

iOS Programming: The Big Nerd Ranch Guide
by Christian Keur and Aaron Hillegass

Copyright © 2015 Big Nerd Ranch, LLC

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, contact

Big Nerd Ranch, LLC
200 Arizona Ave NE
Atlanta, GA 30307
(770) 817-6373
http://www.bignerdranch.com/
book-comments@bignerdranch.com

The 10-gallon hat with propeller logo is a trademark of Big Nerd Ranch, LLC.

Exclusive worldwide distribution of the English edition of this book by

Pearson Technology Group
800 East 96th Street
Indianapolis, IN 46240 USA
http://www.informit.com

The authors and publisher have taken care in writing and printing this book but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

App Store, Apple, Cocoa, Cocoa Touch, Finder, Instruments, iCloud, iPad, iPhone, iPod, iPod touch, iTunes,
Keychain, Mac, Mac OS, Multi-Touch, Objective-C, OS X, Quartz, Retina, Safari, and Xcode are trademarks of
Apple, Inc., registered in the U.S. and other countries.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

ISBN-10 0134389379
ISBN-13 978-0134389370

Fifth edition, first printing, December 2015
Release D.5.1.1

http://www.bignerdranch.com/
http://www.informit.com

iii

Acknowledgments
While our names appear on the cover, many people helped make this book a reality. We would like to
take this chance to thank them.

• First and foremost we would like to thank Joe Conway for his work on the earlier editions of this
book. He authored the first three editions and contributed greatly to the fourth edition as well.
Many of the words in this book are still his, and for that, we are very grateful.

• A few people in particular went above and beyond with their help on this book. They are Mikey
Ward, Juan Pablo Claude, and Chris Morris.

• The other instructors who teach the iOS Bootcamp fed us with a never-ending stream of
suggestions and corrections. They are Ben Scheirman, Bolot Kerimbaev, Brian Hardy, Chris
Morris, JJ Manton, John Gallagher, Jonathan Blocksom, Joseph Dixon, Juan Pablo Claude,
Mark Dalrymple, Matt Bezark, Matt Mathias, Mike Zornek, Mikey Ward, Pouria Almassi, Rod
Strougo, Scott Ritchie, Step Christopher, Thomas Ward, TJ Usiyan, and Tom Harrington. These
instructors were often aided by their students in finding book errata, so many thanks are due to all
the students who attend the iOS Bootcamp.

• Thanks to all of the employees at Big Nerd Ranch who helped review the book, provided
suggestions, and found errata.

• Our tireless editor, Elizabeth Holaday, took our distracted mumblings and made them into
readable prose.

• Anna Bentley jumped in to provide proofing.

• Ellie Volckhausen designed the cover. (The photo is of the bottom bracket of a bicycle frame.)

• Chris Loper at IntelligentEnglish.com designed and produced the print book and the EPUB and
Kindle versions.

• The amazing team at Pearson Technology Group patiently guided us through the business end of
book publishing.

The final and most important thanks goes to our students whose questions inspired us to write this
book and whose frustrations inspired us to make it clear and comprehensible.

This page intentionally left blank

v

Table of Contents
Introduction ... xi

Prerequisites .. xi
What Has Changed in the Fifth Edition? .. xi
Our Teaching Philosophy .. xii
How to Use This Book .. xiii
How This Book Is Organized ... xiii
Style Choices .. xv
Typographical Conventions .. xv
Necessary Hardware and Software .. xv

1. A Simple iOS Application .. 1
Creating an Xcode Project .. 2
Model-View-Controller ... 5
Designing Quiz ... 6
Interface Builder ... 7
Building the Interface .. 8

Creating view objects ... 9
Configuring view objects .. 11
Running on the simulator .. 12
A brief introduction to Auto Layout ... 13
Making connections ... 16

Creating the Model Layer ... 21
Implementing action methods .. 22
Loading the first question ... 22

Building the Finished Application .. 23
Application Icons .. 24
Launch Screen .. 26

2. The Swift Language ... 27
Types in Swift .. 27
Using Standard Types ... 28

Inferring types .. 30
Specifying types .. 30
Literals and subscripting ... 32
Initializers .. 33
Properties ... 34
Instance methods ... 34

Optionals .. 34
Subscripting dictionaries ... 36

Loops and String Interpolation ... 37
Enumerations and the Switch Statement .. 39

Enumerations and raw values ... 40
Exploring Apple’s Swift Documentation .. 40

3. Views and the View Hierarchy ... 41
View Basics .. 42
The View Hierarchy ... 42
Creating a New Project ... 44

iOS Programming

vi

Views and Frames ... 45
Customizing the labels ... 53

The Auto Layout System .. 55
Alignment rectangle and layout attributes .. 56
Constraints ... 57
Adding constraints in Interface Builder ... 59
Intrinsic content size .. 60
Misplaced views .. 62
Adding more constraints ... 63

Bronze Challenge: More Auto Layout Practice ... 64
4. Text Input and Delegation ... 65

Text Editing .. 65
Keyboard attributes .. 68
Responding to text field changes .. 69
Dismissing the keyboard ... 72

Implementing the Temperature Conversion ... 73
Number formatters ... 75

Delegation .. 76
Conforming to a protocol .. 76
Using a delegate .. 77
More on protocols ... 79

Bronze Challenge: Disallow Alphabetic Characters .. 79
5. View Controllers .. 81

The View of a View Controller .. 82
Setting the Initial View Controller .. 82
UITabBarController .. 85

Tab bar items .. 88
Loaded and Appearing Views .. 91

Accessing subviews ... 92
Interacting with View Controllers and Their Views .. 92
Silver Challenge: Dark Mode .. 93
For the More Curious: Retina Display ... 93

6. Programmatic Views ... 95
Creating a View Programmatically ... 97
Programmatic Constraints ... 98

Anchors ... 99
Activating constraints ... 100
Layout guides .. 101
Margins .. 102
Explicit constraints ... 103

Programmatic Controls ... 104
Bronze Challenge: Another Tab .. 106
Silver Challenge: User’s Location ... 106
Gold Challenge: Dropping Pins .. 106
For the More Curious: NSAutoresizingMaskLayoutConstraint 107

7. Localization ... 109
Internationalization ... 110

Formatters .. 110

iOS Programming

vii

Base internationalization ... 113
Preparing for localization .. 114

Localization .. 121
NSLocalizedString and strings tables ... 124

Bronze Challenge: Another Localization .. 127
For the More Curious: NSBundle’s Role in Internationalization 127
For the More Curious: Importing and Exporting as XLIFF .. 128

8. Controlling Animations ... 129
Basic Animations ... 130

Closures ... 130
Another Label ... 132
Animation Completion .. 135
Animating Constraints .. 135
Timing Functions ... 139
Bronze Challenge: Spring Animations ... 141
Silver Challenge: Layout Guides .. 141

9. UITableView and UITableViewController ... 143
Beginning the Homepwner Application .. 143
UITableViewController ... 145

Subclassing UITableViewController .. 146
Creating the Item Class ... 147

Custom initializers ... 147
UITableView’s Data Source ... 149

Giving the controller access to the store ... 150
Implementing data source methods ... 152

UITableViewCells .. 153
Creating and retrieving UITableViewCells .. 155
Reusing UITableViewCells .. 156

Content Insets ... 158
Bronze Challenge: Sections ... 159
Silver Challenge: Constant Rows .. 159
Gold Challenge: Customizing the Table ... 159

10. Editing UITableView ... 161
Editing Mode .. 161
Adding Rows .. 166
Deleting Rows ... 168
Moving Rows .. 169
Displaying User Alerts .. 170
Design Patterns .. 174
Bronze Challenge: Renaming the Delete Button .. 174
Silver Challenge: Preventing Reordering .. 174
Gold Challenge: Really Preventing Reordering .. 174

11. Subclassing UITableViewCell ... 175
Creating ItemCell ... 176
Exposing the Properties of ItemCell .. 178
Using ItemCell .. 179
Dynamic Cell Heights .. 180
Dynamic Type ... 181

iOS Programming

viii

Responding to user changes ... 184
Bronze Challenge: Cell Colors ... 184

12. Stack Views ... 185
Using UIStackView .. 187

Implicit constraints ... 188
Stack view distribution .. 191
Nested stack views ... 192
Stack view spacing ... 192

Segues ... 194
Hooking Up the Content ... 195
Passing Data Around .. 200
Bronze Challenge: More Stack Views .. 201

13. UINavigationController .. 203
UINavigationController ... 205
Navigating with UINavigationController .. 209
Appearing and Disappearing Views ... 210
Dismissing the Keyboard ... 211

Event handling basics ... 212
Dismissing by pressing the Return key .. 213
Dismissing by tapping elsewhere .. 214

UINavigationBar .. 216
Adding buttons to the navigation bar ... 218

Bronze Challenge: Displaying a Number Pad .. 220
Silver Challenge: A Custom UITextField ... 220
Gold Challenge: Pushing More View Controllers ... 220

14. Camera ... 221
Displaying Images and UIImageView .. 222

Adding a camera button .. 224
Taking Pictures and UIImagePickerController ... 226

Setting the image picker’s sourceType ... 226
Setting the image picker’s delegate ... 228
Presenting the image picker modally ... 228
Saving the image ... 230

Creating ImageStore ... 231
Giving View Controllers Access to the Image Store ... 232
Creating and Using Keys ... 233
Wrapping Up ImageStore .. 236
Bronze Challenge: Editing an Image ... 237
Silver Challenge: Removing an Image ... 237
Gold Challenge: Camera Overlay ... 237
For the More Curious: Navigating Implementation Files ... 238

