
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134398983
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134398983
https://plusone.google.com/share?url=http://www.informit.com/title/9780134398983
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134398983
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134398983/Free-Sample-Chapter

Learning WatchKit
Programming

Second Edition

The Addison-Wesley Learning Series is a collection of hands-on program-
ming guides that help you quickly learn a new technology or language so you
can apply what you’ve learned right away.

Each title comes with sample code for the application or applications built in
the text. This code is fully annotated and can be reused in your own projects
with no strings attached. Many chapters end with a series of exercises to
encourage you to reexamine what you have just learned, and to tweak or
adjust the code as a way of learning.

Titles in this series take a simple approach: they get you going right away and
leave you with the ability to walk off and build your own application and apply
the language or technology to whatever you are working on.

Visit informit.com/learningseries for a complete list of available publications.

Addison-Wesley Learning Series

Learning WatchKit
Programming

A Hands-On Guide to Creating
watchOS 2 Applications

Second Edition

Wei-Meng Lee

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town

Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City

Sao Paulo • Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising out
of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales
department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2015952426

Copyright © 2016 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copy-right, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information regarding permissions, request
forms and the appropriate contacts within the Pearson Education Global Rights & Permissions
Department, please visit www.pearsoned.com/permissions/.

Apple, the Apple logo, Apple TV, Apple Watch, Cocoa, Cocoa Touch, eMac, FaceTime, Finder,
iBook, iBooks, iCal, Instruments, iPad, iPad Air, iPad mini, iPhone, iPhoto, iTunes, the iTunes logo,
iWork, Keychain, Launchpad, Lightning, LocalTalk, Mac, the Mac logo, MacApp, MacBook, MacBook
Air, MacBook Pro, MacDNS, Macintosh, Mac OS, Mac Pro, MacTCP, the Made for iPad logo, the
Made for iPhone logo, the Made for iPod logo, Metal, the Metal logo, the Monaco computer font,
MultiTouch, the New York computer font, Objective-C, OpenCL, OS X, Passbook, Pixlet, PowerBook,
Power Mac, Quartz, QuickDraw, QuickTime, the QuickTime logo, Retina, Safari, the Sand computer
font, Shake, Siri, the Skia computer font, Swift, the Swift Logo, the Textile computer font, Touch ID,
TrueType, WebObjects, WebScript, and Xcode are trademarks of Apple, Inc., registered in the
United States and other countries. OpenGL and the logo are registered trademarks of Silicon
Graphics, Inc. Intel, Intel Core, and Xeon are trademarks of Intel Corp. in the United States and
other countries.

ISBN-13: 978-0-13-439898-3
ISBN-10: 0-13-439898-X

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, December 2015

Editor-in-Chief
Mark L. Taub

Senior Acquisitions
Editor
Trina MacDonald

Development Editor
Sheri Replin

Managing Editor
John Fuller

Full-Service
Production Manager
Julie B. Nahil

Copy Editor
Barbara Wood

Indexer
Jack Lewis

Proofreader
Anna Popick

Technical Reviewers
Mark H. Granoff
Chaim Krause
Niklas Saers

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
The CIP Group

http://www.pearsoned.com/permissions/

❖

I dedicate this book with love to my family, and to my dearest wife,
 who has had to endure my irregular work schedule and take care

 of things while I was trying to meet writing deadlines!

❖

This page intentionally left blank

Contents at a Glance

Preface xiii
Acknowledgments xvii
About the Author xix

1 Getting Started with WatchKit Programming 1

2 Apple Watch Interface Navigation 17

3 Responding to User Actions 49

4 Displaying and Gathering Information 73

5 Accessing the Apple Watch Hardware 125

6 Programming Complications 137

7 Interfacing with iOS Apps 161

8 Displaying Notifications 205

9 Displaying Glances 237

Index 253

This page intentionally left blank

Contents

Preface xiii
Acknowledgments xvii
About the Author xix

1 Getting Started with WatchKit Programming 1
Specifications of the Apple Watch 1
Getting the Tools for Development 2
Understanding the WatchKit App Architecture 3

Deploying Apple Watch Apps 4
Interaction between the Apple Watch and iPhone 5

Types of Apple Watch Applications 6
Hello, World! 7

Creating an iPhone Project 7
Examining the Storyboard 10
WatchKit App Lifecycle 10
Modifying the Interface Controller 13
Running the Application on the Simulator 13

Summary 15

2 Apple Watch Interface Navigation 17
Interface Controllers and Storyboard 17

Lifecycle of an Interface Controller 19
Navigating between Interface Controllers 22

Hierarchical Navigation 23
Page-Based Navigation 26
Passing Data between Interface Controllers 27
Customizing the Title of the Chevron or
Cancel Button 33
Navigating Using Code 34
Presenting a Series of Pages 37
Changing the Current Page to Display 39
Returning Data from an Interface Controller 42

Summary 48

x Contents

3 Responding to User Actions 49
Using the Tap Gesture to Interact with Controls 49

Button 50
Switch 62
Slider 65
Alerts and Action Sheets 68

Summary 72

4 Displaying and Gathering Information 73
Displaying Information 73

Label 73
Image 74
Table 80
Picker 90
Playing Media Files 100

Gathering Information 106
Getting Text Inputs 106
Getting Emojis 109

Laying Out the Controls 111
Force Touch 115

Displaying a Context Menu 115
Adding Menu Items Programmatically 121

Summary 123

5 Accessing the Apple Watch Hardware 125
Making Phone Calls and Sending Messages 125
Recording Audio 127
Digital Crown 130
Accelerometer 131
Taptic Engine 134
Summary 136

6 Programming Complications 137
Introducing the ClockKit Framework 138

Placement for Complications 139
Using the Template Classes 140

xiContents

Building a Movie Showtime Complication Example 141
Creating the Project 141
Selecting Complication Families Support 143
Creating the Complication Placeholder
Template 143
Setting Privacy Behavior 149
Populating the Complications with Real Data 150
Time Travel 154
Setting the Refresh Frequency 159

Summary 159

7 Interfacing with iOS Apps 161
Introducing the Watch Connectivity Framework 161

Types of Communication 162
Using the Watch Connectivity Framework 165
Comparing the Different Modes 183

Connecting to the Outside World 185
Getting Location Data 185
Display Map 192
Accessing Web Services 194

Saving Data 198
Creating the Project 198
Writing to Files 199
Using NSUserDefaults 202

Summary 203

8 Displaying Notifications 205
What Is a Notification? 205
Types of Notifications on the Apple Watch 208

Implementing the Short-Look Interface 209
Implementing the Long-Look Interface 225

Summary 235

9 Displaying Glances 237
What Is a Glance? 237
Implementing Glances 238

Customizing the Glance 240
Testing the Glance 244

xii Contents

Making the Glance Useful 244
Implementing Background Fetch 245

Updating the Glance 249
Summary 252

Index 253

xiii

Preface

Welcome to Learning WatchKit Programming, Second Edition!
This is an exciting time to be a programmer, as we are witnessing a new era of wear-

ables. Although the Apple Watch is not the first wearable device in the market, its launch
signified the intention of Apple to enter the wearable market in a big way. After success-
fully changing various industries—music, computer, phone, and mobile computing—
Apple looks set to change the wearable industry. And nobody is taking this lightly.

As with the iPhone, much of the usefulness and functionality of the Apple Watch
device actually come from the creativity of the third-party developers. In the early days
of the iPhone, Apple restricted all third-party apps to web applications, as it wanted to
retain the monopoly on developing natively for the device. However, due to the over-
whelming protests of developers, Apple finally relented by releasing an SDK to support
third-party apps. It was this decision that changed the fate of the iPhone; the iPhone
would never have been so successful without the ability to support third-party apps.

