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Preface

“The world is built on C++ (and its C subset).”

—Herb Sutter

The infrastructures of Google, Amazon, and Facebook are built to a large extent in C++.
In addition, a considerable fraction of the underlying technology is implemented in C++.
In telecommunications, almost all landline and cellular phone connections are driven by
C++ software. Most importantly, all the major transmission nodes in Germany are handled
with C++, which means that peace in the author’s family unconditionally relies on C++

software.
Even software written in other programming languages depends on C++ since the most

popular compilers are realized in C++: Visual Studio, clang, and newer parts of Gnu and
the Intel compiler. This is even more true for software running on Windows which is also
implemented in C++ (as well as the Office package). The language is omnipresent; even your
cell phone and your car certainly contain components driven by C++. Its inventor, Bjarne
Stroustrup, set up a web page with applications where most examples here come from.

In science and engineering, many high-quality software packages are implemented in C++.
The strength of the language is manifested in particular when projects exceed a certain size
and data structures are rather complex. No wonder that many—if not most—simulation
software programs in science and engineering are realized today in C++: the leaders Abaqus,
deal.II, FEniCS, OpenFOAM, to name only a few; likewise the leading CAD software CATIA.
Even embedded systems are increasingly realized in C++ thanks to more powerful processors
and improved compilers (in which not all modern language features and libraries can always
be used). Finally, we do not know how many projects would be realized in C++ instead of C
if they had been started later. For instance, the author’s good friend Matt Knepley, who is
coauthor of the very successful scientific library PETSc, admitted that he would program
the library today in C++ if rewriting was affordable.

Reasons to Learn C++

Like no other language, C++ masters the full spectrum from programming sufficiently close
to the hardware on one end to abstract high-level programming on the other. The lower-level
programming—like user-definable memory management—empowers you as a programmer to
understand what really happens during execution, which in turn helps you to understand the
behavior of programs in other languages. In C++ you can write extremely efficient programs
that can only be slightly out-performed by code written in machine language with ridiculous

xvii
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effort. However, you should wait a little with the hardcore performance tuning and focus
first on clear and expressive software.

This is where the high-level features of C++ come into play. The language supports a
wide variety of programming paradigms directly: object-oriented programming (Chapter 6),
generic programming (Chapter 3), meta-programming (Chapter 5), concurrent programming
(§4.6), and procedural programming (§1.5), among others.

Several programming techniques—like RAII (§2.4.2.1) and expression templates (§5.3)—
were invented in and for C++. As the language is so expressive, it was often possible to
establish these new techniques without changing the language. And who knows, maybe one
day you will invent a new technique.

Reasons to Read This Book

The material of the book has been tested on real humans. The author taught his class “C++

for Scientists” over three years (i.e., three times two semesters). The students, mostly from
the mathematics department, plus some from the physics and engineering departments,
often did not know C++ before the class and were able to implement advanced techniques
like expression templates (§5.3) by the end of the course. You can read this book at your
own pace: straight to the point by following the main path or more thoroughly by reading
additional examples and background information in Appendix A.

The Beauty and the Beast

C++ programs can be written in so many ways. In this book, we will lead you smoothly
to the more sophisticated styles. This requires the use of advanced features that might be
intimidating at first but will become less so once you get used to them. Actually high-level
programming is not only applicable in a wider range but is usually equally or more efficient
and readable.

We will give you a first impression with a simple example: gradient descent with constant
step size. The principle is extremely simple: we compute the steepest descent of f(x) with its
gradient, say g(x), and follow this direction with fixed-size steps to the next local minimum.
Even the algorithmic pseudo-code is as simple as this description:

Algorithm 1: Gradient descent algorithm
Input: Start value x, step size s, termination criterion ε, function f , gradient g
Output: Local minimum x
do1

x = x − s · g(x)2

while |Δf(x)| � ε ;3

For this simple algorithm, we wrote two quite different implementations. Please have a
look and let it sink in without trying to understand the technical details.
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void gradient_descent(double* x,
double* y, double s, double eps,
double (*f)( double , double),
double (*gx)( double , double),
double (*gy)( double , double))

{
double val= f(*x, *y), delta;
do {

*x-= s * gx(*x, *y);
*y-= s * gy(*x, *y);
double new_val= f(*x, *y);
delta= abs(new_val - val);
val= new_val;

} while (delta > eps);
}

template <typename Value, typename P1,
typename P2, typename F,
typename G>

Value gradient_descent(Value x, P1 s,
P2 eps, F f, G g)

{
auto val= f(x), delta= val;
do {

x-= s * g(x);
auto new_val= f(x);
delta= abs(new_val - val);
val= new_val;

} while (delta > eps);
return x;

}

At first glance, they look pretty similar, and we will tell you which one we like more.
The first version is in principle pure C, i.e., compilable with a C compiler too. The benefit is
that what is optimized is directly visible: a 2D function with double values (indicated by the
highlighted function parameters). We prefer the second version as it is more widely usable:
to functions of arbitrary dimension with arbitrary value types (visible by the marked type
and function parameters). Surprisingly the versatile implementation is not less efficient. To
the contrary, the functions given for F and G may be inlined (see §1.5.3) so that the function
call overhead is saved, whereas the explicit use of (ugly) function pointers in the left version
makes this optimization difficult.

A longer example comparing old and new style is found in Appendix A (§A.1) for the
really patient reader. There the benefit of modern programming is much more evident than
in the toy example here. But we do not want to hold you back too long with preliminary
skirmishing.

Languages in Science and Engineering

“It would be nice if every kind of numeric software could be written in C++ without loss
of efficiency, but unless something can be found that achieves this without

compromising the C++-type system it may be preferable to rely on Fortran, assembler
or architecture-specific extensions.”

—Bjarne Stroustrup

Scientific and engineering software is written in different languages, and which one is the
most appropriate depends on the goals and available resources—as everywhere:

• Math tools like MATLAB, Mathematica, or R are excellent when we can use their
existing algorithms. When we implement our own algorithms with fine-grained (e.g.,
scalar) operations, we will experience a significant decrease in performance. This might
not be an issue—the problems are small or the user is infinitely patient; otherwise we
should consider alternative languages.
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• Python is excellent for rapid software development and already contains scientific
libraries like “scipy” and “numpy,” and applications based on these libraries (often
implemented in C and C++) are reasonably efficient. Again, user-defined algorithms
from fine-grained operations pay a performance penalty. Python is an excellent way to
implement small and medium-size tasks efficiently. When projects grow sufficiently
large, it becomes increasingly important that the compiler is stricter (e.g., assignments
are rejected when the arguments do not match).

• Fortran is also great when we can rely on existing, well-tuned operations like dense
matrix operations. It is well suited to accomplish old professors’ homework (because
they only ask for what is easy in Fortran). Introducing new data structures is in the
author’s experience quite cumbersome, and writing a large simulation program in
Fortran is quite a challenge—today only done voluntarily by a shrinking minority.

• C allows for good performance, and a large amount of software is written in C. The
core language is relatively small and easy to learn. The challenge is to write large and
bug-free software with the simple and dangerous language features, especially pointers
(§1.8.2) and macros (§1.9.2.1).

• Languages like Java, C#, and PHP are probably good choices when the main component
of the application is a web or graphic interface and not too many calculations are
performed.

• C++ shines particularly when we develop large, high-quality software with good per-
formance. Nonetheless, the development process does not need to be slow and painful.
With the right abstractions at hand, we can write C++ programs quite rapidly. We are
optimistic that in future C++ standards, more scientific libraries will be included.

Evidently, the more languages we know, the more choice we have. Moreover, the better we
know those languages, the more educated our choice will be. In addition, large projects often
contain components in different languages, whereas in most cases at least the performance-
critical kernels are realized in C or C++. All this said, learning C++ is an intriguing journey,
and having a deep understanding of it will make you a great programmer in any case.

Typographical Conventions

New terms are set in clear blue and italic. C++ sources are printed blue and monospace.
Important details are marked in boldface. Classes, functions, variables, and constants are
lowercase, optionally containing underscores. An exception is matrices, which are usually
named with a single capital letter. Template parameters and concepts start with a capital
letter and may contain further capitals (CamelCase). Program output and commands are
light blue in typewriter font.
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Programs requiring C++3, C++11, or C++14 features are marked with corresponding
margin boxes. Several programs making light use of a C++11 feature that is easily substituted
by a C++03 expression are not explicitly marked.

⇒ directory/source_code.cpp

Except for very short code illustrations, all programming examples in this book were tested
on at least one compiler. Indicated by an arrow, the paths of the complete programs are
given at the beginning of the paragraph or section in which the contained code snippets are
discussed.

All programs are available on GitHub in the public repository https://github.com/
petergottschling/discovering_modern_cpp and can thus be cloned by:

git clone https :// github.com/petergottschling/discovering_modern_cpp.git

On Windows, it is more convenient to use TortoiseGit; see tortoisegit.org.

https://github.com/petergottschling/discovering_modern_cpp
https://github.com/petergottschling/discovering_modern_cpp
https :// github.com/petergottschling/discovering_modern_cpp.git
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Chapter 1

C++ Basics

“To my children:
Never make fun of having to help me with computer stuff.

I taught you how to use a spoon.”

—Sue Fitzmaurice

In this first chapter, we will guide you through the fundamental features of C++.
As for the entire book, we will look at it from different angles but we will not try to
expose every possible detail—which is not feasible anyway. For more detailed questions
on specific features, we recommend the online manuals http://www.cplusplus.com/ and
http://en.cppreference.com.

1.1 Our First Program

As an introduction to the C++ language, let us look at the following example:

#include <iostream >

int main ()
{

std::cout � "The answer to the Ultimate Question of Life ,\n"
� "the Universe , and Everything is:"
� std::endl � 6 * 7 � std::endl;

return 0;
}

which yields

The answer to the Ultimate Question of Life ,
the Universe , and Everything is:
42

according to Douglas Adams [2]. This short example already illustrates several features
of C++:

• Input and output are not part of the core language but are provided by the library.
They must be included explicitly; otherwise we cannot read or write.

• The standard I/O has a stream model and is therefore named <iostream>. To enable
its functionality, we include <iostream> in the first line.

1

http://www.cplusplus.com
http://en.cppreference.com
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• Every C++ program starts by calling the function main. It does return an integer value
where 0 represents a successful termination.

• Braces {} denote a block/group of code (also called a compound statement).

• std::cout and std::endl are defined in <iostream>. The former is an output stream that
prints text on the screen. std::endl terminates a line. We can also go to a new line
with the special character \n.

• The operator � can be used to pass objects to an output stream such as std::cout for
performing an output operation.

• std:: denotes that the type or function is used from the standard Namespace.
Namespaces help us to organize our names and to deal with naming conflicts;
see §3.2.1.

• String constants (more precisely literals) are enclosed in double quotes.

• The expression 6 * 7 is evaluated and passed as an integer to std::cout. In C++, every
expression has a type. Sometimes, we as programmers have to declare the type explicitly
and other times the compiler can deduce it for us. 6 and 7 are literal constants of type
int and accordingly their product is int as well.

Before you continue reading, we strongly recommend that you compile and run this little
program on your computer. Once it compiles and runs, you can play a little bit with it, for
example, adding more operations and output (and looking at some error messages). Finally,
the only way to really learn a language is to use it. If you already know how to use a compiler
or even a C++ IDE, you can skip the remainder of this section.

Linux: Every distribution provides at least the GNU C++ compiler—usually already
installed (see the short intro in Section B.1). Say we call our program hello42.cpp; it
is easily compiled with the command

g++ hello42.cpp

Following a last-century tradition, the resulting binary is called a.out by default. One day
we might have more than one program, and then we can use more meaningful names with
the output flag:

g++ hello42.cpp -o hello42

We can also use the build tool make (overview in §7.2.2.1) that provides (in recent versions)
default rules for building binaries. Thus, we could call

make hello42

and make will look in the current directory for a similarly named program source. It will find
hello42.cpp, and as .cpp is a standard file suffix for C++ sources, it will call the system’s



1.2 Variables 3

default C++ compiler. Once we have compiled our program, we can call it on the command
line as

./ hello42

Our binary can be executed without needing any other software, and we can copy it to
another compatible Linux system1 and run it there.

Windows: If you are running MinGW, you can compile in the same manner as under
Linux. If you use Visual Studio, you will need to create a project first. To begin, the easiest
way is to use the project template for a console application, as described, for instance,
at http://www.cplusplus.com/doc/tutorial/introduction/visualstudio. When you run
the program, you have a few milliseconds to read the output before the console closes. To
extend the reading phase to a second, simply insert the non-portable command Sleep(1000);

and include <windows.h>. With C++11 or higher, the waiting phase can be implemented
portably:

std:: this_thread :: sleep_for(std:: chrono :: seconds (1));

after including <chrono> and <thread>. Microsoft offers free versions of Visual Studio called
“Express” which provide the support for the standard language like their professional counter-
parts. The difference is that the professional editions come with more developer libraries. Since
those are not used in this book, you can use the “Express” version to try our examples.

IDE: Short programs like the examples in this book can be easily handled with an ordinary
editor. In larger projects it is advisable to use an Integrated Development Environment to
see where a function is defined or used, to show the in-code documentation, to search or
replace names project-wide, et cetera. KDevelop is a free IDE from the KDE community
written in C++. It is probably the most efficient IDE on Linux and integrates well with git

and CMake. Eclipse is developed in Java and perceivably slower. However, a lot of effort was
recently put into it for improving the C++ support, and many developers are quite productive
with it. Visual Studio is a very solid IDE that comes with some unique features such as a
miniaturized colored page view as scroll bar.

To find the most productive environment takes some time and experimentation and is of
course subject to personal and collaborative taste. As such, it will also evolve over time.

1.2 Variables

C++ is a strongly typed language (in contrast to many scripting languages). This means that
every variable has a type and this type never changes. A variable is declared by a statement
beginning with a type followed by a variable name with optional initialization—or a list
thereof:

int i1= 2; // Alignment for readability only
int i2, i3= 5;

1. Often the standard library is linked dynamically (cf. §7.2.1.4) and then its presence in the same version
on the other system is part of the compatibility requirements.

http://www.cplusplus.com/doc/tutorial/introduction/visualstudio
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float pi= 3.14159;
double x= -1.5e6; // -1500000
double y= -1.5e-6; // -0.0000015
char c1= 'a', c2= 35;
bool cmp= i1 < pi, // -> true

happy= true;

The two slashes // here start a single-line comment; i.e., everything from the double slashes
to the end of the line is ignored. In principle, this is all that really matters about comments.
So as not to leave you with the feeling that something important on the topic is still missing,
we will discuss it a little more in Section 1.9.1.

Back to the variables! Their basic types—also called Intrinsic Types—are given in
Table 1–1.

The first five types are integer numbers of non-decreasing length. For instance, int is
at least as long as short; i.e., it is usually but not necessarily longer. The exact length of
each type is implementation-dependent; e.g., int could be 16, 32, or 64 bits. All these types
can be qualified as signed or unsigned. The former has no effect on integer numbers (except
char) since they are signed by default.

When we declare an integer type as unsigned, we will have no negative values but twice
as many positive ones (plus one when we consider zero as neither positive nor negative).
signed and unsigned can be considered adjectives for the nouns short, int, et cetera with int

as the default noun when the adjective only is declared.
The type char can be used in two ways: for letters and rather short numbers. Except

for really exotic architectures, it almost always has a length of 8 bits. Thus, we can either
represent values from -128 to 127 (signed) in or from 0 to 255 (unsigned) and perform all
numeric operations on them that are available for integers. When neither signed nor unsigned

is declared, it depends on the implementation of the compiler which one is used. We can also
represent any letter whose code fits into 8 bits. It can be even mixed; e.g., 'a' + 7 usually
leads to 'h' depending on the underlying coding of the letters. We strongly recommend not
playing with this since the potential confusion will likely lead to a perceivable waste of time.

Table 1–1: Intrinsic Types

Name Semantics

char letter and very short integer number
short rather short integer number
int regular integer number
long long integer number
long long very long integer number
unsigned unsigned versions of all the former
signed signed versions of all the former
float single-precision f loating-point number
double double-precision f loating-point number
long double; long f loating-point number
bool boolean
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Using char or unsigned char for small numbers, however, can be useful when there are large
containers of them.

Logic values are best represented as bool. A boolean variable can store true and false.
The non-decreasing length property applies in the same manner to f loating-point numbers:

float is shorter than or equally as long as double, which in turn is shorter than or equally as
long as long double. Typical sizes are 32 bits for float, 64 bits for double, and 80 bits for
long double.

In the following section, we show operations that are often applied to integer and float
types. In contrast to other languages like Python, where ' and " are used for both characters
and strings, C++ distinguishes between the two of them. The C++ compiler considers 'a'

as the character “a” (it has type char) and "a" is the string containing “a” and a binary 0
as termination (i.e., its type is char[2]). If you are used to Python, please pay attention to
this.

Advice

Declare variables as late as possible, usually right before using them the first time and whenever possible

not before you can initialize them.

This makes programs more readable when they grow long. It also allows the compiler to
use the memory more efficiently with nested scopes.

C++11 can deduce the type of a variable for us, e.g.: C++11

auto i4= i3 + 7;

The type of i4 is the same as that of i3 + 7, which is int. Although the type is automatically
determined, it remains the same, and whatever is assigned to i4 afterward will be converted
to int. We will see later how useful auto is in advanced programming. For simple variable
declarations like those in this section it is usually better to declare the type explicitly. auto
will be discussed thoroughly in Section 3.4.