// MARK: ... 239
15. Saving, Loading, and Application States ... 241

Archiving ... 242
Application Sandbox .. 245

Constructing a file URL .. 247
NSKeyedArchiver and NSKeyedUnarchiver .. 248

Loading files ... 251

iOS Programming

ix

Application States and Transitions .. 252
Writing to the Filesystem with NSData .. 254
Error Handling .. 257
Bronze Challenge: PNG .. 259
For the More Curious: Application State Transitions .. 260
For the More Curious: Reading and Writing to the Filesystem 261
For the More Curious: The Application Bundle ... 263

16. Size Classes ... 265
Another Size Class ... 266
Bronze Challenge: Stacked Text Field and Labels .. 272

17. Touch Events and UIResponder .. 273
Touch Events .. 274
Creating the TouchTracker Application .. 275
Creating the Line Struct .. 276

Structs .. 277
Value types vs. reference types ... 277

Creating DrawView .. 278
Drawing with DrawView ... 279
Turning Touches into Lines ... 280

Handling multiple touches ... 281
@IBInspectable ... 286
Silver Challenge: Colors ... 287
Gold Challenge: Circles .. 287
For the More Curious: The Responder Chain .. 288
For the More Curious: UIControl ... 289

18. UIGestureRecognizer and UIMenuController ... 291
UIGestureRecognizer Subclasses .. 292
Detecting Taps with UITapGestureRecognizer ... 292
Multiple Gesture Recognizers .. 294
UIMenuController .. 297
More Gesture Recognizers ... 299

UILongPressGestureRecognizer .. 299
UIPanGestureRecognizer and simultaneous recognizers .. 300

More on UIGestureRecognizer ... 304
Silver Challenge: Mysterious Lines ... 305
Gold Challenge: Speed and Size ... 305
Platinum Challenge: Colors ... 305
For the More Curious: UIMenuController and UIResponderStandardEditActions 306

19. Web Services ... 307
Starting the Photorama Application ... 308
Building the URL .. 309

Formatting URLs and requests ... 309
NSURLComponents ... 310

Sending the Request ... 314
NSURLSession .. 314

Modeling the Photo .. 317
JSON Data ... 318

NSJSONSerialization .. 319

iOS Programming

x

Enumerations and associated values .. 320
Parsing JSON data ... 321

Downloading and Displaying the Image Data ... 327
The Main Thread ... 330
Bronze Challenge: Printing the Response Information .. 331
For the More Curious: HTTP ... 331

20. Collection Views .. 333
Displaying the Grid .. 334
Collection View Data Source ... 335
Customizing the Layout .. 338
Creating a Custom UICollectionViewCell .. 341
Downloading the Image Data ... 345

Extensions .. 347
Navigating to a Photo ... 350
Silver Challenge: Updated Item Sizes .. 352
Gold Challenge: Creating a Custom Layout .. 352

21. Core Data .. 353
Object Graphs ... 353
Entities ... 353

Modeling entities ... 354
Transformable attributes .. 356
NSManagedObject and subclasses .. 356

Building the Core Data Stack ... 358
NSManagedObjectModel ... 359
NSPersistentStoreCoordinator ... 359
NSManagedObjectContext ... 360

Updating Items .. 361
Inserting into the context ... 361
Saving changes .. 363

Updating the Data Source ... 364
Fetch requests and predicates ... 364

Saving Images to Disk .. 367
Bronze Challenge: Photo View Count .. 368

22. Core Data Relationships .. 369
Relationships ... 370
Adding Tags to the Interface .. 372
Parent-Child Contexts ... 382
Silver Challenge: Favorites .. 384

23. Afterword .. 385
What to Do Next ... 385
Shameless Plugs .. 385

Index ... 387

xi

Introduction
As an aspiring iOS developer, you face three major tasks:

• You must learn the Swift language. Swift is the recommended development language for iOS. The
first two chapters of this book are designed to give you a working knowledge of Swift.

• You must master the big ideas. These include things like delegation, archiving, and the proper use
of view controllers. The big ideas take a few days to understand. When you reach the halfway
point of this book, you will understand these big ideas.

• You must master the frameworks. The eventual goal is to know how to use every method of every
class in every framework in iOS. This is a project for a lifetime: there are hundreds of classes
and thousands of methods available in iOS, and Apple adds more classes and methods with every
release of iOS. In this book, you will be introduced to each of the subsystems that make up the
iOS SDK, but you will not study each one deeply. Instead, our goal is to get you to the point
where you can search and understand Apple’s reference documentation.

We have used this material many times at our iOS bootcamps at Big Nerd Ranch. It is well tested and
has helped thousands of people become iOS developers. We sincerely hope that it proves useful to you.

Prerequisites
This book assumes that you are already motivated to learn to write iOS apps. We will not spend any
time convincing you that the iPhone, iPad, and iPod touch are compelling pieces of technology.

We also assume that you have some experience programming and know something about object-
oriented programming. If this is not true, you should probably start with Swift Programming: The Big
Nerd Ranch Guide.

What Has Changed in the Fifth Edition?
All of the code in this book is Swift, and an early chapter is devoted to getting you up to speed with
this new language. Throughout the book, you will see how to use Swift’s capabilities and features to
write better iOS applications. We have come to love Swift at Big Nerd Ranch and believe you will, too.

Other additions include collection views and size classes and improved coverage of Auto Layout, web
services, and Core Data.

This edition assumes that the reader is using Xcode 7.1 or later and running applications on an iOS 9 or
later device.

Besides these obvious changes, we made thousands of tiny improvements that were inspired by
questions from our readers and our students. Every chapter of this book is just a little better than the
corresponding chapter from the fourth edition.

Introduction

xii

Our Teaching Philosophy
This book will teach you the essential concepts of iOS programming. At the same time, you will type
in a lot of code and build a bunch of applications. By the end of the book, you will have knowledge
and experience. However, all the knowledge should not (and, in this book, will not) come first. That is
the traditional way we have all come to know and hate. Instead, we take a learn-while-doing approach.
Development concepts and actual coding go together.

Here is what we have learned over the years of teaching iOS programming:

• We have learned what ideas people must grasp to get started programming, and we focus on that
subset.

• We have learned that people learn best when these concepts are introduced as they are needed.

• We have learned that programming knowledge and experience grow best when they grow
together.

• We have learned that “going through the motions” is much more important than it sounds. Many
times we will ask you to start typing in code before you understand it. We realize that you may
feel like a trained monkey typing in a bunch of code that you do not fully grasp. But the best way
to learn coding is to find and fix your typos. Far from being a drag, this basic debugging is where
you really learn the ins and outs of the code. That is why we encourage you to type in the code
yourself. You could just download it, but copying and pasting is not programming. We want better
for you and your skills.

What does this mean for you, the reader? To learn this way takes some trust – and we appreciate yours.
It also takes patience. As we lead you through these chapters, we will try to keep you comfortable
and tell you what is happening. However, there will be times when you will have to take our word
for it. (If you think this will bug you, keep reading – we have some ideas that might help.) Do not get
discouraged if you run across a concept that you do not understand right away. Remember that we are
intentionally not providing all the knowledge you will ever need all at once. If a concept seems unclear,
we will likely discuss it in more detail later when it becomes necessary. And some things that are not
clear at the beginning will suddenly make sense when you implement them the first (or the twelfth)
time.

People learn differently. It is possible that you will love how we hand out concepts on an as-needed
basis. It is also possible that you will find it frustrating. In case of the latter, here are some options:

• Take a deep breath and wait it out. We will get there, and so will you.

• Check the index. We will let it slide if you look ahead and read through a more advanced
discussion that occurs later in the book.

• Check the online Apple documentation. This is an essential developer tool, and you will want
plenty of practice using it. Consult it early and often.

• If Swift or object-oriented programming concepts are giving you a hard time (or if you think they
will), you might consider backing up and reading our Swift Programming: The Big Nerd Ranch
Guide.

How to Use This Book

xiii

How to Use This Book
This book is based on the class we teach at Big Nerd Ranch. As such, it was designed to be consumed
in a certain manner.

Set yourself a reasonable goal, like “I will do one chapter every day.” When you sit down to attack
a chapter, find a quiet place where you will not be interrupted for at least an hour. Shut down your
email, your Twitter client, and your chat program. This is not a time for multitasking; you will need to
concentrate.

Do the actual programming. You can read through a chapter first, if you like. But the real learning
comes when you sit down and code as you go. You will not really understand the idea until you have
written a program that uses it and, perhaps more importantly, debugged that program.

A couple of the exercises require supporting files. For example, in the first chapter you will need an
icon for your Quiz application, and we have one for you. You can download the resources and solutions
to the exercises from http://www.bignerdranch.com/solutions/iOSProgramming5ed.zip.

There are two types of learning. When you learn about the Peloponnesian War, you are simply adding
details to a scaffolding of ideas that you already understand. This is what we will call “Easy Learning.”
Yes, learning about the Peloponnesian War can take a long time, but you are seldom flummoxed by
it. Learning iOS programming, on the other hand, is “Hard Learning,” and you may find yourself
quite baffled at times, especially in the first few days. In writing this book, we have tried to create an
experience that will ease you over the bumps in the learning curve. Here are two things you can do to
make the journey easier:

• Find someone who already knows how to write iOS applications and will answer your questions.
In particular, getting your application onto a device the first time is usually very frustrating if you
are doing it without the help of an experienced developer.

• Get enough sleep. Sleepy people do not remember what they have learned.

