
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134429205
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134429205
https://plusone.google.com/share?url=http://www.informit.com/title/9780134429205
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134429205
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134429205/Free-Sample-Chapter

Oracle Database
Problem Solving and
Troubleshooting
Handbook

This page intentionally left blank

Oracle Database
Problem Solving and
Troubleshooting
Handbook

Tariq Farooq
Mike Ault
Paulo Portugal
Mohamed Houri
Syed Jaffar Hussain
Jim Czuprynski
Guy Harrison

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

São Paulo • Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inci-
dental or consequential damages in connection with or arising out of the use of the information or programs
contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include
electronic versions; custom cover designs; and content particular to your business, training goals, marketing
focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or
(800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Names: Farooq, Tariq, author.
Title: Oracle database problem solving and troubleshooting handbook / Tariq
 Farooq [and 6 others].
Description: Boston : Addison-Wesley, [2016] | Includes indexes.
Identifi ers: LCCN 2016005438 | ISBN 9780134429205 (pbk. : alk. paper)
Subjects: LCSH: Oracle (Computer fi le) | Relational databases. | SQL
 (Computer program language)
Classifi cation: LCC QA76.9.D3 F358 2016 | DDC 005.75/65—dc23
LC record available at http://lccn.loc.gov/2016005438

Copyright © 2016 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
For information regarding permissions, request forms and the appropriate contacts within the Pearson Education
Global Rights & Permissions Department, please visit www.pearsoned.com/permissions/.

Figures 15.1, 15.2, 15.3, 15.4, 15.5, 15.6, 15.7, 15.14, 15.17, 16.1, 16.2, 16.6, and 16.7 from Farooq, Tariq; Kim,
Charles; Vengurlekar, Nitin; Avantsa, Sridhar; Harrison, Guy; Hussain, Syed Jaffar; Oracle Exadata Expert’s
Handbook, 1st Ed., © 2016. Reprinted and electronically reproduced by permission of Pearson Education, Inc.,
New York, NY.

Various screen shots and illustrations of Oracle products are used with permission. Copyright © 1995–2015
Oracle and/or its affi liates. All rights reserved.

ISBN-13: 978-0-13-442920-5
ISBN-10: 0-13-442920-6
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, April 2016

http://www.pearsoned.com/permissions/
http://lccn.loc.gov/2016005438
http://www.informit.com/aw

 v

Contents

Preface xix

Acknowledgments xxi

About the Authors xxv

About the Technical Reviewers and Contributors xxix

Chapter 1 Troubleshooting and Tuning LOB Segment Performance 1

Introduction to the LOB Datatype 1

Fixing a LOB Problem: A Real-World Example 2

Another Real-World Example: HW Resolution 4

BASICFILE LOB Issues: Toward a More Perfect Fix 8

BASICFILE versus SECUREFILE LOBs 8

LOB New and Old Type Differences 9

Migrating BASICFILE LOBs to SECUREFILE LOBs 12

The Impact of PCTFREE on LOBs 14

Overcoming Poor INSERT Performance 17

Summary 17

vi Contents

Chapter 2 Overcoming Undo Tablespace Corruption 19

Overview of Undo Management 19

The Importance of UNDO_RETENTION 20

Tuning UNDO_RETENTION 21

DTP, XA, and Rollback Segments 22

Other Unusual Rollback and Undo Segment Issues 24

Recovering from Undo Tablespace Corruption 24

Preventing, Detecting, and Repairing Corruption 24

Handling Memory Corruption 26

Handling Logical Corruption 28

Overcoming Media Corruption 29

Summary 32

Chapter 3 Handling GC Buffer Busy Wait Events 35

Overview of Buffer Busy Wait Events 35

Leveraging the ORAchk Utility 36

Installing ORAchk 37

Results of ORAchk Execution: Sample Output 38

Isolating GC Buffer Busy Waits 40

Using ADDM to Find Event Information 41

Using AWR to Find Event Information 41

Using ASH to Find Event Information 43

Isolating GC Buffer Busy Wait Event Issues 45

Using ASH Views to Find Waiting Sessions 45

Quickly Isolating Performance Bottlenecks 47

Fixes for GC Buffer Busy Waits 49

Summary 50

Chapter 4 Adaptive Cursor Sharing 51

ACS Working Algorithm 52

Bind Sensitiveness with Range Predicate 52

Bind Sensitiveness with Equality Predicate and Histogram 55

Bind Sensitiveness with Partition Keys 56

ACS in Action 58

Contents vii

ACS Bind-Awareness Monitoring 61

BUCKET_ID and COUNT Relationship 62

Marking Cursors Bind Aware 66

The Bind-Aware Cursor 73

A Practical Case 76

Summary 81

Chapter 5 Stabilizing Query Response Time Using SQL
Plan Management 83

Getting Started 83

Creating a SQL Plan Baseline 87

Capturing Plans Automatically 87

Loading Plans from the Cursor Cache 90

Faking Baselines 92

Oracle Optimizer and SPM Interaction 96

When the CBO Plan Matches the SQL Plan Baseline 96

When the CBO Plan Doesn’t Match the SQL Plan Baseline 99

When SQL Plan Baseline Is Not Reproducible 104

SQL Plan Baseline Reproducibility 108

Renaming the Index 109

Changing the Index Type 111

Adding Trailing Columns to the Index 112

Reversing the Index 113

NLS_SORT and SQL Plan Baseline Reproducibility 114

ALL_ROWS versus FIRST_ROWS 117

Adaptive Cursor Sharing and SPM 122

ACS and SPM in Oracle 11g Release 11.2.0.3.0 123

ACS and SPM in Oracle Database 12c Release 12.1.0.1.0 128

Summary 131

Chapter 6 DDL Optimization Tips, Techniques, and Tricks 133

DLL Optimization Concept 133

The DDL Optimization Mechanism 136

Table Cardinality Estimation 137

viii Contents

C_DDL Column in a Virtual Column 139

C_DDL Column in a Column Group Extension 140

When the Default Value of C_DDL Changes 142

C_DDL Column and Indexes 145

DDL Optimization for NULL Columns 147

Summary 152

Chapter 7 Managing, Optimizing, and Tuning VLDBs 153

Overview of Very Large Databases 153

Optimal Basic Confi guration 154

Data Warehouse Template 154

Optimal Data Block Size 155

Bigfi le Tablespaces 156

Adequate SGA and PGA 157

Temporary Tablespace Groups 158

Data Partitioning 158

Index Partitioning: Local versus Global 159

Data Compression 159

Table Compression 160

Heat Map and Automatic Data Optimization 160

Advanced Index Partition Compression 162

VLDB Performance Tuning Principles 162

Real-World Scenario 162

Limiting the Impact of Indexes on Data Loading 164

Maximizing Resource Utilization 165

Gathering Optimizer Statistics 166

Incremental Statistics Synopsis 166

Gathering Statistics Concurrently 168

Setting the ESTIMATE_PERCENT Value 170

Backup and Recovery Best Practices 170

Exadata Solutions 171

Utilizing a Data Guard Environment 172

Summary 172

Contents ix

Chapter 8 Best Practices for Backup and Recovery with
Recovery Manager 173

A Perfect Backup and Recovery Plan 173

An Overview of RMAN 174

Tips for Database Backup Strategies 175

Full Backups and Incremental Backups 176

Compressed Backups 176

Incremental Backups 177

Faster Incremental Backups 177

Rewinding in Oracle Flashback Technology 178

Disk-Based Backup Solutions 179

Recover Forward Forever 180

Validating RMAN Backups 186

Backup Optimization and Tuning 187

Tuning Disk-Based Backup Performance 189

Using RMAN for RAC Databases 189

Retaining Data in a Recovery Catalog 191

Having a Robust Recovery Strategy 192

Leveraging the Data Recovery Advisor 193

Summary 194

Chapter 9 Database Forensics and Tuning Using AWR Analysis: Part I 197

What Is AWR? 197

Knowing What to Look For 199

Header Section 199

Load Profi le 201

Instance Effi ciencies 202

Shared Pool Memory 203

Wait Events 203

Load Average 206

Instance CPU 207

Memory Statistics 207

RAC-Specifi c Pages 208

RAC Statistics (CPU) 208

x Contents

Global Cache Load Statistics 209

Global Cache and Enqueue Services 209

Cluster Interconnects 210

Time Model Statistics 211

Operating System Statistics 212

Foreground Wait Events 213

Background Wait Events 214

Wait Event Histograms 215

Service-Related Statistics 216

The SQL Sections 217

Total Elapsed Time 218

Total CPU Time 218

Total Buffer Gets 218

Total Disk Reads 219

Total Executions 219

Parse Calls 219

Shareable Memory 220

Version Count 220

Cluster Wait Time 220

Instance Activity Statistics 221

Consistent Get Statistics 224

DB Block Get Statistics 224

Dirty Block Statistics 224

Enqueue Statistics 224

Execution Count 225

Free Buffer Statistics 225

Global Cache (GC) Statistics 225

Index Scan Statistics 226

Leaf Node Statistics 226

Open Cursors 226

Parse Statistics 226

Physical Read and Write Statistics 227

Recursive Statistics 229

Contents xi

Redo-Related Statistics 229

Session Cursor Statistic 229

Sort Statistics 230

Summed Dirty Queue Length 230

Table Fetch Statistics 230

Transaction Rollback 231

Undo Change Vector Statistic 231

User Statistics 232

Work Area Statistics 232

Instance Activity Statistics—Absolute Values 232

Instance Activity Statistics—Thread Activity 233

Summary 233

Chapter 10 Database Forensics and Tuning Using AWR Analysis: Part II 235

Tablespace I/O Statistics 235

Buffer Pool Statistics 237

Buffer Pool Statistics 238

Instance Recovery Statistics 239

Buffer Pool Advisory Section 239

PGA Statistics 240

PGA Aggregate Summary 241

PGA Aggregate Target Statistics 242

PGA Aggregate Target Histogram 242

PGA Memory Advisor 243

Shared Pool Statistics 244

Other Advisories 245

SGA Target Advisory 246

Streams Pool Advisory 246

Java Pool Advisory 247

Buffer Waits Statistics 247

Enqueue Statistics 248

Undo Segment Statistics 250

Latch Statistics 251

Latch Activity 253

xii Contents

Latch Sleep Breakdown 253

Latches and Spin Count 254

Latch Miss Sources 254

Mutex Sleep Summary 255

Parent and Child Latches 255

Segment Access Areas 255

Library Cache Activity Sections 257

Dynamic Memory Components Sections 260

Process Memory Sections 262

Process Memory Summary 263

SGA Memory Summary 264

SGA Breakdown Difference 264

Streams Component Sections 264

Resource Limits Statistics 266

Initialization Parameter Changes 267

Global Enqueue and Other RAC Sections 268

Global Enqueue Statistics 271

Global CR Served Statistics 271

Global Current Served Statistics 271

Global Cache Transfer Statistics 271

Global Cache Transfer Times 272

Global Cache Transfer (Immediate) 272

Global Cache Times (Immediate) 272

Interconnect Ping Latency Statistics 272

Interconnect Throughput by Client 273

Interconnect Device Statistics 273

Summary 273

Chapter 11 Troubleshooting Problematic Scenarios in RAC 275

Troubleshooting and Tuning RAC 276

Start with ORAchk 276

Employ the TFA Collector Utility 276

Utilize the Automatic Diagnostic Repository 276

Check the Alert and Trace Log Files 277

Contents xiii

Employ the Three A’s 277

Check the Private Cluster Interconnect 277

Enable Tracing and Inspect the Trace Logs 278

Utilize the Cluster Health Monitor 278

Miscellaneous Tools and Utilities 278

Useful My Oracle Support Resources 278

A Well-Oiled RAC Ecosystem 279

Maximum Availability Architecture 279

Optimal and Effi cient Databases in RAC 280

Troubleshooting RAC with OEM 12c 282

Utilities and Commands for Troubleshooting 283

Summary 288

Chapter 12 Leveraging SQL Advisors to Analyze and Fix SQL Problems 289

OEM 12c—SQL Advisors Home 290

SQL Tuning Advisor 290

Running SQL Tuning Advisor in OEM 12c 291

Running SQL Tuning Advisor Manually in SQL*Plus 294

SQL Access Advisor 295

Running SQL Access Advisor in OEM 12c 295

Running SQL Access Advisor Manually in SQL*Plus 298

SQL Repair Advisor 300

SQL Performance Analyzer 301

Summary 302

Chapter 13 Extending Data Pump for Data and Object Migration 303

Using Data Pump 303

Copying Objects 304

Data Pump Modes 305

Working with Private and Public Objects 306

Saving and Restoring Database Links 307

Exporting Public Database Links and Synonyms 307

Verifying Content of the Export Dump File 308

Finding Valid INCLUDE and EXCLUDE Values 309

xiv Contents

Exporting Subsets of Data 310

Changing Object Properties 313

Importing Partitioned Tables as Nonpartitioned 313

Importing Table Partitions as Individual Tables 313

Masking Data 314

Renaming Tables or Different Tablespaces 314

Using Default Storage Parameters 314

Resizing Tablespaces during Import 315

Consolidating Multiple Tablespaces 315

Using PL/SQL API with Data Pump 317

Monitoring and Altering Resources 319

Improving Performance 320

Upgrading Databases 321

Summary 322

Chapter 14 Strategies for Migrating Data Quickly between Databases 323

Why Bother Migrating? 324

Determining the Best Strategy 324

Real-Time versus Near Real-Time Migration 325

Read-Only Tolerance 325

Reversibility 325

Considering What Data to Migrate 326

Data Migration Methods 327

Transactional Capture Migration Methods 327

Nontransactional Migration Methods 330

Piecemeal Migration Methods 345

Summary 352

Chapter 15 Diagnosing and Recovering from TEMPFILE I/O Issues 353

Overview of Temporary Tablespaces 353

Read-Only Databases 354

Locally Managed Temporary Tablespaces 354

Temporary Tablespace Groups 355

Global Temporary Tables 356

Contents xv

Correcting TEMPFILE I/O Waits 359

Undersized PGA 359

Inappropriate TEMPFILE Extent Sizing 364

Inappropriate Use of GTTs 364

Summary 365

Chapter 16 Dealing with Latch and Mutex Contention 367

Overview of Latch and Mutex Architecture 367

What Are Latches? 368

What Are Mutexes? 370

Latch and Mutex Internals 370

Measuring Latch and Mutex Contention 371

Identifying Individual Latches 372

Drilling into Segments and SQLs 373

Latch and Mutex Scenarios 375

Library Cache Mutex Waits 375

Library Cache Pin 378

Shared Pool Latch 378

Cache Buffers Chains Latch 379

Other Latch Scenarios 381

Intractable Latch Contention 383

Fine Tuning Latch Algorithms 383

Summary 385

Chapter 17 Using SSDs to Solve I/O Bottlenecks 387

Disk Technologies: SSD versus HDD 388

The Rise of Solid-State Flash Disks 389

Flash SSD Latency 389

Economics of SSD 390

SLC, MLC, and TLC Disks 391

Write Performance and Endurance 392

Garbage Collection and Wear Leveling 393

SATA versus PCIe SSD 395

Using SSD Devices in an Oracle Database 395

xvi Contents

The Oracle Database Flash Cache 395

Free Buffer Waits 396

Confi guring and Monitoring DBFC 398

Using the FLASH_CACHE Clause 399

Flash Cache Performance Statistics 400

Comparing SSD Options 402

Indexed Reads 403

OLTP Read/Write Workload 403

Full Table Scan Performance 404

SSD Native Caches and Full Table Scans 405

Disk Sort and Hash Operations 406

Redo Log Optimization 409

Storage Tiering 410

Using Partitions to Tier Data 410

Flash and Exadata 414

Creating Flash-Backed ASM Disk Groups on Exadata 416

Summary 418

Chapter 18 Designing and Monitoring Indexes for
Optimal Performance 421

Types of Indexes 421

B-Tree Indexes 422

Bitmap Indexes 425

Partitioned Indexes 427

Other Index Types 430

Multiple Indexes on Identical Columns 431

Index Performance Issues 432

Index Statistics 432

The Impact of a Low Clustering Factor 435

Operational Considerations for Indexes 436

Hiding Unselective Indexes 439

Index Performance Issues in RAC Databases 441

Summary 442

Contents xvii

Chapter 19 Using SQLT to Boost Query Performance 445

Installing SQLT 446

Using the XTRACT Method 447

Using the XECUTE Method 448

Leveraging Other SQLT Methods 451

A Real-World Example 452

Summary 453

Chapter 20 Dealing with XA Distributed Transaction Issues 455

Repairing Common Distributed Transaction Issues 456

Repairing Ghost Distributed Transactions 457

Information Exists, but Transaction Missing 457

ORA-1591 Has No Corresponding Information 458

Transaction Hangs after COMMIT or ROLLBACK 460

Monitoring Distributed Transactions 462

Summary 464

Index 465

This page intentionally left blank

 xix

Preface

Database administrators’ lives are becoming more and more challenging, and ardu-
ous work conditions are fast becoming the norm. DBAs face problems that in some
cases could lead organizations and entities to potentially lose millions of dollars per
minute or, in worst-case scenarios, could bring a company’s database infrastruc-
ture to a grinding halt. Yes, such cases are unlikely to happen, but to avoid and
avert them, DBAs had best be prepared.

