
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780134390789
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780134390789
https://plusone.google.com/share?url=http://www.informit.com/title/9780134390789
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780134390789
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780134390789/Free-Sample-Chapter

Designing
Software
Architectures

Designing
Software
Architectures
A Practical Approach

Humberto Cervantes
Rick Kazman

Boston • Columbus • Indianapolis • New York • San Francisco • Amsterdam • Cape Town
Dubai • London • Madrid • Milan • Munich • Paris • Montreal • Toronto • Delhi • Mexico City
São Paulo • Sidney • Hong Kong • Seoul • Singapore • Taipei • Tokyo

The SEI Series in Software Engineering

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

CMM, CMMI, Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon,
CERT, and CERT Coordination Center are registered in the U.S. Patent and Trademark Office
by Carnegie Mellon University.

ATAM; Architecture Tradeoff Analysis Method; CMM Integration; COTS Usage-Risk Evalu-
ation; CURE; EPIC; Evolutionary Process for Integrating COTS Based Systems; Framework
for Software Product Line Practice; IDEAL; Interim Profile; OAR; OCTAVE; Operationally
Critical Threat, Asset, and Vulnerability Evaluation; Options Analysis for Reengineering; Per-
sonal Software Process; PLTP; Product Line Technical Probe; PSP; SCAMPI; SCAMPI Lead
Appraiser; SCAMPI Lead Assessor; SCE; SEI; SEPG; Team Software Process; and TSP are
service marks of Carnegie Mellon University.

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our corporate
sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact intlcs@pearson.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data

Names: Cervantes, Humberto, 1974- author. | Kazman, Rick, author.
Title: Designing software architectures : a practical approach / Humberto
 Cervantes, Rick Kazman.
Description: Boston : Addison-Wesley, [2016] | Series: The SEI series in
 software engineering | Includes bibliographical references and index.
Identifiers: LCCN 2016005436| ISBN 9780134390789 (hardcover : alk. paper) |
 ISBN 0134390784 (hardcover : alk. paper)
Subjects: LCSH: Software architecture. | Big data.
Classification: LCC QA76.758 .C44 2016 | DDC 005.1/2—dc23
LC record available at https://lccn.loc.gov/2016005436

Copyright © 2016 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited repro-
duction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information regarding permissions, re-
quest forms and the appropriate contacts within the Pearson Education Global Rights & Permis-
sions Department, please visit www.pearsoned.com/permissions.

ISBN-13: 978-013-439078-9
ISBN-10: 0-13-439078-4

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, May 2016

https://lccn.loc.gov/2016005436
http://www.pearsoned.com/permissions

v

Contents

Preface xiii
Acknowledgments xvii

 CHAPTER 1 Introduction 1

1.1 Motivations 1

1.2 Software Architecture 3
1.2.1 The Importance of Software Architecture 3

1.2.2 Life-Cycle Activities 4

1.3 The Role of the Architect 7

1.4 A Brief History of ADD 8

1.5 Summary 9

1.6 Further Reading 10

 CHAPTER 2 Architectural Design 11

2.1 Design in General 11

2.2 Design in Software Architecture 13
2.2.1 Architectural Design 14

2.2.2 Element Interaction Design 14

2.2.3 Element Internals Design 15

2.3 Why Is Architectural Design So Important? 16

2.4 Architectural Drivers 17
2.4.1 Design Purpose 18

2.4.2 Quality Attributes 19

2.4.3 Primary Functionality 25

2.4.4 Architectural Concerns 26

2.4.5 Constraints 27

2.5 Design Concepts: The Building Blocks for Creating
Structures 28
2.5.1 Reference Architectures 29

2.5.2 Architectural Design Patterns 29

2.5.3 Deployment Patterns 32

vi Contents

2.5.4 Tactics 33

2.5.5 Externally Developed Components 35

2.6 Architecture Design Decisions 38

2.7 Summary 40

2.8 Further Reading 41

 CHAPTER 3 The Architecture Design Process 43

3.1 The Need for a Principled Method 43

3.2 Attribute-Driven Design 3.0 44
3.2.1 Step 1: Review Inputs 44

3.2.2 Step 2: Establish the Iteration Goal by Selecting
Drivers 46

3.2.3 Step 3: Choose One or More Elements of the System
to Refine 46

3.2.4 Step 4: Choose One or More Design Concepts That
Satisfy the Selected Drivers 47

3.2.5 Step 5: Instantiate Architectural Elements, Allocate
Responsibilities, and Define Interfaces 47

3.2.6 Step 6: Sketch Views and Record Design
Decisions 48

3.2.7 Step 7: Perform Analysis of Current Design and
Review Iteration Goal and Achievement of Design
Purpose 48

3.2.8 Iterate If Necessary 49

3.3 Following a Design Roadmap According
to System Type 49
3.3.1 Design of Greenfield Systems for Mature

Domains 50

3.3.2 Design of Greenfield Systems for Novel Domains 52

3.3.3 Design for an Existing System (Brownfield) 53

3.4 Identifying and Selecting Design Concepts 53
3.4.1 Identification of Design Concepts 54

3.4.2 Selection of Design Concepts 55

3.5 Producing Structures 58
3.5.1 Instantiating Elements 59

3.5.2 Associating Responsibilities and Identifying
Properties 60

3.5.3 Establishing Relationships Between the Elements 61

3.6 Defining Interfaces 61
3.6.1 External Interfaces 61

Contents vii

3.6.2 Internal Interfaces 61

3.7 Creating Preliminary Documentation During
Design 65
3.7.1 Recording Sketches of the Views 65

3.7.2 Recording Design Decisions 68

3.8 Tracking Design Progress 69
3.8.1 Use of an Architectural Backlog 69

3.8.2 Use of a Design Kanban Board 70

3.9 Summary 72

3.10 Further Reading 72

 CHAPTER 4 Case Study: FCAPS System 75

4.1 Business Case 75

4.2 System Requirements 77
4.2.1 Use Case Model 77

4.2.2 Quality Attribute Scenarios 78

4.2.3 Constraints 79

4.2.4 Architectural Concerns 80

4.3 The Design Process 80
4.3.1 ADD Step 1: Review Inputs 80

4.3.2 Iteration 1: Establishing an Overall System
Structure 81

4.3.3 Iteration 2: Identifying Structures to Support Primary
Functionality 89

4.3.4 Iteration 3: Addressing Quality Attribute Scenario
Driver (QA-3) 101

4.4 Summary 105

4.5 Further Reading 105

CHAPTER 5 Case Study: Big Data System 107

5.1 Business Case 107

5.2 System Requirements 108
5.2.1 Use Case Model 108

5.2.2 Quality Attribute Scenarios 109

5.2.3 Constraints 110

5.2.4 Architectural Concerns 110

5.3 The Design Process 111
5.3.1 ADD Step 1: Review Inputs 111

5.3.2 Iteration 1: Reference Architecture and Overall
System Structure 112

viii Contents

5.3.3 Iteration 2: Selection of Technologies 120

5.3.4 Iteration 3: Refinement of the Data Stream
Element 131

5.3.5 Iteration 4: Refinement of the Serving Layer 138

5.4 Summary 143

5.5 Further Reading 144

 CHAPTER 6 Case Study: Banking System 145

6.1 Business Case 145
6.1.1 Use Case Model 147

6.1.2 Quality Attribute Scenarios 148

6.1.3 Constraints 148

6.1.4 Architectural Concerns 148

6.2 Existing Architectural Documentation 149
6.2.1 Module View 149

6.2.2 Allocation View 150

6.3 The Design Process 151
6.3.1 ADD Step 1: Review Inputs 152

6.3.2 Iteration 1: Supporting the New Drivers 152

6.4 Summary 158

6.5 Further Reading 159

 CHAPTER 7 Other Design Methods 161

7.1 A General Model of Software Architecture
Design 161

7.2 Architecture-Centric Design Method 164

7.3 Architecture Activities in the Rational Unified
Process 165

7.4 The Process of Software Architecting 167

7.5 A Technique for Architecture and Design 169

7.6 Viewpoints and Perspectives Method 171

7.7 Summary 173

7.8 Further Reading 174

 CHAPTER 8 Analysis in the Design Process 175

8.1 Analysis and Design 175

8.2 Why Analyze? 178

8.3 Analysis Techniques 179

Contents ix

8.4 Tactics-Based Analysis 180

8.5 Reflective Questions 186

8.6 Scenario-Based Design Reviews 187

8.7 Architecture Description Languages 190

8.8 Summary 191

8.9 Further Reading 192

 CHAPTER 9 The Architecture Design Process in the
Organization 193

9.1 Architecture Design and the Development Life
Cycle 193
9.1.1 Architecture Design During

Pre-Sales 194

9.1.2 Architecture Design During Development and
Operation 197

9.2 Organizational Aspects 202
9.2.1 Designing as an Individual or as a Team 202

9.2.2 Using a Design Concepts Catalog in
Your Organization 203

9.3 Summary 204

9.4 Further Reading 204

 CHAPTER 10 Final Words 207

10.1 On the Need for Methods 207

10.2 Next Steps 209

10.3 Further Reading 210

APPENDIX A A Design Concepts Catalog 211

A.1 Reference Architectures 211
A.1.1 Web Applications 212

A.1.2 Rich Client Applications 214

A.1.3 Rich Internet Applications 215

A.1.4 Mobile Applications 218

A.1.5 Service Applications 218

A.2 Deployment Patterns 221
A.2.1 Nondistributed Deployment 221

A.2.2 Distributed Deployment 222

A.2.3 Performance Patterns: Load-Balanced
Cluster 223

x Contents x Contents

A.3 Architectural Design Patterns 224
A.3.1 Structural Patterns 224

A.3.2 Interface Partitioning 226

A.3.3 Concurrency 228

A.3.4 Database Access 229

A.4 Tactics 230
A.4.1 Availability Tactics 230

A.4.2 Interoperability Tactics 232

A.4.3 Modifiability Tactics 233

A.4.4 Performance Tactics 235

A.4.5 Security Tactics 236

A.4.6 Testability Tactics 238

A.4.7 Usability Tactics 240

A.5 Externally Developed Components 241
A.5.1 Spring Framework 241

A.5.2 Swing Framework 243

A.5.3 Hibernate Framework 244

A.5.4 Java Web Start Framework 245

A.6 Summary 245

A.7 Further Reading 246

APPENDIX B Tactics-Based Questionnaires 247

B.1 Using the Questionnaires 247

B.2 Availability 248

B.3 Interoperability 252

B.4 Modifiability 253

B.5 Performance 255

B.6 Security 257

B.7 Testability 260

B.8 Usability 261

B.9 DevOps 263

B.10 Further Reading 267

Glossary 269
About the Authors 275
Index 277

I dedicate this book to my parents, Ilse and Humberto; to my wife, Gabriela;
and to my sons, Julian and Alexis. Thank you for all your love, support, and

inspiration.
H. C.

I dedicate this book to my wife, for her loving support, and to my Grandmasters,
Hee Il Cho and Philip Ameris, for the examples that they set, leading me to

always strive to be my best.
R. K.

This page intentionally left blank

xiii

Preface

When asked about software architecture, people think frequently about models—
that is, the representations of the structures that constitute the architecture. Less
frequently, people think about the thought processes that produce these struc-
tures—that is, the process of design. Design is a complex activity to perform and
a complex topic to write about, as it involves making a myriad of decisions that
take into account many aspects of a system. These aspects are oftentimes hard
to express, particularly when they originate from experience and knowledge that
is hard-earned in the “battlefield” of previous software development projects.
Nevertheless, the activity of design is the basis of software architecture and, as
such, it begs to be explained. Although experience can hardly be communicated
through a book, what can be shared is a method that can help you perform the
process of design in a systematic way.

This book is about that design process and about one particular design
method, called Attribute-Driven Design (ADD). We believe that this method is a
powerful tool that will help you perform design in a principled, disciplined, and
repeatable way. In this book, employing ADD and several examples of ADD’s
use in the real world, we show you how to perform architectural design. Even
though you may not currently possess sufficient design experience, we illustrate
how the method promotes reusing design concepts—that is, proven solutions that
embody the experience of others.

Although ADD has existed for more than a decade, relatively little has been
written about it and few examples have been provided to explain how it is per-
formed. This lack of published information has made it difficult for people to
adopt the method or to teach others about it. Furthermore, the documentation
that has been published about ADD is somewhat “high level” and can be hard to
relate to the concepts, practices, and technologies that architects use in their day-
to-day activities.

We have been working with practicing architects for several years, coaching
them on how to perform design, and learning in the process. We have learned, for
example, that practicing architects take technologies into consideration early in
the design process and this is something that was not part of the original version
of ADD. For this reason, the method felt “disconnected” from reality for many

xiv Preface

practitioners. In this book, we provide a revised version of ADD in which we
have tried to bridge the gap between theory and practice.

We have also been teaching software architecture and software design for
many years. Along the way, we realized how hard it is for people without any ex-
perience to perform design. This understanding motivated us to create a roadmap
for design that, we believe, is helpful in guiding people to perform the design
process. We also created a game that is useful in teaching about software design;
it can be considered a companion to this book.

The target audience for this book is anyone interested in the design of soft-
ware architectures. We believe it will be particularly useful for practitioners who
must perform this task but who currently perform it in an ad hoc way. Experi-
enced practitioners who already perform design following an established method
will also find new ideas—for example, how to track design progress using a Kan-
ban board, how to analyze a design using tactics-based questionnaires, and how
to incorporate a design method for early estimation. Finally, people who are al-
ready familiar with the other architecture methods from the Software Engineer-
ing Institute will find information about the ways to connect ADD to methods
such as the Quality Attribute Workshop (QAW), the Architecture Tradeoff Analy-
sis Method (ATAM), and the Cost Benefit Analysis Method (CBAM). This book
will also be useful to students and teachers of computer science or software engi-
neering programs. We believe that the case studies included here will help them
understand how to perform the design process more easily. Certainly, we have
been using similar examples in our courses with great success. As Albert Einstein
said, “Example isn’t another way to teach; it is the only way to teach.”