How This Book Is Organized
In this book, each chapter addresses one or more ideas of iOS development through discussion and
hands-on practice. For more coding practice, most chapters include challenge exercises. We encourage
you to take on at least some of these. They are excellent for firming up your grasp of the concepts
introduced in the chapter and for making you a more confident iOS programmer. Finally, most chapters
conclude with one or two “For the More Curious” sections that explain certain consequences of the
concepts that were introduced earlier.

Chapter 1 introduces you to iOS programming as you build and deploy a tiny application. You will get
your feet wet with Xcode and the iOS simulator along with all the steps for creating projects and files.
The chapter includes a discussion of Model-View-Controller and how it relates to iOS development.

Chapter 2 provides an overview of Swift, including basic syntax, types, optionals, initialization, and
how Swift is able to interact with the existing iOS frameworks. You will also get experience working in
a playground, Xcode’s new code prototyping tool.

In Chapter 3, you will focus on the iOS user interface as you learn about views and the view hierarchy
and create an application called WorldTrotter.

http://www.bignerdranch.com/solutions/iOSProgramming5ed.zip

Introduction

xiv

Chapter 4 introduces delegation, an important iOS design pattern. You will also a text field to
WorldTrotter.

In Chapter 5, you will expand WorldTrotter and learn about using view controllers for managing user
interfaces. You will get practice working with views and view controllers as well as navigating between
screens using a tab bar.

In Chapter 6, you will learn how to manage views and view controllers in code. You will add a
segmented control to WorldTrotter that will let you switch between various map types.

Chapter 7 introduces the concepts and techniques of internationalization and localization. You will
learn about NSLocale, strings tables, and NSBundle as you localize parts of WorldTrotter.

In Chapter 8, you will learn about and add different types of animations to the Quiz project that you
created in Chapter 1.

Chapter 9 introduces the largest application in the book – Homepwner. (By the way, “Homepwner”
is not a typo; you can find the definition of “pwn” at www.urbandictionary.com.) This application
keeps a record of your items in case of fire or other catastrophe. Homepwner will take eight chapters to
complete.

In Chapter 9 - Chapter 11, you will work with tables. You will learn about table views, their view
controllers, and their data sources. You will learn how to display data in a table, how to allow the user
to edit the table, and how to improve the interface.

Chapter 12 introduces stack views that will help you create complex interfaces very easily. You will
use a stack view to add a new screen to Homepwner that displays the details for a single item.

Chapter 13 builds on the navigation experience gained in Chapter 5. You will use
UINavigationController to give Homepwner a drill-down interface and a navigation bar.

Chapter 14 introduces the camera. You will take pictures and display and store images in Homepwner.

In Chapter 15, you will add persistence to Homepwner using archiving to save and load the application
data.

In Chapter 16, you will learn about size classes, and you will use these to update Homepwner’s
interface to scale well across various screen sizes.

In Chapter 17 and Chapter 18, you will create a drawing application named TouchTracker
to learn about touch events. You will see how to add multitouch capability and how to use
UIGestureRecognizer to respond to particular gestures. You will also get experience with the first
responder and responder chain concepts and more practice with using structures and dictionaries.

Chapter 19 introduces web services as you create the Photorama application. This application fetches
and parses JSON from a server using NSURLSessions and NSJSONSerialization.

In Chapter 20, you will learn about collection views as you build an interface for Photorama using
UICollectionView and UICollectionViewCell.

In Chapter 21 and Chapter 22, you will add persistence to Photorama using Core Data. You will store
and load images and associated data using an NSManagedObjectContext.

http://www.urbandictionary.com

Style Choices

xv

Style Choices
This book contains a lot of code. We have attempted to make that code and the designs behind it
exemplary. We have done our best to follow the idioms of the community, but at times we have
wandered from what you might see in Apple’s sample code or code you might find in other books. In
particular, you should know up-front that we nearly always start a project with the simplest template
project: the single view application. When your app works, you will know it is because of your efforts
– not because that behavior was built into the template.

Typographical Conventions
To make this book easier to read, certain items appear in certain fonts. Classes, types, methods,
and functions appear in a bold, fixed-width font. Classes and types start with capital letters, and
methods and functions start with lowercase letters. For example, “In the loadView() method of the
RexViewController class, create a constant of type String.”

Variables, constants, and filenames appear in a fixed-width font but are not bold. So you will see, “In
ViewController.swift, add a variable named fido and initialize it to "Rufus".”

Application names, menu choices, and button names appear in a sans serif font. For example, “Open
Xcode and select New Project... from the File menu. Select Single View Application and then click
Choose....”

All code blocks are in a fixed-width font. Code that you need to type in is always bold. For example, in
the following code, you would type in the two lines beginning @IBOutlet. The other lines are already
in the code and are included to let you know where to add the new lines.

import UIKit

class ViewController: UIViewController {

 @IBOutlet var questionLabel: UILabel!
 @IBOutlet var answerLabel: UILabel!

}

Necessary Hardware and Software
To build the applications in this book, you must have a Mac running OS X Yosemite (10.10.5) or later.
You will also need Xcode, Apple’s Integrated Development Environment, which is available on the
App Store. Xcode includes the iOS SDK, the iOS simulator, and other development tools.

You should join the Apple Developer Program, which costs $99/year, because:

• Downloading the latest developer tools is free for members.

• You cannot put an app in the store until you are a member.

If you are going to take the time to work through this entire book, membership in the Apple Developer
Program is worth the cost. Go to http://developer.apple.com/programs/ios/ to join.

http://developer.apple.com/programs/ios/

Introduction

xvi

What about iOS devices? Most of the applications you will develop in the first half of the book are for
iPhone, but you will be able to run them on an iPad. On the iPad screen, iPhone applications appear in
an iPhone-sized window. Not a compelling use of iPad, but that is OK when you are starting with iOS.
In the early chapters, you will be focused on learning the fundamentals of the iOS SDK, and these are
the same across iOS devices. Later in the book, you will see how to make applications run natively on
both iOS device families.

Excited yet? Good. Let’s get started.

41

3
Views and the View Hierarchy

Over the next five chapters, you are going to build an application named WorldTrotter. When it is
complete, this app will convert values between degrees Fahrenheit and degrees Celsius. In this chapter,
you will learn about views and the view hierarchy through creating WorldTrotter’s user interface. At the
end of this chapter, your app will look like Figure 3.1.

Figure 3.1 WorldTrotter

Let’s start with a little bit of the theory behind views and the view hierarchy.

Chapter 3 Views and the View Hierarchy

42

View Basics
Recall from Chapter 1 that views are objects that are visible to the user, like buttons, text fields, and
sliders. View objects make up an application’s user interface. A view

• is an instance of UIView or one of its subclasses

• knows how to draw itself

• can handle events, like touches

• exists within a hierarchy of views whose root is the application’s window

Let’s look at the view hierarchy in greater detail.

The View Hierarchy
Every application has a single instance of UIWindow that serves as the container for all the views in the
application. UIWindow is a subclass of UIView, so the window is itself a view. The window is created
when the application launches. Once the window is created, other views can be added to it.

When a view is added to the window, it is said to be a subview of the window. Views that are subviews
of the window can also have subviews, and the result is a hierarchy of view objects with the window at
its root (Figure 3.2).

Figure 3.2 An example view hierarchy and the interface that it creates

The View Hierarchy

43

Once the view hierarchy is created, it will be drawn to the screen. This process can be broken into two
steps:

• Each view in the hierarchy, including the window, draws itself. It renders itself to its layer, which
you can think of as a bitmap image. (The layer is an instance of CALayer.)

• The layers of all the views are composited together on the screen.

Figure 3.3 shows another example view hierarchy and the two drawing steps.

Figure 3.3 Views render themselves and then are composited together

For WorldTrotter, you are going to create an interface composed of different views. There will be four
instances of UILabel and one instance of UITextField that will allow the user to enter in a temperature
in Fahrenheit. Let’s get started.

Chapter 3 Views and the View Hierarchy

44

Creating a New Project
In Xcode, select File → New → Project... (or use the keyboard shortcut Command-Shift-N). From the
iOS section, select Application, choose the Single View Application template, and click Next.

Enter WorldTrotter for the product name. Make sure that Swift is selected from the Language dropdown
and that iPhone is selected from the Devices dropdown. Also make sure the Use Core Data box is
unchecked (Figure 3.4). Click Next and then Create on the following screen.

Figure 3.4 Configuring WorldTrotter

Views and Frames

45

Views and Frames
When you initialize a view programmatically, you use its init(frame:) designated initializer. This
method takes one argument, a CGRect, that will become the view’s frame, a property on UIView.

var frame: CGRect

A view’s frame specifies the view’s size and its position relative to its superview. Because a view’s size
is always specified by its frame, a view is always a rectangle.

A CGRect contains the members origin and size. The origin is a structure of type CGPoint and
contains two CGFloat properties: x and y. The size is a structure of type CGSize and has two CGFloat
properties: width and height (Figure 3.5).

Figure 3.5 CGRect

When the application is launched, the view for the initial view controller is added to the root-
level window. This view controller is represented by the ViewController class defined in
ViewController.swift. We will discuss what a view controller is in Chapter 5, but for now, it is
sufficient to know that a view controller has a view and that the view associated with the main view
controller for the application is added as a subview of the window.

Before you create the views for WorldTrotter, you are going to add some practice views
programmatically to explore views and their properties and see how the interfaces for applications are
created.