1.2.1 Constants

Syntactically, constants are like special variables in C++ with the additional attribute of
constancy.

const int ci1= 2;
const int ci3; // Error: no value
const float pi= 3.14159;
const char cc 'a';
const bool cmp= ci1 < pi;

As they cannot be changed, it is mandatory to set their values in the declaration. The second
constant declaration violates this rule, and the compiler will not tolerate such misbehavior.

Constants can be used wherever variables are allowed—as long as they are not
modified, of course. On the other hand, constants like those above are already known
during compilation. This enables many kinds of optimizations, and the constants can even
be used as arguments of types (we will come back to this later in §5.1.4).
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1.2.2 Literals

Literals like 2 or 3.14 are typed as well. Simply put, integral numbers are treated as int,
long, or unsigned long depending on the number of digits. Every number with a dot or an
exponent (e.g., 3e12 ≡ 3 · 1012) is considered a double.

Literals of other types can be written by adding a suffix from the following table:

Literal Type

2 int
2u unsigned
2l long
2ul unsigned long
2.0 double
2.0f float
2.0l long double

In most cases, it is not necessary to declare the type of literals explicitly since the implicit
conversion (a.k.a. Coercion) between built-in numeric types usually sets the values at the
programmer’s expectation.

There are, however, three major reasons why we should pay attention to the types of
literals:

Availability: The standard library provides a type for complex numbers where the type for
the real and imaginary parts can be parameterized by the user:

std:: complex <float> z(1.3, 2.4), z2;

Unfortunately, operations are only provided between the type itself and the underlying real
type (and arguments are not converted here).2 As a consequence, we cannot multiply z with
an int or double but with float:

z2= 2 * z; // Error: no int * complex <float >
z2= 2.0 * z; // Error: no double * complex <float >
z2= 2.0f * z; // Okay: float * complex <float >

Ambiguity: When a function is overloaded for different argument types (§1.5.4), an argu-
ment like 0 might be ambiguous whereas a unique match may exist for a qualified argument
like 0u.

Accuracy: The accuracy issue comes up when we work with long double. Since the non-
qualified literal is a double, we might lose digits before we assign it to a long double variable:

long double third1= 0.3333333333333333333; // may lose digits
long double third2= 0.3333333333333333333l; // accurate

If the previous three paragraphs were too brief for your taste, there is a more detailed
version in Section A.2.1.

2. Mixed arithmetic is implementable, however, as demonstrated at [18].
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Non-decimal Numbers: Integer literals starting with a zero are interpreted as octal num-
bers, e.g.:

int o1= 042; // int o1= 34;
int o2= 084; // Error! No 8 or 9 in octals!

Hexadecimal literals can be written by prefixing them with 0x or 0X:

int h1= 0x42; // int h1= 66;
int h2= 0xfa; // int h2= 250;

C++14 introduces binary literals which are prefixed by 0b or 0B:
C++14

int b1= 0b11111010; // int b1= 250;

To improve readability of long literals, C++14 allows us to separate the digits with
apostrophes:

C++14
long d= 6'546'687'616'861'129l;
unsigned long ulx= 0x139'ae3b'2ab0'94f3;
int b= 0b101'1001'0011'1010'1101'1010'0001;
const long double pi= 3.141'592'653'589'793'238'462l;

String literals are typed as arrays of char:

char s1[]= "Old C style"; // better not

However, these arrays are everything but convenient and we are better off with the true
string type from the library <string>. It can be created directly from a string literal:

#include <string >

std:: string s2= "In C++ better like this";

Very long text can be split into multiple sub-strings:

std:: string s3= "This is a very long and clumsy text "
"that is too long for one line.";

For more details on literals, see for instance [43, §6.2].

1.2.3 Non-narrowing Initialization C++11

Say we initialize a long variable with a long number:

long l2= 1234567890123;

This compiles just fine and works correctly—when long takes 64 bits as on most 64-bit
platforms. When long is only 32 bits long (we can emulate this by compiling with flags like
-m32), the value above is too long. However, the program will still compile (maybe with a
warning) and runs with another value, e.g., where the leading bits are cut off.

C++11 introduces an initialization that ascertains that no data is lost or in other words
that the values are not Narrowed. This is achieved with the Uniform Initialization or Braced
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Initialization that we only touch upon here and expand in Section 2.3.4. Values in braces
cannot be narrowed:

long l= {1234567890123};

Now, the compiler will check if the variable l can hold the value on the target architecture.
The compiler’s narrowing protection allows us to verify that values do not lose precision

in initializations. Whereas an ordinary initialization of an int by a floating-point number is
allowed due to implicit conversion:

int i1= 3.14; // compiles despite narrowing (our risk)
int i1n= {3.14}; // Narrowing ERROR: fractional part lost

The new initialization form in the second line forbids this because it cuts off the fractional
part of the f loating-point number. Likewise, assigning negative values to unsigned variables
or constants is tolerated with traditional initialization but denounced in the new form:

unsigned u2= -3; // Compiles despite narrowing (our risk)
unsigned u2n= {-3}; // Narrowing ERROR: no negative values

In the previous examples, we used literal values in the initializations and the compiler
checks whether a specific value is representable with that type:

float f1= {3.14}; // okay

Well, the value 3.14 cannot be represented with absolute accuracy in any binary f loating-point
format, but the compiler can set f1 to the value closest to 3.14. When a float is initialized
from a double variable or constant (not a literal), we have to consider all possible double

values and whether they are all convertible to float in a loss-free manner.

double d;
...
float f2= {d}; // narrowing ERROR

Note that the narrowing can be mutual between two types:

unsigned u3= {3};
int i2= {2};

unsigned u4= {i2}; // narrowing ERROR: no negative values
int i3= {u3}; // narrowing ERROR: not all large values

The types signed int and unsigned int have the same size, but not all values of each type
are representable in the other.

1.2.4 Scopes

Scopes determine the lifetime and visibility of (non-static) variables and constants and
contribute to establishing a structure in our programs.
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1.2.4.1 Global Definition

Every variable that we intend to use in a program must have been declared with its type
specifier at an earlier point in the code. A variable can be located in either the global or
local scope. A global variable is declared outside all functions. After their declaration, global
variables can be referred to from anywhere in the code, even inside functions. This sounds
very handy at first because it makes the variables easily available, but when your software
grows, it becomes more difficult and painful to keep track of the global variables’ modifica-
tions. At some point, every code change bears the potential of triggering an avalanche of
errors.

Advice

Do not use global variables.

If you do use them, sooner or later you will regret it. Believe us. Global constants like

const double pi= 3.14159265358979323846264338327950288419716939;

are fine because they cannot cause side effects.

1.2.4.2 Local Definition

A local variable is declared within the body of a function. Its visibility/availability is limited
to the { }-enclosed block of its declaration. More precisely, the scope of a variable starts
with its declaration and ends with the closing brace of the declaration block.

If we define π in the function main:

int main ()
{

const double pi= 3.14159265358979323846264338327950288419716939;
std::cout � "pi is " � pi � ".\n";

}

the variable π only exists in the main function. We can define blocks within functions and
within other blocks:

int main ()
{

{
const double pi= 3.14159265358979323846264338327950288419716939;

}
std::cout � "pi is " � pi � ".\n"; // ERROR: pi is out of scope

}

In this example, the definition of π is limited to the block within the function, and an output
in the remainder of the function is therefore an error:

�pi� is not defined in this scope.

because π is Out of Scope.
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1.2.4.3 Hiding

When a variable with the same name exists in nested scopes, then only one variable is visible.
The variable in the inner scope hides the homonymous variables in the outer scopes. For
instance:

int main ()
{

int a= 5; // define a#1
{

a= 3; // assign a#1, a#2 is not defined yet
int a; // define a#2
a= 8; // assign a#2, a#1 is hidden
{

a= 7; // assign a#2
}

} // end of a#2's scope
a= 11; // assign to a#1 (a#2 out of scope)

return 0;
}

Due to hiding, we must distinguish the lifetime and the visibility of variables. For instance,
a#1 lives from its declaration until the end of the main function. However, it is only visible
from its declaration until the declaration of a#2 and again after closing the block containing
a#2. In fact, the visibility is the lifetime minus the time when it is hidden.

Defining the same variable name twice in one scope is an error.
The advantage of scopes is that we do not need to worry about whether a variable is

already defined somewhere outside the scope. It is just hidden but does not create a conflict.3

Unfortunately, the hiding makes the homonymous variables in the outer scope inaccessible.
We can cope with this to some extent with clever renaming. A better solution, however, to
manage nesting and accessibility is namespaces; see Section 3.2.1.

static variables are the exception that confirms the rule: they live till the end of the
execution but are only visible in the scope. We are afraid that their detailed introduction is
more distracting than helpful at this stage and have postponed the discussion to Section A.2.2.

1.3 Operators

C++ is rich in built-in operators. There are different kinds of operators:

• Computational:

– Arithmetic: ++, +, *, %, . . .

3. As opposed to macros, an obsolete and reckless legacy feature from C that should be avoided at any
price because it undermines all structure and reliability of the language.
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– Boolean:

∗ Comparison: <=, !=, . . .
∗ Logic: && and ||

– Bitwise: ∼, � and �, &, ˆ, and |

• Assignment: =, +=, . . .

• Program flow: function call, ?:, and ,

• Memory handling: new and delete

• Access: ., ->, [ ], *, . . .

• Type handling: dynamic_cast, typeid, sizeof, alignof . . .

• Error handling: throw

This section will give an overview of the operators. Some operators are better described
elsewhere in the context of the appropriate language feature; e.g., scope resolution is best
explained together with namespaces. Most operators can be overloaded for user types; i.e., we
can decide which calculations are performed when one or multiple arguments in an expression
are our types.

At the end of this section (Table 1–8), you will find a concise table of operator precedence.
It might be a good idea to print or copy this page and pin it next to your monitor; many
people do so and almost nobody knows the entire priority list by heart. Neither should you
hesitate to put parentheses around sub-expressions if you are uncertain about the priorities
or if you believe it will be more understandable for other programmers working with your
sources. If you ask your compiler to be pedantic, it often takes this job too seriously and
prompts you to add surplus parentheses assuming you are overwhelmed by the precedence
rules. In Section C.2, we will give you a complete list of all operators with brief descriptions
and references.

1.3.1 Arithmetic Operators

Table 1–2 lists the arithmetic operators available in C++. We have sorted them by their
priorities, but let us look at them one by one.

The first kinds of operations are increment and decrement. These operations can be used
to increase or decrease a number by 1. As they change the value of the number, they only
make sense for variables and not for temporary results, for instance:

int i= 3;
i++; // i is now 4
const int j= 5;
j++; // error , j is constant
(3 + 5)++; // error , 3 + 5 is only a temporary

In short, the increment and decrement operations need something that is modifiable and
addressable. The technical term for an addressable data item is Lvalue (see Definition C–1
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Table 1–2: Arithmetic Operators

Operation Expression

Post-increment x++
Post-decrement x--

Pre-increment ++x
Pre-decrement --x
Unary plus +x
Unary minus -x

Multiplication x * y
Division x / y
Modulo x \% y

Addition x + y
Subtraction x - y

in Appendix C). In our code snippet above, this is true for i only. In contrast to it, j is
constant and 3 + 5 is not addressable.

Both notations—prefix and postfix—have the effect on a variable that they add or subtract 1
from it. The value of an increment and decrement expression is different for prefix and postfix
operators: the prefix operators return the modified value and postfix the old one, e.g.:

int i= 3, j= 3;
int k= ++i + 4; // i is 4, k is 8
int l= j++ + 4; // j is 4, l is 7

At the end, both i and j are 4. However in the calculation of l, the old value of j was used
while the first addition used the already incremented value of i.

In general, it is better to refrain from using increment and decrement in mathematical
expressions and to replace it with j+1 and the like or to perform the in/decrement separately. It
is easier for human readers to understand and for the compiler to optimize when mathematical
expressions have no Side Effects. We will see quite soon why (§1.3.12).

The unary minus negates the value of a number:

int i= 3;
int j= -i; // j is -3

The unary plus has no arithmetic effect on standard types. For user types, we can define the
behavior of both unary plus and minus. As shown in Table 1–2, these unary operators have
the same priority as pre-increment and pre-decrement.

The operations * and / are naturally multiplication and division, and both are defined
on all numeric types. When both arguments in a division are integers, then the fractional
part of the result is truncated (rounding toward zero). The operator % yields the remainder
of the integer division. Thus, both arguments should have an integral type.

Last but not least, the operators + and - between two variables or expressions symbolize
addition and subtraction.

The semantic details of the operations—how results are rounded or how overflow is
handled—are not specified in the language. For performance reasons, C++ leaves this typically
to the underlying hardware.
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In general, unary operators have higher priority than binary. On the rare occasions that
both postfix and prefix unary notations have been applied, prefix notations are prioritized
over postfix notations.

Among the binary operators, we have the same behavior that we know from math:
multiplication and division precede addition and subtraction and the operations are left
associative, i.e.:

x - y + z

is always interpreted as

(x - y) + z

Something really important to remember: the order of evaluation of the arguments is not
defined. For instance:

int i= 3, j= 7, k;
k= f(++i) + g(++i) + j;

In this example, associativity guarantees that the first addition is performed before the
second. But whether the expression f(++i) or g(++i) is computed first depends on the compiler
implementation. Thus, k might be either f(4) + g(5) + 7 or f(5) + g(4) + 7. Furthermore,
we cannot assume that the result is the same on a different platform. In general, it is
dangerous to modify values within expressions. It works under some conditions, but we
always have to test it and pay enormous attention to it. Altogether, our time is better spent
by typing some extra letters and doing the modifications separately. More about this topic in
Section 1.3.12.

⇒ c++03/num_1.cpp

With these operators, we can write our first (complete) numeric program:

#include <iostream >

int main ()
{

const float r1= 3.5, r2 = 7.3, pi = 3.14159;

float area1 = pi * r1*r1;
std::cout � "A circle of radius " � r1 � " has area "

� area1 � "." � std::endl;

std::cout � "The average of " � r1 � " and " � r2 � " is "
� (r1 + r2) / 2 � "." � std::endl;

}

When the arguments of a binary operation have different types, one or both argu-
ments are automatically converted (coerced) to a common type according to the rules in
Section C.3.

The conversion may lead to a loss of precision. Floating-point numbers are preferred over
integer numbers, and evidently the conversion of a 64-bit long to a 32-bit float yields an
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accuracy loss; even a 32-bit int cannot always be represented correctly as a 32-bit float since
some bits are needed for the exponent. There are also cases where the target variable could
hold the correct result but the accuracy was already lost in the intermediate calculations. To
illustrate this conversion behavior, let us look at the following example:

long l= 1234567890123;
long l2= l + 1.0f - 1.0; // imprecise
long l3= l + (1.0f - 1.0); // correct

This leads on the author’s platform to

l2 = 1234567954431
l3 = 1234567890123

In the case of l2 we lose accuracy due to the intermediate conversions, whereas l3 was
computed correctly. This is admittedly an artificial example, but you should be aware of the
risk of imprecise intermediate results.

The issue of inaccuracy will fortunately not bother us in the next section.

1.3.2 Boolean Operators

Boolean operators are logical and relational operators. Both return bool values as the name
suggests. These operators and their meaning are listed in Table 1–3, grouped by precedence.

Binary relational and logical operators are preceded by all arithmetic operators. This
means that an expression like 4 >= 1 + 7 is evaluated as if it were written 4 >= (1 + 7).
Conversely, the unary operator ! for logic negation is prioritized over all binary operators.

In old (or old-fashioned) code, you might see logical operations performed on int values.
Please refrain from this: it is less readable and subject to unexpected behavior.

Advice

Always use bool for logical expressions.

Table 1–3: Boolean Operators

Operation Expression

Not !b

Greater than x > y
Greater than or equal to x >= y
Less than x < y
Less than or equal to x < y

Equal to x == y
Not equal to x != y

Logical AND b && c

Logical OR b || c
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Please note that comparisons cannot be chained like this:

bool in_bound= min <= x <= y <= max; // Error

Instead we need the more verbose logical reduction:

bool in_bound= min <= x && x <= y && y <= max;

In the following section, we will see quite similar operators.

1.3.3 Bitwise Operators

These operators allow us to test or manipulate single bits of integral types. They are
important for system programming but less so for modern application development.
Table 1–4 lists all operators by precedence.

The operation x � y shifts the bits of x to the left by y positions. Conversely, x � y

moves x’s bits y times to the right. In most cases, 0s are moved in except for negative signed

values in a right shift where it is implementation-defined. The bitwise AND can be used to
test a specific bit of a value. Bitwise inclusive OR can set a bit and exclusive OR flip it.
These operations are more important in system programming than scientific applications.
As algorithmic entertainment, we will use them in §3.6.1.

1.3.4 Assignment

The value of an object (modifiable lvalue) can be set by an assignment:

object= expr;

When the types do not match, expr is converted to the type of object if possible. The
assignment is right-associative so that a value can be successively assigned to multiple objects
in one expression:

o3= o2= o1= expr;

Speaking of assignments, the author will now explain why he left-justifies the symbol. Most
binary operators are symmetric in the sense that both arguments are values. In contrast,
assignments have a modifiable variable on the left-hand side. While other languages use
asymmetric symbols (e.g., := in Pascal), the author uses an asymmetric spacing in C++.