Our hope is that this book will help you in understanding that design can be
performed following a method, and that this realization will help you produce
better software systems in the future.

The book is structured as follows.

 ■ In Chapter 1, we briefly introduce software architecture and the Attribute-
Driven Design method.

 ■ In Chapter 2, we discuss architecture design in more detail, along with the
main inputs to the design process—what we call architectural drivers, plus
the design concepts that will help you satisfy these drivers using proven
solutions.

 ■ Chapter 3 presents the ADD method in detail. We discuss each of the steps
of the method along with various techniques that can be used to perform
these steps appropriately.

 ■ Chapter 4 is our first case study, which illustrates the development of a
greenfield system. For this case study, we have made an effort to show how
a majority of the concepts described in Chapter 3 are used in the design
process, so you can think of this case study as being more “academic” in
nature (although it is derived from a real-world system).

 ■ Chapter 5 presents our second case study, which was co-written with prac-
ticing software architects and as such is much more technical and detailed

Preface xv

in nature. It will show you the nitty-gritty details of how ADD is used in the
design of a Big Data system that involves many different technologies. This
example illustrates the development of a system in what we consider to be a
“novel” domain, as opposed to the more traditional domain used in Chapter 4.

 ■ Chapter 6 is a shorter case study that illustrates the use of ADD in the
design of an extension of a legacy (or brownfield) system, which is a com-
mon situation. This example demonstrates that architectural design is not
something that is performed only once, when the first version of the system
is developed, but rather is an activity that can be performed at different mo-
ments of the development process.

 ■ Chapter 7 presents other design methods. In our revision of ADD, we
adopted ideas from other authors who have also investigated the process of
design, and here we briefly summarize their approaches both as an homage
to their work and as a means to compare ADD to these methods.

 ■ Chapter 8 discusses the topic of analysis in depth, even though this is a book
on design. Analysis is naturally performed as part of design, so here we de-
scribe techniques that can be used both during the design process or after
a portion of the design has been completed. In particular, we introduce the
use of tactics-based questionnaires, which are helpful in understanding, in a
time-efficient and simple manner, the decisions made in the design process.

 ■ Chapter 9 describes how the design process fits at an organizational level.
For instance, performing some amount of architectural design at the earli-
est moments of the project’s life is useful for estimation purposes. We also
show how ADD can be associated with different software development
approaches.

 ■ Chapter 10 concludes the book.

We also include two appendixes. Appendix A presents A Design Concepts
Catalog, which, as its name suggests, is a catalog of different types of design
concepts that can be used to design for a particular application domain. This cat-
alog includes design concepts that we have gathered from different sources, re-
flecting how experienced and disciplined architects work in the real world. In this
case, our catalog contains a sample of the design concepts used in the case study
presented in Chapter 4. Appendix B provides a set of tactics-based questionnaires
(as introduced in Chapter 8) for the seven most common quality attributes and an
additional questionnaire for DevOps.

Register your copy of Designing Software Architectures at informit.com for
convenient access to downloads, updates, and corrections as they become
available. To start the registration process, go to informit.com/register and log
in or create an account. Enter the product ISBN (9780134390789) and click
Submit. Once the process is complete, you will find any available bonus con-
tent under “Registered Products.”

This page intentionally left blank

xvii

Acknowledgments

The authors wish to acknowledge our reviewers—Marty Barrett, Roger
Champagne, Siva Muthu, Robert Nord, Vishal Prabhu, Andriy Shapochka, David
Sisk, Perla Velasco-Elizondo, and Olaf Zimmermann—for their generosity in
providing both opinions and comments. We also wish to thank Serge Haziyev
and Olha Hrytsay for their contributions to Chapter 5. In addition, we would be
remiss if we did not thank the many architects at Softserve—Serge, Olha, and
Andriy included—for their overall strong support of our work.

Humberto wishes to thank the directors and the group of architects at Quark-
soft; many ideas for the revision of ADD and one of the case studies presented in
this book originated from putting the method into practice at this company. Thank
you to the architects and developers in other companies with whom I have had the
opportunity to collaborate and exchange ideas—I have learned a lot from them. I
also wish to thank the people at the Software Engineering Institute, who have wel-
comed me and other academics for many years at the ACE Educators Workshop. I
also want to give recognition to my university, Universidad Autónoma Metropoli-
tana Iztapalapa, as it has always supported my work. Thanks to my colleagues Perla
Velasco-Elizondo and Luis Castro, who have accompanied me for several years in
this architectural journey. Thank you to Alonso Leal, who gave me the opportunity
to become a practicing architect many years ago. Thanks to Richard S. Hall, who
taught me many skills that have proved invaluable in writing this book. Finally, I
wish to thank my coauthor Rick, for being such a nice person and colleague; it is
always a pleasure to work and exchange opinions with him.

Rick wishes to thank James Ivers and his research group at the Software En-
gineering Institute. In particular, I would like to thank Rod Nord, for his careful
and insightful review comments and suggestions. I would also like to thank my
long-time collaborator and mentor Len Bass, who got me started on this software
architecture journey many years ago. Without Len, who knows where I would be
today. In addition, I would like to thank Linda Northrop, who vigorously sup-
ported my research for many years and provided many wonderful “opportunities
to excel.” Finally, I would like to thank my coauthor Humberto, who has always
been energetic, positive, and a true pleasure to work with.

This page intentionally left blank

11

2
Architectural Design

We now dive into the process of architecture design: what it is, why it is impor-
tant, how it works (at an abstract level). and which major concepts and activities
it involves. We first discuss architectural drivers: the various factors that “drive”
design decisions, some of which are documented as requirements, but many of
which are not. In addition, we provide an overview of design concepts—the ma-
jor building blocks that you will select, combine, instantiate, analyze, and docu-
ment as part of your design process.

2.1 Design in General

Design is both a verb and a noun. Design is a process, an activity, and hence a
verb. The process results in the creation of a design—a description of a desired
end state. Thus the output of the design process is the thing, the noun, the arti-
fact that you will eventually implement. Designing means making decisions to
achieve goals and satisfy requirements and constraints. The outputs of the design
process are a direct reflection of those goals, requirements, and constraints. Think
about houses, for example. Why do traditional houses in China look different
from those in Switzerland or Algeria? Why does a yurt look like a yurt, which is
different from an igloo or a chalet or a longhouse?

The architectures of these styles of houses have evolved over the centuries
to reflect their unique sets of goals, requirements, and constraints. Houses in

12 Chapter 2—Architectural Design

China feature symmetric enclosures, sky wells to increase ventilation, south-fac-
ing courtyards to collect sunlight and provide protection from cold north winds,
and so forth. A-frame houses have steep pitched roofs that extend to the ground,
meaning minimal painting and protection from heavy snow loads (which just
slide off to the ground). Igloos are built of ice, reflecting the availability of ice,
the relative poverty of other building materials, and the constraints of time (a
small one can be built in an hour).

In each case, the process of design involved the selection and adaptation of a
number of solution approaches. Even igloo designs can vary. Some are small and
meant for a temporary travel shelter. Others are large, often connecting several
structures, meant for entire communities to meet. Some are simple unadorned
snow huts. Others are lined with furs, with ice “windows”, and doors made of
animal skin.

The process of design, in each case, balances the various “forces” facing the
designer. Some designs require considerable skill to execute (such as carving and
stacking snow blocks in such a way that they produce a self-supporting dome).
Others require relatively little skill—a lean-to can be constructed from branches
and bark by almost anyone. But the qualities that these structures exhibit may
also vary considerably. Lean-tos provide little protection from the elements and
are easily destroyed, whereas an igloo can withstand Arctic storms and support
the weight of a person standing on the roof.

Is design “hard”? Well, yes and no. Novel design is hard. It is pretty clear
how to design a conventional bicycle, but the design for the Segway broke new
ground. Fortunately, most design is not novel, because most of the time our re-
quirements are not novel. Most people want a bicycle that will reliably convey
them from place to place. The same holds true in every domain. Consider houses,
for example. Most people living in Phoenix want a house that can be easily and
economically kept cool, whereas most people in Edmonton are primarily con-
cerned with a house that can be kept warm. In contrast, people living in Japan and
Los Angeles are concerned with buildings that can withstand earthquakes.

The good news for you, the architect, is that there are ample proven designs
and design fragments, or building blocks that we call design concepts, that can
be reused and combined to reliably achieve these goals. If your design is truly
novel—if you are designing the next Sydney Opera House—then the design pro-
cess will likely be “hard”. The Sydney Opera House, for example, cost 14 times
its original budget estimate and was delivered ten years late. So, too, with the
design of software architectures.

2.2 Design in Software Architecture 13

2.2 Design in Software Architecture

Architectural design for software systems is no different than design in general: It
involves making decisions, working with available skills and materials, to satisfy
requirements and constraints. In architectural design, we make decisions to trans-
form our design purpose, requirements, constraints, and architectural concerns—
what we call the architectural drivers—into structures, as shown in Figure 2.1.
These structures are then used to guide the project. They guide analysis and con-
struction, and serve as the foundation for educating a new project member. They
also guide cost and schedule estimation, team formation, risk analysis and miti-
gation, and, of course, implementation.

Architectural design is, therefore, a key step to achieving your product and
project goals. Some of these goals are technical (e.g., achieving low and predict-
able latency in a video game or an e-commerce website), and some are nontech-
nical (e.g., keeping the workforce employed, entering a new market, meeting a
deadline). The decisions that you, as an architect, make will have implications for
the achievement of these goals and may, in some cases, be in conflict. The choice

Design Purpose

Primary Functionality

Constraints

Architectural Concerns

Architectural Drivers

Quality Attributes

<<uses>>

(Documented) Structures
resulting from

design decisions

<<produces>>

<<selects and
instantiates>>

The Architect

Candidate
design

decisions

Design Concepts
Server Side

«Layer»
Services SS

«Layer»
Business Logic SS

«Layer»
Data SS

«facade»
RequestService

TopologyController
DomainEntities

RegionDataMapper TimeServerDataMapper EventDataMapper TimeServerConnector

TimeServerEventsController DataCollectionController

ServerClient

Technician

:NetworkStatusMonitoringView :NetworkStatusMonitoringController :RequestManager :RequestService :TopologyController :RegionDataMapper

launch()

initialize()

requestTopology()

sendRequest(Request)

requestTopology()

retrieve(id) :Region

:Region

:Region

:Response

:Region

:boolean

getRootRegion() :Region

populateView()

interact()

pc :User Workstation «replicated»
:Application Server

«replicated»
database :Database Server

:Time Server

Server-Side Application
«Java Web Start»

Client-Side
Application

«SNMP»

«JDBC»

FIGURE 2.1 Overview of the architecture design activity
(Architect image © Brett Lamb | Dreamstime.com)

14 Chapter 2—Architectural Design

of a particular reference architecture (e.g., the Rich Client Application) may pro-
vide a good foundation for achieving your latency goals and will keep your work-
force employed because they are already familiar with that reference architecture
and its supporting technology stack. But this choice may not help you enter a new
market—mobile games, for example.

In general, when designing, a change in some structure to achieve one
quality attribute will have negative effects on other quality attributes. These
tradeoffs are a fact of life for every practicing architect in every domain. We
will see this over and over again in the examples and case studies provided in
this book. Thus the architect’s job is not one of finding an optimal solution, but
rather one of satisficing—searching through a potentially large space of design
alternatives and decisions until an acceptable solution is found.

2.2.1 Architectural Design

Grady Booch has said, “All architecture is design, but not all design is archi-
tecture”. What makes a decision “architectural”? A decision is architectural if it
has non-local consequences and those consequences matter to the achievement
of an architectural driver. No decision is, therefore, inherently architectural or
non-architectural. The choice of a buffering strategy within a single element may
have little effect on the rest of the system, in which case it is an implementation
detail that is of no concern to anyone except the implementer or maintainer of
that element. In contrast, the buffering strategy may have enormous implications
for performance (if the buffering affects the achievement of latency or through-
put or jitter goals) or availability (if the buffers might not be large enough and
information gets lost) or modifiability (if we wish to flexibly change the buffering
strategy in different deployments or contexts). The choice of a buffering strat-
egy, like most design choices, is neither inherently architectural nor inherently
non-architectural. Instead, this distinction is completely dependent on the current
and anticipated architectural drivers.

2.2.2 Element Interaction Design

Architectural design generally results in the identification of only a subset of the
elements that are part of the system’s structure. This is to be expected because,
during initial architectural design, the architect will focus on the primary func-
tionality of the system. What makes a use case primary? A combination of busi-
ness importance, risk, and complexity considerations feed into this designation.
Of course, to your users, everything is urgent and top priority. More realistically,
a small number of use cases provide the most fundamental business value or rep-
resent the greatest risk (if they are done wrong), so these are deemed primary.

Every system has many more use cases, beyond the primary ones, that need
to be satisfied. The elements that support these nonprimary use cases and their

2.2 Design in Software Architecture 15

interfaces are identified as part of what we call element interaction design. This
level of design usually follows architectural design. The location and relation-
ships of these elements, however, are constrained by the decisions that were
made during architectural design. These elements can be units of work (i.e., mod-
ules) assigned to an individual or to a team, so this level of design is important for
defining not only how nonprimary functionality is allocated, but also for planning
purposes (e.g., team formation and communication, budgeting, outsourcing, re-
lease planning, unit and integration test planning).

Depending on the scale and complexity of the system, the architect should be
involved in element interaction design, either directly or in an auditing role. This
involvement ensures that the system’s important quality attributes are not com-
promised—for example, if the elements are not defined, located, and connected
correctly. It will also help the architect spot opportunities for generalization.

