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Preface

When asked about software architecture, people think frequently about models—
that is, the representations of the structures that constitute the architecture. Less 
frequently, people think about the thought processes that produce these struc-
tures—that is, the process of design. Design is a complex activity to perform and 
a complex topic to write about, as it involves making a myriad of decisions that 
take into account many aspects of a system. These aspects are oftentimes hard 
to express, particularly when they originate from experience and knowledge that 
is hard-earned in the “battlefield” of previous software development projects. 
Nevertheless, the activity of design is the basis of software architecture and, as 
such, it begs to be explained. Although experience can hardly be communicated 
through a book, what can be shared is a method that can help you perform the 
process of design in a systematic way.

This book is about that design process and about one particular design 
method, called Attribute-Driven Design (ADD). We believe that this method is a 
powerful tool that will help you perform design in a principled, disciplined, and 
repeatable way. In this book, employing ADD and several examples of ADD’s 
use in the real world, we show you how to perform architectural design. Even 
though you may not currently possess sufficient design experience, we illustrate 
how the method promotes reusing design concepts—that is, proven solutions that 
embody the experience of others.

Although ADD has existed for more than a decade, relatively little has been 
written about it and few examples have been provided to explain how it is per-
formed. This lack of published information has made it difficult for people to 
adopt the method or to teach others about it. Furthermore, the documentation 
that has been published about ADD is somewhat “high level” and can be hard to 
relate to the concepts, practices, and technologies that architects use in their day-
to-day activities. 

We have been working with practicing architects for several years, coaching 
them on how to perform design, and learning in the process. We have learned, for 
example, that practicing architects take technologies into consideration early in 
the design process and this is something that was not part of the original version 
of ADD. For this reason, the method felt “disconnected” from reality for many 
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practitioners. In this book, we provide a revised version of ADD in which we 
have tried to bridge the gap between theory and practice.

We have also been teaching software architecture and software design for 
many years. Along the way, we realized how hard it is for people without any ex-
perience to perform design. This understanding motivated us to create a roadmap 
for design that, we believe, is helpful in guiding people to perform the design 
process. We also created a game that is useful in teaching about software design; 
it can be considered a companion to this book.

The target audience for this book is anyone interested in the design of soft-
ware architectures. We believe it will be particularly useful for practitioners who 
must perform this task but who currently perform it in an ad hoc way. Experi-
enced practitioners who already perform design following an established method 
will also find new ideas—for example, how to track design progress using a Kan-
ban board, how to analyze a design using tactics-based questionnaires, and how 
to incorporate a design method for early estimation. Finally, people who are al-
ready familiar with the other architecture methods from the Software Engineer-
ing Institute will find information about the ways to connect ADD to methods 
such as the Quality Attribute Workshop (QAW), the Architecture Tradeoff Analy-
sis Method (ATAM), and the Cost Benefit Analysis Method (CBAM). This book 
will also be useful to students and teachers of computer science or software engi-
neering programs. We believe that the case studies included here will help them 
understand how to perform the design process more easily. Certainly, we have 
been using similar examples in our courses with great success. As Albert Einstein 
said, “Example isn’t another way to teach; it is the only way to teach.”

Our hope is that this book will help you in understanding that design can be 
performed following a method, and that this realization will help you produce 
better software systems in the future.

The book is structured as follows. 

 ■ In Chapter 1, we briefly introduce software architecture and the Attribute- 
Driven Design method. 

 ■ In Chapter 2, we discuss architecture design in more detail, along with the 
main inputs to the design process—what we call architectural drivers, plus 
the design concepts that will help you satisfy these drivers using proven 
solutions. 

 ■ Chapter 3 presents the ADD method in detail. We discuss each of the steps 
of the method along with various techniques that can be used to perform 
these steps appropriately. 

 ■ Chapter 4 is our first case study, which illustrates the development of a 
greenfield system. For this case study, we have made an effort to show how 
a majority of the concepts described in Chapter 3 are used in the design 
process, so you can think of this case study as being more “academic” in 
nature (although it is derived from a real-world system). 

 ■ Chapter 5 presents our second case study, which was co-written with prac-
ticing software architects and as such is much more technical and detailed 
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in nature. It will show you the nitty-gritty details of how ADD is used in the 
design of a Big Data system that involves many different technologies. This 
example illustrates the development of a system in what we consider to be a 
“novel” domain, as opposed to the more traditional domain used in Chapter 4. 

 ■ Chapter 6 is a shorter case study that illustrates the use of ADD in the 
design of an extension of a legacy (or brownfield) system, which is a com-
mon situation. This example demonstrates that architectural design is not 
something that is performed only once, when the first version of the system 
is developed, but rather is an activity that can be performed at different mo-
ments of the development process. 

 ■ Chapter 7 presents other design methods. In our revision of ADD, we 
adopted ideas from other authors who have also investigated the process of 
design, and here we briefly summarize their approaches both as an homage 
to their work and as a means to compare ADD to these methods. 

 ■ Chapter 8 discusses the topic of analysis in depth, even though this is a book 
on design. Analysis is naturally performed as part of design, so here we de-
scribe techniques that can be used both during the design process or after 
a portion of the design has been completed. In particular, we introduce the 
use of tactics-based questionnaires, which are helpful in understanding, in a 
time-efficient and simple manner, the decisions made in the design process. 

 ■ Chapter 9 describes how the design process fits at an organizational level. 
For instance, performing some amount of architectural design at the earli-
est moments of the project’s life is useful for estimation purposes. We also 
show how ADD can be associated with different software development 
approaches. 

 ■ Chapter 10 concludes the book. 

We also include two appendixes. Appendix A presents A Design Concepts 
Catalog, which, as its name suggests, is a catalog of different types of design 
concepts that can be used to design for a particular application domain. This cat-
alog includes design concepts that we have gathered from different sources, re-
flecting how experienced and disciplined architects work in the real world. In this 
case, our catalog contains a sample of the design concepts used in the case study 
presented in Chapter 4. Appendix B provides a set of tactics-based questionnaires 
(as introduced in Chapter 8) for the seven most common quality attributes and an 
additional questionnaire for DevOps.

Register your copy of Designing Software Architectures at informit.com for 
convenient access to downloads, updates, and corrections as they become 
available. To start the registration process, go to informit.com/register and log 
in or create an account. Enter the product ISBN (9780134390789) and click 
Submit. Once the process is complete, you will find any available bonus con-
tent under “Registered Products.”
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11

2
Architectural Design

We now dive into the process of architecture design: what it is, why it is impor-
tant, how it works (at an abstract level). and which major concepts and activities 
it involves. We first discuss architectural drivers: the various factors that “drive” 
design decisions, some of which are documented as requirements, but many of 
which are not. In addition, we provide an overview of design concepts—the ma-
jor building blocks that you will select, combine, instantiate, analyze, and docu-
ment as part of your design process.

2.1 Design in General

Design is both a verb and a noun. Design is a process, an activity, and hence a 
verb. The process results in the creation of a design—a description of a desired 
end state. Thus the output of the design process is the thing, the noun, the arti-
fact that you will eventually implement. Designing means making decisions to 
achieve goals and satisfy requirements and constraints. The outputs of the design 
process are a direct reflection of those goals, requirements, and constraints. Think 
about houses, for example. Why do traditional houses in China look different 
from those in Switzerland or Algeria? Why does a yurt look like a yurt, which is 
different from an igloo or a chalet or a longhouse?

The architectures of these styles of houses have evolved over the centuries 
to reflect their unique sets of goals, requirements, and constraints. Houses in 
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China feature symmetric enclosures, sky wells to increase ventilation, south-fac-
ing courtyards to collect sunlight and provide protection from cold north winds, 
and so forth. A-frame houses have steep pitched roofs that extend to the ground, 
meaning minimal painting and protection from heavy snow loads (which just 
slide off to the ground). Igloos are built of ice, reflecting the availability of ice, 
the relative poverty of other building materials, and the constraints of time (a 
small one can be built in an hour).