Table 1–4: Bitwise Operators

Operation Expression

One’s complement ∼x

Left shift x � y
Right shift x � y

Bitwise AND x & y

Bitwise exclusive OR x ^ y

Bitwise inclusive OR x | y
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The compound assignment operators apply an arithmetic or bitwise operation to the
object on the left side with the argument on the right side; for instance, the following two
operations are equivalent:

a+= b; // corresponds to
a= a + b;

All assignment operators have a lower precedence than every arithmetic or bitwise operation
so the right-hand side expression is always evaluated before the compound assignment:

a*= b + c; // corresponds to
a= a * (b + c);

The assignment operators are listed in Table 1–5. They are all right-associative and of the
same priority.

1.3.5 Program Flow

There are three operators to control the program flow. First, a function call in C++ is handled
like an operator. For a detailed description of functions and their calls, see Section 1.5.

The conditional operator c ? x : y evaluates the condition c, and when it is true the
expression has the value of x, otherwise y. It can be used as an alternative to branches
with if, especially in places where only an expression is allowed and not a statement; see
Section 1.4.3.1.

A very special operator in C++ is the Comma Operator that provides a sequential
evaluation. The meaning is simply evaluating first the sub-expression to the left of the
comma and then that to the right of it. The value of the whole expression is that of the right
sub-expression:

3 + 4, 7 * 9.3

The result of the expression is 65.1 and the computation of the first sub-expression is
entirely irrelevant. The sub-expressions can contain the comma operator as well so that
arbitrarily long sequences can be defined. With the help of the comma operator, one can

Table 1–5: Assignment Operators

Operation Expression

Simple assignment x= y
Multiply and assign x*= y
Divide and assign x/= y
Modulo and assign x%= y
Add and assign x+= y
Subtract and assign x-= y
Shift left and assign x�= y
Shift right and assign x�= y
AND and assign x&= y
Inclusive OR and assign x|= y
Exclusive OR and assign x^= y
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evaluate multiple expressions in program locations where only one expression is allowed.
A typical example is the increment of multiple indices in a for-loop (§1.4.4.2):

++i, ++j

When used as a function argument, the comma expression needs surrounding parentheses;
otherwise the comma is interpreted as separation of function arguments.

1.3.6 Memory Handling

The operators new and delete allocate and deallocate memory respectively; see Section 1.8.2.

1.3.7 Access Operators

C++ provides several operators for accessing sub-structures, for referring—i.e., taking the
address of a variable—and dereferencing—i.e., accessing the memory referred to by an
address. Discussing these operators before talking about pointers and classes makes no sense.
We thus postpone their description to the sections given in Table 1–6.

1.3.8 Type Handling

The operators for dealing with types will be presented in Chapter 5 when we will write
compile-time programs that work on types. The available operators are listed in Table 1–7.

Table 1–6: Access Operators

Operation Expression Reference

Member selection x.m §2.2.3
Dereferred member selection p->m §2.2.3
Subscripting x[i] §1.8.1

Dereference *x §1.8.2

Member dereference x.*q §2.2.3
Dereferred member dereference p->*q §2.2.3

Table 1–7: Type-Handling Operators

Operation Expression

Run-time type identification typeid(x)
Identification of a type typeid(t)

Size of object sizeof(x) or sizeof x
Size of type sizeof(t)
Number of arguments sizeof...(p)
Number of type arguments sizeof...(P)
Alignment alignof(x)
Alignment of type alignof(t)
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Note that the sizeof operator when used on an expression is the only one that is
applicable without parentheses. alignof is introduced in C++11; all others exist since 98
(at least).

1.3.9 Error Handling

The throw operator is used to indicate an exception in the execution (e.g., insufficient
memory); see Section 1.6.2.

1.3.10 Overloading

A very powerful aspect of C++ is that the programmer can define operators for new types. This
will be explained in Section 2.7. Operators of built-in types cannot be changed. However, we
can define how built-in types interact with new types; i.e., we can overload mixed operations
like double times matrix.

Most operators can be overloaded. Exceptions are:

:: Scope resolution;
. Member selection (may be added in C++17);
.* Member selection through pointer;
?: Conditional;
sizeof Size of a type or object;
sizeof... Number of arguments;
alignof Memory alignment of a type or object; and
typeid Type identifier.

The operator overloading in C++ gives us a lot of freedom and we have to use this freedom
wisely. We come back to this topic in the next chapter when we actually overload operators
(wait till Section 2.7).

1.3.11 Operator Precedence

Table 1–8 gives a concise overview of the operator priorities. For compactness, we combined
notations for types and expressions (e.g., typeid) and fused the different notations for new

and delete. The symbol @= represents all computational assignments like +=, -=, and so on.
A more detailed summary of operators with semantics is given in Appendix C, Table C–1.

1.3.12 Avoid Side Effects!

“Insanity: doing the same thing over and over again and expecting different results.”

—Unknown4

In applications with side effects it is not insane to expect a different result for the same input.
To the contrary, it is very difficult to predict the behavior of a program whose components

4. Misattributed to Albert Einstein, Benjamin Franklin, and Mark Twain. It is cited in Sudden Death by
Rita Mae Brown but the original source seems to be unknown. Maybe the quote itself is beset with some
insanity.
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Table 1–8: Operator Precedence

Operator Precedence

class::member nspace::member ::name ::qualified-name

object.member pointer->member expr[expr] expr(expr list)
type(expr list) lvalue++ lvalue-- typeid(type/expr)
*_cast<type>(expr)

sizeof expr sizeof(type) sizeof...(pack) alignof(type/expr)
++lvalue --lvalue ∼expr !expr
-expr +expr &lvalue *expr
new . . . type. . . delete []opt pointer (type) expr

object.*member ptr pointer->*member ptr

expr * expr expr / expr expr % expr

expr + expr expr - expr

expr � expr expr� expr

expr < expr expr <= expr expr > expr expr >= expr

expr == expr expr != expr

expr & expr

expr ^ expr

expr | expr

expr && expr

expr || expr

expr ? expr: expr

lvalue = expr lvalue @= expr

throw expr

expr , expr

interfere massively. Moreover, it is probably better to have a deterministic program with
the wrong result than one that occasionally yields the right result since the latter is usually
much harder to fix.

In the C standard library, there is a function to copy a string (strcpy). The function
takes pointers to the first char of the source and the target and copies the subsequent letters
until it finds a zero. This can be implemented with one single loop that even has an empty
body and performs the copy and the increments as side effects of the continuation test:

while (*tgt ++= *src ++) ;

Looks scary? Well, it is somehow. However, this is absolutely legal C++ code, although some
compilers might grumble in pedantic mode. It is a good mental exercise to spend some time
thinking about operator priorities, types of sub-expressions, and evaluation order.

Let us think about something simpler: we assign the value i to the i-th entry of an array
and increment the value i for the next iteration:

v[i]= i++;

Looks like no problem. But it is: the behavior of this expression is undefined. Why? The
post-increment of i guarantees that we assign the old value of i and increment i afterward.
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However, this increment can still be performed before the expression v[i] is evaluated so
that we possibly assign i to v[i+1].

The last example should give you an impression that side effects are not always evident
at first glance. Some quite tricky stuff might work but much simpler things might not. Even
worse, something might work for a while until somebody compiles it on a different compiler
or the new release of your compiler changes some implementation details.

The first snippet is an example of excellent programming skills and evidence that the op-
erator precedence makes sense—no parentheses were needed. Nonetheless, such programming
style is not appropriate for modern C++. The eagerness to shorten code as much as possible
dates back to the times of early C when typing was more demanding, with typewriters
that were more mechanical than electrical, and card punchers, all without a monitor. With
today’s technology, it should not be an issue for the digital natives to type some extra
letters.

Another unfavorable aspect of the terse copy implementation is the mingling of different
concerns: testing, modification, and traversal. An important concept in software design is
Separation of Concerns. It contributes to increasing flexibility and decreasing complexity. In
this case, we want to decrease the complexity of the mental processes needed to understand
the implementation. Applying the principle to the infamous copy one-liner could yield

for (; *src; tgt++, src ++)
*tgt= *src;

*tgt= *src; // copy the final 0

Now, we can clearly distinguish the three concerns:

• Testing: *src

• Modification: *tgt= *src;

• Traversal: tgt++, src++

It is also more apparent that the incrementing is performed on the pointers and the testing
and assignment on their referred content. The implementation is not as compact as before,
but it is much easier to check the correctness. It is also advisable to make the non-zero test
more obvious (*src != 0).

There is a class of programming languages that are called Functional Languages. Values
in these languages cannot be changed once they are set. C++ is obviously not that way.
But we do ourselves a big favor when we program as much as is reasonable in a functional
style. For instance, when we write an assignment, the only thing that should change is the
variable to the left of the assignment symbol. To this end, we have to replace mutating with
a constant expression: for instance, ++i with i+1. A right-hand side expression without side
effects helps us to understand the program behavior and makes it easier for the compiler
to optimize the code. As a rule of thumb: more comprehensible programs have a better
potential for optimization.
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1.4 Expressions and Statements

C++ distinguishes between expressions and statements. Very casually, we could say that
every expression becomes a statement if a semicolon is appended. However, we would like to
discuss this topic a bit more.

1.4.1 Expressions

Let us build this recursively from the bottom up. Any variable name (x, y, z, . . . ), constant,
or literal is an expression. One or more expressions combined by an operator constitute an
expression, e.g., x + y or x * y + z. In several languages, such as Pascal, the assignment is
a statement. In C++, it is an expression, e.g., x= y + z. As a consequence, it can be used
within another assignment: x2= x= y + z. Assignments are evaluated from right to left. Input
and output operations such as

std::cout � "x is " � x � "\n"

are also expressions.
A function call with expressions as arguments is an expression, e.g., abs(x) or abs(x * y + z).

Therefore, function calls can be nested: pow(abs(x), y). Note that nesting would not be
possible if function calls were statements.

Since assignment is an expression, it can be used as an argument of a function: abs(x= y).
Or I/O operations such as those above, e.g.:

print(std::cout � "x is " � x � "\n", "I am such a nerd!");

Needless to say this is not particularly readable and it would cause more confusion than
doing something useful. An expression surrounded by parentheses is an expression as well,
e.g., (x + y). As this grouping by parentheses precedes all operators, we can change the order
of evaluation to suit our needs: x * (y + z) computes the addition first.

1.4.2 Statements

Any of the expressions above followed by a semicolon is a statement, e.g.:

x= y + z;
y= f(x + z) * 3.5;

A statement like

y + z;

is allowed despite being useless (most likely). During program execution, the sum of y and z is
computed and then thrown away. Recent compilers optimize out such useless computations.
However, it is not guaranteed that this statement can always be omitted. If y or z is an
object of a user type, then the addition is also user-defined and might change y or z or
something else. This is obviously bad programming style (hidden side effect) but legitimate
in C++.

A single semicolon is an empty statement, and we can thus put as many semicolons
after an expression as we want. Some statements do not end with a semicolon, e.g., function
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definitions. If a semicolon is appended to such a statement it is not an error but just an
extra empty statement. Nonetheless some compilers print a warning in pedantic mode. Any
sequence of statements surrounded by curly braces is a statement—called a Compound
Statement.

The variable and constant declarations we have seen before are also statements. As the
initial value of a variable or constant, we can use any expression (except another assignment or
comma operator). Other statements—to be discussed later—are function and class definitions,
as well as control statements that we will introduce in the next section.

With the exception of the conditional operator, program flow is controlled by statements.
Here we will distinguish between branches and loops.

1.4.3 Branching

In this section, we will present the different features that allow us to select a branch in the
program execution.

1.4.3.1 if-Statement

This is the simplest form of control and its meaning is intuitively clear, for instance in

if (weight > 100.0)
cout � "This is quite heavy .\n";

else
cout � "I can carry this.\n";

Often, the else branch is not needed and can be omitted. Say we have some value in variable
x and compute something on its magnitude:

if (x < 0.0)
x= -x;

// Now we know that x >= 0.0 (post-condition)

The branches of the if-statement are scopes, rendering the following statements erroneous:

if (x < 0.0)
int absx= -x;

else
int absx= x;

cout � "|x| is " � absx � "\n"; // absx already out of scope

Above, we introduced two new variables, both named absx. They are not in conflict because
they reside in different scopes. Neither of them exists after the if-statement, and accessing
absx in the last line is an error. In fact, variables declared in a branch can only be used
within this branch.

Each branch of if consists of one single statement. To perform multiple operations, we
can use braces as in Cardano’s method:

double D= q*q/4.0 + p*p*p/27.0;
if (D > 0.0) {

double z1= ...;
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complex <double > z2= ..., z3= ...;
...

} else if (D == 0.0) {
double z1= ..., z2= ..., z3= ...;
...

} else { // D < 0.0
complex <double > z1= ..., z2= ..., z3= ...;
...

}

In the beginning, it is helpful to always write the braces. Many style guides also enforce curly
braces on single statements whereas the author prefers them without braces. Irrespective of
this, it is highly advisable to indent the branches for better readability.

if-statements can be nested whereas each else is associated with the last open if. If you
are interested in examples, have a look at Section A.2.3. Finally, we give you the following:

Advice

Although spaces do not affect the compilation in C++, the indentation should reflect the structure of

the program. Editors that understand C++ (like Visual Studio’s IDE or emacs in C++ mode) and indent

automatically are a great help with structured programming. Whenever a line is not indented as expected,

something is most likely not nested as intended.

1.4.3.2 Conditional Expression

Although this section describes statements, we like to talk about the conditional expression
here because of its proximity to the if-statement. The result of

condition ? result_for_true : result_for_false

is the second sub-expression (i.e., result_for_true) when condition evaluates to true and
result_for_false otherwise. For instance,

min= x <= y ? x : y;

corresponds to the following if-statement:

if (x <= y)
min= x;

else
min= y;

For a beginner, the second version might be more readable while experienced programmers
often prefer the first form for its brevity.

?: is an expression and can therefore be used to initialize variables:

int x= f(a),
y= x < 0 ? -x : 2 * x;
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Calling functions with several selected arguments is easy with the operator:

f(a, (x < 0 ? b : c), (y < 0 ? d : e));

but quite clumsy with an if-statement. If you do not believe us, try it.
In most cases it is not important whether an if or a conditional expression is used. So

use what feels most convenient to you.

Anecdote: An example where the choice between if and ?: makes a difference is the
replace_copy operation in the Standard Template Library (STL), §4.1. It used to be im-
plemented with the conditional operator whereas if would be more general. This “bug”
remained undiscovered for approximately 10 years and was only detected by an automatic
analysis in Jeremy Siek’s Ph.D. thesis [38].

1.4.3.3 switch Statement

A switch is like a special kind of if. It provides a concise notation when different computations
for different cases of an integral value are performed:

switch(op_code) {
case 0: z= x + y; break;
case 1: z= x - y; cout � "compute diff\n"; break;
case 2:
case 3: z= x * y; break;
default: z= x / y;

}

A somewhat surprising behavior is that the code of the following cases is also performed
unless we terminate it with break. Thus, the same operations are performed in our example
for cases 2 and 3. An advanced use of switch is found in Appendix A.2.4.

1.4.4 Loops

1.4.4.1 while- and do-while-Loops

As the name suggests, a while-loop is repeated as long as a certain condition holds. Let us
implement as an example the Collatz series that is defined by

Algorithm 1–1: Collatz series
Input: x0

while xi �= 1 do1

xi =
{

3 xi−1 + 1 if xi−1 is odd
xi−1/2 if xi−1 is even2

As long as we do not worry about overflow, this is easily implemented with a while-loop:

int x= 19;
while (x != 1) {

cout � x � '\n';
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if (x % 2 == 1) // odd
x= 3 * x + 1;

else // even
x= x / 2;

}

Like the if-statement, the loop can be written without braces when there is only one
statement.

C++ also offers a do-while-loop. In this case, the condition for continuation is tested at
the end:

double eps= 0.001;
do {

cout � "eps= " � eps � '\n';
eps/= 2.0;

} while (eps > 0.0001);

The loop is performed at least one time—even with an extremely small value for eps in our
example.

1.4.4.2 for-Loop

The most common loop in C++ is the for-loop. As a simple example, we add two vectors5

and print the result afterward:

double v[3], w[]= {2., 4., 6.}, x[]= {6., 5., 4};
for (int i= 0; i < 3; ++i)

v[i]= w[i] + x[i];

for (int i= 0; i < 3; ++i)
cout � "v[" � i � "]= " � v[i] � '\n';

The loop head consists of three components:

• The initialization;

• A Continuation criterion; and

• A step operation.

The example above is a typical for-loop. In the initialization, we typically declare a new
variable and initialize it with 0—this is the start index of most indexed data structures.
The condition usually tests whether the loop index is smaller than a certain size and the
last operation typically increments the loop index. In the example, we pre-incremented the
loop variable i. For intrinsic types like int, it does not matter whether we write ++i or
i++. However, it does for user types where the post-increment causes an unnecessary copy;
cf. §3.3.2.5. To be consistent in this book, we always use a pre-increment for loop indices.

It is a very popular beginners’ mistake to write conditions like i <= size(..). Since
indices are zero-based in C++, the index i == size(..) is already out of range. People with

5. Later we will introduce true vector classes. For the moment we take simple arrays.
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experience in Fortran or MATLAB need some time to get used to zero-based indexing.
One-based indexing seems more natural to many and is also used in mathematical literature.
However, calculations on indices and addresses are almost always simpler with zero-based
indexing.