When the Apple Watch was announced, Apple was quick to learn its lesson and real-
ized that the success of the Apple Watch largely depends on the availability of apps that
support it. Hence, before the release of the Apple Watch, the SDK was made available
to developers to have a hand in developing Apple Watch apps.

Barely two months after the Apple Watch was made available for sale, Apple
announced the second version of the Apple Watch OS, aptly named watchOS 2.
Unsurprisingly, watchOS 2 now supports native apps and comes with a slew of new
features.

The book you are holding in your hands right now (or reading on your phone or
tablet) is a collection of tutorials that help you navigate the jungle of Apple Watch pro-
gramming. This book contains all the fundamental topics that you need to get started
in Apple Watch programming. In particular, this second edition has been fully updated
to cover watchOS 2 programming.

Because this is a book on Apple Watch programming, I make a couple of assump-
tions about you, the reader:

 n You should already be familiar with the basics of developing an iOS application.
In particular, concepts like outlets and actions should not be new to you.

 n You should be comfortable with the Swift programming language, but see the
next section on how to get started with Swift if you are new to it.

xiv Preface

What You’ll Need
To get the most out of this book, note the following:

 n You need a Mac, together with Xcode.
 n Your Mac should be running at least Mac OS X Yosemite (v10.10) or later.
 n You can download the latest version of Xcode from the Mac App Store. All of the

code samples for this book have been tested against Xcode 7.
 n If you plan to test your apps on a real device, you need to register to become a

paying Apple developer (https://developer.apple.com/programs/). The program
costs $99 per year for individuals. Once registered, you can register your Apple
Watch’s UDID with Apple (necessary for testing on Apple Watch). The Apple Watch
works only with iPhone 5, iPhone 5c, iPhone 5s, iPhone 6, iPhone 6 Plus, iPhone 6s,
and iPhone 6s Plus (or newer versions of the iPhones).

 n Most of the code samples in this book can be tested and run on the iPhone
Simulator without the need for a real device or Apple Watch. However, for some
code examples, you need access to a real Apple Watch (for example, to access the
hardware features like accelerometer, microphone, etc.).

 n A number of examples in this book require an Internet connection in order
to work, so ensure that you have an Internet connection when trying out the
examples.

 n All of the examples in this book are written in Swift 2.0. If you are not familiar with
Swift, you can refer to Apple’s web page on Swift at https://developer.apple.com/
swift/resources/.

How This Book Is Organized
This book is styled as a tutorial. You try out the examples as I explain the concepts.
This is a proven way to learn a new technology, and I strongly encourage you to type
in the code as you work on the examples.

 n Chapter 1, “Getting Started with WatchKit Programming”: In this chapter,
you learn about the architecture of Apple Watch applications and how it ties in
with your iOS apps. Most importantly, you get your chance to write a simple
Apple Watch app and deploy it onto the Apple Watch Simulator.

 n Chapter 2, “Apple Watch Interface Navigation”: In this chapter, you dive
deeper into how your Apple Watch application navigates between multiple
screens. You get to see how data is passed between screens and how to customize
the look and feel of each screen.

https://developer.apple.com/programs/
https://developer.apple.com/swift/resources/
https://developer.apple.com/swift/resources/

xvPreface

 n Chapter 3, “Responding to User Actions”: Designing the user interface (UI) for
your Apple Watch application is similar to designing for iPhone apps. However,
space is at a premium on the Apple Watch, and every millimeter on the screen
must be put to good use in order to convey the exact intention of your app. In
this chapter, you learn how to use the various UI controls in the Apple Watch to
build your application. You will start off with the controls with which the user
interacts.

 n Chapter 4, “Displaying and Gathering Information”: While Chapter 3
covers the various controls with which the user interacts through the tap gesture,
this chapter continues to explore the various controls available in the WatchKit
framework, focusing on controls that display information, as well as controls that
gather information.

 n Chapter 5, “Accessing the Apple Watch Hardware”: In watchOS 1, Apple
did not provide third-party developers access to the various hardware features of
the Apple Watch, such as accelerometer, microphone, and Taptic Engine.
However, in watchOS 2, Apple has exposed some of these features to developers
so that they can create more exciting watch apps. In this chapter, you learn how
to access some of these hardware features and see how they can be useful to the
apps you are building.

 n Chapter 6, “Programming Complications”: A complication is a function on
a timepiece that does more than just tell the time. Complications on a timepiece
include alarms, tachymeters, chronographs, calendars, and so on. In watchOS 2,
third-party apps can now also display data in watch face complications. In this
chapter, you learn the process of creating an application that displays complica-
tion data.

 n Chapter 7, “Interfacing with iOS Apps”: This chapter discusses the Watch
Connectivity Framework, a set of APIs that allow the containing iOS app to
communicate with the watch app (and vice versa). In addition to discussing how
apps intercommunicate, this chapter also discusses how to use location services in
your watch app, as well as how to consume web services. Last, but not least, this
chapter ends with a discussion on persisting data on your watch.

 n Chapter 8, “Displaying Notifications”: In this chapter, you learn how to
display notifications on your Apple Watch. Notifications received by the iPhone
are sent to the Apple Watch, and you have the chance to customize the notifica-
tions so that you can display their essence quickly to the user.

 n Chapter 9, “Displaying Glances”: Glances on the Apple Watch provide the
user a quick way to gather information from apps. For example, Instagram’s
glance on the Apple Watch may show the most recently shared photo, and
Twitter may show the latest trending tweets. In this chapter, you learn how to
implement glances for your own apps.

xvi Preface

About the Sample Code
The code samples in this book are written to provide the simplest way to understand
core concepts without getting bogged down with details like beautifying the UI or
detailed error checking. The philosophy is to convey key ideas in the simplest manner
possible. In real-life apps, you are expected to perform detailed error handling and
to create a user-friendly UI for your apps. Although I do provide several scenarios in
which a certain concept is useful, it is ultimately up to you, the reader, to exercise your
creativity to put the concepts to work, and perhaps create the next killer app.

Getting the Sample Code
To download the sample code used in this book, visit the book’s web page on informIT.com
at http://informit.com/title/9780134398983, click the Extras tab, and register your book.

Contacting the Author
If you have any comments or questions about this book, drop me an email at
weimenglee@learn2develop.net, or stop by my web site at http://learn2develop.net.

http://informit.com/title/9780134398983
http://learn2develop.net

xvii

Acknowledgments

Writing a book on emerging technology is always an exciting and perilous journey.
On one end, you are dealing with the latest developments, going where not many have
ventured, and on the other end you are dealing with many unknowns. To endure this
journey, you need a lot of help and family support. I want to take this opportunity to
thank the people who make all this happen.

I am indebted to Trina MacDonald, senior acquisitions editor at Pearson, for giving
me the chance to work on this book. She has always been supportive of my proposals
for new titles, and I am really glad that we have the chance to work together on this
project. Thank you very much for the opportunity and guidance, Trina! I hope I did
not disappoint you.

I want to thank the many heroes working behind the scenes—copy editor Barbara
Wood; production editor Julie Nahil; and technical reviewers Mark H. Granoff, Chaim
Krause, and Niklas Saers—for turning the manuscript into a book that I am proud of!

Last, but not least, I want to thank my family for all the support that they have
always given me. Without their encouragement, this book would never have been
possible.