The guiding principle of this book is to show you how to fix, as rapidly as pos-
sible, serious database problems that can potentially impact the production-level
environment. It guides readers through the steps necessary to fix the problem at
hand by examining real-life examples that could happen any day at any time in any
Oracle database.

Instead of losing time trying to find the solution for a problem that is taking your
database down or has already put it down, you can turn to this book for solutions to
some of the biggest problems you might face. Even if you do not find the solution for
your current problem here, you will learn how to quickly search for solutions on the
Internet to solve your problem.

The basic idea behind this book is to offer you light in the dark when you have
serious Oracle database problems in production environments. Along with general
best practices, this book explores some of the top Oracle database problems and
their rapid-fire solutions, explained in a simple and easy format.

Targeted for Oracle DBAs and database machine administrators (DMAs),
Oracle Database Problem Solving and Troubleshooting Handbook will serve as a

xx Preface

practical technical guide for performing day-to-day troubleshooting, tuning, and
problem-solving of administration operations and tasks within the Oracle Database
Server family.

Authored by a world-renowned, veteran-author team of Oracle ACEs, ACE Directors,
and Experts, this book is intended to be a problem-solving handbook with a blend
of real-world, hands-on examples and troubleshooting of complex Oracle database
scenarios. This book shows you how to

 � Choose the quickest path to solve large-impact problems

 � Make your day more productive with reliable working techniques learned
from real field experts

 � Construct your own 911 plan

 � Perform routine proactive maintenance to ensure stability of your
environment

 � Use industry standard best-practice tools and scripts to find the best and
fastest solutions

In this technical, everyday, hands-on, step-by-step book, the authors aim for
an audience of intermediate-level, power, and expert users of the Oracle Database
Server family of products. This book covers both Oracle Database 11g and Oracle
Database 12c versions of the underlying Oracle database software.

 xxi

Acknowledgments

Tariq Farooq

I would like to express boundless thanks for all good things in my life to the
Almighty ALLAH, the lord of the worlds, the most gracious, the most merciful.

I dedicate this book to my parents, Mr. and Mrs. Abdullah Farooq; my wonderful
wife, Ambreen; my awesome kids, Sumaiya, Hafsa, Fatima, and Muhammad- Talha;
and my nephews Muhammad-Hamza, Muhammad-Saad, Muhammed-Muaz,
Abdul-Karim, and Ibrahim, without whose perpetual support this book would not
have come to fruition. My endless gratitude to them as I dedicated almost two years
of my spare time to this book, most of which was on airplanes and in late nights
and weekends at home.

My heartfelt gratitude to my friends at the Oracle Technology Network (OTN),
colleagues in the Oracle ACE fellowship, my coworkers, and everyone else in the
Oracle community, as well as in my workplace for standing behind me in my quest
to bring this project to completion, especially Dave Vitalo.

I had been thinking about writing on the Oracle troubleshooting and problem
solving subject area for quite a while. The project was finally kick-started when
I met Paulo Portugal in San Francisco at Oracle Open World 2013. The one thing
that I am very proud of is the amazing ensemble of some of the best minds in the
industry, including Oracle ACEs, ACE directors, and Ph.D.s coauthoring and tech-
nically reviewing this book from start to finish.

xxii Acknowledgments

From inception to writing to technical review to production, authoring a book is
a complex, labor-intensive, lengthy, and at times painful process; this book would
not have been possible without the endless help and guidance of the awesome Addison-
Wesley team. A very special thanks goes out to Greg Doench, executive editor, and
all the other folks at Addison-Wesley, who stood like a rock behind this project.
Kudos to the technical reviewers, book reviewers, and editorial teams at Addison-
Wesley for a great job on this book.

Many appreciative thanks to my buddies, coauthors, and technical reviewers—
Paulo Portugal, Mohamed Houri, Mike Ault, Jim Czuprynski, Syed Jaffar Hussain,
Kamran Agayev, Anju Garg, Bert Scalzo, and Guy Harrison—for the amazing team
effort that allowed us to bring this book to you, my dear reader. A special thanks to
my friend and fellow Oracle ACE Director Biju Thomas for authoring Chapter 13.

Finally, I thank you, my dear reader, for joining us on this knowledge-laden
 journey—my sincerest hope is that you will learn from this book and that you will
enjoy reading it as much as we did researching and authoring it.

Mike Ault

I would like to acknowledge Texas Memory Systems (TMS) and IBM for allowing
me the freedoms to continue writing and researching Oracle-related topics.

Paulo Portugal

I devoted a lot of time working on this book, and at that time my little princess was
too young to understand my preoccupation with this project. I dedicate this book to
her and to my lovely wife, who has always supported me at all times and occasions.

Mohamed Houri

This book is dedicated to my parents; to my lovely daughters, Imane Sonia, Yasmine,
and Selma; and to my family and friends.

Syed Jaffar Hussain

I am thankful for everything in my life to the Almighty ALLAH, the lord of the
worlds, the most gracious, the most merciful. I dedicate this book to my parents,
Mr. and Mrs. Saifulla; my amazing wife, Ayesha; my wonderful children, Ashfaq,

Acknowledgments xxiii

Arfan, and Aahil; my brothers Sadak, Sabdar, and Noor; and my friends and col-
leagues. A bundle of thanks to the Addison-Wesley team for their endless help and
guidance on the book. Many appreciative thanks to my coauthors and technical
reviewers, Paulo Portugal, Mohamed Houri, Mike Ault, Jim Czuprynski, Kamran
Agayev, Anju Garg, Bert Scalzo, and Guy Harrison, for the amazing team effort
that allowed us to bring this book to you, my dear reader. A special thanks to my
friend and brother Tariq Farooq for inviting me to participate in this great project.

Jim Czuprynski

I dedicate my part of this book to my dearest wife, Ruth—my helpmate, best friend,
and companion for nearly four decades. Without her careful, loving guidance, proof-
reading skills, and infinite patience during my long nights of writing, editing, and
muttered expletives as I struggled to meet deadlines, it would have simply been
impossible to complete my assignments.

Guy Harrison

Thanks to Tariq for giving me the opportunity to work with such a great group
of technical authors, thanks to Anju for providing excellent technical editing, and
thanks to everyone at Addison-Wesley who worked on this project. Thanks as always
to my family for their love and support.

Biju Thomas

I am very honored and humbled to have been invited by Tariq to be part of this
outstanding project along with highly respected and sought-after authors. My sin-
cere thanks to Tariq and to all coauthors of this book. Thanks to Kamran for all
the valuable technical edits and suggestions. I appreciate all efforts by the Addison-
Wesley team to make sure the book maintains its quality in content, formatting, and
appearance. I am grateful to the Oracle Technology Network (OTN) and Oracle
ACE program for all the support. Last but not least, thanks to my family for always
standing behind me with steadfast support and encouragement.

This page intentionally left blank

 xxv

About the Authors

Tariq Farooq is an Oracle technologist, architect, and problem-
solver and has been working with various Oracle technologies for
more than 24 years in very complex environments at some of the
world’s largest organizations. Having presented at almost every
major Oracle conference/event all over the world, Tariq is an
award-winning speaker, community leader/organizer, author, forum
contributor, and tech blogger. He is the founding president of the

IOUG Virtualization & Cloud Computing Special Interest Group and the Brain-
Surface social network for the various Oracle communities. Tariq founded, organized,
and chaired various Oracle conferences, including, among others, the OTN Middle
East and North Africa (MENA) Tour, VirtaThon (the largest online-only conference
for the various Oracle domains), the CloudaThon & RACaThon series of conferences,
and the first-ever Oracle-centric conference at the Massachusetts Institute of Tech-
nology in 2011. He was the founder and anchor/show host of the VirtaThon Internet
Radio series program. Tariq is an Oracle RAC Certified Expert and holds a total of 14
professional Oracle certifications. Having authored more than one hundred articles,
whitepapers, and other publications, Tariq is the coauthor of the Expert Oracle RAC 12c
(Apress, 2013), Oracle Exadata Expert’s Handbook (Addison-Wesley, 2015), and
Building Database Clouds in Oracle 12c (Addison-Wesley, forthcoming in 2016)
Oracle books. Tariq has been awarded the Oracle ACE and ACE Director awards.

xxvi About the Authors

Mike Ault began working with computers in 1980—following a six-
year Navy enlistment in the Nuclear Navy riding submarines—
programming in Basic and Fortran IV on the PDP-11 architecture
in the nuclear industry. During Mike’s nuclear years, he worked
with PDP, IBM-PC, Osborne, and later VAX-VMS and HP architec-
tures, as well as with the Informix and Ingres databases. Following
the downturn in the nuclear industry, Mike began working with

Oracle as the only DBA at the Luka, Mississippi–based Advanced Solid Rocket
Motor (ASRM) project for NASA in 1990. Since 1990, Mike has worked with a variety
of industries using Oracle both in-house and as a consulting talent. Mike got extensive
Flash experience as the Oracle Guru for Texas Memory Systems. Mike transitioned
to IBM as the Oracle Guru for the STG Flash group when IBM purchased TMS in
2012. Mike has published over two dozen Oracle-related books, including the 7.0,
8.0, 8i and 9i versions of his Oracle Administration and Management with Wiley,
the “Oracle8 Black Book” and “Oracle DBA OCP Exam Cram” series (for versions 8
and 8i) with Coriolis, and multiple titles including Oracle9i RAC and Oracle10g
Grid & Real ApplicationClusters with Rampant Technical Press. Mike has written
articles for Oracle, Select, DBMS, Oracle Internals, and several other database-
related magazines. Mike is also a highly sought-after keynote speaker and expert
instructor for local, regional, and international Oracle conferences, such as GOUSERS,
SEOUG, RMOUG, NYOUG, NCOUG, IOUG, OOW, ODTUG, UKOUG, and EOUG.

Paulo Portugal has more than fifteen years of IT experience as
an Oracle DBA. He is an Oracle Certified Master 11g; an Oracle
Certified Professional (9i, 10g, 11g, and 12c); an Oracle RAC 10g
and 11g Certified Specialist; an Oracle DBA 10g Certified Linux
Administrator; Oracle Exadata Implementation Certified; IBM
DB2 Certified (8 and 9 “Viper”); an Oracle GoldenGate 10 Certified
Implementation Specialist; an Oracle Enterprise Manager Certified

Implementation Specialist; and an Oracle 11i Applications Database Administrator
Certified Professional. Paulo is the author of the Rampant “Advanced DBMS Packages”
and many articles in blogs and some magazines and websites. Paulo has main-
tained a regular presence on the Oracle conference and speaking circuit: Oracle
Open World—San Francisco (2005, 2006, 2011, and 2013), IBM Information on
Demand—Los Angeles (2006), Burleson Oracle RAC Cruise (2009), and Oracle
Training in Reading—United Kingdom (2011). Currently, Paulo works as an Oracle
sales consultant for Oracle Brazil. Paulo has participated in the Oracle Beta Test
11i project using Data Guard and is a specialist in high availability tools such as
Oracle Data Guard, Oracle Streams, Oracle GoldenGate, and Oracle RAC.

About the Authors xxvii

Mohamed Houri has a Ph.D. in fluid mechanics (scientific comput-
ing) from the University of Aix–Marseille II, preceded by an engineer
diploma in aeronautics. He has been working around the Oracle
database for more than fourteen years for different European cus-
tomers as an independent Oracle consultant specializing in tuning
and troubleshooting Oracle performance problems. Mohamed has
also worked with the Naval Architect Society of Japan on the analy-

sis of tsunamis and breaking waves using a powerful signal analysis called Wavelet
Transform. He maintains an Oracle blog and is active in the Oracle Worldwide forum
and in the French equivalent. He tweets about Oracle topics at @MohamedHouri.

Syed Jaffar Hussain is an Oracle Database expert with more
than twenty years of IT experience. He has been involved with sev-
eral local and large-scale international banks where he designed,
implemented, and managed highly complex cluster and Exadata
environments with hundreds of business-critical databases. Oracle
awarded him the prestigious Best DBA of the Year and Oracle ACE
Director status in 2011. He also acquired industry- best Oracle cre-

dentials, Oracle Certified Master (OCM), Oracle RAC Expert, OCP DBA 8i, 9i, 10g,
and 11g, in addition to ITIL expertise. Syed is an active Oracle speaker who regu-
larly presents technical sessions and webinars at many Oracle events. You can visit
his technical blog at http://jaffardba.blogspot.com. In addition to being part of the
core technical review committee for Oracle technology–oriented books, he coauthored
Oracle 11g R1/R2 Real Application Clusters Essentials (Packt Publishing, 2011),
Expert Oracle RAC 12c (Apress, 2013), and Oracle Exadata Expert’s Handbook
(Addison-Wesley, 2015).

Jim Czuprynski is an Oracle ACE Director with more than thirty-
five years of experience in information technology, serving diverse
roles at several Fortune 1000 companies in those three-plus decades—
mainframe programmer, applications developer, business analyst,
and project manager—before becoming an Oracle DBA in 2001.

In his current role as a strategic solutions consultant for OnX
Enterprise Solutions, he focuses on providing his expertise to help

customers understand how to best leverage Oracle technology to solve their most
difficult IT challenges. As a senior Oracle University instructor, Jim has taught
Oracle core technologies, Exadata, and GoldenGate to more than two-thousand
Oracle DBAs since 2005. He was selected as Oracle Education Partner Instructor
of the Year in 2009.

Jim’s most recent book, Oracle Database Upgrade, Migration & Transformation
Tips & Techniques (McGraw-Hill Education, 2015), takes a nitty-gritty approach to

http://jaffardba.blogspot.com

xxviii About the Authors

tackling the best ways to migrate, transform, and upgrade Oracle databases to 12c,
Exadata, and beyond. Jim continues to write a steady stream of articles that focus
on the myriad facets of Oracle database administration, with more than one hundred
articles to his credit since 2003 at databasejournal.com and ioug.org. Jim’s blog,
Generally . . . It Depends, contains his regular observations on all things Oracle.
Jim is also a sought-after public speaker on Oracle Database technology features.
Since 2008, he has presented topics at Oracle OpenWorld, IOUG’s COLLABORATE,
Hotsos Symposium, Oracle Technology Network ACE Tours, and Oracle User Group
conferences around the world.

Guy Harrison is an executive director of research and development
at Dell Software, where he oversees the development of database
tools such as Toad and Shareplex. Guy is the author of six books on
database technology, including Next Generation Databases (Apress,
2015), Oracle Performance Survival Guide (Prentice Hall, 2010),
and MySQL Stored Procedure Programming (O’Reilly, 2006). He
also writes the “Big Data notes” column for Database Trends and

Applications (dbta.com). Guy can be found on the Internet at www.guyharrison.net,
on e-mail at guy.harrison@software.dell.com, and on Twitter at @guyharrison.

http://www.guyharrison.net
http://www.databasejournal.com
http://www.dbta.com

 xxix

About the Technical
Reviewers and
Contributors

Dr. Bert Scalzo is an Oracle ACE, author, speaker, consultant,
and a senior product manager for database tools at Idera. Bert spent
15 years architecting DBA features for the popular Toad product
line. He has three decades of Oracle database experience and previ-
ously worked for both Oracle Education and Oracle Consulting.
Bert holds several Oracle Masters certifications and his academic
credentials include a B.S., an M.S., and a Ph.D. in computer science,

as well as an MBA. He has presented at numerous Oracle conferences and user
groups, including OOW, ODTUG, IOUG, OAUG, RMOUG, and many others. Bert’s
areas of interest include data modeling, database benchmarking, database tuning
and optimization, “star schema” data warehouses, Linux, and VMware. He has
written numerous papers and blogs for such well-respected publications as the Ora-
cle Technology Network (OTN), Oracle Magazine, Oracle Informant, PC Week
(eWeek), Dell Power Solutions Magazine, The LINUX Journal, LINUX.com, Oracle
FAQ, and Toad World. Bert has authored and coauthored the following books:
 Oracle DBA Guide to Data Warehousing and Star Schemas (Prentice Hall, 2003),
TOAD Handbook (First Edition, Sams, 2003; Second Edition, Addison-Wesley, 2010),
Database Benchmarking: Practical Methods for Oracle & SQL Server (Rampant,
2006), Advanced Oracle Utilities: The Definitive Reference (Rampant, 2014), Oracle
on VMware: Expert Tips for Database Virtualization (Rampant, 2008), Introduction
to Oracle: Basic Skills for Any Oracle User (CreateSpace, 2010), Introduction to SQL
Server: Basic Skills for Any SQL Server User (CreateSpace, 2011), and Toad for
Oracle Unleashed (Sams, 2015).

http://www.LINUX.com

xxx About the Technical Reviewers and Contributors

Anju Garg is an Oracle ACE Associate with more than thirteen
years of experience in the IT industry in various roles. Anju is a
certified expert in Oracle RAC, Oracle Database Performance Tun-
ing, and SQL Statement Tuning. Since 2010, she has been involved
in teaching and has trained more than a hundred DBAs from
across the world in various core DBA technologies such as RAC,
Data Guard, performance tuning, SQL statement tuning, and data-

base administration. She has also conducted various Oracle University trainings.
Anju was a member of the Expert Panel at SANGAM 2014 and is a regular speaker
at SANGAM and OTN Yathra. She is an author at the website All Things Oracle
and is passionate about learning. She has a keen interest in RAC and performance
tuning. Anju shares her knowledge via her technical blog at http://oracleinaction.com.