As another example, we like to compute the Taylor series of the exponential function:

ex =
∞∑

i=0

xn

n!

up to the tenth term:

double x= 2.0, xn= 1.0, exp_x= 1.0;
unsigned long fac= 1;
for (unsigned long i= 1; i <= 10; ++i) {

xn*= x;
fac*= i;
exp_x+= xn / fac;
cout � "eˆx is " � exp_x � '\n';

}

Here it was simpler to compute term 0 separately and start the loop with term 1. We also
used less-equal to assure that the term x10/10! is considered.

The for-loop in C++ is very flexible. The initialization part can be any expression, a
variable declaration, or empty. It is possible to introduce multiple new variables of the same
type. This can be used to avoid repeating the same operation in the condition, e.g.:

for (int i= xyz.begin(), end= xyz.end(); i < end; ++i) ...

Variables declared in the initialization are only visible within the loop and hide variables of
the same names from outside the loop.

The condition can be any expression that is convertible to a bool. An empty condition is
always true and the loop is repeated infinitely. It can still be terminated inside the body
as we will discuss in the next section. We already mentioned that a loop index is typically
incremented in the third sub-expression of for. In principle, we can modify it within the
loop body as well. However, programs are much clearer if it is done in the loop head. On the
other hand, there is no limitation that only one variable is increased by 1. We can modify
as many variables as wanted using the comma operator (§1.3.5) and by any modification
desired such as

for (int i= 0, j= 0, p= 1; ...; ++i, j+= 4, p*= 2) ...

This is of course more complex than having just one loop index but still more readable than
declaring/modifying indices before the loop or inside the loop body.

1.4.4.3 Range-Based for-LoopC++11

A very compact notation is provided by the new feature called Range-Based for-Loop. We
will tell you more about its background once we come to the iterator concept (§4.1.2).
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For now, we will consider it as a concise form to iterate over all entries of an array or
other containers:

int primes []= {2, 3, 5, 7, 11, 13, 17, 19};
for (int i : primes)

std::cout � i � " ";

This will print out the primes from the array separated by spaces.

1.4.4.4 Loop Control

There are two statements to deviate from the regular loop evaluation:

• break and

• continue.

A break terminates the loop entirely, and continue ends only the current iteration and
continues the loop with the next iteration, for instance:

for (...; ...; ...) {
...
if (dx == 0.0) continue;

x+= dx;
...
if (r < eps) break;
...

}

In the example above we assumed that the remainder of the iteration is not needed when
dx == 0.0. In some iterative computations it might be clear in the middle of an iteration
(here when r < eps) that work is already done.

1.4.5 goto

All branches and loops are internally realized by jumps. C++ provides explicit jumps called
goto. However:

Advice

Do not use goto! Never! Ever!

The applicability of goto is more restrictive in C++ than in C (e.g., we cannot jump over
initializations); it still has the power to ruin the structure of our program.
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Writing software without goto is called Structured Programming. However, the term is
rarely used nowadays as it is taken for granted in high-quality software.

1.5 Functions

Functions are important building blocks of C++ programs. The first example we have seen
is the main function in the hello-world program. We will say a little more about main in
Section 1.5.5.

The general form of a C++ function is

[inline] return_type function_name (argument_list)
{

body of the function
}

In this section, we discuss these components in more detail.

1.5.1 Arguments

C++ distinguishes two forms of passing arguments: by value and by reference.

1.5.1.1 Call by Value

When we pass an argument to a function, it creates a copy by default. For instance, the
following function increments x but not visibly to the outside world:

void increment(int x)
{

x++;
}

int main()
{

int i= 4;
increment(i); // Does not increment i
cout � "i is " � i � '\n';

}

The output is 4. The operation x++ within the increment function only increments a local
copy of i but not i itself. This kind of argument transfer is referred to as Call-by-Value or
Pass-by-Value.

1.5.1.2 Call by Reference

To modify function parameters, we have to Pass the argument by Reference:

void increment(int& x)
{

x++;
}
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Now, the variable itself is incremented and the output will be 5 as expected. We will discuss
references in more detail in §1.8.4.

Temporary variables—like the result of an operation—cannot be passed by reference:

increment(i + 9); // Error: temporary not referable

since we could not compute (i + 9)++ anyway. In order to call such a function with some
temporary value, we need to store it first in a variable and pass this variable to the function.

Larger data structures like vectors and matrices are almost always passed by reference to
avoid expensive copy operations:

double two_norm(vector& v) { ... }

An operation like a norm should not change its argument. But passing the vector by reference
bears the risk of accidentally overwriting it. To make sure that our vector is not changed
(and not copied either), we pass it as a constant reference:

double two_norm(const vector& v) { ... }

If we tried to change v in this function the compiler would emit an error.
Both call-by-value and constant references ascertain that the argument is not altered but

by different means:

• Arguments that are passed by value can be changed in the function since the function
works with a copy.6

• With const references we work directly on the passed argument, but all operations that
might change the argument are forbidden. In particular, const-reference arguments
cannot appear on the left-hand side (LHS) of an assignment or be passed as non-const
references to other functions (in fact, the LHS of an assignment is also a non-const
reference).

In contrast to mutable7 references, constant ones allow for passing temporaries:

alpha= two_norm(v + w);

This is admittedly not entirely consequential on the language design side, but it makes the
life of programmers much easier.

1.5.1.3 Defaults

If an argument usually has the same value, we can declare it with a default value. Say we
implement a function that computes the n-th root and mostly the square root, then we can
write

double root(double x, int degree= 2) { ... }

6. Assuming the argument is properly copied. User types with broken copy implementations can undermine
the integrity of the passed-in data.

7. Note that we use the word mutable for linguistic reasons as a synonym for non-const in this book. In
C++, we also have the keyword mutable (§2.6.3) which we do not use very often.
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This function can be called with one or two arguments:

x= root (3.5, 3);
y= root (7.0); // like root (7.0, 2)

We can declare multiple defaults but only at the end of the argument list. In other words,
after an argument with a default value we cannot have one without.

Default values are also helpful when extra parameters are added. Let us assume that we
have a function that draws circles:

draw_circle(int x, int y, float radius );

These circles are all black. Later, we add a color:

draw_circle(int x, int y, float radius , color c= black);

Thanks to the default argument, we do not need to refactor our application since the calls of
draw_circle with three arguments still work.

1.5.2 Returning Results

In the examples before, we only returned double or int. These are well-behaved return types.
Now we will look at the extremes: large or no data.

1.5.2.1 Returning Large Amounts of Data

Functions that compute new values of large data structures are more difficult. For the
details, we will put you off till later and only mention the options here. The good news is
that compilers are smart enough to elide the copy of the return value in many cases; see
Section 2.3.5.3. In addition, the move semantics (Section 2.3.5) where data of temporaries is
stolen avoids copies when the before-mentioned elision does not apply. Advanced libraries
avoid returning large data structures altogether with a technique called expression templates
and delay the computation until it is known where to store the result (Section 5.3.2). In any
case, we must not return references to local function variables (Section 1.8.6).

1.5.2.2 Returning Nothing

Syntactically, each function must return something even if there is nothing to return. This
dilemma is solved by the void type named void. For instance, a function that just prints x

does not need to return something:

void print_x(int x)
{

std::cout � "The value x is " � x � '\n';
}

void is not a real type but more of a placeholder that enables us to omit returning a value.
We cannot define void objects:

void nothing; // Error: no void objects
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A void function can be terminated earlier:

void heavy_compute(const vector& x, double eps , vector& y)
{

for (...) {
...
if (two_norm(y) < eps)

return;
}

}

with a no-argument return.

1.5.3 Inlining

Calling a function is relatively expensive: registers must be stored, arguments copied on
the stack, and so on. To avoid this overhead, the compiler can inline function calls. In this
case, the function call is substituted with the operations contained in the function. The
programmer can ask the compiler to do so with the appropriate keyword:

inline double square(double x) { return x*x; }

However, the compiler is not obliged to inline. Conversely, it can inline functions without
the keyword if this seems promising for performance. The inline declaration still has its use:
for including a function in multiple compile units, which we will discuss in Section 7.2.3.2.

1.5.4 Overloading

In C++, functions can share the same name as long as their parameter declarations are
sufficiently different. This is called Function Overloading. Let us first look at an example:

#include <iostream >
#include <cmath >

int divide(int a, int b) {
return a / b ;

}

float divide(float a, float b) {
return std::floor( a / b ) ;

}

int main() {
int x= 5, y= 2;
float n= 5.0, m= 2.0;
std::cout � divide(x, y) � std::endl;
std::cout � divide(n, m) � std::endl;
std::cout � divide(x, m) � std::endl; // Error: ambiguous

}
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Here we defined the function divide twice: with int and double parameters. When we call
divide, the compiler performs an Overload Resolution:

1. Is there an overload that matches the argument type(s) exactly? Take it; otherwise:

2. Are there overloads that match after conversion? How many?

• 0: Error: No matching function found.

• 1: Take it.

• > 1: Error: ambiguous call.

How does this apply to our example? The calls divide(x, y) and divide(n, m) are exact
matches. For divide(x, m), no overload matches exactly and both by Implicit Conversion so
that it’s ambiguous.

The term “implicit conversion” requires some explanation. We have already seen that the
numeric types can be converted one to another. These are implicit conversions as demon-
strated in the example. When we later define our own types, we can implement a conversion
from another type to it or conversely from our new type to an existing one. These conversions
can be declared explicit and are then only applied when a conversion is explicitly requested
but not for matching function arguments.

⇒ c++11/overload_testing.cpp

More formally phrased, function overloads must differ in their Signature. The signature
consists in C++ of

• The function name;

• The number of arguments, called Arity; and

• The types of the arguments (in their respective order).

In contrast, overloads varying only in the return type or the argument names have the same
signature and are considered as (forbidden) redefinitions:

void f(int x) {}
void f(int y) {} // Redefinition: only argument name different
long f(int x) {} // Redefinition: only return type different

That functions with different names or arity are distinct goes without saying. The presence
of a reference symbol turns the argument type into another argument type (thus, f(int) and
f(int&) can coexist). The following three overloads have different signatures:

void f(int x) {}
void f(int& x) {}
void f(const int& x) {}
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This code snippet compiles. Problems will arise, however, when we call f:

int i= 3;
const int ci= 4;

f(3);
f(i);
f(ci);

All three function calls are ambiguous because the best matches are in every case the first
overload with the value argument and one of the reference-argument overloads respectively.
Mixing overloads of reference and value arguments almost always fails. Thus, when one
overload has a reference-qualified argument, then the corresponding argument of the other
overloads should be reference-qualified as well. We can achieve this in our toy example by
omitting the value-argument overload. Then f(3) and f(ci) will resolve to the overload with
the constant reference and f(i) to that with the mutable one.

1.5.5 main Function

The main function is not fundamentally different from any other function. There are two
signatures allowed in the standard:

int main()

or

int main(int argc , char* argv [])

The latter is equivalent to

int main(int argc , char** argv)

The parameter argv contains the list of arguments and argc its length. The first argument
(argc[0]) is on most systems the name of the called executable (which may be different from
the source code name). To play with the arguments, we can write a short program called
argc_argv_test:

int main (int argc, char* argv [])
{

for (int i= 0; i < argc; ++i)
cout � argv[i] � '\n';

return 0;
}

Calling this program with the following options

argc_argv_test first second third fourth

yields:

argc_argv_test
first
second
third
fourth
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As you can see, each space in the command splits the arguments. The main function returns
an integer as exit code which states whether the program finished correctly or not. Returning
0 (or the macro EXIT_SUCCESS from <cstdlib>) represents success and every other value a
failure. It is standard-compliant to omit the return statement in the main function. In this
case, return 0; is automatically inserted. Some extra details are found in Section A.2.5.

1.6 Error Handling

“An error doesn’t become a mistake until you refuse to correct it.”

—John F. Kennedy

The two principal ways to deal with unexpected behavior in C++ are assertions and exceptions.
The former is intended for detecting programming errors and the latter for exceptional
situations that prevent proper continuation of the program. To be honest, the distinction is
not always obvious.

1.6.1 Assertions

The macro assert from header <cassert> is inherited from C but still useful. It evaluates
an expression, and when the result is false then the program is terminated immediately.
It should be used to detect programming errors. Say we implement a cool algorithm computing
a square root of a non-negative real number. Then we know from mathematics that the
result is non-negative. Otherwise something is wrong in our calculation:

#include <cassert >

double square_root(double x)
{

check_somehow(x >= 0);
...
assert(result >= 0.0);
return result;

}

How to implement the initial check is left open for the moment. When our result is negative,
the program execution will print an error like

assert_test: assert_test.cpp :10: double square_root(double ):
Assertion 'result >= 0.0' failed.

The fact is when our result is less than zero, our implementation contains a bug and we must
fix it before we use this function for serious applications.

After we fixed the bug we might be tempted to remove the assertion(s). We should not
do so. Maybe one day we will change the implementation; then we still have all our sanity
tests working. Actually, assertions on post-conditions are somehow like mini-unit tests.
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A great advantage of assert is that we can let it disappear entirely by a simple macro
declaration. Before including <cassert> we can define NDEBUG:

#define NDEBUG
#include <cassert >

and all assertions are disabled; i.e., they do not cause any operation in the executable.
Instead of changing our program sources each time we switch between debug and release
mode, it is better and cleaner to declare NDEBUG in the compiler flags (usually -D on Linux
and /D on Windows):

g++ my_app.cpp -o my_app -O3 -DNDEBUG

Software with assertions in critical kernels can be slowed down by a factor of two or more
when the assertions are not disabled in the release mode. Good build systems like CMake

include -DNDEBUG automatically in the release mode’s compile flags.
Since assertions can be disabled so easily, we should follow this advice:

Defensive Programming

Test as many properties as you can.

Even if you are sure that a property obviously holds for your implementation, write an
assertion. Sometimes the system does not behave precisely as we assumed, or the compiler
might be buggy (extremely rare but possible), or we did something slightly different from
what we intended originally. No matter how much we reason and how carefully we implement,
sooner or later one assertion may be raised. In the case that there are so many properties
that the actual functionality gets cluttered by the tests, one can outsource the tests into
another function.

Responsible programmers implement large sets of tests. Nonetheless, this is no guarantee
that the program works under all circumstances. An application can run for years like a
charm and one day it crashes. In this situation, we can run the application in debug mode
with all the assertions enabled, and in most cases they will be a great help to find the reason
for the crash. However, this requires that the crashing situation is reproducible and that the
program in slower debug mode reaches the critical section in reasonable time.

1.6.2 Exceptions

In the preceding section, we looked at how assertions help us to detect programming errors.
However, there are many critical situations that we cannot prevent even with the smartest
programming, like files that we need to read but which are deleted. Or our program needs
more memory than is available on the actual machine. Other problems are preventable in
theory but the practical effort is disproportionally high, e.g., to check whether a matrix is
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regular is feasible but might be as much or more work than the actual task. In such cases, it
is usually more efficient to try to accomplish the task and check for Exceptions along the
way.

1.6.2.1 Motivation

Before illustrating the old-style error handling, we introduce our anti-hero Herbert8 who is
an ingenious mathematician and considers programming a necessary evil for demonstrating
how magnificently his algorithms work. He learned to program like a real man and is immune
to the newfangled nonsense of modern programming.

His favorite approach to deal with computational problems is to return an error code
(like the main function does). Say we want to read a matrix from a file and check whether
the file is really there. If not, we return an error code of 1:

int read_matrix_file(const char* fname , ...)
{

fstream f(fname);
if (!f.is_open ())

return 1;
...

return 0;
}

So, we checked for everything that can go wrong and informed the caller with the appropriate
error code. This is fine when the caller evaluated the error and reacted appropriately. But
what happens when the caller simply ignores our return code? Nothing! The program keeps
going and might crash later on absurd data or even worse produce nonsensical results that
careless people might use to build cars or planes. Of course, car and plane builders are not
that careless, but in more realistic software even careful people cannot have an eye on each
tiny detail.

Nonetheless, bringing this point across to programming dinosaurs like Herbert might not
convince them: “Not only are you dumb enough to pass in a non-existing file to my perfectly
implemented function, then you do not even check the return code. You do everything wrong,
not me.”

Another disadvantage of the error codes is that we cannot return our computational
results and have to pass them as reference arguments. This prevents us from building
expressions with the result. The other way around is to return the result and pass the error
code as a (referred) function argument which is not much less cumbersome.

1.6.2.2 Throwing

The better approach is to throw an exception:

matrix read_matrix_file(const char* fname , ...)
{

fstream f(fname);

8. To all readers named Herbert: Please accept our honest apology for having picked your name.
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if (!f.is_open ())
throw "Cannot open file.";

...
}

In this version, we throw an exception. The calling application is now obliged to react on
it—otherwise the program crashes.

The advantage of exception handling over error codes is that we only need to bother with
a problem where we can handle it. For instance, in the function that called read_matrix_file

it might not be possible to deal with a non-existing file. In this case, the code is implemented
as there is no exception thrown. So, we do not need to obfuscate our program with returning
error codes. In the case of an exception, it is passed up to the appropriate exception handling.
In our scenario, this handling might be contained in the GUI where a new file is requested
from the user. Thus, exceptions lead at the same time to more readable sources and more
reliable error handling.