2.2.3 Element Internals Design

A third level of design follows element interaction design, which we call element
internals design. In this level of design, which is usually conducted as part of the
element development activities, the internals of the elements identified in the pre-
vious design level are established, so as to satisfy the element’s interface.

Architectural decisions can and do occur at the three levels of design. More-
over, during architectural design, the architect may need to delve as deeply as
element internals design to achieve a particular architectural driver. An example
of this is the selection of a buffering strategy that was previously discussed. In
this sense, architectural design can involve considerable detail, which explains
why we do not like to think about it in terms of “high-level design” or “detailed
design” (see the sidebar “Detailed Design?”).

Architectural design precedes element interaction design, which precedes
element internals design. This is logically necessary: One cannot design an ele-
ment’s internals until the elements themselves have been defined, and one cannot
reason about interaction until several elements and some patterns of interactions
among them have been defined. But as projects grow and evolve, there is, in prac-
tice, considerable iteration between these activities.

Detailed Design?

The term “detailed design” is often used to refer to the design of the inter-
nals of modules. Although it is widely used, we really don’t like this term,
which is presented as somehow in opposition to “high-level design”. We
prefer the more precise terms “architectural design”, “element interaction
design”, and “element internals design”.

16 Chapter 2—Architectural Design

After all, architectural design may be quite detailed, if your system is
complex. And some design “details” will turn out to be architectural. For the
same reason, we also don’t like the terms “high-level design” and “low-level
design”. Who can really know what these terms actually mean? Clearly,
“high-level design” should be somehow “higher” or more abstract, and cover
more of the architectural landscape than “low-level design”, but beyond that
we are at a loss to imbue these terms with any precise meaning.

So here is what we recommend: Just avoid using terms such as “high”,
“low”, or “detailed” altogether. There is always a better, more precise
choice, such as “architectural”, “element interaction”, or “element internals”
design!

Think carefully about the impact of the decisions you are making, the
information that you are trying to convey in your design documentation,
and the likely audience for that information, and then give that process an
appropriate, meaningful name.

2.3 Why Is Architectural Design So Important?

There is a very high cost to a project of not making certain design decisions, or
of not making them early enough. This manifests itself in many different ways.
Early on, an initial architecture is critical for project proposals (or, as it is some-
times called in the consulting world, the pre-sales process). Without doing some
architectural thinking and some early design work, you cannot confidently pre-
dict project cost, schedule, and quality. Even at this early stage, an architecture
will determine the key approaches for achieving architectural drivers, the gross
work-breakdown structure, and the choices of tools, skills, and technologies
needed to realize the system.

In addition, architecture is a key enabler of agility, as we will discuss in
Chapter 9. Whether your organization has embraced Agile processes or not, it is
difficult to imagine anyone who would willingly choose an architecture that is
brittle and hard to change or extend or tune—and yet it happens all the time. This
so-called technical debt occurs for a variety of reasons, but paramount among
these is the combination of a focus on features—typically driven by stakeholder
demands—and the inability of architects and project managers to measure the
return on investment of good architectural practices. Features provide immediate
benefit. Architectural improvement provides immediate costs and long-term ben-
efits. Put this way, why would anyone ever “invest” in architecture? The answer
is simple: Without architecture, the benefits that the system is supposed to bring
will be far harder to realize.

Simply put, if you do not make some key architectural decisions early and
if you allow your architecture to degrade, you will be unable to maintain sprint

2.4 Architectural Drivers 17

velocity, because you cannot easily respond to change requests. However, we ve-
hemently disagree with what the original creators of the Agile Manifesto claimed:
“The best architectures, requirements, and designs emerge from self-organizing
teams”. Indeed, our demurral with this point is precisely why we have written
this book. Good architectural design is difficult (and still rare), and it does not
just “emerge”. This opinion mirrors a growing consensus within the Agile com-
munity. More and more, we see techniques such as “disciplined agility at scale”,
the “walking skeleton”, and the “scaled Agile framework” embraced by Agile
thought leaders and practitioners alike. Each of these techniques advocates some
architectural thinking and design prior to much, if any, development. To reiterate,
architecture enables agility, and not the other way around.

Furthermore, the architecture will influence, but not determine, other deci-
sions that are not in and of themselves design decisions. These decisions do not
influence the achievement of quality attributes directly, but they may still need
to be made by the architect. For example, such decisions may include selection
of tools; structuring the development environment; supporting releases, deploy-
ment, and operations; and making work assignments.

Finally, a well-designed, properly communicated architecture is key to
achieving agreements that will guide the team. The most important kinds to make
are agreements on interfaces and on shared resources. Agreeing on interfaces
early is important for component-based development, and critically important
for distributed development. These decisions will be made sooner or later. If you
don’t make the decisions early, the system will be much more difficult to inte-
grate. In Section 3.6, we will discuss how to define interfaces as part of archi-
tectural design—both the external interfaces to other systems and the internal
interfaces that mediate your element interactions.

2.4 Architectural Drivers

Before commencing design with ADD (or with any other design method, for
that matter), you need to think about what you are doing and why. While this
statement may seem blindingly obvious, the devil is, as usual, in the details. We
categorize these “what” and “why” questions as architectural drivers. As shown
in Figure 2.1, these drivers include a design purpose, quality attributes, primary
functionality, architectural concerns, and constraints. These considerations
are critical to the success of the system and, as such, they drive and shape the
architecture.

As with any other important requirements, architectural drivers need to be
baselined and managed throughout the development life cycle.

18 Chapter 2—Architectural Design

2.4.1 Design Purpose

First, you need to be clear about the purpose of the design that you want to
achieve. When and why are you doing this architecture design? Which business
goals is the organization most concerned about at this time?

1. You may be doing architecture design as part of a project proposal (for the
pre-sales process in a consulting organization, or for internal project selec-
tion and prioritization in a company, as discussed in Section 9.1.1). It is not
uncommon that, as part of determining project feasibility, schedule, and bud-
get, an initial architecture is created. Such an architecture would not be very
detailed; its purpose is to understand and break down the architecture in suffi-
cient detail that the units of work are understood and hence may be estimated.

2. You may be doing architecture design as part of the process of creating an
exploratory prototype. In this case, the purpose of the architecture design
process is not so much to create a releasable or reusable system, but rather to
explore the domain, to explore new technology, to place something execut-
able in front of a customer to elicit rapid feedback, or to explore some quality
attribute (such as performance scalability or failover for availability).

3. You may be designing your architecture during development. This could be
for an entire new system, for a substantial portion of a new system, or for a
portion of an existing system that is being refactored or replaced. In this case,
the purpose is to do enough design work to satisfy requirements, guide sys-
tem construction and work assignments, and prepare for an eventual release.

These purposes may be interpreted and realized differently for greenfield
systems in mature domains, for greenfield systems in novel domains, and for ex-
isting systems. In a mature domain, the pre-sales process, for example, might be
relatively straightforward; the architect can reuse existing systems as examples
and confidently make estimates based on analogy. In novel domains, the pre-sales
estimation process will be far more complex and risky, and may have highly vari-
able results. In these circumstances, a prototype of the system, or a key part of the
system, may need to be created to mitigate risk and reduce uncertainty. In many
cases, this architecture may also need to be quickly adapted as new requirements
are learned and embraced. In brownfield systems, while the requirements are bet-
ter understood, the existing system is itself a complex object that must be well
understood for planning to be accurate.

Finally, the development organization’s goals during development or main-
tenance may affect the architecture design process. For example, the organization
might be interested in designing for reuse, designing for future extension or sub-
setting, designing for scalability, designing for continuous delivery, designing to
best utilize existing project capabilities and team member skills, and so forth. Or
the organization might have a strategic relationship with a vendor. Or the CIO
might have a specific like or dislike and wants to impose it on your project.

2.4 Architectural Drivers 19

Why do we bother to list these considerations? Because they will affect
both the process of design and the outputs of design. Architectures exist to help
achieve business goals. The architect should be clear about these goals and should
communicate them (and negotiate them!) and establish a clear design purpose be-
fore beginning the design process.

2.4.2 Quality Attributes

In the book Software Architecture in Practice, quality attributes are defined as
being measurable or testable properties of a system that are used to indicate how
well the system satisfies the needs of its stakeholders. Because quality tends to
be a subjective concept in itself, these properties allow quality to be expressed
succinctly and objectively.

Among the drivers, quality attributes are the ones that shape the architecture
the most significantly. The critical choices that you make when you are doing ar-
chitectural design determine, in large part, the ways that your system will or will
not meet these driving quality attribute goals.

Given their importance, you must worry about eliciting, specifying, priori-
tizing, and validating quality attributes. Given that so much depends on getting
these drivers right, this sounds like a daunting task. Fortunately, a number of
well-understood, widely disseminated techniques can help you here (see sidebar
“The Quality Attribute Workshop and the Utility Tree”):

§	Quality Attribute Workshop (QAW) is a facilitated brainstorming session
involving a group of system stakeholders that covers the bulk of the activi-
ties of eliciting, specifying, prioritizing, and achieving consensus on quality
attributes.

§	Mission Thread Workshop serves the same purpose as QAW, but for a sys-
tem of systems.

§	The Utility Tree can be used by the architect to prioritize quality attribute
requirements according to their technical difficulty and risk.

We believe that the best way to discuss, document, and prioritize quality
attribute requirements is as a set of scenarios. A scenario, in its most basic form,
describes the system’s response to some stimulus. Why are scenarios the best ap-
proach? Because all other approaches are worse! Endless time may be wasted in
defining terms such as “performance” or “modifiability” or “configurability”, as
these discussions tend to shed little light on the real system. It is meaningless to
say that a system will be “modifiable”, because every system is modifiable with
respect to some changes and not modifiable with respect to others. One can, how-
ever, specify the modifiability response measure you would like to achieve (say,
elapsed time or effort) in response to a specific change request. For example, you
might want to specify that “a change to update shipping rates on the e-commerce

20 Chapter 2—Architectural Design

website is completed and tested in less than 1 person-day of effort”—an unam-
biguous criterion.

The heart of a quality attribute scenario, therefore, is the pairing of a stim-
ulus with a response. Suppose that you are building a video game and you have
a functional requirement like this: “The game shall change view modes when
the user presses the <C> button”. This functional requirement, if it is important,
needs to be associated with quality attribute requirements. For example:

§	How fast should the function be?
§	How secure should the function be?
§	How modifiable should the function be?

To address this problem, we use a scenario to describe a quality attribute
requirement. A quality attribute scenario is a short description of how a system is
required to respond to some stimulus. For example, we might annotate the func-
tional requirement given earlier as follows: “The game shall change view modes
in < 500 ms when the user presses the <C> button”. A scenario associates a stim-
ulus (in this case, the pressing of the <C> button) with a response (changing the
view mode) that is measured using a response measure (< 500 ms). A complete
quality attribute scenario adds three other parts: the source of the stimulus (in
this case, the user), the artifact affected (in this case, because we are dealing
with end-to-end latency, the artifact is the entire system) and the environment
(are we in normal operation, startup, degraded mode, or some other mode?). In
total, then, there are six parts of a completely well-specified scenario, as shown
in Figure 2.2.

Stimulus Response

Response
Measure

Source
of Stimulus

Artifact

Environment

3
2

1

4

FIGURE 2.2 The six parts of a quality attribute scenario

2.4 Architectural Drivers 21

Scenarios are testable, falsifiable hypotheses about the quality attribute be-
havior of the system under consideration. Because they have explicit stimuli and
responses, we can evaluate a design in terms of how likely it is to support the
scenario, and we can take measurements and test a prototype or fully fleshed-out
system for whether it satisfies the scenario in practice. If the analysis (or proto-
typing results) indicates that the scenario’s response goal cannot be met, then the
hypothesis is deemed falsified.

As with other requirements, scenarios should be prioritized. This can be
achieved by considering two dimensions that are associated with each scenario
and that are assigned a rank of importance:

§	The first dimension corresponds to the importance of the scenario with re-
spect to the success of the system. This is ranked by the customer.

§	The second dimension corresponds to the degree of technical risk associ-
ated with the scenario. This is ranked by the architect.

A low/medium/high (L/M/H) scale is used to rank both dimensions. Once
the dimensions have been ranked, scenarios are prioritized by selecting those that
have a combination of (H, H), (H, M), or (M, H) rankings.

In addition, some traditional requirements elicitation techniques can be
modified slightly to focus on quality attribute requirements, such as Joint Re-
quirements Planning (JRP), Joint Application Design (JAD), discovery prototyp-
ing, and accelerated systems analysis.

But whatever technique you use, do not start design without a prioritized list
of measurable quality attributes! While stakeholders might plead ignorance (“I
don’t know how fast it needs to be; just make it fast!”), you can almost always
elicit at least a range of possible responses. Instead of saying the system should
be “fast”, ask the stakeholder if a 10-second response time is acceptable. If that
is unacceptable, ask if 5 seconds is OK, or 1 second. You will find that, in most
cases, users know more than they realize about their requirements, and you can at
least “box them in” to a range.

The Quality Attribute Workshop and the Utility Tree

The Quality Attribute Workshop (QAW)

The QAW is a facilitated, stakeholder-focused method to generate, pri-
oritize, and refine quality attribute scenarios. A QAW meeting is ideally
enacted before the software architecture has been defined although, in
practice, we have seen the QAW being used at all points in the software
development life cycle. The QAW is focused on system-level concerns
and specifically the role that software will play in the system. The steps of
the QAW are as follows:

22 Chapter 2—Architectural Design

1. QAW Presentation and Introductions

The QAW facilitators describe the motivation for the QAW and explain
each step of the method.

2. Business Goals Presentation

A stakeholder representing the project’s business concerns presents the
system’s business context, broad functional requirements, constraints,
and known quality attribute requirements. The quality attributes that
will be refined in later QAW steps will be derived from, and should be
traceable to, the business goals presented in this step. For this reason,
these business goals must be prioritized.