Kamran Aghayev A. is an Oracle Certified Master (OCM), Oracle
RAC Certified Expert, Oracle Certified Professional (9i, 10g, 11g),
and Oracle ACE Director working as a DBA team head at AzerCell
Telecom LLC. He is the author of Oracle Backup and Recovery:
Expert Secrets for Using RMAN and Data Pump (Rampant, 2013)
and Study Guide for Oracle Certified Master 11g Exam: A Compre-
hensive Guide (Springer-Verlag, 2016). Kamran runs a popular blog

(www.kamranagayev.com) where he shares his experience, and he contributes
fairly regularly to newsgroups, forums, and user-group meetings and events around
the world. He is a frequent speaker and has presented in many countries, most
recently the United States, Japan, Thailand, China, India, Argentina, Uruguay,
Finland, and Turkey. Kamran is president of Azerbaijan Oracle User Group (AzerOUG)
and delivers a class about Oracle database administration at Qafqaz University. He
is also a Brazilian Jiu Jitsu (BJJ) practitioner and Abu Dhabi Cup 2013 champion.

Biju Thomas is an Oracle ACE Director, Oracle Certified Profes-
sional, and Certified Oracle Database SQL Expert. He is a principal
solutions architect at OneNeck IT Solutions. Biju has been develop-
ing and administering Oracle databases since 1993 and Oracle
EBS since 2006. He spends time mentoring DBAs and performance
tuning and architecting Oracle solutions. He is a frequent presenter
at Oracle conferences and writes articles for Oracle technical journals.

Biju has authored Oracle certification books published by Sybex since Oracle 8i, all
versions including Oracle Database 12c OCA. Biju blogs at www.bijoos.com/oraclenotes,
and you can follow him on Twitter (@biju_thomas) and Facebook (oraclenotes) for
daily Oracle Tidbits.

http://www.kamranagayev.com
http://www.bijoos.com/oraclenotes
http://oracleinaction.com

 367

16
Dealing with Latch and
Mutex Contention

Contention is the proverbial bottleneck: when multiple database sessions compete
for limited or serialized resources, the amount of work that can be done by the
database is constrained. Some forms of contention are the result of programming
practices: in particular, contention for locks is usually a consequence of application
design. By comparison, latches and mutexes are internal Oracle mechanisms and
contention for latches can be harder to diagnose and resolve.

In this chapter, we see how latches and mutexes work and why they are a nec-
essary part of the Oracle architecture. We then discuss how to diagnose the root
causes of latch and mutex contention and explore remedies to common contention
scenarios.

Overview of Latch and Mutex Architecture

Anyone who has ever worked with a relational database and particularly with
Oracle is probably comfortable with the principle of database locks. Locks are an
essential mechanism in any transactional multiuser database system: the Atomic,
Consistent, Independent, Durable (ACID) properties of a transaction can be imple-
mented only by restricting simultaneous changes to table data. This restriction is
achieved by placing locks on modified data.

Latches and mutexes are similar to locks, but instead of restricting simultaneous
access to data in Oracle tables, they restrict simultaneous access to data in Oracle

368 Chapter 16 � Dealing with Latch and Mutex Contention

shared memory. A somewhat simplistic way of thinking about this is that whereas
locks prevent corruption of data on disk, latches and mutexes prevent corruption of
data in shared memory.

Oracle sessions share information in the buffer cache, shared pool, and other
sections of the shared memory known as the system global area (SGA). It’s essential
that the integrity of SGA memory is maintained, so Oracle needs a way to prevent
two sessions from trying to change the same piece of shared memory at the same
time. Latches and mutexes serve this purpose.

The very nature of latches and mutexes creates the potential for contention. If
one session is holding a latch that is required by another session, then the sessions
concerned are necessarily contending for the latch. Latch contention is therefore
one of the most prevalent forms of Oracle contention.

Let’s spend a little time going over the latch and mutex implementation in Oracle
before looking at specific contention scenarios.

What Are Latches?

Latches are serialization mechanisms that protect areas of Oracle’s shared memory
(the SGA). In simple terms, latches prevent two processes from simultaneously
updating—and possibly corrupting—the same area of the SGA.

Latches protect shared memory structures from the following situations:

 � Concurrent modification by multiple sessions leading to corruption

 � Data being read by one session while being modified by another session

 � Data being aged out of memory while being accessed

Oracle sessions need to update or read from the SGA for almost all database
operations. For example:

 � When a session reads from a database file, it often stores the block into the
buffer cache in the SGA. A latch is required to add the new block.

 � If a block of data exists in the buffer cache, a session reads it directly from
there rather than from disk. Latches are used to “lock” the buffer for a very
short time while it is being accessed.

 � When a new SQL statement is parsed, it is added to the library cache within
the SGA. Latches or mutexes prevent two sessions from adding or changing
the same SQL.

 � As modifications are made to data blocks, entries are placed in a redo buffer
before being written to the redo log. Access to the redo buffers is protected by

Overview of Latch and Mutex Architecture 369

redo allocation latches. Oracle maintains arrays of pointers to lists of blocks
in the buffer cache. Modifications to these lists are themselves protected by
latches.

Latches and mutexes prevent these operations—and many others—from interfering
with each other and possibly corrupting the SGA.

Latches typically protect small groups of memory objects. For instance, each
cache buffers chains latch protects a group of blocks in the buffer cache—a few
dozen perhaps. However, unlike locks, which can protect even a single row, latches
and mutexes almost always span multiple rows and SQL statements respectively;
a single latch might protect hundreds or thousands of table rows; a single mutex
might protect dozens of SQL statements.

Spin Locks

Because the duration of operations against memory is very small (typically in the
order of nanoseconds) and the frequency of memory requests potentially very high,
the latching mechanism needs to be very lightweight. On most systems, a single
machine instruction called test and set is used to see if the latch has already been
taken (by looking at a specific memory address), and if not, it is acquired (by changing
the value in the memory address). However, there may be hundreds of lines of Oracle
code surrounding this “single machine instruction.”

If a latch is already in use, Oracle assumes that it will not be in use for long, so
rather than go into a passive wait (relinquish the CPU and go to sleep), Oracle might
retry the operation a number of times before giving up and sleeping. This algo-
rithm is called acquiring a spin lock. Each attempt to obtain the latch is referred to
as a latch get, each failure is a latch miss, and sleeping after spinning on the latch
is a latch sleep.

A session can awaken from a sleep in one of two ways. Either the session awakens
automatically after a period of time (a timer sleep), or it can be awoken when the
latch becomes available. In modern releases of Oracle, latches are generally woken
by a signal rather than after waiting for a fixed amount of time. The session that
waits places itself on the latch wait list. When another session is relinquishing the
latch in question, it looks at the latch wait list and sends a signal to the sleeping
session indicating that the latch is now available. The sleeping session immediately
wakes up and tries to obtain the latch.

Spin Gets

Historically, all latches would repeatedly attempt to acquire a latch before relin-
quishing. Because latches are held for extremely short periods of time, it can make
more sense to stay on the CPU and keep trying rather than to surrender the CPU

370 Chapter 16 � Dealing with Latch and Mutex Contention

and force a relatively expensive context switch. The process of repeatedly attempting
to acquire the latch is known as spinning.

Some latches must be acquired exclusively, while others may be acquired in
shared read mode. The shareable latches may still be acquired in exclusive mode
should the Oracle code determine that shared access is not appropriate.

In modern Oracle (11g and 12c), attempts to acquire a latch in exclusive mode
normally result in 20,000 spin attempts before going onto the latch wait list. In
other circumstances (such as an exclusive mode get on a shareable latch), the process
may spin only 2,000 times or (for shared mode requests, for example) spin only a
couple of times or not at all.

Most of the high-volume latch requests are made in exclusive mode, so most of
the time a latch miss results in 20,000 spin gets before a latch sleep occurs.

What Are Mutexes?

Originally, all Oracle shared memory serialization mechanisms were referred to as
latches. Beginning in Oracle Database 10g, some of the mechanisms were described
as mutexes—so what’s the difference, and does it matter?

In computer science, a mutex (MUTual EXclusion) is defined as a mechanism
that prevents two processes from simultaneously accessing a critical section of code
or memory.

Oracle latches in fact represent an implementation of the mutex pattern, and
nobody would have argued had Oracle originally referred to them as mutexes.
Regardless of why Oracle originally decided to describe the mechanisms as latches,
over time other database vendors have followed suit, and today a latch could arguably
be defined as “a mutex mechanism implemented within a database server.”

Although there’s no definitive difference between latches and mutexes, in practice
what Oracle calls mutexes are implemented by more fundamental operating sys-
tem calls that have an even lower memory and CPU overhead than a latch. The
primary advantage of mutexes is that there can be more of them, which allows each
mutex to protect a smaller number of objects as compared to a latch.

Latch and Mutex Internals

Originally, only the developers of the Oracle software truly understood latching
mechanisms, but over the years many smart people have studied and experimented
on latches and mutexes. Through their work, we have come to understand at least
some of these mechanisms.

Way back in 1999, Steve Adams pioneered much research into latch algorithms and
published them in a small but classic book Oracle8i Internal Services (O’Reilly, 1999).

Measuring Latch and Mutex Contention 371

This book reflected our best understanding of how latches worked in the Oracle 8i
release. However, the mechanisms have changed substantially in every release
of Oracle, and today the writings of Andrey Nikolaev at http://andreynikolaev
.wordpress.com probably represent our most modern understanding of latch internals.

There was a time when it was possible to have a fairly complete understanding of
latch internals without being a member of Mensa. However, today the various mech-
anisms have become so complex and changeable that probably only a handful of people
outside of Oracle Corporation (and maybe inside) have a complete grasp of the mech-
anisms. The rest of us are just hurting our brains trying to keep up with it all!

Luckily, it’s not necessary to understand the details of latch/mutex algorithms.
The root causes of latch contention typically remain constant, even while the inter-
nal algorithms are continuously being tweaked, and the solutions almost always
involve alleviating these root causes rather than tweaking the internal algorithms.
Those root causes generally relate to multiple Oracle sessions competing for access
to memory structures in the SGA.

Measuring Latch and Mutex Contention

As with most contention scenarios, the wait interface and time model provide the
best way to determine the extent of any contention that might exist. Time spent in
latch or mutex sleeps is recorded in V$SYSTEM_EVENT and similar tables and usually
is the primary indication that a problem exists.

However, be aware that the wait interface records only latch sleeps; latch misses
do not result in a wait being recorded, even though they might consume CPU (if
the session spins on the latch). Therefore, latch misses should be considered to be a
lesser but still important aspect of latch contention.

Prior to Oracle Database 10g, a single latch free wait event was recorded for all
latch sleeps. From Oracle 10g onward, certain latches now have their own event—
such as latch: cache buffers chains. Not all latches have their own event,
though, and those that do not continue to be included in the latch free wait.

Mutex waits are represented by waits such as library cache: mutex X, which
represents a wait on an exclusive library cache mutex.

To break out mutex and latch waits and compare them to other high-level wait
categories, we could issue a query such as that shown in Listing 16.1.

Listing 16.1 Latch Wait Times

SQL> WITH system_event AS
 2 (SELECT CASE WHEN (event LIKE '%latch%' or event
 3 LIKE '%mutex%' or event like 'cursor:%')
 4 THEN event ELSE wait_class
 5 END wait_type, e.*

http://andreynikolaev.wordpress.com
http://andreynikolaev.wordpress.com

372 Chapter 16 � Dealing with Latch and Mutex Contention

 6 FROM v$system_event e)
 7 SELECT wait_type,SUM(total_waits) total_waits,
 8 round(SUM(time_waited_micro)/1000000,2) time_waited_seconds,
 9 ROUND(SUM(time_waited_micro)
 10 * 100
 11 / SUM(SUM(time_waited_micro)) OVER (), 2) pct
 12 FROM (SELECT wait_type, event, total_waits, time_waited_micro
 13 FROM system_event e
 14 UNION
 15 SELECT 'CPU', stat_name, NULL, VALUE
 16 FROM v$sys_time_model
 17 WHERE stat_name IN ('background cpu time', 'DB CPU')) l
 18 WHERE wait_type <> 'Idle'
 19 GROUP BY wait_type
 20 ORDER BY 4 DESC
 21 /

WAIT_TYPE TOTAL_WAITS TIME_WAITED_SECONDS PCT
--------------------------------- ------------ ------------------- ------
CPU 1,494.63 69.26
latch: shared pool 1,066,478 426.20 19.75
latch free 93,672 115.66 5.36
wait list latch free 336 58.91 2.73
User I/O 9,380 27.28 1.26
latch: cache buffers chains 2,058 8.74 .40
Other 50 7.26 .34
System I/O 6,166 6.37 .30
cursor: pin S 235 3.05 .14
Concurrency 60 3.11 .14
library cache: mutex X 257,469 2.52 .12

Of course, this query reports all waits since the database first started. To get a
view over a specific period of time, you would need to run the query twice and com-
pare totals. We can also observe the ongoing state of these statistics in the Oracle
Cloud Control, in third-party tools such as Toad, or by using Automatic Workload
Repository (AWR) or Statspack reports.

Identifying Individual Latches

If we’re lucky, the latch that is responsible for whatever latch contention exists
will be identified by its specific wait event—latch: cache buffers chains, for
instance. However, this won’t always be the case; some latches are included in the
general-purpose latch free event, and some might be recorded against the event
wait list latch free.

The wait list latch free event relates to Oracle’s latch wait posting algo-
rithm. Oracle implements a latch wait list that allows sessions sleeping on a latch
to be woken when the latch becomes available. When a session sleeps on a latch,
it normally places itself on the latch wait list and is woken by the session that
releases the latch. If there’s heavy contention on the wait list, then the wait list
latch free event may occur.

If the specific latch waits are being obscured by these general-purpose latch
free events, then you may need to examine V$LATCH, which includes latch statistics

Measuring Latch and Mutex Contention 373

for each specific latch. The V$LATCH view records the number of gets, misses, sleeps,
and wait times for each latch. The query in Listing 16.2 interrogates this view to
identify the latches with the most sleeps and wait times.

Listing 16.2 Latch Miss Statistics

SQL> WITH latch AS (
 2 SELECT name,
 3 ROUND(gets * 100 / SUM(gets) OVER (), 2) pct_of_gets,
 4 ROUND(misses * 100 / SUM(misses) OVER (), 2) pct_of_misses,
 5 ROUND(sleeps * 100 / SUM(sleeps) OVER (), 2) pct_of_sleeps,
 6 ROUND(wait_time * 100 / SUM(wait_time) OVER (), 2)
 7 pct_of_wait_time
 8 FROM v$latch)
 9 SELECT *
 10 FROM latch
 11 WHERE pct_of_wait_time > .1 OR pct_of_sleeps > .1
 12 ORDER BY pct_of_wait_time DESC;

 Pct of Pct of Pct of Pct of
NAME Gets Misses Sleeps Wait Time
------------------------------ ------ ------ ------ ---------
cache buffers chains 99.59 99.91 70.59 89.75
shared pool .07 .03 16.69 7.78
session allocation .18 .05 11.39 1.88
row cache objects .07 .00 .78 .24
simulator lru latch .01 .00 .31 .18
parameter table management .00 .00 .08 .14
channel operations parent latc .00 .00 .16 .02

Drilling into Segments and SQLs

Determining the latches associated with contention is usually not enough to identify
the root cause. We most likely need to identify the SQLs and segments involved.

If you have an Oracle diagnostic pack license, then you can query the Active
Session History (ASH) and/or AWR tables to identify the SQLs and segments asso-
ciated with particular wait conditions. The query in Listing 16.3 identifies entries
in the ASH table associated with latch contention.