In each case, the process of design involved the selection and adaptation of a 
number of solution approaches. Even igloo designs can vary. Some are small and 
meant for a temporary travel shelter. Others are large, often connecting several 
structures, meant for entire communities to meet. Some are simple unadorned 
snow huts. Others are lined with furs, with ice “windows”, and doors made of 
animal skin.

The process of design, in each case, balances the various “forces” facing the 
designer. Some designs require considerable skill to execute (such as carving and 
stacking snow blocks in such a way that they produce a self-supporting dome). 
Others require relatively little skill—a lean-to can be constructed from branches 
and bark by almost anyone. But the qualities that these structures exhibit may 
also vary considerably. Lean-tos provide little protection from the elements and 
are easily destroyed, whereas an igloo can withstand Arctic storms and support 
the weight of a person standing on the roof.

Is design “hard”? Well, yes and no. Novel design is hard. It is pretty clear 
how to design a conventional bicycle, but the design for the Segway broke new 
ground. Fortunately, most design is not novel, because most of the time our re-
quirements are not novel. Most people want a bicycle that will reliably convey 
them from place to place. The same holds true in every domain. Consider houses, 
for example. Most people living in Phoenix want a house that can be easily and 
economically kept cool, whereas most people in Edmonton are primarily con-
cerned with a house that can be kept warm. In contrast, people living in Japan and 
Los Angeles are concerned with buildings that can withstand earthquakes.

The good news for you, the architect, is that there are ample proven designs 
and design fragments, or building blocks that we call design concepts, that can 
be reused and combined to reliably achieve these goals. If your design is truly 
novel—if you are designing the next Sydney Opera House—then the design pro-
cess will likely be “hard”. The Sydney Opera House, for example, cost 14 times 
its original budget estimate and was delivered ten years late. So, too, with the 
design of software architectures.
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2.2 Design in Software Architecture

Architectural design for software systems is no different than design in general: It 
involves making decisions, working with available skills and materials, to satisfy 
requirements and constraints. In architectural design, we make decisions to trans-
form our design purpose, requirements, constraints, and architectural concerns—
what we call the architectural drivers—into structures, as shown in Figure 2.1. 
These structures are then used to guide the project. They guide analysis and con-
struction, and serve as the foundation for educating a new project member. They 
also guide cost and schedule estimation, team formation, risk analysis and miti-
gation, and, of course, implementation.

Architectural design is, therefore, a key step to achieving your product and 
project goals. Some of these goals are technical (e.g., achieving low and predict-
able latency in a video game or an e-commerce website), and some are nontech-
nical (e.g., keeping the workforce employed, entering a new market, meeting a 
deadline). The decisions that you, as an architect, make will have implications for 
the achievement of these goals and may, in some cases, be in conflict. The choice

Design Purpose

Primary Functionality

Constraints

Architectural Concerns

Architectural Drivers

Quality Attributes

<<uses>>

(Documented) Structures
resulting from 

design decisions

<<produces>>

<<selects and 
instantiates>>

The Architect

Candidate 
design

decisions

Design Concepts
Server Side

«Layer»
Services SS

«Layer»
Business Logic SS

«Layer»
Data SS

«facade»
RequestService

TopologyController
DomainEntities

RegionDataMapper TimeServerDataMapper EventDataMapper TimeServerConnector

TimeServerEventsController DataCollectionController
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:NetworkStatusMonitoringView :NetworkStatusMonitoringController :RequestManager :RequestService :TopologyController :RegionDataMapper
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requestTopology()

sendRequest(Request)
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FIGURE 2.1 Overview of the architecture design activity  
(Architect image © Brett Lamb | Dreamstime.com)
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of a particular reference architecture (e.g., the Rich Client Application) may pro-
vide a good foundation for achieving your latency goals and will keep your work-
force employed because they are already familiar with that reference architecture 
and its supporting technology stack. But this choice may not help you enter a new 
market—mobile games, for example. 

In general, when designing, a change in some structure to achieve one 
quality attribute will have negative effects on other quality attributes. These 
tradeoffs are a fact of life for every practicing architect in every domain. We 
will see this over and over again in the examples and case studies provided in 
this book. Thus the architect’s job is not one of finding an optimal solution, but 
rather one of satisficing—searching through a potentially large space of design 
alternatives and decisions until an acceptable solution is found.

2.2.1 Architectural Design

Grady Booch has said, “All architecture is design, but not all design is archi-
tecture”. What makes a decision “architectural”? A decision is architectural if it 
has non-local consequences and those consequences matter to the achievement 
of an architectural driver. No decision is, therefore, inherently architectural or 
non-architectural. The choice of a buffering strategy within a single element may 
have little effect on the rest of the system, in which case it is an implementation 
detail that is of no concern to anyone except the implementer or maintainer of 
that element. In contrast, the buffering strategy may have enormous implications 
for performance (if the buffering affects the achievement of latency or through-
put or jitter goals) or availability (if the buffers might not be large enough and 
information gets lost) or modifiability (if we wish to flexibly change the buffering 
strategy in different deployments or contexts). The choice of a buffering strat-
egy, like most design choices, is neither inherently architectural nor inherently 
non-architectural. Instead, this distinction is completely dependent on the current 
and anticipated architectural drivers.

2.2.2 Element Interaction Design

Architectural design generally results in the identification of only a subset of the 
elements that are part of the system’s structure. This is to be expected because, 
during initial architectural design, the architect will focus on the primary func-
tionality of the system. What makes a use case primary? A combination of busi-
ness importance, risk, and complexity considerations feed into this designation. 
Of course, to your users, everything is urgent and top priority. More realistically, 
a small number of use cases provide the most fundamental business value or rep-
resent the greatest risk (if they are done wrong), so these are deemed primary.

Every system has many more use cases, beyond the primary ones, that need 
to be satisfied. The elements that support these nonprimary use cases and their 
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interfaces are identified as part of what we call element interaction design. This 
level of design usually follows architectural design. The location and relation-
ships of these elements, however, are constrained by the decisions that were 
made during architectural design. These elements can be units of work (i.e., mod-
ules) assigned to an individual or to a team, so this level of design is important for 
defining not only how nonprimary functionality is allocated, but also for planning 
purposes (e.g., team formation and communication, budgeting, outsourcing, re-
lease planning, unit and integration test planning).

Depending on the scale and complexity of the system, the architect should be 
involved in element interaction design, either directly or in an auditing role. This 
involvement ensures that the system’s important quality attributes are not com-
promised—for example, if the elements are not defined, located, and connected 
correctly. It will also help the architect spot opportunities for generalization.

2.2.3 Element Internals Design

A third level of design follows element interaction design, which we call element 
internals design. In this level of design, which is usually conducted as part of the 
element development activities, the internals of the elements identified in the pre-
vious design level are established, so as to satisfy the element’s interface.

Architectural decisions can and do occur at the three levels of design. More-
over, during architectural design, the architect may need to delve as deeply as 
element internals design to achieve a particular architectural driver. An example 
of this is the selection of a buffering strategy that was previously discussed. In 
this sense, architectural design can involve considerable detail, which explains 
why we do not like to think about it in terms of “high-level design” or “detailed 
design” (see the sidebar “Detailed Design?”).

Architectural design precedes element interaction design, which precedes 
element internals design. This is logically necessary: One cannot design an ele-
ment’s internals until the elements themselves have been defined, and one cannot 
reason about interaction until several elements and some patterns of interactions 
among them have been defined. But as projects grow and evolve, there is, in prac-
tice, considerable iteration between these activities.

