It’s very easy to focus
on an immediate problem and overlook issues that will appear in the future. This book
ensures strategic design principles are applied to everyday challenges.”

—Robert Guild, Director and Senior Architect, Financial Services

“An insightful, practical guide to designing and building scalable systems. A must-read for
both product building and operations teams, this book offers concise and crisp insights
gained from years of practical experience of AKF principals. With the complexity of
modern systems, scalability considerations should be an integral part of the architecture
and implementation process. Scaling systems for hypergrowth requires an agile, iterative
approach that is closely aligned with product features; this book shows you how.”

—Nanda Kishore, CTO, ShareThis

“For organizations looking to scale technology, people, and processes rapidly or effec-
tively, the twin pairing of Scalability Rules and The Art of Scalability is unbeatable. The
rules-driven approach in Scalability Rules not only makes this an easy reference com-
panion, but also allows organizations to tailor the Abbott and Fisher approach to their
specific needs both immediately and in the future!”

—Jeremy Wright, CEO, BNOTIONS.ca, and Founder, b5media

Scalability Rules

Second Edition

This page intentionally left blank

Scalability Rules

Principles for Scaling Web Sites

Second Edition

Martin L. Abbott
Michael T. Fisher

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sydney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher
was aware of a trademark claim, the designations have been printed with initial capital
letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to
your business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2016944687

Copyright © 2017 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information regarding per-
missions, request forms and the appropriate contacts within the Pearson Education Global
Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

ISBN-13: 978-0-13-443160-4
ISBN-10: 0-13-443160-X
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.
1 16

Editor-in-Chief

Mark L. Taub

Executive Editor

Laura Lewin

Development Editor

Songlin Qiu

Managing Editor

Sandra Schroeder

Full-Service

Production Manager

Julie B. Nahil

Project Editor

Dana Wilson

Copy Editor

Barbara Wood

Indexer

Jack Lewis

Proofreader

Barbara Lasoff

Technical Reviewers

Camille Fournier
Chris Lalonde
Mark Uhrmacher

Editorial Assistant

Olivia Basegio

Cover Designer

Chuti Prasertsith

Compositor

The CIP Group

http://www.pearsoned.com/permissions/

❖

This book is dedicated to our friend and partner “Big” Tom Keeven.

“Big” refers to the impact he’s had in helping countless companies scale

in his nearly 30 years in the business.

 ❖

This page intentionally left blank

Contents

Preface xv

Acknowledgments xxi

About the Authors xxiii

1 Reduce the Equation 1
Rule 1—Don’t Overengineer the Solution 3
Rule 2—Design Scale into the Solution (D-I-D
Process) 6

Design 6
Implement 7
Deploy 8

Rule 3—Simplify the Solution Three Times Over 8
How Do I Simplify My Scope? 9
How Do I Simplify My Design? 9
How Do I Simplify My Implementation? 10

Rule 4—Reduce DNS Lookups 10
Rule 5—Reduce Objects Where Possible 12
Rule 6—Use Homogeneous Networks 15
Summary 15
Notes 16

2 Distribute Your Work 19
Rule 7—Design to Clone or Replicate Things
(X Axis) 22
Rule 8—Design to Split Different Things (Y Axis) 24
Rule 9—Design to Split Similar Things (Z Axis) 26
Summary 28
Notes 28

3 Design to Scale Out Horizontally 29
Rule 10—Design Your Solution to Scale Out,
Not Just Up 31
Rule 11—Use Commodity Systems (Goldfish Not
Thoroughbreds) 33
Rule 12—Scale Out Your Hosting Solution 35
Rule 13—Design to Leverage the Cloud 40
Summary 42
Notes 42

x Contents

4 Use the Right Tools 43
Rule 14—Use Databases Appropriately 47
Rule 15—Firewalls, Firewalls Everywhere! 52
Rule 16—Actively Use Log Files 55
Summary 58
Notes 58

5 Get Out of Your Own Way 59
Rule 17—Don’t Check Your Work 61
Rule 18—Stop Redirecting Traffic 64
Rule 19—Relax Temporal Constraints 68
Summary 70
Notes 70

6 Use Caching Aggressively 73
Rule 20—Leverage Content Delivery Networks 75
Rule 21—Use Expires Headers 77
Rule 22—Cache Ajax Calls 80
Rule 23—Leverage Page Caches 84
Rule 24—Utilize Application Caches 86
Rule 25—Make Use of Object Caches 88
Rule 26—Put Object Caches on Their Own “Tier” 90
Summary 91
Notes 92

7 Learn from Your Mistakes 93
Rule 27—Learn Aggressively 95
Rule 28—Don’t Rely on QA to Find Mistakes 100
Rule 29—Failing to Design for Rollback Is Designing
for Failure 102
Summary 105
Notes 106

8 Database Rules 107
Rule 30—Remove Business Intelligence from
Transaction Processing 109
Rule 31—Be Aware of Costly Relationships 111
Rule 32—Use the Right Type of Database Lock 114
Rule 33—Pass on Using Multiphase Commits 116
Rule 34—Try Not to Use Select for Update 118

xiContents

Rule 35—Don’t Select Everything 120
Summary 121
Notes 122

9 Design for Fault Tolerance and Graceful
Failure 123
Rule 36—Design Using Fault-Isolative
“Swim Lanes” 124
Rule 37—Never Trust Single Points of Failure 130
Rule 38—Avoid Putting Systems in Series 132
Rule 39—Ensure That You Can Wire On and
Off Features 135
Summary 138

10 Avoid or Distribute State 139
Rule 40—Strive for Statelessness 140
Rule 41—Maintain Sessions in the Browser
When Possible 142
Rule 42—Make Use of a Distributed Cache
for States 144
Summary 146
Notes 146

11 Asynchronous Communication and Message
Buses 147
Rule 43—Communicate Asynchronously as Much
as Possible 149
Rule 44—Ensure That Your Message Bus Can
Scale 151
Rule 45—Avoid Overcrowding Your Message Bus 154
Summary 157

12 Miscellaneous Rules 159
Rule 46—Be Wary of Scaling through Third
Parties 161
Rule 47—Purge, Archive, and Cost-Justify Storage 163
Rule 48—Partition Inductive, Deductive, Batch, and User
Interaction (OLTP) Workloads 166
Rule 49—Design Your Application to
Be Monitored 169
Rule 50—Be Competent 172

xii Contents

Summary 174
Notes 174

13 Rule Review and Prioritization 177
A Risk-Benefit Model for Evaluating Scalability
Projects and Initiatives 177
50 Scalability Rules in Brief 180

Rule 1—Don’t Overengineer the Solution 180
Rule 2—Design Scale into the Solution
(D-I-D Process) 181
Rule 3—Simplify the Solution Three
Times Over 181
Rule 4—Reduce DNS Lookups 182
Rule 5—Reduce Objects Where Possible 182
Rule 6—Use Homogeneous Networks 182
Rule 7—Design to Clone or Replicate Things
(X Axis) 183
Rule 8—Design to Split Different Things
(Y Axis) 183
Rule 9—Design to Split Similar Things (Z Axis) 184
Rule 10—Design Your Solution to Scale Out,
Not Just Up 184
Rule 11—Use Commodity Systems (Goldfish Not
Thoroughbreds) 185
Rule 12—Scale Out Your Hosting Solution 185
Rule 13—Design to Leverage the Cloud 185
Rule 14—Use Databases Appropriately 186
Rule 15—Firewalls, Firewalls Everywhere! 186
Rule 16—Actively Use Log Files 187
Rule 17—Don’t Check Your Work 187
Rule 18—Stop Redirecting Traffic 188
Rule 19—Relax Temporal Constraints 188
Rule 20—Leverage Content Delivery Networks 188
Rule 21—Use Expires Headers 189
Rule 22—Cache Ajax Calls 189
Rule 23—Leverage Page Caches 189
Rule 24—Utilize Application Caches 190
Rule 25—Make Use of Object Caches 190

xiiiContents

Rule 26—Put Object Caches on Their
Own “Tier” 190
Rule 27—Learn Aggressively 191
Rule 28—Don’t Rely on QA to Find Mistakes 191
Rule 29—Failing to Design for Rollback Is Designing
for Failure 191
Rule 30—Remove Business Intelligence from
Transaction Processing 192
Rule 31—Be Aware of Costly Relationships 192
Rule 32—Use the Right Type of Database
Lock 193
Rule 33—Pass on Using Multiphase Commits 193
Rule 34—Try Not to Use Select for Update 194
Rule 35—Don’t Select Everything 194
Rule 36—Design Using Fault-Isolative
“Swim Lanes” 194
Rule 37—Never Trust Single Points of Failure 195
Rule 38—Avoid Putting Systems in Series 195
Rule 39—Ensure That You Can Wire On and
Off Features 195
Rule 40—Strive for Statelessness 196
Rule 41—Maintain Sessions in the Browser
When Possible 196
Rule 42—Make Use of a Distributed Cache for
States 196
Rule 43—Communicate Asynchronously as Much
as Possible 197
Rule 44—Ensure That Your Message Bus
Can Scale 197
Rule 45—Avoid Overcrowding Your
Message Bus 198
Rule 46—Be Wary of Scaling through
Third Parties 198
Rule 47—Purge, Archive, and Cost-Justify
Storage 198
Rule 48—Partition Inductive, Deductive, Batch,
and User Interaction (OLTP) Workloads 199
Rule 49—Design Your Application to
Be Monitored 199
Rule 50—Be Competent 200

xiv Contents

A Benefit/Priority Ranking of the Scalability Rules 200
Very High—1 200
High—2 201
Medium—3 201
Low—4 202
Very Low—5 202

Summary 202

Index 205

Preface

Thanks for your interest in the second edition of Scalability Rules! This book is meant
to serve as a primer, a refresher, and a lightweight reference manual to help engineers,
architects, and managers develop and maintain scalable Internet products. It is laid out
in a series of rules, each of them bundled thematically by different topics. Most of the
rules are technically focused, and a smaller number of them address some critical mind-
set or process concern, each of which is absolutely critical to building scalable products.
The rules vary in their depth and focus. Some rules are high level, such as defining a
model that can be applied to nearly any scalability problem; others are specific and may
explain a technique, such as how to modify headers to maximize the “cacheability” of
content. In this edition we’ve added stories from CTOs and entrepreneurs of successful
Internet product companies from startups to Fortune 500 companies. These stories
help to illustrate how the rules were developed and why they are so important within
high-transaction environments. No story serves to better illustrate the challenges and
demands of hyper-scale on the Internet than Amazon. Rick Dalzell, Amazon’s first CTO,
illustrates several of the rules within this book in his story, which follows.