Listing 16.3 Finding Latch Contention with ASH

SQL> l
 1 WITH ash_query AS (
 2 SELECT event, program,
 3 h.module, h.action, object_name,
 4 SUM(time_waited)/1000 reltime, COUNT(*) waits,
 5 username, sql_text,
 6 RANK() OVER (ORDER BY COUNT(*) DESC) AS wait_rank
 7 FROM v$active_session_history h
 8 JOIN dba_users u USING (user_id)
 9 LEFT OUTER JOIN dba_objects o
 10 ON (o.object_id = h.current_obj#)
 11 LEFT OUTER JOIN v$sql s USING (sql_id)
 12 WHERE (event LIKE '%latch%' or event like '%mutex%')

374 Chapter 16 � Dealing with Latch and Mutex Contention

 13 GROUP BY event,program, h.module, h.action,
 14 object_name, sql_text, username)
 15 SELECT event,module, username, object_name, waits,
 16 sql_text
 17 FROM ash_query
 18 WHERE wait_rank < 11
 19* ORDER BY wait_rank
SQL> /

EVENT MODULE USERNAME OBJECT_NAME WAITS
------------------------- ------------ -------- ------------ ----------
SQL_TEXT
--
library cache: mutex X SQL*Plus OPSG 13

latch: shared pool SQL*Plus OPSG 8

latch: shared pool SQL*Plus OPSG LT_SALES_PK 3
 begin latch_test(10000,10000,1000000,10000); end;

library cache: mutex X SQL*Plus OPSG LT_SALES_PK 2

library cache: mutex X SQL*Plus OPSG LT_SALES 1
 begin latch_test(10000,1,10000,10000); end;

latch: shared pool SQL*Plus OPSG 1
SELECT quantity_sold , amount_sold FROM lt_sales t539564 WH
ERE id BETWEEN 124410 AND 360759

latch: shared pool SQL*Plus OPSG 1
SELECT quantity_sold , amount_sold FROM lt_sales t539571 WH
ERE id BETWEEN 512313 AND 825315

library cache: mutex X SQL*Plus OPSG 1
SELECT quantity_sold , amount_sold FROM lt_sales t539563 WH
ERE id BETWEEN 698302 AND 392634

latch: shared pool SQL*Plus OPSG LT_SALES_PK 1
SELECT quantity_sold , amount_sold FROM lt_sales t539555 WH
ERE id BETWEEN 387009 AND 268338

If you don’t have a Diagnostic Pack license, then you can indirectly identify the
SQLs by focusing on those SQLs with the highest concurrency wait times. The con-
currency wait class includes most commonly encountered latch and mutex waits,
although it also includes some internal locks and buffer waits. However, if you’re
encountering high rates of latch contention, it’s a fair bet that the SQLs with the
highest concurrency waits are the ones you want to look at.

Listing 16.4 pulls out the SQLs with the highest concurrency waits.

Listing 16.4 Identifying High Contention SQL

SQL> WITH sql_conc_waits AS
 2 (SELECT sql_id, SUBSTR(sql_text, 1, 80) sql_text,
 3 concurrency_wait_time/1000 con_time_ms,
 4 elapsed_time,
 5 ROUND(concurrency_wait_Time * 100 /
 6 elapsed_time, 2) con_time_pct,
 7 ROUND(concurrency_wait_Time* 100 /

Latch and Mutex Scenarios 375

 8 SUM(concurrency_wait_Time) OVER (), 2) pct_of_con_time,
 9 RANK() OVER (ORDER BY concurrency_wait_Time DESC) ranking
 10 FROM v$sql
 11 WHERE elapsed_time > 0)
 12 SELECT sql_text, con_time_ms, con_time_pct,
 13 pct_of_con_time
 14 FROM sql_conc_waits
 15 WHERE ranking <= 10
 16 ORDER BY ranking ;

 SQL Conc % Tot
SQL Text Conc Time(ms) Time% ConcTime
-- ------------- -------- --------
DECLARE job BINARY_INTEGER := :job; next 899 18.41 44.21
_date DATE := :mydate; broken BOOLEAN :

select max(data) from log_data where id< 472 .01 23.18
:id

begin query_loops (run_seconds=>120 , 464 .01 22.80
 hi_val =>1000 , use_

update sys.aud$ set action#=:2, returnco 143 75.46 7.02
de=:3, logoff$time=cast(SYS_EXTRACT_UTC
(

As expected the SQL that generated the latch waits is found (the second and
third entries are from a job that generated the latch waits). However, other SQLs—
associated with waits for certain internal Oracle locks—are also shown. You’ll need
to exercise judgment to determine which SQLs are most likely associated with your
latch waits.

Latch and Mutex Scenarios

Along with these generic methods of associating latch waits with SQLs and seg-
ments, there are diagnostic techniques specific to certain types of latch contention.
We look at these as we discuss specific latch/mutex wait scenarios in the sections
that follow.

Library Cache Mutex Waits

The library cache is the part of the shared pool in which cached definitions of SQL,
PL/SQL, and Java classes are held. Modifications to the library cache are protected
by library cache mutexes. Prior to Oracle Database 10g Release 2, they were pro-
tected by library cache latches.

Oracle maintains a cache of SQL statements in the shared pool. If a matching
SQL is found in the shared pool, then most of the overhead of parsing a statement
can be avoided. Such a parse is called a soft parse. If no matching SQL is found, a
hard parse must be performed.

376 Chapter 16 � Dealing with Latch and Mutex Contention

The most common reason to acquire a library cache mutex in exclusive mode is
to add a new entry to the cache. This happens, for instance, when we parse a new
SQL statement. Oracle looks for a matching entry in the cache, and if one is not
found (a “miss”), it acquires the relevant mutex and inserts the new entry. Failing
to obtain the mutex will result in a library cache: mutex X wait.

The most common cause of library cache mutex contention is excessive hard parsing
caused by a failure to use bind variables in application code. For example, in the fol-
lowing Java snippet, a SQL statement object is created, executed, and discarded:

Statement s=oracleConnection.createStatement();
s.execute("UPDATE sh.customers SET cust_valid = 'Y'"+
 " WHERE cust_id = 1");
s.close();

If your application does nothing but execute a single SQL, then this code is probably
okay. But it’s common for a SQL statement to be executed more than once, selecting
or modifying different rows with each execution. This next Java snippet issues an
UPDATE statement once for every customer ID held in the custIdList array:

1 for (int custId : custIdList) {
2 Statement stmt = oracleConnection.createStatement();
3 stmt.execute("UPDATE sh.customers SET cust_valid = 'Y'"
4 + " WHERE cust_id = " + custId);
5 stmt.close();
6 }

The loop starting on line 1 iterates through an array of CUST_ID values. We create a
statement object (line 2) and then construct and execute an UPDATE statement once
for each customer in the list. We concatenate the custId from the list into the SQL
string on line 3.

This code will work, of course, but each UPDATE statement will need to be parsed
as well as executed. This parse overhead can be significant. Furthermore, because
each SQL is unique (it includes the hardcoded custId), we’re unlikely to find a
matching SQL in the shared pool. Therefore, a hard parse—one in which no matching
SQL is found in the shared pool—will be required.

The next code snippet shows the bind variable technique in Java. The SQL state-
ment is created as a PreparedStatement and includes a bind variable—identified
as :custId—which acts as a placeholder for the parameters to the SQL. The variable
is assigned a value on line 5 prior to each execution on line 6:

1 PreparedStatement stmt = oracleConnection.prepareStatement(
2 "UPDATE sh.customers SET cust_valid = 'Y'"
3 + " WHERE cust_id = :custId");
4 for (int custId : custIdList) {
5 stmt.setInt(1, custId);
6 stmt.execute();
7 }

Latch and Mutex Scenarios 377

Using the bind variable technique radically reduces the parse overhead of SQL exe-
cution, and in particular, it reduces the amount of library cache mutex contention.

To identify the SQLs that are causing the most hard parses, we need to find
those SQLs that are identical other than for the values of literals. These SQLs will
show up in V$SQL as SQLs with the same value for FORCE_MATCHING_SIGNATURE, as
shown in Listing 16.5.

Listing 16.5 Finding SQLs That Are Not Using Bind Variables

SQL> WITH force_matches AS
 2 (SELECT force_matching_signature,
 3 COUNT(*) matches,
 4 MAX(sql_id || child_number) max_sql_child,
 5 DENSE_RANK() OVER (ORDER BY COUNT(*) DESC)
 6 ranking
 7 FROM v$sql
 8 WHERE force_matching_signature <> 0
 9 AND parsing_schema_name <> 'SYS'
 10 GROUP BY force_matching_signature
 11 HAVING COUNT(*) > 5)
 12 SELECT sql_id, matches, parsing_schema_name schema, sql_text
 13 FROM v$sql JOIN force_matches
 14 ON (sql_id || child_number = max_sql_child)
 15 WHERE ranking <= 10
 16 ORDER BY matches DESC;

SQL_ID MATCHES SCHEMA
------------- ---------- --------------------
SQL_TEXT
--
gzxu5hs6sk4s9 13911 OPSG
select max(data) from log_data where id=717.91

The query reveals that there were 13,911 instances of a SQL statement that was
identical except for the value of a variable—a variable that could have been repre-
sented by a bind variable.

Ideally, applications should make use of bind variables whenever possible by
changing the application code, as outlined earlier in this section. However, it’s not
always easy or possible to rewrite an application to use bind variables. Therefore,
Oracle provides a mechanism for imposing bind variables transparently; when the
parameter CURSOR_SHARING is set to FORCE or SIMILAR, then Oracle can replace a
statement such as this:

SELECT MAX(data) FROM log_data WHERE id=717.91

with a statement like this:

SELECT MAX(data) FROM log_data WHERE id=:"SYS_B_0"

378 Chapter 16 � Dealing with Latch and Mutex Contention

Oracle will then substitute the appropriate values into the system-generated
bind variables (value 717.91 would be assigned in the previous example), and the
library cache miss will be avoided. As we saw earlier, this behavior reduces parse
overhead—since Oracle can retrieve the already parsed version from the shared
pool—and it also reduces mutex contention, since Oracle doesn’t have to acquire the
mutex in exclusive mode if the matching SQL is found.

Library Cache Pin

The library cache pin wait is not strictly a latch or mutex wait, but it often shows
up in similar circumstances. A library cache pin is required whenever an object in
the library cache is to be executed, parsed, or reparsed. The library cache pin is
acquired in exclusive mode if, for instance, the execution plan for a SQL statement
needs to be changed or a PL/SQL package is modified or recompiled. The library
cache pin is acquired in exclusive mode by the sessions executing the object.

The session wanting to modify the object will attempt to acquire the library
cache pin in exclusive mode; sessions executing the object will be holding a shared
library cache pin.

Excessive waits on the library cache pin may suggest that PL/SQL packages are
being recompiled during periods of heavy concurrent execution. If possible, schedule
recompilation during maintenance windows.

Shared Pool Latch

The primary purpose of shared pool latches is to control access to the shared pool
memory map. Sessions that are looking for free space in the shared pool for a new
SQL statement or PL/SQL package will need to acquire shared pool latches, and
many Oracle internal operations (resizing the shared pool for instance) will acquire
these latches as well.

Excessive hard parsing—the primary cause of library cache mutex contention—
generally results in shared pool latch contention as well, because the constant alloca-
tion of “one-off” SQL statements will fragment the shared pool and require continual
deallocation of old statements. This will show up as waits for the latch: shared
pool event.

Shared pool fragmentation has other deleterious side effects, including ORA-4031
errors (“unable to allocate x bytes of shared memory”) and excessive shared pool
memory consumption. Over the years, a variety of techniques have been employed
to combat this fragmentation:

 � Some sites flush the shared pool periodically using the ALTER SYSTEM FLUSH
SHARED_POOL command.

Latch and Mutex Scenarios 379

 � Setting a minimum size for the shared pool when using automatic SGA mem-
ory management is almost always a good idea but particularly if shared pool
latch contention is present. Using automatic SGA memory management can
exacerbate fragmentation issues, since the memory management algorithms
are not always able to predict or measure the degree of fragmentation that
will result from continual resizing.

 � Pinning large but infrequently executed PL/SQL packages in the shared
pool—using DBMS_SHARED_POOL—might help reduce fragmentation by pre-
venting large objects moving in and out of memory.

 � The SHARED_POOL_RESERVED_SIZE parameter controls the amount of shared
pool reserved for large memory allocations. In some instances, increasing the
size of this parameter may reduce pressure on the shared pool latch by reducing
the amount of time it takes to find large, contiguous chunks of memory

Cache Buffers Chains Latch

A cache buffer chain (CBC) is a doubly linked list of buffer headers pointing to buf-
fers in the buffer cache that hash to a common value. There are a number of CBC
latches, each latch protecting multiple cache buffer chains.

When a session needs to access a buffer in the buffer cache, it must acquire a
CBC latch on the “chain” that contains that buffer. Contention for this latch results
in waits for the latch: cache buffers chains event.

The amount of time it takes to access a block in memory is very small, and there
are a large number of CBC latches. Nevertheless, cache buffers chains latch conten-
tion can become significant on systems with very high logical read rates, especially if
these logical reads concentrate on a small number of blocks. Another possible cause
is the creation of long buffer hash chains caused by multiple consistent read copies of
an individual buffer.

Ironically, cache buffers chains latch contention often occurs on systems that
are almost perfectly optimized in every other respect: in order to get the very high
logical read rates necessary to induce cache buffers chains contention, the system
typically needs to minimize all other forms of contention and waits, such as IO,
parsing, and locking.

High logical read rates and the resulting CBC latch contention can, however, be
the result of poorly tuned SQL as well. For example, a nested loops join that uses
an unselective index may scan the same set of blocks on the inner table many times
over. These blocks will then become “hot” and may be the subject of latch conten-
tion. Tuning the SQL by creating a more selective index will reduce the redundant
logical reads and reduce the latch contention as well as improve the performance of
the SQL concerned.

380 Chapter 16 � Dealing with Latch and Mutex Contention

The mapping of cache buffers to cache buffers chains latches is based on an Oracle
hashing algorithm, and the number of blocks per latch can vary significantly. If
you want to examine the configuration of your cache buffers chains latches, the
query in Listing 16.6—which you must run as SYS—will reveal the latch to buffer
ratios.

Listing 16.6 Revealing the CBC Latch to Buffer Ratio

SQL> SELECT COUNT(DISTINCT l.addr) cbc_latches,
 2 SUM(COUNT(*)) buffers,
 3 MIN(COUNT(*)) min_buffer_per_latch,
 4 MAX(COUNT(*)) max_buffer_per_latch,
 5 ROUND(AVG(COUNT(*))) avg_buffer_per_latch
 6 FROM v$latch_children l
 7 JOIN
 8 x$bh b
 9 ON (l.addr = b.hladdr)
 10 WHERE name = 'cache buffers chains'
 11 GROUP BY l.addr;

 CBC Latch Buffer Cache Min Buffer Max Buffer Avg Buffer
 Count Buffers Per Latch Per Latch Per Latch
---------- ------------ ---------- ---------- ----------
 8192 89386 3 46 11

On this database, an average of 11 blocks was associated with each latch, but
some latches protected as few as 3 or as many as 46 blocks.

The chance that contention for a cache buffers chains latch is a result of two hot
blocks being mapped to the same latch is pretty small, and while you can attempt
to change the number of latches using undocumented Oracle parameters (such as
_db_block_hash_buckets), the chances that you’ll relieve latch contention by doing
so are not good.

Each latch exposes its individual statistics into the view V$LATCH_CHILDREN.
You can link these latches to the buffers they protect by examining the view X$BH
(which, unfortunately, you can only do as the SYS user). The query in Listing 16.7
joins the two tables to identify the segments that are most heavily associated with
cache buffers chains latch sleeps.

Listing 16.7 Identifying Segments with High CBC Latch Sleeps

SQL> WITH cbc_latches AS
 2 (SELECT addr, name, sleeps,
 3 rank() over(order by sleeps desc) ranking
 4 FROM v$latch_children
 5 WHERE name = 'cache buffers chains')
 6 SELECT owner, object_name,object_type,
 7 COUNT(distinct l.addr) latches,
 8 SUM(tch) touches

Latch and Mutex Scenarios 381

 9 FROM cbc_latches l JOIN x$bh b
 10 ON (l.addr = b.hladdr)
 11 JOIN dba_objects o
 12 ON (b.obj = o.object_id)
 13 WHERE l.ranking <=100
 14 GROUP BY owner, object_name,object_type
 15 ORDER BY sum(tch) DESC;

OWNER OBJECT_NAME OBJECT_TYP LATCHES TOUCHES
------------ -------------------- ---------- ---------- ------------
OPSG LOG_DATA TABLE 103 1,149

This query shows that the top 100 cache buffers chains latches are all associated
with the LOG_DATA table and that it is probably the high rates of logical I/O against
this table that are the root cause of the cache buffers chains latch contention we are
experiencing.