Open ViewController.swift and delete any methods that the template created. Your file should look
like this:

import UIKit

class ViewController: UIViewController {

}

Chapter 3 Views and the View Hierarchy

46

(Curious about the import UIKit line? UIKit is a framework. A framework is a collection of related
classes and resources. The UIKit framework defines many of the user interface elements that your
users see, as well as other iOS-specific classes. You will be using a few different frameworks as you go
through this book.)

Right after the view controller’s view is loaded into memory, its viewDidLoad() method is called. This
method gives you an opportunity to customize the view hierarchy, so it is a great place to add your
practice views.

In ViewController.swift, override viewDidLoad(). Create a CGRect that will be the frame of a
UIView. Next, create an instance of UIView and set its backgroundColor property to blue. Finally, add
the UIView as a subview of the view controller’s view to make it part of the view hierarchy. (Much of
this will not look familiar. That is fine. We will explain more after you enter the code.)

class ViewController: UIViewController {

 override func viewDidLoad() {
 super.viewDidLoad()

 let firstFrame = CGRect(x: 160, y: 240, width: 100, height: 150)
 let firstView = UIView(frame: firstFrame)
 firstView.backgroundColor = UIColor.blueColor()
 view.addSubview(firstView)
 }

}

To create a CGRect, you use its initializer and pass in the values for origin.x, origin.y, size.width,
and size.height.

To set the backgroundColor, you use the UIColor class method blueColor(). This is a convenience
method that initializes an instance of UIColor that is configured to be blue. There are a number
of UIColor convenience methods for common colors, such as greenColor(), blackColor(), and
clearColor().

Views and Frames

47

Build and run the application (Command-R). You will see a blue rectangle that is the instance of
UIView. Because the origin of the UIView’s frame is (160, 240), the rectangle’s top left corner is 160
points to the right and 240 points down from the top left corner of its superview. The view stretches
100 points to the right and 150 points down from its origin, in accordance with its frame’s size
(Figure 3.6).

Figure 3.6 WorldTrotter with one UIView

Note that these values are in points, not pixels. If the values were in pixels, then they would not be
consistent across displays of different resolutions (i.e., Retina vs. non-Retina). A single point is a
relative unit of a measure; it will be a different number of pixels depending on how many pixels are in
the display. Sizes, positions, lines, and curves are always described in points to allow for differences in
display resolution.

Chapter 3 Views and the View Hierarchy

48

Figure 3.7 represents the view hierarchy that you have created.

Figure 3.7 Current view hierarchy

Every instance of UIView has a superview property. When you add a view as a subview of another
view, the inverse relationship is automatically established. In this case, the UIView’s superview is the
UIWindow.

Let’s experiment with the view hierarchy. First, in ViewController.swift, create another instance of
UIView with a different frame and background color.

override func viewDidLoad() {
 super.viewDidLoad()

 let firstFrame = CGRect(x: 160, y: 240, width: 100, height: 150)
 let firstView = UIView(frame: firstFrame)
 firstView.backgroundColor = UIColor.blueColor()
 view.addSubview(firstView)

 let secondFrame = CGRect(x: 20, y: 30, width: 50, height: 50)
 let secondView = UIView(frame: secondFrame)
 secondView.backgroundColor = UIColor.greenColor()
 view.addSubview(secondView)
}

Views and Frames

49

Build and run again. In addition to the blue rectangle, you will see a green square near the top lefthand
corner of the window. Figure 3.8 shows the updated view hierarchy.

Figure 3.8 Updated view hierarchy with two subviews as siblings

Now you are going to adjust the view hierarchy so that one instance of UIView is a subview of the other
UIView instead of the view controller’s view. In ViewController.swift, add secondView as a subview
of firstView.

...

let secondView = UIView(frame: secondFrame)
secondView.backgroundColor = UIColor.greenColor()

view.addSubview(secondView)
firstView.addSubview(secondView)

Chapter 3 Views and the View Hierarchy

50

Your view hierarchy is now four levels deep, as shown in Figure 3.9.

Figure 3.9 One UIView as a subview of the other

Build and run the application. Notice that secondView’s position on the screen has changed
(Figure 3.10). A view’s frame is relative to its superview, so the top left corner of secondView is now
inset (20, 30) points from the top left corner of firstView.

Figure 3.10 WorldTrotter with new hierarchy

Views and Frames

51

(If the green instance of UIView looks smaller than it did previously, that is just an optical illusion. Its
size has not changed.)

Now that you have seen the basics of views and the view hierarchy, you can start working on the
interface for WorldTrotter. Instead of building up the interface programmatically, you will use Interface
Builder to visually lay out the interface, as you did in Chapter 1.

In ViewController.swift, start by removing your practice code.

override func viewDidLoad() {
 super.viewDidLoad()

 let firstFrame = CGRect(x: 160, y: 240, width: 100, height: 150)
 let firstView = UIView(frame: firstFrame)
 firstView.backgroundColor = UIColor.blueColor()
 view.addSubview(firstView)

 let secondFrame = CGRect(x: 20, y: 30, width: 50, height: 50)
 let secondView = UIView(frame: secondFrame)
 secondView.backgroundColor = UIColor.greenColor()
 firstView.addSubview(secondView)
}

Now let’s add some views to the interface and set their frames.

Open Main.storyboard. Notice that the interface on the screen is currently a square. While you
explore views and their frames, it will be nice to have the size of the interface in Xcode match the
screen size of the device that you will be using.

Select the View Controller either in the document outline or by clicking the yellow circle above the
interface. Open the attributes inspector, which is the fourth tab in the utilities area. You can quickly
open this pane using the keyboard shortcut Command-Option-4.

At the top of the pane, find the section labeled Simulated Metrics and change the Size to be iPhone 4.7-
inch. This will resize the square interface to match the dimensions of the 4.7-inch devices.

Chapter 3 Views and the View Hierarchy

52

From the object library, drag five instances of UILabel onto the canvas. Space them out vertically on
the top half of the interface and center them horizontally. Set their text to match Figure 3.11.

Figure 3.11 Adding labels to the interface

Select the top label so you can see its frame in Interface Builder. Open its size inspector – the fifth tab
in the utilities area. (As you might have noticed by this point, the keyboard shortcuts for the utilities
tabs are Command-Option plus the tab number. Since the size inspector is the fifth tab, its keyboard
shortcut is Command-Option-5.)

Under the View section, find Frame Rectangle. (If you do not see it, you might need to select it from
the Show pop-up menu.) These values are the view’s frame, and they dictate the position of the view
on screen (Figure 3.12).

Figure 3.12 View frame values

Customizing the labels

53

Build and run the application on the iPhone 6s simulator. This corresponds to the 4.7-inch simulated
metrics that you specified in the storyboard. The interface on the simulator will look identical to the
interface that you laid out in Interface Builder.

Customizing the labels
Let’s make the interface look a little bit better by customizing the view properties.

In Main.storyboard, select the background view. Open the attributes inspector and give the app a new
background color: Find and click the Background dropdown and click Other. Select the second tab (the
Color Sliders tab) and enter a Hex Color # of F5F4F1 (Figure 3.13). This will give the background a
warm, gray color.

Figure 3.13 Changing the background color

You can customize attributes common to selected views simultaneously. You will use this to give many
of the labels a larger font size as well as a burnt orange text color.

Select the top two and bottom two labels by Command-clicking them in the document outline and open
the attributes inspector. Update the text color: Under the Label section, find Color and open the pop-up
menu. Select the Color Sliders tab again and enter a Hex Color # of E15829.

Chapter 3 Views and the View Hierarchy

54

Now let’s update the font. Select the 212 and 100 labels. Under the Label section in the attributes
inspector, find Font and click on the text icon next to the current font. From the popover that appears,
make the Font System - System and the Size 70 (Figure 3.14). Select the remaining three labels. Open
their Font pop-up and make the Font System - System and the Size 36.

Figure 3.14 Customizing the labels’ font

Now that the font size is larger, the text no longer fits within the bounds of the label. You could resize
the labels manually, but there is an easier way.

Select the top label on the canvas. From Xcode’s Editor menu, select Size to Fit Content (Command-=).
This will resize the label to exactly fit its text contents. Repeat the process for the other four labels.
(You can select all four labels to resize them all at once.) Now move the labels so that they are again
nicely aligned vertically and centered horizontally (Figure 3.15).

The Auto Layout System

55

Figure 3.15 Updating the label frames

Build and run the application on the iPhone 6s simulator. Now build and run the application on the
iPhone 6s Plus simulator. Notice that the labels are no longer centered – instead, they appear shifted
slightly to the left.

You have just seen two of the major problems with absolute frames. First, when the contents change
(like when you changed the font size), the frames do not automatically update. Second, the view does
not look equally good on different sizes of screens.

In general, you should not use absolute frames for your views. Instead, you should use Auto Layout to
flexibly compute the frames for you based on constraints that you specify for each view. For example,
what you really want for WorldTrotter is for the labels to remain the same distance from the top of the
screen and to remain horizontally centered within their superview. They should also update if the font
or text of the labels change. This is what you will accomplish in the next section.

The Auto Layout System
Before you can fix the labels to have them lay out flexibly, you need to learn a little theory about the
Auto Layout system.

As you saw in Chapter 1, absolute coordinates make your layout fragile because they assume that you
know the size of the screen ahead of time.

Chapter 3 Views and the View Hierarchy

56

Using Auto Layout, you can describe the layout of your views in a relative way that enables their
frames to be determined at runtime so that the frames’ definitions can take into account the screen size
of the device that the application is running on.