C++ allows us to throw everything as an exception: strings, numbers, user types, et cetera.
However, to deal with the exceptions properly it is better to define exception types or to use
those from the standard library:

struct cannot_open_file {};

void read_matrix_file(const char* fname , ...)
{

fstream f(fname);
if (!f.is_open ())

throw cannot_open_file {};
...

}

Here, we introduced our own exception type. In Chapter 2, we will explain in detail how
classes can be defined. In the example above, we defined an empty class that only requires
opening and closing brackets followed by a semicolon. Larger projects usually establish an
entire hierarchy of exception types that are often derived (Chapter 6) from std::exception.

1.6.2.3 Catching

To react to an exception, we have to catch it. This is done in a try-catch-block:

try {
...

} catch (e1_type& e1)
{ ...
} catch (e2_type& e2) { ... }

Wherever we expect a problem that we can solve (or at least do something about), we open
a try-block. After the closing braces, we can catch exceptions and start a rescue depending
on the type of the exception and possibly on its value. It is recommended to catch exceptions
by reference [45, Topic 73], especially when polymorphic types (Definition 6–1 in §6.1.3)
are involved. When an exception is thrown, the first catch-block with a matching type
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is executed. Further catch-blocks of the same type (or sub-types; §6.1.1) are ignored. A
catch-block with an ellipsis, i.e., three dots literally, catches all exceptions:

try { ...
} catch (e1_type& e1) { ... }

catch (e2_type& e2) { ... }
catch (...) { // deal with all other exceptions

}

Obviously, the catch-all handler should be the last one.
If nothing else, we can catch the exception to provide an informative error message before

terminating the program:

try {
A= read_matrix_file("does_not_exist.dat");

} catch (cannot_open_file& e) {
cerr � "Hey guys , your file does not exist! I'm out.\n";
exit(EXIT_FAILURE);

}

Once the exception is caught, the problem is considered to be solved and the execution
continues after the catch-block(s). To terminate the execution, we used exit from the header
<cstdlib>. The function exit ends the execution even when we are not in the main function.
It should only be used when further execution is too dangerous and there is no hope that
the calling functions have any cure for the exception either.

Alternatively we can continue after the complaint or a partial rescue action by rethrowing
the exception which might be dealt with later:

try {
A= read_matrix_file("does_not_exist.dat");

} catch (cannot_open_file& e) {
cerr � "O my gosh , the file is not there! Please caller help me.\n";
throw e;

}

In our case, we are already in the main function and there is nothing else on the call stack to
catch our exception. For rethrowing the current one, there exists a shorter notation:

} catch (cannot_open_file &) {
...
throw;

}

This shortcut is preferred since it is less error-prone and shows more clearly that we rethrow
the original exception. Ignoring an exception is easily implemented by an empty block:

} catch (cannot_open_file &) {} // File is rubbish , keep going

So far, our exception handling did not really solve our problem of missing a file. If the file
name is provided by a user, we can pester him/her until we get one that makes us happy:

bool keep_trying= true;
do {
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char fname [80]; // std:: string is better
cout � "Please enter the file name: ";
cin � fname;
try {

A= read_matrix_file(fname);
...
keep_trying= false;

} catch (cannot_open_file& e) {
cout � "Could not open the file. Try another one!\n";

} catch (...)
cout � "Something is fishy here. Try another file!\n";

}
} while (keep_trying );

When we reach the end of the try-block, we know that no exception was thrown and we can
call it a day. Otherwise, we land in one of the catch-blocks and keep_trying remains true.

A great advantage of exceptions is that issues that cannot be handled in the context
where they are detected can be postponed for later. An example from the author’s practice
concerned an LU factorization. It cannot be computed for a singular matrix. There is nothing
we can do about it. However, in the case that the factorization was part of an iterative
computation, we were able to continue the iteration somehow without that factorization.
Although this would be possible with traditional error handling as well, exceptions allow us
to implement it much more readably and elegantly. We can program the factorization for
the regular case and when we detect the singularity, we throw an exception. Then it is up to
the caller how to deal with the singularity in the respective context—if possible.

1.6.2.4 Who Throws? C++11

Already C++03 allowed specifying which types of exceptions can be thrown from a function.
Without going into details, these specifications turned out to be not very useful and are
deprecated now.

C++11 added a new qualification for specifying that no exceptions must be thrown out of
the function, e.g.:

double square_root(double x) noexcept { ... }

The benefit of this qualification is that the calling code never needs to check for thrown
exceptions after square_root. If an exception is thrown despite the qualification, the program
is terminated.

In templated functions, it can depend on the argument type(s) whether an exception
is thrown. To handle this properly, noexcept can depend on a compile-time condition; see
Section 5.2.2.

Whether an assertion or an exception is preferable is not an easy question and we have no
short answer to it. The question will probably not bother you now. We therefore postpone the
discussion to Section A.2.6 and leave it to you when you read it.
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1.6.3 Static AssertionsC++11

Program errors that can already be detected during compilation can raise a static_assert.
In this case, an error message is emitted and the compilation stopped. An example would
not make sense at this point and we postpone it till Section 5.2.5.

1.7 I/O

C++ uses a convenient abstraction called streams to perform I/O operations in sequential
media such as screens or keyboards. A stream is an object where a program can either insert
characters or extract them. The standard C++ library contains the header <iostream> where
the standard input and output stream objects are declared.

1.7.1 Standard Output

By default, the standard output of a program is written to the screen, and we can access it
with the C++ stream named cout. It is used with the insertion operator which is denoted by
� (like left shift). We have already seen that it may be used more than once within a single
statement. This is especially useful when we want to print a combination of text, variables,
and constants, e.g.:

cout � "The square root of " � x � " is " � sqrt(x) � endl;

with an output like

The square root of 5 is 2.23607

endl produces a newline character. An alternative representation of endl is the character \n.
For the sake of efficiency, the output may be buffered. In this regard, endl and \n differ:
the former flushes the buffer while the latter does not. Flushing can help us when we are
debugging (without a debugger) to find out between which outputs the program crashes. In
contrast, when a large amount of text is written to files, flushing after every line slows down
I/O considerably.

Fortunately, the insertion operator has a relatively low priority so that arithmetic
operations can be written directly:

std::cout � "11 * 19 = " � 11 * 19 � std::endl;

All comparisons and logical and bitwise operations must be grouped by surrounding paren-
theses. Likewise the conditional operator:

std::cout � (age > 65 ? "I'm a wise guy\n" : "I am still half-baked.\n");

When we forget the parentheses, the compiler will remind us (offering us an enigmatic
message to decipher).
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1.7.2 Standard Input

The standard input device is usually the keyboard. Handling the standard input in C++ is
done by applying the overloaded operator of extraction � on the cin stream:

int age;
std::cin � age;

std::cin reads characters from the input device and interprets them as a value of the variable
type (here int) it is stored to (here age). The input from the keyboard is processed once the
RETURN key has been pressed.

We can also use cin to request more than one data input from the user:

std::cin � width � length;

which is equivalent to

std::cin � width;
std::cin � length;

In both cases the user must provide two values: one for width and another for length. They
can be separated by any valid blank separator: a space, a tab character, or a newline.

1.7.3 Input/Output with Files

C++ provides the following classes to perform input and output of characters from/to files:

ofstream write to files
ifstream read from files
fstream both read and write from/to files

We can use file streams in the same fashion as cin and cout, with the only difference that
we have to associate these streams with physical files. Here is an example:

#include <fstream >

int main ()
{

std:: ofstream myfile;
square_file.open("squares.txt");
for (int i= 0; i < 10; ++i)

square_file � i � "ˆ2 = " i*i � std::endl;
square_file.close ();

}

This code creates a file named squares.txt (or overwrites it if it already exists) and writes
a sentence to it—like we write to cout. C++ establishes a general stream concept that is
satisfied by an output file and by std::cout. This means we can write everything to a file
that we can write to std::cout and vice versa. When we define operator� for a new type,
we do this once for ostream (Section 2.7.3) and it will work with the console, with files, and
with any other output stream.
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Alternatively, we can pass the file name as an argument to the constructor of the stream
to open the file implicitly. The file is also implicitly closed when square_file goes out of scope,9

in this case at the end of the main function. The short version of the previous program is

#include <fstream >

int main ()
{

std:: ofstream square_file (" squares.txt");
for (int i= 0; i < 10; ++i)

square_file � i � "ˆ2 = " i*i � std::endl;
}

We prefer the short form (as usual). The explicit form is only necessary when the file is first
declared and opened later for some reason. Likewise, the explicit close is only needed when
the file should be closed before it goes out of scope.

1.7.4 Generic Stream Concept

Streams are not limited to screens, keyboards, and files; every class can be used as a
stream when it is derived10 from istream, ostream, or iostream and provides implementations
for the functions of those classes. For instance, Boost.Asio offers streams for TCP/IP and
Boost.IOStream as alternatives to the I/O above. The standard library contains a stringstream

that can be used to create a string from any kind of printable type. stringstream’s method
str() returns the stream’s internal string.

We can write output functions that accept every kind of output stream by using a mutable
reference to ostream as an argument:

#include <iostream >
#include <fstream >
#include <sstream >

void write_something(std:: ostream& os)
{

os � "Hi stream , did you know that 3 * 3 = " � 3 * 3 � std::endl;
}

int main (int argc , char* argv [])
{

std:: ofstream myfile("example.txt");
std:: stringstream mysstream;

write_something(std::cout);
write_something(myfile );

9. Thanks to the powerful technique named RAII, which we will discuss in Section 2.4.2.1.
10. How classes are derived is shown in Chapter 6. Let us here just take notice that being an output stream
is technically realized by deriving it from std::ostream.
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write_something(mysstream );

std::cout � "mysstream is: " � mysstream.str (); // newline contained
}

Likewise, generic input can be implemented with istream and read/write I/O with iostream.

1.7.5 Formatting
⇒ c++03/formatting.cpp

I/O streams are formatted by so-called I/O manipulators which are found in the header
file <iomanip>. By default, C++ only prints a few digits of f loating-point numbers. Thus, we
increase the precision:

double pi= M_PI;
cout � "pi is " � pi � '\n';
cout � "pi is " � setprecision (16) � pi � '\n';

and yield a more accurate number:

pi is 3.14159
pi is 3.141592653589793

In Section 4.3.1, we will show how the precision can be adjusted to the type’s representable
number of digits.

When we write a table, vector, or matrix, we need to align values for readability. Therefore,
we next set the width of the output:

cout � "pi is " � setw (30) � pi � '\n';

This results in

pi is 3.141592653589793

setw changes only the next output while setprecision affects all following (numerical) outputs,
like the other manipulators. The provided width is understood as a minimum, and if the
printed value needs more space, our tables will get ugly.

We can further request that the values be left aligned, and the empty space be filled with
a character of our choice, say, -:

cout � "pi is " � setfill('-') � left
� setw (30) � pi � '\n';

yielding

pi is 3.141592653589793-------------

Another way of formatting is setting the flags directly. Some less frequently used format
options can only be set this way, e.g., whether the sign is shown for positive values as well.
Furthermore, we force the “scientific” notation in the normalized exponential representation:

cout.setf(ios_base :: showpos);
cout � "pi is " � scientific � pi � '\n';
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resulting in

pi is +3.1415926535897931e+00

Integer numbers can be represented in octal and hexadecimal base by

cout � "63 octal is " � oct � 63 � ".\n";
cout � "63 hexadecimal is " � hex � 63 � ".\n";
cout � "63 decimal is " � dec � 63 � ".\n";

with the expected output:

63 octal is 77.
63 hexadecimal is 3f.
63 decimal is 63.

Boolean values are by default printed as integers 0 and 1. On demand, we can present them
as true and false:

cout � "pi < 3 is " � (pi < 3) � '\n';
cout � "pi < 3 is " � boolalpha � (pi < 3) � '\n';

Finally, we can reset all the format options that we changed:

int old_precision= cout.precision ();
cout � setprecision (16)
...
cout.unsetf(ios_base :: adjustfield | ios_base :: basefield

| ios_base :: floatfield | ios_base :: showpos | ios_base :: boolalpha);
cout.precision(old_precision);

Each option is represented by a bit in a status variable. To enable multiple options, we can
combine their bit patterns with a binary OR.

1.7.6 Dealing with I/O Errors

To make one thing clear from the beginning: I/O in C++ is not fail-safe (let alone idiot-proof).
Errors can be reported in different ways and our error handling must comply to them. Let
us try the following example program:

int main ()
{

std:: ifstream infile("some_missing_file.xyz");

int i;
double d;
infile � i � d;

std::cout � "i is " � i � ", d is " � d � '\n';
infile.close ();

}

Although the file does not exist, the opening operation does not fail. We can even read from
the non-existing file and the program goes on. Needless to say that the values in i and d are
nonsense:

i is 1, d is 2.3452e-310
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By default, the streams do not throw exceptions. The reason is historical: they are older
than the exceptions and later the behavior was kept to not break software written in the
meantime.

To be sure that everything went well, we have to check error flags, in principle, after each
I/O operation. The following program asks the user for new file names until a file can be
opened. After reading its content, we check again for success:

int main ()
{

std:: ifstream infile;
std:: string filename{"some_missing_file.xyz"};
bool opened= false;
while (! opened) {

infile.open(filename );
if (infile.good()) {

opened= true;
} else {

std::cout � "The file '" � filename
� "' doesn't exist , give a new file name: ";

std::cin � filename;
}

}
int i;
double d;
infile � i � d;

if (infile.good())
std::cout � "i is " � i � ", d is " � d � '\n';

else
std::cout � "Could not correctly read the content .\n";

infile.close ();
}

You can see from this simple example that writing robust applications with file I/O can
create some work.

If we want to use exceptions, we have to enable them during run time for each stream:

cin.exceptions(ios_base :: badbit | ios_base :: failbit);
cout.exceptions(ios_base :: badbit | ios_base :: failbit);

std:: ifstream infile("f.txt");
infile.exceptions(ios_base :: badbit | ios_base :: failbit);

The streams throw an exception every time an operation fails or when they are in a “bad”
state. Exceptions could be thrown at (unexpected) file end as well. However, the end of file
is more conveniently handled by testing (e.g., while (!f.eof())).

In the example above, the exceptions for infile are only enabled after opening the file (or
the attempt thereof). For checking the opening operation, we have to create the stream first,
then turn on the exceptions and finally open the file explicitly. Enabling the exceptions gives
us at least the guarantee that all I/O operations went well when the program terminates
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properly. We can make our program more robust by catching exceptions that might be
thrown.

The exceptions in file I/O only protect us partially from making errors. For instance,
the following small program is obviously wrong (types don’t match and numbers aren’t
separated):

void with_io_exceptions(ios& io)
{ io.exceptions(ios_base :: badbit | ios_base :: failbit ); }

int main ()
{

std:: ofstream outfile;
with_io_exceptions(outfile );
outfile.open("f.txt");

double o1= 5.2, o2= 6.2;
outfile � o1 � o2 � std::endl; // no separation
outfile.close ();

std:: ifstream infile;
with_io_exceptions(infile );
infile.open("f.txt");

int i1, i2;
char c;
infile � i1 � c � i2; // mismatching types
std::cout � "i1 = " � i1 � ", i2 = " � i2 � "\n";

}

Nonetheless, it does not throw exceptions and fabricates the following output:

i1 = 5, i2 = 26

As we all know, testing does not prove the correctness of a program. This is even more
obvious when I/O is involved. Stream input reads the incoming characters and passes them
as values of the appropriate variable type, e.g., int when setting i1. It stops at the first
character that cannot be part of the value, first at the . for the int value i1. If we read
another int afterward, it would fail because an empty string cannot be interpreted as an
int value. But we do not; instead we read a char next to which the dot is assigned. When
parsing the input for i2 we find first the fractional part from o1 and then the integer part
from o1 before we get a character that cannot belong to an int value.

Unfortunately, not every violation of the grammatical rules causes an exception in prac-
tice: .3 parsed as an int yields zero (while the next input probably fails); -5 parsed as
an unsigned results in 4294967291 (when unsigned is 32 bits long). The narrowing princi-
ple apparently has not found its way into I/O streams yet (if it ever will for backward
compatibility’s sake).

At any rate, the I/O part of an application needs utter attention. Numbers must be
separated properly (e.g., by spaces) and read with the same type as they were written.
When the output contains branches such that the file format can vary, the input code is
considerably more complicated and might even be ambiguous.
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There are two other forms of I/O we want to mention: binary and C-style I/O. The
interested reader will find them in Sections A.2.7 and A.2.8, respectively. You can also read
this later when you need it.

1.8 Arrays, Pointers, and References

1.8.1 Arrays

The intrinsic array support of C++ has certain limitations and some strange behaviors.
Nonetheless, we feel that every C++ programmer should know it and be aware of its problems.

An array is declared as follows:

int x[10];

The variable x is an array with 10 int entries. In standard C++, the size of the array must
be constant and known at compile time. Some compilers (e.g., gcc) support run-time sizes.