Finding the segment involved in cache buffers chains contention is a good first
step, but where do we go from here? There are a couple of possibilities:

 � If the cache buffers chains contention is associated with an index, then you
could consider reimplementing the table as a hash cluster and use a hash
key lookup rather than a B-tree index lookup. B-tree indexes often become
associated with cache buffers chains contention, because index root and
branch blocks tend to be accessed more frequently than index leaf blocks or
table blocks. If we use a hash cluster lookup instead, this potential for cache
buffers chains latch contention is eliminated. If the B-tree index is part of
a nested loops join, then a hash join might similarly relieve pressure on the
index blocks.

 � At the risk of belaboring the point, is there any way to reduce the logical I/O
rate? Review and tune SQL that accesses the table: perhaps a judicious index
or two could reduce the logical I/O demand. Perhaps Oracle client-side caching
(CLIENT_RESULT_CACHE_SIZE parameter) or the Oracle server-side result set
cache could be used to reduce the logical I/O rate.

 � If there are multiple hot rows within the same hot block, explore options for
splitting these rows across multiple blocks. Partitioning the table and its
indexes can be an attractive option, especially since it requires no changes
to application code.

Other Latch Scenarios

Cache buffers chains latches and library cache mutexes are the most commonly
encountered forms of latch/mutex contention. However, other forms of latch contention

382 Chapter 16 � Dealing with Latch and Mutex Contention

arise from time to time. Here are some of the other latches that you might
encounter:

 � Cache buffers lru chain latch: This latch controls access to the LRU (least
recently used) list in the buffer cache. Buffers move up and down this list as
they are accessed and, once they reach the cold end of the list, are eventually
flushed out of the pool. Contention for this latch is generally associated with
cache buffers chains latch contention and will generally respond to a similar
resolution. However, while the cache buffers chains latch is most sensitive to
hot blocks, the cache buffers lru chains latch is more heavily utilized when
new blocks are introduced into the buffer cache.

 � Simulator lru latch: This latch controls access to the “virtual” LRU list
that Oracle uses to work out the effect of increasing or decreasing the size of
the buffer cache. This information is used to populate the DB_CACHE_ADVICE
tables and to perform automatic memory management. Contention for this
latch can occur under similar circumstances as for the cache buffers chains
and cache buffers lru chains latches and may mask contention for those
latches. Setting DB_CACHE_ADVICE to OFF will usually eliminate this conten-
tion but may merely shift the contention to the cache buffers chains latch.
Note also that contention on this latch was associated with some Oracle bugs
in early versions of Oracle 11.

 � Redo allocation latch: This latch serializes entries to the redo log buffers
and private “strands,” both of which buffer I/O to the redo logs. This latch—
and the related redo copy latch—were often implicated in latch contention
issues in earlier versions of Oracle. However, Oracle made significant
changes to redo handling in Oracle Database 9i and 10g, parallelizing redo
generation, creating multiple independent buffers, and introducing private
buffer strands. As a result, redo-related latch contention issues are rarely
reported today. You may see some contention for the redo allocation latch
when there are very high levels of concurrent DML activity. However, it’s
unlikely to dominate overall performance, since such high levels of DML
generally create substantial I/O-related waits.

 � Session allocation and process allocation latches: These latches are
often involved during the creation of a new session and, in the case of process
allocation, associated server process. Contention on these latches will often
be seen if there is a very high rate of logon/logoff to the database. Oracle is
not really optimized for sessions that connect, issue a single SQL, and then
disconnect; performance will usually be better when sessions stay connected
and issue multiple SQLs. Using application server connection pools is advis-
able if you see this sort of contention, and you might see some relief if you
configure the database for multithreaded server connections.

Intractable Latch Contention 383

 � kks stats latch: This latch seems to be associated with mutex operations—
one might speculate that it is involved in maintaining mutex sleep statistics.
Some contention on this latch seems to be associated with other mutex con-
tention scenarios. If you see this latch in conjunction with mutex waits, you
should probably try resolving the mutex issue first with the hope of curing
contention for this latch as well.

 � In-memory undo latch: This latch is associated with Oracle’s relatively
new in-memory undo (IMU) structures in which information formerly main-
tained in rollback (undo) segments is held in memory. Some contention for the
in-memory undo latch might be the cost you have to pay for the reduction in
redo generation and undo segment I/O that the new algorithm provides.
However, some users have suggested turning in-memory undo off by adjusting
the undocumented parameter _in_memory_undo or increasing the value of the
PROCESSES parameter, which controls the default number of IMU latches.

 � Result cache (RC) latch: This latch protects the creation and deletion of
result sets in the result set cache. Contention for the latch occurs if multiple
sessions attempt to simultaneously create cached result sets. Result sets in
the result set cache should generally be restricted to a relatively small num-
ber of infrequently executing SQLs.

Intractable Latch Contention

We often see latch contention—especially cache buffers chains latch contention—in
the most highly tuned, high-powered databases.

This makes sense if you think about it. If we create a database configuration
in which all other constraints are removed on database performance (locking, I/O,
memory, CPU), then database sessions will essentially be competing for access to
shared memory alone. In that scenario, latch contention will inevitably become the
limiting factor.

So it may be that some degree of latch contention—especially on the cache buf-
fers chains latch—has to be accepted in very high-throughput systems on premium
hardware. When we hit this sort of intractable latch contention, we may have no
other option than to attempt to manipulate the parameters that control the Oracle
internal algorithms that control latching.

Fine Tuning Latch Algorithms

As we’ve noted, latch requests often repeatedly attempt to acquire a latch (a spin
get) before surrendering the CPU and going into a latch sleep. If all else fails, fine
tuning the number of spins may improve throughput for an application.

384 Chapter 16 � Dealing with Latch and Mutex Contention

Figure 16.1 shows the results of experiments in which the variable _spin_count,
which controls the default number of spins, was varied for an Oracle 11g database
suffering from library cache latch contention (http://bit.ly/1fyARb5). In the figure,
you can see that as the parameter _spin_count increases, application throughput
may also increase. This occurs at the expense of overall CPU consumption, but pro-
vided there is free CPU, increasing the _spin_count has a beneficial effect.

Latch expert Andrey Nikolaev has shown similar results manipulating _mutex_
spin_count (http://arxiv.org/pdf/1212.6640v1.pdf) and _spin_count (http://arxiv.org/
pdf/1111.0594v1.pdf).

It remains true that if you are unable to resolve latch contention in any other
fashion, you might try manipulating the amount of spinning that Oracle performs
on a latch. Unfortunately, this option has become less and less attractive as Oracle
changes the underlying spin algorithms.

In the past (prior to Oracle Database 11g), you could manipulate spins using
the single dynamic parameter _spin_count. Today that approach is suitable only
for shared mode latch gets. Tuning exclusive latches requires manipulation of the
_latch_class_0 parameter and will require a database restart. For mutexes, three
parameters control spin behavior: _mutex_spin_count sets the number of spins
before yielding or sleeping, while _mutex_wait_scheme and _mutex_wait_time

20

30

40

50

60

70

80

90

100

110

120

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

R
el

at
iv

e
V

al
u

e

Spin Count

Throughput Latch wait time RunQ/CPU*100

Throughput trend Latch wait trend Run Q trend

 Figure 16.1 Relationship between _spin_count, latch waits, and throughput

http://bit.ly/1fyARb5
http://arxiv.org/pdf/1111.0594v1.pdf
http://arxiv.org/pdf/1111.0594v1.pdf
http://arxiv.org/pdf/1212.6640v1.pdf

Summary 385

control the waiting behavior. See Oracle Bug 10411618 for a description of how
these parameters work.

In short, if all else fails, you may try to manipulate latch spinning to alleviate
latch contention. However, doing so involves manipulating undocumented parame-
ters and should be done as a last resort with extreme care.

Summary

In this chapter, we looked at how latches and mutexes work and why they are a
necessary part of the Oracle architecture. We learned how to diagnose the root
causes of latch and mutex contention and explored remedies for common latch con-
tention scenarios.

Latches and mutexes protect areas of Oracle’s shared memory, preventing cor-
ruption or inconsistencies that might arise if multiple sessions were to change the
same area of shared memory at the same time.

Latch internal algorithms are complex and change frequently. However, most
latch contention indicates a need to reduce demand by the application on shared
memory. The following are the two most common causes:

 � Hard parsing, in which new SQL statements are constructed for each change
in a query parameter. The use of bind variables or the CURSOR_SHARING
parameter may be indicated.

 � Very “hot” blocks in the buffer cache, suggesting a need to partition a table or
tune SQL.

This page intentionally left blank

 465

Index

A
Access structures, 296
ACS (adaptive cursor sharing)

bind-awareness monitoring, 61–73
demonstration, 58–61
and SPM. See SPM (SQL plan management),

adaptive cursor sharing.
working algorithm, 52–57

ACS (adaptive cursor sharing), bind sensitiveness
with

equality predicate histograms, 55–56
partition keys, 56–57
range predicate, 52–55

ACS (adaptive cursor sharing), bind-aware cursors
creating, examples, 66–73
description, 73–76
performance issue, example, 76–81

Active Data Guard, 279
Active Session History (ASH). See ASH (Active

Session History).
Actuator arms, 388
Adams, Steve, 370
ADD_FILE command, 317, 319
ADDM (Automatic Database Diagnostic Monitor),

finding buffer busy wait event information,
41

Administrative tasks, utilities and commands, 283
ADO (Automatic Data Optimization), 160–162, 326,

410
ADR (Automatic Diagnostic Repository), 276–277
Advanced Index Compression, 162
Advanced Row Compression, 160

Alert logs, 277
ALL_ROWS parameter, 117–122
ALTER DATABASE FLASHBACK OFF command, 179
ALTER DATABASE FLASHBACK ON command, 179
ALTER INDEX <index name> VISIBLE command,

441
ALTER SYSTEM FLUSH SHARED_POOL command, 378
Alter table operation, 142–144, 147–152
ALTER TABLESPACE <tablespace_name> FLASHBACK

OFF command, 179
AMM (Automatic Memory Management), 281
Antivirus software, 281
ASH (Active Session History)

buffer busy wait event information, 43–44
finding latch contention, 373–375
waiting sessions, 45–46

ASM (Automatic Storage Management), disk
groups on Exadata, 416–418

ATTACH parameter, 319
Automatic Data Optimization (ADO), 160–162, 326,

410
Automatic Database Diagnostic Monitor (ADDM),

41, 277
Automatic Diagnostic Repository (ADR), 276–277
Automatic Maintenance Tasks (AUTOTASK)

framework, 290–291
Automatic Memory Management (AMM), 281
Automatic Storage Management (ASM), disk

groups on Exadata, 416–418
AUTOTASK (Automatic Maintenance Tasks)

framework, 290–291
Autotuning retention values, disabling, 21

466 Index

AWR (Automatic Workload Repository). See also
Performance tuning.

basic reports, 198
buffer pool advisory, 239–240
buffer pool statistics, 237–240
buffer waits statistics, 247–248
description, 197–198
disk spills, 264–266
dynamic memory components, 260–262
enqueue statistics, 248–250
excessive disk spills, 246
finding buffer busy wait event information, 41–43
initialization parameter changes, verifying, 266
instance recovery statistics, 239
Java pool advisory, 245–246, 247
library cache activity, 257–260
OOS (out-of-space) errors, 251
overloaded buffer cache, 239
resource limits, 266
segment access, 255–257
SGA target advisory, 245–246
shared pool statistics, 244–245
STO (snapshot too old), 251
stream pool size, 264–266
streams components, 264–266
streams pool advisory, 245–246
tablespace I/O statistics, 235–237
time model statistics, 211–212
timing, 266
undo segment statistics, 250–251
what to look for, 199

AWR (Automatic Workload Repository), header
section

buffer hit percentage, 202
buffer nowait percentage, 202
instance CPU, 207
instance efficiencies, 202–203
latch hit percentage, 203
library hit percentage, 202
load average, 206–207
load profile, 201–202
log file stress, 206
memory sort percentage, 202–203
memory statistics, 207–208
non-parse CPU percentage, 203
overview, 199–201
redo nowait percentage, 202
shared pool memory statistics, 203
soft parse percentage, 203
wait events, 203–206

AWR (Automatic Workload Repository), instance
activity statistics

absolute values, 232–233
consistent gets, 224
dirty blocks, 224
enqueue, 224
execution count, 225
free buffer, 225
GC (global cache), 225

index fetch by key, 226
index scan, 226
index scans kdiixs1, 226
leaf nodes, 226
open cursors, 226
overview, 221–224
parses, 226
physical reads and writes, 226
recursive calls, 229
redo related, 229
session cursor, 229–230
sorts, 230
summed dirty queue length, 230
table fetch, 230–231
thread activity, 233
transaction rollback, 231
undo change vector, 231–232
user I/O wait time, 232
work area, 232

AWR (Automatic Workload Repository), latch
statistics

latch activity, 253
miss sources, 254–255
no latch available, 253–254
overview, 251–253
parent and child latches, 255
Pct Get Misses, 253
Pct NoWait Misses, 253
sleep breakdown, 253–254
sleep summary, 255
spin count, 254

AWR (Automatic Workload Repository), OS
statistics

background wait events, 214–215
foreground wait events, 213–214
overview, 212–213
service related statistics, 216–217
wait event histograms, 215–216

AWR (Automatic Workload Repository), PGA
statistics

aggregate summary, 241–242
aggregate target histogram, 242–243
aggregate target statistics, 242
cache hit percentages, 241–242
memory advisor, 243–244
OOBs (out-of-band-sorts), 243
overview, 240–241
rolled up usage data, 241–242

AWR (Automatic Workload Repository), process
memory

overview, 262–263
process memory summary, 264
SGA breakdown difference, 264
SGA memory summary, 264

AWR (Automatic Workload Repository), RAC-
specific pages

cluster interconnects, 210
global cache and enqueue services, 209–210,

268–273

Index 467

global cache load statistics, 209
global cache transfer statistics, 271–272
global CR served statistics, 271
global current served statistics, 271
global enqueue statistics, 271
hot blocks, 271
RAC statistics (CPU), 208

AWR (Automatic Workload Repository), SQL
sections

buffer gets, total, 218–219
cluster wait time, 220–221
CPU time, total, 218
disk reads, total, 219
elapsed time, total, 217–218
executions, total, 219
overview, 217–218
parse calls, 219–220
recursive calls, 218
recursive CPU usage, 218
unsafe bind variables, 220
version count, 220

awrddrpi.sql script, 198
awrddrpt.sql script, 198
awrgdrpt.sql script, 198
awrgrpt.sql script, 198
awrrpti.sql script, 198
awrrpt.sql script, 198
awrsqrpti.sql script, 198
awrsqrpt.sql script, 198

B
Background wait event statistics, 214–215
Backup and recovery. See also RMAN (Recovery

Manager).
backup optimization and tuning, 187–188
BCT (block change tracking), 170, 178
best practices, 170–172
Data Guard configuration, 172
DRA (Data Recovery Advisor), 193–194
Exadata solutions, 171
excluding tablespaces, 179
Flashback Database features enabling/

disabling, 179
FRA (fast recovery area), 179
guaranteed restore points, 179
most recently detected failures, 193
recovery factors, 174
recovery strategies, 192–193
rewinding in Oracle Flashback technology,

178–179
RPO (recovery point objective), 174
RTO (recovery time objective), 174
TSPITR (tablespace point-in-time recovery), 179
for VLABs and XLABs, 170–172

Backup and recovery, backup strategies
binary compression, 176–177
compressed backups, 176–177
cumulative incremental backups, 177
decompression, 177

differential incremental backups, 177
disk-based backup, 179, 189
full backups, 176
incremental backups, 176–178
IUIC (incrementally updatable image copies),

180–186
key elements, 175–176
null block compression, 176
RFF (recover forward forever), 180–186
unused block compression, 176

BACKUP DURATION clause, 188
BACKUP OPTIMIZATION setting, 188, 192
_backup_disk_bufcnt parameter, 189
_backup_disk_bufsz parameter, 189
_backup_file_bufcnt parameter, 189
_backup_file_bufsz parameter, 189
Balanced tree (B-tree) indexes, 422–425, 432
BASICFILE LOBs. See also LOB (large object)

data type.
issues, 8
vs. SECUREFILE, 8–11

BASICFILE LOBs, migrating to SECUREFILE LOBs
example, 12–14
poor INSERT performance, 17

BCT (block change tracking)
definition, 170
enabling, 178

BFILE data type, managing free space, 16
Bigfile tablespaces, 156–157
Binary compression, 176–177
Binary large object (BLOB), managing free space,

16
Bind variable technique, 376–378
Bind variables

identifying, 451
SPM (SQL plan management), 86

Bind-awareness monitoring, 61–73
Bitmap indexes, 425–426
Bitmap join indexes, 431
BLOB (binary large object), managing free space,

16
Block-checking parameters, configuring, 279
Blocks, SSD, 392
blocksize designation parameter, 237–238
Books and publications

“ASMM vs. AMM and LINUX HugePages
Support,” 281

“HugePages and Oracle 11g Automatic Memory
Management (AMM) on Linux,” 281

Oracle Database 12c Reference Guide, 36
Oracle Database SecureFiles and Large Objects

Developer’s Guide, 1
Oracle Exadata Expert’s Handbook, 414
Oracle Tuning Guide and Concepts Manual, 199
Oracle8i Internal Services, 370–371

Bottlenecks. See Performance bottlenecks.
Branch pages, 422
B-tree (balanced tree) indexes, 422–425, 432
BUCKET_ID, COUNT relationship, 62–66

468 Index

Buffer busy wait events
buffer busy, 36
finding waiting sessions, 45–46
fixes for, 49–50
gc buffer busy, 36
gc buffer busy acquire, 36
gc buffer busy release, 36
isolating issues, 45–49
key tools. See ADDM (Automatic Database

Diagnostic Monitor); ASH (Active Session
History); AWR (Automatic Workload
Repository); ORAchk utility.

overview, 35–36
performance bottlenecks, isolating, 47–49
read by other session, 36
types of, 36

Buffer busy wait events, finding event information
with

ADDM, 41
ASH, 43–44
AWR, 41–43

buffer busy waits, 239
Buffer gets, analyzing, 218–219
Buffer hit percentage, analyzing, 202
Buffer nowait percentage, analyzing, 202
Buffer pool

advisory, 239–240
statistics, 237–240
waits statistics, 247–248

C
Cache buffers lru chain latch, 382
CACHE directive, 9
Cache hit percentages, 241–242
Caching, 9
CBC (cache buffer chain) latches, 379–381
C_DDL column

in a column group extension, 140–142
default value changes, 142–144
and indexes, 145–147
in a virtual column, 139–140

Cells, 391–392
Child latches, 255
CHM (Cluster Health Monitor), 278
CHUNK parameter, 9
Chunk size, specifying, 9
CLOB (character large object), managing free

space, 16
Cloning databases, 330
Cluster interconnects analyzing, 210
Cluster wait time, analyzing, 220–221
Clustering factors, indexes, 435–436
Clusterware componentry status, checking, 283–284
Columns, with default values, adding to tables.