Taming the Wild West of the Internet
From the perspective of innovation and industry disruption, few companies have had
the success of Amazon. Since its founding in 1994, Amazon has contributed to redefining
at least three industries: consumer commerce, print publishing, and server hosting. And
Amazon’s contributions go well beyond just disrupting industries; they’ve consistently
been a thought leader in service-oriented architectures, development team construction,
and a myriad of other engineering approaches. Amazon’s size and scale along all dimen-
sions of its business are simply mind-boggling; the company has consistently grown at
a rate unimaginable for traditional brick-and-mortar businesses. Since 1998, Amazon
grew from $600 million (no small business at all) in annual revenue to an astounding
$107 billion (that’s “billion” with a B) in 2015.1 Walmart, the world’s largest retailer,
had annual sales of $485.7 billion in 2015.2 But Walmart has been around since 1962,
and it took 35 years to top $100 billion in sales compared to Amazon’s 21 years. No book
professing to codify the rules of scalability from the mouths of CTOs who have created
them would be complete without one or more stories from Amazon.

Jeff Bezos incorporated Amazon (originally Cadabra) in July of 1994 and launched
Amazon.com as an online bookseller in 1995. In 1997, Bezos hired Rick Dalzell, who
was then the VP of information technology at Walmart. Rick spent the next ten years

xvi Preface

at Amazon leading Amazon’s development efforts. Let’s join Rick as he relays the story
of his Amazon career:

“When I was at Walmart, we had one of the world’s largest relational databases run-
ning the company’s operations. But it became clear to the Amazon team pretty quickly
that the big, monolithic database approach was simply not going to work for Amazon.
Even back then, we handled more transactions in a week on the Amazon system than
the Walmart system had to handle in a month. And when you add to that our incredible
growth, well, it was pretty clear that monoliths simply were not going to work. Jeff
[Bezos] took me to lunch one day, and I told him we needed to split the monolith into
services. He said, ‘That’s great—but we need to build a moat around this business and
get to 14 million customers.’ I explained that without starting to work on these splits,
we wouldn’t be able to make it through Christmas.”

Rick continued, “Now keep in mind that this is the mid- to late nineties. There
weren’t a lot of companies working on distributed transaction systems. There weren’t a
lot of places to go to find help in figuring out how to scale transaction processing systems
growing in excess of 300% year on year. There weren’t any rulebooks, and there weren’t
any experts who had ‘been there and done that.’ It was a new frontier—a new Wild,
Wild West. But it was clear to us that we had to distribute this thing to be successful.
Contrary to what made me successful at Walmart, if we were going to scale our solution
and our organization, we were going to need to split the solution and the underlying
database up into a number of services.” (The reader should note that an entire chapter
of this book, Chapter 2, “Distribute Your Work,” is dedicated to such splits.)

“We started by splitting the commerce and store engine from the back-end fulfillment
systems that Amazon uses. This was really the start of our journey into the services-
oriented architecture that folks have heard about at Amazon. All sorts of things came
out of this, including Amazon’s work on team independence and the API contracts.
Ultimately, the work created a new industry [infrastructure as a service] and a new business
for Amazon in Amazon Web Services—but that’s another story for another time. The
work wasn’t easy; some components of the once-monolithic database such as customer
data—what we called ‘the Amazon customer database or ACB’—took several years to
figure out how to segment. We started with services that were high in transaction volumes
and could be quickly split in both software and data, like the front- and back-end systems
that I described. Each split we made would further distribute the system and allow
additional scale. Finally, we got back to solving the hairy problem of ACB and split it
out around 2004.

“The team was incredibly smart, but we also had a bit of luck from time to time. It’s
not that we never failed, but when we would make a mistake we would quickly correct
it and figure out how to fix the associated problems. The lucky piece is that none of our
failures were as large and well publicized as those of some of the other companies strug-
gling through the same learning curve. A number of key learnings in building these
distributed services came out of these splits, learnings such as the need to limit session
and state, stay away from distributed two-phase commit transactions, communicating
asynchronously whenever possible, and so on. In fact, without a strong bias toward
asynchronous communication through a publish-and-subscribe message bus, I don’t

xviiPreface

know if we could have ever split and scaled the way we did. We also learned to allow
things to be eventually consistent where possible, in just about everything except payments.
Real-time consistency is costly, and wherever people wouldn’t really know the difference,
we’d just let things get ‘fuzzy’ for a while and let them sync up later. And of course there
were a number of ‘human’ or team learnings as well such as the need to keep teams small3
and to have specific contracts between teams that use the services of other teams.”

Rick’s story of how he led Amazon’s development efforts in scaling for a decade is
incredibly useful. From his insights we can garner a number of lessons that can be applied
to many companies’ scaling challenges. We’ve used Rick’s story along with those of
several other notable CTOs and entrepreneurs of successful Internet product companies
ranging from startups to Fortune 500 companies to illustrate how important the rules
in this book are to scaling high-transaction environments.

Quick Start Guide
Experienced engineers, architects, and managers can read through the header sections
of all the rules that contain the what, when, how, and why. You can browse through
each chapter to read these, or you can jump to Chapter 13, “Rule Review and Prioriti-
zation,” which has a consolidated view of the headers. Once you’ve read these, go back
to the chapters that are new to you or that you find more interesting.

For less experienced readers we understand that 50 rules can seem overwhelming.
We do believe that you should eventually become familiar with all the rules, but we
also understand that you need to prioritize your time. With that in mind, we have picked
out five chapters for managers, five chapters for software developers, and five chapters
for technical operations that we recommend you read before the others to get a jump
start on your scalability knowledge.

Managers:

 n Chapter 1, “Reduce the Equation”
 n Chapter 2, “Distribute Your Work”
 n Chapter 4, “Use the Right Tools”
 n Chapter 7, “Learn from Your Mistakes”
 n Chapter 12, “Miscellaneous Rules”

Software developers:

 n Chapter 1, “Reduce the Equation”
 n Chapter 2, “Distribute Your Work”
 n Chapter 5, “Get Out of Your Own Way”
 n Chapter 10, “Avoid or Distribute State”
 n Chapter 11, “Asynchronous Communication and Message Buses”

xviii Preface

Technical operations:

 n Chapter 2, “Distribute Your Work”
 n Chapter 3, “Design to Scale Out Horizontally”
 n Chapter 6, “Use Caching Aggressively”
 n Chapter 8, “Database Rules”
 n Chapter 9, “Design for Fault Tolerance and Graceful Failure”

As you have time later, we recommend reading all the rules to familiarize yourself
with the rules and concepts that we present no matter what your role. The book is short
and can probably be read in a coast-to-coast f light in the United States.

After the first read, the book can be used as a reference. If you are looking to fix or
re-architect an existing product, Chapter 13 offers an approach to applying the rules to
your existing platform based on cost and the expected benefit (presented as a reduction
of risk). If you already have your own prioritization mechanism, we do not recommend
changing it for ours unless you like our approach better. If you don’t have an existing
method of prioritization, our method should help you think through which rules you
should apply first.

If you are just starting to develop a new product, the rules can help inform and guide
you as to best practices for scaling. In this case, the approach of prioritization represented
in Chapter 13 can best be used as a guide to what’s most important to consider in your
design. You should look at the rules that are most likely to allow you to scale for your
immediate and long-term needs and implement those.

For all organizations, the rules can serve to help you create a set of architectural
principles to drive future development. Select the 5, 10, or 15 rules that will help your
product scale best and use them as an augmentation of your existing design reviews.
Engineers and architects can ask questions relevant to each of the scalability rules that
you select and ensure that any new significant design meets your scalability standards.
While these rules are as specific and fixed as possible, there is room for modification
based on your system’s particular criteria. If you or your team has extensive scalability
experience, go ahead and tweak these rules as necessary to fit your particular scenario.
If you and your team lack large-scale experience, use the rules exactly as is and see how
far they allow you to scale.

Finally, this book is meant to serve as a reference and handbook. Chapter 13 is set up
as a quick reference and summary of the rules. Whether you are experiencing problems
or simply looking to develop a more scalable solution, Chapter 13 can be a quick reference
guide to help pinpoint the rules that will help you out of your predicament fastest or
help you define the best path forward in the event of new development. Besides using
this as a desktop reference, also consider integrating this into your organization by one
of many tactics such as taking one or two rules each week and discussing them at your
technology all-hands meeting.

xixPreface

Why a Second Edition?
The first edition of Scalability Rules was the first book to address the topic of scalability
in a rules-oriented fashion. Customers loved its brevity, ease of use, and convenience.
But time and time again readers and clients of our firm, AKF Partners, asked us to tell
the stories behind the rules. Because we pride ourselves in putting the needs of our
clients first, we edited this book to include stories upon which the rules are based.

In addition to telling the stories of multiple CTOs and successful entrepreneurs,
editing the book for a second edition allowed us to update the content to remain
consistent with the best practices in our industry. The second edition also gave us the
opportunity to subject our material to another round of technical peer reviews and
production editing. All of this results in a second edition that’s easier to read, easier to
understand, and easier to apply.

How Does Scalability Rules Differ from The Art of
Scalability?
The Art of Scalability, Second Edition (ISBN 0134032802, published by Addison-Wesley),
our first book on the topic of scalability, focused on people, process, and technology,
whereas Scalability Rules is predominantly a technically focused book. Don’t get us
wrong; we still believe that people and process are the most important components of
building scalable solutions. After all, it’s the organization, including both the individual
contributors and the management, that succeeds or fails in producing scalable solu-
tions. The technology isn’t at fault for failing to scale—it’s the people who are at fault
for building it, selecting it, or integrating it. But we believe that The Art of Scalability
adequately addresses the people and process concerns around scalability, and we wanted
to go into greater depth on the technical aspects of scalability.

Scalability Rules expands on the third (technical) section of The Art of Scalability. The
material in Scalability Rules is either new or discussed in a more technical fashion than
in The Art of Scalability. As some reviewers on Amazon point out, Scalability Rules works
well as both a standalone book and as a companion to The Art of Scalability.

Notes
 1. “Net Sales Revenue of Amazon from 2004 to 2015,”

www.statista.com/statistics/266282/annual-net-revenue-of-amazoncom/.

 2. Walmart, Corporate and Financial Facts,

http://corporate.walmart.com/_news_/news-archive/investors/2015/02/19/walmart-
announces-q4-underlying-eps-of-161-and-additional-strategic-investments-in-people-
e-commerce-walmart-us-comp-sales-increased-15-percent.