This page intentionally left blank

xix

About the Author

Wei-Meng Lee is a technologist and founder of Developer Learning Solutions
(http://learn2develop.net), a technology company specializing in hands-on training
on the latest web and mobile technologies. Wei-Meng speaks regularly at interna-
tional conferences and has authored and coauthored numerous books on .NET, XML,
Android, and iOS technologies. He writes extensively for informIT.com and
mobiForge.com.

http://learn2develop.net

This page intentionally left blank

3
Responding to User

Actions

If you haven’t found it yet, keep looking. Don’t settle. As with all
matters of the heart, you’ll know when you find it. And like any
great relationship, it just gets better and better as the years roll on.

Steve Jobs

Designing the user interface (UI) for your Apple Watch application is similar to designing
for the iPhone. However, space is at a premium on the Apple Watch, and every millimeter
on the screen must be put to good use in order to convey the exact intention of your app.

The UI of an Apple Watch application is represented by various controls (commonly
known as views in iOS programming), and they are divided into two main categories:

 n Responding to user actions: Users directly interact with these controls to per-
form some actions. Examples of such controls are Button, Switch, Slider, Picker,
and Table.

 n Displaying information: These controls mainly display information to the
user. Examples of such controls are Label, Image, and Table.

In this and the next chapter, you learn how to use these various controls to build the
UI of your application.

Using the Tap Gesture to Interact with Controls
One key way to interact with the Apple Watch is to use the tap gesture. You can tap
the following controls:

 n Button
 n Switch
 n Slider
 n Table

50 Chapter 3 Responding to User Actions

Let’s take a more detailed look at these objects!

Note
I cover the Table control in the next chapter where we discuss controls that display
information.

Button
The Button control is the most direct way of interacting with an Apple Watch applica-
tion. A button can display text as well as a background image. Tapping a button triggers
an action on the Interface Controller where you can write the code to perform the
appropriate action.

Adding a Button to an Interface Controller
In this section, you create a project that uses a Button control. Subsequent sections
show you how to customize the button by creating an action for it and then displaying
its title using custom fonts.

 1. Using Xcode, create a new iOS App with WatchKit App project and name it
Buttons. Uncheck the option Include Notification Scene so that we can keep
the WatchKit project to a bare minimum.

 2. Select the Interface.storyboard file to edit it in the Storyboard Editor.

 3. Drag and drop a Button control onto the storyboard, as shown in Figure 3.1.

Figure 3.1 Adding a Button control to the Interface Controller

 4. In the Attributes Inspector window, set the Title attribute to Play (see Figure 3.2).

51Using the Tap Gesture to Interact with Controls

Figure 3.2 Changing the title of the button

 5. Select the WatchKit App scheme and run the project on the Apple Watch Simu-
lator. You should see the button on the Apple Watch Simulator (see Figure 3.3).
You can click it (or tap it on a real Apple Watch).

Figure 3.3 Testing the button on the Apple Watch Simulator

Creating an Action for a Button
For the Button control to do anything useful, you need to create an action for it so that
when the user taps it, your application performs some actions. To create this action,
follow these steps:

 1. In the Storyboard Editor, select the View | Assistant Editor | Show Assistant
Editor menu item to show the InterfaceController.swift file.

 2. Control-click the Button control in the Interface Controller and drag it over the
InterfaceController class (see Figure 3.4).

52 Chapter 3 Responding to User Actions

Figure 3.4 Creating an action for the button

 3. Create an action for the button and name it btnPlay (see Figure 3.5). Click Connect.

Figure 3.5 Naming the action

 4. You now see the action created in the InterfaceController.swift file:

import WatchKit

import Foundation

class InterfaceController: WKInterfaceController {

 @IBAction func btnPlay() {

 }

 5. Add the following statement in bold to the InterfaceController.swift file:

 @IBAction func btnPlay() {

 print("The button was tapped!")

 }

 6. Select the WatchKit App scheme and run the project on the Apple Watch Simulator.
Click the Play button and observe the statement printed in the Output window
(see Figure 3.6).

53Using the Tap Gesture to Interact with Controls

Figure 3.6 Clicking the button fires the action

Creating an Outlet for a Button
You can also programmatically change the title of the Button control during runtime.
To do so, you need to create an outlet for the button:

 1. With the Assistant Editor shown, control-click the button and drag it over the
InterfaceController.swift file. Name the outlet button1 (see Figure 3.7) and
click Connect.

Figure 3.7 Creating an outlet for the button

 2. This creates an outlet in the InterfaceController.swift file:

import WatchKit

import Foundation

class InterfaceController: WKInterfaceController {

@IBOutlet var button1: WKInterfaceButton!

@IBAction func btnPlay() {

print("The button was tapped!")

 }

54 Chapter 3 Responding to User Actions

 3. Add the following statements in bold to the InterfaceController.swift file:

override func awakeWithContext(context: AnyObject?) {

 super.awakeWithContext(context)

 // Configure interface objects here.

 button1.setTitle("Play Video")

 }

Note
Observe that, while you can change the title of a button, you cannot get the title of
the button programmatically.

 4. Select the WatchKit App scheme and run the project on the Apple Watch Simulator.
You should now see the title of the button changed to “Play Video” (see Figure 3.8).

Figure 3.8 Changing the title of the button dynamically

Displaying Attributed Strings
The Button control supports attributed strings. Attributed strings allow you to specify
different attributes (such as color, font, size, etc.) for different parts of a string. In the
following steps, you display the title of the button using different colors:

 1. Add the following statements in bold to the InterfaceController.swift file:

 override func awakeWithContext(context: AnyObject?) {

 super.awakeWithContext(context)

 // Configure interface objects here.

 // button1.setTitle("Play Video")

 let str = NSMutableAttributedString(

 string: "Hello, Apple Watch!")

55Using the Tap Gesture to Interact with Controls

//------display the Hello in yellow---

 str.addAttribute(NSForegroundColorAttributeName,

 value: UIColor.yellowColor(),

 range: NSMakeRange(0, 5))

//---display the , in red---

 str.addAttribute(NSForegroundColorAttributeName,

 value: UIColor.redColor(),

 range: NSMakeRange(5, 1))

//---display Apple Watch! in green---

 str.addAttribute(NSForegroundColorAttributeName,

 value: UIColor.greenColor(),

 range: NSMakeRange(7, 12))

button1.setAttributedTitle(str)

 }

 2. Select the WatchKit App scheme and run the project on the Apple Watch Simu-
lator. You should see the title of the button displayed in multiple colors, as shown
in Figure 3.9 (readers of the print book will not see the colors in the figure).

Figure 3.9 Displaying the button title with mixed colors

Using Custom Fonts
Using attributed strings, you can also use different fonts for parts of a string. To illus-
trate this, let’s modify the example in the previous section to display part of the button’s
title using a custom font.

For this example, use the Impact font that is installed on your Mac. The Impact font
is represented using the Impact.ttf file located in the /Library/Fonts/ folder.

 1. Drag and drop a copy of the Impact.ttf file onto the Extension project in Xcode.

 2. You are asked to choose a few options. Select the options shown in Figure 3.10.
This adds the Impact.ttf file onto the Extension and WatchKit App projects.

56 Chapter 3 Responding to User Actions

Figure 3.10 Adding the font file to the Extension and the WatchKit App

Note
Remember to add the font file to both the WatchKit Extension and WatchKit App.
Also, be aware that adding custom fonts to the project adds considerable size and
memory usage to your watch app. So, try to use the system font unless you have a
very good reason not to.