Detailed Design?

The term “detailed design” is often used to refer to the design of the inter-
nals of modules. Although it is widely used, we really don’t like this term, 
which is presented as somehow in opposition to “high-level design”. We 
prefer the more precise terms “architectural design”, “element interaction 
design”, and “element internals design”.
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After all, architectural design may be quite detailed, if your system is 
complex. And some design “details” will turn out to be architectural. For the 
same reason, we also don’t like the terms “high-level design” and “low-level 
design”. Who can really know what these terms actually mean? Clearly, 
“high-level design” should be somehow “higher” or more abstract, and cover 
more of the architectural landscape than “low-level design”, but beyond that 
we are at a loss to imbue these terms with any precise meaning.

So here is what we recommend: Just avoid using terms such as “high”, 
“low”, or “detailed” altogether. There is always a better, more precise 
choice, such as “architectural”, “element interaction”, or “element internals” 
design!

Think carefully about the impact of the decisions you are making, the 
information that you are trying to convey in your design documentation, 
and the likely audience for that information, and then give that process an 
appropriate, meaningful name. 

2.3 Why Is Architectural Design So Important?

There is a very high cost to a project of not making certain design decisions, or 
of not making them early enough. This manifests itself in many different ways. 
Early on, an initial architecture is critical for project proposals (or, as it is some-
times called in the consulting world, the pre-sales process). Without doing some 
architectural thinking and some early design work, you cannot confidently pre-
dict project cost, schedule, and quality. Even at this early stage, an architecture 
will determine the key approaches for achieving architectural drivers, the gross 
work-breakdown structure, and the choices of tools, skills, and technologies 
needed to realize the system.

In addition, architecture is a key enabler of agility, as we will discuss in 
Chapter 9. Whether your organization has embraced Agile processes or not, it is 
difficult to imagine anyone who would willingly choose an architecture that is 
brittle and hard to change or extend or tune—and yet it happens all the time. This 
so-called technical debt occurs for a variety of reasons, but paramount among 
these is the combination of a focus on features—typically driven by stakeholder 
demands—and the inability of architects and project managers to measure the 
return on investment of good architectural practices. Features provide immediate 
benefit. Architectural improvement provides immediate costs and long-term ben-
efits. Put this way, why would anyone ever “invest” in architecture? The answer 
is simple: Without architecture, the benefits that the system is supposed to bring 
will be far harder to realize.

Simply put, if you do not make some key architectural decisions early and 
if you allow your architecture to degrade, you will be unable to maintain sprint 
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velocity, because you cannot easily respond to change requests. However, we ve-
hemently disagree with what the original creators of the Agile Manifesto claimed: 
“The best architectures, requirements, and designs emerge from self-organizing 
teams”. Indeed, our demurral with this point is precisely why we have written 
this book. Good architectural design is difficult (and still rare), and it does not 
just “emerge”. This opinion mirrors a growing consensus within the Agile com-
munity. More and more, we see techniques such as “disciplined agility at scale”, 
the “walking skeleton”, and the “scaled Agile framework” embraced by Agile 
thought leaders and practitioners alike. Each of these techniques advocates some 
architectural thinking and design prior to much, if any, development. To reiterate, 
architecture enables agility, and not the other way around.

Furthermore, the architecture will influence, but not determine, other deci-
sions that are not in and of themselves design decisions. These decisions do not 
influence the achievement of quality attributes directly, but they may still need 
to be made by the architect. For example, such decisions may include selection 
of tools; structuring the development environment; supporting releases, deploy-
ment, and operations; and making work assignments.

Finally, a well-designed, properly communicated architecture is key to 
achieving agreements that will guide the team. The most important kinds to make 
are agreements on interfaces and on shared resources. Agreeing on interfaces 
early is important for component-based development, and critically important 
for distributed development. These decisions will be made sooner or later. If you 
don’t make the decisions early, the system will be much more difficult to inte-
grate. In Section 3.6, we will discuss how to define interfaces as part of archi-
tectural design—both the external interfaces to other systems and the internal 
interfaces that mediate your element interactions.

2.4 Architectural Drivers

Before commencing design with ADD (or with any other design method, for 
that matter), you need to think about what you are doing and why. While this 
statement may seem blindingly obvious, the devil is, as usual, in the details. We 
categorize these “what” and “why” questions as architectural drivers. As shown 
in Figure 2.1, these drivers include a design purpose, quality attributes, primary 
functionality, architectural concerns, and constraints. These considerations 
are critical to the success of the system and, as such, they drive and shape the 
architecture.

As with any other important requirements, architectural drivers need to be 
baselined and managed throughout the development life cycle.
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2.4.1 Design Purpose

First, you need to be clear about the purpose of the design that you want to 
achieve. When and why are you doing this architecture design? Which business 
goals is the organization most concerned about at this time?

1. You may be doing architecture design as part of a project proposal (for the 
pre-sales process in a consulting organization, or for internal project selec-
tion and prioritization in a company, as discussed in Section 9.1.1). It is not 
uncommon that, as part of determining project feasibility, schedule, and bud-
get, an initial architecture is created. Such an architecture would not be very 
detailed; its purpose is to understand and break down the architecture in suffi-
cient detail that the units of work are understood and hence may be estimated.

2. You may be doing architecture design as part of the process of creating an 
exploratory prototype. In this case, the purpose of the architecture design 
process is not so much to create a releasable or reusable system, but rather to 
explore the domain, to explore new technology, to place something execut-
able in front of a customer to elicit rapid feedback, or to explore some quality 
attribute (such as performance scalability or failover for availability).

3. You may be designing your architecture during development. This could be 
for an entire new system, for a substantial portion of a new system, or for a 
portion of an existing system that is being refactored or replaced. In this case, 
the purpose is to do enough design work to satisfy requirements, guide sys-
tem construction and work assignments, and prepare for an eventual release.

These purposes may be interpreted and realized differently for greenfield 
systems in mature domains, for greenfield systems in novel domains, and for ex-
isting systems. In a mature domain, the pre-sales process, for example, might be 
relatively straightforward; the architect can reuse existing systems as examples 
and confidently make estimates based on analogy. In novel domains, the pre-sales 
estimation process will be far more complex and risky, and may have highly vari-
able results. In these circumstances, a prototype of the system, or a key part of the 
system, may need to be created to mitigate risk and reduce uncertainty. In many 
cases, this architecture may also need to be quickly adapted as new requirements 
are learned and embraced. In brownfield systems, while the requirements are bet-
ter understood, the existing system is itself a complex object that must be well 
understood for planning to be accurate.

Finally, the development organization’s goals during development or main-
tenance may affect the architecture design process. For example, the organization 
might be interested in designing for reuse, designing for future extension or sub-
setting, designing for scalability, designing for continuous delivery, designing to 
best utilize existing project capabilities and team member skills, and so forth. Or 
the organization might have a strategic relationship with a vendor. Or the CIO 
might have a specific like or dislike and wants to impose it on your project.
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Why do we bother to list these considerations? Because they will affect 
both the process of design and the outputs of design. Architectures exist to help 
achieve business goals. The architect should be clear about these goals and should 
communicate them (and negotiate them!) and establish a clear design purpose be-
fore beginning the design process.

2.4.2 Quality Attributes

In the book Software Architecture in Practice, quality attributes are defined as 
being measurable or testable properties of a system that are used to indicate how 
well the system satisfies the needs of its stakeholders. Because quality tends to 
be a subjective concept in itself, these properties allow quality to be expressed 
succinctly and objectively.

Among the drivers, quality attributes are the ones that shape the architecture 
the most significantly. The critical choices that you make when you are doing ar-
chitectural design determine, in large part, the ways that your system will or will 
not meet these driving quality attribute goals.