3. Architectural Plan Presentation

The architect presents the system architectural plans as they currently
exist. Although the architecture has frequently not been defined yet
(particularly for greenfield systems), the architect often knows quite a lot
about it even at this early stage. For example, the architect might already
know about technologies that are mandated, other systems that this
system must interact with, standards that must be followed, subsystems
or components that could be reused, and so forth.

4. Identification of Architectural Drivers

The facilitators share their list of key architectural drivers that they
assembled during steps 2 and 3 and ask the stakeholders for
clarifications, additions, deletions, and corrections. The idea here is to
reach a consensus on a distilled list of architectural drivers that covers
major functional requirements, business drivers, constraints, and quality
attributes.

5. Scenario Brainstorming

Given this context, each stakeholder now has the opportunity to express
a scenario representing that stakeholder’s needs and desires with
respect to the system. The facilitators ensure that each scenario has an
explicit stimulus and response. The facilitators also ensure traceability
and completeness: At least one representative scenario should exist for
each architectural driver listed in step 4 and should cover all the business
goals listed in step 2.

6. Scenario Consolidation

Similar scenarios are consolidated where reasonable. In step 7, the
stakeholders vote for their favorite scenarios, and consolidation helps
to prevent votes from being spread across several scenarios that are
expressing essentially the same concern.

7. Scenario Prioritization

Prioritization of the scenarios is accomplished by allocating to each
stakeholder a number of votes equal to 30 percent of the total number of
scenarios. The stakeholders can distribute these votes to any scenario
or scenarios. Once all the stakeholders have voted, the results are tallied
and the scenarios are sorted in order of popularity.

2.4 Architectural Drivers 23

8. Scenario Refinement

The highest-priority scenarios are refined and elaborated. The facilitators
help the stakeholders express these in the form of six-part scenarios:
source, stimulus, artifact, environment, response, and response
measure.

The output of the QAW is therefore a prioritized list of scenarios, aligned
with business goals, where the highest-priority scenarios have been
explored and refined. A QAW can be conducted in as little as 2–3 hours
for a simple system or as part of an iteration, and as much as 2 days for a
complex system where requirements completeness is a goal.

Utility Tree

If no stakeholders are readily available to consult, you still need to decide
what to do and how to prioritize the many challenges facing the system.
One way to organize your thoughts is to create a Utility Tree. The Utility
Tree, such as the one shown in the following figure, helps to articulate
your quality attribute goals in detail, and then to prioritize them.

Utility

Performance

Usability

Availability

Security

Peak
load

Latency

Feedback

Learnability

SW failure

Network failure

Authentication

Audit trail

Time servers send traps to the management system at peak
load. 100% of the traps are successfully processed and stored.

The management system collects data from time server during
peak load. All data collected within 5 minutes.

User displays time server event history. The list of events
from the last 24 hours is displayed within 1 second.

A failure occurs in the management system. The management
system resumes operation in less than 30 seconds.

A user changes a system configuration. The change is logged
100% of the time.

A new user can configure their account and be operating with
less than 8 hours of training.

Critical events are reported and visible to the user in < 5
seconds.

Authentication ensures 99.999% of unauthorized login
attempts can be detected.

(H, H)

(H, H)

(M, M)

(H, L)

(H, M)

(M, H)

(L, L)

(H, L)

24 Chapter 2—Architectural Design

It works as follows. First write the word “Utility” on a sheet of paper. Then
write the various quality attributes that constitute utility for your system.
For example, you might know, based on the business goals for the system,
that the most important qualities for the system are that the system be fast,
secure, and easy to modify. In turn, you would write these words under-
neath “Utility”. Next, because we don’t really know what any of those terms
actually means, we describe the aspect of the quality attribute that we are
most concerned with. For example, while “performance” is vague, “latency
of database transactions” is a bit less vague. Likewise, while “modifiability”
is vague, “ease of adding new codecs” is a bit less vague.

The leaves of the tree are expressed as scenarios, which provide con-
crete examples of the quality attribute considerations that you just enumer-
ated. For example, for “latency of database transactions”, you might create
a scenario such as “1000 users simultaneously update their own customer
records under normal conditions with an average latency of 1 second”.
For “ease of adding new codecs”, you might create a scenario such as
“Customer requests that a new custom codec be added to the system.
Codec is added with no side effects in 2 person-weeks of effort”.

Finally, the scenarios that you have created must be prioritized. We do
this prioritization by using the technique of ranking across two dimensions,
resulting in a priority matrix such as the following (where the numbers in
the cells are from a set of system scenarios).

Business
Importance/
Technical Risk L M H

L 5, 6, 17, 20, 22 1, 14 12, 19

M 9, 12, 16 8, 20 3, 13, 15

H 10, 18, 21 4, 7 2, 11

Our job, as architects, is to focus on the lower-right-hand portion of this table (H,
H): those scenarios that are of high business importance and high risk. Once we
have satisfactorily addressed those scenarios, we can move to the (M, H) or (H,
M) ones, and then move up and to the left until all of the system’s scenarios are
addressed (or perhaps until we run out of time or budget, as is often the case).

It should be noted that the QAW and the Utility Tree are two different
techniques that are aimed at the same goal—eliciting and prioritizing the
most important quality attribute requirements, which will be some of your
most critical architectural drivers. There is no reason, however, to choose
between these techniques. Both are useful and valuable and, in our
experience, they have complementary strengths: The QAW tends to focus
more on the requirements of external stakeholders, whereas the Utility
Tree tends to excel at eliciting the requirements of internal stakeholders.
Making all of these stakeholders happy will go a long way toward ensuring
the success of your architecture.

2.4 Architectural Drivers 25

2.4.3 Primary Functionality

Functionality is the ability of the system to do the work for which it was in-
tended. As opposed to quality attributes, the way the system is structured does not
normally influence functionality. You can have all of the functionality of a given
system coded in a single enormous module, or you can have it neatly distrib-
uted across many smaller, highly cohesive modules. Externally the system will
look and work the same way if you consider only functionality. What matters,
though, is what happens when you want to make changes to such system. In the
former case, changes will be difficult and costly; in the latter case, they should be
much easier and cheaper to perform. In terms of architectural design, allocation
of functionality to elements, rather than the functionality per se, is what matters.
A good architecture is one in which the most common changes are localized in a
single or a few elements, and hence easy to make.

When designing an architecture, you need to consider at least the primary
functionality. Primary functionality is usually defined as functionality that is crit-
ical to achieve the business goals that motivate the development of the system.
Other criteria for primary functionality might be that it implies a high level of
technical difficulty or that it requires the interaction of many architectural ele-
ments. As a rule of thumb, approximately 10 percent of your use cases or user
stories are likely to be primary.

There are two important reasons why you need to consider primary func-
tionality when designing an architecture:

1. You need to think how functionality will be allocated to elements (usually
modules) to promote modifiability or reusability, and also to plan work
assignments.

2. Some quality attribute scenarios are directly connected to the primary func-
tionality in the system. For example, in a movie streaming application, one of
the primary use cases is, of course, to watch a movie. This use case is asso-
ciated with a performance quality attribute scenario such as “Once the user
presses play, the movie should begin streaming in no more than 5 seconds”.
In this case, the quality attribute scenario is directly associated with the pri-
mary use case, so making decisions to support this scenario also requires
making decisions about how its associated functionality will be supported.
This is not the case for all quality attributes. For example, an availability sce-
nario can involve recovery from a system failure, and this failure may occur
when any of the system’s use cases are being executed.

Decisions regarding the allocation of functionality that are made during
architectural design establish a precedent for how the rest of the functionality
should be allocated to modules as development progresses. This is usually not the
work of the architect; instead, this activity is typically performed as part of the
element interaction design process described in Section 2.2.2.

26 Chapter 2—Architectural Design

Finally, bad decisions that are made regarding the allocation of functional-
ity result in the accumulation of technical debt. (Of course, these decisions may
reveal themselves to be bad only in hindsight.) This debt can be paid through the
use of refactoring, although this impacts the project’s rate of progress, or velocity
(see the sidebar “Refactoring”).

Refactoring

If you refactor a software architecture (or part of one), what you are doing
is maintaining the same functionality but changing some quality attribute
that you care about. Architects often choose to refactor because a portion
of the system is difficult to understand, debug, and maintain. Alternatively,
they may refactor because part of the system is slow, or prone to failure,
or insecure.

The goal of the refactoring in each case is not to change the func-
tionality, but rather to change the quality attribute response. (Of course,
additions to functionality are sometimes lumped together with a refactor-
ing exercise, but that is not the core intent of the refactoring.) Clearly, if we
can maintain the same functionality but change the architecture to achieve
different quality attribute responses, these requirement types are orthogo-
nal to each other—that is, they can vary independently.

2.4.4 Architectural Concerns

Architectural concerns encompass additional aspects that need to be considered
as part of architectural design but that are not expressed as traditional require-
ments. There are several different types of concerns:

§	General concerns. These are “broad” issues that one deals with in creating
the architecture, such as establishing an overall system structure, the allo-
cation of functionality to modules, the allocation of modules to teams, or-
ganization of the code base, startup and shutdown, and supporting delivery,
deployment, and updates.

§	Specific concerns. These are more detailed system-internal issues such as
exception management, dependency management, configuration, logging,
authentication, authorization, caching, and so forth that are common across
large numbers of applications. Some specific concerns are addressed in refer-
ence architectures (see Section 2.5.1), but others will be unique to your sys-
tem. Specific concerns also result from previous design decisions. For exam-
ple, you may need to address session management if you previously decided
to use a reference architecture for the development of web applications.

2.4 Architectural Drivers 27

§	Internal requirements. These requirements are usually not specified ex-
plicitly in traditional requirement documents, as customers usually seldom
express them. Internal requirements may address aspects that facilitate de-
velopment, deployment, operation, or maintenance of the system. They are
sometimes called “derived requirements”.

§	Issues. These result from analysis activities, such as a design review (see
Section 8.6), so they may not be present initially. For instance, an architec-
tural evaluation may uncover a risk that requires some changes to be per-
formed in the current design.

Some of the decisions surrounding architectural concerns might be trivial
or obvious. For example, your deployment structure might be a single processor
for an embedded system, or a single cell phone for an app. Your reference archi-
tecture might be constrained by company policy. Your authentication and autho-
rization policies might be dictated by your enterprise architecture and realized
in a shared framework. In other cases, however, the decisions required to satisfy
particular concerns may be less obvious—for example, in exception management
or input validation or structuring the code base.

From their past experience, wise architects are usually aware of the concerns
that are associated with a particular type of system and the need to make design
decisions to address them. Inexperienced architects are usually less aware of such
concerns; because these concerns tend to be tacit rather than explicit, they may
not consider them as part of the design process, which often results in problems
later on.

Architectural concerns frequently result in the introduction of new quality
attribute scenarios. The concern of “supporting logging”, for example, is too
vague and needs to be made more specific. Like the quality attribute scenarios
that are provided by the customer, these scenarios need to be prioritized. For
these scenarios, however, the customer is the development team, operations, or
other members of the organization. During design, the architect must consider
both the quality attribute scenarios that are provided by the customer and those
scenarios that are derived from architectural concerns.

One of the goals of our revision of the ADD method was to elevate the impor-
tance of architectural concerns as explicit inputs to the architecture design process,
as will be highlighted in our examples and case studies in Chapters 4, 5, and 6.

2.4.5 Constraints

You need to catalog the constraints on development as part of the architectural
design process. These constraints may take the form of mandated technologies,
other systems with which your system needs to interoperate or integrate, laws
and standards that must be complied with, the abilities and availability of your
developers, deadlines that are non-negotiable, backward compatibility with older

28 Chapter 2—Architectural Design

versions of systems, and so on. An example of a technical constraint is the use of
open source technologies, whereas a nontechnical constraint is that the system
must obey the Sarbanes-Oxley Act or that it must be delivered by December 15.

A constraint is a decision over which you have little or no control as an ar-
chitect. Your job is, as we mentioned in Chapter 1, to satisfice: to design the best
system that you can, despite the constraints you face. Sometimes you might be
able to argue for loosening a constraint, but in most cases you have no choice but
to design around the constraints.

2.5 Design Concepts: The Building Blocks for Creating
Structures

Design is not random, but rather is planned, intentional, rational, and directed.
The process of design may seem daunting at first. When facing the “blank page”
at the beginning of any design activity, the space of possibilities might seem im-
possibly huge and complex. However, there is some help here. The software ar-
chitecture community has created and evolved, over the course of decades, a body
of generally accepted design principles that can guide us to create high-quality
designs with predictable outcomes.

For example, some well-documented design principles are oriented toward
the achievement of specific quality attributes:

§	To help achieve high modifiability, aim for good modularity, which means
high cohesion and low coupling.

§	To help achieve high availability, avoid having any single point of failure.
§	To help achieve scalability, avoid having any hard-coded limits for critical

resources.
§	To help achieve security, limit the points of access to critical resources.
§	To help achieve testability, externalize state.
§	. . . and so forth.

In each case, these principles have been evolved over decades of dealing
with those quality attributes in practice. In addition, we have evolved reusable
realizations of these abstract approaches in design and, eventually, in code. We
call these reusable realizations design concepts, and they are the building blocks
from which the structures that make up the architecture are created. Different
types of design concepts exist, and here we discuss some of the most commonly
used, including reference architectures, deployment patterns, architectural pat-
terns, tactics, and externally developed components (such as frameworks). While
the first four are conceptual in nature, the last one is concrete.

2.5 Design Concepts: The Building Blocks for Creating Structures 29

2.5.1 Reference Architectures

Reference architectures are blueprints that provide an overall logical structure
for particular types of applications. A reference architecture is a reference model
mapped onto one or more architectural patterns. It has been proven in business
and technical contexts, and typically comes with a set of supporting artifacts that
eases its use.