 3. Figure 3.11 shows the Impact.ttf file in the project.

Figure 3.11 The font file in the project

57Using the Tap Gesture to Interact with Controls

 4. Add a new key named UIAppFonts to the Info.plist file located in the Extension
and set its Item 0 to Impact.ttf (see Figure 3.12).

Note
If your Info.plist file does not show the items as shown in Figure 3.12, simply right-
click any of the items in it and select Show Raw Keys/Values.

Figure 3.12 Specifying the font filename in the Extension project

 5. Likewise, add a new key named UIAppFonts to the Info.plist file located in the
WatchKit App and set its Item 0 to Impact.ttf (see Figure 3.13).

Figure 3.13 Specifying the font filename in the WatchKit app project

58 Chapter 3 Responding to User Actions

 6. Add the following statements in bold to the InterfaceController.swift file:

override func awakeWithContext(context: AnyObject?) {

super.awakeWithContext(context)

// Configure interface objects here.

// button1.setTitle("Play Video")

let str = NSMutableAttributedString(

 string: "Hello, Apple Watch!")

 //---display the Hello in yellow---

 str.addAttribute(NSForegroundColorAttributeName,

 value: UIColor.yellowColor(),

 range: NSMakeRange(0, 5))

//---display Hello using the Impact font, size 22---

 str.addAttribute(NSFontAttributeName,

 value: UIFont(name: "Impact", size: 22.0)!,

 range: NSMakeRange(0, 5))

//---display the , in red---

 str.addAttribute(NSForegroundColorAttributeName,

 value: UIColor.redColor(),

 range: NSMakeRange(5, 1))

//---display Apple Watch! in green---

 str.addAttribute(NSForegroundColorAttributeName,

 value: UIColor.greenColor(),

 range: NSMakeRange(7, 12))

button1.setAttributedTitle(str)

 }

 7. Select the WatchKit App scheme and run the project on the Apple Watch Simula-
tor. You should now see “Hello” displayed using the Impact font (see Figure 3.14).

Figure 3.14 Displaying “Hello” using a custom font

59Using the Tap Gesture to Interact with Controls

Note
Once you have added a custom font to your project, you can use the font directly in Interface
Builder by setting the Font attribute of a control to Custom and then selecting the font that
you want to use in the Family attribute.

Getting the Font Name
One common problem in dealing with fonts is that the filename of the custom font that you
are using is not always the same as the font name. The following code snippet allows you
to print out the name of each font family and its corresponding font name:

 for family in UIFont.familyNames() {

 print(family)

 for name in UIFont.fontNamesForFamilyName(family as String) {

 print("--\(name)")

 }

 }

This code snippet prints the output as shown in Figure 3.15. For example, if you want
to use the Helvetica Neue font, you have to specify in your code one of the font names
printed: HelveticaNeue-Italic, HelveticaNeue-Bold, etc.

Figure 3.15 Printing out the font families and their associated font names

60 Chapter 3 Responding to User Actions

Changing the Background Image of Button
Besides displaying text, the Button control can also display a background image. The
following exercise shows you how to add an image to the project and use it as the back-
ground of a button:

 1. Drag and drop the image named play.png onto the Assets.xcassets item in the
WatchKit App (see Figure 3.16).

Note
You can find a copy of this image in the source code download for this book.

Figure 3.16 Adding an image to the project

 2. In the Attributes Inspector window for the play.png image, check the watchOS
checkbox (see Figure 3.17, right). Then, move the play.png into the box labeled

Figure 3.17 Specifying device-specific images to use

61Using the Tap Gesture to Interact with Controls

2× (see Figure 3.17, middle). This signifies that this image will be displayed for
all sizes of Apple Watch. If you want to use different images for the 38mm Apple
Watch and the 42mm Apple Watch, you can drag and drop different images onto
the boxes labeled “38 mm 2×” and “42 mm 2×.” For this example, you will use
the same image for the two different watch sizes.

 3. In the InterfaceController.swift file, add the following statements in bold:

 override func awakeWithContext(context: AnyObject?) {

 super.awakeWithContext(context)

 // Configure interface objects here.

 // button1.setTitle("Play Video")

 /*

 let str = NSMutableAttributedString(

 string: "Hello, Apple Watch!")

 //---display the Hello in yellow---

 str.addAttribute(NSForegroundColorAttributeName,

 value: UIColor.yellowColor(),

 range: NSMakeRange(0, 5))

 //---display Hello using the Impact font, size 22---

 str.addAttribute(NSFontAttributeName,

 value: UIFont(name: "Impact", size: 22.0)!,

 range: NSMakeRange(0, 5))

 //---display the , in red---

 str.addAttribute(NSForegroundColorAttributeName,

 value: UIColor.redColor(),

 range: NSMakeRange(5, 1))

 //---display Apple Watch! in green---

 str.addAttribute(NSForegroundColorAttributeName,

 value: UIColor.greenColor(),

 range: NSMakeRange(7, 12))

 button1.setAttributedTitle(str)

 */

 button1.setBackgroundImageNamed("play")

 }

 4. Select the WatchKit App scheme and run the project on the Apple Watch Simula-
tor. You should now see the image on the button (see Figure 3.18).

62 Chapter 3 Responding to User Actions

Figure 3.18 Displaying an image on the button

Do not use the setBackgroundImage: method by passing it a UIImage
instance, like this:

button1.setBackgroundImage(UIImage(named: "play"))

This is because the UIImage class looks for the specified image ("play") in
the main bundle (the Extension). And because the play.png file is in the Watch-
Kit App, the image cannot be found and, therefore, the image will not be set
successfully.

 5. You can also set the background image of the button in the storyboard via the
Background attribute in the Attributes Inspector window.

Switch
The Switch control allows the user to toggle between the ON and OFF states. It is
commonly used in cases where you allow users to enable or disable a particular setting.
In the following example, you will create a project and see how the Switch control
works:

 1. Using Xcode, create a new iOS App with WatchKit App project and name it
Switches. Uncheck the option Include Notification Scene so that we can keep
the WatchKit project to a bare minimum.

 2. Select the Interface.storyboard file to edit it in the Storyboard Editor.

 3. Drag and drop a Switch control onto the default Interface Controller (see
Figure 3.19).

 4. In the Attributes Inspector window, set the Title attribute of the Switch control
to Aircon (see Figure 3.20).

63Using the Tap Gesture to Interact with Controls

Figure 3.19 Adding a Switch control to the Interface Controller

Figure 3.20 Changing the title of the Switch control

 5. Add a Label control to the Interface Controller (see Figure 3.21).

Figure 3.21 Adding a Label control to the Interface Controller

64 Chapter 3 Responding to User Actions

 6. Create an outlet for the Switch control and name it switch. Likewise, create
an outlet for the Label control and name it label. Then, create an action for the
Switch control and name it switchAction. The InterfaceController.swift file
should now look like this:

import WatchKit

import Foundation

class InterfaceController: WKInterfaceController {

 @IBOutlet var `switch`: WKInterfaceSwitch!

 @IBOutlet var label: WKInterfaceLabel!

 @IBAction func switchAction(value: Bool) {

 }

Note
Because switch is a reserved word in the Swift programming language, if you
try to use it as the name of an outlet, you have to enclose it with a pair of back
quotes (̀)̀.

 8. Add the following statements in bold to the InterfaceController.swift file:

 @IBAction func switchAction(value: Bool) {

 value ? label.setText("Aircon is on") :

 label.setText("Aircon is off")

 }

 override func awakeWithContext(context: AnyObject?) {

 super.awakeWithContext(context)

 // Configure interface objects here.