Alignment rectangle and layout attributes
The Auto Layout system is based on the alignment rectangle. This rectangle is defined by several
layout attributes (Figure 3.16).

Figure 3.16 Layout attributes defining an alignment rectangle of a view

Width/Height These values determine the alignment rectangle’s size.

Top/Bottom/Left/Right These values determine the spacing between the given edge of the
alignment rectangle and the alignment rectangle of another view in
the hierarchy.

CenterX/CenterY These values determine the center point of the alignment
rectangle.

Baseline This value is the same as the bottom attribute for most, but not
all, views. For example, UITextField defines its baseline as
the bottom of the text it displays rather than the bottom of the
alignment rectangle. This keeps “descenders” (letters like ‘g’ and
‘p’ that descend below the baseline) from being obscured by a
view right below the text field.

Leading/Trailing These values are language-specific attributes. If the device is set to
a language that reads left to right (e.g., English), then the leading
attribute is the same as the left attribute and the trailing attribute
is the same as the right attribute. If the language reads right to
left (e.g., Arabic), then the leading attribute is on the right and
the trailing attribute is on the left. Interface Builder automatically
prefers leading and trailing over left and right, and, in general, you
should as well.

Constraints

57

By default, every view has an alignment rectangle, and every view hierarchy uses Auto Layout.

The alignment rectangle is very similar to the frame. In fact, these two rectangles are often the same.
Whereas the frame encompasses the entire view, the alignment rectangle only encompasses the content
that you wish to use for alignment purposes. Figure 3.17 shows an example where the frame and the
alignment rectangle are different.

Figure 3.17 Frame vs. alignment rectangle

You cannot define a view’s alignment rectangle directly. You do not have enough information (like
screen size) to do that. Instead, you provide a set of constraints. Taken together, these constraints
enable the system to determine the layout attributes, and thus the alignment rectangle, for each view in
the view hierarchy.

Constraints
A constraint defines a specific relationship in a view hierarchy that can be used to determine a layout
attribute for one or more views. For example, you might add a constraint like, “The vertical space
between these two views should always be 8 points,” or, “These views must always have the same
width.” A constraint can also be used to give a view a fixed size, like, “This view’s height should
always be 44 points.”

You do not need a constraint for every layout attribute. Some values may come directly from a
constraint; others will be computed by the values of related layout attributes. For example, if a view’s
constraints set its left edge and its width, then the right edge is already determined (left edge + width
= right edge, always). As a general rule of thumb, you need at least two constraints per dimension
(horizontal and vertical).

If, after all of the constraints have been considered, there is still an ambiguous or missing value for
a layout attribute, then there will be errors and warnings from Auto Layout and your interface will
not look as you expect on all devices. Debugging these problems is important, and you will get some
practice later in this chapter.

How do you come up with constraints? Let’s see how using the labels that you have laid out on the
canvas.

First, describe what you want the view to look like independent of screen size. For example, you might
say that you want the top label to be:

• 8 points from the top of the screen
• centered horizontally in its superview
• as wide and as tall as its text

Chapter 3 Views and the View Hierarchy

58

To turn this description into constraints in Interface Builder, it will help to understand how to find a
view’s nearest neighbor. The nearest neighbor is the closest sibling view in the specified direction
(Figure 3.18).

Figure 3.18 Nearest neighbor

If a view does not have any siblings in the specified direction, then the nearest neighbor is its
superview, also known as its container.

Now you can spell out the constraints for the label:

1. The label’s top edge should be 8 points away from its nearest neighbor (which is its container –
the view of the ViewController).

2. The label’s center should be the same as its superview’s center.

3. The label’s width should be equal to the width of its text rendered at its font size.

4. The label’s height should be equal to the height of its text rendered at its font size.

If you consider the first and fourth constraints, you can see that there is no need to explicitly constrain
the label’s bottom edge. It will be determined from the constraints on the label’s top edge and the
label’s height. Similarly, the second and third constraints together determine the label’s right and left
edges.

Now that you have a plan for the top label, you can add these constraints. Constraints can be added
using Interface Builder or in code. Apple recommends that you add constraints using Interface
Builder whenever possible, and that is what you will do here. However, if your views are created and

Adding constraints in Interface Builder

59

configured programmatically, then you can add constraints in code. In Chapter 6, you will practice that
approach.

Adding constraints in Interface Builder
Let’s get started constraining that top label.

Select the top label on the canvas. In the bottom righthand corner of the canvas, find the Auto Layout
constraint menu (Figure 3.19).

Figure 3.19 Using the Auto Layout constraint menu

Click the icon (the third from the left) to reveal the Pin menu. This menu shows you the current size
and position of the label.

At the top of the Pin menu are four values that describe the label’s current spacing from its nearest
neighbor on the canvas. For this label, you are only interested in the top value.

To turn this value into a constraint, click the top red strut separating the value from the square in the
middle. The strut will become a solid red line.

In the middle of the menu, find the label’s Width and Height. The values next to Width and Height
indicate the current canvas values. To constrain the label’s width and height to the current canvas
values, check the boxes next to Width and Height. The button at the bottom of the menu reads Add 3
Constraints. Click this button.

Chapter 3 Views and the View Hierarchy

60

At this point, you have not specified enough constraints to fully determine the alignment rectangle.
Interface Builder will help you determine what the problem is.

In the top right corner of Interface Builder, notice the yellow warning sign (Figure 3.20). Click on this
icon to reveal the issue: “Horizontal position is ambiguous for "212".”

Figure 3.20 Horizontal ambiguity

You have added two vertical constraints (a top edge constraint and a height constraint), but you
have only added one horizontal constraint (a width constraint). Having only one constraint makes
the horizontal position of the label ambiguous. You will fix this issue by adding a center alignment
constraint between the label and its superview.

With the top label still selected, click the icon (the second from the left in the Auto Layout
constraints menu) to reveal the Align menu. If you have multiple views selected, this menu will allow
you to align attributes among the views. Since you have only selected one label, the only options you
are given are to align the view within its container.

In the Align menu, select Horizontally in Container (do not click Add 1 Constraint yet). Once you add
this constraint, there will be enough constraints to fully determine the alignment rectangle. To ensure
that the frame of the label matches the constraints specified, open the Update Frames pop-up menu
from the Align menu and select Items of New Constraints. This will reposition the label to match the
constraints that have been added. Now click on Add 1 Constraint to add the centering constraint and
reposition the label.

The label’s constraints are all blue now that the alignment rectangle for the label is fully specified.
Additionally, the warning at the top right corner of Interface Builder is now gone.

Build and run the application on the iPhone 6s simulator and the iPhone 6s Plus simulator. The top
label will remain centered in both simulators.

Intrinsic content size
Although the top label’s position is flexible, its size is not. This is because you have added explicit
width and height constraints to the label. If the text or font were to change, you would be in the same
position you were in earlier. The size of the frame is absolute, so the frame would not hug to the
content.

This is where the intrinsic content size of a view comes into play. You can think of the intrinsic content
size as the size that a view “wants” to naturally be. For labels, this size is the size of the text rendered
at the given font. For images, this is the size of the image itself.

A view’s intrinsic content size acts as implicit width and height constraints. If you do not specify
constraints that explicitly determine the width, the view will be its intrinsic width. The same goes for
the height.

Intrinsic content size

61

With this knowledge, let the top label have a flexible size by removing the explicit width and height
constraints.

In Main.storyboard, select the width constraint on the label. You can do this by clicking on the
constraint on the canvas. Alternatively, in the document outline, you can click on the disclosure triangle
next to the 212 label, then disclose the list of constraints for the label (Figure 3.21). Once you have
selected the width constraint, press the Delete key. Do the same for the height constraint.

Figure 3.21 Selecting the width constraint

Notice that the constraints for the label are still blue. Since the width and height are being inferred
from the label’s intrinsic content size, there are still enough constraints to determine the label’s
alignment rectangle.

Chapter 3 Views and the View Hierarchy

62

Misplaced views
As you have seen, blue constraints indicate that the alignment rectangle for a view is fully specified.
Orange constraints often indicate a misplaced view. This means that the frame for the view in Interface
Builder is different than the frame that Auto Layout has computed.

A misplaced view is very easy to fix. That is good, because it is also a very common issue that you will
encounter when working with Auto Layout.

Give your top label a misplaced view so that you can see how to resolve this issue. Resize the top label
on the canvas using the resize controls and look for the yellow warning in the top right corner of the
canvas. Click on this warning icon to reveal the problem: “Frame for "212" will be different at run
time” (Figure 3.22).

Figure 3.22 Misplaced view warning

As the warning says, the frame at runtime will not be the same as the frame specified on the canvas. If
you look closely, you will see an orange dotted line that indicates what the runtime frame will be.

Build and run the application. Notice that the label is still centered despite the new frame that you
gave it in Interface Builder. This might seem great – you get the result that you want, after all. But the
disconnect between what you have specified in Interface Builder and the constraints computed by Auto
Layout will cause problems down the line as you continue to build your views. Let’s fix the misplaced
view.

Back in the storyboard, select the top label on the canvas. Click the icon (the right-most icon) to
reveal the Resolve Auto Layout Issues menu. Select Update Frames from the Selected Views section.
This will update the frame of the label to match the frame that the constraints will compute.

You will get very used to updating the frames of views as you work with Auto Layout. One word of
caution: if you try to update the frames for a view that does not have enough constraints, you will
almost certainly get unexpected results. If that happens, undo the change and inspect the constraints to
see what is missing.

At this point, the top label is in good shape. It has enough constraints to determine its alignment
rectangle, and the view is laying out the way you want.