 3. Authors’ note: Famously known as Amazon’s Two-Pizza Rule—no team can be
larger than that which two pizzas can feed.

http://www.statista.com/statistics/266282/annual-net-revenue-of-amazoncom/
http://corporate.walmart.com/_news_/news-archive/investors/2015/02/19/walmart-announces-q4-underlying-eps-of-161-and-additional-strategic-investments-in-people-e-commerce-walmart-us-comp-sales-increased-15-percent
http://corporate.walmart.com/_news_/news-archive/investors/2015/02/19/walmart-announces-q4-underlying-eps-of-161-and-additional-strategic-investments-in-people-e-commerce-walmart-us-comp-sales-increased-15-percent
http://corporate.walmart.com/_news_/news-archive/investors/2015/02/19/walmart-announces-q4-underlying-eps-of-161-and-additional-strategic-investments-in-people-e-commerce-walmart-us-comp-sales-increased-15-percent

xx Preface

Register your copy of Scalability Rules, Second Edition, at informit.com for conve-
nient access to downloads, updates, and corrections as they become available. To
start the registration process, go to informit.com/register and log in or create an
account. Enter the product ISBN (9780134431604) and click Submit. Once the
process is complete, you will find any available bonus content under “Registered
Products.”

Acknowledgments

The rules contained within this book weren’t developed by our partnership alone.
They are the result of nearly 70 years of work with clients, colleagues, and partners
within nearly 400 companies, divisions, and organizations. Each of them contributed, in
varying degrees, to some or all of the rules within this book. As such, we would like to
acknowledge the contributions of our friends, partners, clients, coworkers, and bosses
for whom or with which we’ve worked over the past several (combined) decades. The
CTO stories from Rick Dalzell, Chris Lalonde, James Barrese, Lon Binder, Brad
Peterson, Grant Klopper, Jeremy King, Tom Keeven, Tayloe Stansbury, Chris Schrem-
ser, and Chuck Geiger included herein are invaluable in helping to illustrate the need
for these 50 rules. We thank each of you for your time, thoughtfulness, and consider-
ation in telling us your stories.

We would also like to acknowledge and thank the editors who have provided guid-
ance, feedback, and project management. The technical editors from both the first and
second editions—Geoffrey Weber, Chris Lalonde, Camille Fournier, Jeremy Wright,
Mark Urmacher, and Robert Guild—shared with us their combined decades of technology
experience and provided invaluable insight. Our editors from Addison-Wesley, Songlin
Qiu, Laura Lewin, Olivia Basegio, and Trina MacDonald, provided supportive stylistic
and rhetorical guidance throughout every step of this project. Thank you all for helping
with this project.

Last but certainly not least, we’d like to thank our families and friends who put up
with our absence from social events as we sat in front of a computer screen and wrote.
No undertaking of this magnitude is done single-handedly, and without our families’
and friends’ understanding and support this would have been a much more arduous
journey.

This page intentionally left blank

About the Authors

Martin L. Abbott is a founding partner of AKF Partners, a growth consulting firm
focusing on meeting the needs of today’s fast-paced and hyper-growth companies.
Marty was formerly the COO of Quigo, an advertising technology startup acquired
by AOL in 2007. Prior to Quigo, Marty spent nearly six years at eBay, most recently as
SVP of technology and CTO and member of the CEO’s executive staff. Prior to eBay,
Marty held domestic and international engineering, management, and executive posi-
tions at Gateway and Motorola. Marty has served on a number of boards of directors
for public and private companies. He spent a number of years as both an active-duty
and reserve officer in the US Army. Marty has a BS in computer science from the United
States Military Academy, an MS in computer engineering from the University of Florida,
is a graduate of the Harvard Business School Executive Education Program, and has a
Doctorate of Management from Case Western Reserve University.

Michael T. Fisher is a founding partner of AKF Partners, a growth consulting firm
focusing on meeting the needs of today’s fast-paced and hyper-growth companies. Prior
to cofounding AKF Partners, Michael held many industry roles including CTO of
Quigo, acquired by AOL in 2007, and VP of engineering and architecture for PayPal. He
served as a pilot in the US Army. Michael received a PhD and MBA from Case Western
Reserve University’s Weatherhead School of Management, an MS in information systems
from Hawaii Pacific University, and a BS in computer science from the United States
Military Academy (West Point). Michael is an adjunct professor in the Design and
Innovation Department at Case Western Reserve University’s Weatherhead School of
Management.

This page intentionally left blank

2
Distribute Your Work

In 2004 the founding team of ServiceNow (originally called Glidesoft), built a generic
workf low platform they called “Glide.” In looking for an industry in which they
could apply the Glide platform, the team felt that the Information Technology Service
Management (ITSM) space, founded on the Information Technology Infrastructure
Library (ITIL), was primed for a platform as a service (PaaS) player. While there existed
competition or potentially substitutes in this space in the form of on-premise software
solutions such as Remedy, the team felt that the success of companies like Salesforce for
customer relationship management (CRM) solutions was a good indication of potential
adoption for online ITSM solutions.

In 2006 the company changed its name to ServiceNow in order to better represent
its approach to the needs of buyers in the ITSM solution space. By 2007 the company
was profitable. Unlike many startups, ServiceNow appreciated the value of designing,
implementing, and deploying for scale early in its life. The initial solutions design
included the notions of both fault isolation (covered in Chapter 9, “Design for Fault
Tolerance and Graceful Failure”) and Z axis customer splits (covered in this chapter).
This fault isolation and customer segmentation allowed the company to both scale
to profitability early on and to avoid the noisy-neighbor effect common to so many
early SaaS and PaaS offerings. Furthermore, the company valued the cost effectiveness
afforded by multitenancy, so while they created fault isolation along customer bound-
aries, they still designed their solution to leverage multitenancy within a database
management system (DBMS) for smaller customers not requiring complete isolation.
Finally, the company also valued the insight offered by outside perspectives and the
value inherent to experienced employees.

ServiceNow contracted with AKF Partners over a number of engagements to help
them think through their future architectural needs and ultimately hired one of the
founding partners of AKF, Tom Keeven, to augment their already-talented engineer-
ing staff. “We were born with incredible scalability from the date of launch,” indicated
Tom. “Segmentation along customer boundaries using the AKF Z axis of scale went a
long way to ensuring that we could scale into our early demand. But as our customer
base grew and the average size of our customer increased beyond small early adopters
to much larger Fortune 500 companies, the characterization of our workload changed
and the average number of seats per customer dramatically increased. All of these led
to each customer performing more transactions and storing more data. Furthermore,
we were extending our scope of functionality, adding significantly greater value to

20 Chapter 2 Distribute Your Work

our customer base with each release. This functionality extension meant even greater
demand was being placed on the systems for customers both large and small. Finally,
we had a small problem with running multiple schemas or databases under a single
DBMS within MySQL. Specifically, the catalog functionality within MySQL [some-
times technically referred to as the information_schema] was starting to show contention
when we had 30 high-volume tenants on each DBMS instance.”

Tom Keeven’s unique experience building Web-based products from the high-f lying
days of Gateway Computer, to the Wild West startup days of the Internet at companies
like eBay and PayPal, along with his experience across a number of clients at AKF,
made him uniquely suited to helping to solve ServiceNow’s challenges. Tom explained,
“The database catalog problem was simple to solve. For very large customers we simply
had to dedicate a DBMS per customer, thereby reducing the burst radius of the fault
isolation zone. Medium-size customers may have tenants below 30, and small customers
could continue to have a high degree of multitenancy [for more on this see Chapter 9].
The AKF Scale Cube was helpful in offsetting both the increasing size of our custom-
ers and the increased demands of rapid functionality extensions and value creation. For
large customers with heavy transaction processing demands we incorporated the X axis
by replicating data to read-only databases. With this configuration, reports, which
are typically computationally and I/O intensive but read-only, could be run without
impact to the scale of the lighter-weight transaction (OLTP) requests. While the report
functionality also represented a Y axis (service/function or resource-based) split, we
added further Y axis splits by service to enable additional fault isolation by service, sig-
nificantly greater caching of data, and faster developer throughput. All of these splits, the
X, Y, and Z axes, allowed us to have consistency within the infrastructure and purchase
similar commodity systems for any type of customer. Need more horsepower? The
X axis allows us to increase transaction volumes easily and quickly. If data is starting to
become unwieldy on databases, our architecture allows us to reduce the degree of multi-
tenancy (Z axis) or split discrete services off (Y axis) onto similarly sized hardware.”

This chapter discusses scaling databases and services through cloning and replication,
separating functionality or services, and splitting similar data sets across storage and applica-
tion systems. Using these three approaches, you will be able to scale nearly any system
or database to a level that approaches infinite scalability. We use the word approaches
here as a bit of a hedge, but in our experience across hundreds of companies and thousands
of systems these techniques have yet to fail. To help visualize these three approaches to
scale we employ the AKF Scale Cube, a diagram we developed to represent these methods
of scaling systems. Figure 2.1 shows the AKF Scale Cube, which is named after our
partnership, AKF Partners.

At the heart of the AKF Scale Cube are three simple axes, each with an associated
rule for scalability. The cube is a great way to represent the path from minimal scale
(lower left front of the cube) to near-infinite scalability (upper right back corner of the
cube). Sometimes, it’s easier to see these three axes without the confined space of the
cube. Figure 2.2 shows the axes along with their associated rules. We cover each of the
three rules in this chapter.

21Distribute Your Work

Not every company will need all of the capabilities (all three axes) inherent to the
AKF Scale Cube. For many of our clients, one of the types of splits (X, Y, or Z) meets
their needs for a decade or more. But when you have the type of viral success achieved
by the likes of ServiceNow, it is likely that you will need two or more of the splits
identified within this chapter.

Split by
service or
data affinity

No splits

Starting Point

X Axis – Horizontal Duplication

Z A
xis

 –
Lo

ok
up

 or
 Fo

rm
ula

ic

Spli
ts

One,
monolithic data
architecture

Reads on
replicas, writes
on a single
node

No splits

Large
modulus or
hash

Near Infinite Scale

Y Axis – Split
by Function,
Service, or
Resource

Figure 2.1 AKF Scale Cube

Rule 8: Y Axis – Split by Function,
Service, or Resource

Rule 9: Z Axis – Lookups or
Formulaic Splits

Rule 7: X Axis – Horizontal
Duplication

Figure 2.2 Three axes of scale

22 Chapter 2 Distribute Your Work

Rule 7—Design to Clone or Replicate Things
(X Axis)

Rule 7: What, When, How, and Why

What: Typically called horizontal scale, this is the duplication of services or databases to
spread transaction load.

When to use:

 n Databases with a very high read-to-write ratio (5:1 or greater—the higher the better).
 n Any system where transaction growth exceeds data growth.

How to use:

 n Simply clone services and implement a load balancer.
 n For databases, ensure that the accessing code understands the difference between a
read and a write.

Why: Allows for fast scale of transactions at the cost of duplicated data and functionality.

Key takeaways: X axis splits are fast to implement, are low cost from a developer effort
perspective, and can scale transaction volumes nicely. However, they tend to be high cost
from the perspective of operational cost of data.