 `switch`.setOn(false)

 label.setText("")

 }

Note
You can programmatically set the value of a Switch control, but you will not be
able to get its value. To know its value, you need to implement the action of the
Switch control and save its value whenever its state changes.

 9. Select the WatchKit App scheme and run the project on the Apple Watch Simulator.
On the Apple Watch Simulator, click the Switch control to turn it on and off and
observe the message printed in the Label control (see Figure 3.22).

65Using the Tap Gesture to Interact with Controls

Figure 3.22 Testing the Switch control

Slider
The Slider control is a visual control with two buttons (– and +) that allow the user to
decrement or increment a f loating-point value. It is usually used in situations where
you want the user to select from a range of values, such as the temperature settings in
a thermostat or the volume of the iPhone.

 1. Using Xcode, create a new iOS App with WatchKit App project and name it
Sliders. Uncheck the option Include Notification Scene so that we can keep the
WatchKit project to a bare minimum.

 2. Select the Interface.storyboard file to edit it in the Storyboard Editor.

 3. Drag and drop a Slider control onto the default Interface Controller (see Figure 3.23).

Figure 3.23 Adding a Slider control to the Interface Controller

66 Chapter 3 Responding to User Actions

 4. Select the WatchKit App scheme and run the project on the Apple Watch Simu-
lator. On the Apple Watch Simulator, click the + and – buttons (see Figure 3.24)
and observe the slider.

Figure 3.24 Testing the slider

 5. Add a Label control to the Interface Controller (see Figure 3.25).

Figure 3.25 Adding a label to the Interface Controller

 6. Create an outlet for the Slider control and name it slider. Likewise, create an
outlet for the Label control and name it label. Then, create an action for the
Slider control and name it sliderAction. The InterfaceController.swift file
should now look like this:

import WatchKit

import Foundation

67Using the Tap Gesture to Interact with Controls

class InterfaceController: WKInterfaceController {

@IBOutlet var slider: WKInterfaceSlider!

@IBOutlet var label: WKInterfaceLabel!

@IBAction func sliderAction(value: Float) {

 }

 7. Set the attributes for the Slider control as follows (see Figure 3.26):

Maximum: 10

Steps: 5

Figure 3.26 Setting the attributes for the Slider control

 8. Add the following statements in bold to the InterfaceController.swift file:

@IBAction func sliderAction(value: Float) {

label.setText("\(value)")

 }

override func awakeWithContext(context: AnyObject?) {

 super.awakeWithContext(context)

 // Configure interface objects here.

 slider.setValue(0.0)

 label.setText("0.0")

 }

Note
You can programmatically set the value of a Slider control, but you will not be able
to get its value. To know its value, you need to implement the action of the Slider
control and save its value whenever the value changes.

68 Chapter 3 Responding to User Actions

 9. Select the WatchKit App scheme and run the project on the Apple Watch Simulator.
Click the – and + buttons and observe the value printed on the Label control
(see Figure 3.27).

Figure 3.27 Testing the slider

The Steps attribute specifies how many times you can click the slider to reach its
maximum value. The increment or decrement value of the slider at any point is
dependent on the length of the slider (Maximum value minus Minimum value) divided
by the value of Steps. In this example, the length of the slider is 10 (maximum of 10
minus minimum of 0) and the value of Steps is 5; hence, the slider increments or
decrements by 2 whenever the + or – button is clicked.

Alerts and Action Sheets
In watchOS 2, Apple now allows developers to display alerts and actions just like they
did in iPhone and iPad:

 1. Using Xcode, create a new iOS App with WatchKit App project and name it
UsingAlerts. Uncheck the option Include Notification Scene so that we can
keep the WatchKit project to a bare minimum.

 2. Select the Interface.storyboard file to edit it in the Storyboard Editor.

 3. Drag and drop a Button control onto the default Interface Controller (see
Figure 3.28) and set its title to Show Alerts.

 4. Create an action for the Button control and name it btnShowAlerts. The
InterfaceController.swift file should now look like this:

import WatchKit

import Foundation

class InterfaceController: WKInterfaceController {

@IBAction func btnShowAlerts() {

 }

69Using the Tap Gesture to Interact with Controls

Figure 3.28 Adding a button to the Interface Controller

 5. Add the following statements in bold to the InterfaceController.swift file:

import WatchKit

import Foundation

class InterfaceController: WKInterfaceController {

func performAction(actionStyle: WKAlertActionStyle) {

switch actionStyle {

case .Default:

print("OK")

case .Cancel:

print("Cancel")

case .Destructive:

print("Destructive")

 }

 }

@IBAction func btnShowAlerts() {

let okAction = WKAlertAction(title: "OK",

 style: WKAlertActionStyle.Default) { () -> Void in

self.performAction(WKAlertActionStyle.Default)

 }

 let cancelAction = WKAlertAction(title: "Cancel",

 style: WKAlertActionStyle.Cancel) { () -> Void in

 self.performAction(WKAlertActionStyle.Cancel)

 }

 let abortAction = WKAlertAction(title: "Abort",

 style: WKAlertActionStyle.Destructive) { () -> Void in

self.performAction(WKAlertActionStyle.Destructive)

 }

70 Chapter 3 Responding to User Actions

presentAlertControllerWithTitle("Title",

 message: "Message",

 preferredStyle: WKAlertControllerStyle.Alert,

 actions: [okAction, cancelAction, abortAction])

 }

Here, you first defined a function named performAction: that prints out a
message depending on the style that is passed in as the argument. Next, in the
btnShowAlerts action, you created three WKAlertAction instances, each with
a specific style (Default, Cancel, and Destructive). Within each instance,
you have a closure that is fired when the user clicks on the action buttons. When
each button is clicked, you simply call the performAction: function to print
out a message so that you know which button was clicked. Finally, you called the
presentAlertControllerWithTitle:message:preferredStyle:actions:

method to display an alert, together with the three action buttons.

 6. Select the WatchKit App scheme and run the project on the Apple Watch Simulator.
Clicking the button displays an alert (see Figure 3.29).

Figure 3.29 Displaying an alert in the Apple Watch

Note
Note that the Abort button in the alert is displayed in red as its style is set to
Destructive.

 7. Modify the presentAlertControllerWithTitle:message:preferred-
Style:actions: method, as follows:

 //---SideBySideButtonsAlert supports exactly two actions---

 presentAlertControllerWithTitle("Title",

 message: "Message",

 preferredStyle:

 WKAlertControllerStyle.SideBySideButtonsAlert,

 actions: [okAction, cancelAction])

71Using the Tap Gesture to Interact with Controls

 8. Select the WatchKit App scheme and run the project on the Apple Watch Simu-
lator. Clicking the button displays an alert with the two buttons displayed side by
side (see Figure 3.30).

Figure 3.30 Displaying an alert with two buttons side by side in the Apple Watch

Note
For the SideBySideButtonsAlert style, you need to specify exactly two action
buttons.

 9. Modify the presentAlertControllerWithTitle:message:preferred-
Style:actions: method as follows:

 presentAlertControllerWithTitle("Title",

 message: "Message",

 preferredStyle: WKAlertControllerStyle.ActionSheet,

 actions: [okAction, cancelAction, abortAction])

 10. Select the WatchKit App scheme and run the project on the Apple Watch Simulator.
Clicking the button displays an alert, as shown in Figure 3.31.

Note
When using the ActionSheet style, the action button that is set to the Cancel style is
displayed at the top-left corner of the screen. Even if you do not specify the cancel action
button, a default Cancel button is still displayed to close the action sheet (though in this
case you cannot handle the event that is fired when the user taps the Cancel button).