Becoming proficient with Auto Layout takes a lot of experience, so in the next section you are going to
remove the constraints from the top label and then add constraints to all of the labels.

Adding more constraints

63

Adding more constraints
Let’s flesh out the constraints for the rest of the views. Before you do that, you will first remove the
existing constraints from the top label.

Select the top label on the canvas. Open the Resolve Auto Layout Issues menu and select Clear
Constraints from the Selected Views section (Figure 3.23).

Figure 3.23 Clearing constraints

You are going to add the constraints to all of the views in two steps. First you will center the top label
horizontally within the superview. Then you will add constraints that pin the top of each label to its
nearest neighbor while aligning the centers of all of the labels.

Select the top label. Open the Align menu and choose Horizontally in Container with a constant of 0.
Make sure that Update Frames has None selected; remember that you do not want to update the frame
of a view that does not have enough constraints, and this one constraint will certainly not provide
enough information to compute the alignment rectangle. Go ahead and Add 1 Constraint.

Now select all five labels on the canvas. It can be very convenient to add constraints to multiple views
simultaneously. Open the Pin menu and make the follow choices:

1. Select the top strut and make sure it has a constant of 8.

2. From the Align menu, choose Horizontal Centers.

3. From the Update Frames menu, choose Items of New Constraints.

Chapter 3 Views and the View Hierarchy

64

Your menu should match Figure 3.24. Once it does, click Add 9 Constraints. This will add the
constraints to the views and update their frames to reflect the Auto Layout changes.

Figure 3.24 Adding more constraints with the Pin menu

Build and run the application on the iPhone 6s simulator. The views will be centered within the
interface. Now build and run the application on the iPhone 6s Plus simulator. Unlike earlier in the
chapter, all of the labels remain centered on the larger interface.

Auto Layout is a crucial technology for every iOS developer. It helps you create flexible layouts that
work across a range of devices and interface sizes. It also takes a lot of practice to master. You will get
a lot of experience working with Auto Layout as you work through this book.

Now that the interface for WorldTrotter is using Auto Layout to adapt to various screen sizes, there is
no need for you to specify an iPhone screen size when working in the storyboard.

In Main.storyboard, select the View Controller and open its attributes inspector. Find the Simulated
Metrics section and change the Size to Inferred. The interface updates to be the square shape that it was
initially. Notice that the labels still remain centered in this square interface due to the constraints that
you added.

Designing interfaces using the inferred square shape helps to force you to think about designing
adaptive interfaces that work with a variety of screen sizes instead of designing for one particular
screen size.

Bronze Challenge: More Auto Layout Practice
Remove all of the constraints from the ViewController interface and then add them back in. Try to do
this without consulting the book.

This page intentionally left blank

387

Index
Symbols
.xcassets (asset catalog), 24
.xcdatamodeld (data model file), 354
// MARK:, 239, 240
@IBInspectable, 286

A
access control, 311
accessory indicator (UITableViewCell), 153
action methods

connecting in interface file, 226
defining, 18
implementing, 22
and UIControl, 289

active state, 252
addSubview(_:), 49
alerts, displaying, 170-173
alignment rectangles, 56, 57
anchors, 99
animateWithDuration:animations:, 130-132
animations

animating constraints, 135-139
basic, 130-132
marking completion of, 135
spring-like, 141
timing functions, 139, 140

anti-aliasing, 93
API Reference, 244
append(_:), 34
application bundle

explained, 263, 264
and internationalization, 113, 127

application sandbox, 245-247, 263
application states, 252-254, 260, 261
applicationDidBecomeActive:, 254, 260
applicationDidEnterBackground(_:), 248, 260
applicationDidEnterBackground:, 254
applications

(see also application bundle, debugging,
projects)
building, 12, 123
cleaning, 123
data storage, 246, 247
directories in, 246, 247

icons for, 24, 25
launch images for, 26
multiple threads in, 330
running on iPad, 3
running on simulator, 12

applicationWillEnterForeground:, 254, 260
applicationWillResignActive:, 254, 260
archiving

vs. Core Data, 353
described, 242
implementing, 242-245
with NSKeyedArchiver, 248-251

arrays
about, 31, 32
append(_:), 34
count, 34
reverse(), 34
subscripting, 32
and traps, 32
writing to filesystem, 261

asset catalogs (Xcode), 24
assistant editor (Xcode), 226
attributes (Core Data), 354
Auto Layout

(see also constraints, Interface Builder)
alignment rectangles, 56, 57
autoresizing masks and, 107, 108
dynamic cell heights, 180
introduction to, 13-15
layout attributes, 56, 57
purpose of, 55

autoresizing masks, 98, 107, 108
awakeFromInsert, 358

B
background state, 252-254, 260, 261
Base internationalization, 113
baselines, 56
basic animations, 130-132
becomeFirstResponder, 72
Bool, 31
boolean types, 31
bundles

application (see application bundle)
NSBundle, 127, 263

buttons
adding to navigation bars, 218

Index

388

camera, 224

C
CALayer, 43
callbacks, 76

(see also delegation, target-action pairs)
camera

(see also images)
taking pictures, 224-230

cancelsTouchesInView, 300
canPerformAction(_:withSender:), 306
cells

(see also UITableViewCell)
adding padding to, 158
changing cell class, 177
customizing layout of, 338
dynamic cell heights, 180
prototype, 157, 342
reusing, 158

CGPoint, 45
CGRect, 45-47
CGSize, 45
closures, 130-132, 247
collection view

customizing layout of, 338
displaying, 334
downloading image data, 345-347
layout object, 333
navigating to/displaying photos, 350-352
setting data source, 335-338

colors
background, 46, 335
customizing, 53

common ancestor, 100
concurrency, 330
conditionals

if-let, 36
switch, 39

connections (in Interface Builder), 16-20
connections inspector, 20
console

printing to, 78
viewing in playground, 35

constants, 29
constraints (Auto Layout)

activating programmatically, 100, 101
adding to labels, 116

animating, 135-139
clearing, 15, 63
collection view, 334
creating explicit constraints, 103, 104
creating in Interface Builder, 57-64
creating programmatically, 98-104
implicit, 188
nearest neighbor and, 58
overview, 57
pin, 59, 60
resolving unsatisfiable, 107
specifying, 13

constraintWithItem:attribute:relatedBy…
…:toItem:attribute:multiplier:constant:,
103, 104
content compression, 190
contentMode (UIImageView), 222, 223
contentView (UITableViewCell), 154
control events, 289
controller objects, 5
controls, programmatic, 104
Core Data

vs. archiving, 353
attributes, 354
fetch requests, 364
persistent store formats, 359
relationship management with, 369-384
role of, 354
subclassing NSManagedObject, 356-358
transforming values, 356

Core Graphics, 93
count (arrays), 34
currentLocale, 110

D
data source methods, 152, 174, 335, 364
data storage

(see also archiving, Core Data)
for application data, 246, 247
binary, 255, 261
with NSData, 254

dataSource (UITableView), 145, 149-153
debugging

(see also debugging tools, exceptions)
debugging tools

issue navigator, 23
Xcode, 35

Index

389

declarations
protocol, 76

default: (switch statement), 39
delegation

design pattern, 174
for UIImagePickerController, 228
for UITableView, 145
overview, 76-78
UICollectionViewDelegate, 345

deleteRowsAtIndexPaths(_:withRowAnimati…
…on:), 168
dependency injection, 151
dependency inversion principle, 151
design patterns, 174
DetailViewController, 236, 265-271
developer documentation, 244
devices

checking for camera, 227-229
display resolution, 47
Retina display, 24, 93, 94

dictionaries
(see also JSON data)
about, 31, 32
accessing, 36
subscripting, 36
using, 233, 234
writing to filesystem, 261

directories
application, 246, 247
Documents, 246
Library/Caches, 246
Library/Preferences, 246
lproj, 113, 127
temporary, 246

display resolution, 47
document outline (Interface Builder), 7
documentation

developer, 244
opening, 129
for Swift, 40

Documents directory, 246
Double, 31
drawing (see views)
drill-down interface, 203
Dynamic Type, 181-184

E
editButtonItem, 219
editing (UITableView,
UITableViewController), 161, 165
editor area (Xcode), 7
encodeInteger(_:forKey:), 242
encodeObject(_:forKey:), 242
encodeWithCoder(_:), 248
encodeWithCoder:, 242-244
endEditing(_:), 214
entities

creating, 361
defined, 354
modeling, 354-356
relationships between, 370-372
saving changes to, 363

enumerate(), 37
enums (enumerations)

defined, 39
overview of, 320
and raw values, 40
and switch statements, 39

error handling, 257-259, 346
errors

dealing with, 35
in playgrounds, 30
traps, 32

event handling, 212
events

control, 104, 289
touch, 212, 274

(see also touch events)
exceptions

vs. error handling, 261
internal inconsistency, 166
Swift vs. other languages, 261

expressions, string interpolation and, 37
extensions, 347

F
fallthrough (switch statement), 39
fetch requests, 364
file inspector, 121
file URLs, retrieving, 247
filesystem, writing to, 254-256, 261
first responder

becoming, 72

Index

390

and nil-targeted actions, 289
overview, 211-215
resigning, 72, 213, 214
and responder chain, 288
and UIMenuController, 297