Given their importance, you must worry about eliciting, specifying, priori-
tizing, and validating quality attributes. Given that so much depends on getting 
these drivers right, this sounds like a daunting task. Fortunately, a number of 
well-understood, widely disseminated techniques can help you here (see sidebar 
“The Quality Attribute Workshop and the Utility Tree”):

§	Quality Attribute Workshop (QAW) is a facilitated brainstorming session 
involving a group of system stakeholders that covers the bulk of the activi-
ties of eliciting, specifying, prioritizing, and achieving consensus on quality 
attributes.

§	Mission Thread Workshop serves the same purpose as QAW, but for a sys-
tem of systems.

§	The Utility Tree can be used by the architect to prioritize quality attribute 
requirements according to their technical difficulty and risk.

We believe that the best way to discuss, document, and prioritize quality 
attribute requirements is as a set of scenarios. A scenario, in its most basic form, 
describes the system’s response to some stimulus. Why are scenarios the best ap-
proach? Because all other approaches are worse! Endless time may be wasted in 
defining terms such as “performance” or “modifiability” or “configurability”, as 
these discussions tend to shed little light on the real system. It is meaningless to 
say that a system will be “modifiable”, because every system is modifiable with 
respect to some changes and not modifiable with respect to others. One can, how-
ever, specify the modifiability response measure you would like to achieve (say, 
elapsed time or effort) in response to a specific change request. For example, you 
might want to specify that “a change to update shipping rates on the e-commerce 
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website is completed and tested in less than 1 person-day of effort”—an unam-
biguous criterion.

The heart of a quality attribute scenario, therefore, is the pairing of a stim-
ulus with a response. Suppose that you are building a video game and you have 
a functional requirement like this: “The game shall change view modes when 
the user presses the <C> button”. This functional requirement, if it is important, 
needs to be associated with quality attribute requirements. For example:

§	How fast should the function be?
§	How secure should the function be?
§	How modifiable should the function be?

To address this problem, we use a scenario to describe a quality attribute 
requirement. A quality attribute scenario is a short description of how a system is 
required to respond to some stimulus. For example, we might annotate the func-
tional requirement given earlier as follows: “The game shall change view modes 
in < 500 ms when the user presses the <C> button”. A scenario associates a stim-
ulus (in this case, the pressing of the <C> button) with a response (changing the 
view mode) that is measured using a response measure (< 500 ms). A complete 
quality attribute scenario adds three other parts: the source of the stimulus (in 
this case, the user), the artifact affected (in this case, because we are dealing 
with end-to-end latency, the artifact is the entire system) and the environment 
(are we in normal operation, startup, degraded mode, or some other mode?). In 
total, then, there are six parts of a completely well-specified scenario, as shown 
in Figure 2.2.

Stimulus Response

Response
Measure

Source
of Stimulus

Artifact

Environment

3
2

1

4

FIGURE 2.2 The six parts of a quality attribute scenario
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Scenarios are testable, falsifiable hypotheses about the quality attribute be-
havior of the system under consideration. Because they have explicit stimuli and 
responses, we can evaluate a design in terms of how likely it is to support the 
scenario, and we can take measurements and test a prototype or fully fleshed-out 
system for whether it satisfies the scenario in practice. If the analysis (or proto-
typing results) indicates that the scenario’s response goal cannot be met, then the 
hypothesis is deemed falsified.

As with other requirements, scenarios should be prioritized. This can be 
achieved by considering two dimensions that are associated with each scenario 
and that are assigned a rank of importance:

§	The first dimension corresponds to the importance of the scenario with re-
spect to the success of the system. This is ranked by the customer.

§	The second dimension corresponds to the degree of technical risk associ-
ated with the scenario. This is ranked by the architect.

A low/medium/high (L/M/H) scale is used to rank both dimensions. Once 
the dimensions have been ranked, scenarios are prioritized by selecting those that 
have a combination of (H, H), (H, M), or (M, H) rankings.

In addition, some traditional requirements elicitation techniques can be 
modified slightly to focus on quality attribute requirements, such as Joint Re-
quirements Planning (JRP), Joint Application Design (JAD), discovery prototyp-
ing, and accelerated systems analysis.

But whatever technique you use, do not start design without a prioritized list 
of measurable quality attributes! While stakeholders might plead ignorance (“I 
don’t know how fast it needs to be; just make it fast!”), you can almost always 
elicit at least a range of possible responses. Instead of saying the system should 
be “fast”, ask the stakeholder if a 10-second response time is acceptable. If that 
is unacceptable, ask if 5 seconds is OK, or 1 second. You will find that, in most 
cases, users know more than they realize about their requirements, and you can at 
least “box them in” to a range.

The Quality Attribute Workshop and the Utility Tree

The Quality Attribute Workshop (QAW)

The QAW is a facilitated, stakeholder-focused method to generate, pri-
oritize, and refine quality attribute scenarios. A QAW meeting is ideally 
enacted before the software architecture has been defined although, in 
practice, we have seen the QAW being used at all points in the software 
development life cycle. The QAW is focused on system-level concerns 
and specifically the role that software will play in the system. The steps of 
the QAW are as follows:
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1. QAW Presentation and Introductions

The QAW facilitators describe the motivation for the QAW and explain 
each step of the method.

2. Business Goals Presentation

A stakeholder representing the project’s business concerns presents the 
system’s business context, broad functional requirements, constraints, 
and known quality attribute requirements. The quality attributes that 
will be refined in later QAW steps will be derived from, and should be 
traceable to, the business goals presented in this step. For this reason, 
these business goals must be prioritized.

3. Architectural Plan Presentation

The architect presents the system architectural plans as they currently 
exist. Although the architecture has frequently not been defined yet 
(particularly for greenfield systems), the architect often knows quite a lot 
about it even at this early stage. For example, the architect might already 
know about technologies that are mandated, other systems that this 
system must interact with, standards that must be followed, subsystems 
or components that could be reused, and so forth.

4. Identification of Architectural Drivers

The facilitators share their list of key architectural drivers that they 
assembled during steps 2 and 3 and ask the stakeholders for 
clarifications, additions, deletions, and corrections. The idea here is to 
reach a consensus on a distilled list of architectural drivers that covers 
major functional requirements, business drivers, constraints, and quality 
attributes.

5. Scenario Brainstorming

Given this context, each stakeholder now has the opportunity to express 
a scenario representing that stakeholder’s needs and desires with 
respect to the system. The facilitators ensure that each scenario has an 
explicit stimulus and response. The facilitators also ensure traceability 
and completeness: At least one representative scenario should exist for 
each architectural driver listed in step 4 and should cover all the business 
goals listed in step 2.

6. Scenario Consolidation

Similar scenarios are consolidated where reasonable. In step 7, the 
stakeholders vote for their favorite scenarios, and consolidation helps 
to prevent votes from being spread across several scenarios that are 
expressing essentially the same concern.

7. Scenario Prioritization

Prioritization of the scenarios is accomplished by allocating to each 
stakeholder a number of votes equal to 30 percent of the total number of 
scenarios. The stakeholders can distribute these votes to any scenario 
or scenarios. Once all the stakeholders have voted, the results are tallied 
and the scenarios are sorted in order of popularity.
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8. Scenario Refinement

The highest-priority scenarios are refined and elaborated. The facilitators 
help the stakeholders express these in the form of six-part scenarios: 
source, stimulus, artifact, environment, response, and response 
measure.

The output of the QAW is therefore a prioritized list of scenarios, aligned 
with business goals, where the highest-priority scenarios have been 
explored and refined. A QAW can be conducted in as little as 2–3 hours 
for a simple system or as part of an iteration, and as much as 2 days for a 
complex system where requirements completeness is a goal.