Often, the hardest part of a solution to scale is the database or persistent storage tier. The
beginning of this problem can be traced back to Edgar F. Codd’s 1970 paper “A Relational
Model of Data for Large Shared Data Banks,”1 which is credited with introducing the
concept of the relational database management system (RDBMS). Today’s most popular
RDBMSs, such as Oracle, MySQL, and SQL Server, just as the name implies, allow for
relations between data elements. These relationships can exist within or between tables.
The tables of most OLTP systems are normalized to third normal form,2 where all records
of a table have the same fields, nonkey fields cannot be described by only one of the keys
in a composite key, and all nonkey fields must be described by the key. Within the table
each piece of data is related to other pieces of data in that table. Between tables there are
often relationships, known as foreign keys. Most applications depend on the database to
support and enforce these relationships because of its ACID properties (see Table 2.1).
Requiring the database to maintain and enforce these relationships makes it difficult to
split the database without significant engineering effort.

Table 2.1 ACID Properties of Databases

Property Description

Atomicity All of the operations in the transaction will complete, or none will.

Consistency The database will be in a consistent state when the transaction begins
and ends.

Isolation The transaction will behave as if it is the only operation being performed
upon the database.

Durability Upon completion of the transaction, the operation will not be reversed.

23Rule 7—Design to Clone or Replicate Things (X Axis)

One technique for scaling databases is to take advantage of the fact that most appli-
cations and databases perform significantly more reads than writes. A client of ours that
handles booking reservations for customers has on average 400 searches for a single book-
ing. Each booking is a write and each search a read, resulting in a 400:1 read-to-write
ratio. This type of system can be easily scaled by creating read-only copies (or replicas)
of the data.

There are a couple of ways that you can distribute the read copy of your data depend-
ing on the time sensitivity of the data. Time (or temporal) sensitivity is how fresh or com-
pletely correct the read copy has to be relative to the write copy. Before you scream out
that the data has to be instant, real time, in sync, and completely correct across the entire
system, take a breath and appreciate the costs of such a system. While perfectly in-sync
data is ideal, it costs . . . a lot. Furthermore, it doesn’t always give you the return that you
might expect or desire for that cost. Rule 19, “Relax Temporal Constraints” (see Chapter 5,
“Get Out of Your Own Way”), will delve more into these costs and the resulting impact
on the scalability of products.

Let’s go back to our client with the reservation system that has 400 reads for every write.
They’re handling reservations for customers, so you would think the data they display to
customers would have to be completely in sync. For starters you’d be keeping 400 sets
of data in sync for the one piece of data that the customer wants to reserve. Second,
just because the data is out of sync with the primary transactional database by 3 or 30
or 90 seconds doesn’t mean that it isn’t correct, just that there is a chance that it isn’t
correct. This client probably has 100,000 pieces of data in their system at any one time
and books 10% of those each day. If those bookings are evenly distributed across the
course of a day, they are booking one reservation just about every second (0.86 second).
All things being equal, the chance of a customer wanting a particular booking that is
already taken by another customer (assuming a 90-second sync of data) is 0.104%. Of
course even at 0.1% some customers will select a booking that is already taken, which
might not be ideal but can be handled in the application by doing a final check before
allowing the booking to be placed in the customer’s cart. Certainly every application’s
data needs are going to be different, but from this discussion we hope you will get a sense
of how you can push back on the idea that all data has to be kept in sync in real time.

Now that we’ve covered the time sensitivity, let’s start discussing the ways to distribute
the data. One way is to use a caching tier in front of the database. An object cache can be
used to read from instead of going back to the application for each query. Only when
the data has been marked expired would the application have to query the primary
transactional database to retrieve the data and refresh the cache. We highly recommend
this as a first step given the availability of numerous excellent, open-source key-value
stores that can be used as object caches.

The next step beyond an object cache between the application tier and the database
tier is replicating the database. Most major relational database systems allow for some
type of replication “out of the box.” Many databases implement replication through
some sort of master-slave concept—the master database being the primary transactional
database that gets written to, and the slave databases being read-only copies of the

24 Chapter 2 Distribute Your Work

master database. The master database keeps track of updates, inserts, deletes, and so on
in a binary log. Each slave requests the binary log from the master and replays these
commands on its database. While this is asynchronous, the latency between data being
updated in the master and then in the slave can be very low, depending on the amount
of data being inserted or updated in the master database. In our client’s example, 10%
of the data changed each day, resulting in one update per second. This is likely a low
enough volume of change to maintain the slave databases with low latency. Often this
implementation consists of several slave databases or read replicas that are configured
behind a load balancer. The application makes a read request to the load balancer, which
passes the request in either a round-robin or least-connections manner to a read replica.
Some databases further allow replication using a master-master concept in which either
database can be used to read or write. Synchronization processes help ensure the consis-
tency and coherency of the data between the masters. While this technology has been
available for quite some time, we prefer solutions that rely on a single write database to
help eliminate confusion and logical contention between the databases.

We call the type of split (replication) an X axis split, and it is represented on the AKF
Scale Cube in Figure 2.1 as the X axis—Horizontal Duplication. An example that many
developers familiar with hosting Web applications will recognize is on the Web or
application tier of a system, running multiple servers behind a load balancer all with the
same code. A request comes in to the load balancer which distributes it to any one of the
many Web or application servers to fulfill. The great thing about this distributed model
on the application tier is that you can put dozens, hundreds, or even thousands of servers
behind load balancers all running the same code and handling similar requests.

The X axis can be applied to more than just the database. Web servers and application
servers typically can be easily cloned. This cloning allows the distribution of transac-
tions across systems evenly for horizontal scale. Cloning of application or Web services
tends to be relatively easy to perform and allows us to scale the number of transactions
processed. Unfortunately, it doesn’t really help us when trying to scale the data we must
manipulate to perform these transactions. In memory, caching of data unique to several
customers or unique to disparate functions might create a bottleneck that keeps us from
scaling these services without significant impact on customer response time. To solve
these memory constraints we’ll look to the Y and Z axes of our scale cube.

Rule 8—Design to Split Different Things (Y Axis)
Rule 8: What, When, How, and Why

What: Sometimes referred to as scale through services or resources, this rule focuses on
scaling by splitting data sets, transactions, and engineering teams along verb (services) or
noun (resources) boundaries.

When to use:

 n Very large data sets where relations between data are not necessary.
 n Large, complex systems where scaling engineering resources requires specialization.

25Rule 8—Design to Split Different Things (Y Axis)

How to use:

 n Split up actions by using verbs, or resources by using nouns, or use a mix.
 n Split both the services and the data along the lines defined by the verb/noun approach.

Why: Allows for efficient scaling of not only transactions but also very large data sets asso-
ciated with those transactions. Also allows for the efficient scaling of teams.

Key takeaways: Y axis or data/service-oriented splits allow for efficient scaling of trans-
actions, large data sets, and can help with fault isolation. Y axis splits help reduce the
communication overhead of teams.

When you put aside the religious debate around the concepts of services- (SOA) and
resources- (ROA) oriented architectures and look deep into their underlying premises,
they have at least one thing in common. Both concepts force architects and engineers to think
in terms of separation of responsibilities within their architectures. At a high and simple
level, they do this through the concepts of verbs (services) and nouns (resources). Rule 8, and
our second axis of scale, takes the same approach. Put simply, Rule 8 is about scaling
through the separation of distinct and different functions and data within a site. The
simple approach to Rule 8 tells us to split up our product by either nouns or verbs or a
combination of both nouns and verbs.

Let’s split up our site using the verb approach first. If our site is a relatively simple e-commerce
site, we might break it into the necessary verbs of signup, login, search, browse, view, add
to cart, and purchase/buy. The data necessary to perform any one of these transactions
can vary significantly from the data necessary for the other transactions. For instance,
while it might be argued that signup and login need the same data, they also require
some data that is unique and distinct. Signup, for instance, probably needs to be capable
of checking whether a user’s preferred ID has been chosen by someone else in the past,
whereas login might not need to have a complete understanding of every other user’s ID.
Signup likely needs to write a fair amount of data to some permanent data store, but
login is likely a read-intensive application to validate a user’s credentials. Signup may
require that the user store a fair amount of personally identifiable information (PII)
including credit card numbers, whereas login does not likely need access to all of this
information at the time that a user would like to establish a login.

The differences and resulting opportunities for this method of scale become even
more apparent when we analyze obviously distinct functions like search and login. In
the case of login we are mostly concerned with validating the user’s credentials and
potentially establishing some notion of session (we’ve chosen the word session rather
than state for a reason we explore in Rule 40 in Chapter 10, “Avoid or Distribute State”).
Login is concerned with the user and as a result needs to cache and interact with data
about that user. Search, on the other hand, is concerned with the hunt for an item and
is most concerned with user intent (vis-à-vis a search string, query, or search terms typi-
cally typed into a search box) and the items that we have in stock within our catalog. Sepa-
rating these sets of data allows us to cache more of them within the confines of memory
available on our system and process transactions faster as a result of higher cache hit ratios.
Separating this data within our back-end persistence systems (such as a database) allows

26 Chapter 2 Distribute Your Work

us to dedicate more “in memory” space within those systems and respond faster to the
clients (application servers) making requests. Both systems respond faster as a result of
better utilization of system resources. Clearly we can now scale these systems more easily
and with fewer memory constraints. Moreover, the Y axis adds transaction scalability
by splitting up transactions in the same fashion as Rule 7, the X axis of scale.

Hold on! What if we want to merge information about the user and our products such
as in the case of recommending products? Note that we have just added another verb—
recommend. This gives us another opportunity to perform a split of our data and our trans-
actions. We might add a recommendation service that asynchronously evaluates past user
purchase behavior against users who have similar purchase behaviors. This in turn may
populate data in either the login function or the search function for display to the user when
he or she interacts with the system. Or it can be a separate synchronous call made from the
user’s browser to be displayed in an area dedicated to the result of the recommend call.

Now how about using nouns to split items? Again, using our e-commerce example,
we might identify certain resources upon which we will ultimately take actions (rather
than the verbs that represent the actions we take). We may decide that our e-commerce
site is made up of a product catalog, product inventory, user account information, mar-
keting information, and so on. Using our noun approach, we may decide to split up our
data into these categories and then define a set of high-level primitives such as create,
read, update, and delete actions on these primitives.

While Y axis splits are most useful in scaling data sets, they are also useful in scaling
code bases. Because services or resources are now split, the actions we perform and the
code necessary to perform them are split up as well. This means that very large engineer-
ing teams developing complex systems can become experts in subsets of those systems
and don’t need to worry about or become experts on every other part of the system.
Teams that own each service can build the interface (such as an API) into their service
and own it. Assuming that each team “owns” its own code base, we can cut down on
the communication overhead associated with Brooks’ Law. One tenet of Brooks’ Law is
that developer productivity is reduced as a result of increasing team sizes.3 The com-
munication effort within any team to coordinate team efforts is a square of the number
of participants in the team. Therefore, with increasing team size comes decreasing
developer productivity as more developer time is spent on coordination. By segmenting
teams and enabling ownership, such overhead is decreased. And of course because we
have split up our services, we can also scale transactions fairly easily.