Flickr, 308
Float, 31
floating-point types, 31, 33
fonts

changing preferred size, 183
customizing size, 54

for-in, 37
forced unwrapping (of optionals), 35
frame (UIView), 45-47
frameworks

Core Data (see Core Data)
definition of, 46
linking manually, 84

functions
(see also individual function names)
callback, 76

G
genstrings, 125
gesture recognizer (see UIGestureRecognizer)
gestures

(see also UIGestureRecognizer,
UIScrollView)
discrete vs. continuous, 299
long press, 299, 300
panning, 299-303
taps, 292-298

GUIDs, 233

H
Hashable, 31
header view (UITableView), 161-164
hierarchies, view, 42-51
Homepwner application

adding an image store, 231
adding drill-down interface, 204-220
adding item images, 221-237
adjusting view properties per size class, 267
application sandbox, 250
creating nested stack views, 186-193
enabling editing, 161-170
object diagrams, 149, 206

storing images, 254-259
horizontal ambiguity, 60
HTTP protocol, 331, 332

I
IBAction, 18, 226
@IBInspectable, 286
IBOutlet, 16, 196-198
icons

(see also images)
application, 24, 25
asset catalogs for, 24
camera, 224

if-let, 36
image picker (see UIImagePickerController)
imageNamed:, 94
imagePickerController:didFinishPickingM…
…ediaWithInfo:, 228
imagePickerControllerDidCancel:, 228
images

(see also camera, icons, UIImageView)
accessing from the cache, 234
caching, 254-259
displaying in UIImageView, 222, 223
downloading image data, 327, 345-347
fetching, 232
modeling Photo class, 317
navigating to photos, 350-352
for Retina display, 93
saving, 230
saving to disk, 367
storing, 231-233
wrapping in NSData, 254

imageWithContentsOfFile(_:), 255
implementation files, navigating, 238
implicit constraints, 188
inactive state, 252
inequality constraints, 118
init(coder:), 245
init(frame:), 45
init?(contentsOfFile:encoding:error:), 261
initial view controller, 82
initializers

about, 33
convenience, 147
custom, 147, 148
designated, 147

Index

391

free, 148
member-wise, 277
for standard types, 33

initWithCoder:, 242
inspectors (Xcode)

connections, 20
file, 121

instance variables, 248
(see also pointers, properties)

instances, 33
Int, 31
integer types, 31
Interface Builder

(see also Xcode)
adding constraints in, 59
attributes inspector, 51
canvas, 7
connecting objects, 16-20
connecting with source files, 178
document outline, 7
modifying view attributes, 286
and properties, 178
scene, 8
setting outlets in, 17, 196, 197
setting target-action in, 19
size inspector, 52

interface files
bad connections in, 198
Base internationalization and, 113
connecting with source files, 226
making connections in, 226

internal inconsistency exception, 166
internationalization, 109-113, 127

(see also localization)
intrinsic content size, 60
inverse relationships, 371
iOS simulator

running applications on, 12
sandbox location, 250
saving images to, 229
viewing application bundle in, 263

iPad
(see also devices)
application icons for, 24
running iPhone applications on, 3

isEmpty (strings), 34
isSourceTypeAvailable:, 227
issue navigator, 23

J
JSON data, 318, 319

K
key-value pairs

in dictionaries, 31
in JSON data, 318
in web services, 310

keyboard
attributes, 68-71
dismissing, 72, 211-215
number pad, 220

keys
creating/using, 233
in dictionaries, 31

L
labels

adding, 52
adding additional, 132
adding constraints to, 116
adding to tab bar, 88
customizing, 53
updating preferred text size, 184

language settings, 109
(see also localization)

launch images, 26
layers (of views), 43
layout attributes, 56, 57
layout guides, 101, 141
lazy loading, 82, 91
let, 29
libraries

(see also frameworks)
object, 9

Library/Caches directory, 246
Library/Preferences directory, 246
literal values, 32
loadView, 82, 97
local variables, 37
localization

Base internationalization and, 113
internationalization, 109-113, 127
lproj directories, 113, 127
NSBundle, 127
strings tables, 124-126
user settings for, 109

Index

392

XLIFF data type, 128
locationInView:, 296
loops

examining in Value History, 38
for, 37
for-in, 37
in Swift, 37

low-memory warnings, 230
lproj directories, 113, 127

M
main bundle, 113, 127

(see also application bundle)
main interface, 85
main thread, 330
mainBundle, 264
margins, 102, 103
// MARK:, 239, 240
member-wise initializers, 277
memory management

memory warnings, 230
UITableViewCell, 156

menus (UIMenuController), 297, 298, 306
messages

(see also methods)
action, 289, 292, 298
log, 285
UIResponder, 275

methods
(see also individual method names)
action, 18, 289
data source, 152
defined, 27, 34
protocol, 79
static, 27

minimumPressDuration, 299
modal view controller, 172, 228
model layer, 5
Model-View-Controller (MVC), 5-7, 145, 174
multi-threading, 330
multipleTouchEnabled (UIView), 281
multitouch, enabling, 281
mutableSetValueForKey(_:), 377
MVC (Model-View-Controller), 5-7, 145, 174

N
naming conventions

cell reuse identifiers, 156
delegate protocols, 76

navigation controllers (see
UINavigationController)
navigationItem (UIViewController), 216
navigators (Xcode)

defined, 4
issue, 23
project, 4

nearest neighbor, 58
nextResponder, 288
nil-targeted actions, 289
NSBundle, 127
NSCoder, 242, 245
NSCoding protocol, 242-245
NSData, 254
NSDate, 261
NSDateFormatter, 110
NSFetchRequest, 364
NSIndexPath, 155, 168
NSJSONSerialization, 319
NSKeyedArchiver, 248-251
NSKeyedUnarchiver, 251
NSLocale, 110
NSLocalizedString(), 124, 126
NSManagedObject, 356-358, 372-382
NSNumber, 261
NSString

conversion to, 243
property list serializable, 261

NSTemporaryDirectory, 246
NSURL, 312-315
NSURLRequest, 314, 315, 331, 332
NSURLSession, 314-316
NSURLSessionDataTask, 315, 316, 326, 330
NSURLSessionTask, 331
NSUserDefaults, 246
NSUUID, 233, 234
NSValueTransformer, 356
number formatters, 75, 110-113
number pad, 220

O
object graphs, 353
object library, 9
objects

(see also memory management)

Index

393

property list serializable, 261
optional, 79
optional binding, 36
optional methods (protocols), 79
optionals

about, 34
and dictionary subscripting, 36
forced unwrapping of, 35
if-let, 36
and optional binding, 36
syntax for, 34
unwrapping, 35

outlets
autogenerating/connecting, 196
connecting constraints to, 136
connecting with source files, 178
defined, 16
setting, 16-18
setting in Interface Builder, 195

P
padding, 158
parallel computing, 330
parent-child contexts, 382-384
Photorama application

adding persistence to, 353-368
adding tags to photos, 369-384
collection view, 333-344
downloading image data, 327-329
web service requests, 308-326

photos (see camera, images)
pixels, 47
playgrounds (Xcode), 28-30

errors in, 30
Value History, 38
viewing console in, 35

pointers
in Interface Builder (see outlets)

points (vs. pixels), 47
predicates, 364
preferences, 246

(see also Dynamic Type, localization)
prepareForSegue:sender:, 200
presentViewController:animated:completion:,
228
preview assistant, 114
project navigator, 4

projects
cleaning and building, 123
creating, 2-4
target settings in, 263

properties
creating in Interface Builder, 178
defined, 34

property list serializable objects, 261
property observer, 74
protocol, 76
protocols

conforming to, 76
declaring, 76
delegate, 76-78
NSCoding, 242-245
optional methods in, 79
required methods in, 79
structure of, 76
UIApplicationDelegate, 254
UICollectionViewDataSource protocol, 335
UICollectionViewDelegate, 345
UIGestureRecognizerDelegate, 301, 302
UIImagePickerControllerDelegate, 228,
230
UINavigationControllerDelegate, 230
UIResponderStandardEditActions, 306
UITableViewDataSource, 145, 152, 153, 155,
168, 169
UITableViewDelegate, 145
UITextFieldDelegate, 76, 211

pseudolanguage, 115

Q
Quartz, 93 (see Core Graphics)
query items, 310
Quick Help, 244
Quick Help (Xcode), 30
Quiz application, 2-26

R
Range, 37
rawValue (enums), 40
reference pages, 244
reference types, 277
region settings, 109
reordering controls, 170
required methods (protocols), 79