See DDL (data definition language)
optimization.

COMPARE method, 451
Composite indexes, 430
Compressed backups, 176–177

Compressed indexes, 431
Compression

data, 159–160
managing LOB data types, 8
SSDs (solid-state drives), 410
table, 160

Compression, VLDBs and XLDBs
Advanced Index Compression, 162
Advanced Row Compression, 160
data compression, 159–160
HCC (Hybrid Columnar Compressions), 160
Oracle Advanced Compression, 160
table compression, 160

Concatenated indexes, 430
CONCURRENT global preference, 169
Configuration information, displaying, 287–288
Consistent gets, instance activity statistics, 224
CONTENT parameter, 306
Contention

hanging databases, 22–24
interinstance, 441
latches and mutexes. See Latches and mutexes,

contention.
sequences and indexes, 442

CONTINUE_CLIENT command, 319
CONTROL_FILE_RECORD_KEEP_TIME parameter, 191
Copying. See also Data Pump; Migration.

cloning databases, 330
duplicate schema objects, 305
entire databases, 305
objects between databases, 304–305
from Oracle Database 9i or older, 305
schemas between databases, 304–305
table metadata only, 306
tables between databases, 305
tablespaces, 306

CPT (cross-platform transport), 331, 344–345
CPU management, 281
CPU time, analyzing, 218
CPU_COUNT parameter, 281
Cross-platform transportable tablespaces (XTTS),

331, 340–343
crsctl check commands, 283
crsctl get commands, 284–285
crsctl query commands, 284
crsctl status commands, 284–286
CRSCTL (Oracle Clusterware Control) utility, 283
Cumulative incremental backups, 177
CURSOR_SHARING parameter, 377

D
Data, excluding from export, 321
Data block corruption, protecting against, 279
Data block size, optimal, 155–156
Data compression, 159–160. See also Compression.
Data definition language (DDL) optimization.

See DDL (data definition language)
optimization.

Data dictionary object block corruption, 30–31

Index 469

Data Guard, physical standby database, 333
Data Guard backup and recovery configuration, 172
Data partitioning, 158–159
Data Pump. See also Copying; Exporting;

Importing; Migration.
changing object properties, 313–317
copying objects, 304–305
database directory location, specifying, 306
database links, saving and restoring, 307
database links and synonyms, exporting, 307–308
default storage parameters, 314
excluding BLOB data, 321
exiting, 319
Export/Import utilities, 345
FTE (full transportable export/import), 346,

347–350
importing partitioned tables as nonpartitioned,

313
importing table partitions as individual tables,

313
improving performance, 320–321
invoking, 303
job name, getting, 319
job status, displaying, 319
log file, specifying, 306
masking database, 314
modes, 305–306
monitoring and altering resources, 319
overview, 303–304
public and private objects, 306–309
renaming tables, 314
return to logging mode, 319
scrambling sensitive data, 314
with SQL*Plus (PL/SQL API), 317–319
upgrading databases, 321–322

Data Pump, dump files
adding, 319
resizing, 319
scrambling sensitive data, 314
specifying, 306
verifying content of, 308–309

Data Pump, tablespaces
consolidating, 315–317
names, specifying, 306, 314
resizing, 314

Data Recovery Advisor (DRA), 193–194
Data warehouse templates, 154–155
Database Configuration Assistant (DBCA), 155
Database directory location, specifying, 306
Database Flash Cache (DBFC). See DBFC

(Database Flash Cache).
Database links

exporting, 307
saving and restoring, 307
and synonyms, exporting, 307–308

Database writer (DBWR) process, 398
Databases

cloning, 330
hanging. See Hung databases.

masking sensitive data, 314
upgrading, 321–322
very large. See VLDBs (very large databases);

XLDBs (extremely large databases).
Databases, transferring data

to another database. See Cloning databases;
Data Pump.

from a file. See Importing.
to a file. See Exporting.

Datafiles
I/O stress, 237
limiting the number of, 156–157

DATA_PUMP_DIR parameter, 306
DBA_DATAPUMP_JOBS view, 319
DBA_DATAPUMP_SESSIONS view, 319
DBA_DB_LINKS view, 308
DBA_SYNONYMS view, 308
DB_BLOCK_CHECKING parameter, 279
DB_BLOCK_CHECKSUM parameter, 279
DBCA (Database Configuration Assistant), 155
DB_CACHE_ADVICE parameter, 382
db_cache_size parameter, 261
DBFC (Database Flash Cache)

caching segments, 399–400
configuring, 398–399
creating, 399
DBWR process, 398
deferred writing of changed blocks, 396
FLASH_CACHE clause, 399–400
free buffer waits, 396–398
lazy writes, 396
monitoring, 398–399
overview, 396
performance statistics, 400–402
writing to the flash cache, 398

DB_FLASHBACK_RETENTION_TARGET parameter, 179
DB_FLASH_CACHE_FILE parameter, 398–399
DB_FLASH_CACHE_SIZE parameter, 398–399
DB_LOST_WRITE_PROTECT parameter, 279
DBMS DEFINITION package, 12–14
DBMS_FILE_TRANSFER utility, 339, 344, 349
DBMS_SHARED_POOL parameter, 379
DBMS_SQLDIAG package, 300
DBMS_STATS.GATHER_TABLE_PREF package, 169
DBMS_UNDO_ADV package, 21
DBMS_UNDO_ADVISOR procedure, 21
DBMS_WORKLOAD_REPOSITORY package, 197–198
dbms_xplan package, 88
DB_RECOVERY_FILE_DEST parameter, 179
DB_RECOVERY_FILE_DEST_SIZE parameter, 179
DBWR (database writer) process, 398
DBWR_IO_SLAVE parameter, 188
DDL (data definition language) optimization

alter table operation, 142–144, 147–152
C_DDL column and indexes, 145–147
C_DDL column in a column group extension,

140–142
C_DDL column in a virtual column, 139–140
C_DDL default value changes, 142–144

470 Index

DDL (data definition language) optimization
(continued)

inaccurate cardinality estimates, resolving,
139–140

for NUll columns, 147–152
overview, 133–136
table cardinality estimation, 137–138

DEBUG parameter, 188
Decompression, 177
Deduplication, 8
Depth statistics, indexes, 435
DETACH program, 317
diagcollection.pl script, 278
Differential incremental backups, 177
DIRECTORY parameter, 306
Dirty blocks, instance activity statistics, 224
Disk reads, analyzing, 219
Disk sort, SSDs, 406–408
Disk spills, analyzing, 246, 264–266
Disk-based backup, 179, 189
DISPATCHERS parameter, 243
Distinct key statistics, indexes, 435
Distributed transactions. See XA (X/Open XA).
DRA (Data Recovery Advisor), 193–194
DTP (distributed transaction processing), hanging

databases, 22–24
Dump files

adding, 319
resizing, 319
scrambling sensitive data, 314
specifying, 306
verifying content of, 308–309

DUMPFILE parameter, 306
DUPLICATE DATABASE method, 330, 332–333
Dynamic memory components, 260–262

E
Elapsed time, analyzing, 217–218
Encryption, 8
Enqueue

definition, 2
instance activity statistics, 224
services, analyzing, 209–210
statistics, 248–250

Equality predicate histograms, bind sensitiveness
with ACS, 55–56

Error messages. See specific messages.
ESTIMATE_PERCENT value, getting, 170
EtherChannel, 279
Exachk utility, 280
Exadata

backup and recovery solutions, 171
SSDs (solid-state drives), 414–418

EXCLUDE parameter
exporting public database links and synonyms,

307–308
finding valid values, 309–310
saving and restoring database links, 307
specifying objects for import/export, 306

Execution count, instance activity statistics, 225
Executions, analyzing, 219
EXIT_CLIENT command, 319
Expdp, common parameters, 306
Exp/imp tools, 305
EXPLAIN PLAN FOR command, 451
Explain plans, comparing original and new, 294
Exporting. See also Copying; Data Pump;

Importing.
database links and synonyms, 307
file size, predicting, 305
help for, 306
from a higher version to a lower one, 322
legacy exp/imp tools, 305
from Oracle Database 9i or older, 305
subsets of table data, 310–313

EXtended Architecture (XA), hanging databases,
22–24

Extended cursor sharing. See ACS (adaptive cursor
sharing).

Extents. adding to LOBs, 7
EXTRACT processes, 329
Extremely large databases (XLDBs). See XLDBs

(extremely large databases).

F
Failover, configuring, 280
Fast recovery area (FRA), 179
FILESIZE command, 319
FILESPERSET setting, 192
Filtering data, during migration, 329
FIRST_ROWS parameter, 117–122
Flash SSD latency, 389–390
Flash technology. See SSDs (solid-state drives).
Flashback Database features enabling/disabling, 179
Flashback options, 280
Flashback technology, rewinding databases,

178–179
FLASHBACK_SCAN parameter, 347
FLASH_CACHE clause, 399–400
Forced-plan sharing issues, 86
Foreground wait event statistics, 213–214
Forensics. See AWR (Automatic Workload

Repository).
FRA (fast recovery area), 179
Free buffer, instance activity statistics, 225
Free buffer waits, 396–398
free buffer waits statistics, 238
Free global transaction table entry wait event,

460–462
Free lists, 393
Free space, minimum percentage, setting, 14–17
Full backups, 176
FULL parameter, 305–306
Full table scans, SSDs, 404–406

G
Garbage collection, SSDs, 393–394
GATHER_DICTIONARY_STATS parameter, 320

Index 471

GC (global cache)
analyzing, 209–210
enqueue services, analyzing, 268–273
instance activity statistics, 225
load statistics, analyzing, 209
times (immediate), analyzing, 272
transfer (immediate), analyzing, 272
transfer statistics, analyzing, 271–272
transfer times, analyzing, 272

GC buffer busy acquire events, 36
GC buffer busy events, 36
GC buffer busy release events, 36
Ghost transactions, 457–462
Global cache (gc). See GC (global cache).
Global Cache Fusion, 275
Global CR served statistics, analyzing, 271
Global current served statistics, analyzing, 271
Global enqueue statistics, analyzing, 271
Global index hash partitioning, 441
Global partitioned indexes, 427–428
Global transactions. See XA (X/Open XA).
GTTs (global temporary tablespace groups)

automatic statistics gathering, 358–359
description, 356
separate temporary tablespaces, 356
UNDO activation, 357–358

H
HANGANALYZE procedure, 27–28
Hanganalyze utility, 27–28
Hanging transactions, 460–462
Hard parsing, 376, 378
Hash operations, SSDs, 406–408
Hash-partitioned indexes, 432
HCC (Hybrid Columnar Compressions), 160
Health Check script, 447
Heat Map feature, 160–162
Help

exporting, 306
migration methods, 351–352
MOS (My Oracle Support) resources, 278–279

HELP parameter, 306
High-watermark (HW) enqueue events, 2, 4–7
_HIGHTHRESHOLD_UNDORETENTION parameter, 21
Hints, forcing an index, 437
Histograms, wait events, 215–216
Hot blocks, analyzing, 271
HugePages and Oracle 11g Automatic Memory

Management (AMM) on Linux, 281
Hung databases

example, 2–4
gathering information about, 27–28
hanganalyze utility, 27–28

Hung databases, caused by
contention, 22–24
DTP (distributed transaction processing), 22–24
rollback segments, 24
XA (eXtended Architecture), 22–24

HW (high-watermark) enqueue events, 2, 4–7
Hybrid Columnar Compressions (HCC), 160

I
IDA (In-Database Archiving), 326
ILM (Information Lifecycle Management), 326
Impdp, common parameters, 306
Importing. See also Copying; Data Pump;

Exporting; Migration.
default storage parameters, 314
legacy exp/imp tools, 305
from Oracle Database 9i or older, 305
partitioned tables as nonpartitioned, 313
resizing tablespaces, 314
table partitions as individual tables, 313

IMU (in-memory undo) latch, 383
INCLUDE parameter

exporting public database links and synonyms,
307–308

finding valid values, 309–310
saving and restoring database links, 307
specifying objects for import/export, 306

Incremental backups, 176–178
Incremental statistics synopsis, 166–168
Incrementally updatable image copies (IUIC),

180–186
In-Database Archiving (IDA), 326
Index fetch by key, 226
Index partitioning, local vs. global, 159
Index scan, 226
Index scans kdiixs1, 226
Indexed reads, SSDs, 403
Indexes

bitmap, 425–426
bitmap join, 431
branch pages, 422
B-tree (balanced tree), 422–425, 432
composite, 430
compressed, 431
concatenated, 430
creating, 298
global partitioned, 427–428
hash partitioned, 432
IOTs (index-organized tables), 430
leaf pages, 422
local partitioned, 427–428
making invisible, 439–441, 443
multiple on identical columns, 431–432
nonunique, 432
parallel operation, 320
parallelism, 425
partial, 429
partition pruning, 427
partitioned, 427–429
range partitioned, 432
referencing multiple rows simultaneously, 426
reverse key, 430
root pages, 422

472 Index

Indexes (continued)
skip-scan operations, 430
unique, 432

Indexes, performance issues
average data blocks per key, 435
average leaf blocks per key, 435
choosing the wrong index type, 437
clustering factor statistics, 435
deleting index entries in a block, 438–439
depth statistics, 435
distinct key statistics, 435
ever-increasing values, 441
forcing an index via a hint, 437
global index hash partitioning, 441
hiding unselective indexes, 439–441
index overuse, 439
index statistics, 432–435
interinstance contention, 441
leaf block statistics, 435
low clustering factors, 435–436
monotonically increasing indexes, 441
nonselective indexes, 441
OLTP and read-mostly workload contention,

442
operational considerations, 436–439
Oracle sequences and index contention, 442
outmoding initialization parameter settings,

437–438
in RAC databases, 441–442
reverse key, 441

Index-organized tables (IOTs), 430
Information Lifecycle Management (ILM), 326
Initialization parameter changes, verifying, 266
init.ora parameter, 277
In-memory undo (IMU) latch, 383
_in_memory_undo parameter, 383
Input/output. See I/O.
INSERT performance, after migrating BASICFILE

LOBs to SECUREFILE LOBs, 17
Instance activity statistics. See AWR (Automatic

Workload Repository), instance activity
statistics.