Utility Tree

If no stakeholders are readily available to consult, you still need to decide 
what to do and how to prioritize the many challenges facing the system. 
One way to organize your thoughts is to create a Utility Tree. The Utility 
Tree, such as the one shown in the following figure, helps to articulate 
your quality attribute goals in detail, and then to prioritize them.

Utility

Performance

Usability

Availability

Security

Peak 
load

Latency

Feedback

Learnability

SW failure

Network failure

Authentication

Audit trail

Time servers send traps to the management system at peak 
load. 100% of the traps are successfully processed and stored.

The management system collects data from time server during 
peak load. All data collected within 5 minutes.

User displays time server event history. The list of events 
from the last 24 hours is displayed within 1 second.

A failure occurs in the management system. The management 
system resumes operation in less than 30 seconds.

A user changes a system configuration. The change is logged 
100% of the time.

A new user can configure their account and be operating with 
less than 8 hours of training.

Critical events are reported and visible to the user in < 5 
seconds.

Authentication ensures 99.999% of unauthorized login 
attempts can be detected.

(H, H)

(H, H)

(M, M)

(H, L)

(H, M)

(M, H)

(L, L)

(H, L)
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It works as follows. First write the word “Utility” on a sheet of paper. Then 
write the various quality attributes that constitute utility for your system. 
For example, you might know, based on the business goals for the system, 
that the most important qualities for the system are that the system be fast, 
secure, and easy to modify. In turn, you would write these words under-
neath “Utility”. Next, because we don’t really know what any of those terms 
actually means, we describe the aspect of the quality attribute that we are 
most concerned with. For example, while “performance” is vague, “latency 
of database transactions” is a bit less vague. Likewise, while “modifiability” 
is vague, “ease of adding new codecs” is a bit less vague.

The leaves of the tree are expressed as scenarios, which provide con-
crete examples of the quality attribute considerations that you just enumer-
ated. For example, for “latency of database transactions”, you might create 
a scenario such as “1000 users simultaneously update their own customer 
records under normal conditions with an average latency of 1 second”. 
For “ease of adding new codecs”, you might create a scenario such as 
“Customer requests that a new custom codec be added to the system. 
Codec is added with no side effects in 2 person-weeks of effort”.

Finally, the scenarios that you have created must be prioritized. We do 
this prioritization by using the technique of ranking across two dimensions, 
resulting in a priority matrix such as the following (where the numbers in 
the cells are from a set of system scenarios).

Business 
Importance/
Technical Risk L M H

L 5, 6, 17, 20, 22 1, 14 12, 19

M 9, 12, 16 8, 20 3, 13, 15

H 10, 18, 21 4, 7 2, 11

Our job, as architects, is to focus on the lower-right-hand portion of this table (H, 
H): those scenarios that are of high business importance and high risk. Once we 
have satisfactorily addressed those scenarios, we can move to the (M, H) or (H, 
M) ones, and then move up and to the left until all of the system’s scenarios are 
addressed (or perhaps until we run out of time or budget, as is often the case).

It should be noted that the QAW and the Utility Tree are two different 
techniques that are aimed at the same goal—eliciting and prioritizing the 
most important quality attribute requirements, which will be some of your 
most critical architectural drivers. There is no reason, however, to choose 
between these techniques. Both are useful and valuable and, in our 
experience, they have complementary strengths: The QAW tends to focus 
more on the requirements of external stakeholders, whereas the Utility 
Tree tends to excel at eliciting the requirements of internal stakeholders. 
Making all of these stakeholders happy will go a long way toward ensuring 
the success of your architecture. 
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2.4.3 Primary Functionality

Functionality is the ability of the system to do the work for which it was in-
tended. As opposed to quality attributes, the way the system is structured does not 
normally influence functionality. You can have all of the functionality of a given 
system coded in a single enormous module, or you can have it neatly distrib-
uted across many smaller, highly cohesive modules. Externally the system will 
look and work the same way if you consider only functionality. What matters, 
though, is what happens when you want to make changes to such system. In the 
former case, changes will be difficult and costly; in the latter case, they should be 
much easier and cheaper to perform. In terms of architectural design, allocation 
of functionality to elements, rather than the functionality per se, is what matters. 
A good architecture is one in which the most common changes are localized in a 
single or a few elements, and hence easy to make.

When designing an architecture, you need to consider at least the primary 
functionality. Primary functionality is usually defined as functionality that is crit-
ical to achieve the business goals that motivate the development of the system. 
Other criteria for primary functionality might be that it implies a high level of 
technical difficulty or that it requires the interaction of many architectural ele-
ments. As a rule of thumb, approximately 10 percent of your use cases or user 
stories are likely to be primary.

There are two important reasons why you need to consider primary func-
tionality when designing an architecture:

1. You need to think how functionality will be allocated to elements (usually 
modules) to promote modifiability or reusability, and also to plan work 
assignments.

2. Some quality attribute scenarios are directly connected to the primary func-
tionality in the system. For example, in a movie streaming application, one of 
the primary use cases is, of course, to watch a movie. This use case is asso-
ciated with a performance quality attribute scenario such as “Once the user 
presses play, the movie should begin streaming in no more than 5 seconds”. 
In this case, the quality attribute scenario is directly associated with the pri-
mary use case, so making decisions to support this scenario also requires 
making decisions about how its associated functionality will be supported. 
This is not the case for all quality attributes. For example, an availability sce-
nario can involve recovery from a system failure, and this failure may occur 
when any of the system’s use cases are being executed.

Decisions regarding the allocation of functionality that are made during 
architectural design establish a precedent for how the rest of the functionality 
should be allocated to modules as development progresses. This is usually not the 
work of the architect; instead, this activity is typically performed as part of the 
element interaction design process described in Section 2.2.2.
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Finally, bad decisions that are made regarding the allocation of functional-
ity result in the accumulation of technical debt. (Of course, these decisions may 
reveal themselves to be bad only in hindsight.) This debt can be paid through the 
use of refactoring, although this impacts the project’s rate of progress, or velocity 
(see the sidebar “Refactoring”).

Refactoring

If you refactor a software architecture (or part of one), what you are doing 
is maintaining the same functionality but changing some quality attribute 
that you care about. Architects often choose to refactor because a portion 
of the system is difficult to understand, debug, and maintain. Alternatively, 
they may refactor because part of the system is slow, or prone to failure, 
or insecure.

The goal of the refactoring in each case is not to change the func-
tionality, but rather to change the quality attribute response. (Of course, 
additions to functionality are sometimes lumped together with a refactor-
ing exercise, but that is not the core intent of the refactoring.) Clearly, if we 
can maintain the same functionality but change the architecture to achieve 
different quality attribute responses, these requirement types are orthogo-
nal to each other—that is, they can vary independently.

2.4.4 Architectural Concerns

Architectural concerns encompass additional aspects that need to be considered 
as part of architectural design but that are not expressed as traditional require-
ments. There are several different types of concerns:

§	General concerns. These are “broad” issues that one deals with in creating 
the architecture, such as establishing an overall system structure, the allo-
cation of functionality to modules, the allocation of modules to teams, or-
ganization of the code base, startup and shutdown, and supporting delivery, 
deployment, and updates.

§	Specific concerns. These are more detailed system-internal issues such as 
exception management, dependency management, configuration, logging, 
authentication, authorization, caching, and so forth that are common across 
large numbers of applications. Some specific concerns are addressed in refer-
ence architectures (see Section 2.5.1), but others will be unique to your sys-
tem. Specific concerns also result from previous design decisions. For exam-
ple, you may need to address session management if you previously decided 
to use a reference architecture for the development of web applications.
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§	Internal requirements. These requirements are usually not specified ex-
plicitly in traditional requirement documents, as customers usually seldom 
express them. Internal requirements may address aspects that facilitate de-
velopment, deployment, operation, or maintenance of the system. They are 
sometimes called “derived requirements”.