Arrays are accessed by square brackets: x[i] is a reference to the i-th element of x. The
first element is x[0]; the last one is x[9]. Arrays can be initialized at the definition:

float v[]= {1.0, 2.0, 3.0}, w[]= {7.0, 8.0, 9.0};

In this case, the array size is deduced.
The list initialization in C++11 cannot be narrowed any further. This will rarely make a

difference in practice. For instance, the following: C++11

int v[]= {1.0, 2.0, 3.0}; // Error in C++11: narrowing

was legal in C++03 but not in C++11 since the conversion from a floating-point literal to int

potentially loses precision. However, we would not write such ugly code anyway.
Operations on arrays are typically performed in loops; e.g., to compute x = v − 3w as a

vector operation is realized by

float x[3];
for (int i= 0; i < 3; ++i)

x[i]= v[i] - 3.0 * w[i];

We can also define arrays of higher dimensions:

float A[7][9]; // a 7 by 9 matrix
int q[3][2][3]; // a 3 by 2 by 3 array

The language does not provide linear algebra operations upon the arrays. Implementations
based on arrays are inelegant and error-prone. For instance, a function for a vector addition
would look like this:

void vector_add(unsigned size, const double v1[], const double v2[],
double s[])

{
for (unsigned i= 0; i < size; ++i)

s[i]= v1[i] + v2[i];
}
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Note that we passed the size of the arrays as first function parameter whereas array parameters
don’t contain size information.11 In this case, the function’s caller is responsible for passing
the correct size of the arrays:

int main ()
{

double x[]= {2, 3, 4}, y[]= {4, 2, 0}, sum [3];
vector_add(3, x, y, sum);
...

}

Since the array size is known during compilation, we can compute it by dividing the byte
size of the array by that of a single entry:

vector_add(sizeof x / sizeof x[0], x, y, sum);

With this old-fashioned interface, we are also unable to test whether our arrays match in size.
Sadly enough, C and Fortran libraries with such interfaces where size information is passed
as function arguments are still realized today. They crash at the slightest user mistake, and
it can take enormous efforts to trace back the reasons for crashing. For that reason, we will
show in this book how we can realize our own math software that is easier to use and less
prone to errors. Hopefully, future C++ standards will come with more higher mathematics,
especially a linear-algebra library.

Arrays have the following two disadvantages:

• Indices are not checked before accessing an array, and we can find ourselves outside
the array and the program crashes with segmentation fault/violation. This is not even
the worst case; at least we see that something goes wrong. The false access can also
mess up our data; the program keeps running and produces entirely wrong results with
whatever consequence you can imagine. We could even overwrite the program code.
Then our data is interpreted as machine operations leading to any possible nonsense.

• The size of the array must be known at compile time.12 For instance, we have an array
stored to a file and need to read it back into memory:

ifstream ifs("some_array.dat");
ifs � size;
float v[size]; // Error: size not known at compile time

This does not work because the size needs to be known during compilation.

The first problem can only be solved with new array types and the second one with dynamic
allocation. This leads us to pointers.

11. When passing arrays of higher dimensions, only the first dimension can be open while the others must
be known during compilation. However, such programs get easily nasty and we have better techniques for it
in C++.
12. Some compilers support run-time values as array sizes. Since this is not guaranteed with other compilers
one should avoid this in portable software. This feature was considered for C++14 but its inclusion postponed
as not all subtleties were entirely clarified.
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1.8.2 Pointers

A pointer is a variable that contains a memory address. This address can be that of another
variable that we can get with the address operator (e.g., &x) or dynamically allocated memory.
Let’s start with the latter as we were looking for arrays of dynamic size.

int* y= new int [10];

This allocates an array of 10 int. The size can now be chosen at run time. We can also
implement the vector reading example from the previous section:

ifstream ifs("some_array.dat");
int size;
ifs � size;
float* v= new float[size];
for (int i= 0; i < size; ++i)

ifs � v[i];

Pointers bear the same danger as arrays: accessing data out of range which can cause program
crashes or silent data invalidation. When dealing with dynamically allocated arrays, it is the
programmer’s responsibility to store the array size.

Furthermore, the programmer is responsible for releasing the memory when not needed
anymore. This is done by

delete [] v;

Since arrays as function parameters are treated internally as pointers, the vector_add

function from page 47 works with pointers as well:

int main (int argc , char* argv [])
{

double *x= new double [3], *y= new double [3], *sum= new double [3];
for (unsigned i= 0; i < 3; ++i)

x[i]= i+2, y[i]= 4-2*i;
vector_add (3, x, y, sum);
...

}

With pointers, we cannot use the sizeof trick; it would only give us the byte size of the
pointer itself which is of course independent of the number of entries. Other than that,
pointers and arrays are interchangeable in most situations: a pointer can be passed as an
array argument (as in the previous listing) and an array as a pointer argument. The only
place where they are really different is the definition: whereas defining an array of size n

reserves space for n entries, defining a pointer only reserves the space to hold an address.
Since we started with arrays, we took the second step before the first one regarding

pointer usage. The simple use of pointers is allocating one single data item:

int* ip= new int;

Releasing this memory is performed by

delete ip;
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Note the duality of allocation and release: the single-object allocation requires a single-object
release and the array allocation demands an array release. Otherwise the run-time system
will handle the deallocation incorrectly and most likely crash at this point. Pointers can also
refer to other variables:

int i= 3;
int* ip2= &i;

The operator & takes an object and returns its address. The opposite operator is * which
takes an address and returns an object:

int j= *ip2;

This is called Dereferencing. Given the operator priorities and the grammar rules, the
meaning of the symbol * as dereference or multiplication cannot be confused—at least not
by the compiler.

Pointers that are not initialized contain a random value (whatever bits are set in the
corresponding memory). Using uninitialized pointers can cause any kind of error. To say
explicitly that a pointer is not pointing to something, we should set it toC++11

int* ip3= nullptr; // >= C++11
int* ip4{}; // ditto

or in old compilers:

int* ip3= 0; // better not in C++11 and later
int* ip4= NULL; // ditto

The address 0 is guaranteed never to be used for applications, so it is safe to indicate thisC++11
way that the pointer is empty (not referring to something). Nonetheless the literal 0 does
not clearly convey its intention and can cause ambiguities in function overloading. The
macro NULL is not better: it just evaluates to 0. C++11 introduces nullptr as a keyword for a
pointer literal. It can be assigned to or compared with all pointer types. As it cannot be
confused with other types and is self-explanatory, it is preferred over the other notations.
The initialization with an empty braced list also sets a nullptr.

The biggest danger of pointers is Memory Leaks. For instance, our array y became too
small and we want to assign a new array:

int* y= new int [15];

We can now use more space in y. Nice. But what happened to the memory that we allocated
before? It is still there but we have no access to it anymore. We cannot even release it because
this requires the address too. This memory is lost for the rest of our program execution. Only
when the program is finished will the operating system be able to free it. In our example,
we only lost 40 bytes out of several gigabytes that we might have. But if this happens in
an iterative process, the unused memory grows continuously until at some point the whole
(virtual) memory is exhausted.

Even if the wasted memory is not critical for the application at hand, when we write
high-quality scientific software, memory leaks are unacceptable. When many people are using
our software, sooner or later somebody will criticize us for it and eventually discourage other
people from using our software. Fortunately, there are tools to help you to find memory
leaks, as demonstrated in Section B.3.
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The demonstrated issues with pointers are not intended as fun killers. And we do not
discourage the use of pointers. Many things can only be achieved with pointers: lists, queues,
trees, graphs, et cetera. But pointers must be used with utter care to avoid all the really
severe problems mentioned above.

There are three strategies to minimize pointer-related errors:

Use standard containers: from the standard library or other validated librar-
ies. std::vector from the standard library provides us all the functionality of
dynamic arrays, including resizing and range check, and the memory is released
automatically.

Encapsulate: dynamic memory management in classes. Then we have to deal
with it only once per class.13 When all memory allocated by an object is released
when the object is destroyed, then it does not matter how often we allocate
memory. If we have 738 objects with dynamic memory, then it will be released
738 times. The memory should be allocated in the object construction and
deallocated in its destruction. This principle is called Resource Allocation Is
Initialization (RAII). In contrast, if we called new 738 times, partly in loops and
branches, can we be sure that we have called delete exactly 738 times? We know
that there are tools for this but these are errors that are better to prevent than
to fix.14 Of course, the encapsulation idea is not idiot-proof but it is much less
work to get it right than sprinkling (raw) pointers all over our program. We will
discuss RAII in more detail in Section 2.4.2.1.

Use smart pointers: which we will introduce in the next section (§1.8.3).

Pointers serve two purposes:

• Referring to objects; and

• Managing dynamic memory.

The problem with so-called Raw Pointers is that we have no notion whether a pointer is
only referring to data or also in charge of releasing the memory when it is not needed any
longer. To make this distinction explicit at the type level, we can use Smart Pointers.

1.8.3 Smart Pointers C++11

Three new smart-pointer types are introduced in C++11: unique_ptr, shared_ptr, and weak_ptr.
The already existing smart pointer from C++03 named auto_ptr is generally considered as a
failed attempt on the way to unique_ptr since the language was not ready at the time. It
should not be used anymore. All smart pointers are defined in the header <memory>. If you
cannot use C++11 features on your platform (e.g., in embedded programming), the smart
pointers in Boost are a decent replacement.

13. It is safe to assume that there are many more objects than classes; otherwise there is something wrong
with the entire program design.
14. In addition, the tool only shows that the current run had no errors but this might be different with other
input.
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1.8.3.1 Unique PointerC++11

This pointer’s name indicates Unique Ownership of the referred data. It can be used
essentially like an ordinary pointer:

#include <memory >

int main ()
{

unique_ptr <double > dp{new double };
*dp= 7;
...

}

The main difference from a raw pointer is that the memory is automatically released when the
pointer expires. Therefore, it is a bug to assign addresses that are not allocated dynamically:

double d;
unique_ptr <double > dd{&d}; // Error: causes illegal deletion

The destructor of pointer dd will try to delete d.
Unique pointers cannot be assigned to other pointer types or implicitly converted. For

referring to the pointer’s data in a raw pointer, we can use the member function get:

double* raw_dp= dp.get();

It cannot even be assigned to another unique pointer:

unique_ptr <double > dp2{dp}; // Error: no copy allowed
dp2= dp; // ditto

It can only be moved:

unique_ptr <double > dp2{move(dp)}, dp3;
dp3= move(dp2);

We will discuss move semantics in Section 2.3.5. Right now let us just say this much: whereas
a copy duplicates the data, a Move transfers the data from the source to the target. In our
example, the ownership of the referred memory is first passed from dp to dp2 and then to
dp3. dp and dp2 are nullptr afterward, and the destructor of dp3 will release the memory.
In the same manner, the memory’s ownership is passed when a unique_ptr is returned from
a function. In the following example, dp3 takes over the memory allocated in f():

std::unique_ptr <double > f()
{ return std::unique_ptr <double >{new double }; }

int main ()
{

unique_ptr <double > dp3;
dp3= f();

}

In this case, move() is not needed since the function result is a temporary that will be moved
(again, details in §2.3.5).
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Unique pointer has a special implementation15 for arrays. This is necessary for properly
releasing the memory (with delete[]). In addition, the specialization provides array-like
access to the elements:

unique_ptr <double []> da{new double [3]};
for (unsigned i= 0; i < 3; ++i)

da[i]= i+2;

In return, the operator* is not available for arrays.
An important benefit of unique_ptr is that it has absolutely no overhead over raw pointers:

neither in time nor in memory.

Further reading: An advanced feature of unique pointers is to provide our own Deleter;
for details see [26, §5.2.5f], [43, §34.3.1], or an online reference (e.g., cppreference.com).

1.8.3.2 Shared Pointer C++11

As its name indicates, a shared_ptr manages memory that is used in common by multiple
parties (each holding a pointer to it). The memory is automatically released as soon as
no shared_ptr is referring the data any longer. This can simplify a program considerably,
especially with complicated data structures. An extremely important application area is
concurrency: the memory is automatically freed when all threads have terminated their
access to it.

In contrast to a unique_ptr, a shared_ptr can be copied as often as desired, e.g.:

shared_ptr <double > f()
{

shared_ptr <double > p1{new double };
shared_ptr <double > p2{new double}, p3= p2;
cout � "p3.use_count () = " � p3.use_count () � endl;
return p3;

}

int main ()
{

shared_ptr <double > p= f();
cout � "p.use_count () = " � p.use_count () � endl;

}

In the example, we allocated memory for two double values: in p1 and in p2. The pointer p2

is copied into p3 so that both point to the same memory as illustrated in Figure 1–1.
We can see this from the output of use_count:

p3.use_count () = 2
p.use_count () = 1

When the function returns, the pointers are destroyed and the memory referred to by p1 is
released (without ever being used). The second allocated memory block still exists since p

from the main function is still referring to it.

15. Specialization will be discussed in §3.6.1 and §3.6.3.
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Figure 1–1: Shared pointer in memory
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Figure 1–2: Shared pointer in memory after make_shared

If possible, a shared_ptr should be created with make_shared:

shared_ptr <double > p1= make_shared <double >();

Then the management and business data are stored together in memory—as shown in
Figure 1–2—and the memory caching is more efficient. Since make_shared returns a shared
pointer, we can use automatic type detection (§3.4.1) for simplicity:

auto p1= make_shared <double >();

We have to admit that a shared_ptr has some overhead in memory and run time. On the
other hand, the simplification of our programs thanks to shared_ptr is in most cases worth
some small overhead.

Further reading: For deleters and other details of shared_ptr see the library reference [26,
§5.2], [43, §34.3.2], or an online reference.

1.8.3.3 Weak PointerC++11

A problem that can occur with shared pointers is Cyclic References that impede the memory
to be released. Such cycles can be broken by weak_ptrs. They do not claim ownership of the
memory, not even a shared one. At this point, we only mention them for completeness and
suggest that you read appropriate references when their need is established: [26, §5.2.2], [43,
§34.3.3], or cppreference.com.
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For managing memory dynamically, there is no alternative to pointers. To only refer
to other objects, we can use another language feature called Reference (surprise, surprise),
which we introduce in the next section.

1.8.4 References

The following code introduces a reference:

int i= 5;
int& j= i;
j= 4;
std::cout � "j = " � j � '\n';

The variable j is referring to i. Changing j will also alter i and vice versa, as in the example.
i and j will always have the same value. One can think of a reference as an alias: it introduces
a new name for an existing object or sub-object. Whenever we define a reference, we must
directly declare what it is referring to (other than pointers). It is not possible to refer to
another variable later.

So far, that does not sound extremely useful. References are extremely useful for function
arguments (§1.5), for referring to parts of other objects (e.g., the seventh entry of a vector),
and for building views (e.g., §5.2.3).

As a compromise between pointers and references, the new standard offers a
reference_wrapper class which behaves similarly to references but avoids some of their
limitations. For instance, it can be used within containers; see §4.4.2. C++11

1.8.5 Comparison between Pointers and References

The main advantage of pointers over references is the ability of dynamic memory management
and address calculation. On the other hand, references are forced to refer to existing
locations.16 Thus, they do not leave memory leaks (unless you play really evil tricks), and
they have the same notation in usage as the referred object. Unfortunately, it is almost
impossible to construct containers of references.

In short, references are not fail-safe but are much less error-prone than pointers. Pointers
should be only used when dealing with dynamic memory, for instance when we create data
structures like lists or trees dynamically. Even then we should do this via well-tested types
or encapsulate the pointer(s) within a class whenever possible. Smart pointers take care
of memory allocation and should be preferred over raw pointers, even within classes. The
pointer-reference comparison is summarized in Table 1-9.

1.8.6 Do Not Refer to Outdated Data!

Function-local variables are only valid within the function’s scope, for instance:

double& square_ref(double d) // DO NOT!
{

double s= d * d;
return s;

}

16. References can also refer to arbitrary addresses but you must work harder to achieve this. For your own
safety, we will not show you how to make references behave as badly as pointers.
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Table 1–9: Comparison between Pointers and References

Feature Pointers References

Referring to defined location �
Mandatory initialization �
Avoidance of memory leaks �
Object-like notation �
Memory management �
Address calculation �
Build containers thereof �

Here, our function result refers the local variable s which does not exist anymore. The
memory where it was stored is still there and we might be lucky (mistakenly) that it is
not overwritten yet. But this is nothing we can count on. Actually, such hidden errors are
even worse than the obvious ones because they can ruin our program only under certain
conditions and then they are very hard to find.

Such references are called Stale References. Good compilers will warn us when we are
referring to a local variable. Sadly enough, we have seen such examples in web tutorials.

The same applies to pointers:

double* square_ptr(double d) // DO NOT!
{

double s= d * d;
return &s;

}

This pointer holds a local address that has gone out of scope. This is called a Dangling
Pointer.

Returning references or pointers can be correct in member functions when member data
is referred to; see Section 2.6.

Advice

Only return pointers and references to dynamically allocated data, data that existed before the function

was called, or static data.

1.8.7 Containers for Arrays

As alternatives to the traditional C arrays, we want to introduce two container types that
can be used in similar ways.

1.8.7.1 Standard Vector

Arrays and pointers are part of the C++ core language. In contrast, std::vector belongs to
the standard library and is implemented as a class template. Nonetheless, it can be used very
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similarly to arrays. For instance, the example from Section 1.8.1 of setting up two arrays v

and w looks for vectors as follows:

#include <vector >

int main ()
{

std::vector <float > v(3), w(3);
v[0]= 1; v[1]= 2; v[2]= 3;
w[0]= 7; w[1]= 8; w[2]= 9;

}

The size of the vector does not need to be known at compile time. Vectors can even be
resized during their lifetime, as will be shown in Section 4.1.3.1.