Index

394

requireGestureRecognizerToFail(_:), 304
resignFirstResponder, 72, 213
resources

asset catalogs for, 24
defined, 24, 263

responder chain, 288
responders (see first responder, UIResponder)
Retina display, 24, 93, 94
reuse identifiers, 335
reuseIdentifier (UITableViewCell), 156
reverse(), 34
root view controller (UINavigationController),
205-207
rows (UITableView)

adding, 166, 167
deleting, 168
moving, 169, 170

S
sandbox, application, 245-247, 263
schemes, 12
sections (UITableView), 153, 161
segues, 194
sendAction(_:to:from:forEvent:), 289
sendActionsForControlEvents(_:), 289
setEditing:animated:, 165, 219
sets, 32, 33
settings (see preferences)
Settings application, 246
simulator

running applications on, 12
sandbox location, 250
saving images to, 229
viewing application bundle in, 263

size classes, 265-271
sort descriptors (NSFetchRequest), 364
sourceType (UIImagePickerController), 226,
227
stack views, 185-193
states, application, 252-254
static methods, 27
String

internationalizing, 124
writing to filesystem, 255-261

string interpolation, 37
strings

(see also NSString)

initializers for, 33
interpolation, 37
isEmpty, 34
literal, 32

strings tables, 124-126
structs, 277
subscripting

arrays, 32
dictionaries, 36

subviews, 42, 92
superview, 48
suspended state, 252, 254
Swift

about, 27
documentation for, 40
enumerations and switch statement, 39
extensions in, 347
loops and string interpolation, 37
optional types in, 34, 257-259
types in, 27
using standard types, 28-34
value types, 277

switch, 39
switch statements, 39

T
tab bar controllers (see UITabBarController)
tab bar items, 88-90
table view cells (see UITableViewCell)
table view controllers (see
UITableViewController)
table views (see UITableView)
tables (database), 353
tableView, 159
tableView(_:commitEditingStyle:forRowAt…
…IndexPath:), 168
tableView(_:moveRowAtIndexPath:toIndexP…
…ath:), 169
tableView:cellForRowAtIndexPath:, 152,
155-157
tableView:numberOfRowsInSection:, 152, 153
tags

adding to photos, 377-381
adding to the interface, 372-377
creating relationships between, 370-372

target-action pairs
defined, 18, 19, 174

Index

395

setting programmatically, 218
and UIControl, 289
and UIGestureRecognizer, 292

targets, build settings for, 263
templates (Xcode), xv
text

(see also Auto Layout)
aligning, 67
compression of, 190
customizing appearance, 53, 67
dynamic styling of, 181
input, 65-73

textFieldShouldReturn:, 211
threads, 330
timing functions, 139, 140
tmp directory, 246
to-many relationships, 370
to-one relationships, 370
toggleEditingMode:, 165
toolbars

adding, 224
adding buttons to, 225
adding constraints to, 224
anchoring, 372

topViewController (UINavigationController),
205
touch events

basics of, 274, 275
defined, 212
enabling multitouch, 281-285
and responder chain, 288
and target-action pairs, 289
and UIControl, 289

touchesBegan(_:withEvent:), 274
touchesCancelled(_:withEvent:), 274
touchesEnded(_:withEvent:), 274
touchesMoved(_:withEvent:), 274
TouchTracker application

creating, 275
drawing lines, 276-285
recognizing gestures, 291-306

transformable attributes (Core Data), 356
translationInView(_:), 302
traps, 32
tuples, 37
type inference, 30
types

boolean, 31

floating-point, 31, 33
hashable, 31
inference of, 30
instances of, 33
integer, 31
sets, 32, 33
specifying, 30
tuples, 37

U
UI thread, 330
UIAlertController, 170-173
UIApplication

and events, 274
and responder chain, 288, 289

UIApplicationDelegate, 254
UIBarButtonItem, 217-219, 224-226
UICollectionViewCell, 341-344
UICollectionViewDataSource protocol, 335
UICollectionViewDelegate protocol, 345
UICollectionViewFlowLayout, 333-340
UIColor, 46
UIControl, 289
UIControlEvent.TouchUpInside, 289
UIControlEvents, 104
UIGestureRecognizer

action messages of, 292, 299
cancelsTouchesInView, 300
chaining recognizers, 304
delaying touches, 304
described, 291
detecting taps, 292-298
enabling simultaneous recognizers, 301
implementing multiple, 294-296, 301-303
intercepting touches from view, 292, 300, 301
locationInView:, 296
long press, 299, 300
panning, 299-303
state (property), 299, 302, 304
subclasses, 72, 292, 304
subclassing, 305
translationInView(_:), 302
and UIResponder methods, 300

UIGestureRecognizerDelegate, 301, 302
UIImage, 255

(see also images, UIImageView)
UIImageJPEGRepresentation, 255

Index

396

UIImagePickerController
instantiating, 226-228
presenting, 228-230

UIImagePickerControllerDelegate, 228, 230
UIImageView, 222, 223
UIInterpolatingMotionEffect, 130
UIKit, 46
UILongPressGestureRecognizer, 299, 300
UIMenuController, 297, 298, 306
UINavigationBar, 206-220
UINavigationController

(see also view controllers)
adding view controllers to, 210
described, 205-208
instantiating, 207
managing view controller stack, 205
root view controller, 205, 206
in storyboards, 194
topViewController, 205, 206
and UINavigationBar, 216-219
view, 206
viewControllers, 205
viewWillAppear:, 210
viewWillDisappear:, 210

UINavigationControllerDelegate, 230
UINavigationItem, 216-219
UIPanGestureRecognizer, 299-303
UIResponder

menu actions, 306
and responder chain, 288
and touch events, 274

UIResponderStandardEditActions (protocol),
306
UIScrollView, 158
UIStackView, 187-193
UIStoryboardSegue, 194-200
UITabBarController

implementing, 85-90
vs. UINavigationController, 203
view, 87

UITabBarItem, 88-90
UITableView, 143-145

(see also UITableViewCell,
UITableViewController)
adding rows to, 166, 167
deleting rows from, 168
editing mode of, 161, 165, 176, 219
editing property, 161, 165

footer view, 161
header view, 161-164
moving rows in, 169, 170
populating, 149-156
sections, 153, 161
view, 146

UITableViewCell
cell styles, 154
contentView, 154
editing styles, 168
retrieving instances of, 155, 156
reusing instances of, 156-158
subclassing, 175-184
UITableViewCellStyle, 154

UITableViewCellEditingStyleDelete, 168
UITableViewController

(see also UITableView)
adding rows, 166, 167
data source methods, 152
dataSource, 149-153
deleting rows, 168
described, 145
editing property, 165
moving rows, 169, 170
returning cells, 155, 156
subclassing, 146
tableView, 159

UITableViewDataSource (protocol), 145, 152,
153, 155, 168, 169
UITableViewDelegate, 145
UITapGestureRecognizer, 72, 292-298
UITextField

as first responder, 211, 289
and keyboard, 211
setting attributes of, 220
text editing, 65

UITextFieldDelegate, 76, 211
UIToolbar, 217, 225
UITouch, 274, 275, 280-285
UIView

(see also UIViewController, views)
animation documentation, 129
defined, 41
frame, 45-47
instantiating, 45
superview, 48

UIViewController
(see also UIView, view controllers)

Index

397

loadView, 82, 97
navigationItem, 216
tabBarItem, 88
view, 82, 288
viewDidLoad, 92
viewWillAppear:, 92, 230

UIWindow
purpose of, 42
and responder chain, 288

unarchiveObjectWithFile(_:), 251
URLForResource(_:withExtension:), 127
URLs, 309

(see also NSURL)
user alerts, displaying, 170-173
user interface

(see also Auto Layout, views)
drill-down, 203
keyboard, 211

user settings (see preferences)
UUIDs, 233, 356

V
value types, 277
var, 29
variables, 29

(see also instance variables, local variables,
pointers, properties)

view (UIViewController), 82
view controllers

(see also UIViewController, views)
allowing access to image store, 232
interacting with, 92
lazy loading of views, 82, 91
modal, 172, 228
navigating between, 194
presenting, 85
reloading subviews, 230
root, 205
setting initial, 82
and view hierarchy, 82, 97

view hierarchy, 42-51, 97
viewControllers (UINavigationController),
205
viewDidLoad, 46, 92
views

(see also Auto Layout, touch events, UIView,
view controllers)

adding to window, 42, 97
animating, 129-139
appearing/disappearing, 210
content compression resistance priorities, 190
content hugging priorities, 189
creating programmatically, 97
defined, 41
drawing to screen, 43
in hierarchy, 42, 43
layers and, 43
lazy loading of, 82, 91
misplaced, 62
modal presentation of, 228
in Model-View-Controller, 5
removing from storyboard, 95
rendering, 43
resizing, 222, 223
scroll, 334
size and position of, 45-47
stack view, 185-193, 267
and subviews, 42-51

viewWillAppear:, 92, 210, 230
viewWillDisappear:, 210

W
web services

and HTTP protocol, 331, 332
with JSON data, 318, 319
and NSURLSession, 314-316
overview, 307, 308
requesting data from, 309-316

wildcard Any Width/Height layout, 266
workspaces (Xcode), 4
WorldTrotter application

adding tab bar controller, 85-90
configuring, 44
implementing temperature conversion, 73
interface layout, 51
localizing, 110-127
multiple view controllers for, 81
programmatic views in, 95
text input, 65-73

writeToURL(_:atomically:), 255
writeToURL(_:atomically:encoding:error:),
261

Index

398

X
.xcassets (asset catalog), 24
.xcdatamodeld (data model file), 354
Xcode

(see also debugging tools, Interface Builder,
projects, iOS simulator)
API Reference, 244
asset catalogs, 24
assistant editor, 226
creating projects in, 2-4
documentation, 129
editor area, 7
file inspector, 121
issue navigator, 23
navigator area, 4
navigators, 4
object library, 9
organizing methods with // MARK:, 239
playgrounds, 28-30
Quick Help, 30, 244
schemes, 12
source editor jump bar, 238
versions, 2
workspaces, 4

XLIFF data type, 128
XML property lists, 261

	Cover
	Table of Contents
	Introduction
	Prerequisites
	What Has Changed in the Fifth Edition?
	Our Teaching Philosophy
	How to Use This Book
	How This Book Is Organized
	Style Choices
	Typographical Conventions
	Necessary Hardware and Software

	3. Views and the View Hierarchy
	View Basics
	The View Hierarchy
	Creating a New Project
	Views and Frames
	Customizing the labels

	The Auto Layout System
	Alignment rectangle and layout attributes
	Constraints
	Adding constraints in Interface Builder
	Intrinsic content size
	Misplaced views
	Adding more constraints

	Bronze Challenge: More Auto Layout Practice

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