§	Issues. These result from analysis activities, such as a design review (see 
Section 8.6), so they may not be present initially. For instance, an architec-
tural evaluation may uncover a risk that requires some changes to be per-
formed in the current design.

Some of the decisions surrounding architectural concerns might be trivial 
or obvious. For example, your deployment structure might be a single processor 
for an embedded system, or a single cell phone for an app. Your reference archi-
tecture might be constrained by company policy. Your authentication and autho-
rization policies might be dictated by your enterprise architecture and realized 
in a shared framework. In other cases, however, the decisions required to satisfy 
particular concerns may be less obvious—for example, in exception management 
or input validation or structuring the code base.

From their past experience, wise architects are usually aware of the concerns 
that are associated with a particular type of system and the need to make design 
decisions to address them. Inexperienced architects are usually less aware of such 
concerns; because these concerns tend to be tacit rather than explicit, they may 
not consider them as part of the design process, which often results in problems 
later on.

Architectural concerns frequently result in the introduction of new quality 
attribute scenarios. The concern of “supporting logging”, for example, is too 
vague and needs to be made more specific. Like the quality attribute scenarios 
that are provided by the customer, these scenarios need to be prioritized. For 
these scenarios, however, the customer is the development team, operations, or 
other members of the organization. During design, the architect must consider 
both the quality attribute scenarios that are provided by the customer and those 
scenarios that are derived from architectural concerns.

One of the goals of our revision of the ADD method was to elevate the impor-
tance of architectural concerns as explicit inputs to the architecture design process, 
as will be highlighted in our examples and case studies in Chapters 4, 5, and 6.

2.4.5 Constraints

You need to catalog the constraints on development as part of the architectural 
design process. These constraints may take the form of mandated technologies, 
other systems with which your system needs to interoperate or integrate, laws 
and standards that must be complied with, the abilities and availability of your 
developers, deadlines that are non-negotiable, backward compatibility with older 
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versions of systems, and so on. An example of a technical constraint is the use of 
open source technologies, whereas a nontechnical constraint is that the system 
must obey the Sarbanes-Oxley Act or that it must be delivered by December 15.

A constraint is a decision over which you have little or no control as an ar-
chitect. Your job is, as we mentioned in Chapter 1, to satisfice: to design the best 
system that you can, despite the constraints you face. Sometimes you might be 
able to argue for loosening a constraint, but in most cases you have no choice but 
to design around the constraints.

2.5 Design Concepts: The Building Blocks for Creating 
Structures

Design is not random, but rather is planned, intentional, rational, and directed. 
The process of design may seem daunting at first. When facing the “blank page” 
at the beginning of any design activity, the space of possibilities might seem im-
possibly huge and complex. However, there is some help here. The software ar-
chitecture community has created and evolved, over the course of decades, a body 
of generally accepted design principles that can guide us to create high-quality 
designs with predictable outcomes.

For example, some well-documented design principles are oriented toward 
the achievement of specific quality attributes:

§	To help achieve high modifiability, aim for good modularity, which means 
high cohesion and low coupling.

§	To help achieve high availability, avoid having any single point of failure.
§	To help achieve scalability, avoid having any hard-coded limits for critical 

resources.
§	To help achieve security, limit the points of access to critical resources.
§	To help achieve testability, externalize state.
§	. . . and so forth.

In each case, these principles have been evolved over decades of dealing 
with those quality attributes in practice. In addition, we have evolved reusable 
realizations of these abstract approaches in design and, eventually, in code. We 
call these reusable realizations design concepts, and they are the building blocks 
from which the structures that make up the architecture are created. Different 
types of design concepts exist, and here we discuss some of the most commonly 
used, including reference architectures, deployment patterns, architectural pat-
terns, tactics, and externally developed components (such as frameworks). While 
the first four are conceptual in nature, the last one is concrete.
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2.5.1 Reference Architectures

Reference architectures are blueprints that provide an overall logical structure 
for particular types of applications. A reference architecture is a reference model 
mapped onto one or more architectural patterns. It has been proven in business 
and technical contexts, and typically comes with a set of supporting artifacts that 
eases its use.

An example of a reference architecture for the development of web applica-
tions is shown in Figure 2.3 on the next page. This reference architecture estab-
lishes the main layers for this type of application—presentation, business, and 
data—as well as the types of elements that occur within the layers and the re-
sponsibilities of these elements, such as UI components, business components, 
data access components, service agents, and so on. Also, this reference archi-
tecture introduces cross-cutting concerns, such as security and communication, 
that need to be addressed. As this example shows, when you select a reference 
architecture for your application, you also adopt a set of issues that you need to 
address during design. You may not have an explicit requirement related to com-
munications or security, but the fact that these elements are part of the reference 
architecture require you to make design decisions about them.

Reference architectures may be confused with architectural styles, but these 
two concepts are different. Architectural styles (such as “Pipe and Filter” and 
“Client Server”) define types of components and connectors in a specified topol-
ogy that are useful for structuring an application either logically or physically. 
Such styles are technology and domain agnostic. Reference architectures, in 
contrast, provide a structure for applications in specific domains, and they may 
embody different styles. Also, while architectural styles tend to be popular in ac-
ademia, reference architectures seem to be preferred by practitioners—which is 
also why we favor them in our list of design concepts.

While there are many reference architectures, we are not aware of any cata-
log that contains an extensive list of them.

2.5.2 Architectural Design Patterns

Design patterns are conceptual solutions to recurring design problems that exist 
in a defined context. While design patterns originally focused on decisions at the 
object scale, including instantiation, structuring, and behavior, today there are 
catalogs with patterns that address decisions at varying levels of granularity. In 
addition, there are specific patterns to address quality attributes such as security 
or integration.

While some people argue for the differentiation between what they consider 
to be architectural patterns and the more fine-grained design patterns, we believe 
there is no principled difference that can be solely attributed to scale. We consider 
a pattern to be architectural when its use directly and substantially influences the 
satisfaction of some of the architectural drivers (see Section 2.2).
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FIGURE 2.3 Example reference architecture for the development of web 
applications from the Microsoft Application Architecture Guide (Key: UML)

Figure 2.4 shows an example architectural pattern that is useful for struc-
turing the system, the Layers pattern. When you choose a pattern such as this 
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one, you must decide how many layers you will need for your system. Figure 2.5 
shows a pattern to support concurrency, which is useful to increase performance. 
This pattern, too, needs to be instantiated—that is, it needs to be adapted to the 
specific problem and design context. Instantiation is discussed in Chapter 3.

Although reference architectures may be considered as a type of pattern, 
we prefer to consider them separately because of the important role they play 
in structuring an application and because they are more directly connected to 
technology stacks. Also, a reference architecture typically incorporates other 
patterns and often constrains these patterns. For example, the reference archi-
tecture for web applications shown in Figure 2.3 incorporates the Layers pat-
tern but also establishes how many layers need to be used. This reference archi-
tecture also incorporates other patterns such as an Application Facade and Data 
Access Components.