72 Chapter 3 Responding to User Actions

Figure 3.31 Displaying an action sheet in the Apple Watch

Summary
In this chapter, you looked at the various controls that you can use to build the UI of
your Apple Watch application. In particular, you saw the various controls that you can
interact with by using the tap gesture, such as the Button, Switch, and Slider controls.
In addition, you learned about the new alerts and action sheets that you can use to
display information in watchOS 2. In the next chapter, you learn more about the other
controls that primarily display information to the user.

253

Symbols and Numbers
< (chevron), 25, 33–34
38mm (small) watch, 1–2
42mm (large) watch, 1–2

A
Accelerometer, 131–134
Action buttons

in email, 206–208
in notifications, generally, 219–220
in notifications, handling, 220–225
types of controls, 51–53

Actions
segues in, 24
sheets for, 68–72

Alerts. See also Notifications, 68–72
Apple Watch

Application Context for, 162–163
creating apps in, generally, 7
creating iPhone apps in, 7–9
deploying apps in, 4–5
development tools for, 2
File Transfer for, 164
hardware in. See Hardware, Apple Watch
Hello, World! app in. See Hello,

World! app
Interface Controller in. See Interface

Controller
introduction to, 1–2
iPhones interacting with, 5–6
lifecycle of apps in, 10–13
live communications in, 165
Send Message mode in, 165
Simulator in. See Apple Watch Simulator
specifications of, 1–2

storyboards in, 10–11
types of apps in, 6
User Info for, 163–164
user interfaces in. See User interfaces (UI)
WatchKit architecture and, 3–4

Apple Watch Simulator
adding images in, 76–78
animation in, 80
background images in, 74
didActivate method in, 21–22
display of Current page in, 41–42
emojis in, 110
Force Touch in, 118–121
Glance scenes in, 244
hierarchical navigation in, 25–26, 32
images next to text in, 89
interactive messaging in, 182–183
introduction to, 13–15
location data in, 188–191
Map controls in, 193–194
menu items in, adding programmatically,

122–123
Movie controls in, 104–106
navigation using code in, 36, 38
notifications in, 210
page-based navigation in, 26–27, 33
passing data between Interface Controllers

in, 32–33
Picker controls in, 92, 94–97, 100
selecting items in tables in, 90
Table controls in, 86
text input in, 108
Watch Connectivity Framework in, 171,

174
writing data to files in, 201–202

Index

254 Index

Application Context
background transfers in, 162–163
comparing to other modes, 184
introduction to, 162
sending data in iOS app, 169–170
sending data in WatchKit Extension,

167–169
on Simulators, 171
testing applications in, 171

Application tests. See Testing applications
Architecture, 3–4
Assets.xcassets files

animation in, 78
background images in, 60, 74–75
context menus in, 116–118
control knobs in, 99
images next to text in, 86
Picker displaying images in, 93
playing movies in, 104
poster images in, 105

Attributed strings, 54–55
Attributes Inspector, 24–25, 240–243
Audio recordings, 127–130
awakeWithContext method

in display of Current page, 41–42
for Glance scenes, 240
in Interface Controller, 20–21
in Label controls, 30–32
in ReturningValues project, 45–47

B
Background action buttons, 206
Background fetch, 244–249
Background images

in Button controls, 60–62, 74
in Interface Controller, 74–75
in notifications, 217–218

Background transfers
in Application Context, 162–163
comparison of communication modes for,

184
in File Transfer, 164
in User Info, 163–164
in Watch Connectivity Framework,

162–164
Bluetooth LE (Low Energy) connections, 3

Bundles, 3
Button controls

action sheets in, 68–72
adding to Interface Controller, 50–51
alerts in, 68–72
for audio recordings, 127–130
for background actions, 206
background images and, 60–62, 74
for cancellations, 33–34
chevron, 33–34
creating actions for, 51–53
creating outlets for, 53–54
custom fonts in, 55–59
displaying attributed strings in, 54–55
for displaying screens, 26–27
for email actions, 206–208
for foreground actions, 206
Group controls and, 111–115
introduction to, 50
for making phone calls, 125–127
for notification actions, 219–225
for open actions, 207–208
for reply actions, 206–208
for saving data, 198–199
for sending messages, 125–127
Slider controls in, 65–68
Switch controls in, 62–65
in Taptic Engine, 134–136
text input and, 107–108

C
Cancellations

in Interface Controller, 33–34
in Watch Connectivity Framework,

179–180
Chevron (<), 25, 33–34
Circular Small complications

introduction to, 139–140
in Movie Showtime project, 153, 156, 158
support for, 143

CLKComplicationDataSource
protocol, 138–139, 143

ClockKit Framework
introduction to, 138–139
placement of complications in, 139–140
template classes in, 140

255Index

Code Editor
Label controls and, 29–30
navigation using, 35
returning data with, 44

Communications
Application Context mode of. See

Application Context
comparison of modes of, 184
File Transfer mode of. See File Transfer
live, 165
User Info mode of. See User Info
in Watch Connectivity Framework,

generally, 162–165, 184
in WatchKit Extension, 175

Complications
ClockKit Framework for, 138–140
families of, 143
introduction to, 6, 137–138
Movie Showtime project example of. See

Movie Showtime project
placeholder templates for, 143–149
placement of, 139–140
populating with data, 150–153
privacy behavior in, 149–150
refresh frequency in, 159
summary of, 159
template classes for, 140
Time Travel for, 154–158

Connectivity
location data in, 185–191
Map display in, 192–194
Web services, accessing, 194–198

Containing iOS Apps. See also iOS Apps,
3, 10

Controllers
Dynamic Interface, 210, 216
Glance Interface, 238–243
Static Interface. See Static Interface

Controller
View. See View Controller
WKInterfaceController class for, 12

Controls
Button. See Button controls
Group, 111–115
Image. See Image controls
Label. See Label controls

layout of, 111–115
Menu, 116–121
Movie, 73
Picker. See Picker controls
Slider, 65–68
Switch, 62–65
Table, 73, 87–90
in user interfaces. See User interfaces (UI)

Cook, Tim, 1
Custom fonts, 55–59

D
Data

passing between Interface Controllers,
27–33

returning from Interface Controllers,
42–48

saving, 198–202
sending. See Sending data

Delegation design patterns, 42
Deploying Apple Watch apps, 4–5
Development tools, 2
didActivate method

in display of Current page, 40
for Glance scenes, 240
in Label controls, 31
in LifeCycle project, 20–22

Digital Crown
Apple Watch hardware and, 130–131
introduction to, 2
Picker controls in, 90, 92, 97

dismissController method, 36
Displaying information. See also Displays

background images in, 74–75
Force Touch for, adding items

programatically, 121–123
Force Touch for, context menus in,

115–121
Force Touch for, generally, 111–115
Image controls for, animations in, 78–80
Image controls for, generally, 74, 76–78
images next to text in, 86–89
introduction to, 73
Label controls for, generally, 73
laying out controls for, 111–115
Movie controls for, 103–106

256 Index

Displaying information (continued)
movies, playing programatically, 101–103
Picker controls for, captions in, 96–97
Picker controls for, control knobs in,

97–100
Picker controls for, displaying images in,

93–94
Picker controls for, generally, 90
Picker controls for, lists of text in, 91–93
Picker controls for, scrolling style in, 94–96
playing media files, 100–106
summary of, 123
Table controls for, adding Image controls

to, 87–89
Table controls for, generally, 80–86
Table controls for, selecting items in,