An example of a reference architecture for the development of web applica-
tions is shown in Figure 2.3 on the next page. This reference architecture estab-
lishes the main layers for this type of application—presentation, business, and
data—as well as the types of elements that occur within the layers and the re-
sponsibilities of these elements, such as UI components, business components,
data access components, service agents, and so on. Also, this reference archi-
tecture introduces cross-cutting concerns, such as security and communication,
that need to be addressed. As this example shows, when you select a reference
architecture for your application, you also adopt a set of issues that you need to
address during design. You may not have an explicit requirement related to com-
munications or security, but the fact that these elements are part of the reference
architecture require you to make design decisions about them.

Reference architectures may be confused with architectural styles, but these
two concepts are different. Architectural styles (such as “Pipe and Filter” and
“Client Server”) define types of components and connectors in a specified topol-
ogy that are useful for structuring an application either logically or physically.
Such styles are technology and domain agnostic. Reference architectures, in
contrast, provide a structure for applications in specific domains, and they may
embody different styles. Also, while architectural styles tend to be popular in ac-
ademia, reference architectures seem to be preferred by practitioners—which is
also why we favor them in our list of design concepts.

While there are many reference architectures, we are not aware of any cata-
log that contains an extensive list of them.

2.5.2 Architectural Design Patterns

Design patterns are conceptual solutions to recurring design problems that exist
in a defined context. While design patterns originally focused on decisions at the
object scale, including instantiation, structuring, and behavior, today there are
catalogs with patterns that address decisions at varying levels of granularity. In
addition, there are specific patterns to address quality attributes such as security
or integration.

While some people argue for the differentiation between what they consider
to be architectural patterns and the more fine-grained design patterns, we believe
there is no principled difference that can be solely attributed to scale. We consider
a pattern to be architectural when its use directly and substantially influences the
satisfaction of some of the architectural drivers (see Section 2.2).

30 Chapter 2—Architectural Design

FIGURE 2.3 Example reference architecture for the development of web
applications from the Microsoft Application Architecture Guide (Key: UML)

Figure 2.4 shows an example architectural pattern that is useful for struc-
turing the system, the Layers pattern. When you choose a pattern such as this

2.5 Design Concepts: The Building Blocks for Creating Structures 31

one, you must decide how many layers you will need for your system. Figure 2.5
shows a pattern to support concurrency, which is useful to increase performance.
This pattern, too, needs to be instantiated—that is, it needs to be adapted to the
specific problem and design context. Instantiation is discussed in Chapter 3.

Although reference architectures may be considered as a type of pattern,
we prefer to consider them separately because of the important role they play
in structuring an application and because they are more directly connected to
technology stacks. Also, a reference architecture typically incorporates other
patterns and often constrains these patterns. For example, the reference archi-
tecture for web applications shown in Figure 2.3 incorporates the Layers pat-
tern but also establishes how many layers need to be used. This reference archi-
tecture also incorporates other patterns such as an Application Facade and Data
Access Components.

FIGURE 2.4 The Layers pattern for structuring an application from Pattern-
Oriented Software Architecture

32 Chapter 2—Architectural Design

FIGURE 2.5 The Half-Sync/Half-Async pattern to support concurrency from
Pattern-Oriented Software Architecture (Source: Softserve)

2.5.3 Deployment Patterns

Another type of pattern that we prefer to consider separately is deployment pat-
terns. These patterns provide models on how to physically structure the system to
deploy it. Some deployment patterns, such as the one shown in Figure 2.6, are use-
ful to establish an initial physical structure of the system in terms of tiers (phys-
ical nodes). More specialized deployment patterns, such as the Load-Balanced
Cluster in Figure 2.7, are used to satisfy quality attributes such as availability,
performance, and security.

2.5 Design Concepts: The Building Blocks for Creating Structures 33

FIGURE 2.6 Four-tier deployment pattern from the Microsoft Application
Architecture Guide (Key: UML)

FIGURE 2.7 Load-Balanced Cluster deployment pattern for performance from the
Microsoft Application Architecture Guide (Key: UML)

In general, an initial structure for the system is obtained by mapping the log-
ical elements that are obtained from reference architectures (and other patterns)
into the physical elements defined by deployment patterns.

2.5.4 Tactics

Architects can use collections of fundamental design techniques to achieve a re-
sponse for particular quality attributes. We call these architectural design primitives
tactics. Tactics, like design patterns, are techniques that architects have been using
for years. We do not invent tactics, but simply capture what architects actually have
done in practice, over the decades, to manage quality attribute response goals.

34 Chapter 2—Architectural Design

Events
arrive

Response
generated
within time
constraints

Tactics
to control
performance

FIGURE 2.8 Tactics mediate events and responses.

Tactics are design decisions that influence the control of a quality attribute
response. For example, if you want to design a system to have low latency or
high throughput, you could make a set of design decisions that would mediate the
arrival of events (requests for service), resulting in responses that are produced
within some time constraints, as shown in Figure 2.8.

Tactics are both simpler and more primitive than patterns. They focus on the
control of a single quality attribute response (although they may, of course, trade
off this response with other quality attribute goals). Patterns, in contrast, typi-
cally focus on resolving and balancing multiple forces—that is, multiple quality
attribute goals. By way of analogy, we can say that a tactic is an atom, whereas a
pattern is a molecule.

Tactics provide a top-down way of thinking about design. A tactics cate-
gorization begins with a set of design objectives related to the achievement of a
quality attribute, and presents the architect with a set of options from which to
choose. These options then need to be further instantiated through some combi-
nation of patterns, frameworks, and code.

For example, in Figure 2.9, the design objectives for performance are “Con-
trol Resource Demand” and “Manage Resources”. An architect who wants to
create a system with “good” performance needs to choose one or more of these
options. That is, the architect needs to decide if controlling resource demand is
feasible, and if managing resources is feasible. In some systems, the events arriv-
ing at the system can be managed, prioritized, or limited in some way. If this is
not possible, then the architect can manage resources only as part of an attempt
to generate responses within acceptable time constraints. Within the “Manage
Resources” category, an architect might choose to increase resources, introduce
concurrency, maintain multiple copies of computations, maintain multiple copies
of data, and so forth. These tactics then need to be instantiated. As an example,
an architect might choose the Half-Sync/Half-Async pattern (see Figure 2.5) as
a way of introducing (and managing) concurrency, or the Load-Balanced Cluster
deployment pattern (see Figure 2.7) to maintain multiple copies of computations.
As we will see in Chapter 3, the choice, combination, and tailoring of tactics and

2.5 Design Concepts: The Building Blocks for Creating Structures 35

patterns are some of the key steps of the ADD process. There are existing tactics
categorizations for the quality attributes of availability, interoperability, modifi-
ability, performance, security, testability, and usability.

2.5.5 Externally Developed Components

Patterns and tactics are abstract in nature. However, when you are designing
a software architecture, you need to make these design concepts concrete and
closer to the actual implementation. There are two ways to achieve this: You can
code the elements obtained from tactics and patterns or you can associate tech-
nologies with one or more of these elements in the architecture. This “buy ver-
sus build” choice is one of the most important decisions you will make as an
architect.

We consider technologies to be externally developed components, because
they are not created as part of the development project. Several types of exter-
nally developed components exist:

§	Technology families. A technology family represents a group of spe-
cific technologies with common functional purposes. It can serve as a

Performance Tactics

Control Resource Demand Manage Resources

Manage sampling rate
Events

Arrive

Response
Generated

within

Time
Constraints

Limit event response

Prioritize events

Reduce overhead

Bound execution times

Increase resource
efficiency

Increase resources

Introduce concurrency

Maintain multiple
copies of computations

Maintain multiple
copies of data

Bound queue sizes

Schedule resources

FIGURE 2.9 Performance tactics from Software Architecture in Practice

36 Chapter 2—Architectural Design

placeholder until a specific product or framework is selected. An example is
a relational database management system (RDBMS) or an object-oriented
to relational mapper (ORM). Figure 2.10 shows different technology fami-
lies in the Big Data domain (in regular text).

§	Products. A product (or software package) refers to a self-contained func-
tional piece of software that can be integrated into the system that is being
designed and that requires only minor configuration or coding. An example
is a relational database management system, such as Oracle or Microsoft
SQL Server. Figure 2.10 shows different products in the Big Data domain
(in italics).

§	Application frameworks. An application framework (or just framework) is
a reusable software element, constructed out of patterns and tactics, that
provides generic functionality addressing recurring domain and quality
attribute concerns across a broad range of applications. Frameworks, when
carefully chosen and properly implemented, increase the productivity of
programmers. They do so by enabling programmers to focus on business
logic and end-user value, rather than underlying technologies and their im-
plementations. As opposed to products, framework functions are generally
invoked from the application code or are “injected” using some type of
aspect-oriented approach. Frameworks usually require extensive configura-
tion, typically through XML files or other approaches such as annotations
in Java. A framework example is Hibernate, which is used to perform ob-
ject-oriented to relational mapping in Java. Several types of frameworks
are available: Full-stack frameworks, such as Spring, are usually associated
with reference architectures and address general concerns across the differ-
ent elements of the reference architecture, while non-full-stack frameworks,
such as JSF, address specific functional or quality attribute concerns.

§	Platforms. A platform provides a complete infrastructure upon which to
build and execute applications. Examples of platforms include Java, .Net, or
and Google Cloud.

The selection of externally developed components, which is a key aspect of
the design process, can be a challenging task because of their extensive number.
Here are a few criteria you should consider when selecting externally developed
components:

§	Problem that it addresses. Is it something specific, such as a framework for
object-oriented to relational mapping or something more generic, such as a
platform?

§	Cost. What is the cost of the license and, if it is free, what is the cost of sup-
port and education?

§	Type of license. Does it have a license that is compatible with the project
goals?

2.5 Design Concepts: The Building Blocks for Creating Structures 37

Big Data Analytics Catalog

Integration
Messaging

Data Collector

Apache Flume

Logstash

Fluentd

Apache Kafka

RabbitMQ

Amazon SQS

Apache ActiveMQ

HBase

Cassandra

Neo4J

OrientDB

HP Vertica

Teradata

MS PDW

Amazon Redshift

StreamSets

Talend

Informatica

MongoDB

CouchDB

Riak

Redis

Berkeley DB

MS SQL Server

QlikView

Microstrategy

Tableau

Tibco JasperSoft

Pentaho

Oracle RDBMS

IBM DB2

Splunk

Splunk

Kibana

Zoomdata

D3.js

GoJS

Highcharts

Impala

Apache Hive (Stinger)

Apache Solr

Elasticsearch

Hadoop MapReduce

Apache Tez

Apache Spark

Apache Storm

Spark Streaming

Amazon Kinesis

Apache Samza

Cascading

Apache Crunch

Amazon Pig

Apache Hive

Spark SQL

HDFS

CassandraFS

Distributed Message Broker

ETL/Data Integration Engine

Document-Oriented

Key-Value

Graph-Oriented

MPP Analytic RDBMS

Traditional Analytic RDBMS

BI Platform

Interactive Dashboard

Interactive Query Engine

Distributed Search Engine

Distributed Computing Engine

Event Stream Processor

Data Processing Framework

Graphic Library

Column-Family

ETL/ELT

Distributed File System

NoSQL Database

Analytic RDBMS

Visualization & Reporting

Search & Query

Processing

Data Storage

Processing and
Analytics

Straight text – a technology family

Italic text – a specific technology

Legend:

FIGURE 2.10 A technology family tree for the Big Data application domain

38 Chapter 2—Architectural Design

§	Support. Is it well supported? Is there extensive documentation about the
technology? Is there an extensive user or developer community that you can
turn to for advice?

§	Learning curve. How hard is it to learn this technology? Have others in
your organization already mastered it? Are there courses available?

§	Maturity. Is it a technology that has just appeared on the market, which may
be exciting but still relatively unstable or unsupported?

§	Popularity. Is it a relatively widespread technology? Are there positive testi-
monials or adoption by mature organizations? Will it be easy to hire people
who have deep knowledge of it? Is there an active developer community or
user group?

§	Compatibility and ease of integration. Is it compatible with other technolo-
gies used in the project? Can it be integrated easily in the project?

§	Support for critical quality attributes. Does it limit attributes such as per-
formance? Is it secure and robust?

§	Size. Will the use of the technology have a negative impact on the size of
the application under development?

Unfortunately, the answers to these questions are not always easy to find
and the selection of a particular technology may require you do some research or,
eventually, to create prototypes that will help you in the selection process. These
criteria will have a significant effect on your total cost of ownership.

2.6 Architecture Design Decisions

As we said at the beginning of this chapter, design is the process of making de-
cisions. But the act of making a decision is a process, not a moment in time.
Experienced architects, when faced with a design challenge, typically entertain a
set of “candidate” decisions (as shown in Figure 2.1); from this set, they choose a
best candidate and instantiate that. They might select this “best” candidate based
on experience, constraints, or some form of analysis such as prototyping or sim-
ulation. The reality is that an architect will often make a choice and “ride the
horse until it drops”—that is, commit to a decision and revisit it only if it ap-
pears to be compromising the success of the project. These decisions have serious
consequences!