FIGURE 2.4 The Layers pattern for structuring an application from Pattern-
Oriented Software Architecture
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FIGURE 2.5 The Half-Sync/Half-Async pattern to support concurrency from 
Pattern-Oriented Software Architecture (Source: Softserve)

2.5.3 Deployment Patterns

Another type of pattern that we prefer to consider separately is deployment pat-
terns. These patterns provide models on how to physically structure the system to 
deploy it. Some deployment patterns, such as the one shown in Figure 2.6, are use-
ful to establish an initial physical structure of the system in terms of tiers (phys-
ical nodes). More specialized deployment patterns, such as the Load-Balanced 
Cluster in Figure 2.7, are used to satisfy quality attributes such as availability, 
performance, and security.
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FIGURE 2.6 Four-tier deployment pattern from the Microsoft Application 
Architecture Guide (Key: UML)

FIGURE 2.7 Load-Balanced Cluster deployment pattern for performance from the 
Microsoft Application Architecture Guide (Key: UML)

In general, an initial structure for the system is obtained by mapping the log-
ical elements that are obtained from reference architectures (and other patterns) 
into the physical elements defined by deployment patterns.

2.5.4 Tactics

Architects can use collections of fundamental design techniques to achieve a re-
sponse for particular quality attributes. We call these architectural design primitives 
tactics. Tactics, like design patterns, are techniques that architects have been using 
for years. We do not invent tactics, but simply capture what architects actually have 
done in practice, over the decades, to manage quality attribute response goals.
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FIGURE 2.8 Tactics mediate events and responses.

Tactics are design decisions that influence the control of a quality attribute 
response. For example, if you want to design a system to have low latency or 
high throughput, you could make a set of design decisions that would mediate the 
arrival of events (requests for service), resulting in responses that are produced 
within some time constraints, as shown in Figure 2.8.

Tactics are both simpler and more primitive than patterns. They focus on the 
control of a single quality attribute response (although they may, of course, trade 
off this response with other quality attribute goals). Patterns, in contrast, typi-
cally focus on resolving and balancing multiple forces—that is, multiple quality 
attribute goals. By way of analogy, we can say that a tactic is an atom, whereas a 
pattern is a molecule.

Tactics provide a top-down way of thinking about design. A tactics cate-
gorization begins with a set of design objectives related to the achievement of a 
quality attribute, and presents the architect with a set of options from which to 
choose. These options then need to be further instantiated through some combi-
nation of patterns, frameworks, and code.

For example, in Figure 2.9, the design objectives for performance are “Con-
trol Resource Demand” and “Manage Resources”. An architect who wants to 
create a system with “good” performance needs to choose one or more of these 
options. That is, the architect needs to decide if controlling resource demand is 
feasible, and if managing resources is feasible. In some systems, the events arriv-
ing at the system can be managed, prioritized, or limited in some way. If this is 
not possible, then the architect can manage resources only as part of an attempt 
to generate responses within acceptable time constraints. Within the “Manage 
Resources” category, an architect might choose to increase resources, introduce 
concurrency, maintain multiple copies of computations, maintain multiple copies 
of data, and so forth. These tactics then need to be instantiated. As an example, 
an architect might choose the Half-Sync/Half-Async pattern (see Figure 2.5) as 
a way of introducing (and managing) concurrency, or the Load-Balanced Cluster 
deployment pattern (see Figure 2.7) to maintain multiple copies of computations. 
As we will see in Chapter 3, the choice, combination, and tailoring of tactics and 
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patterns are some of the key steps of the ADD process. There are existing tactics 
categorizations for the quality attributes of availability, interoperability, modifi-
ability, performance, security, testability, and usability.

2.5.5 Externally Developed Components

Patterns and tactics are abstract in nature. However, when you are designing 
a software architecture, you need to make these design concepts concrete and 
closer to the actual implementation. There are two ways to achieve this: You can 
code the elements obtained from tactics and patterns or you can associate tech-
nologies with one or more of these elements in the architecture. This “buy ver-
sus build” choice is one of the most important decisions you will make as an 
architect.

We consider technologies to be externally developed components, because 
they are not created as part of the development project. Several types of exter-
nally developed components exist:

§	Technology families. A technology family represents a group of spe-
cific technologies with common functional purposes. It can serve as a 
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FIGURE 2.9 Performance tactics from Software Architecture in Practice
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placeholder until a specific product or framework is selected. An example is 
a relational database management system (RDBMS) or an object-oriented 
to relational mapper (ORM). Figure 2.10 shows different technology fami-
lies in the Big Data domain (in regular text).

§	Products. A product (or software package) refers to a self-contained func-
tional piece of software that can be integrated into the system that is being 
designed and that requires only minor configuration or coding. An example 
is a relational database management system, such as Oracle or Microsoft 
SQL Server. Figure 2.10 shows different products in the Big Data domain 
(in italics).

§	Application frameworks. An application framework (or just framework) is 
a reusable software element, constructed out of patterns and tactics, that 
provides generic functionality addressing recurring domain and quality 
attribute concerns across a broad range of applications. Frameworks, when 
carefully chosen and properly implemented, increase the productivity of 
programmers. They do so by enabling programmers to focus on business 
logic and end-user value, rather than underlying technologies and their im-
plementations. As opposed to products, framework functions are generally 
invoked from the application code or are “injected” using some type of 
aspect-oriented approach. Frameworks usually require extensive configura-
tion, typically through XML files or other approaches such as annotations 
in Java. A framework example is Hibernate, which is used to perform ob-
ject-oriented to relational mapping in Java. Several types of frameworks 
are available: Full-stack frameworks, such as Spring, are usually associated 
with reference architectures and address general concerns across the differ-
ent elements of the reference architecture, while non-full-stack frameworks, 
such as JSF, address specific functional or quality attribute concerns.

§	Platforms. A platform provides a complete infrastructure upon which to 
build and execute applications. Examples of platforms include Java, .Net, or 
and Google Cloud.

The selection of externally developed components, which is a key aspect of 
the design process, can be a challenging task because of their extensive number. 
Here are a few criteria you should consider when selecting externally developed 
components:

§	Problem that it addresses. Is it something specific, such as a framework for 
object-oriented to relational mapping or something more generic, such as a 
platform?

§	Cost. What is the cost of the license and, if it is free, what is the cost of sup-
port and education?

§	Type of license. Does it have a license that is compatible with the project 
goals?
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§	Support. Is it well supported? Is there extensive documentation about the 
technology? Is there an extensive user or developer community that you can 
turn to for advice?

§	Learning curve. How hard is it to learn this technology? Have others in 
your organization already mastered it? Are there courses available?

§	Maturity. Is it a technology that has just appeared on the market, which may 
be exciting but still relatively unstable or unsupported?

§	Popularity. Is it a relatively widespread technology? Are there positive testi-
monials or adoption by mature organizations? Will it be easy to hire people 
who have deep knowledge of it? Is there an active developer community or 
user group?

§	Compatibility and ease of integration. Is it compatible with other technolo-
gies used in the project? Can it be integrated easily in the project?

§	Support for critical quality attributes. Does it limit attributes such as per-
formance? Is it secure and robust?

§	Size. Will the use of the technology have a negative impact on the size of 
the application under development?

Unfortunately, the answers to these questions are not always easy to find 
and the selection of a particular technology may require you do some research or, 
eventually, to create prototypes that will help you in the selection process. These 
criteria will have a significant effect on your total cost of ownership.

2.6 Architecture Design Decisions

As we said at the beginning of this chapter, design is the process of making de-
cisions. But the act of making a decision is a process, not a moment in time. 
Experienced architects, when faced with a design challenge, typically entertain a 
set of “candidate” decisions (as shown in Figure 2.1); from this set, they choose a 
best candidate and instantiate that. They might select this “best” candidate based 
on experience, constraints, or some form of analysis such as prototyping or sim-
ulation. The reality is that an architect will often make a choice and “ride the 
horse until it drops”—that is, commit to a decision and revisit it only if it ap-
pears to be compromising the success of the project. These decisions have serious 
consequences!