89–90
Displays

of Current page, 39–42
Display Screen buttons for, 26–27
of Glance scenes. See Glance scenes
of information. See Displaying information
of Interface Controller pages, 37–38
of maps, 192–194
Modal, 26–27
of notifications. See User Info

Dynamic Interface Controller, 210, 216

E
Email, 206–208
Emojis, 109–110

F
File Transfer

background transfers in, 164
canceling outstanding transfers in, 179–180
comparison to other communication

modes, 184
introduction to, 162
sending data/files in iOS app, 177–179
sending data/files in WatchKit Extension,

175–177
testing applications in, 179

Fonts, 55–59
Force Touch

context menus, adding items
programmatically, 121–123

context menus for, generally, 115–121
introduction to, 2, 111–115
Menu Item, 116–123

Foreground action buttons, 206

G
Gathering information

emojis, 109–110
introduction to, 73, 106
summary of, 123
text inputs, 106–108

Get Weather, 194–198
Glance Interface Controller, 238–243,

249–252
Glance scenes

background fetch in, 244–249
customizing, 240–253
implementing, 238–240
introduction to, 6, 237
summary of, 252
testing, 244
updating, 249–252
usefulness of, 244

Gmail, 206–208
Group controls, 111–115

H
Hardware, Apple Watch

accelerometer and, 131–134
for audio recording, 127–130
Digital Crown and, 130–131
introduction to, 125
for phone calls, 125–127
for sending messages, 125–127
Taptic Engine and, 134–136

Hello, World! app, 7–9
Hierarchical navigation

between Interface Controllers, 22–26
using code for, 36

Home Screen, 215–216

I
Icons, 215–217
Identifier attributes, 43
Image controls

animation with, 78–80
emojis in, 109–110

257Index

in Force Touch, 119–120
introduction to, 74, 76–78
saving data with, 198–199
in Table controls, 87–89
text next to images and, 86–89

ImageView, 177–178
Include Notification Scene, 209
Information

displaying. See Displaying information
gathering. See Gathering information

Interactive Messaging
comparison to other communication

modes, 184
in iOS Apps, 181–182
testing applications in, 182–183
in Watch Connectivity Framework,

180–183
in WatchKit Extension, 180–181

Interface Controller
accelerometers in, 131–134
animation in, 78–80
audio recordings in, 127–130
background images in, 74–75
Button controls in, 50–51, 91–93
Cancel buttons in, 33–34
designating specific pages to display in,

39–42
displaying series of pages in, 37–38
emojis in, 109–110
File Transfer in, 175–177
Force Touch in, 115–121
Get Weather in, 194–198
Glance scenes in, 238–240
Group controls in, 111–115
hierarchical navigation in, 22–26
Image controls in, 74–78
interactive messaging in, 180–181
introduction to, 10–13
Label controls in, 80–86
LifeCycle project in, 17–22
lifecycle of, 17–22
location data in, 186–188
Map controls in, 192–193
menu items in, adding programmatically,

121–123
modification of, 13
Movie controls in, 103–106

navigating between, generally, 22–27
navigating using code, 34–37
notifications in, 210
passing data between, 27–33
phone calls in, 126–127
Picker controls in. See Picker controls
returning data from, 42–48
saving data in, 198–202
selecting items in tables in, 89–90
sending messages in, 126–127
Storyboard Editor and. See Storyboard

Editor
summary of, 48
Swift class and, 17–22
Taptic Engine in, 134–136
text input and, 107–108
User Info in, 172–174
Watch Connectivity Framework in,

167–169
Interface.storyboard file, defined. See also

Storyboard Editor, 10
iOS Apps

Application Context in, 169–170
background fetch in, 245–249
containing, 3, 10
creating iPhone apps, 7–9
Interactive Messaging in, 181–182
interfacing with, generally. See Watch

Connectivity Framework
introduction to, 3–5
location data in, 185–191
Map controls in, 192–194
saving data in, 198–202
sending data in, 169–174, 177–179
User Info in, 173–174
Watch Connectivity Framework for. See

Watch Connectivity Framework
iPhone apps

Apple Watch interacting with, 5–6
Application Context for, 162–163
creation of, 7–9
File Transfer for, 164
live communications in, 165
Send Message mode in, 165
simulation of. See iPhone Simulator
User Info for, 163–164
View Controller for, 22

258 Index

iPhone Simulator
DisplayingGlances project in, 249
interactive messaging in, 182–183
introduction to, 13–15
location data in, 188–191
notifications in, 211, 213–218
unlocking, 22
Watch Connectivity Framework in, 171,

174
writing data to files in, 201–202

J
Jobs, Steve

on change, 161
on creating for oneself, 237
on design as function, 1
on ease of use, 125
on innovation, 73
on leading via innovation, 73
on limitation of focus groups, 17
on mistakes, 137
on quality of choices, 49

L
Label controls

for accelerometers, 131–134
for displaying information, 73
Force Touch and, 120–121
navigation and, 25, 29–30
notifications in, 212–214
for saving data, 198–199
in Table controls, 80–86
text input and, 107–108

Large (42mm) watch, 1–2
Layout of controls, 111–115
LifeCycle project, 17–22
Lifecycles of apps, 10–13
Live communications, 165
Local notifications, 205–208, 220
Locations

getting data for, 185–191
Map controls for, 192–194
in ReturningValues project, 45–48

Long-look interfaces
handling notifications with, 225–230
introduction to, 209–210
naming notifications in, 215–216

Low Energy (Bluetooth LE) connections, 3
Lower group in Glance Interface Controller,

240–243

M
Map controls, 192–194
Media files, playing, 100–106
Menu controls, 116–121
Menu Item controls

adding programmatically, 121–123
Force Touch and, 116–121

Messages, sending. See Sending messages
Modal displays, 26–27
Modal segues, 22, 26–27
Modular Small/Large complications

changing complications to, 147–149
introduction to, 139–140
in Movie Showtime project, 152, 155–157
placeholder templates for, 144–145
support for, 143

Movie Showtime project
complication families supported by, 143
complication placeholder template in, 143–149
creating project for, 141–143
introduction to, 141
populating with data, 150–153
privacy behavior in, 149–150
refresh frequencies in, 159
Time Travel for, 154–158

Movies
controls for, 73, 103–106
Movie Showtime project for. See Movie

Showtime project
playing programmatically, 101–103
refreshing, 159
timelines of, 151–158

N
Naming notifications, 214–215
NavigateUsingCode project, 35
Navigation

hierarchical, 22–26, 36
between Interface Controllers, 22–27
Label controls and, 25
page-based, 22, 26, 36
UINavigations project, 23, 27
using code for, 34–37

259Index

Notification Center, 215–216
Notifications

action buttons in, generally, 219–220
action buttons in, handling, 220–225
background images in, 217–218
customizing, 212–214
definition of, 205–208
displaying, generally, 205
icons for Apple Watch apps and, 215–217
introduction to, 6
long-look interface for, 225–230
modifying WatchKit app names for, 214–215
sash colors in, 234–235
short-look interfaces for, 209–212
simulation of payloads for, 230–234
summary of, 235
types of, generally, 208–209

NSNotificationCenter, 42
NSUserDefaults class

Glance scenes and, 245
saving data and, 198, 202

O
Open action buttons, 207–208
Outlets, 53–54

P
Page-based navigation

between Interface Controllers, 26
introduction to, 22
using code in, 36

Passing data between Interface Controllers,
27–33

Payloads, 230–234
Phone calls. See also iPhone apps, 125–127
Picker controls

captions in, 96–97
control knobs in, 97–100
in Digital Crown, 131
displaying images with, 93–94
displaying information with, 73, 90
lists of text in, 91–93
returning data with, 43, 45–48
scrolling style in, 94–96
in Taptic Engine, 134–136