Rule 9—Design to Split Similar Things (Z Axis)
Rule 9: What, When, How, and Why

What: This is very often a split by some unique aspect of the customer such as customer
ID, name, geography, and so on.

When to use: Very large, similar data sets such as large and rapidly growing customer
bases or when response time for a geographically distributed customer base is important.

27Rule 9—Design to Split Similar Things (Z Axis)

How to use: Identify something you know about the customer, such as customer ID, last
name, geography, or device, and split or partition both data and services based on that
attribute.

Why: Rapid customer growth exceeds other forms of data growth, or you have the need to
perform fault isolation between certain customer groups as you scale.

Key takeaways: Z axis splits are effective at helping you to scale customer bases but can also
be applied to other very large data sets that can’t be pulled apart using the Y axis methodology.

Often referred to as sharding and podding, Rule 9 is about taking one data set or service
and partitioning it into several pieces. These pieces are often equal in size but may be of
different sizes if there is value in having several unequally sized chunks or shards. One
reason to have unequally sized shards is to enable application rollouts that limit your risk
by affecting first a small customer segment, and then increasingly large segments of custom-
ers as you feel you have identified and resolved major problems. It also serves as a great
method for allowing discovery—as you roll out first to smaller segments, if a feature is
not getting the traction you expect (or if you want to expose an “early” release to learn
about usage of a feature), you can modify the feature before it is exposed to everybody.

Often sharding is accomplished by separating something we know about the requestor
or customer. Let’s say that we are a time card and attendance-tracking SaaS provider. We
are responsible for tracking the time and attendance for employees of each of our clients,
who are in turn enterprise-class customers with more than 1,000 employees each. We
might determine that we can easily partition or shard our solution by company, meaning
that each company could have its own dedicated Web, application, and database servers.
Given that we also want to leverage the cost efficiencies enabled by multitenancy, we also
want to have multiple small companies exist within a single shard. Really big companies
with many employees might get dedicated hardware, whereas smaller companies with
fewer employees could cohabit within a larger number of shards. We have leveraged
the fact that there is a relationship between employees and companies to create scalable
partitions of systems that allow us to employ smaller, cost-effective hardware and scale
horizontally (we discuss horizontal scale further in Rule 10 in the next chapter).

Maybe we are a provider of advertising services for mobile phones. In this case, we
very likely know something about the end user’s device and carrier. Both of these create
compelling characteristics by which we can partition our data. If we are an e-commerce
player, we might split users by their geography to make more efficient use of our
available inventory in distribution centers, and to give the fastest response time on the
e-commerce Web site. Or maybe we create partitions of data that allow us to evenly
distribute users based on the recency, frequency, and monetization of their purchases.
Or, if all else fails, maybe we just use some modulus or hash of a user identification
(userid) number that we’ve assigned the user at signup.

Why would we ever decide to partition similar things? For hyper-growth companies, the
answer is easy. The speed with which we can answer any request is at least partially
determined by the cache hit ratio of near and distant caches. This speed in turn indicates
how many transactions we can process on any given system, which in turn determines

28 Chapter 2 Distribute Your Work

how many systems we need to process a number of requests. In the extreme case, with-
out partitioning of data, our transactions might become agonizingly slow as we attempt
to traverse huge amounts of monolithic data to come to a single answer for a single
user. Where speed is paramount and the data to answer any request is large, designing
to split different things (Rule 8) and similar things (Rule 9) becomes a necessity.

Splitting similar things obviously isn’t just limited to customers, but customers are
the most frequent and easiest implementation of Rule 9 within our consulting practice.
Sometimes we recommend splitting product catalogs, for instance. But when we split
diverse catalogs into items such as lawn chairs and diapers, we often categorize these as
splits of different things. We’ve also helped clients shard their systems by splitting along
a modulus or hash of a transaction ID. In these cases, we really don’t know anything
about the requestor, but we do have a monotonically increasing number upon which
we can act. These types of splits can be performed on systems that log transactions for
future reference as in a system designed to retain errors for future evaluation.

Summary
We maintain that three simple rules can help you scale nearly everything. Scaling along
the X, Y, and Z axes each has its own set of benefits. Typically X axis scaling has the
lowest cost from a design and software development perspective; Y and Z axis scaling
is a little more challenging to design but gives you more f lexibility to further fully
separate your services, customers, and even engineering teams. There are undoubtedly
more ways to scale systems and platforms, but armed with these three rules, few if any
scale-related problems will stand in your way:

 n Scale by cloning—Cloning or duplicating data and services allows you to scale
transactions easily.

 n Scale by splitting different things—Use nouns or verbs to identify data and services
to separate. If done properly, both transactions and data sets can be scaled efficiently.

 n Scale by splitting similar things—Typically these are customer data sets. Set
customers up into unique and separated shards or swim lanes (see Chapter 9 for
the definition of swim lane) to enable transaction and data scaling.

Notes
 1. Edgar F. Codd, “A Relational Model of Data for Large Shared Data Banks,” 1970,

www.seas.upenn.edu/~zives/03f/cis550/codd.pdf.

 2. Wikipedia, “Third Normal Form,”

http://en.wikipedia.org/wiki/Third_normal_form.

 3. Wikipedia, “Brooks’ Law,”

https://en.wikipedia.org/wiki/Brooks’_law.

http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
http://en.wikipedia.org/wiki/Third_normal_form
https://en.wikipedia.org/wiki/Brooks�_law

Index

Numbers
2PC (two-phase commit), 117
9/11, market sensitivity to, 159
24.0 disaster, PayPal, 60, 107
80-20 rule (Pareto Principle), 9, 87
1992 W3 Project page, 13

A
A/B customer testing, 96–97
ACB (Amazon customer database), xvi
Access logs, make use of, 56
Accidents, learn from, 97–98
ACID properties (atomicity, consistency,

isolation, and durability)
of databases, 22, 107
relax temporal constraints, 68–70
of reliable transactions, 60
use relational databases for, 47

Actions, learning from our mistakes, 98
Active/passive configuration, removing

single point of failure, 131
Actively use log files rule, 55–58, 187
Aggregation, log, 56, 57
Ajax (Asynchronous JavaScript and XML)

cache calls, 82–84, 190
example of, 73
overview of, 81–82

AKF Scale Cube, 20–21
Alerts

design application to be monitored, 57
in modern coupled systems, 97
monitor for events, 160
monitor logs through, 57
set up automatic, 170

Aliasing, redirecting traffic for, 65
Amazon

AWS's regions, 39
at edge of OLTP in 2001, 1–3

fault isolation in, 129
success story, xv–xvii

Amazon customer database (ACB), xvi
Amazon DynamoDB, 48–49
Amdahl’s Law, 32
Apache

object cache, 89
use of log files, 56

Apache Hadoop, 51
Apache Web server, 66–67
Application caches, utilize, 86–88, 190
Application servers

avoid state/replication servers within,
144–145

competency in, 173
design to scale out, 33
put object cache on its own tier vs.,

90–91
scale by cloning, 24

Archive storage data, 163–166, 198–199
Art of Scalability, Second Edition, Scalability

Rules vs., xix
Asynchronous calls, across swim lanes,

128–129
Asynchronous communication and message

buses, rules
Avoid overcrowding message bus, 154–157,

198
Communicate asynchronously, 149–151,

197
Ensure message bus can scale, 151–154, 197
overview of, 147–148

Asynchronous completion, eliminate
checking your work for, 64

Asynchronous JavaScript and XML. See Ajax
(Asynchronous JavaScript and XML)

Asynchronous transfer of data, for business
systems, 109, 111

206 Index

Atomicity
as ACID property of databases, 22
defined, 107
overview of, 60

Attributes, data model design, 112
Auction format, eBay, 1
Authorization cookie, 143
Availability. See also HA (high availability)

CAP Theorem, 69
fault isolation benefits, 127
impact of firewalls on, 53–55
number of components in series and,

134–135
Avoid or Distribute State, rules

Maintain sessions in browser when
possible, 142–143, 196

Make use of distributed cache for states,
144–146, 196–197

overview of, 139–140
Strive for statelessness, 140–142, 196

Avoid overcrowding message bus rule,
154–157, 198

Avoid putting systems in series rule, 132–135,
195

B
Barrese, James, 43–44
BASE architecture, database consistency, 69
Batch workloads

induction and, 168
partition, 166–169, 199

Bayesian belief networks, 172
Be aware of costly relationships rule, 111–114,

192–193
Be competent rule, 172–174, 200
Be wary of scaling through third parties rule,

161–163, 198
Benefit ranking, scalability rules, 200–202
Bezos, Jeff, xv–xvi
BigTable, Google, 49
Binder, Lon, 73
Black Friday, capacity planning/monitoring for,

159
Brewer (or CAP) Theorem, 69
Broken Windows Theory

Freakonomics comparison to, 168–169
New York experiment, 167

Browsers
leverage Ajax cache in, 82–84
maintain session data in, 142–143
Reduce DNS lookups rule and, 11–12
simultaneous connection feature of, 13–14
store session data in distributed cache vs.,

144–146
Business

cache objects for, 74–75
learn aggressively from operations, 97
monitor metrics for, 170–172
optimize SQL queries, 114

Business intelligence, remove from
transaction processing, 109–111, 192

C
Cache Ajax calls rule, 80–84, 189
Cache-Control header

leverage Ajax cache, 82–84
leverage page caches, 84–85
overview of, 78–79

Cache is King, in technology, 73
Cache miss, page caches, 84
Caches

aggressive use of. See Use Caching
Aggressively, rules

challenges of adding, 75
store data with distributed, 144–146
store writes needed soon in, 63

Callbacks, asynchronous communication,
148

CAP (or Brewer) Theorem, 69
Capacity on demand, for unpredictable

events, 160
Cassandra, 49
CDNs (content delivery networks)

example of using, 74
leveraging, 75–77, 188
off load traffic via, 75–77

Ceph, 48
Charles Schwab, 159–160
Circuit breakers, 136
Click tracking, 65, 67–68
Clone

design to. See X axis (Design to Clone or
Replicate things) rule

as solution to single point of failure, 131

207Index

Cloud
design to leverage, 40–42, 185–186
make use of while you grow, 36

Cluster, 125–126, 162–163
Codd, Edgar F., 47
Code

failing to design for rollback of, 102–105
redirection with, 66
session/state require complexity of, 141
set HTTP Expires header in, 79

Code bases, splitting different things, 26
Colocation providers, 36
Columns

design for rollback, 105
specify for Select * or Insert, 121

Commodity systems, 33–35, 185
Communicate asynchronously when possible

rule, 149–151, 197
Competency, for each component, 172–174, 200
Competitive differentiation, don't check

work for, 64
Complexity

of Apache Web server redirects, 67
design to scale out and, 30
don't overengineer the solution, 3–5
scale out your hosting solution, 39
session and state requiring code, 141
simplify solution three times over vs., 8–10