The element-wise setting is not particularly compact. C++11 allows the initialization with
initializer lists: C++11

std::vector <float > v= {1, 2, 3}, w= {7, 8, 9};

In this case, the size of the vector is implied by the length of the list. The vector addition
shown before can be implemented more reliably:

void vector_add(const vector <float >& v1, const vector <float >& v2,
vector <float >& s)

{
assert(v1.size() == v2.size());
assert(v1.size() == s.size());
for (unsigned i= 0; i < v1.size (); ++i)

s[i]= v1[i] + v2[i];
}

In contrast to C arrays and pointers, the vector arguments know their sizes and we can now
check whether they match. Note: The array size can be deduced with templates, which we
leave as an exercise for later (see §3.11.9).

Vectors are copyable and can be returned by functions. This allows us to use a more
natural notation:

vector <float > add(const vector <float >& v1, const vector <float >& v2)
{

assert(v1.size() == v2.size ());
vector <float > s(v1.size ());
for (unsigned i= 0; i < v1.size (); ++i)

s[i]= v1[i] + v2[i];
return s;

}

int main ()
{

std::vector <float > v= {1, 2, 3}, w= {7, 8, 9}, s= add(v, w);
}
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This implementation is potentially more expensive than the previous one where the target
vector is passed in as a reference. We will later discuss the possibilities of optimization:
both on the compiler and on the user side. In our experience, it is more important to start
with a productive interface and deal with performance later. It is easier to make a correct
program fast than to make a fast program correct. Thus, aim first for a good program design.
In almost all cases, the favorable interface can be realized with sufficient performance.

The container std::vector is not a vector in the mathematical sense. There are no
arithmetic operations. Nonetheless, the container proved very useful in scientific applications
to handle non-scalar intermediate results.

1.8.7.2 valarray

A valarray is a one-dimensional array with element-wise operations; even the multiplication
is performed element-wise. Operations with a scalar value are performed respectively with
each element of the valarray. Thus, the valarray of a f loating-point number is a vector space.

The following example demonstrates some operations:

#include <iostream >
#include <valarray >

int main ()
{

std::valarray <float > v= {1, 2, 3}, w= {7, 8, 9}, s= v + 2.0f * w;
v= sin(s);
for (float x : v)

std::cout � x � ' ';
std::cout � '\n';

}

Note that a valarray<float> can only operate with itself or float. For instance, 2 * w would
fail since it is an unsupported multiplication of int with valarray<float>.

A strength of valarray is the ability to access slices of it. This allows us to Emulate
matrices and higher-order tensors including their respective operations. Nonetheless, due
to the lack of direct support of most linear-algebra operations, valarray is not widely used
in the numeric community. We also recommend using established C++ libraries for linear
algebra. Hopefully, future standards will contain one.

In Section A.2.9, we make some comments on Garbage Collection which is essentially
saying that we can live well enough without it.

1.9 Structuring Software Projects

A big problem of large projects is name conflicts. For this reason, we will discuss how
macros aggravate this problem. On the other hand, we will show later in Section 3.2.1 how
namespaces help us to master name conflicts.

In order to understand how the files in a C++ software project interact, it is necessary to
understand the build process, i.e., how an executable is generated from the sources. This will
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be the subject of our first sub-section. In this light, we will present the macro mechanism
and other language features.

First of all, we want to discuss briefly a feature that contributes to structuring a program:
comments.

1.9.1 Comments

The primary purpose of a comment is evidently to describe in plain language what is not
obvious to everybody in the program sources, like this:

// Transmogrification of the anti-binoxe in O(n log n)
while (cryptographic(trans_thingy) < end_of(whatever )) {

....

Often, the comment is a clarifying pseudo-code of an obfuscated implementation:

// A= B * C
for ( ... ) {

int x78zy97= yo6954fq , y89haf= q6843 , ...
for ( ... ) {

y89haf += ab6899(fa69f) + omygosh(fdab); ...
for ( ... ) {

A(dyoa929 , oa9978 )+= ...

In such a case, we should ask ourselves whether we can restructure our software such that
such obscure implementations are realized once in a dark corner of a library and everywhere
else we write clear and simple statements such as

A= B * C;

as program and not as pseudo-code. This is one of the main goals of this book: to show you
how to write the expression you want while the implementation under the hood squeezes out
the maximal performance.

Another frequent usage of comments is to let code fractions disappear temporarily to
experiment with alternative implementations, e.g.:

for ( ... ) {
// int x78zy97= yo6954fq , y89haf= q6843 , ...
int x78zy98= yo6953fq , y89haf= q6842 , ...
for ( ... ) {

...

Like C, C++ provides a form of block comments, surrounded by /* and */. They can be used
to render an arbitrary part of a code line or multiple lines into a comment. Unfortunately,
they cannot be nested: no matter how many levels of comments are opened with /*, the
first */ ends all block comments. Almost all programmers run into this trap: they want to
comment out a longer fraction of code that already contains a block comment so that the
comment ends earlier than intended, for instance:

for ( ... ) {
/* int x78zy97= yo6954fq; // start new comment
int x78zy98= yo6953fq;
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/* int x78zy99= yo6952fq; // start old comment
int x78zy9a= yo6951fq; */ // end old comment
int x78zy9b= yo6950fq; */ // end new comment (presumably)
int x78zy9c= yo6949fq;
for ( ... ) {

Here, the line for setting x78zy9b should have been disabled but the preceeding ∗/ terminated
the comment prematurely.

Nested comments can be realized (correctly) with the preprocessor directive #if as we
will illustrate in Section 1.9.2.4. Another possibility to deactivate multiple lines conveniently
is by using the appropriate function of IDEs and language-aware editors.

1.9.2 Preprocessor Directives

In this section, we will present the commands (directives) that can be used in preprocessing.
As they are mostly language-independent, we recommend limiting their usage to an absolute
minimum, especially macros.

1.9.2.1 Macros

“Almost every macro demonstrates a flaw in the programming language, in the
program, or the programmer.”

—Bjarne Stroustrup

This is an old technique of code reuse by expanding macro names to their text definition,
potentially with arguments. The use of macros gives a lot of possibilities to empower your
program but much more for ruining it. Macros are resistant against namespaces, scopes, or
any other language feature because they are reckless text substitution without any notion
of types. Unfortunately, some libraries define macros with common names like major. We
uncompromisingly undefine such macros, e.g., #undef major, without mercy for people who
might want use those macros. Visual Studio defines—even today!!!—min and max as macros,
and we strongly advise you to disable this by compiling with /DNO MIN MAX. Almost all macros
can be replaced by other techniques (constants, templates, inline functions). But if you really
do not find another way of implementing something:

Macro Names

Use LONG_AND_UGLY_NAMES_IN_CAPITALS for macros!

Macros can create weird problems in almost every thinkable and unthinkable way.
To give you a general idea, we look at few examples in Appendix A.2.10 with some tips for
how to deal with them. Feel free to postpone the reading until you run into some issue.

As you will see throughout this book, C++ provides better alternatives like constants,
inline functions, and constexpr.
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1.9.2.2 Inclusion

To keep the language C simple, many features such as I/O were excluded from the core
language and realized by the library instead. C++ follows this design and realizes new features
whenever possible by the standard library, and yet nobody would call C++ a simple language.

As a consequence, almost every program needs to include one or more headers. The most
frequent one is that for I/O as seen before:

#include <iostream >

The preprocessor searches that file in standard include directories like /usr/include,
/usr/local/include, and so on. We can add more directories to this search path with a
compiler flag—usually -I in the Unix/Linux/Mac OS world and /I in Windows.

When we write the file name within double quotes, e.g.:

#include "herberts_math_functions.hpp"

the compiler usually searches first in the current directory and then in the standard paths.17

This is equivalent to quoting with angle brackets and adding the current directory to the
search path. Some people argue that angle brackets should only be used for system headers
and user headers should use double quotes.

To avoid name clashes, often the include’s parent directory is added to the search path
and a relative path is used in the directive:

#include "herberts_includes/math_functions.hpp"
#include <another_project/more_functions.h>

The slashes are portable and also work under Windows despite the fact that sub-directories
are denoted by backslashes there.

Include guards: Frequently used header files may be included multiple times in one trans-
lation unit due to indirect inclusion. To avoid forbidden repetitions and to limit the text
expansion, so-called Include Guards ensure that only the first inclusion is performed. These
guards are ordinary macros that state the inclusion of a certain file. A typical include file
looks like this:

// Author: me
// License: Pay me $100 every time you read this

#ifndef HERBERTS_MATH_FUNCTIONS_INCLUDE
#define HERBERTS_MATH_FUNCTIONS_INCLUDE

#include <cmath >

double sine(double x);
...

#endif // HERBERTS_MATH_FUNCTIONS_INCLUDE

17. However, which directories are searched with double-quoted file names is implementation-dependent and
not stipulated by the standard.
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Thus, the content of the file is only included when the guard is not yet defined. Within the
content, we define the guard to suppress further inclusions.

As with all macros, we have to pay utter attention that the name is unique, not only in
our project but also within all other headers that we include directly or indirectly. Ideally
the name should represent the project and file name. It can also contain project-relative
paths or namespaces (§3.2.1). It is common practice to terminate it with _INCLUDE or _HEADER.
Accidentally reusing a guard can produce a multitude of different error messages. In our
experience it can take an unpleasantly long time to discover the root of that evil. Advanced
developers generate them automatically from the before-mentioned information or using
random generators.

A convenient alternative is #pragma once. The preceding example simplifies to

// Author: me
// License: Pay me $100 every time you read this

#pragma once

#include <cmath >

double sine(double x);
...

This pragma is not part of the standard but all major compilers support it today. By using
the pragma, it becomes the compiler’s responsibility to avoid double inclusions.

1.9.2.3 Conditional Compilation

An important and necessary usage of preprocessor directives is the control of conditional
compilation. The preprocessor provides the directives #if, #else, #elif, and #endif for branch-
ing. Conditions can be comparisons, checking for definitions, or logical expressions thereof.
The directives #ifdef and #ifndef are shortcuts for, respectively:

#if defined(MACRO_NAME)

#if !defined(MACRO_NAME)

The long form must be used when the definition check is combined with other conditions.
Likewise, #elif is a shortcut for #else and #if.

In a perfect world, we would only write portable standard-compliant C++ programs.
In reality, we sometimes have to use non-portable libraries. Say we have a library only available
on Windows, more precisely only with Visual Studio. For all other relevant compilers, we
have an alternative library. The simplest way for the platform-dependent implementation is
to provide alternative code fragments for different compilers:

#ifdef _MSC_VER
... Windows code

#else
... Linux/Unix code

#endif
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Similarly, we need conditional compilation when we want to use a new language feature that
is not available on all target platforms, say, move semantics (§2.3.5):

#ifdef MY_LIBRARY_WITH_MOVE_SEMANTICS
... make something efficient with move

#else
... make something less efficient but portable

#endif

Here we can use the feature when available and still keep the portability to compilers without
this feature. Of course, we need reliable tools that define the macro only when the feature is
really available. Conditional compilation is quite powerful but it has its price: the maintenance
of the sources and the testing are more laborious and error-prone. These disadvantages can
be lessened by well-designed encapsulation so that the different implementations are used
over a common interfaces.

1.9.2.4 Nestable Comments

The directive #if can be used to comment out code blocks:

#if 0
... Here we wrote pretty evil code! One day we fix it. Seriously.

#enif

The advantage over /* ... */ is that it can be nested:

#if 0
... Here the nonsense begins.

#if 0
... Here we have nonsense within nonsense.

#enif
... The finale of our nonsense. (Fortunately ignored .)

#enif

Nonetheless, this technique should be used with moderation: if three-quarters of the program
are comments, we should consider a serious revision.

Recapitulating this chapter, we illustrate the fundamental features of C++ in
Appendix A.3. We haven’t included it in the main reading track to keep the high pace
for the impatient audience. For those not in such a rush we recommend taking the time to
read it and to see how non-trivial software evolves.

1.10 Exercises

1.10.1 Age

Write a program that asks input from the keyboard and prints the result on the screen and
writes it to a file. The question is: “What is your age?”
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1.10.2 Arrays and Pointers

1. Write the following declarations: pointer to a character, array of 10 integers, pointer to
an array of 10 integers, pointer to an array of character strings, pointer to pointer to
a character, integer constant, pointer to an integer constant, constant pointer to an
integer. Initialize all these objects.

2. Make a small program that creates arrays on the stack (fixed-size arrays) and arrays
on the heap (using allocation). Use valgrind to check what happens when you do not
delete them correctly.

1.10.3 Read the Header of a Matrix Market File

The Matrix Market data format is used to store dense and sparse matrices in ASCII format.
The header contains some information about the type and the size of the matrix. For a
sparse matrix, the data is stored in three columns. The first column is the row number, the
second column the column number, and the third column the numerical value. When the
value type of the matrix is complex, a fourth column is added for the imaginary part.

An example of a Matrix Market file is

%%MatrixMarket matrix coordinate real general
%
% ATHENS course matrix
%

2025 2025 100015
1 1 .9273558001498543E-01
1 2 .3545880644900583E-01

...................

The first line that does not start with % contains the number of rows, the number of columns,
and the number of non-zero elements on the sparse matrix.

Use fstream to read the header of a Matrix Market file and print the number of rows and
columns, and the number of non-zeroes on the screen.
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interruption
point, 211

interval
arithmetic, 214
closed, 128
right-open, 128, 168

invariant, 68, 290
inverse, 365
<iomanip>, 43
ios::binary, 359
ios_base, 43
<iostream>, 1, 334
iostream, 42
iota, 185
irange, 369
is_const

implementation, 234
in standard library, 200

is_literal_type, 221
is_matrix, 237
is_nothrow_assignable, 200
is_nothrow_copy_constructible, 229
is_pod, 200
is_reference, 226
is_trivially_copyable, 201
istream, 42

read, 359
iterator, 26, 129, 166–171

as generalized pointer, 166
beyond, 185
category, 167
dispatching on ∼ categories, 170
operations, 170

<iterator>, 170
IVP, 322

Järvi, Jaakko, 239
Java, 3

generic functions, 114
Josuttis, Nicolai, 165
Julia set, 216

Kalb, Jon, 91
KDE, 3
KDevelop, 3
Kennedy, John F., 34
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kernel, 357
key, 177
kill, 411
Knepley, Matt, xv
kill -9, 411
knuth_b, 194
Koch, Mathias, 215
Koenig, Andrew, 90
König, Tilmar, 362

label
in assembler, 336

lambda, 154–161
capture, 155

by reference, 157
by value, 156
init, 158
move, 158

exercise, 164
for sort, 184
nested, 155
object, 325
pseudo-∼, 183
return type, 155

language
core, 1, 56
feature

use new one, 63
functional, 20
machine, 335, 336

LAPACK, 233
late binding, 293
LATEX, 101
LD LIBRARY PATH, 336
left-adjusted, 43
less, 177
library, 165–217

for PDEs, 215
graph, 215
matrix template ∼ 4, see MTL4
scientific, 213–215
standard, 1, 37, 51, 56, 165–213

chrono, 209, 210
complex, 186–189
numerics, 186–198
random, 189–198

template, see STL
tutorial, 165
utilities, 202–210

with C interface, 48
LIFO, 174
<limits>, 192, 198, 226
linear_congruential_engine, 194
linearity, 66
linkage, 336, 341

block, 345
external, 343
internal, 343
order, 342
to C code, 344

linker
standard, 341

LINPACK, 253
Linux, 2, 411
Lipschitz-continuous, 323
Lisp interpreter, 394
list, 51
<list>, 175
list, 126

erase, 176
in STL, 166, 175
performance, 176

list_iterator, 130
literal, 6, 79, 353

0, 50
binary, 7
hexadecimal, 7
octal, 7

lognormal_distribution, 196
long, 4

double, 4
long, 4

loop, 24–27
control, 27

overhead, 253
replaced by recursion, 257
size known at compile time, 255
unrolling, 253

automatic, 257
nested, 257
slowing down, 257
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loop2, 280
Lorenz system, 323, 331
lorenz, 332
ls, 411
lvalue, 11, 413

as mandatory first argument, 102
in tuple use, 203
in universal reference, 399

Mac OS, 411
macro, 10, 60, 335

as include guard, 61
definition, 60
enabling, 390
for constants, 361
function-like, 361
problems, 60

Magnitude, 239
maintenance

with conditional compilation, 63
make, 337–339
make_shared, 54
make_tuple, 203
Mandelbrot, Benôıt B., 187
<map>, 177
map, 177

as compile-time containers, 205
at, 178
emplace, 208
find , 178, 208
insert, 208
of references, 208

<math.h>, 345
Mathematica, 352
Matlab, 352
matrix

column, 369
dense, 253, 365, 375

row-wise, 375
exponentiation, 101
fixed-size, 258
Hilbert, 158
identity, 364
lower triangular, 363
market, 64

norm, 365
notation, xx
permutation, 363
regular, 35
singular, 39
sparse, 64, 327
square, 366
symmetric positive-definite, 347
transposed, 230
upper triangular, 363

matrix, 373
max, 107, 113, 116
max_square, 361
member_selector, 372
memcheck, 408
memcpy, 201
memmove, 201
memory

address, 49
allocation, 49, 326

as bottle neck, 248
automatic release, 360
dynamically allocated, 49
exhaustion, 50
hierarchy, 248, 249
leak, 50
management

encapsulation, 51
release, see deallocation
unused, 360

<memory>, 51
mersenne_twister_engine, 194
meta-function, 395
meta-programming, xviii, 133, 219–285

library support, 198
mixed with run-time programming, 204

meta-tuning, 253–283
method, 67, 71–72

analytical, 321
Babylonian, 209
constant, 98
deletion

implicit vs. explicit, 384
generation, 95, 375

by base class, 378
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by member, 378
design guides, 383
implicit, 378
of copy operations, 380–382
of default constructor, 379
of destructor, 379
of move operations, 382
suppression, 377

multi-step, 331
private, 68
public, 68
reference-qualified, 99
with default behavior, 95, 375