Playing media files, 100–106
popController method, 36

presentControllerWithName:
context: method, 36, 38

Privacy behavior, 149–150
Push segues, 24
pushControllerWithName:context:

method, 36
PushNotificationPayload.apns file, 210–213, 219

R
Refresh frequencies, 159
Remote notifications

action buttons for, 220
displaying, 210–211
introduction to, 205–208

Reply action buttons, 206–208
requestLocation method, 185–188
Returning data from Interface Controllers,

42–48
ReturningValues project, 42

S
Sash colors, 234–235
Saving data

with Image controls, 198–199
NSUserDefaults class in, 202
writing to files, 199–201

Scrolling, 130
SecondInterfaceController.swift file, 39–42, 43
Sending data

in iOS Apps, 169–170, 173–174
via Application Context, 167–171
via File Transer, 174–179
via User Info, 172–174
in WatchKit Extension, 167–169, 172–173,

175–177
Sending messages

in Apple Watch, 125–127, 165
in iPhones, 165
in Watch Connectivity Framework,

180–181
Short-look interfaces, 209–212, 215–216
Simulation

in Apple Watch. See Apple Watch
Simulator

introduction to, 13–15
in iPhones. See iPhone Simulator
of payloads, 230–234

260 Index

Slider controls, 65–68
Small (38mm) watch, 1–2
Smartwatches. See Apple Watch
Specifications of Apple Watch, 1–2
Static Interface Controller

action buttons in, 220
background images in, 217–218
customizing notifications in, 212–214
displaying notifications in, generally,

210–212
icons for Apple Watch app in, 216–217
naming notifications in, 214–215

Stock prices, 245–252
Storyboard Editor

accelerometers in, 131
action sheets in, 68
actions for buttons in, 51–52
alerts in, 68
background images in, 75
buttons in, 50–52
context menus in, 116
control layout in, 111
hierarchical navigation in, 23
Interface.storyboard file in, generally, 10
introduction to, 10–11
lifecycles in, 17–22
lists of text in, 91
navigation using code in, 35
notifications in, 210
passing data between Interface

Controllers in, 29
phone calls in, 125–126
playing movies programatically, 101
recording audio in, 127
returning data in, 42–44
saving data in, 198
sending messages in, 125–126
Slider controls in, 65
Switch controls in, 62–63
Table controls in, generally, 80
Table Row Controller in, 83, 88
Taptic Engine in, 134
text inputs in, 106
Web services in, 194

Strings
displaying attributed, 54–55
saving to files, 199

Swift class
in Interface Controller, 17–22
in Table controls, 82–83

Switch controls, 62–65

T
Table controls

Image controls in, 87–89
introduction to, 73, 80–86
selecting items in, 89–90

Taptic Engine
Apple Watch hardware and, 134–136
introduction to, 2
Picker controls in, 134–136

Templates
in ClockKit Framework, 140
for complications, 140, 143–149
WatchKit Class, 28

Testing applications
in Application Context, 170–171
in File Transfer, 179
Glance scenes, 244
for interactive messaging, 182–183
in User Info, 174

Text
images next to, 86–89
input of, 106–108
lists of, in Picker, 91–93

ThirdInterfaceController.swift file, 39–42
Time Travel, 139, 154–158
Timelines of movies, 151–158

U
UI (User interfaces). See User interfaces (UI)
UINavigations project, 23, 27
Updating Glance scenes, 249–252
Upper group in Glance Interface Controller,

240–242
User Info

background transfers in, 163–164
canceling outstanding transfers in, 179–180
comparison to other communication

modes, 184
introduction to, 162
sending data in iOS Apps, 173–174
sending data in WatchKit Extension, 172–173
testing applications in, 174

261Index

User interfaces (UI)
action sheets in, 68–72
adding Button controls to Interface

Controller, 50–51
alerts in, 68–72
background images of, 60–62
Button controls in, generally, 50
creating actions for, 51–53
creating outlets for, 53–54
custom fonts in, 55–59
displaying attributed strings in, 54–55
introduction to, 49
Slider controls in, 65–68
Switch controls in, 62–65
tap gestures and, generally, 49–50

Utilitarian Small/Large complications
introduction to, 139–140
in Movie Showtime project, 152–153, 156,

158
support for, 143, 144–145

V
Vibrator function, 134
View Controller. See also Views

Application Context in, 169–170
interactive messaging in, 181–182
on iPhones, generally, 22
User information in, 166
Watch Connectivity Framework in, 166,

169–170
Views

defined, 49
ImageView for, 177–178
windows of, 177–178

W
Watch Connectivity Framework

background transfers in, 162–164
cancelling outstanding transfers in,

179–180
communication types in, 162–165, 184
comparison of modes in, 183–184
Interactive Messaging in, 180–183
introduction to, 5–6, 161–162
live communications in, 165
sending data/files via File Transfer,

174–179

sending data via Application Context,
167–171

sending data via User Info, 172–174
testing applications in, 170–171, 174, 179
using, generally, 165–166

WatchKit. See also specific functions
apps in, defined, 3, 6
architecture of, 3–4
Class template, 28
deploying Apple Watch apps and, 4–5
displaying information in, generally, 73
Extension. See WatchKit Extension
Interface Controller in. See Interface

Controller
introduction to, 1, 2
iOS Apps in. See iOS Apps
iPhone apps in. See iPhone apps
lifecycle of apps in, 10–13
storyboards in. See Storyboard Editor
summary of, 15

WatchKit Extension
creating iPhone apps in, 8–9
ExtensionDelegate class in, 12–13
Interactive Messaging in, 180–181
introduction to, 3–4
UINavigations project in, 27–33

WatchOS operating system, 1, 3–4
Weather, 194–198
Web Services, 194–198
willActivate method

in display of Current page, 40
for Glance scenes, 240
in Interface Controller, 20–21
in Label controls, 31

WKInterfaceController class, 12
WKSession object, 179–180
World Wide Developers Conference

(WWDC2015), 1
Writing data to files, 199–201
WWDC2015 (World Wide Developers

Conference), 1

X
Xcode 7

AudioRecord project in, 127
Buttons in, 50
Communications in, 165, 171, 174

262 Index

Xcode 7 (continued)
complication placeholder template in, 145
custom fonts in, 55
DisplayingGlances project in, 238, 245,

249
FileStorage project in, 198, 201–202
ForceTouch project in, 115
Images in, 74
introduction to, 2
launching, 7–9
Layouts in, 111
LifeCycle project in, 17, 21
Movie Showtime project in, 141
Movies in, 101
NavigationUsingCode project in, 35

Notifications in, 209, 211, 221
phone calls in, 125
ReturningValues project in, 42
simulators and, generally, 13–14
Sliders in, 65
Switches in, 62
Tables in, 80
Taptic Engine in, 134
TextInputs project in, 106
UINavigations project in, 23
UsingAlerts project in, 68
UsingCoreMotion project in, 131
UsingLocation project in, 185, 188, 193
UsingPicker project in, 91
WebServices project in, 194, 197

	Contents
	Preface
	Acknowledgments
	About the Author
	3 Responding to User Actions
	Using the Tap Gesture to Interact with Controls
	Button
	Switch
	Slider
	Alerts and Action Sheets

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