Instance CPU, analyzing, 207
Instance efficiencies, analyzing, 202–203
Instance recovery statistics, 239
Interconnect devices, analyzing, 273
Interconnect ping latency, analyzing, 272
Interconnect throughput by client, analyzing, 273
Interinstance contention, 441
Interobject parallelism, 168
I/O

deferred writing of changed blocks, 396
physical read/write statistics, 227–228
timing for writes, 236
writing to the flash cache, 398

I/O stress, tablespaces or datafiles, 237
IOTs (index-organized tables), 430
IUIC (incrementally updatable image copies),

180–186

J
Java pool advisory, 245–246, 247
java_pool_size parameter, 261

K
_kdli_sio_fileopen parameter, 17
KILL_JOB command, 319
Kks stats latch, 383

L
Large object (LOB) data type. See LOB (large

object) data type.
large_pool_size parameter, 261
LARGE_POOL_SIZE parameter, 188, 193
Latch gets, 369
Latch hit percentage, analyzing, 203
Latch misses, 369
Latch sleeps, 369
Latch statistics

activity, 253
miss sources, 254–255
no latch available, 253–254
overview, 251–253
parent and child latches, 255
Pct Get Misses, 253
Pct NoWait Misses, 253
sleep breakdown, 253–254
sleep summary, 255
spin count, 254

Latch wait list, 369
Latch wait posting algorithm, 372
Latches

cache buffer chains latches, 369
definition, 368–370
redo allocation latches, 369

Latches and mutexes
hard parsing, 376, 378
soft parsing, 375

Latches and mutexes, architecture
cache buffer chains latches, 369
internals, 370–371
latch gets, 369
latch misses, 369, 371, 373
latch sleeps, 369, 371, 373
latch wait list, 369
latches, definition, 368–370
mutexes, definition, 370
overview, 367–368
redo allocation latches, 369
spin gets, 369–370
spin locks, 369
spinning, 370
test and set instruction, 369

Latches and mutexes, contention
drilling into segments and SQLs, 373–375
fine tuning latch algorithms, 383–385
identifying individual latches, 372–373
intractable latch contention, 383–385
latch wait posting algorithm, 372

Index 473

most common cause, 376
overview, 371–372
spinning, 383–385

Latches and mutexes, contention scenarios
bind variable technique, 376–378
cache buffers lru chain latch, 382
CBC (cache buffer chain) latches, 379–381
IMU (in-memory undo) latch, 383
kks stats latch, 383
library cache mutex waits, 375–378
library cache pin wait, 378
process allocation latch, 382
RC (result cache) latches, 383
redo allocation latch, 382
session allocation latch, 382
shared pool latches, 378–379
simulator lru latch, 382

Lazy writes, 396
Leaf block statistics, indexes, 435
Leaf nodes, instance activity statistics, 226
Leaf pages, 422
Lewis, Jonathan, 118
Library cache activity, analyzing, 257–260
Library cache mutex waits, 375–378
library cache pin wait, 378
Library hit percentage, analyzing, 202
LIST FAILURE command, 193–194
LMS (Lock Management Server), 275
LMTTs (locally managed temporary tablespaces),

354
Load average, analyzing, 206–207
Load profile, 201–202
LOB (large object) data type. See also BASICFILE LOBs.

caching, 9
chunk size, specifying, 9
compression, 8
deduplication, 8
encryption, 8
enqueue, definition, 2
HW (high-watermark) enqueue events, 2
introduction, 1–2
LOBINDEX, 1–2
LOBSEGMENT, 1–2
logging, enabling, 9
minimum percentage of free space, setting,

14–17
storage parameters vs. performance, 9

LOB (large object) data type, example problems
adding extents, 7
database hung, 2–4
HW resolution, 4–7
increasing throughput, 8

LOBINDEX, 1–2
LOBSEGMENT, 1–2
Local partitioned indexes, 427–428
Locally managed temporary tablespaces (LMTTs),

354
Lock Management Server (LMS), 275
Locks. See Latches and mutexes.

Log file, specifying, 306
Log file stress, analyzing, 206
LOGFILE parameter, 306
Logging, enabling, 9
LOGGING option, 9
Logical corruption, 25, 28–29
Logical corruption, protecting against, 280
Logical standby database, 328

M
MAA (Maximum Availability Architecture)

guidelines, 279–280
Masking sensitive data, 314
Materialized views, creating, 298
MAXOPENFILES setting, 192
MAXPIECESIZE setting, 192
Media corruption, 29–32
Memory

advisor, PGA, 243–244
corruption, 24–25, 26
dynamic memory components, 260–262
managing, 281
process. See Process memory.
resources, optimizing, 157–158
SGA, summary, 264
sort percentage, analyzing, 202–203
statistics, analyzing, 207–208

memory_max_target parameter, 260–261
Memory-related parameters, RMAN (Recovery

Manager), 189
memory_target parameter, 260–261
METADATA_FILTER program, 317
Migration. See also Copying; Data Pump;

Exporting; Importing.
across platforms, 333–336
ADO (Automatic Data Optimization), 326
IDA (In-Database Archiving), 326
ILM (Information Lifecycle Management), 326
legacy exp/imp tools, 305
from Oracle Database 9i or older, 305
overview, 324
purpose of, 324
selecting data for, 326

Migration methods
EXTRACT processes, 329
filtering data, 329
help for, 351–352
logical standby database, 328
modifying data on the fly, 329
OGG (Oracle Golden Gate), 329
Oracle Streams, 329
physical standby database, 328
REPLICATE processes, 329
transactional capture, 327–329

Migration methods, nontransactional migration
CPT (cross-platform transport), 331, 344–345
database cloning, 330
DUPLICATE DATABASE method, 330, 332–333
overview, 330

474 Index

Migration methods, nontransactional migration
(continued)

physical standby database, 330, 333
summary of methods, 330–331
TDB (transportable database), 330, 333–336
transferring just what’s needed, 336–340
TTS (transportable tablespaces), 331, 336–340
verifying database transportability, 336
XTTS (cross-platform transportable

tablespaces), 331, 340–343
Migration methods, piecemeal migration

Data Pump Export/Import utilities, 345
Data Pump FTE (full transportable export/

import), 346, 347–350
manual methods, 345–346, 351
partition exchange, 346, 350–351
partition migration, 350–351
programmed methods, 346
resynchronizing tables, 347
summary of methods, 345–346

Migration strategies
read-only tolerance, 325
real-time vs. near real-time, 325
reversibility, 325–326
window of inopportunity, 325

Missing transactions, 457–458
MLC (multi-level cell) SSDs, 391–392
Monitoring

ADDM, 41, 277
bind-awareness, 61–73
databases in real-time, 278
DBFC, 398–399
distributed transactions, 462–464
processes, 278
third-party monitoring tools and utilities, 281

Moore, Gordon, 388
Moore’s law, 388
MOS (My Oracle Support) resources, 278–279
Mutexes. See Latches and mutexes.
_mutex_spin_count variable, 384
_mutex_wait_scheme variable, 384
_mutex_wait_time variable, 384

N
NAND flash, 389
Native caches, SSDs, 405–406
NCLOB (national character large object),

managing free space, 16
NETWORK_LINK parameter, 347
Nikolaev, Andrey, 371, 384
NLS_SORT parameter, 114–117
NOLOGGING clause, 425
Non-parse CPU percentage, analyzing, 203
Nonselective indexes, 441
Nontransactional migration. See Migration

methods, nontransactional migration.
Nonunique indexes, 432
Null block compression, 176
NULL columns, DDL optimization, 147–152

O
Object properties, changing, 313–317
Objects, copying between databases, 304–305
OGG (Oracle Golden Gate), 329
OLTP (online transaction processing)

compression. See Advanced Row Compression.
and read-mostly workload contention, 442
read/write workload, SSDs, 403–404

OOBs (out-of-band-sorts), 243
OOS (out-of-space) errors, 251
Open cursors, instance activity statistics, 226
OPEN program, 317
Optimizer. See Oracle Optimizer.
Optimizer statistics, gathering for VLDBs and XLDBs

backup and recovery, 170–172
gathering statistics concurrently, 168–169
getting ESTIMATE_PERCENT value, 170
incremental statistics synopsis, 166–168
interobject parallelism, 168

optimizer_capture_sql_plan_baselines
parameter, 87

optimizer_use_sql_plan_baselines parameter, 87
ORA-00439 message, 399
ORA-600 message, 24–25
ORA-1578 message, 24–25
ORA-1591 message, 458–460
ORA-01652 message, 356
ORA-4031 message, 378
ORA-7445 message, 24–25
ORAchk utility. See also Buffer busy wait events.

description, 276
downloading, 37–38
installing, 37–38
sample output, 38–40
verifying customization, 38

Oracle Advanced Compression, 160
Oracle Clusterware Control (CRSCTL) utility, 283
Oracle Database 12c Reference Guide, 36
Oracle Database SecureFiles and Large Objects

Developer’s Guide, 1
Oracle Exadata Expert’s Handbook, 414
Oracle Golden Gate (OGG), 329
Oracle Optimizer, interaction with SPM

ALL_ROWS parameter, 117–122
CBO plan does not match SQL plan baseline,

99–104
CBO plan matches SQL plan baseline, 96–99
FIRST_ROWS parameter, 117–122
optimizer mode, selecting, 117–122
overview, 96
SQL plan is not reproducible, 104–108

Oracle products. See specific products.
Oracle Streams, 329
Oracle Tuning Guide and Concepts Manual, 199
ORATOP utility, 278
OS statistics. See AWR (Automatic Workload

Repository), OS statistics.
OSWBB (OS Watcher Black Box), 278
Out-of-band-sorts (OOBs), 243

Index 475

Out-of-space (OOS) errors, 251
Overloaded buffer cache, 239
Overprovisioning, 393

P
Pages, SSDs, 392
PARALLEL command, 319
PARALLEL parameter, 320–321
Parallelism, indexes, 425
Parallelization, 282
Parent latches, 255
Parse calls, analyzing, 219–220
Parses, instance activity statistics, 226
Partial indexes, 429
PARTIAL option, 164–165
Partition exchange during migration, 346, 350–351
Partition keys, bind sensitiveness with ACS, 56–57
Partition migration, 350–351
Partition pruning, indexes, 427
Partition tables, 298
Partitioned indexes, 427–429
Partitioning

RAC environment, 282
SSDs (solid-state drives), 410
tiering data with SSD partitions, 410–414

PCIe (Peripheral Component Interconnect
Express), 395

Pct Get Misses, 253
Pct NoWait Misses, 253
PCTFREE parameter, 14–17
PCTSPACE parameter, 314
Performance

effects of storage parameters, 9
full table scan, SSDs, 404–405
increasing throughput, example, 8
operating system performance metrics,

capturing, 278
RAC databases. See Troubleshooting RAC

databases.
SSD writes, 392–393

Performance bottlenecks
isolating, 47–49
solving with SSDs. See SSDs (solid-state drives).

Performance issues
ACS, example, 76–81
indexes. See Indexes, performance issues.
SPM, 86

Performance statistics
DBFC (Database Flash Cache), 400–402
indexes, 432–435

Performance tuning. See also AWR (Automatic
Workload Repository).

backup and recovery, 187–188
Data Pump, 320–321
disk-based backup performance, 189
large databases. See VLDBs (very large data-

bases), performance tuning; XLDBs (extremely
large databases), performance tuning.

queries. See SQLT utility.

Peripheral Component Interconnect Express
(PCIe), 395

PGA (program global area), memory resources,
157–158

PGA (program global area), statistics
aggregate summary, 241–242
aggregate target histogram, 242–243
aggregate target statistics, 242
cache hit percentages, 241–242
memory advisor, 243–244
OOBs (out-of-band-sorts), 243
overview, 240–241
rolled up usage data, 241–242

pga_aggregate_target parameter, 262–263
PGA_AGGREGATE_TARGET parameter, 240–244, 359
_pga_max_size parameter, 243, 262–263
PGA_TARGET parameter tuning, 158
Physical corruption, 25
Physical standby database, 328, 330, 333
Piecemeal migration. See Migration methods,

piecemeal migration.
Platters, 388
PL/SQL API (SQL*Plus), with Data Pump, 317
Private cluster interconnect, checking, 277
Private objects, 306–309
Process allocation latch, 382
Process memory

overview, 262–263
SGA breakdown difference, 264
SGA memory summary, 264
summary, 264

Processes, monitoring, 278
ProcWatcher script, 278
Program global area (PGA), 157–158
Programmed migration methods, 346
Public objects, 306–309

Q
QUERY parameter, 310–313
Query response time, stabilizing. See SPM (SQL

plan management).

R
RAC (real application clusters), definition, 275
RAC Configuration Audit Tool, 278
RAC databases

indexes, 441–442
RMAN (Recovery Manager), 189–191
troubleshooting. See Troubleshooting RAC

databases.
tuning. See Troubleshooting RAC databases.

RAC databases, analyzing with AWR
cluster interconnects, 210
global cache and enqueue services, 209–210,

268–273
global cache load statistics, 209
global cache times (immediate), 272
global cache transfer (immediate), 272
global cache transfer statistics, 271–272

476 Index

RAC databases, analyzing with AWR (continued)
global cache transfer times, 272
global CR served statistics, 271
global current served statistics, 271
global enqueue statistics, 271
hot blocks, 271
interconnect devices, 273
interconnect ping latency, 272
interconnect throughput by client, 273
RAC statistics (CPU), 208

RACcheck tool. See ORAchk utility.
RAM, SSDs, 389
Range predicate, bind sensitiveness with ACS, 52–55
Range-partitioned indexes, 432
RC (result cache) latches, 383
Reading. See I/O.
Read-only tolerance, migration strategy, 325
Real application clusters (RAC), definition, 275
Real-time vs. near real-time migration strategy, 325
Recover forward forever (RFF), 180–186
Recovery. See Backup and recovery.
Recovery catalogs, retaining data in, 191
Recovery Manager (RMAN). See RMAN (Recovery

Manager).
Recovery point objective (RPO), 174
Recovery time objective (RTO), 174
Recursive calls, analyzing, 218
Recursive calls, instance activity statistics, 229
Recursive CPU usage, analyzing, 218
Redo allocation latch, 382
Redo nowait percentage, analyzing, 202
Redo-related instance activity statistics, 229
REMAP_DATA parameter, 314
Renaming tables, 314
REPLICAT processes, 329
Reports, SQLT utility, 447–451
Reproducing a SQL plan baseline. See SQL plan

baseline, reproducing.
Resizing, dump files, 319
RESMGR:CPU Quantum wait events, 281
Resource limits, analyzing, 266
Resource management, 280–281, 283, 285–287
Restore points, guaranteed, 179
Restructure SQL statement, 293
Result cache (RC) latches, 383
Retention time, specifying, 20–21
Retention values, disabling autotuning of, 21
Reverse-key indexes, 430, 441
Reversibility, migration strategy, 325–326
RFF (recover forward forever), 180–186
RMAN (Recovery Manager). See also Backup and

recovery.
cloning databases, 331–333
memory-related parameters, 189
migration methods, 330–331
overview, 174–175
for RAC databases, 189–191
retaining data in a recovery catalog, 191
validating backups, 186–187

RMAN BACKUP FOR TRANSPORT command, 344
Rollback segments, hanging databases, 24
Root pages, 422
Rotational latency, 388
RPO (recovery point objective), 174
RTO (recovery time objective), 174

S
SAMPLE parameter, 311–313
SATA (serial advanced technology attachment), 395
SATA vs. PCIe SSD, 395
Schemas, copying between databases, 304–305
SCHEMAS parameter, 305–306
Scrambling sensitive data, 314
SECTION SIZE parameter, 188
SECUREFILE LOBs, migrating from BASICFILE LOBs

example, 12–14
poor INSERT performance, 17

SECUREFILE LOBs vs. BASICFILE, 8–11
Seek time, 388
Segment access statistics, 255–257
Sensitive data, scrambling, 314
Sequences and index contention, 442
Serial advanced technology attachment (SATA),

395
servctl config commands, 287–288
Server Control (SRVCTL) utility, 283
Service related statistics, 216–217
Session allocation latch, 382
Session cursor, instance activity statistics, 229–230
SET_GLOBAL_PREFS procedure, 358–359
SGA (system global area)

definition, 368
memory allocation, 157–158
memory summary, 264
target advisory, 245–246

sga_target parameter, 260–261
SGA_TARGET parameter tuning, 157–158
Shared pool latches, 378–379
Shared pool memory statistics, analyzing, 203
Shared pool statistics, 244–245
SHARED_POOL_RESERVED_SIZE parameter, 379
shared_pool_size parameter, 260–261
SHARED_SERVERS parameter, 243
Short stroking, 389
Sierra, Carlos, 94, 445
Simulator lru latch, 382
Single-level cell (SLC) SSDs, 391–392
Skip-scan operations, 430
SLC (single-level cell) SSDs, 391–392
Sleep, definition, 253
Sleep breakdown, 253–254
Sleep summary, 255
Snapshot too old (STO), 251
Soft parse percentage, analyzing, 203
Soft parsing, 375
Solid-state drives (SSDs). See SSDs (solid-state

drives).
SORT_AREA_SIZE parameter, 243

Index 477

Sorts, instance activity statistics, 230
Space, minimum percentage of free space, setting,

14–17
Spin gets, 369–370
Spin locks, 369
_spin_count parameter, 254
_spin_count variable, 384
Spinning, 383–385
SPM (SQL plan management). See also SQL plan

baseline.
bind variables, 86
demonstration, 83–86
forced-plan sharing issues, 86
getting started, 83–86
interaction with Oracle Optimizer. See Oracle

Optimizer, interaction with SPM.
performance issues, 86

SPM (SQL plan management), adaptive cursor
sharing

Oracle 11g Release 11.2.0.3.0, 123–127
Oracle 12c Release 12.1.0.1.0, 128–130
overview, 122–123

sqcreate.sql script, 446
sqcsilent.sql script, 446–447
sqdefparams.sql script, 446–447
SQL (structured query language)

analyzing. See AWR (Automatic Workload
Repository), SQL sections.

executing queries on a physical standby
database, 451

optimizing. See SQL Tuning Advisor.
performance improvement. See SQL Access

Advisor; SQL Performance Advisor.
profiles, 293
query response time, stabilizing. See SPM (SQL

plan management).
repairing. See SQL Repair Advisor.
source of, identifying, 218
uppercase vs. lowercase, 218
workload analysis. See SQL Access Advisor.