Recall that, in the early stages of design, decisions focus on the biggest, 
most critical choices that will have substantial downstream consequences: refer-
ence architectures, major technologies (such as frameworks), and patterns. Ref-
erence architectures, deployment patterns, and other kinds of patterns have been 
widely discussed—there are many books, websites, and conferences devoted to 
the creation and validation of patterns and pattern languages. Nevertheless, the 
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output of these activities is always a set of documented patterns. Interpreting 
the patterns from a pattern catalog is a critical part of the selection activity for 
an architect. Each candidate pattern must be chosen and its instantiation must 
be analyzed. For example, if you chose the Layers pattern from Figure 2.4, you 
would still have many decisions to make: how many layers there will be, how 
strict the layering will be, which specific services will be placed into each layer, 
what the interfaces between these functions will be, and so forth. If you chose 
the Load-Balanced Cluster deployment pattern from Figure 2.7, you would have 
to decide how many servers will be balanced, how many load balancers you will 
use, where these servers and load balancers will physically reside, which kinds 
of networks will connect these servers, which form of encryption you will use on 
those network connections, which form of health monitoring the load balancers 
will employ, and so forth. These decisions are important and will affect the suc-
cess of the instantiated pattern, so they need to be analyzed. In addition, the qual-
ity of the implementation of these decisions will affect the success of the pattern. 
As we like to quip, the architecture giveth and the implementation taketh away.

Furthermore, the many catalogs and web pages that present design concepts 
use different conventions and notations. The focus of our book is on the design 
method and how it can be used with these external sources. For this reason we 
just take examples from outside sources and show them here as they were origi-
nally presented. This book is not intended to be another design patterns catalog—
we want to alert you to the presence of these catalogs and show how they can be 
an incredibly useful resource for an architect, but they must be interpreted and 
used with care! In fact, one of your many jobs as an architect is to understand and 
interpret these catalogs, with their different notations and conventions. This is the 
reality that you will have to deal with.

Finally, once a design decision has been made, you should think about how 
you will document it. You could, of course, do no documentation. This is, in fact, 
what is most common in practice. Architectural concepts are often vague and 
conveyed informally, in “tribal knowledge”: personal communications, emails, 
naming conventions, and so forth. Alternatively, you could create and maintain 
full, formal documentation, as is done for some projects with demanding qual-
ity attribute requirements, such as safety-critical or high-security systems. If you 
are designing flight-control software, you will probably end up at this end of the 
spectrum. In between these endpoints is a broad set of possibilities, and in this 
space we see less formal (and less costly) forms of architecture documentation, 
such as sketches (as we will discuss in Section 3.7).

The decision of what, when, and how to document should be risk based. You 
should ask yourself: What is the risk of not documenting this decision? Could it 
be misinterpreted and undermined by future developers? Could it contribute to 
near-term or long-term problems in the system? For example, if the rationale for 
layering is not carefully documented, the layering will inevitably break down, 
losing coherence and tending toward increased coupling. Over time, this trend 
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will increase the system’s technical debt, making it harder to find and fix bugs 
or add new features. To take another example, if the rationale for allocation of a 
critical resource is not documented, that resource might become an unintended 
contention area, resulting in bottlenecks and failures.

2.7 Summary

In this chapter, we introduced the idea of design as a set of decisions to satisfy 
requirements and constraints. We also introduced the notion of “architectural” 
design and showed that it does not differ from design in general, other than that it 
addresses the satisfaction of architectural drivers: the purpose, primary function-
ality, quality attribute requirements, architectural concerns, and constraints. What 
makes a decision “architectural”? A decision is architectural if it has nonlocal 
consequences and those consequences matter to the achievement of an architec-
tural driver.

We also discussed why architectural design is so important: because it is 
the embodiment of early, far-reaching, hard-to-change decisions. These decisions 
will help you meet your architectural drivers, will determine much of your proj-
ect’s work-breakdown structure, and will affect the tools, skills, and technologies 
needed to realize the system. Thus architectural design decisions should be scru-
tinized well, as their consequences are profound. In addition, architecture is a key 
enabler of agility.

Architectural design is guided by certain principles. For example, to achieve 
good modularity, high coupling, and low cohesion, the wise architect will prob-
ably include some form of layering in the architecture being designed. Similarly, 
to achieve high availability, an architect will likely choose a pattern involving 
some form of redundancy and failover, such as active–passive redundancy, where 
an active server sends real-time updates to a passive server, so that the passive 
server can replace the active server in case it fails, with no loss of state.

Design concepts, such as reference architectures, deployment patterns, ar-
chitectural patterns, tactics, and externally developed components, are the build-
ing blocks of design, and they form the foundation for architectural design as it is 
performed using ADD. As you will see in our step-by-step explanation of ADD in 
Chapter 3, some of the most important design decisions that an architect makes 
are how design concepts are selected, how they are instantiated, and how they 
are combined. Also, in Appendix A, we present a design concepts catalog that 
includes several instances of the design concepts presented here.

From these foundations, an architecture can be confidently and predictably 
constructed.
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2.8 Further Reading

A more in-depth treatment of scenarios and architectural drivers can be found in 
L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 3rd ed., 
Addison-Wesley, 2012. Also found in this book is an extensive discussion of ar-
chitectural tactics, which are useful in guiding an architecture to achieve quality 
attribute goals. Likewise, this book contains an extensive discussion of QAW and 
Utility Trees.

The Mission Thread Workshop is discussed in R. Kazman, M. Gagliardi, 
and W. Wood, “Scaling Up Software Architecture Analysis”, Journal of Sys-
tems and Software, 85, 1511–1519, 2012; and in M. Gagliardi, W. Wood, and 
T. Morrow, Introduction to the Mission Thread Workshop, Software Engineering 
Institute Technical Report CMU/SEI-2013-TR-003, 2013.

An overview of discovery prototyping, JRP, JAD, and accelerated systems 
analysis can be found in any competent book on systems analysis and design, 
such as J. Whitten and L. Bentley, Systems Analysis and Design Methods, 7th 
ed., McGraw-Hill, 2007. The combination of architectural approaches with Agile 
methods will be discussed in Chapter 9.

A catalog of reference architectures and deployment patterns appears in the 
book by the Microsoft Patterns and Practices Team: Microsoft® Application Ar-
chitecture Guide, 2nd ed., Microsoft Press, 2009. This book also provides an ex-
tensive list of architectural concerns associated with the reference architectures 
that are documented.

An extensive collection of architectural design patterns for the construction 
of distributed systems can be found in F. Buschmann, K. Henney, and D. Schmidt, 
Pattern-Oriented Software Architecture Volume 4: A Pattern Language for Dis-
tributed Computing, Wiley, 2007. Other books in the POSA (Patterns Of Soft-
ware Architecture) series provide additional pattern catalogs. Many other pattern 
catalogs specializing in particular application domains and technologies exist. A 
few examples are listed here:

§	E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

§	M. Fowler. Patterns of Enterprise Application Architecture. Addi-
son-Wesley, 2003.

§	E. Fernandez-Buglioni. Security Patterns in Practice: Designing Secure 
Architectures Using Software Patterns. Wiley, 2013.

§	G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Build-
ing, and Deploying Messaging Solutions. Addison-Wesley, 2004.

The evaluation and selection of software packages is discussed in A. Jadhav 
and R. Sonar, “Evaluating and Selecting Software Packages: A Review”, Journal 
of Information and Software Technology, 51, 555–563, 2009.
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The “bible” for software architecture documentation is P. Clements, 
F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R. Nord, and 
J. Stafford, Documenting Software Architectures: Views and Beyond, 2nd ed., 
Addison-Wesley, 2011.

The technology family tree for the Big Data application domain is based on the 
Smart Decisions Game by H. Cervantes, S. Haziyev, O. Hrytsay, and R. Kazman, 
which can be found at http://smartdecisionsgame.com.

http://smartdecisionsgame.com
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