Recall that, in the early stages of design, decisions focus on the biggest,
most critical choices that will have substantial downstream consequences: refer-
ence architectures, major technologies (such as frameworks), and patterns. Ref-
erence architectures, deployment patterns, and other kinds of patterns have been
widely discussed—there are many books, websites, and conferences devoted to
the creation and validation of patterns and pattern languages. Nevertheless, the

2.6 Architecture Design Decisions 39

output of these activities is always a set of documented patterns. Interpreting
the patterns from a pattern catalog is a critical part of the selection activity for
an architect. Each candidate pattern must be chosen and its instantiation must
be analyzed. For example, if you chose the Layers pattern from Figure 2.4, you
would still have many decisions to make: how many layers there will be, how
strict the layering will be, which specific services will be placed into each layer,
what the interfaces between these functions will be, and so forth. If you chose
the Load-Balanced Cluster deployment pattern from Figure 2.7, you would have
to decide how many servers will be balanced, how many load balancers you will
use, where these servers and load balancers will physically reside, which kinds
of networks will connect these servers, which form of encryption you will use on
those network connections, which form of health monitoring the load balancers
will employ, and so forth. These decisions are important and will affect the suc-
cess of the instantiated pattern, so they need to be analyzed. In addition, the qual-
ity of the implementation of these decisions will affect the success of the pattern.
As we like to quip, the architecture giveth and the implementation taketh away.

Furthermore, the many catalogs and web pages that present design concepts
use different conventions and notations. The focus of our book is on the design
method and how it can be used with these external sources. For this reason we
just take examples from outside sources and show them here as they were origi-
nally presented. This book is not intended to be another design patterns catalog—
we want to alert you to the presence of these catalogs and show how they can be
an incredibly useful resource for an architect, but they must be interpreted and
used with care! In fact, one of your many jobs as an architect is to understand and
interpret these catalogs, with their different notations and conventions. This is the
reality that you will have to deal with.

Finally, once a design decision has been made, you should think about how
you will document it. You could, of course, do no documentation. This is, in fact,
what is most common in practice. Architectural concepts are often vague and
conveyed informally, in “tribal knowledge”: personal communications, emails,
naming conventions, and so forth. Alternatively, you could create and maintain
full, formal documentation, as is done for some projects with demanding qual-
ity attribute requirements, such as safety-critical or high-security systems. If you
are designing flight-control software, you will probably end up at this end of the
spectrum. In between these endpoints is a broad set of possibilities, and in this
space we see less formal (and less costly) forms of architecture documentation,
such as sketches (as we will discuss in Section 3.7).

The decision of what, when, and how to document should be risk based. You
should ask yourself: What is the risk of not documenting this decision? Could it
be misinterpreted and undermined by future developers? Could it contribute to
near-term or long-term problems in the system? For example, if the rationale for
layering is not carefully documented, the layering will inevitably break down,
losing coherence and tending toward increased coupling. Over time, this trend

40 Chapter 2—Architectural Design

will increase the system’s technical debt, making it harder to find and fix bugs
or add new features. To take another example, if the rationale for allocation of a
critical resource is not documented, that resource might become an unintended
contention area, resulting in bottlenecks and failures.

2.7 Summary

In this chapter, we introduced the idea of design as a set of decisions to satisfy
requirements and constraints. We also introduced the notion of “architectural”
design and showed that it does not differ from design in general, other than that it
addresses the satisfaction of architectural drivers: the purpose, primary function-
ality, quality attribute requirements, architectural concerns, and constraints. What
makes a decision “architectural”? A decision is architectural if it has nonlocal
consequences and those consequences matter to the achievement of an architec-
tural driver.

We also discussed why architectural design is so important: because it is
the embodiment of early, far-reaching, hard-to-change decisions. These decisions
will help you meet your architectural drivers, will determine much of your proj-
ect’s work-breakdown structure, and will affect the tools, skills, and technologies
needed to realize the system. Thus architectural design decisions should be scru-
tinized well, as their consequences are profound. In addition, architecture is a key
enabler of agility.

Architectural design is guided by certain principles. For example, to achieve
good modularity, high coupling, and low cohesion, the wise architect will prob-
ably include some form of layering in the architecture being designed. Similarly,
to achieve high availability, an architect will likely choose a pattern involving
some form of redundancy and failover, such as active–passive redundancy, where
an active server sends real-time updates to a passive server, so that the passive
server can replace the active server in case it fails, with no loss of state.

Design concepts, such as reference architectures, deployment patterns, ar-
chitectural patterns, tactics, and externally developed components, are the build-
ing blocks of design, and they form the foundation for architectural design as it is
performed using ADD. As you will see in our step-by-step explanation of ADD in
Chapter 3, some of the most important design decisions that an architect makes
are how design concepts are selected, how they are instantiated, and how they
are combined. Also, in Appendix A, we present a design concepts catalog that
includes several instances of the design concepts presented here.

From these foundations, an architecture can be confidently and predictably
constructed.

2.8 Further Reading 41

2.8 Further Reading

A more in-depth treatment of scenarios and architectural drivers can be found in
L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 3rd ed.,
Addison-Wesley, 2012. Also found in this book is an extensive discussion of ar-
chitectural tactics, which are useful in guiding an architecture to achieve quality
attribute goals. Likewise, this book contains an extensive discussion of QAW and
Utility Trees.

The Mission Thread Workshop is discussed in R. Kazman, M. Gagliardi,
and W. Wood, “Scaling Up Software Architecture Analysis”, Journal of Sys-
tems and Software, 85, 1511–1519, 2012; and in M. Gagliardi, W. Wood, and
T. Morrow, Introduction to the Mission Thread Workshop, Software Engineering
Institute Technical Report CMU/SEI-2013-TR-003, 2013.

An overview of discovery prototyping, JRP, JAD, and accelerated systems
analysis can be found in any competent book on systems analysis and design,
such as J. Whitten and L. Bentley, Systems Analysis and Design Methods, 7th
ed., McGraw-Hill, 2007. The combination of architectural approaches with Agile
methods will be discussed in Chapter 9.

A catalog of reference architectures and deployment patterns appears in the
book by the Microsoft Patterns and Practices Team: Microsoft® Application Ar-
chitecture Guide, 2nd ed., Microsoft Press, 2009. This book also provides an ex-
tensive list of architectural concerns associated with the reference architectures
that are documented.

An extensive collection of architectural design patterns for the construction
of distributed systems can be found in F. Buschmann, K. Henney, and D. Schmidt,
Pattern-Oriented Software Architecture Volume 4: A Pattern Language for Dis-
tributed Computing, Wiley, 2007. Other books in the POSA (Patterns Of Soft-
ware Architecture) series provide additional pattern catalogs. Many other pattern
catalogs specializing in particular application domains and technologies exist. A
few examples are listed here:

§	E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, 1995.

§	M. Fowler. Patterns of Enterprise Application Architecture. Addi-
son-Wesley, 2003.

§	E. Fernandez-Buglioni. Security Patterns in Practice: Designing Secure
Architectures Using Software Patterns. Wiley, 2013.

§	G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Build-
ing, and Deploying Messaging Solutions. Addison-Wesley, 2004.

The evaluation and selection of software packages is discussed in A. Jadhav
and R. Sonar, “Evaluating and Selecting Software Packages: A Review”, Journal
of Information and Software Technology, 51, 555–563, 2009.

42 Chapter 2—Architectural Design

The “bible” for software architecture documentation is P. Clements,
F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R. Nord, and
J. Stafford, Documenting Software Architectures: Views and Beyond, 2nd ed.,
Addison-Wesley, 2011.

The technology family tree for the Big Data application domain is based on the
Smart Decisions Game by H. Cervantes, S. Haziyev, O. Hrytsay, and R. Kazman,
which can be found at http://smartdecisionsgame.com.

http://smartdecisionsgame.com

277

Index

A
ABD (Architecture-Based Design). See ADD

(Attribute-Driven Design).
ACDM (Architecture-Centric Design

Method), 164–165
Active Reviews for Intermediate Design

(ARID). See ARID (Active Reviews
for Intermediate Design).

ADD (Attribute-Driven Design). See also
Architectural drivers; Methods.

analyzing current design, 48–49
definition, 270
design concepts, selecting, 47, 55
design iterations, 44
history of, 8–9
interfaces, defining, 47–48, 61–64
iterating, 49
overview, 44
recording design decisions, 48, 68
reviewing inputs, 44–46
rounds, 44
sketching views, 48, 65
steps in, 44–49
by system type, 50. See also specific types.

ADD (Attribute-Driven Design), alternatives
to

ACDM (Architecture-Centric Design
Method), 164–165

a general model of software architecture
design, 161–163

Microsoft technique for sketching an ar-
chitecture, 169–171

Process of Software Architecting,
167–169

RUP (Rational Unified Process), 165–166
viewpoints and perspectives method,

171–173
ADD (Attribute-Driven Design), design pur-

pose, 18
identifying, 44
reviewing, 48–49

ADD (Attribute-Driven Design), elements
allocating responsibilities to, 47–48, 60
instantiating, 47–48, 58
refining, 46–47

ADD (Attribute-Driven Design), iteration
goals

establishing, 46
reviewing, 48–49

ADL (Attribute Description Language)
definition, 269
overview, 190–191
UML (Unified Modeling Language), 191

Agile Manifesto, 17, 197–199
Agile processes

in the development lifecycle, 197–199
enabling, 16–17

Agreements, in architectural design, 17
Allocating responsibilities, case studies

greenfield development for mature do-
mains, 84, 91–92, 101–102

greenfield development for novel do-
mains, 116, 126–128, 134–136,
139–141

Allocation structures, 59
Allocation view, brownfield development

case study, 150–151
Analysis

analytic models, 176–177
anchoring bias, 186
back-of-the-envelope analyses, 177
checklists, 177
confirmation bias, 186
cost of, 179–180
definition, 7, 175
experiments, 177
overview, 175–176
prototyping, 177
purpose of, 178–179
reflective questions, 177, 186–187
scenario-based design reviews, 187, 189.

See also ATAM (Architecture
Tradeoff Analysis Method).

simulation, 177
substantiating your beliefs, 176–177
tactics based, 180–185
techniques, 179–180
thought experiments, 177

Analytic models, 176–177

278 Index

Analytical skills among architects
practicing, 209
prerequisites, 7
Smart Decisions game, 209

Analyzing current design, case studies
brownfield development, 156–158
greenfield development for mature do-

mains, 88–89, 99–100, 104
greenfield development for novel domains,

118–120, 129–131, 138, 143
Analyzing current design, with ADD, 48–49
Anchoring bias, 186
Application frameworks, 36, 269
Architects

role of, 7
skills, 7
skills practice, 209–210

Architectural analysis, 163
Architectural backlogs, 69–70, 163
Architectural concerns, case studies

brownfield development, 148
greenfield development for mature do-

mains, 80
greenfield development for novel do-

mains, 110
Architectural concerns, definition, 26–28,

269
Architectural design. See also Design.

achieving agreements, 17
definition, 270
detailed, 15–16
importance of, 16–17
low level, 16
in software architecture life-cycle, 4

Architectural design decisions
candidate decisions, 38–40
catalog resources, 39
documenting, 39–40
overview, 38–40
regarding patterns, 38–39
web page resources, 39

Architectural documentation. See
Documentation.

Architectural drivers
concerns, 26–27
constraints, 27–28
definition, 4, 270
derived requirements, 27
design purpose, 18–19
general concerns, 26
identifying, 45–46
internal requirements, 27

issues, 27
primary functionality, 25–26
quality attributes, 19–25
selecting, 46
in software architecture, 13
specific concerns, 26

Architectural drivers, satisfying. See also
Structures.

greenfield development for mature do-
mains case study, 82–84, 90, 101

greenfield development for novel domains
case study, 112–115, 121–126,
132–133, 139

overview, 46–47
Architectural drivers, selecting

greenfield development for mature do-
mains case study, 81, 90, 101

greenfield development for novel domains
case study, 112, 121, 131–132, 139

Architectural elements. See Elements.
Architectural evaluation

definition, 270
in a general model of software architec-

ture design, 163
in software architecture life-cycle, 6

Architectural implementation/conformance
checking, 6

Architectural patterns. See Patterns.
Architectural styles, vs. reference architec-

tures, 29
Architectural synthesis, 163
Architecture design process. See Design

process.
Architecture-Based Design (ABD). See ADD

(Attribute-Driven Design).
Architecture-Centric Design Method

(ACDM), 164–165
ARID (Active Reviews for Intermediate

Design)
defining interfaces, 64–65
definition, 269

ASRs (architecturally significant require-
ments), 4, 270

ATAM (Architecture Tradeoff Analysis
Method), 187–190, 270

Attribute Description Language (ADL). See
ADL (Attribute Description Language).

Attribute-Driven Design (ADD). See ADD
(Attribute-Driven Design).

Availability
scenarios, brownfield development case

study, 146

Index 279

tactics, 230–232
tactics-based questionnaire, 180–185,

248–252

B
Backlogs, architectural, 69–70, 163
Back-of-the-envelope analyses, 177
BDUF (Big Design Up Front)

definition, 270
in the development lifecycle, 197–198
identifying modules, 64

Big Data case study. See Greenfield develop-
ment for novel domains case study.

Blueprints. See Documentation; Reference
architectures; Sketches.

Booch, Grady, on architectural design, 14
Books and publications

“A General Model of Software Architecture
Design” (Hofmeister et al.), 161

Just Enough Software Architecture
(Fairbanks), 7

Microsoft Application Architecture Guide
(Microsoft), 169, 211

Pattern-Oriented Software Architecture: A
Pattern Language for Distributed
Computing (Buschmann et al.), 31,
32, 41, 224

The Process of Software Architecting
(Eeles and Cripps), 167–169

“A Rational Design Process: How and
Why to Fake It” (Parnas and
Clements), 2

Software Architecture in Practice, 3rd ed.
(Bass et al.), 3, 7, 8, 19, 35, 230

Software Systems Architecture: Working
with Stakeholders Using View-
points and Perspectives (Rozanski
and Woods), 171–173

Brooks, Fred, 208
Brownfield development, definition, 50, 270
Brownfield development case study

allocation view, 150–151
architectural concerns, 148
availability scenarios, 146
business case, 145–148
constraints, 148
existing documentation, 149–151
module view, 149–150
performance scenarios, 146
quality attribute scenarios, 146, 148
reliability scenarios, 146
use case model, 147

Brownfield development case study, design
process

allocating responsibilities, 154
analyzing current design, 156–158
defining interfaces, 154
design purpose, reviewing, 156–158
instantiating elements, 154
iteration goals, establishing, 152
iteration goals, reviewing, 156–158
recording design decisions, 154–156
refining elements, 152
reviewing inputs, 152
selecting design concepts, 152–153
sketching views, 154–156
supporting new drivers, 152–158

Business case, case studies
brownfield development, 145–148
greenfield development for mature do-

mains, 75–77
greenfield development for novel do-

mains, 107–108
Buy vs. build, design concept, 35–38

C
Candidate decisions, 38–40
Case studies

banking systems. See Brownfield devel-
opment case study.