SQL Access Advisor
indexes, creating, 298
materialized views, creating, 298
in OEM 12c, 295–298
overview, 295
partition tables, 298
recommending new access structures, 296
from SQL Tuning Sets page, 296
in SQL*Plus, 298–299
structures runtime options, 297
verifying access structures, 296
workload source runtime options, 296

SQL Advisors Home, 290
SQL Performance Advisor, 301
SQL plan baseline, creating, 293. See also SPM

(SQL plan management).
capturing plans automatically, 87–90
loading plans from the cursor cache, 90–92

SQL plan baseline, faking, 92–96

SQL plan baseline, reproducing
adding trailing columns to the index, 112–113
changing the index type, 111–112
NLS_SORT parameter, 114–117
optimizer mode, selecting, 117–122
overview, 108–109
renaming the index, 109–111
reversing the index, 113–114
SQL plan is not reproducible, 104–108, 117–122

SQL plan management (SPM). See SPM (SQL plan
management).

SQL Repair Advisor, 300
SQL Tuning Advisor

on an individual SQL page, 292
invoking, 290
licensing, 291
on OEM 12c, 291–294
overview, 290–291
on a set of SQL statements, 292
in SQL*Plus, 294–295

SQL Tuning Advisor, recommendations for
comparing original and new explain plans, 294
creating a SQL plan baseline, 293
a restructure SQL statement, 293
SQL profiles, 293
stale statistics, 293

SQLFILE parameter, 308–309
sqlhc.sql utility, 447
SQL*Plus (PL/SQL API), with Data Pump, 317
SQLT utility

comparing query execution times, 451
creating reports, 447–451
creator of, 445
example, 452–453
executing queries on a physical standby

database, 451
identifying bind variables, 451
identifying the worst executing query, 452
installing, 446–447
overview, 445
trace analysis, 451–452

SQLT utility, methods
COMPARE, 451
TRCANLZR, 451
TRCASPLIT, 452
TRCAXTR, 452
XECUTE, 447, 448–451
XPLAIN, 451
XTRACT, 447–448
XTRSBY, 451
XTRSET, 452
XTRXEC, 451

SRVCTL (Server Control) utility, 283
SSDs (solid-state drives). See also DBFC (Database

Flash Cache).
ADO (Automatic Data Optimization), 410
ASM disk groups on Exadata, 416–418
compression, 410
and Exadata, 414–418

478 Index

SSDs (solid-state drives) (continued)
partitioning, 410
redo log optimization, 409–410
storage tiering, 410–414
tiering data with partitions, 410–414

SSDs (solid-state drives), options
disk sort, 406–408
full table scan performance, 404–405
full table scans, 405–406
hash operations, 406–408
indexed reads, 403
native caches, 405–406
OLTP read/write workload, 403–404
redo log optimization, 409–410

SSDs (solid-state drives), vs. HDDs
actuator arms, 388
blocks, 392
cells, 391–392
economics, 390–391
endurance, 392–393
flash SSD latency, 389–390
free lists, 393
garbage collection, 393–394
MLC (multi-level cell), 391–392
NAND flash, 389
overprovisioning, 393
overview, 388–389
pages, 392
platters, 388
RAM, 389
rotational latency, 388
SATA vs. PCIe SSD, 395
seek time, 388
short stroking, 389
SLC (single-level cell), 391–392
SSDs in Oracle databases, 395
storage hierarchy, 391–392
stripe magnetic disks, 389
TLC (triple-level cell), 391–392
transfer time, 388
wear leveling, 393–394
write performance, 392–393

Stale statistics, 293
Star configuration, 205
START_JOB program, 317
Statistics. See also AWR (Automatic Workload

Repository); Optimizer statistics.
buffer pool, 237–240
buffer pool waits, 247–248
buffer waits, 247–248
DBFC performance, 400–402
enqueue, 248–250
GC instance activity, 225
GC load, 209
GC transfer, 271–272
GTTS, automatic gathering, 358–359
instance recovery, 239
I/O, analyzing, 207–208
memory, 207–208

PGA aggregate target, 242
physical read/write, 227–228
service related, 216–217
shared pool, 244–245
shared pool memory, 203
significantly relevant samples, 259
stale, 293
tablespace I/O, 235–237
time model, 211–212
undo segment statistics, 250–251
VLDB and XLDB optimization, gathering,

168–169
Statistics, indexes

clustering factor, 435
depth, 435
distinct key, 435
leaf block, 435

Statistics, RAC databases
global cache load, 209
global cache transfer, 271–272
global CR served, 271
global current served, 271
global enqueue, 271
RAC statistics (CPU), 208

STATUS command, 319
STO (snapshot too old), 251
STOP_JOB command, 319
Storage tiering, SSDs (solid-state drives), 410–414
Stream pool size, analyzing, 264–266
Streams components, 264–266
Streams pool advisory, 245–246
streams_pool_size parameter, 261
STREAMS_POOL_SIZE parameter, 245–246
Stripe magnetic disks, 389
Structured query language (SQL). See SQL

(structured query language).
Structures runtime options, 297
Subsets of table data, exporting, 310–313
Summed dirty queue length, instance activity

statistics, 230
Synonyms, exporting, 307
System global area (SGA). See SGA (system global

area).
System statistics. See AWR (Automatic Workload

Repository).

T
Table fetch, instance activity statistics, 230–231
Table metadata, copying, 306
TABLE_EXISTS_ACTION=APPEND option, 320–321
Tables

cardinality estimation, 137–138
compression, 160. See also Compression.
copying between databases, 305
exporting subsets of, 310–313
importing partitioned as nonpartitioned, 313
importing partitions as individual tables, 313
renaming, 314
resynchronizing after migration, 347

Index 479

TABLES parameter, 305–306
Tablespace point-in-time recovery (TSPITR), 179
Tablespaces

copying, 306
corruption, undoing. See Undo tablespace

corruption.
excluding from recovery, 179
I/O statistics, 235–237
I/O stress, 237
moving, 413–414
temporary. See Temporary tablespaces.

Tablespaces, importing/exporting
consolidating, 315–317
names, specifying, 306, 314
resizing, 314

TABLESPACES parameter, 306
TDB (transportable database), 330, 333–336
TEMPFILE I/O waits, correcting. See also Temporary

tablespaces.
inappropriate extent sizing, 364
inappropriate use of GTTs, 364
undersized PGA, 359–363

Temporary tablespace groups (TTGs). See TTGs
(temporary tablespace groups).

Temporary tablespaces. See also TEMPFILE I/O
waits, correcting.

features, 353–354
global. See GTTs (global temporary tablespace

groups).
LMTTs (locally managed temporary

tablespaces), 354, 355
overview, 353–359
read-only databases, 354

Test and set instruction, 369
TFA (Transparent File Analyzer), 276
Thread activity, instance activity statistics, 233
Three A’s of troubleshooting, 277
Tiering data with partitions, SSDs (solid-state

drives), 410–414
Time model statistics, 211–212
Timing, analyzing, 266
TLC (triple-level cell) SSDs, 391–392
Trace analysis, SQLT utility, 451–452
Trace logs, 277, 278
TRACE parameter, 188
Transaction rollback, instance activity statistics, 231
Transactional capture migration, 327–329
transactions_per_rollback_segment parameter,

248, 250–251
Transfer time, SSDs, 388
Transparent File Analyzer (TFA), 276
Transportable database (TDB), 330, 333–336
Transportable tablespaces (TTS), 331, 336–340
TRANSPORT_TABLESPACES parameter, 306
TRCANLZR method, 451
TRCASPLIT method, 452
TRCAXTR method, 452
TRIM command, 393
Triple-level cell (TLC) SSDs, 391–392

Troubleshooting. See also AWR (Automatic
Workload Repository).

backup and recovery, 188
DEBUG parameter, 188
TRACE parameter, 188

Troubleshooting RAC databases. See also ASH
(Active Session History); AWR (Automatic
Workload Repository), RAC-specific pages.

ADDM (Automatic Database Diagnostic
Monitor), 277

ADR (Automatic Diagnostic Repository), 276–277
alert logs, 277
CHM (Cluster Health Monitor), 278
monitoring processes, 278
MOS (My Oracle Support) resources, 278–279
with OEM 12c, 282–283
operating system performance metrics,

capturing, 278
ORAchk health-check tool, 276
ORATOP utility, 278
OSWBB (OS Watcher Black Box), 278
private cluster interconnect, 277
ProcWatcher script, 278
RAC Configuration Audit Tool, 278
real-time monitoring, 278
TFA (Transparent File Analyzer), 276
three A’s, 277
trace logs, 277, 278

Troubleshooting RAC databases, best practices
Active Data Guard, 279
AMM (Automatic Memory Management), 281
antivirus software, 281
backup and recovery strategies. See Backup and

recovery, backup strategies.
configuring block-checking parameters, 279
configuring failover, 280
CPU management, 281
EtherChannel, 279
Exachk utility, 280
Flashback options, 280
MAA (Maximum Availability Architecture)

guidelines, 279–280
maintaining current versions, 280
memory management, 281
parallelization, 282
partitioning, 282
periodic health checks, 280
protecting against data block corruption, 279
protecting against logical corruption, 280
resource management, 280–281
third-party monitoring tools and utilities, 281
tuning RAC parameters, 281–282
undo retention, setting, 280

Troubleshooting RAC databases, utilities and
commands

administrative tasks, 283
checking Clusterware componentry status,

283–284
configuration information, displaying, 287–288

480 Index

Troubleshooting RAC databases, utilities and
commands (continued)

crsctl check commands, 283
crsctl get commands, 284–285
crsctl query commands, 284
crsctl status commands, 284–286
CRSCTL (Oracle Clusterware Control) utility, 283
resource management, 283, 285–287
servctl config commands, 287–288
SRVCTL (Server Control) utility, 283

TSPITR (tablespace point-in-time recovery), 179
TTGs (temporary tablespace groups), 158

adding an existing LMTT, 355
creating, 355
description, 158, 355
multiple, 355

TTS (transportable tablespaces), 331, 336–340
_TUNED_UNDORETENTION parameter, 21

U
UNDO activation, 357–358
Undo Advisor, 21
Undo block corruption, 31–32
Undo change vector, instance activity statistics,

231–232
Undo header corruption, 31–32
Undo retention, setting, 280
Undo segment statistics, 250–251
Undo tablespace corruption

autotuning retention values, disabling, 21
data dictionary object block corruption, 30–31
detecting, 24–26
_HIGHTHRESHOLD_UNDORETENTION parameter, 21
logical corruption, 25, 28–29
media corruption, 29–32
memory corruption, 24–25, 26
physical corruption, 25
preventing, 24–26
repairing, 24–26
retention time, specifying, 20–21
_TUNED_UNDORETENTION parameter, 21
Undo Advisor, 21
undo block corruption, 31–32
undo header corruption, 31–32
_UNDO_AUTOTUNE parameter, 21
UNDO_RETENTION parameter, 20–21
UNDO_TABLESPACE parameter, 19

_UNDO_AUTOTUNE parameter, 21
UNDO_RETENTION parameter, 20–21
UNDO_TABLESPACE parameter, 19
Unique indexes, 432
Unsafe bind variables, 220
Unselective indexes, hiding, 439–441
Unused block compression, 176
Upgrading databases, 321–322
User I/O wait time, instance activity statistics, 232
USER_ADVISOR_ACTIONS view, 298–299
USER_ADVISOR_SQLA_WK_STMTS view, 298–299
USER_ADVISOR_TASKS view, 294

V
V$ADVISOR_PROGRESS view, 294
VALIDATE BACKUPSET command, 187
Validating backups, 186–187
V$BACKUP_ASYNC_IO view, 188
V$BACKUP_SYNC_IO view, 188
Verifying database transportability, 336
Version control

exporting from a higher version to a lower one,
322

maintaining current versions, 280
Version count, 220
V$LATCH view, 372
VLDBs (very large databases)

ADO (Automatic Data Optimization), 160–162
Advanced Index Compression, 162
Advanced Row Compression, 160
basic configuration, 154–162
bigfile tablespaces, 156–157
creating, 154–155
data compression, 159–160
data partitioning, 158–159
data warehouse templates, 154–155
HCC (Hybrid Columnar Compressions), 160
Heat Map feature, 160–162
index partitioning, local vs. global, 159
limiting the number of datafiles, 156–157
memory resources, 157–158
optimal data block size, 155–156
Oracle Advanced Compression, 160
overview, 153–154
PGA (program global area), 157–158
SGA (system global area), 157–158
table compression, 160
temporary tablespace groups, 158

VLDBs (very large databases), gathering optimizer
statistics

backup and recovery, 170–172
gathering statistics concurrently, 168–169
getting ESTIMATE_PERCENT value, 170
incremental statistics synopsis, 166–168
interobject parallelism, 168

VLDBs (very large databases), performance tuning
common issues, 162
indexes and data loading, example, 164–165
maximizing resource utilization, 165–166
parallelism, 165–166
suboptimal application coding, example,

162–163
V$MEMORY_TARGET_ADVICE view, 157–158
V$PGA_TARGET_ADVICE view, 157–158
V$SGA_TARGET_ADVICE view, 157–158

W
Wait event histograms, 215–216
Wait events, analyzing, 203–206
Wait for other processes, 239
WAIT_FOR_JOB program, 317
Wear leveling, 393–394

Index 481

Window of inopportunity, 325
Work area instance activity statistics, 232
Workload source runtime options, 296
write complete waits, 238–239
Writing. See I/O.

X
XA (eXtended Architecture), hanging databases,

22–24
XA (X/Open XA), distributed transaction issues

common issues, 456–457
free global transaction table entry wait event,

460–462
ghost transactions, 457–462
hanging transactions, 460–462
information exists, transaction missing, 457–458
missing transactions, 457–458
monitoring distributed transactions, 462–464
ORA-1591 has no corresponding information,

458–460
repairing, 456–462
transaction hangs after COMMIT or ROLLBACK,

460–462
XECUTE method, 447, 448–451
XLDBs (extremely large databases)

ADO (Automatic Data Optimization), 160–162
Advanced Index Compression, 162
Advanced Row Compression, 160
basic configuration, 154–162
bigfile tablespaces, 156–157
creating, 154–155
data compression, 159–160
data partitioning, 158–159
data warehouse templates, 154–155

HCC (Hybrid Columnar Compressions), 160
Heat Map feature, 160–162
index partitioning, local vs. global, 159
limiting the number of datafiles, 156–157
memory resources, 157–158
optimal data block size, 155–156
Oracle Advanced Compression, 160
overview, 153–154
PGA (program global area), 157–158
SGA (system global area), 157–158
table compression, 160
temporary tablespace groups, 158

XLDBs (extremely large databases), gathering
optimizer statistics

backup and recovery, 170–172
gathering statistics concurrently, 168–169
getting ESTIMATE_PERCENT value, 170
incremental statistics synopsis, 166–168
interobject parallelism, 168

XLDBs (extremely large databases), performance
tuning

common issues, 162
indexes and data loading, example, 164–165
maximizing resource utilization, 165–166
parallelism, 165–166
suboptimal application coding, example,

162–163
XPLAIN method, 451
XTRACT method, 447–448
XTRSBY method, 451
XTRSET method, 452
XTRXEC method, 451
XTTS (cross-platform transportable tablespaces),

331, 340–343

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	About the Authors
	About the Technical Reviewers and Contributors
	Chapter 16 Dealing with Latch and Mutex Contention
	Overview of Latch and Mutex Architecture
	What Are Latches?
	What Are Mutexes?
	Latch and Mutex Internals

	Measuring Latch and Mutex Contention
	Identifying Individual Latches
	Drilling into Segments and SQLs

	Latch and Mutex Scenarios
	Library Cache Mutex Waits
	Library Cache Pin
	Shared Pool Latch
	Cache Buffers Chains Latch
	Other Latch Scenarios

	Intractable Latch Contention
	Fine Tuning Latch Algorithms

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