Components
competency in, 172–174, 200
reducing number of in series, 132–135

Concurrency, 115–116
CONF, PayPal, 103
Config file markdown, feature wire-on/

wire-off approach, 136
Confinity, PayPal, 59–61
Conf lict, resolving in rules, 63–64
Consistency

as ACID property of databases, 22
database locks facilitating, 115–116
defined, 107
relaxing temporal constraints for, 69
understanding, 60

Constraint satisfaction problems (CSPs), 68
Constraints. See Temporal constraints
Content delivery networks. See CDNs

(content delivery networks)

Continuous integration, stored procedures
impeding, 110

Cookies, 142–143
Cordrey, Tanya, 123
Cost

database, 109–110
database locks, 115
design to leverage cloud, 41
design to scale out, 32
doubling activity and, 63
fault isolation benefits, 127
firewall, 54
logging, 57–58
message buses, 155–157
multiple live sites and, 36–40
scale out with commodity systems, 34–35
scale through third parties, 162
of session and state, 141

Cost-justify storage data, 163–166, 198–199
Cost-Value Data Dilemma, 52
Costly relationships, 111–114, 192–193
Couchbase, 49
CouchDB, 49
CPUs, scale out via commodity systems, 34
Craigslist, rivalry with eBay, 141
Crime rates, Broken Windows Theory for,

167–168
CSPs (Constraint satisfaction problems), 68
Cursors, 118–119
Customers, ways to watch, 96–97
Cyber Monday, capacity planning/

monitoring for, 159

D
D-I-D (Design-Implement-Deploy) process,

6–8, 181
Dalzell, Rick, 128, 139, xv–xvii
Data

cost/value of message bus, 155–157
design for roll back of, 105
mapping issues, 120–121
monitor scope vs. amount of, 171–172
normal forms and integrity of, 113–114

Data centers, 35–40
Data definition language (DDL) statements,

112
Data sets, 24–28

208 Index

Data stores, object caches as, 89
Database as a service (DBaaS), 44
Database locks, 114–116, 119
Database management system (DBMS),

19–20
Database-only implementations, distributed

session/state and, 145
Database Rules

Be aware of costly relationships, 111–114,
192–193

Don't select everything, 120–121, 194
overview of, 107–108
Pass on using multiphase commits,

116–118, 193
Remove business intelligence from

transaction processing, 109–111, 192
Try not to use "Select for Update,"

118–119, 194
Use right type of database lock, 114–116,

193
Databases

ACID properties of, 22
alternative storage strategies to, 48–51
competency in, 173
design for rollback, 105
design to scale out, 33
solve slow load times, 74
use appropriately, 47–48, 186

DBaaS (Database as a service), 44
DBMS (database management system), 19–20
DDL (data definition language) statements,

112
Deadlock, from 2PC protocol, 107
Debug errors, with log files, 57
Deductive workloads

defined, 167
partitioning, 166–169, 199

Deployment, design for, 8
Design

overengineering, 3–5
simplifying, 9–10

Design for Fault Tolerance/Graceful Failure,
rules

Avoid putting systems in series, 132–135,
195

Design using fault-isolative swim lanes,
124–130, 194

Ensure you can wire on/wire off features,
135–138, 195

Never trust single points of failure,
130–132, 195

overview of, 123–124
Design-Implement-Deploy (D-I-D) process,

6–8, 181
Design scale into the solution rule, 6–8, 181
Design to leverage cloud rule, 40–42,

185–186
Design to Scale Out Horizontally, rules

Design to leverage cloud, 40–42, 185–186
Design your solution to scale out, not just

up, 31–33, 184
overview of, 29–31
Scale out your hosting solution, 35–40, 185
Use commodity systems, 33–35, 185

Design using fault-isolative swim lanes rule,
124–130, 194

Design your application to be monitored rule,
169–172, 199–200

Design your solution to scale out, not just up
rule, 31–33, 184

Disaster recovery, lowering costs by scaling out,
36

Distribute Your Work, rules
Design to Clone or Replicate things (X axis),

22–24, 183
Design to Split Different things (Y axis),

24–26, 184–185
Design to Split Similar things (Z axis),

26–28, 185
overview of, 19–21

Distributed cache, 144–146
DNS (Domain Name System)

reduce lookups, 10–12, 182
use content delivery networks, 75–77

Document stores, 49
Domain Name System. See DNS (Domain

Name System)
Domains, redirect traffic for misspelled/

changed, 65
Don't check your work rule, 61–64, 187
Don't overengineer the solution rule, 3–5,

180–181
Don't rely on QA to find mistakes rule,

100–102, 191

209Index

Don't select everything rule, 120–121, 194
Double-checking yourself, stop, 61–64, 187
Dubner, Stephen J., 168–169
Durability

as ACID property of databases, 22
defined, 107
distributed session/state considerations, 145
understanding, 60

Dynamic content
adding CDN for, 78
use caches to scale, 73

Dynamic Site Accelerator, Akamai, 78

E
E-commerce, capacity planning/monitoring

for, 159
EBay

Brad Peterson at, 160
at edge of OLTP in 2001, 1
James Barrese at, 43
June 1999 outages at, 1–2
on PayPal failure, 104–105
power of simple and easy and, 141
redesigned architectural principles, 2–3

Edge servers, content delivery networks as, 76
Elasticsearch, ELK framework, 57
Electrical circuits, reduce number of

components in series, 132–135
ELK (Elasticsearch, Logstash, Kibana)

framework, 57
Employees, multiple live site consideration, 40
Engineering resources, scale by splitting

different things, 26
Ensure message bus can scale rule, 151–154,

197
Ensure you can wire on/wire off features

rule, 135–138, 195
Enterprise resource planning (ERP), 110–111
Enterprise service bus. See Message bus
Entities

data model design, 112
relationship between, 113

Entity relationship diagrams (ERDs), 112
ERDs (entity relationship diagrams), 112
ERP (enterprise resource planning), 110–111
Error logs, making use of, 56
ETag header, leverage page caches, 85

Ethernet, collision domains in, 126
Expertise, defer to, 99
Expires headers

leveraging Ajax cache, 82–84
leveraging page caches, 84–85
use, 77–80, 189

Explicit database locks, 115
Extensible record stores (ERSs), 49
Extent database locks, 115
External API, asynchronous calls to, 149

F
F-graph, Facebook, 173
Failing to design for rollback rule, 102–105,

191–192
Failure. See also Design for Fault Tolerance/

Graceful Failure, rules
asynchronous calls prevent spreading of, 149
be preoccupied with, 99
components in series subject to, 132–135
design swim lanes for, 126–127
ensure message bus can scale, 151–154
learn from mistakes. See Learn From Your

Mistakes, rules
never trust single points of, 130–132, 195

Fault isolation
achieving, 127–130
benefits of, 127
design swim lanes for, 124–127, 194
example of swim lanes, 123–124
partition inductive, deductive, batch, and

user interactive/OLTP workloads, 168
scale by splitting similar things, 27
scale out your hosting solution, 36

Fault isolation domains, 126
Fault tolerance. See also Design for Fault

Tolerance/Graceful Failure, rules
implement asynchronous calls, 149
remove business intelligence from

transaction processing, 111
Features, wire on/wire off, 135–138, 194
Fifth normal form, 113
File markdown, feature wire-on/wire-off,

137
File systems, as overlooked storage systems, 48
Financial services solutions, 159–160
Firesheep, 143

210 Index

Firewalls
both inside and outside network, 134
design to scale out, not up, 29–31
homogeneous networks for, 15

Firewalls, firewalls, everywhere rule, 52–55, 186
First normal form, 113
Flash crash, 160
FOR UPDATE cursors, minimize, 118–119
Foreign keys, enforcing referential integrity, 112
Fourth normal form, 113
Freakonomics, 167
Frequency of data access, RFM analysis, 164–165

G
Garrett, Jesse James, 81
Geiger, Chuck, 103–104
Get Out of Your Own Way, rules

Don't check your work, 61–64, 187
overview of, 59–61
Relax temporal constraints, 68–70, 188
Stop redirecting traffic, 64–68, 188

GFS (Google File System), storage, 48
Giuliani, Mayor, 167
Glide workf low program, 19
Goldfish vs. thoroughbreds concept, 35
Google

BigTable, 49
at edge of OLTP in 2001, 1–3
MapReduce data storage, 50–51
no state/session in, 141

Google File System (GFS), storage, 48
Granularity, of database locks, 115
Gray, Jim, 60

H
HA (high availability)

design to scale out, not up, 29–30
protect against data corruption via, 62
scalability and, 124
scale out your hosting solution, 36
with swim lanes, 126

Hardware, provisioning in cloud, 41
Hash function, 89
HBase, extensible record store, 49
Header() command, Expires header, 79
Headers, using Expire, 77–80
Health Insurance Portability and

Accountability Act (HIPAA), 29

HIPAA (Health Insurance Portability and
Accountability Act), 29

Hit ratio, object caches, 90–91
Homogeneous networks rule, 15
Horizontal duplication, scaling by cloning, 24
Horizontal scale

design to scale out. See Design to Scale Out
Horizontally, Rules

distribute your work through, 20–21
remove single point of failure, 132
scale by cloning, 22–24

Hosting solution, scale out your, 35–40, 185
Hot/cold configuration, remove single point

of failure, 131
HTML, redirection with, 66
HTTP 3xx status codes, redirection with, 65–66
HTTP headers

control caching, 78
Expires header, 79–80
leverage Ajax cache, 82–84
leverage page caches, 84–85

HTTPS, protect cookies from sidejacking, 143
Hubs, homogeneous networks and, 15

I
IaaS (Infrastructure as a service)

created by Amazon, xvi
design to leverage cloud, 41–42
rent capacity from, 160

Images, reduce objects where possible, 13
Implementation

as actual coding of solution, 10
design scale into the solution, 7
simplify solution three times over, 10

Implicit database locks, 115
Incident detection, fault isolation benefits, 127
Inconsistent demand, cloud for, 41
Inductive workloads, partition, 166–169, 199
Infrastructure as a service. See IaaS

(Infrastructure as a service)
Infrastructure, competency in, 173–174, 200
Insert, specify columns with, 121
Intuit Inc., 93–95
Isolation

as ACID property of databases, 22
database locks facilitating, 115–116
defined, 107
understanding, 60

211Index

Issue identification, learning from mistakes, 98
ITSM (Information Technology Service

Management), 19

J
JIT (just-in-time) scalability, 6–8

K
Keep-alives, for performance/scale, 79
Keeven, Tom, 19–20
Key value stores, storage strategy, 48–49
Kibana, ELK framework, 57
King, Jeremy, 1–3, 4
Klopper, Grant, 123–124