Big Data. See Greenfield development for
novel domains case study.

development for legacy systems. See
Brownfield development.

FCAPS model for network management.
See Greenfield development for
mature domains case study.

greenfield development. See Greenfield
development for mature domains
case study; Greenfield develop-
ment for novel domains case study.

Catalogs of design concepts. See Design con-
cepts catalogs.

CBAM (Cost Benefit Analysis Method),
55–57, 270

C&C (component and connector) structures,
59

Checklists, 177
Communication skills, among architects, 7
Compatibility, externally developed compo-

nents, 38
Concurrency, 31, 32, 228
Cone of uncertainty, 194–195
Confirmation bias, 186

280 Index

Constraints
on architectural drivers, 27–28
definition, 28, 270
selecting design concepts, 58

Constraints, case studies
brownfield development, 148
greenfield development for mature do-

mains, 79
greenfield development for novel do-

mains, 110
Construction phase of RUP, 165, 199
Cost

of design analysis, 179–180
estimating, 194–196
externally developed components, 36

Cost Benefit Analysis Method (CBAM).
See CBAM (Cost Benefit Analysis
Method).

Cripps, Peter, 167

D
Data stream elements, refining, 131–138
Database access patterns, design concepts

catalog, 229
Deployment patterns

definition, 271
example, 32–33
instantiating elements, 60

Deployment patterns, design concepts
catalogs

distributed deployment, 222–223
Load-Balanced Cluster patterns,

223–224
nondistributed deployment, 221
performance patterns, 223–224

Design. See also Architectural design.
definition, 11
element interaction, 14–15
element internals, 15
high level, 16
overview, 11–12
in software architecture, 13–14

Design candidates, identifying, 54–55
Design concepts catalog

example, 211
definition, 271
as resources for architectural design de-

cisions, 39
uses for, 203–204

Design concepts catalogs, architectural de-
sign patterns

concurrency, 228

database access, 229
interface partitioning, 226–227
Load-Balanced Cluster patterns, 224
Pattern-Oriented Software Architecture:

A Pattern Language for Distrib-
uted Computing (Buschmann et
al.), 224

structural patterns, 224–226
Design concepts catalogs, deployment

patterns
distributed deployment, 222–223
Load-Balanced Cluster patterns,

223–224
nondistributed deployment, 221
performance patterns, 223–224

Design concepts catalogs, externally devel-
oped components

Hibernate framework, 244–245
Java Web Start framework, 245
Spring framework, 241–242
Swing framework, 243

Design concepts catalogs, reference
architectures

Microsoft Application Architecture
Guide, 211

mobile applications, 218
RIAs (rich Internet applications),

215–217
rich client applications, 214–215
service applications, 218–221
web applications, 212–214

Design concepts catalogs, tactics
availability, 230–232
interoperability, 232–233
modifiability, 233–235
performance, 235–236
security, 236–238
testability, 238–240
usability, 240–241

Design concepts. See also, Reference archi-
tectures, Design patterns, Deploy-
ment patterns, Tactics, and Externally
developed components.

buy vs. build, 35–38
definition, 12, 271
design primitives. See Tactics.
design principles, 28
externally developed components,

35–38
identifying design candidates, 54–55
overview, 28
reference architectures, 29, 30

Index 281

types of, 59–60
Design concepts, selecting

CBAM (Cost Benefit Analysis Method),
55–57

constraints, 58
greenfield development for mature do-

mains, 51
greenfield development for mature

domains case study, 82–84,
90–91, 101

greenfield development for novel do-
mains case study, 112–115,
121–126, 132–133, 139

overview, 47, 55
prototyping, 57–58
stakeholder benefits, 56
utility, 56

Design decisions, recording. See Recording
design decisions.

Design iteration goals, establishing
brownfield development case study, 152
greenfield development for mature do-

mains case study, 90, 101
greenfield development for novel do-

mains case study, 112, 121,
131–132, 139

Design iteration goals, reviewing
brownfield development case study,

156–158
greenfield development for mature

domains case study, 88–89,
99–100, 104

greenfield development for novel do-
mains case study, 118–120,
129–131, 138, 143

Design iterations
definition, 271
in the design process, 44, 49
purpose of, 50–52

Design patterns. See Patterns.
Design primitives. See Tactics.
Design principles, 28
Design process, alternative methods

ACDM (Architecture-Centric Design
Method), 164–165

a general model of software architecture
design, 161–163

Microsoft technique for architecture and
design, 169–171

Process of Software Architecting,
167–169

RUP (Rational Unified Process), 165–166

viewpoints and perspectives method,
171–173

Design process, case studies. See Brown-
field development case study, design
process; Greenfield development for
mature domains case study, design
process; Greenfield development for
novel domains case study, design
process.

Design process, elements in
allocating responsibilities to, 47–48
instantiating, 47–48, 58
refining, 46–47

Design process, need for, 43–44
Design process, organizational aspects

design concepts catalogs, 203–204
individual effort vs. team effort,

202–203
Design process in the development lifecycle

major phases, 193–194
preliminary documentation, 196

Design process in the development lifecycle,
development and operations phase

Agile methods, 197–199
BDUF (Big Design Up Front), 197–198
DevOps, 201–202
emergent approach, 197–198
HLD (high-level design) phase of TSP,

200–201
IMPL (implementation) phase of TSP,

200–201
iteration 0 approach, 199
launch phase, 200
postmortem phase, 200
PSP (Personal Software Process), 200
REQ (requirements) phase of TSP,

200–201
RUP (Rational Unified Process),

199–200
spikes, 199
TEST (testing) phase, 200–201
TSP (Team Software Process), 200–201
Waterfall model, 197–198

Design purpose, definition, 271
Design purpose, overview, 18
Design purpose, reviewing

greenfield development for mature do-
mains case study, 88–89

greenfield development for novel do-
mains case study, 118–120,
129–131, 138, 143

Design rounds, 44, 271

282 Index

Designing
for existing systems. See Brownfield

development.
for legacy systems. See Brownfield

development.
for mature domains. See Greenfield de-

velopment for mature domains.
for novel domains. See Greenfield devel-

opment for novel domains.
from scratch. See Greenfield develop-

ment for mature domains.
Detailed design, 15–16
Development cycle, definition, 271
DevOps

definition, 271
in the development lifecycle, 201–202
tactics-based questionnaire, 263–266

Distributed deployment patterns, design
concepts catalog, 222–223

Documentation. See also Recording design
decisions.

architectural design decisions, 39–40
for legacy systems, 149–151
purposes of, 67
scenario based, 67–68
in software architecture life-cycle, 5

Documentation, preliminary. See also
Sketches; Views.

in the development lifecycle, 196
recording design decisions, 68–69
sketching views, 65–68

Drivers. See Architectural drivers.
Dyson, Freeman, on good engineers, 53

E
Eeles, Peter, 167
Einstein, Albert, on teaching by example, 2
Elaboration phase of RUP, 165–166, 199
Element interaction design

defining interfaces, 64–65
definition, 271
overview, 14–15

Element internals design, 15, 271
Elements (in software architecture)

definition, 271
instantiating. See Instantiating elements.
properties, 60
relationships, 61
responsibilities, 60

Elements (in software architecture), in the
design process

allocating responsibilities to, 47–48

instantiating, 47–48, 58
refining, 46–47

Elements (in software architecture), refining
greenfield development for mature do-

mains case study, 82, 90, 101
greenfield development for novel domains

case study, 112, 121, 132, 139
Emergent approach in the development life-

cycle, 197–198
Estimation in the development lifecycle

cone of uncertainty, 194–195
cost, 194–196
identifying components of, 196
pre-sales phase, 194–196
risk, 194–195
schedules, 194–196
standard components technique, 195–196

Evaluating architecture. See Architectural
evaluation.

Experiments, 177
External interfaces, defining, 61
Externally developed components

application frameworks, 36
compatibility, 38
cost, 36
definition, 35, 272
integration, 38
learning curve, 38
licensing, 36
maturity, 38
overview, 35–38
platforms, 36
popularity, 38
problem addressed by, 36
products, 36
selecting, 36–38
size, 38
in structures, 60
support for, 38
technology families, 35–36, 37
types of, 35–36

Externally developed components, design
concepts catalog

Hibernate framework, 244–245
Java Web Start framework, 245
Spring framework, 241–242
Swing framework, 243

F
Falsifiability of scenarios, 21
FCAPS

accounting management, 76

Index 283

configuration management, 76
fault management, 76
performance management, 76
security management, case study, 76

FCAPS model for network management. See
Greenfield development for mature
domains case study.

Frameworks, choosing for greenfield devel-
opment for mature domains, 50

G
“A General Model of Software Architecture

Design” (Hofmeister et al.), 161
General model of software architecture

design, 161–163
architectural analysis, 163
architectural evaluation, 163
architectural synthesis, 163
flowchart of activities, 162
overview, 161

Greenfield development, definition, 272
Greenfield development for mature

domains
definition, 50
design concepts, selecting, 51
design iterations, purpose of, 50–52
designing, 50–52
frameworks, choosing, 50
identifying structures to support primary

functionality, 51–52
mature domains, examples, 50
refining structures, 52
roadmap for, 50–52

Greenfield development for mature domains
case study

accounting management, 76
architectural concerns, 80
business case, 75–77
configuration management, 76
constraints, 79
fault management, 76
FCAPS model for network management,

75–77
performance management, 76
quality attribute scenarios, 78–79
security management, 76
system requirements, 77–80
use case model, 77–80

Greenfield development for mature domains
case study, design process

allocating responsibilities, 84, 91–92,
101–102

analyzing current design, 88–89,
99–100, 104

architectural drivers, selecting, 81, 90, 101
defining interfaces, 84, 101–102
design concepts, selecting, 82–84,

90–91, 101
design purpose, reviewing, 88–89
identifying structures to support primary

functionality, 89–99
inputs, reviewing, 80–81
instantiating elements, 84, 91–92, 101–102
iteration goals, establishing, 90, 101
iteration goals, reviewing, 88–89
iterations, reviewing, 99–100, 104
overall system structure, establishing,

81–89
quality attribute scenarios, 101–104
recording design decisions, 84–87,

92–99, 102–103
refining elements, 82, 90, 101
satisfying architectural drivers, 82–84,

90, 101
sketching views, 84–87, 92–99, 102–103

Greenfield development for novel domains
definition, 50
novel domains, definition, 52
roadmap for, 52

Greenfield development for novel domains
case study

business case, 107–108
reviewing inputs, 111–112

Greenfield development for novel domains
case study, design process

allocating responsibilities, 116, 126–128,
134–136, 139–141

analyzing current design, 118–120,
129–131, 138, 143

data stream elements, refining, 131–138
defining interfaces, 116, 126–128, 134–

136, 139–141
design concepts, selecting, 112–115,

121–126, 132–133, 139
design purpose, reviewing, 118–120,

129–131, 138, 143
drivers, satisfying, 112–115, 121–126,

132–133, 139
drivers, selecting, 112, 121, 131–132, 139
elements, refining, 112, 121, 132, 139
instantiating architectural elements, 116,

126–128, 134–136, 139–141
iteration goals, establishing, 112, 121,

131–132, 139

284 Index

Greenfield development for novel domains
case study, design process (cont.)

iteration goals, reviewing, 118–120,
129–131, 138, 143

recording design decisions, 116–118,
128–129, 136–137, 141–142

reference architecture, 112–120
server layer, refining, 138–143
sketching views, 116–118, 128–129,

136–137, 141–142
structure of overall system, 112–120
technologies, selecting, 120–131

Greenfield development for novel domains
case study, system requirements

architectural concerns, 110
constraints, 110
quality attribute scenarios, 109–110
use case model, 108–109

H
Hacks. See Technical debt.
Half Sync/Half Async, pattern example, 32,

228
Help

registering Designing Software Architec-
ture, xiii

skills practice, 209–210
Hibernate framework, design concepts cata-

log, 244–245
High-level design, 16
HLD (high-level design) phase, 200–201

I
IMPL (implementation) phase of TSP,

200–201
Inception phase of RUP, 165, 199
Instantiating elements

in ADD (Attribute-Driven Design), 47–48
overview, 59–60
producing structures, 58

Instantiating elements, case studies
greenfield development for mature do-

mains, 84, 91–92, 101–102
greenfield development for novel do-

mains, 116, 126–128, 134–136,
139–141

Instantiation, definition, 272
Integration, externally developed compo-

nents, 38
Interface partitioning, design concepts cata-

log, 226–227
Interfaces, defining

ARID (Active Reviews for Intermediate
Design), 64–65

communicating with engineers, 64–65
in element interaction design, 64–65
external, 61
greenfield development for mature do-

mains case study, 84, 101–102
greenfield development for novel do-

mains case study, 116, 126–128,
134–136, 139–141

internal, 61–64
Interfaces, definition, 61, 272
Internal interfaces, defining, 61–64
Interoperability, tactics-based questionnaire,

252
Interoperability tactics, design concepts

catalog, 232–233
Interviews. See Tactics-based questionnaires.
Iteration. See Design iteration.
Iteration 0 approach, 199