Meyers, Scott, 75, 111, 158, 386
Microsoft, 3
min_abs, 239
min_magnitude, 226
MinGW, 3
minimum, 244
minstd_rand, 194
minstd_rand0, 194
mkdir, 411
MKL, 283
mode

debug, 35
release, 35

modification
regarding private, 68

Monk, 389
monoid, 270
Moore, Charles H., 370
move

assignment, 87
by copy, 384
constructor, 86
semantics, 30, 52, 85–89

move, 87, 88
abuse, 400
in return statement, 204
of tuple entries, 203

MPI, 326
mpi_algebra, 331
mt19937, 194
mt19937_64, 194
MTL4, 215, 363

abstraction penalty, 274
iteration control, 211
LU factorization, 364
NDEBUG, 404
nested unrolling, 277
terminology, 298
transposed view, 231

Mulansky, Mario, 215
mult_block, 279
multi_tmp, 272
multimap, 179

lower_bound, 179
upper_bound, 179

multiset, 177
Musser, David, 125, 166
mutable

in lambda, 156
mutable_copy, 381
mutex, 211
mv, 411

Nackman, Lee, 316
name

conflict, 58
demangler, 135, 232
hiding, 10, 386

in namespaces, 117
import, 117
in library, 116
in OS, 116
mangling, 335, 341

in RTTI, 232
incompatibility, 342

namespace, 10, 11, 115–123
alias, 118
global, 116
import, 117
in generic programming, 115
nested, 116
qualification, 116
search in ∼, 117

narrowing, 7, 316
in arrays, 47
in I/O, 46
in member initialization, 85
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NDEBUG, 35
negative_binomial_distribution, 195
new, 17, 49
new[], 49
Newton’s equation, 322
Niebuhr, Reinhold, 165
noexcept, 39, 89

conditional, 229
norm

L1, 119, 239, 269
Frobenius, 157

norm, 187
normal_distribution, 196
notation

LaTeX, 101
now, 209
nth_derivative, 150
NULL, 50
nullptr, 50, 87
num_cols, 298
num_rows, 298
number

amicable, 92
congruent, 92
Fibonacci, 219, 394
floating-point, 5, 13
integer, 4, 13
of arbitrary precision, 214
prime, 219, 392
rational, 214

numerator, 68
numeric

instability, 245
optimization, 253

<numeric>, 184
numeric_limits, 199

epsilon, 200
lowest, 200
max, 200
min, 200

-o (flag), 334
object, 67, 336, 413

expired, 89
file, 336

and instantiation, 109

OCI, 92
oct, 44
octal, 7
odd_iterator, 162
ODE, 215, 321–332

autonomous, 322
explicit, 322
first order, 322
implicit, 322
non-linear, 322
order of, 322
real-valued, 322

Office, xvii
ofstream, 41
omp_algebra, 331
on_each_nonzero, 157
one_norm, 240, 269
one_norm_ftor, 270
OOP, xviii, 287–320
opencl_algebra, 331
OpenFOAM, xvii
OpenMP, 282, 326
Operation, 327
operation

independent ∼s, 255
operator, 10–20

access ∼, 70
+ (addition), 12, 102, 245
& (address of), 50
alignof, see alignof

() (application), 73, 101, 102, 147,
231, 374

arithmetic, 11
arity, 101
= (assign), 16, 87, 113, 250, 254,

81–254
binary, 102
& (bitwise and), 15, 138
&= (bitwise and by), 16, 397
ˆ (bitwise xor), 15, 102
ˆ= (bitwise xor by), 16
call, see operator, application
, (comma), 16, 22, 26
∼x (complement), 15
?: (conditional), 16, 22, 23, 368
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conversion, 138, 242, 314
-= (decrease by), 16
delete, see delete

->* (deref member deref), 17, 372
* (derefer), 17, 50, 104, 129
-> (derefer member), 17, 70, 100, 102
*= (divide by), 16
/ (division), 12
== (equal), 14, 129
� (extraction), 41
> (greater), 14, 113
>= (greater equal), 14
+= (increase by), 16
� (insertion), 40, 104, 119
� (left shift), 15
�= (left shift by), 16
< (less), 14
<= (less equal), 14
linear, 65
&& (logical and), 14
. (member), 17, 67, 70
.* (member deref), 17, 372
missing, 113
% (modulo), 12
%= (modulo by), 16
* (multiplication), 12
new, see new

! (not), 14
!= (not equal), 14, 129
overloading, 18, 100–104

consistent, 101
exceptions, 18
priority, 101
return type, 101

-- (post-decrement), 12
++ (post-increment), 12
-- (pre-decrement), 12, 167
++ (pre-increment), 12, 129, 167
precedence, 18, 369
� (right shift), 15
�= (right shift by), 16
*= (scale by), 16
semantics, 369
� (shift), 2
sizeof, see sizeof

sizeof..., see sizeof...

[] (subscript), 17, 97, 102, 168, 250,
258, 369

- (subtraction), 12
throw, see throw

typeid, see typeid

- (unary minus), 12, 104
+ (unary plus), 12

optimization, see performance
optimization

order
of accuracy, 324

ordering
strict weak, 178

ordinary differential equations, see ODE
ostream, 41, 42, 104, 359

write, 359
ostream_iterator, 167, 183
out of range, 25
output, 40
overflow, 24
overhead

exponential, 396
in HPC software, 274
of virtual functions, 287

overload
in specialization, 140
resolution, 386

for deleted move, 384
override, 295
overriding

explicit, 294

pair, 204
first , 204
second, 204

parameter pack, 160
packing, 160
unpacking, 160

Paraview, 410
parse, 46

most vexing, 75
partial_sort, 184
partial_sum, 185
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Pascal
assignment, 15
I/O in, 61

pattern matching, 253
PDE, 215
performance

in generic programs, 176
of move, 204
of templates, 114
optimization, 394

concept-based, 254
tuning, 245–283, 390
variation, 66

permutation, 371, 399
row, 364

person, 288
all_info, 288

PETSc, xvii, 344
π, 9, 344
Picard-Lindelöf theorem, 323
piece_constant_distribution, 196
piece_linear_distribution, 196
pipe, 411
pipeline, 209
pitfalls

in method generation, 383
plain old data type

see POD 201
POD, 201
point, 316
pointer, 49–55

deleter, 53
initialization, 50
initialize as empty, 50
polymorphic, 307
raw, 51, 383
referring other variable, 50
smart, 51–55, 101

shared_ptr, see shared_ptr (top level)
unique_ptr, see unique_ptr (top level)
weak_ptr, see weak_ptr (top level)

stale, 56
to member, 70, 371

Poisson, 351
poisson_distribution, 195

polymorphism
dynamic, 293
run-time, 287
static, 293

polynomial, 104
popcount, 222
practice, 362
#pragma once, 62
precision (method of I/O streams), 199
preconditioner

dynamic selection, 306
predicate, 182
preprocessing, 334

directive, 60
flag, 334

printf, 360
private, 68
probability, 193
processor

many-core, 282
multi-core, 211

processors
super-scalar, 260

product
scalar, 80

program
deterministic, 19
error

static, 40
flow, 16
reliability, 365
source, 333
structure of, 8

programming
concurrent, xviii
defensive, 35
extreme, 363
generic, xviii, 107–164
meta-∼, see meta-programming
object-oriented, 68, see OOP

with getters and setters, 71
paradigm, 107
paradigms, xviii
procedural, xviii
structured, 28
template, 107
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promise, 211
promoted, 316
property

mathematical, 66
protected, 68
proxy, 138, 375
Prud’homme, Christophe, 215
ps, 411
public, 68
pwd, 411
Python

as API for C++, 215
dynamic types, 132, 308
range operations, 369
string notation, 5

quantum phenomena, 189
queue, 51

RAII, 51, 90, 92, 361
and rule of zero, 383

rand, 189
<random>, 189
random number, 189–198

distribution, 193, 195–197
generator, 193
pseudo-∼ generator, 189
truly ∼, 193

random_device, 193
random_numbers, 193
RandomAccessIterator, 168, 170
range, 129, 368

checking, 375
ranlux24, 194
ranlux24_base, 194
ranlux48, 194
ranlux48_base, 194
ratio, 210
rational, 68
real, 96
recursion

in variadic templates, 160
infinite, 151

ref, 208
refactoring, 367

reference, 29, 55–56
constant, 29
counting, 86
cyclic, 54
forward, 111
mutable, 42
not out-dating, 97
of member data, 96
of temporaries, 97
stale, 55, 97
to local data, 55
universal, 111, 399

reference_wrapper, 55, 207
get, 207

register, 31
register, 261
reinterpret_cast, 313
replication

code, 343
residuum, 211
resize, 327
resource

acquisition, see also RAII, 90
managed, 91

by user, 91, 383, 384
release, 90

after exception, 91
return

type, 30
automatic, 115
declaration, 132
deduction, 115
of lambda, 155
of mixed-type templates, 114
trailing, 132

value optimization, 88
return, 2
reusability, 370
rm, 411
rmdir, 411
ROSE, 254
rotation, 145
RTTI, 232, 312
Rudl, Jan, 197
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rule
of five, 383
of five defaults, 386
of six, 385
of zero, 383
trapezoid, 163

run time, 114
run-time type information, see RTTI
Runge-Kutta, 321

algorithm, 321
method, 324, 332
scheme

explicit, 323
RK4, 324

runge_kutta4, 327, 330
rvalue, 86

accept only ∼ argument, 399
and raw-pointers, 86
in tuple use, 203
with deleted move operations, 384

scale_sum2, 329
scale_sum5, 329
scanf, 360
scheme

explicit, 331
implicit, 331
predictor-corrector, 331

Scholes, Myron, 197
Scholes, Philipp, xxi
science

computer, 65, 382
scope, 8–10, 22

global, 9
in constructor, 74
local, 9
nested, 10
out of, 9

scr1, 361
seed, 189
segmentation fault, see segmentation

violation
segmentation violation

in array, 48
selection

run-time, 372

semantics, 363
inconsistent, 80
operator vs. function notation, 248

semicolon, 21
separation of concerns, 20
set

sub-, 290
super-, 290

<set>, 176
set, 176

count, 177
find , 177

setprecision, 43
setw, 43
SFINAE, 239
share price, 197
shared_pointer, 379
shared_ptr, 53, 91, 361, 383

for resource rescue, 93
use_count, 53

short, 4
shuffle_order_engine, 194
side effect, 12, 18, 66

in constexpr functions, 220
in lambda, 157

Siek, Jeremy, 24, 215, 318
signature, 32

of overridden methods, 294
Simple DirectMedia Layer, 187
simulation

large-scale, 245
single responsible principle, see SRP
singleton, 70
size

compile-time, 254
compile-time ∼, 47, 144
run-time ∼, 49
static, see compile-time size

size, 327
sizeof, 17

on arrays, 48
sizeof..., 17, 161
Skarupke, Malte, 386
slicing, 294
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software
break, 45
confidence, 101
developer, 65
development, 363
domain-specific, 65
engineering, 65
high-performance, 248
non-portable, 62
scientific, 65, 347
structure of, 58

solver
asynchronous, 211
direct, 363
dynamic selection, 306
iterative

interruptible, 211
triangular, 366

solver, 175
sort, 184

intro-∼, 184
quick, 184

sort, 411
sort, 113

with user-defined iterator, 162
source

preprocessed, 335
specialization, 136

ambiguity, 140
for hardware, 389
for type traits, 227
full, 141
of functions, 139
partial, 141, 228

sqrt

in Mandelbrot set, 187
square root, 200
srand, 189
SRP, 91, 95
SSE, 260, 282, 389
stable_sort, 184
stack, 161, 342
stack

specialization for bool, 162
with custom size, 163

state_type, 327
statement, 21

compound, 2, 22
empty, 21
in Pascal, 21

static

in constexpr, 222
member variable, 70
method, 71
random engine, 193
variable, 355

static_assert, 40, 238
replacement, 396

std::

‘name’, see ‘name’ at top level
user code in ∼, 119

std::begin, 327
std::end, 327
steady_clock, 210

period, 210
Stepanov, Alex, 125, 166, 274
Stiefel, Eduard, 347
STL, 24, 165–186

algorithm, 179–185
concepts in ∼, 136
containers, 171–179

stof, 357
strcpy, 19
string, 2, 5

C, 360
format, 360

<string>, 7
string, 42
stringstream, 42

str, 42
Stroustrup, Bjarne, xix, 90, 165
struct, 69, 201
student, 289
student_t_distribution, 196
substitution failure is not an error,

see SFINAE
subtract_with_carry_engine, 194
sum, 126

variadic, 159
Sutter, Herb, xvii, 69, 233
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Sutton, Andrew, 136
swap, 89, 122
switch, 24
switch

in dynamic function dispatching,
306

symbol
found twice, 342
in object file, 336, 341
matching, 336, 342
not found, 342
weak, 343

system
linear, 331

system_clock, 210
to_time_t, 209

tag
type, 171

tangent, 152
Taylor series, 26, 152
TCP/IP, 42
template, 107–164

alias, 135
argument, 136

arbitrary number of ∼, 159
class, 123–154
constant, 361
function, 107–115

virtual, 308
library, 115
parameter, 136

non-type, 144
notation, xx

notation, xix
performance, 114
primary, 137
specialization, see specialization (top

level)
variadic, 159, 242

associtivity, 244
with mixed types, 113

tensor, 214
tensor, 135
termination criterion

type-dependent, 200

test, 35
testing

randomized, 191
text

substitution, 60, 335
theory, 362

relativity, 146
string, 146

this, 81, 317
<thread>, 3
thread, 211

join, 213
killing, 211
storage, 222

throw, 18, 36
re∼, 38

tie, 203
time

run, 49
time_point, 209
time_t, 209
time_type, 327
timer, 209, 210
to_string, 161
to_tuple_string(x, y, z), 161
top, 411
TortoiseGit, xxi
Totalview, 408
trajectory, 322

discrete, 324
trans, 231
translation

unit, 335
transposed_view, 231
tree, 51
trigonometry

with intervals, 214
trivial, 201
try, 37

-catch-block, 37
try

in constexpr, 222
tuple

access by entry type, 203
<tuple>, 202
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tuple, 202
get, 203

Turing-complete, 219
Twain, Mark, 18
type

-dependent behavior, 125
deduction, 109–112, 131–135

for class templates, 132
for variables, 131

erasure, 386
exception, 37
generic, 107
in binary I/O, 359
intrinsic, 4, 6
introspection, 232
meaning of bites, 308
parameter

anonymous, 397
parametric, 107
pattern, 141
polymorphic, 37, 292
property, 221
safe, 336, 360
strongly ∼d, 3, 132
sub-∼, 38, 290
super-∼, 290
trait, 226

in advance, 171
in standard library, 200

<type_traits>, 200, 226, 240, 243
typedef, 134
typeid, 17
<typeinfo>, 232
typename, 108
types

polymorphic, 312

uint32_t, 359
UnaryFunction, 149
#undef, 60
uniform_int_distribution, 195
uniform_real_distribution, 195
uniq, 411
unique, 183
unique_ptr, 52, 91, 361, 379, 383

for resource rescue, 93
get, 52

Unix, 411
Unruh, Erwin, 219, 392
unsigned, 4
upper_trisolve, 366
user-declared, 378

purely, 378
user-implemented, 378
using, 134

declaration, 117, 290, 291
directive, 117

v-shape, 300
valarray, 58

operations, 58
sliced access, 58
usage, 58

valgrind, 408
value_type, 327
Vandevoorde, Daveed, 248
variable, 3–10

accessibility, 9
constant, see constant
declaration, 3
global, 9
in multiple translation units, 343
independent, 322
life time, 10
local, 9
notation, xx
real-valued, 322
visibility, 9, 10

variadic, see template
variation, 197
vector, 25

addition, 57
column, 366
generic, 124
in linear algebra vs. STL, 124
space, 58, 65

changing dimension, 82
temporary, 86
unit, 368

<vector>, 171
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vector, 51, 56, 82, 327
as compile-time containers, 205
capacity, 172
emplace, 173
emplace_back, 173
in Magnitude type trait, 229
in STL, 166, 171
of bool, 137
of boost::any, 386
push_back, 172
resize, 172
shrink_to_fit, 172
size, 57
slow addition, 245

vector_sum, 249
Veldhuizen, Todd, 214, 219, 248
view, 230
virtual, 287, 292

base class, 303, 310
destructor, 89
function table, 293

method table, 293
pure, 296

visibility, 8, 290
Visual Studio, xvii, 3

macros, 60
preprocessing flag, 334
pretty printer in debugger, 408

void, 30
volatile, 313
vtable, see virtual function table

Walter, Jörg, 215
weak_ptr, 54
weibull_distribution, 195
while, 24
Wilcock, Jeremiah, 239, 397
Wilde, Oscar, 79
Williams, Antony, 213
Windows, xvii, 3
<windows.h>, 3

yes, 411
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