L
Lalonde, Chris, 44–47
Last-Modified header, 82–85
Latency

CDNs solving issues with, 73
keep-alives reducing, 79–80

Law of the Instrument (Maslow's Hammer),
43, 107

Learn aggressively rule, 95–100, 191
Learn From Your Mistakes, rules

Don't rely on QA to find mistakes,
100–102, 191

Failing to design for roll back, 102–105
Failing to design for rollback, 191–192
Learn aggressively, 95–100, 191
overview of, 93–95

Learning culture, importance of, 95–100
Legal requirements, don't check work for, 64
Leverage content delivery networks rule,

75–77, 188
Leverage page caches rule, 84–86, 189
Levitt, Steven D., 168–169
Load balancers

competency in, 173
in database replication, 24
removing single point of failure, 132

Locks, using right type of database, 114–116, 193
Log files, actively using, 55–58
Login, using verbs to split items, 25
Logstash, ELK framework, 57
Long-running processes, asynchronous calls

to, 149
Lookups, reducing DNS, 10–12

M
Maintain sessions in browser when possible

rule, 142–143, 196
Make use of distributed cache for states rule,

144–146, 196–197
Make use of object caches rule, 88–90, 190
Managers, quick start guide for, xvii
Manual markdown command, wire-on/

wire-off features, 136
Map coloring problem, 68
Market sensitivity to events, 159–160
Market storm, 160
Maslow, Abraham, 43
Maslow's Hammer (Law of the Instrument),

43, 107
Master-slave configuration

in database replication, 23–24
removing single point of failure, 131–132

Mean time to failure (MTTF), failed writes,
61

Memcached, 48, 89–90
Message bus

avoid overcrowding, 154–157, 198
ensuring scalability of, 151–154, 197
implementation of asynchronous

communication, 148
Meta tags, misconceptions about, 77–78
Methods, asynchronous calls to overly

complex, 149–150
Minimum viable product, simplifying scope, 9
Miscellaneous rules

Be competent, 172–174, 200
Be wary of scaling through third parties,

161–163, 198
Design your application to be monitored,

169–172, 199–200
overview of, 159–161
Partition inductive, deductive, batch, and

user interactive/OLTP workloads,
166–169, 199

Purge, archive, and cost-justify storage,
163–166, 198–199

Mod_alias module, 67
Mod_expires module, 79
Mod_rewrite module, 67
MogileFS, 48
Monetization, RFM analysis, 164
MongoDB, 44–45, 49

212 Index

Monitoring
caches, 75
design application for, 169–172
events vs. abnormal changes in market, 160
log files, 57–58
object cache for hit ratio, 90

Moore's Law, 33, 103
MQ server, ZirMed system, 147–148
MTTF (Mean time to failure), failed writes, 61
Multiphase commit protocols, avoid,

116–118, 193
Multiplicative effect, of items in series, 134–135
Multitenancy, session/state destroying value

of, 139–140

N
NASDAQ, 159–160
NCache, 89
Network transit costs, scaling hosting

solution, 39
Neural nets, application monitoring, 172
Never trust single points of failure rule,

130–132, 195
Nodes, content delivery networks as, 76
Non-normalized data models, 112
Nonpersistent object caches, distributed

session/state, 145
Nonrelational databases, 45–46
Normal Accident Theory, 97
Normal forms

data model design, 112
most common, 113
relationship between data integrity and,

113–114
Normalization, data model design, 112
NoSQL database, 48–51
Nouns (resources)

entities as, 112
scaling, 25–26

NOWAIT keyword, Oracle database, 119
Nuclear power generation, learning

aggressively from, 97

O
Object caches

making use of, 88–90, 190
nonpersistent, 145

putting on own tier, 90–91, 190
scaling by cloning, 23

Object-relational mapping (ORM), 74
ObjectRocket, 44–47
Objects

Reduce DNS lookups rule and, 11–12
Reduce objects where possible rule, 12–14

Online transaction processing (OLTP)
overview of, 20
partition workloads, 166–169, 199
relational structure between tables, 47

Open-source solutions, simplify
implementation with, 10

Optimizer, ensure maximum concurrency,
115–116

Organizations, learning culture, 95–96
ORM (object-relational mapping), 74
Overcrowding, avoid message bus, 154–157
Overengineering

resist, 3–5, 180–181
simplify design, 9–10, 162

Overuse, of tools, 44
Ownership, component, 174

P
Paas (platform as a service), 148, 154
Page caches, leveraging, 84–85, 190
Page database locks, 115
Page weight, reduce, 14
Parallel circuits, 132–135
Pareto Principle (80-20 rule), 9, 87
Partition inductive, deductive, batch, and

user interaction (OLTP) workloads rule,
166–169

Partition inductive, deductive, batch, and
user interactive/OLTP workloads rule,
199

Partitioning
by splitting similar things, 27–28
tolerance of CAP Theorem for, 69

Pass on multiphase commits rule, 116–118,
193

Payment Card Industry (PCI) compliance,
firewalls for, 55

PayPal
24.0 incident, 60, 107–108
engineering and architecture, 59–61

213Index

failure to design rollback in, 103–105
James Barrese at, 43
temporal constraints in, 70

PCI (Payment Card Industry) compliance,
firewalls for, 55

Pending transactions, PayPal engineering,
59–61

Performance
database locks and statistics for, 116
reduce DNS lookups for, 10–12
reduce objects where possible for, 12–14
use of log files for, 56

Perimeter security devices, firewalls as, 53
Perrow, Charles, 97
Persistence, distributed session/state, 145
Persistence tier, 88–90, 144–145
Personally identifiable information (PII),

firewalls for, 54–55
Peterson, Brad, 159–160, 170
Petopia.com, 1
PHP function, asynchronous communication,

148
Platform as a service (Paas), 148, 154
Pod, 27–28, 125–126
Pool, 125–126
Post/Redirect/Get (PRG) pattern, redirect

traffic, 65
Postmortem process, learning from mistakes,

98
PRG (Post/Redirect/Get) pattern, redirect

traffic, 65
Primary keys, entity integrity, 112
Priority ranking, scalability rules, 200–202
Processes, asynchronous calls to long-

running, 149
Product detail pages, content management

service, 74
Protocols, use homogeneous networks, 15
Proxy headers, 78
Purge, archive, and cost-justify storage rule,

163–166, 198–199
Put object caches on their own tier rule,

90–91, 190

Q
QA (Quality Assurance) personnel

don't rely on to find mistakes, 100–102, 191

important role of, 100–101
leverage cloud for, 42
when to hire, 101

Queries
don't use Select * in, 120–121
joining tables and optimizing, 113–114

Quick start guide, to this book, xvii–xviii

R
Rackspace, 45–47
Rate of growth, choosing data storage, 51–52
RDBMSs (Relational database management

systems)
nonrelational vs., 45–46
overuse of, 107
relax temporal constraints in, 68–70
scale by cloning, 22–24
use appropriately, 47–52

Read and write ratios, choosing data storage,
51–52

Read-only replicas of databases
across swim lanes, 129
removing single point of failure, 132

Real Application Clusters (RAC), 48
Recency of access, RFM analysis, 164
Redirects

reasons for use of, 65
stop traffic, 66–68, 188

Redis, 48
Reduce DNS lookups rule, 10–12, 182
Reduce objects where possible rule, 12–14,

182
Reduce the Equation, rules

Design scale into the solution, 6–8, 181
Don't overengineer the solution, 3–5, 180–181
overview of, 1–3
Reduce DNS lookups, 10–12, 182
Reduce objects where possible, 12–14, 182
Simplify solution three times over, 8–10, 181
Use homogeneous networks, 15, 182–183

Redundancy, don't check your work, 61
Refresh, redirects with HTML via, 66
Regulatory requirements, don't check work

for, 64
Relational database management systems

(RDBMSs). See RDBMSs (relational
database management systems)

214 Index

Relationships
be aware of costly database, 111–114
choose data storage solution, 51–52
increase concurrency by changing entity,

116
Relax temporal constraints rule, 68–70, 188
Reliability, distributed session/state

considerations, 145
Remote procedure calls (RPCs), application

monitoring, 172
Remove business intelligence from

transaction processing rule, 109–111, 192
Renting

data centers in various locations, 39
risk, by leveraging cloud, 42

Replication (split)
key-value stores and, 48–49
relational databases and synchronous,

47–48
scale out hosting solution, 36–40
scale using, 20, 22–24
session, 141

Requirements, overengineering, 3–5
Resilience, commitment to, 99
Resource Oriented Architecture (ROA),

25–26
Resources (nouns)

entities as, 112
scaling, 25–26

Reverse proxy cache, install page cache in
front of, 84–85

RFM (recency, frequency, and monetization)
analysis, of business value, 164–166

Risk
leverage cloud to rent, 42
QA for mitigation of, 102
use firewalls for significant reduction of, 52

ROA (Resource Oriented Architecture),
25–26

Roe v. Wade, 168
Rollback, failure to design for, 102–105,

191–192
Round trips, Ajax eliminating browser,

81–82
Rows

database locks for, 115
entities as, 112

RPCs(remote procedure calls), application
monitoring, 172

Rule review and prioritization
50 scalability rules in brief. See Scalability

rules in brief
overview of, 177
risk-benefit model for evaluation, 177–180

Rules, resolve conf lict in, 63–64
Runtime, feature wire-on/wire-off, 137

S
SaaS (Software as a Service) applications

design application for monitoring, 170–172
learn from your mistakes, 93–95
relax temporal constraints, 68–70

Sampling
ensure your message bus can scale, 156
log, 56

Scalability
benefit/priority ranking of rules for,

200–202
fault isolation benefits, 127
firewall issues with, 52
of message bus, 152

Scalability Rules, xix
Scalability rules in brief

Actively use log files, 187
Avoid overcrowding message bus, 198
Avoid putting systems in series, 195
Be aware of costly relationships, 192–193
Be competent, 200
Be wary of scaling through third parties, 198
Cache Ajax calls, 189
cloning or replicating things. See X axis

(Design to Clone or Replicate things)
rule

Communicate asynchronously, 197
Design scale into the solution, 181
Design solution to scale out, 184
Design to leverage cloud, 185–186
Design using fault-isolative swim lanes, 194
Design your application to be monitored,

199–200
Don't check your work, 187
Don't overengineer the solution, 180–181
Don't rely on QA to find mistakes,

100–102

215Index

Don't select everything, 194
Ensure message bus can scale, 197
Ensure you can wire on/wire off features, 195
Failing to design for roll back, 102–105
Firewalls, firewalls, everywhere rule, 186–187
Learn aggressively, 95–100
Leverage content delivery networks, 188
Leverage page caches, 189
Maintain sessions in browser when possible

rule, 196
Make use of distributed cache for states

rule, 196–197
Make use of object caches, 190
Never trust single points of failure, 195
Partition inductive, deductive, batch, and

user interactive/OLTP workloads, 199
Pass on multiphase commits, 193
Purge, archive, and cost-justify storage,