J
Java Web Start framework, design concepts

catalog, 245
Just Enough Software Architecture (Fair-

banks), 7

K
Kanban boards, 70–71

L
Lambda (reference) architecure, 113
Launch phase of the TSP (Team Software

Process), 200
Layers, pattern example, 30–31, 225
Leadership skills, among architects, 7
Learning curve, externally developed com-

ponents, 38
Licensing, externally developed compo-

nents, 36
Load-Balanced Cluster patterns

design concepts catalog, 223–224
example, 32–33

Low-level design, 16

M
Marketecture, definition, 272
Mature domains, examples, 50
Maturity, externally developed components, 38
Methods, 207–209
Microsoft Application Architecture Guide

(Microsoft), 211

Index 285

Microsoft technique for architecture and
design

application overview, creating, 169–170
architectural objectives, identifying, 169
candidate solutions, defining, 170
key issues, identifying, 170
key scenarios, identifying, 169
overview, 169–171

Mission Thread Workshop, 19
Mobile applications, design concepts cata-

log, 218
Modifiability

tactics, design concepts catalog, 233–235
tactics-based questionnaire, 253–254

Module structures, 59
Module view, brownfield development case

study, 149–150
MVP (minimum viable product), 189, 272

N
Negotiation skills, among architects, 7
Nondistributed deployment patterns, design

concepts catalog, 221
Non-risks, definition, 188
Novel domains, definition, 52

O
Optimal solutions vs. satisficing, 14

P
Pattern-Oriented Software Architecture: A

Pattern Language for Distributed
Computing (Buschmann et al.), 224

Patterns
architectural design decisions, 38–39, 59
concurrency, 228
database access, 229
definition, 29, 272
interface partitioning, 226–227
overview, 29–32
structural, design concepts catalog,

224–226
vs. tactics, 34

Patterns, examples
concurrency, 31, 32
deployment, 32–33
Half Sync/Half Async, 32
Layers, 30–31
Load Balanced Cluster, 32–33

Patterns for architectural design, design con-
cepts catalogs

concurrency, 228

database access, 229
interface partitioning, 226–227
Load-Balanced Cluster patterns, 224
Pattern-Oriented Software Architecture: A

Pattern Language for Distributed
Computing (Buschmann et al.), 224

structural patterns, 224–226
Patterns for deployment

definition, 271
example, 32–33
instantiating elements, 60
Load-Balanced Cluster patterns, 224

Patterns for deployment, design concepts
catalogs

distributed deployment, 222–223
Load-Balanced Cluster patterns, 223–224
nondistributed deployment, 221
performance patterns, 223–224

Performance
patterns, design concepts catalog,

223–224
scenarios, brownfield development case

study, 146
tactics, design concepts catalog, 235–236
tactics example, 34–35
tactics-based questionnaire, 185,

255–256
Personal Software Process (PSP), 200
Perspectives, definition, 171–172
Platform, definition, 272
Platforms, externally developed compo-

nents, 36
POC (proof-of-concept). See Proof-of-concept.
Popularity, externally developed compo-

nents, 38
Postmortem phase of the TSP (Team Soft-

ware Process), 200
Preliminary documentation. See also

Sketches; Views.
in the development lifecycle, 196
recording design decisions, 68–69
sketching views, 65–68

Pre-sales process
definition, 16, 272
in the development lifecycle, 194–196

Primary functional requirements, definition,
272

Primary functionality
architectural drivers, 25–26
definition, 25
identifying supporting structures, 51–52
importance of, 25–26

286 Index

Prioritizing quality attributes, 19, 21, 81,
152, 188–190. See also Utility Tree.

Process of Software Architecting
building a proof-of-concept, 168
defining architecture overview, 168
defining requirements, 167
deployment elements, outlining, 168
deployment models, 168
documenting architecture decisions, 168
function models, 168
functional elements, outlining, 168
functional elements, refining, 169
identifying reusable architecture, 168
logical architecture, creating, 167
overview, 167–169
physical architecture, creating, 167
surveying architecture assets, 168
tasks, outlining vs. detailing, 168
tasks, purposes of, 168–169
verifying architecture, 168

The Process of Software Architecting (Eeles
and Cripps), 167–169

Product, definition, 272
Products, externally developed components, 36
Progress, tracking. See Tracking design

progress.
Project proposals. See Pre-sales process.
Project skills, among architects, 7
Proof-of-concept

in ATAM analysis, 189
definition, 273
Process of Software Architecting, 168
RUP, 165

Prototyping
analyzing the design process, 177
in ATAM analysis, 189
selecting design concepts, 57–58

PSP (Personal Software Process), 200

Q
QAW (Quality Attribute Workshop)

definition, 19, 273
output of, 23
purpose of, 21
steps in, 21–22
vs. Utility Tree, 24

Quality attribute scenarios. See also
Scenarios.

components of, 20
definition, 273
overview, 20–21

Quality attribute scenarios, case studies

brownfield development case study,
146, 148

greenfield development for mature do-
mains, 78–79, 101–104

greenfield development for novel do-
mains, 109–110

Quality attributes
in architectural drivers, 19–21
changing, 26
definition, 19, 273
externally developed components for, 38
prioritizing, 19, 21, 81, 152, 188–190.

See also Utility Tree.
refactoring, 26

Questionnaires. See Tactics-based
questionnaires.

R
“A Rational Design Process: How and Why

to Fake It” (Parnas and Clements), 2
Rational Unified Process (RUP). See RUP

(Rational Unified Process).
Rationale, definition, 273
Recording design decisions

creating preliminary documentation,
68–69

overview, 48
Recording design decisions, case studies

brownfield development case study,
154–156

greenfield development for mature do-
mains, 84–87, 92–99, 102–103

greenfield development for novel do-
mains, 116–118, 128–129, 136–
137, 141–142

Refactoring
brownfield development, 53
definition, 273
quality attributes, 26

Reference architectures
vs. architectural styles, 29
brownfield development case study, 153
definition, 29, 273
designing structures, 59
greenfield development for novel do-

mains case study, 112–120
Lambda (reference) architecture, 113
overview, 29

Reference architectures, design concepts
catalog

Microsoft Application Architecture Guide
(Microsoft), 211

Index 287

mobile applications, 218
RIAs (rich Internet applications), 215–217
rich client applications, 214–215
service applications, 218–221
web applications, 212–214

Refining elements, case studies
brownfield development case study, 152
greenfield development for mature do-

mains, 82, 90, 101
greenfield development for novel do-

mains, 112, 121, 132, 139
Refining elements, overview, 46–47
Refining structures for greenfield develop-

ment for mature domains, 52
Reflective questions, 177, 186–187
Relation (in software architecture), defini-

tion, 273
Reliability scenarios, brownfield develop-

ment case study, 146
REQ (requirements) phase of TSP, 200–201
Requirements. See also ASRs (architectur-

ally significant requirements).
derived, for architectural drivers, 27
internal, for architectural drivers, 27
primary functional requirements, 272

Responsibilities, allocating
brownfield development case study, 154
to elements, 47–48
greenfield development for mature

domains case study, 84, 91–92,
101–102

greenfield development for novel do-
mains case study, 116, 126–128,
134–136, 139–141

Reusing architecture or code. See
Refactoring.

Reviewing design inputs, case studies
brownfield development case study, 152
greenfield development for mature do-

mains, 80–81
greenfield development for novel do-

mains, 111–112
Reviewing design inputs, overview, 44–46
Reviewing iterations,

brownfield development case study,
156–158

greenfield development for mature do-
mains case study, 99–100, 104

greenfield development for novel domains,
118–120, 129–131, 138, 143

RIAs (Rich Internet Applications), design
concepts catalog, 215–217

Rich client applications, design concepts
catalog, 214–215

Risk, definition, 188
Risk management

analyzing, 178
ATAM analysis, 188
estimating, 194–195
non-risks, definition, 188

Rounds, development, 44, 271
Rozanski, Nick, 171
RUP (Rational Unified Process)

construction phase, 165, 199
defining candidate architecture, 165–166
in the development lifecycle, 199–200
elaboration phase, 165–166, 199
inception phase, 165, 199
overview, 165–166
proof-of-concept, 165
refining candidate architecture, 166
transition phase, 165, 199

S
Satisficing vs. optimal solutions, 14
Satisfying architectural drivers. See Archi-

tectural drivers, satisfying.
Scenario-based design reviews, 187, 189.

See also ATAM (Architecture
Tradeoff Analysis Method).

Scenario-based documentation, 67–68
Scenarios. See also Quality attribute

scenarios.
definition, 19, 273
falsifiability, 21
prioritizing. See Utility Tree.
testability, 21

Scenarios, quality attribute, 101–104
Schedules, estimating, 194–196
Security, tactics-based questionnaire,

257–259
Security tactics, design concepts catalog,

236–238
Service applications, design concepts cata-

log, 218–221
Simon, Herbert, 208
Simulation, 177
Sketches, definition, 273. See also Prelimi-

nary documentation.
Sketching an architecture, 169–171
Sketching views

creating preliminary documentation,
65–68

overview, 48

288 Index

Sketching views, case studies
brownfield development case study,

154–156
greenfield development for mature do-

mains, 84–87, 92–99, 102–103
greenfield development for novel do-

mains, 116–118, 128–129, 136–
137, 141–142

Skills practice, 209–210
Smart Decisions game, 112, 121, 209
Software architecture

common issues, 4–6
definition, 3, 273
importance of, 3–4

Software architecture, life-cycle activities.
See also specific activities.

architectural design, 4
architectural documentation, 5
architectural evaluation, 6
architectural implementation/

conformance checking, 6
ASRs (architecturally significant require-

ments), 4
Software Architecture in Practice, 3rd ed.

(Bass et al.), 3, 7, 8, 19, 35, 230
Software Systems Architecture: Working with

Stakeholders Using Viewpoints and
Perspectives (Rozanski and Woods),
171–173

Spikes, 199, 273
Spring framework, design concepts catalog,

241–242
Stakeholder benefits, selecting design con-

cepts, 56
Standard components technique for estima-

tion, 195–196
Structural patterns, design concepts catalog,

224–226
Structure of overall system, establishing

greenfield development for mature do-
mains case study, 81–89

greenfield development for novel do-
mains case study, 112–120

Structures
allocation, 59
architectural and design patterns, 59
categories of, 58–59
C&C (component and connector), 59
definition, 273
deployment patterns, 60
design concept types, 59–60
element properties, 60
element relationships, 61

element responsibilities, 60
externally developed components, 60
greenfield development for mature do-

mains case study, 89–99
identifying to support primary function-

ality, 51–52
instantiating elements, 59–60
module, 59
reference architectures, 59
refining for greenfield development for

mature domains, 52
tactics, 60

Surveys. See Tactics-based questionnaires.
Swing framework, design concepts

catalog, 243
System requirements, case study, 77–80

T
Tactic, definition, 273
Tactics

definition, 33–34
designing structures, 60
overview, 33–34
vs. patterns, 34
for performance, example, 34–35

Tactics, design concepts catalog
availability, 230–232
interoperability, 232–233
modifiability, 233–235
performance, 235–236
security, 236–238
testability, 238–240
usability, 240–241

Tactics-based analysis, 180–185
Tactics-based questionnaires

availability, 248–252
availability, example, 180–185
DevOps, 263–266
interoperability, 252
modifiability, 253–254
overview, 247–248
performance, 255–256
security, 257–259
testability, 260–261
usability, 261–262

Team Software Process (TSP), 200–201
Teams, vs. individual efforts, 202–203
Technical debt, 16, 274
Technical skills, among architects, 7,

209–210
Technologies, selecting in a greenfield de-

velopment for novel domains case
study, 120–131

Index 289

Technology families, 35–36, 37, 274
TEST (testing) phase of TSP, 200–201
Testability

of scenarios, 21
tactics, design concepts catalog, 238–240
tactics-based questionnaire, 260–261

Thought experiments, 177
Tracking design progress

architectural backlogs, 69–70
Kanban boards, 70–71
overview, 69

Transition phase of RUP, 165, 199
TSP (Team Software Process), 200–201

U
UML (Unified Modeling Language), 191
Usability

tactics, design concepts catalog, 240–241
tactics-based questionnaire, 261–262

Use case model, case studies
brownfield development, 147
greenfield development for mature do-

mains, 77–80
greenfield development for novel do-

mains, 108–109
Utility, selecting design concepts, 56
Utility Tree

definition, 19
prioritizing quality attributes, 23–24
vs. QAW, 24

V
Viewpoints, definition, 171
Viewpoints and perspectives method

flowchart of steps, 173
overview, 171–173
perspectives, definition, 171–172
steps involved, 172–173
viewpoints, definition, 171

Views, definition, 65, 274
Views, sketching

creating preliminary documentation, 65–68
brownfield development case study,

154–156
greenfield development for mature do-

mains case study, 84–87, 92–99,
102–103

greenfield development for mature do-
mains case study, 84–87, 92–99,
102–103

overview, 48

W
Waterfall model, 197–198
Web applications, design concepts catalog,

212–214
Web pages, as resources for architectural

design decisions, 39
Woods, Eoin, 171

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	CHAPTER 2 Architectural Design
	2.1 Design in General
	2.2 Design in Software Architecture
	2.2.1 Architectural Design
	2.2.2 Element Interaction Design
	2.2.3 Element Internals Design

	2.3 Why Is Architectural Design So Important?
	2.4 Architectural Drivers
	2.4.1 Design Purpose
	2.4.2 Quality Attributes
	2.4.3 Primary Functionality
	2.4.4 Architectural Concerns
	2.4.5 Constraints

	2.5 Design Concepts: The Building Blocks for Creating Structures
	2.5.1 Reference Architectures
	2.5.2 Architectural Design Patterns
	2.5.3 Deployment Patterns
	2.5.4 Tactics
	2.5.5 Externally Developed Components

	2.6 Architecture Design Decisions
	2.7 Summary
	2.8 Further Reading

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