198–199
Put object caches on their own tier, 190
Reduce DNS lookups, 182
Reduce objects where possible, 182
Relax temporal constraints, 188
Remove business intelligence from

transaction processing, 192
Scale out your hosting solution, 185
Simplify solution three times over, 181
splitting different things. See Y axis

(Design to Split Different things) rule
splitting similar things. See Z axis (Design

to Split Similar things) rule
Stop redirecting traffic rule, 188
Strive for statelessness rule, 196
Try not to use "Select for Update," 194
Use commodity systems, 185
Use databases appropriately, 186
Use Expires headers, 189
Use homogeneous networks, 182–183
Use right type of database lock, 193
Utilize application caches, 190

Scale
along X axis, 27–28
Design into the solution, 6–8, 181
overengineering as enemy of, 5

Scale out
defined, 31
design solution to, 31–33, 185

to leverage cloud, 40–42
overview of, 29–31
use commodity systems, 33–35

Scale out your hosting solution rule, 35–40,
185

Schremser, Chris, 29–31, 147–148
Scope

monitor amount of data vs., 171–172
Simplify solution three times over, 9, 181

SDNs (software-defined networks), 55
Search engine rankings, traffic redirects

affecting, 64–68
Search, use verbs to split items, 25
Second normal form, 113
Security

manage with firewalls, 53–55
reduce risk via, 53
store session data in cookies and, 142–143

Select *, do not use in queries, 120–121
"Select for Update," try not to use, 118–119,

194
Semantic changes of data, design for roll

back, 105
Sensitivity to operations, 99
Series circuits, avoid putting systems in,

132–135, 194
Servers

locate distributed cache away from
working, 144–145

redirects via embedded modules, 66–67
Service Oriented Architecture (SOA),

25–26
ServiceNow, 19–21
Services

asynchronous communication between
applications and, 148

competency in delivery of, 173–174
make asynchronous calls to changing,

149–150
Session cookies, 132, 143
Session data, storing, 142–146
Sessions

scale with replication technologies, 141
and state destroying value of multitenancy,

139–140
strive for statelessness, 140–142

Setcookie, storing cookies in browsers, 143

216 Index

Sharding
definition of, 126
difficulty in relational databases, 48
with extensible record stores, 49
role of relationships between entities in, 113
scale by splitting similar things, 27–28
as solution for PayPal, 60

Share
across swim lanes with read replicas, 129
nothing between swim lanes, 127–129

Shared libraries, feature wire-on/wire-off
with, 137

Signal intelligence, 160
Signup, using verbs to split items, 25
Simplification

is better, 162
reluctance to interpret failures using, 99
Simplify solution three times over rule,

8–10, 181
Simultaneous connection feature, browsers,

13–14
Simultaneous reconciliation, PayPal

constraints, 59–60
Single points of failure (SPOF), never trust,

130–132, 194
Singleton antipattern, 130
Singleton pattern, as single point of failure, 130
Sixth normal form, 113
SOA (Service Oriented Architecture),

25–26
Social construction, 95–100
Social contagion (viral growth), in learning

cultures, 95–96
Software as a Service. See SaaS (Software as a

Service) applications
Software-defined networks (SDNs), 55
Software developers, quick start guide, xvii
Software, overly complex, 5
Splits

design using fault-isolative swim lanes,
125–130

types of, 125–126
utilize application caches, 86–88
X axis (clone or replicate things), 26–28
Y axis (splitting different things), 24–26
Z axis (splitting similar things), 26–28

Splunk, 57

SPOF (single points of failure), never trust,
130–132, 194

SQL queries
design for roll back, 105
optimize, 114

Stand-in service, feature wire-on/wire-off,
136

Stansbury, Tayloe, 93–95
State

avoid or distribute rules for. See Avoid or
Distribute State, rules

decisions about implementing, 140
distributed cache for, 143

Statelessness, strive for, 140–142, 196
Static content

add CDN for, 77
content delivery network, 76
use caches to scale, 73

Stop redirecting traffic rule, 64–68, 188
Storage solutions

alternatives to databases, 48
Apache Hadoop, 51
document stores, 49
extensible record stores, 49
Google's MapReduce, 50–51
key-value stores, 48–49
purge, archive, and cost-justify, 163–166

Stored procedures, 109–110
Strive for statelessness rule, 140–142, 196
Sudoku, 68
Swim lanes

creating fault isolation domains with, 126
design using fault-isolative, 124–130, 194
fault isolation example, 123–124
implement asynchronous calls, 149
isolate firewalls with, 55
scale by splitting similar things, 28
scale message bus, 154

Switches, homogeneous networks for, 15
Synchronous calls

asynchronous calls vs., 148
duplicate service/put in swim lane, 129
none between swim lanes, 128–129

T
Table database locks, 115
Table-style DBMSs, 49

217Index

Tables
competency in, 173
design for rollback, 105
entity sets as, 112
query optimization/joining, 113–114
using databases appropriately, 47–48

Tackley, Graham, 123–124
Teams, separate product/business

intelligence, 111
Technical operations, quick start guide,

xviii
Technology, learn aggressively from, 97
Temporal constraint satisfaction problem

(TCSP), 68
Temporal constraints

failure of PayPal to relax, 60–61
make asynchronous calls for, 150
relax, 70, 188

Temporary demand, leverage cloud for, 41
The Guardian newspaper, UK, 123–124
Third normal form, 113
Third parties

avoid state/replication servers within
clustered, 144–145

be wary of scaling through, 161–163, 198
design to leverage cloud, 41
make asynchronous calls to, 149
simplify implementation with, 10

Thoroughbreds vs. goldfish concept, 35
Three Mile Island, 97
Three-phase commit (3PC), 117
Three-site configuration, scale out hosting

solution, 39–40
Tier, object cache, 90–91
Time-outs

asynchronous calls across swim lanes, 128–129
feature wire-on/wire-off with, 136

Time sensitivity, scale by cloning and, 23
Time to market, fault isolation benefits, 127
Timeline, learn from mistakes, 98
Tipping Point (Gladwell), 167
Tomcat, 56
Tools. See Use Right Tools, rules
Top SQL report, object caches, 89
Trade-offs

data integrity through normal forms, 113–114
firewalls, 55
f lexibility vs. scalability, 49–50

store session data in browser, 142–143
understand, 46–47

Traffic
design application for monitoring, 170
stop redirects of, 64–68, 188
use content delivery networks to off load,

75–77
Transactions

ACID properties of reliable, 60
cost of logging, 57–58
design solution to scale out, 31–33
remove business intelligence from

processing, 109–111, 192
scale by splitting different things, 24–26
session and state using longer-running,

141–142
Try not to use "Select for Update" rule,

118–119, 194
Two-phase commit (2PC), PayPal

24.0 disaster, 60
avoid multiphase commits, 117–118
database rules and, 107–108

U
URLs

avoid traffic redirects, 67
redirect traffic for shortened, 65

Use Caching Aggressively, rules
Cache Ajax calls, 80–84, 189
Leverage content delivery networks,

75–77, 188
Leverage page caches, 84–86, 189
Make use of object caches, 88–90, 190
overview of, 73–75
Put object caches on their own tier, 90–91,

190
Use Expires headers, 77–80, 188
Utilize application caches, 86–88, 190

Use commodity systems rule, 33–35, 185
Use databases appropriately rule, 47–48, 186
Use Expires headers rule, 77–80, 189
Use homogeneous networks rule, 15, 182–183
Use Right Tools, rules

Actively use log files, 55–58, 187
Firewalls everywhere! 52–55
Firewalls, f irewalls everywhere! 186–187
overview of, 43–47
Use databases appropriately, 47–52, 186

218 Index

Use right type of database lock rule, 114–116,
193

User interactive (OLTP) workloads,
partition, 166–169, 199

User interfaces, Ajax for interactive, 81–84
Users, make something overly complex for, 4–5
Utilize application caches rule, 86–88, 190

V
V3 commerce platform, eBay, 1–3
Value

data on message buses, 155–157
data storage and, 164
purge data low in, 165–166
use RFM analysis to calculate business,

164–166
Vendors

be vendor-neutral, 162
be wary of scaling through third parties,

161–163, 198
design to leverage cloud, 40–42
homogeneous networks and, 15

Verbs (services)
relationships as, 112
scale by splitting different things, 25–26

Viral growth (social contagion), in learning
cultures, 95–96

Virtualization
design to leverage cloud, 40–42
scale out using commodity systems, 35
swim lanes and, 129–130

Voting phase, two-phase commit, 107

W
Wade v. Roe, 168
Walmart, xv
Warby Parker, 73
Web pages

1992 W3 Project as first Web page, 13
reduce DNS lookups for, 10–12
reduce objects where possible for, 12–14

Web servers
avoid state systems requiring affinity,

144–145
install page cache in front of, 84–85
put object cache on its own tier vs., 90–91
scale by cloning, 24

Websphere, 56
Weight, reduce objects where possible, 14
What question, application monitoring,

171–172
Why question

application monitoring, 172
learn from mistakes, 98–99

Wide column stores, alternative storage, 49
WiFi network, and Firesheep, 143
Wire on/wire off frameworks

design for fault isolation, 128–129
design for rollback, 105
ensure for features, 135–138, 194

Workloads, partition inductive/deductive/
batch/user interactive/OLTP, 166–169

World Trade Center bombing, market
sensitivity to, 159

"Write once, read many" system
change entity relationships to increase

concurrency, 116
scale by cloning, 23
use file system for storage, 48

Writes
don't immediately validate, 61–64
store in cache if needed soon, 63

X
X axis (Design to Clone or Replicate things)

rule
brief summary of, 183
distribute your work, 22–24
overview of, 20–21
purge, archive, and cost-justify storage,

164–165
scale extensible record stores, 49
as solution to single point of failure, 131
store session data in browser, 142
summary, 28

Y
Y axis (Design to Split Different things) rule

brief summary of, 183–184
database locks and, 116
distribute your work, 24–26
handle session and state needs, 141
overview of, 20–21
scale extensible record stores, 49

219Index

scale message bus, 152–154
scale out your hosting solution, 36
summary, 28
utilize application caches, 86–88

Z
Z axis (Design to Split Similar things) rule

brief summary of, 183–184
database locks and, 116

distribute your work, 26–28
handle session and state needs, 141
overview of, 20–21
scale message bus, 153–154
scale out your hosting solution, 36
summary, 28
utilize application caches, 86–88

Zero Tolerance Program, 167–168
ZirMed system, 29–31, 147–148

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	About the Authors
	2 Distribute Your Work
	Rule 7—Design to Clone or Replicate Things (X Axis)
	Rule 8—Design to Split Different Things (Y Axis)
	Rule 9—Design to Split Similar Things (Z Axis)
	Summary
	Notes

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

